Sample records for foam flow behavior

  1. Insights on Flow Behavior of Foam in Unsaturated Porous Media during Soil Flushing.

    PubMed

    Zhao, Yong S; Su, Yan; Lian, Jing R; Wang, He F; Li, Lu L; Qin, Chuan Y

    2016-11-01

      One-dimensional column and two-dimensional tank experiments were carried out to determine (1) the physics of foam flow and propagation of foaming gas, foaming liquid, and foam; (2) the pressure distribution along foam flow and the effect of media permeability, foam flow rate and foam quality on foam injection pressure; and (3) the migration and distribution property of foam flow in homogeneous and heterogeneous sediments. The results demonstrated that: (1) gas and liquid front were formed ahead of the foam flow front, the transport speed order is foaming gas > foaming liquid > foam flowing; (2) injection pressure mainly comes from the resistance to bubble migration. Effect of media permeability on foam injection pressure mainly depends on the physics and behavior of foam flow; (3) foam has a stronger capacity of lateral spreading, besides, foam flow was uniformly distributed across the foam-occupied region, regardless of the heterogeneity of porous media.

  2. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    PubMed

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  3. Transient foam flow in porous media with CAT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a catmore » Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.« less

  4. Foam relaxation in fractures and narrow channels

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.

    2017-11-01

    Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.

  5. A review of aqueous foam in microscale.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Convective Instabilities in Liquid Foams

    NASA Technical Reports Server (NTRS)

    Veretennikov, Igor; Glazier, James A.

    2004-01-01

    The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.

  7. Wall slipping behavior of foam with nanoparticle-armored bubbles and its flow resistance factor in cracks.

    PubMed

    Lv, Qichao; Li, Zhaomin; Li, Binfei; Husein, Maen; Shi, Dashan; Zhang, Chao; Zhou, Tongke

    2017-07-11

    In this work, wall slipping behavior of foam with nanoparticle-armored bubbles was first studied in a capillary tube and the novel multiphase foam was characterized by a slipping law. A crack model with a cuboid geometry was then used to compare with the foam slipping results from the capillary tube and also to evaluate the flow resistance factor of the foam. The results showed that the slipping friction force F FR in the capillary tube significantly increased by addition of modified SiO 2 nanoparticles, and an appropriate power law exponents by fitting F FR vs. Capillary number, Ca, was 1/2. The modified nanoparticles at the surface were bridged together and formed a dense particle "armor" surrounding the bubble, and the interconnected structures of the "armor" with strong steric integrity made the surface solid-like, which was in agreement with the slip regime associated with rigid surface. Moreover, as confirmed by 3D microscopy, the roughness of the bubble surface increased with nanoparticle concentration, which in turn increased the slipping friction force. Compared with pure SDBS foam, SDBS/SiO 2 foam shows excellent stability and high flow resistance in visual crack. The resistance factor of SiO 2 /SDBS foam increased as the wall surface roughness increased in core cracks.

  8. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  9. Influence of foam on the stability characteristics of immiscible flow in porous media

    NASA Astrophysics Data System (ADS)

    van der Meer, J. M.; Farajzadeh, R.; Rossen, W. R.; Jansen, J. D.

    2018-01-01

    Accurate field-scale simulations of foam enhanced oil recovery are challenging, due to the sharp transition between gas and foam. Hence, unpredictable numerical and physical behavior is often observed, casting doubt on the validity of the simulation results. In this paper, a thorough stability analysis of the foam model is presented to validate the simulation results. We study the effect of a strongly non-monotonous total mobility function arising from foam models on the stability characteristics of the flow. To this end, we apply the linear stability analysis to nearly discontinuous relative permeability functions and compare the results with those of highly accurate numerical simulations. In addition, we present a qualitative analysis of the effect of different reservoir and fluid properties on the foam fingering behavior. In particular, we consider the effect of heterogeneity of the reservoir, injection rates, and foam quality. Relative permeability functions play an important role in the onset of fingering behavior of the injected fluid. Hence, we can deduce that stability properties are highly dependent on the non-linearity of the foam transition. The foam-water interface is governed by a very small total mobility ratio, implying a stable front. The transition between gas and foam, however, exhibits a huge total mobility ratio, leading to instabilities in the form of viscous fingering. This implies that there is an unstable pattern behind the front. We deduce that instabilities are able to grow behind the front but are later absorbed by the expanding wave. Moreover, the stability analysis, validated by numerical simulations, provides valuable insights about the important scales and wavelengths of the foam model. In this way, we remove the ambiguity regarding the effect of grid resolution on the convergence of the solutions. This insight forms an essential step toward the design of a suitable computational solver that captures all the appropriate scales, while retaining computational efficiency.

  10. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates

    PubMed Central

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi

    2018-01-01

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450

  11. Synthesis of α-Fe₂O₃ and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates.

    PubMed

    Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi

    2018-02-11

    Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.

  12. Modeling of Compositional Effects of Foam Assisted CO2 Storage Processes

    NASA Astrophysics Data System (ADS)

    Naderi Beni, A.; Varavei, A.; Farajzadeh, R.; Delshad, M.

    2012-12-01

    Foaming of carbon dioxide (CO2, e.g. from fossil-fuel power plants) has been proposed as a possible strategy to resolve the limitations of direct disposal of CO2 into (saline) aquifers. Such limitations include gravity segregation that may damage the caprock and aquifer rock property alteration as a result of geochemical interactions. Foam may also block the CO2 leakage paths, resulting in an overall storage security enhancement. In this regard, specific aspects of composition and type of gas (N2 vs. CO2) may affect the foaming properties of gas-surfactant systems. The aim of this study is to determine these effects on the foaming properties of gas-surfactant solutions. To this end, we study the physics of foam assisted CO2 storage by modeling coreflood experiments. Different options such as simplified population balance foam model and a table-look-up approach were used to couple the fluid flow and mass transport equations in a reservoir simulator. Both laboratory and numerical results show that three regions along the flow direction can be distinguished: (i) an upstream region characterized by low liquid saturation, (ii) a region downstream of the foam front where the liquid saturation is still unchanged with a value of one and (iii) a frontal region characterized by a mixing of flowing foam and liquid, exhibiting fine fingering effects. It is also shown that the extent of the fingering behavior caused by the rock heterogeneity depends on foam strength. Additionally, permeation of gas through foam films is a strong function of water salinity and appears to have significant impact on foam in CO2 storage. It further turns out that the amount of dissolved CO2 in brine can be considerable and, therefore, the effect of water solubility cannot be neglected in simulation studies. In summary, the differences in the foaming behavior of nitrogen and carbon dioxide can be explained by the differences in their physical properties of solubility in water, interfacial tension, pH effect, and wettability. Among which solubility seems to be the most critical one because (1) the amount of available CO2 for foaming will be lower due to its higher dissolution compared to N2 at similar conditions and (2) it significantly affects gas permeability coefficient and thus the foam stability.

  13. Simple shearing flow of dry soap foams with tetrahedrally close-packed structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinelt, Douglas A.; Kraynik, Andrew M.

    2000-05-01

    The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations thatmore » violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.« less

  14. Numerical investigation on aluminum foam application in a tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Buonomo, Bernardo; di Pasqua, Anna; Ercole, Davide; Manca, Oronzio; Nardini, Sergio

    2018-02-01

    A numerical study has been conducted to examine the thermal and fluiddynamic behaviors of a tubular heat exchanger in aluminum foam. A plate in metal foam with a single array of five circular tubes is the geometrical domain under examination. Darcy-Forchheimer flow model and the thermal non-equilibrium energy model are used to execute two-dimensional simulations on metal foam heat exchanger. The foam is characterized by porosity and (number) pores per inch respectively equal to 0.935 and 20. Different air flow rates are imposed to the entrance of the heat exchanger with an assigned surface tube temperature. The results are provided in terms of local heat transfer coefficient and Nusselt number evaluated on the external surface of the tubes. Furthermore, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes are given. Finally, the Energy Performance Ratio (EPR) is evaluated in order to demonstrate the effectiveness of the metal foam.

  15. In Situ Observation of Plastic Foaming under Static Condition, Extensional Flow and Shear Flow

    NASA Astrophysics Data System (ADS)

    Wong, Anson Sze Tat

    Traditional blowing agents (e.g., hydrochlorofluorocarbons) in plastic foaming processes has been phasing out due to environmental regulations. Plastic foaming industry is forced to employ greener alternatives (e.g., carbon dioxide, nitrogen), but their foaming processes are technologically challenging. Moreover, to improve the competitiveness of the foaming industry, it is imperative to develop a new generation of value-added plastic foams with cell structures that can be tailored to different applications. In this context, the objective of this thesis is to achieve a thorough understanding on cell nucleation and growth phenomena that determine cell structures in plastic foaming processes. The core research strategy is to develop innovative visualization systems to capture and study these phenomena. A system with accurate heating and cooling control has been developed to observe and study crystallization-induced foaming behaviors of polymers under static conditions. The cell nucleation and initial growth behavior of polymers blown with different blowing agents (nitrogen, argon and helium, and carbon dioxide-nitrogen mixtures) have also been investigated in great detail. Furthermore, two innovative systems have been developed to simulate the dynamic conditions in industrial foaming processes: one system captures a foaming process under an easily adjustable and uniform extensional strain in a high temperature and pressure environment, while the other achieves the same target, but with shear strain. Using these systems, the extensional and shear effects on bubble nucleation and initial growth processes has been investigated independently in an isolated manner, which has never been achieved previously. The effectiveness of cell nucleating agents has also been evaluated under dynamic conditions, which have led to the identification of new foaming mechanisms based on polymer-chain alignment and generation of microvoids under stress. Knowledge generated from these researches and the wide range of future studies made possible by the visualization systems will be valuable to the development of innovative plastic foaming technologies and foams.

  16. Foaming in chemical surfactant free aqueous dispersions of anatase (titanium dioxide) particles.

    PubMed

    Pugh, R J

    2007-07-17

    Steady-state dynamic aqueous foams were generated from surfactant-free dispersion of aggregated anatase nanoparticles (in the micrometer size range). In order to tune the particle surfaces, to ensure a critical degree of hydrophobicity (so that they disperse in water and generate foam), the particles were subjected to low-temperature plasma treatment in the presence of a vapor-phase silane coupling agents. From ESCA it was shown that hydrophobization only occurred at a small number of surface sites. Foamability (foam generation) experiments were carried out under well-defined conditions at a range of gas flow rates using the Bikermann Foaming Column.1 The volume of the steady-state foams was determined under constant gas flow conditions, but on removing the gas flow, transient foams with short decay times (<5 s) were observed. The foamability of the steady-state foams was found to be dependent on (a) the time of plasma treatment of the particles (surface hydrophobicity), (b) the particle concentration in the suspension, and (c) the state of dispersion of the particles. High foamability was promoted in the neutral pH regions where the charged particles were highly dispersed. In the low and high pH regions where the particles were coagulated, the foamability was considerably reduced. This behavior was explained by the fact that the large coagula were less easily captured by the bubbles and more easily detached from the interface (during the turbulent foaming conditions) than individual dispersed particles.

  17. Coarse graining flow of spin foam intertwiners

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  18. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  19. Pore level visualization of foam flow in a silicon micromodel. SUPRI TR 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, F.; Blunt, M.; Castanier, L.

    This paper is concerned with the behavior of foam in porous media at the pore level. Identical, heterogeneous silicon micromodels, two dimensionally etched to replicate flow in Berea Sandstone, were used. The models, already saturated with varying concentrations of surfactant and, at times, oil were invaded with air. Visual observations were made of these air displacement events in an effort to determine foam flow characteristics with varying surfactant concentrations, and differing surfactants in the presence of oil. These displacement events were recorded on video tape. These tapes are available at the Stanford University Petroleum Research Institute, Stanford, California. The observedmore » air flow characteristics can be broadly classified into two: continuous and discontinuous. Continuous air flow was observed in two phase runs when the micromodel contained no aqueous surfactant solution. Air followed a tortuous path to the outlet, splitting and reconnecting around grains, isolating water located in dead-end or circumvented pores, all without breaking and forming bubbles. No foam was created. Discontinuous air flow occurred in runs containing surfactant - with smaller bubble sizes appearing with higher surfactant concentrations. Air moved through the medium by way of modified bubble train flow where bubbles travel through pore throats and tend to reside more statically in larger pore bodies until enough force is applied to move them along. The lamellae were stable, and breaking and reforming events by liquid drainage and corner flow were observed in higher surfactant concentrations. However, the classic snap-off process, as described by Roof (1973) was not seen at all.« less

  20. Simple shearing flow of dry soap foams with TCP structure[Tetrahedrally Close-Packed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    REINELT,DOUGLAS A.; KRAYNIK,ANDREW M.

    2000-02-16

    The microrheology of dry soap foams subjected to large, quasistatic, simple shearing deformations is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by calculating foam structures that minimize total surface area at each value of strain. The minimal surfaces are computed with the Surface Evolver program developed by Brakke. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3} where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometrymore » and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new foam topology associated with each stable solution branch results from a cascade of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization.« less

  1. Macro-mechanical modeling of blast-wave mitigation in foams. Part II: reliability of pressure measurements

    NASA Astrophysics Data System (ADS)

    Britan, A.; Liverts, M.; Shapiro, H.; Ben-Dor, G.

    2013-02-01

    A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range 1.25le {M}_s le 1.7 and foam column heights in the range 100-450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.

  2. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    USGS Publications Warehouse

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  3. Understanding about How Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties.

    PubMed

    Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying

    2016-08-02

    In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.

  4. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  5. Personal cooling air filtering device

    DOEpatents

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  6. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  7. Ultrasonic measurements of the bulk flow field in foams

    NASA Astrophysics Data System (ADS)

    Nauber, Richard; Büttner, Lars; Eckert, Kerstin; Fröhlich, Jochen; Czarske, Jürgen; Heitkam, Sascha

    2018-01-01

    The flow field of moving foams is relevant for basic research and for the optimization of industrial processes such as froth flotation. However, no adequate measurement technique exists for the local velocity distribution inside the foam bulk. We have investigated the ultrasound Doppler velocimetry (UDV), providing the first two-dimensional, non-invasive velocity measurement technique with an adequate spatial (10 mm ) and temporal resolution (2.5 Hz ) that is applicable to medium scale foam flows. The measurement object is dry aqueous foam flowing upward in a rectangular channel. An array of ultrasound transducers is mounted within the channel, sending pulses along the main flow axis, and receiving echoes from the foam bulk. This results in a temporally and spatially resolved, planar velocity field up to a measurement depth of 200 mm , which is approximately one order of magnitude larger than those of optical techniques. A comparison with optical reference measurements of the surface velocity of the foam allows to validate the UDV results. At 2.5 Hz frame rate an uncertainty below 15 percent and an axial spatial resolution better than 10 mm is found. Therefore, UDV is a suitable tool for monitoring of industrial processes as well as the scientific investigation of three-dimensional foam flows on medium scales.

  8. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.

    PubMed

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-05-04

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  9. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    PubMed Central

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-01-01

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700

  10. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports amore » novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.« less

  11. Detonation Propagation through Nitromethane Embedded Metal Foam

    NASA Astrophysics Data System (ADS)

    Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott

    2015-11-01

    There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.

  12. Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc

    NASA Astrophysics Data System (ADS)

    Hossein Elahi, S.; Arabi Jeshvaghani, R.; Shahverdi, H. R.

    2015-05-01

    In this paper, the influence of calcium addition and melt stirring on the structure and foaming behavior of molten zinc was investigated. In this regard, zinc foam was produced by Alporas method (in which foam alloy melts and titanium hydride is used as a blowing agent). Optical microscopy and scanning electron microscopy were used to investigate the phase distribution and structure in the foams. Results showed that addition of calcium increased foamability and foam efficiency of the molten zinc. In contrast, stirring had no significant effect on the foaming behavior of the melt. Microstructural examinations indicated that improving the foaming behavior of molten zinc was attributed to the formation of CaZn13 intermetallic phase and ZnO particles in the foam structure, which increased viscosity and reduced drainage rate.

  13. Fluid Physics of Foam Evolution and Flow

    NASA Technical Reports Server (NTRS)

    Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.

    2003-01-01

    The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.

  14. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    PubMed

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading to difficulties in the modeling of trapped fraction of foam are discussed in detail. To avoid complications in the interpretation of the results, the best tracer would be one with a permeability close to the permeability of the gas in the foam. This puts a lower limit on the effective diffusion coefficient for tracer in an experiment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Foam flow in a model porous medium: I. The effect of foam coarsening.

    PubMed

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  16. Foam Transport in Porous Media - A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can servemore » as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).« less

  17. Flow of foams in two-dimensional disordered porous media

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  18. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE PAGES

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    2017-03-14

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  19. Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.

    High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less

  20. Porous Media Approach for Modeling Closed Cell Foam

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.

    2006-01-01

    In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is stretched to simulate the structural response of the tank during operation. The thermal expansion mismatch between the foam and the metal substrate and the thermal gradient in the foam layer causes high tensile stresses near the metal/foam interface that can lead to delamination.

  1. Convective heat transfer in foams under laminar flow in pipes and tube bundles.

    PubMed

    Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent

    2012-12-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.

  2. Controlling Flows Of Two Ingredients For Spraying

    NASA Technical Reports Server (NTRS)

    Chandler, Huel H.

    1995-01-01

    Closed-loop servo control subsystem incorporated, as modification, into system controlling flows of two ingredients mixed and sprayed to form thermally insulating foams on large tanks. Provides steady flows at specified rates. Foams produced smoother and of higher quality. Continued use of system results in substantial reduction in cost stemming from close control of application of foam and consequent reduced use of material.

  3. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    NASA Astrophysics Data System (ADS)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  4. Wall effects in Stokes experiment with a liquid foam

    NASA Astrophysics Data System (ADS)

    Gao, Haijing; Subramani, Hariprasad; Harris, Michael; Basaran, Osman

    2011-11-01

    Liquid foams are widely used in numerous applications ranging from the oil and gas industry to beauty, healthcare, and household products industries. A fundamental understanding of the relationships between the properties of liquid foams and their flow responses is, however, still in its infancy compared to that involving the fluid dynamics of simple fluids. In this talk, the flow of a dry liquid foam around a spherical bead, i.e. the Stokes problem for liquid foams, is studied experimentally. In contrast to previous work (cf. Cantat 2006), the focus of the present research is to probe the effect of a solid wall that is located a few bubble radii from the bead. The new experimental results show that the elastic modulus of dry liquid foams is directly proportional to the surface tension of the foaming agents and inversely proportional to the average bubble size in the foams, in agreement with previous theoretical and experimental studies. The experiments further show that the close proximity of the solid wall causes profound structural changes to the gas bubbles as the foam flows past the bead. A good understanding of these structural changes and how they can affect the elastic modulus of foams can be indispensable in formulating improved models for accurately describing the dynamical response of foams within the realm of continuum mechanics.

  5. A study on high subsonic airfoil flows in relatively high Reynolds number by using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Nakao, Shinichiro; Kashitani, Masashi; Miyaguni, Takeshi; Yamaguchi, Yutaka

    2014-04-01

    In the present study, numerical calculations of the flow-field around the airfoil model are performed by using the OpenFOAM in high subsonic flows. The airfoil model is NACA 64A010. The maximum thickness is 10 % of the chord length. The SonicFOAM and the RhoCentralFOAM are selected as the solver in high subsonic flows. The grid point is 158,000 and the Mach numbers are 0.277 and 0.569 respectively. The CFD data are compared with the experimental data performed by the cryogenic wind tunnel in the past. The results are as follows. The numerical results of the pressure coefficient distribution on the model surface calculated by the SonicFOAM solver showed good agreement with the experimental data measured by the cryogenic wind tunnel. And the data calculated by the SonicFOAM have the capability for the quantitative comparison of the experimental data at low angle of attack.

  6. The Soil Foam Drainage Equation - an alternative model for unsaturated flow in porous media

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Lehmann, Peter; Hoogland, Frouke; Or, Dani

    2017-04-01

    The analogy between the geometry and dynamics of wet foam drainage and gravity drainage of unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation - SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. Potential advantages of the proposed drainage foam formalism include direct description of transient flow without requiring constitutive functions; evolution of capillary cross sections that provides consistent description of self-regulating internal fluxes (e.g., towards field capacity); and a more intuitive geometrical picture of capillary flow across textural boundaries. We will present new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions that are in good agreement with the numerical solution of the SFDE and experimental results. The foam drainage methodology expands the range of tools available for describing and quantifying unsaturated flows and provides geometrically tractable links between evolution of liquid configuration and flow dynamics in unsaturated porous media. The resulting geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches.

  7. Discrete Particle Model for Porous Media Flow using OpenFOAM at Intel Xeon Phi Coprocessors

    NASA Astrophysics Data System (ADS)

    Shang, Zhi; Nandakumar, Krishnaswamy; Liu, Honggao; Tyagi, Mayank; Lupo, James A.; Thompson, Karten

    2015-11-01

    The discrete particle model (DPM) in OpenFOAM was used to study the turbulent solid particle suspension flows through the porous media of a natural dual-permeability rock. The 2D and 3D pore geometries of the porous media were generated by sphere packing with the radius ratio of 3. The porosity is about 38% same as the natural dual-permeability rock. In the 2D case, the mesh cells reach 5 million with 1 million solid particles and in the 3D case, the mesh cells are above 10 million with 5 million solid particles. The solid particles are distributed by Gaussian distribution from 20 μm to 180 μm with expectation as 100 μm. Through the numerical simulations, not only was the HPC studied using Intel Xeon Phi Coprocessors but also the flow behaviors of large scale solid suspension flows in porous media were studied. The authors would like to thank the support by IPCC@LSU-Intel Parallel Computing Center (LSU # Y1SY1-1) and the HPC resources at Louisiana State University (http://www.hpc.lsu.edu).

  8. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    NASA Astrophysics Data System (ADS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  9. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    PubMed Central

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  10. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    NASA Astrophysics Data System (ADS)

    Ortega, J. M.; Hartman, J.; Rodriguez, J. N.; Maitland, D. J.

    2012-11-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present prior to treatment. A prediction of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The two modeling approaches capture similar qualitative trends for the initial locations of thrombus within the SMP foam.

  11. Effect of matrix elasticity on the continuous foaming of food models.

    PubMed

    Narchi, I; Vial, Ch; Djelveh, G

    2008-12-01

    The aim is to understand the effect of matrix elasticity on continuous foaming using food models based on glucose syrup. This was modified by adding polyacrylamide (PAA) with 2% whey protein isolate (WPI) or Tween 80 as foaming agents. Foaming was conducted in a stirred column. Rotation speed N and gas-to-liquid flow ratio (G/L) were varied. Overrun, average bubble size d (32), texture and stability were measured using densimetry, image analysis, and rheometry, respectively. Experimental results showed that 0.01% PAA did not modify the viscosity of 2% WPI models, but conferred low elastic behavior. PAA (0.05%) doubled matrix viscosity and drastically increased elasticity. The increase of elasticity became slower for further PAA addition. Foaming experiments demonstrated that theoretical overrun could not be achieved for inelastic WPI models in two cases: for high viscosity and low N, as dispersion effectiveness was reduced; for high G/L and N because of enhanced coalescence. Matrix elasticity was shown to increase overrun at constant viscosity for high G/L by enhancing interface stabilization. However, in elastic models, gas dispersion was more difficult and d (32) was higher than in inelastic fluids of similar viscosity. Finally, when the limiting step was dispersion, foaming was shown to be negatively affected by matrix elasticity.

  12. Model Fit to Experimental Data for Foam-Assisted Deep Vadose Zone Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roostapour, A.; Lee, G.; Zhong, Lirong

    2014-01-15

    Foam has been regarded as a promising means of remeidal amendment delivery to overcome subsurface heterogeneity in subsurface remediation processes. This study investigates how a foam model, developed by Method of Characteristics and fractional flow analysis in the companion paper of Roostapour and Kam (2012), can be applied to make a fit to a set of existing laboratory flow experiments (Zhong et al., 2009) in an application relevant to deep vadose zone remediation. This study reveals a few important insights regarding foam-assisted deep vadose zone remediation: (i) the mathematical framework established for foam modeling can fit typical flow experiments matchingmore » wave velocities, saturation history , and pressure responses; (ii) the set of input parameters may not be unique for the fit, and therefore conducting experiments to measure basic model parameters related to relative permeability, initial and residual saturations, surfactant adsorption and so on should not be overlooked; and (iii) gas compressibility plays an important role for data analysis, thus should be handled carefully in laboratory flow experiments. Foam kinetics, causing foam texture to reach its steady-state value slowly, may impose additional complications.« less

  13. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    NASA Astrophysics Data System (ADS)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  14. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  15. Foam flows through a local constriction

    NASA Astrophysics Data System (ADS)

    Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.

    2017-11-01

    We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.

  16. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  17. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry),more » melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)« less

  18. Investigation of low-frequency-oscillating water flow in metal foam with 10 pores per inch

    NASA Astrophysics Data System (ADS)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2018-01-01

    In this study, oscillating water flow in metal foam with open cells is investigated experimentally. The metal foam sample has a porosity of 88% and 10 pores. The water was oscillated in the test section with three frequencies between 0.116 Hz and 0.348 Hz, which are considered low for water oscillation, and three flow displacements ranging between 74.35 mm and 111.53 mm. The combinations of frequencies of displacements were studied for their impacts of dimensional and non-dimensional pressure loss quantities. To this purpose, friction factor was correlated as a function of kinetic Reynolds number. The same metal foam sample was studied by exposing it to steady-state water flow to investigate its permeability and drag coefficient in low-velocity flow regimes. The friction factor distribution for oscillating flow was found to be over that found for steady state. The outcomes of the study are important for studying heat transfer under the same flow conditions.

  19. Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model

    DTIC Science & Technology

    2014-09-19

    the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to

  20. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  1. Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin

    2017-08-01

    Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.

  2. The efficacy of magnetic field on the thermal behavior of MnFe2O4 nanofluid as a functional fluid through an open-cell metal foam tube

    NASA Astrophysics Data System (ADS)

    Amani, Mohammad; Ameri, Mohammad; Kasaeian, Alibakhsh

    2017-06-01

    In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe2O4 magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe2O4 nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.

  3. Wind noise measured at the ground surface.

    PubMed

    Yu, Jiao; Raspet, Richard; Webster, Jeremy; Abbott, Johnpaul

    2011-02-01

    Measurements of the wind noise measured at the ground surface outdoors are analyzed using the mirror flow model of anisotropic turbulence by Kraichnan [J. Acoust. Soc. Am. 28(3), 378-390 (1956)]. Predictions of the resulting behavior of the turbulence spectrum with height are developed, as well as predictions of the turbulence-shear interaction pressure at the surface for different wind velocity profiles and microphone mounting geometries are developed. The theoretical results of the behavior of the velocity spectra with height are compared to measurements to demonstrate the applicability of the mirror flow model to outdoor turbulence. The use of a logarithmic wind velocity profile for analysis is tested using meteorological models for wind velocity profiles under different stability conditions. Next, calculations of the turbulence-shear interaction pressure are compared to flush microphone measurements at the surface and microphone measurements with a foam covering flush with the surface. The measurements underneath the thin layers of foam agree closely with the predictions, indicating that the turbulence-shear interaction pressure is the dominant source of wind noise at the surface. The flush microphones measurements are intermittently larger than the predictions which may indicate other contributions not accounted for by the turbulence-shear interaction pressure.

  4. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    PubMed

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  5. An overview on the characterization and mechanical behavior of nanoporous Gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, A M; Hayes, J R; Caro, J A

    2005-09-13

    In this paper we present what we believe are the most pressing issues in understanding the mechanical behavior of nanoporous foams. We have postulated that a gold foam presents the best candidate for a systematic study of nanoporous foams since it can be synthesized with a wide range of ligaments sizes and densities. We have also conducted preliminary tests that demonstrate (a) Au foams have a fracture behavior dictated by the ligament size, and (b) nanoporous Au is a high yield strength material. Thus, we have demonstrated the potential in developing nanoporous foams as a new class of high yieldmore » strength/low density materials.« less

  6. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy absorption capacity. The behavior of Al/Cu hybrid foams under high-strain-rate condition was then investigated using experiments on a split Hopkinson pressure bar. It was found that the ED nano-copper coating can also effectively enhance the energy absorption capacities of aluminum open-cell foams under high strain rate. Similar to the quasi-static behavior, a large stress drop was observed in the compressive response of Al/Cu hybrid foams under high strain rate, which was accompanied by dramatic shattering of material. It is shown that a more ductile behavior and better energy absorption performance under high strain rate condition can be also obtained by introducing an annealing process. Finally, the manufacturing process of Al/Cu hybrid foams was customized to fabricate FGHMF systems with two dimensional property gradients. The performance of these FGHMFs at both quasi-static and dynamic conditions was evaluated. Under quasi-static condition, two flexural type loading conditions were considered, namely, a three point bending condition and a cantilever beam condition. The dynamic behavior of FGHMFs was investigated by conducting drop weight tower tests on a three point bending setup. It was found that the failure mechanism of hybrid metal foams can be modified and the mechanical properties, such as stiffness and strength, and energy absorption capacities of hybrid metal foams can be optimized under both quasi-static and dynamic conditions by introducing strategically designed coating patterns. The presented novel approach and findings in this study provide valuable information on the development of high performance hybrid and functionally-graded cellular materials.

  7. Experimental observation of a hydrodynamic mode in a flow duct with a porous material.

    PubMed

    Aurégan, Yves; Singh, Deepesh Kumar

    2014-08-01

    This paper experimentally investigates the acoustic behavior of a homogeneous porous material with a rigid frame (metallic foam) under grazing flow. The transmission coefficient shows an unusual oscillation over a particular range of frequencies which reports the presence of an unstable hydrodynamic wave that can exchange energy with the acoustic waves. This coupling of acoustic and hydrodynamic waves becomes larger when the Mach number increases. A rise of the static pressure drop in the lined region is induced by an acoustic excitation when the hydrodynamic wave is present.

  8. Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.

    2017-12-01

    Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.

  9. Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.

    PubMed

    Abdula, Daner; Lerud, Ryan; Rananavare, Shankar

    2017-11-07

    Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines.

    PubMed

    Carl, Adrian; Bannuscher, Anne; von Klitzing, Regine

    2015-02-10

    Nanoparticles can be efficient foaming agents. Yet, the detailed mechanisms of foam stabilization by these particles remain unclear. In most cases, the foamability and foam stability of a system have to be determined empirically. We used a multiscale approach to reveal how the microscopic properties of the nanoparticle dispersion are translated into their foaming behavior at the macroscopic scale. As a model system we used silica nanoparticles that were hydrophobized by the in situ adsorption of short-chain alkylamines of chain length C5 to C8. We used fluorescence spectroscopy and electrophoretic mobility measurements to characterize the bulk behavior of the nanoparticles with adsorbed amines. The interfacial behavior was probed by compressing particle monolayers while monitoring the surface tension. The macroscopic foamability and foam stability were evaluated. There are strong correlations between the system properties at all length scales. The most prominent effects are observed at a critical bulk concentration of amines at which the nanoparticles start to aggregate due to hydrophobic interactions. Our study shows how the foam properties are related to the features of the bulk dispersions and to the ordering of particles at the air/water interface. The present results help to understand the surfactant concentration dependent stages of foaming behavior of in situ hydrophobized nanoparticles.

  11. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey

    2016-04-01

    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  12. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    PubMed

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  13. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam

    PubMed Central

    Kumar, B.R. Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E.; Gupta, Nikhil; Ramakrishna, Seeram

    2016-01-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites “Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine” (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model. PMID:26937472

  14. Dynamics of degassing at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km2. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 103 kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  15. Foam flow in a model porous medium: II. The effect of trapped gas.

    PubMed

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  16. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  17. Evaluation of a steady-state test of foam stability

    NASA Astrophysics Data System (ADS)

    Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima

    2011-02-01

    We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.

  18. Determination of airborne, volatile amines from polyurethane foams by sorption onto a high-capacity cation-exchange resin based on poly(succinic acid).

    PubMed

    Seeber, G; Buchmeiser, M R; Bonn, G K; Bertsch, T

    1998-06-05

    A high-capacity carboxylic acid-functionalized resin prepared by ring-opening metathesis polymerization based on cross-linked endo,endo-poly(norborn-2-ene-5,6-dicarboxylic acid) was used for the sampling of volatile, airborne amines from polyurethane (PU) foams. Six tertiary amines which represent commonly used promotors for the formation of PUs from diisocyanates and polyols, namely pentamethyldiethylenetriamine, diazabicyclooctane, N-methylmorpholine, N-ethylmorphine, 1,4-dimethylpiperazine and N,N-dimethylethanolamine, were sorbed onto the new resin. The sorption behavior of the new material was investigated in terms of loading capacities, the influence of concentration, flow-rate as well as of the amount of resin. Breakthrough curves were recorded from each single component as well as of mixtures thereof. Finally, the resin was used for the sampling of amines evaporating from PU foams applied in buildings. Further information about time dependent concentration profiles were obtained using a combination of GC-MS and Fourier transform IR spectroscopy.

  19. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  20. The thermodynamics of dense granular flow and jamming

    NASA Astrophysics Data System (ADS)

    Lu, Shih Yu

    The scope of the thesis is to propose, based on experimental evidence and theoretical validation, a quantifiable connection between systems that exhibit the jamming phenomenon. When jammed, some materials that flow are able to resist deformation so that they appear solid-like on the laboratory scale. But unlike ordinary fusion, which has a critically defined criterion in pressure and temperature, jamming occurs under a wide range of conditions. These condition have been rigorously investigated but at the moment, no self-consistent framework can apply to grains, foam and colloids that may have suddenly ceased to flow. To quantify the jamming behavior, a constitutive model of dense granular flows is deduced from shear-flow experiments. The empirical equations are then generalized, via a thermodynamic approach, into an equation-of-state for jamming. Notably, the unifying theory also predicts the experimental data on the behavior of molecular glassy liquids. This analogy paves a crucial road map for a unifying theoretical framework in condensed matter, for example, ranging from sand to fire retardants to toothpaste.

  1. Drop Weight Impact Behavior of Al-Si-Cu Alloy Foam-Filled Thin-Walled Steel Pipe Fabricated by Friction Stir Back Extrusion

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Nakano, Yukiko; Utsunomiya, Takao; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2017-02-01

    In this study, Al-Si-Cu alloy ADC12 foam-filled thin-walled stainless steel pipes, which exhibit metal bonding between the ADC12 foam and steel pipe, were fabricated by friction stir back extrusion. Drop weight impact tests were conducted to investigate the deformation behavior and mechanical properties of the foam-filled pipes during dynamic compression tests, which were compared with the results of static compression tests. From x-ray computed tomography observation, it was confirmed that the fabricated foam-filled pipes had almost uniform porosity and pore size distributions. It was found that no scattering of the fragments of collapsed ADC12 foam occurred for the foam-filled pipes owing to the existence of the pipe surrounding the ADC12 foam. Preventing the scattering of the ADC12 foam decreases the drop in stress during dynamic compression tests and therefore improves the energy absorption properties of the foam.

  2. Advanced Heat Exchangers for Dry Cooling Systems, Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fortini, Arthur J.; Horwath, Joseph

    Dry cooling systems are an option for industrial and utility power plants that cannot obtain permits for cooling water or where cooling water is unavailable. Currently available dry cooling systems are more expensive and less efficient than wet cooling systems, so significant improvements in efficiency are needed to make them economically viable. Previous attempts at using foams as cooling fin materials for power generating systems have focused on high thermal conductivity graphite foams made via the Oak Ridge process. Because these materials have high flow restrictions and hence low permeability with respect to air flow, their internal volume and surfacemore » area were not effectively used. Consequently, they performed poorly and offered no advantage over aluminum fins. A foam with a more open structure would provide increased permeability, enable greater airflow through the bulk material, increase the rate of heat transfer, and enable the material to outperform traditional fin structures. In this project, Ultramet designed, fabricated, and tested low flow restriction, high-efficiency foam-based heat exchangers. Calculations based on existing thermal and hydraulic data for Ultramet’s high-performance open-cell foams indicated that 65-ppi (pores per linear inch) pyrolytic graphite foam with a relative density of 15 vol%, produced by chemical vapor infiltration (CVI), would have an effectiveness significantly greater than that of a state-of-the-art Hamon/Balcke-Durr aluminum fin system and greater than that of the POCO graphite foams previously tested for the DOE National Energy Technology Laboratory. Using the same chevron design, test setup, and run conditions as were used with the Hamon/Balcke-Durr fin system and the POCO foams, Ultramet tested graphite foams with air flow velocities of 0.07–3.2 m/sec and pressure drops of 0.03–9.7 inH2O. The best-performing graphite foam architectures had air velocities in excess of 2.5 m/sec when the pressure drop was 1 inH2O. Because a foam-based system is more efficient than a fin-based system, a smaller heat exchanger installation can be used, significantly reducing the installation cost. Furthermore, because the foam-based system is physically smaller with no increase in flow restriction, less electrical power is needed to run the fans to drive the air through the condenser. The result is a decrease in both the installation and operating costs, which in turn will decrease the overall life cycle cost of the system.« less

  3. Finite Element Modeling of Tensile Deformation Behaviors of Iron Syntactic Foam with Hollow Glass Microspheres

    PubMed Central

    Cho, Yi Je; Lee, Wookjin; Park, Yong Ho

    2017-01-01

    The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement. PMID:29048346

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-01-31

    Final design of the mast was completed (Task 5). The mast is consisting of two welded plate girders, set next to each other, and spaced 14-inches apart. Fabrication of the boom will be completed in two parts solely for ease of transportation. The end pivot connection will be made through a single 2-inch diameter x 4 feet-8 inch long 316 SS bar. During installation, hard piping make-ups using Chiksan joints will connect the annular section and 4-inch return line to allow full movement of the mast from horizontal to vertical. Additionally, flexible hoses and piping will be installed to isolatemore » both towers from piping loads and allow recycling operations respectively. Calibration of the prototype Foam Generator Cell has been completed and experiments are now being conducted. We were able to generate up to 95% quality foam. Work is currently underway to attach the Thermo-Haake RS300 viscometer and install a view port with a microscope to measure foam bubble size and bubble size distribution. Foam rheology tests (Task 13) were carried out to evaluate the rheological properties of the proposed foam formulation. After successful completion of the first foam test, two sets of rheological tests were conducted at different foam flow rates while keeping other parameters constant (100 psig, 70F, 80% quality). The results from these tests are generally in agreement with the previous foam tests done previously during Task 9. However, an unanticipated observation during these tests was that in both cases, the frictional pressure drop in 2 inch pipe was lower than that in the 3 inch and 4 inch pipes. We also conducted the first foam cuttings transport test during this quarter. Experiments on aerated fluids without cuttings have been completed in ACTF (Task 10). Gas and liquid were injected at different flow rates. Two different sets of experiments were carried out, where the only difference was the temperature. Another set of tests was performed, which covered a wide range of pressure and temperature. Several parameters were measured during these tests including differential pressure and mixture density in the annulus. Flow patterns during the aerated fluids test have been observed through the view port in the annulus and recorded by a video camera. Most of the flow patterns were slug flow. Further increase in gas flow rate changed the wavy flow pattern to slug flow. At this stage, all of the planned cuttings transport tests have been completed. The results clearly show that temperature significantly affects the cuttings transport efficiency of aerated muds, in addition to the liquid flow rate and gas liquid ratio (GLR). Since the printed circuit board is functioning (Task 11) with acceptable noise level we were able to conduct several tests. We used the newly designed pipe test section to conduct tests. We tested to verify that we can distinguish between different depths of sand in a static bed of sand in the pipe section. The results indicated that we can distinguish between different sand levels. We tested with water, air and a mix of the two mediums. Major modifications (installation of magnetic flow meter, pipe fittings and pipelines) to the dynamic bubble characterization facility (DTF, Task 12) were completed. An Excel program that allows obtaining the desired foam quality in DTF was developed. The program predicts the foam quality by recording the time it takes to pressurize the loop with nitrogen.« less

  5. Heat Treatment of Closed-Cell A356 + 4 wt.%Cu + 2 wt.%Ca Foam and Its Effect on the Foam Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Mirbagheri, S. M. H.; Vali, H.; Soltani, H.

    2017-01-01

    In this investigation, aluminum-silicon alloy foam is developed by adding certain amounts of copper and calcium elements in A356 alloy. Addition of 4 wt.%Cu + 2 wt.%Ca to the melt changed bubbles morphology from ellipsoid to spherical by decreasing Reynolds number and increasing Bond number. Compression behavior and energy absorption of the foams are assessed before and after aging. Solid solution treatment and aging lead to the best mechanical properties with 170% enhancement in yield strength and 185% improvement in energy absorption capacity as compared to non-heat-treated foams. The metallographic observations showed that bubbles geometry and structure in the A356 + 4wt.% Cu + 2 wt.%Ca foam are more homogeneous than the A356 foam.

  6. Tensile behavior of cenosphere/epoxy syntactic foams

    NASA Astrophysics Data System (ADS)

    Shahapurkar, Kiran; Doddamani, Mrityunjay; Kumar, G. C. Mohan

    2018-04-01

    Tensile behavior of syntactic foam composites are very critical to the engineering applications. The fracture modes and failure mechanisms under tension must be fully understood in order to realize the potential of such composites. In the present work, syntactic foam composites are fabricated using as received and surface modified hollow cenospheres embedded into epoxy matrix. Combinations of cenosphere volume fraction (0, 20, 40 and 60%) and surface modification are studied. Experimental results reveal that modulus of both untreated and treated syntactic foams increases with increase in cenosphere volume fraction compared to neat resin. Strength values of syntactic foams show decreasing trend compared to neat resin. However, treated syntactic foams demonstrated better results compared to untreated ones attributing to good bonding between matrix and filler. Scanning electron microscopy reveal brittle fracture for all the syntactic foams.

  7. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and each.... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less...

  8. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and each.... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less...

  9. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and each.... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less...

  10. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices.

    PubMed

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2016-11-23

    We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.

  11. Development of analysis technique to predict the material behavior of blowing agent

    NASA Astrophysics Data System (ADS)

    Hwang, Ji Hoon; Lee, Seonggi; Hwang, So Young; Kim, Naksoo

    2014-11-01

    In order to numerically simulate the foaming behavior of mastic sealer containing the blowing agent, a foaming and driving force model are needed which incorporate the foaming characteristics. Also, the elastic stress model is required to represent the material behavior of co-existing phase of liquid state and the cured polymer. It is important to determine the thermal properties such as thermal conductivity and specific heat because foaming behavior is heavily influenced by temperature change. In this study, three models are proposed to explain the foaming process and material behavior during and after the process. To obtain the material parameters in each model, following experiments and the numerical simulations are performed: thermal test, simple shear test and foaming test. The error functions are defined as differences between the experimental measurements and the numerical simulation results, and then the parameters are determined by minimizing the error functions. To ensure the validity of the obtained parameters, the confirmation simulation for each model is conducted by applying the determined parameters. The cross-verification is performed by measuring the foaming/shrinkage force. The results of cross-verification tended to follow the experimental results. Interestingly, it was possible to estimate the micro-deformation occurring in automobile roof surface by applying the proposed model to oven process analysis. The application of developed analysis technique will contribute to the design with minimized micro-deformation.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei-Yang

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  13. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  14. Foam-assisted delivery of nanoscale zero valent iron in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yuanzhao; Liu, Bo; Shen, Xin

    2013-09-01

    Foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation as foam can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoscale zero valent iron (nZVI) in unsaturated porous media was investigated. Foams generated using surfactant sodium lauryl ether sulfate (SLES) showed excellent ability to carry nZVI. SLES and nZVI concentrations in the foaming solutions did not affect the percentages of nZVI concentrations in foams relative to nZVI concentrations in the solutions. When foams carrying nZVI were injected through themore » unsaturated columns, the fractions of nZVI exiting the column were much higher than those when nZVI was injected in liquid. The enhanced nZVI transport implies that foam delivery could significantly increase the radius of influence of injected nZVI. The type and concentrations of surfactants and the influent nZVI concentrations did not noticeably affect nZVI transport during foam delivery. In contrast, nZVI retention increased considerably as the grain size of porous media decreased. Oxidation of foam-delivered nZVI due to oxygen diffusion into unsaturated porous media was visually examined using a flow cell. It was demonstrated that if foams are injected to cover a deep vadose zone layer, oxidation would only cause a small fraction of foam-delivered nZVI to be oxidized before it reacts with contaminants.« less

  15. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    NASA Technical Reports Server (NTRS)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  16. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    NASA Astrophysics Data System (ADS)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  17. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  18. Investigation of erosion behavior in different pipe-fitting using Eulerian-Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Harshwardhan; Khadamkar, Hrushikesh; Mathpati, Channamallikarjun

    2017-11-01

    Erosion is a wear mechanism of piping system in which wall thinning occurs because of turbulent flow along with along with impact of solid particle on the pipe wall, because of this pipe ruptures causes costly repair of plant and personal injuries. In this study two way coupled Eulerian-Lagrangian approach is used to solve the liquid solid (water-ferrous suspension) flow in the different pipe fitting namely elbow, t-junction, reducer, orifice and 50% open gate valve. Simulations carried out using incomressible transient solver in OpenFOAM for different Reynolds's number (10k, 25k, 50k) and using WenYu drag model to find out possible higher erosion region in pipe fitting. Used transient solver is a hybrid in nature which is combination of Lagrangian library and pimpleFoam. Result obtained from simulation shows that exit region of elbow specially downstream of straight, extradose of the bend section more affected by erosion. Centrifugal force on solid particle at bend affect the erosion behavior. In case of t-junction erosion occurs below the locus of the projection of branch pipe on the wall. For the case of reducer, orifice and a gate valve reduction area as well as downstream is getting more affected by erosion because of increase in velocities.

  19. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  20. Boundary effects on forced drainage through aqueous foam

    NASA Astrophysics Data System (ADS)

    Brannigan, G.; de Alcantara Bonfim, O. F.

    2001-03-01

    The flow of liquid through foam confined in vertical tubes was investigated by measuring the velocity vf of the liquid front forced down by gravity for various flow rates Q. The power law relating the velocity to flow rate of the incoming liquid (v_f ~ Q^α) was observed for tubes of various cross-sectional areas, A. The exponent α was found to vary linearly with the reciprocal of the area: α= 0.325 + 13.7 mm^2/A . This further supports the node-dominated foam drainage model, which predicts α= 1/3 in the limit of infinite cross-sectional area. This relation appears to be independent of bubble size, suggesting that using smaller foam bubbles may not alleviate boundary effects. The results of these experiments also partially explain the discrepancies in measurements of α reported in previous works.

  1. Application of Video Image Correlation Techniques to the Space Shuttle External Tank Foam Materials

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results that illustrate the use of a video-image-correlation-based displacement and strain measurement system to assess the effects of material nonuniformities on the behavior of the sprayed-on foam insulation (SOFI) used for the thermal protection system on the Space Shuttle External Tank are presented. Standard structural verification specimens for the SOFI material with and without cracks and subjected to mechanical or thermal loading conditions were tested. Measured full-field displacements and strains are presented for selected loading conditions to illustrate the behavior of the foam and the viability of the measurement technology. The results indicate that significant strain localization can occur in the foam because of material nonuniformities. In particular, elongated cells in the foam can interact with other geometric or material discontinuities in the foam and develop large-magnitude localized strain concentrations that likely initiate failures. Furthermore, some of the results suggest that continuum mechanics and linear elastic fracture mechanics might not adequately represent the physical behavior of the foam, and failure predictions based on homogeneous linear material models are likely to be inadequate.

  2. Application of Video Image Correlation Techniques to the Space Shuttle External Tank Foam Materials

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2006-01-01

    Results that illustrate the use of a video-image-correlation-based displacement and strain measurement system to assess the effects of material nonuniformities on the behavior of the sprayed-on foam insulation (SOFI) used for the thermal protection system on the Space Shuttle External Tank are presented. Standard structural verification specimens for the SOFI material with and without cracks and subjected to mechanical or thermal loading conditions were tested. Measured full-field displacements and strains are presented for selected loading conditions to illustrate the behavior of the foam and the viability of the measurement technology. The results indicate that significant strain localization can occur in the foam because of material nonuniformities. In particular, elongated cells in the foam can interact with other geometric or material discontinuities in the foam and develop large-magnitude localized strain concentrations that likely initiate failures. Furthermore, some of the results suggest that continuum mechanics and linear elastic fracture mechanics might not adequately represent the physical behavior of the foam, and failure predictions based on homogeneous linear material models are likely to be inadequate.

  3. Co-doped titanium oxide foam and water disinfection device

    DOEpatents

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  4. Textural constraints on effusive silicic volcanism - Beyond the permeable foam model

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Anderson, Steven W.; Manley, Curtis R.

    1992-01-01

    The paper reports textural observations and presents isotopic evidence from active and recent silicic lava flows which show that at least some vesiculation occurs during surface advance of extrusions, after magma has reached the earth's surface. This view is in contrast to the widely promoted 'permeable foam' model, which states that all volatiles escape during ascent of the magma, and that all dense glassy material in lava flows forms from the collapse of pumiceous lava, i.e., that silicic lavas emerge as highly inflated foam flows. The permeable foam model also implies the unlikely requirement that explosive-to-effusive transitions be associated with an increase in the eruption rate. A more comprehensive model for the emplacement of silicic extrusions that allows for early gas loss during ascent, as well as late-stage vesiculation, is presented. The way in which the redistribution of volatiles during surface flow can increase explosive hazards from silicic lavas days, weeks, or months after the lava emerges from the event is discussed.

  5. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  6. Flexible Foam Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less

  7. Investigation of heat transfer of tube line of staggered tube bank in two-phase flow

    NASA Astrophysics Data System (ADS)

    Jakubcionis, Mindaugas

    2015-06-01

    This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.

  8. Structure design of and experimental research on a two-stage laval foam breaker for foam fluid recycling.

    PubMed

    Wang, Jin-song; Cao, Pin-lu; Yin, Kun

    2015-07-01

    Environmental, economical and efficient antifoaming technology is the basis for achievement of foam drilling fluid recycling. The present study designed a novel two-stage laval mechanical foam breaker that primarily uses vacuum generated by Coanda effect and Laval principle to break foam. Numerical simulation results showed that the value and distribution of negative pressure of two-stage laval foam breaker were larger than that of the normal foam breaker. Experimental results showed that foam-breaking efficiency of two-stage laval foam breaker was higher than that of normal foam breaker, when gas-to-liquid ratio and liquid flow rate changed. The foam-breaking efficiency of normal foam breaker decreased rapidly with increasing foam stability, whereas the two-stage laval foam breaker remained unchanged. Foam base fluid would be recycled using two-stage laval foam breaker, which would reduce the foam drilling cost sharply and waste disposals that adverse by affect the environment.

  9. Identifying local characteristic lengths governing sound wave properties in solid foams

    NASA Astrophysics Data System (ADS)

    Tan Hoang, Minh; Perrot, Camille

    2013-02-01

    Identifying microscopic geometric properties and fluid flow through opened-cell and partially closed-cell solid structures is a challenge for material science, in particular, for the design of porous media used as sound absorbers in building and transportation industries. We revisit recent literature data to identify the local characteristic lengths dominating the transport properties and sound absorbing behavior of polyurethane foam samples by performing numerical homogenization simulations. To determine the characteristic sizes of the model, we need porosity and permeability measurements in conjunction with ligament lengths estimates from available scanning electron microscope images. We demonstrate that this description of the porous material, consistent with the critical path picture following from the percolation arguments, is widely applicable. This is an important step towards tuning sound proofing properties of complex materials.

  10. Polysaccharide/Surfactant complexes at the air-water interface - effect of the charge density on interfacial and foaming behaviors.

    PubMed

    Ropers, M H; Novales, B; Boué, F; Axelos, M A V

    2008-11-18

    The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.

  11. Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow

    NASA Astrophysics Data System (ADS)

    Stading, Mats

    2008-07-01

    Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.

  12. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  13. Electricity in foams: from one soapy interface to the macroscopic material

    NASA Astrophysics Data System (ADS)

    Biance, Anne-Laure

    2017-11-01

    Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.

  14. Multiscale Analysis of Open-Cell Aluminum Foam for Impact Energy Absorption

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Kim, Daeyong; Lee, Myoung-Gyu; Lee, Jong Kook

    2016-09-01

    The energy-absorbing characteristics of crash members in automotive collision play an important role in controlling the amount of damage to the passenger compartment. Aluminum foams have high strength-to-weight ratio and high deformability, thus good crashworthiness is expected while maintaining or even saving weights when foams are implemented in crash members. In order to investigate the effect of the open-cell aluminum foam fillers on impact performance and weight saving, a multiscale framework for evaluating the crashworthiness of aluminum foam-filled members is used. To circumvent the difficulties of mechanical tests on foams, a micromechanical model of the aluminum foam is constructed using the x-ray micro tomography and virtual tests are conducted for the micromechanical model to characterize the behavior of the foam. In the macroscale, the aluminum foam is represented by the crushable foam constitutive model, which is then incorporated into the impact test simulation of the foam-filled crash member. The multiscale foam-filled crash member model was validated for the high-speed impact test, which confirms that the material model characterized by the micromechanical approach represents the behavior of the open-cell foam under impact loading well. Finally, the crash member design for maximizing the energy absorption is discussed by investigating various designs from the foam-only structure to the hollow tube structure. It was found that the foam structure absorbs more energy than the hollow tube or foam-filled structure with the same weight.

  15. Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-01-01

    The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (manufactured as macroporous discs) were packed in filtration holders (simulating fixed-bed column) and the system was operated in either a recirculation or a one-pass mode. Sorption isotherms, uptake kinetics and sorbent reuse were studied in the recirculation mode (analogous to batch system). In the one-pass mode (continuous fixed-bed system), the influence of parameters such as flow rate, feed metal concentration and bed height were investigated on both sorption and desorption. In addition, the effect of Cu(II) on Pb(II) recovery from binary solutions was also studied in terms of both sorption and desorption. Sorption isotherms are well fitted by the Langmuir equation while the pseudo-second order rate equation described well both sorption and desorption kinetic profiles. The study of material regeneration confirms that the reuse of the foams was feasible with a small mass loss, even after 9 cycles. In the one-pass mode, for alginate foams, a slower flow rate led to a smaller saturation volume, while the effect of flow rate was less marked for AB foams. Competitive study suggests that the foams have a preference for Pb(II) over Cu(II) but cannot selectively remove Pb(II) from the binary solution. PMID:29039806

  16. Effects of process parameters on properties of porous foams formed by laser-assisted melting of steel powder (AISI P21)/foaming agent (ZrH2) mixture

    NASA Astrophysics Data System (ADS)

    Seo, Ja-Ye; Lee, Ki-Yong; Shim, Do-Sik

    2018-01-01

    This paper describes the fabrication of lightweight metal foams using the directed energy deposition (DED) method. DED is a highly flexible additive manufacturing process wherein a metal powder mixed with a foaming agent is sprayed while a high-power laser is used to simultaneously melt the powder mixture into layered metal foams. In this study, a mixture of a carbon steel material (P21 powder) and a widely used foaming agent, ZrH2, is used to fabricate metal foams. The effects of various process parameters, such as the laser power, powder feed rate, powder gas flow rate, and scanning speed, on the deposition characteristics (porosity, pore size, and pore distribution) are investigated. The synthesized metal foams exhibit porosities of 10% or lower, and a mean pore area of 7 × 105 μm2. It is observed that the degree of foaming increases in proportion to the laser power to a certain extent. The results also show that the powder feed rate has the most pronounced effect on the porosity of the metal foams, while the powder gas flow rate is the most suitable parameter for adjusting the size of the pores formed within the foams. Further, the scanning speed, which determines the amounts of energy and powder delivered, has a significant effect on the height of the deposits as well as on the properties of the foams. Thus, during the DED process for fabricating metal foams, the pore size and distribution and hence the foam porosity can be tailored by varying the individual process parameters. These findings should be useful as reference data for the design of processes for fabricating porous metallic materials that meet the specific requirements for specialized parts.

  17. Foam and its mitigation in fermentation systems.

    PubMed

    Junker, Beth

    2007-01-01

    Key aspects of foaming and its mitigation in fermentation systems are presented. Foam properties and behavior, conditions that affect foaming, and consequences of foaming are discussed, followed by methods to detect and prevent foam, both without and with the use of antifoam, and their implications. Antifoams were catalogued according to their class (e.g., polyalkylene glycols, silicone emulsions, etc.) to facilitate recognition of antifoams possessing similar base compositions. Relatively few published studies directly comparing antifoams experimentally are available, but those reports found only partially identify clear benefits/disadvantages of any one antifoam type. Consequently, desired characteristics, trends in antifoam application, and chemical types of antifoams are evaluated on the basis of a thorough review of available literature reports describing a specific antifoam's usage. Finally, examples of specific foaming situations taken from both the literature and from actual experience in an industrial fermentation pilot plant are examined for their agreement with expected behavior.

  18. Eruption of magmatic foams on the Moon: Formation in the waning stages of dike emplacement events as an explanation of ;irregular mare patches;

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Head, James W.

    2017-04-01

    Volcanic eruptions on the Moon take place in conditions of low gravity and negligible atmospheric pressure, very different from those on Earth. These differences lead to characteristic lunar versions of hawaiian and strombolian explosive activity, and to the production of unusual eruption products neither predicted nor observed on Earth in the terminal stages of eruptions. These include the unusual mounds and rough (hummocky, blocky) floors of some small-shield summit pit crater floors, elongate depressions and mare flows (similar to those named ;irregular mare patches;, IMPs, by Braden et al., 2014). We examine the ascent and eruption of magma in the waning stages of the eruptive process in small-shield summit pit crater floors and show that many IMP characteristics can be plausibly explained by basaltic magma behavior as the rise rate of the ascending magma slows to zero, volatiles exsolve in the dike and lava lake to form a very vesicular foam, and the dike begins to close. Stresses in the very vesicular and porous lava lake crust produce fractures through which the foam extrudes at a rate determined by its non-Newtonian rheology. Waning-stage extrusion of viscous magmatic foams to the surface produces convex mounds whose physical properties inhibit typical impact crater formation and regolith development, creating an artificially young crater retention age. This mechanism for the production and extrusion of very vesicular magmatic foams is also applicable to waning-stage dike closure associated with pit craters atop dikes, and fissure eruptions in the lunar maria, providing an explanation for many irregular mare patches. This mechanism implies that IMPs and associated mare structures (small shields, pit craters and fissure flows) formed synchronously billions of years ago, in contrast to very young ages (less than 100 million years) proposed for IMPs by some workers.

  19. Physiological and behavioral responses of poultry exposed to gas-filled high expansion foam.

    PubMed

    McKeegan, D E F; Reimert, H G M; Hindle, V A; Boulcott, P; Sparrey, J M; Wathes, C M; Demmers, T G M; Gerritzen, M A

    2013-05-01

    Disease control measures require poultry to be killed on farms to minimize the risk of disease being transmitted to other poultry and, in some cases, to protect public health. We assessed the welfare implications for poultry of the use of high-expansion gas-filled foam as a potentially humane, emergency killing method. In laboratory trials, broiler chickens, adult laying hens, ducks, and turkeys were exposed to air-, N2-, or CO2-filled high expansion foam (expansion ratio 300:1) under standardized conditions. Birds were equipped with sensors to measure cardiac and brain activity, and measurements of oxygen concentration in the foam were carried out. Initial behavioral responses to foam were not pronounced but included headshakes and brief bouts of wing flapping. Both N2- and CO2-filled foam rapidly induced ataxia/loss of posture and vigorous wing flapping in all species, characteristic of anoxic death. Immersion in air-filled, high expansion foam had little effect on physiology or behavior. Physiological responses to both N2- and CO2-filled foam were characterized by a pronounced bradyarrythymia and a series of consistent changes in the appearance of the electroencephalogram. These were used to determine an unequivocal time to loss of consciousness in relation to submersion. Mean time to loss of consciousness was 30 s in hens and 18 s in broilers exposed to N2-filled foam, and 16 s in broilers, 1 s in ducks, and 15 s in turkeys exposed to CO2-filled foam. Euthanasia achieved with anoxic foam was particularly rapid, which is explained by the very low oxygen concentrations (below 1%) inside the foam. Physiological observations and postmortem examination showed that the mode of action of high expansion, gas-filled foam is anoxia, not occlusion of the airway. These trials provide proof-of-principle that submersion in gas-filled, high expansion foam provides a rapid and highly effective method of euthanasia, which may have potential to provide humane emergency killing or routine depopulation.

  20. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection.

    PubMed

    Meng, Pingping; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Cousins, Ian T; Yu, Gang

    2018-07-01

    Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    PubMed

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation. Copyright © 2016. Published by Elsevier Ltd.

  2. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    NASA Astrophysics Data System (ADS)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  3. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  4. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  5. Study of Microstructure and Mechanical Properties of Particulate Reinforced Aluminum Matrix Composite Foam

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Pandey, O. P.

    Metal foams cellular metals have gained an important role in the field of metallurgy, though barely a few decades old. Aluminum composite foam exhibit unique properties such as light weight, blast palliation, sound absorption, high energy absorption, and flame resistance. In the present investigation the effect of variation in the amount of CaCO3 as blowing agent on the microstructure and wear behavior of LM13 alloy foams has been studied. The blowing agent was blended in highly viscous semi-solid melt by stirring process. The process parameters that influence the formation of bubbles like the melt temperature, size and amount of blowing agent and its distribution has been optimized to get uniform size foams. The distribution behavior of blowing agent is influenced by the melt viscosity and stirring speed. For packaging application, the dry sliding wear behavior of the prepared foam was investigated by using a pin on disc method at applied loads of 9.8, 19.6 and 29.4 N at room temperature. The results indicate that the wear rate is dependent on the cell size and cell wall thickness of the foam.

  6. AFFF (Aqueous Film-Forming Foam) Testing of U.S. Air Force Penetrator Nozzle.

    DTIC Science & Technology

    1986-05-01

    Aqueous Film - Forming Foam ( AFFF ), halon, or PKP) flows between this shaft... Film - Forming Foam ( AFFF ). The results showed that increasing the nozzle pressure to 150 psi from the more common fireground pressures of 50 or 100 psi... Forming Foam ( AFFF ) as the fire extinguishing agent. The test plan was designed to determine the optimum nozzle operating pressure considering its effect

  7. Dynamics of foam flow in porous media in the presence of oil

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Osei-Bonsu, K.

    2016-12-01

    Foams demonstrate great potential for fluid displacement in porous media which is important in a number of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is down to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media [1-4]. To investigate the fundamental aspects of foam flow in porous media, we have conducted a systematic series of experiment using a well-characterised porous medium manufactured by a high resolution 3D printer. This enabled us to design and control the properties of porous media with high accuracy. The model porous medium was initially saturated with oil. Then the pre-generated foam was injected into the model at well-defined injection rates to displace oil. The dynamics of foam-oil displacement in porous media was recorded using a digital camera controlled by a computer [5]. The recorded images were analysed in MATLAB to determine the dynamics of foam-oil displacement under different boundary conditions. Effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to the heavy oil. Furthermore, higher foam quality appears to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil patterns formed during displacement revealed formation of a more stable front in the case of lower foam quality which affected the oil recovery efficiency. This study extends the physical understanding of governing mechanisms controlling oil displacement by foam in porous media. Grassia, P., E. Mas-Hernandez, N. Shokri, S.J. Cox, G. Mishuris, W.R. Rossen (2014), J. Fluid Mech., 751, 346-405. Grassia, P., C. Torres-Ulloa, S. Berres, E. Mas-Hernandez, N. Shokri (2016), European Physical Journal E, 39 (4), 42. Mas-Hernandez, E., P. Grassia, N. Shokri (2015), Colloids and Surfaces A: Physicochem. Eng. Aspects, 473, 123-132. Osei-Bonsu, K., N. Shokri, P. Grassia (2015), Colloids and Surfaces A: Physicochem. Eng. Aspects, 481, 514-526. Osei-Bonsu, K., N. Shokri, P. Grassia (2016), J. Colloid Interface Sci., 462, 288-296.

  8. Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Material specification and fabrication process procedures for foam production are presented. The properties of mechanical strength, modulus of elasticity, density and thermal conductivity were measured and related to foam quality. Properties unique to the foam such as a gas layer insulation, density gradient parallel to the fiber direction, and gas flow conductance in both directions were correlated with foam quality. Inspection and quality control tests procedures are outlined and photographs of test equipment and test specimens are shown.

  9. Blood Flow through an Open-Celled Foam

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  10. Investigation of foam flow in a 3D printed porous medium in the presence of oil.

    PubMed

    Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima

    2017-03-15

    Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process. Copyright © 2016. Published by Elsevier Inc.

  11. Design and Verification of a Shape Memory Polymer Peripheral Occlusion Device

    PubMed Central

    Landsman, Todd L.; Bush, Ruth L.; Glowczwski, Alan; Horn, John; Jessen, Staci L.; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R.; Hasan, Sayyeda M.; Nash, Daniel; Clubb, Fred J.; Maitland, Duncan J.

    2017-01-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. PMID:27419615

  12. Design and verification of a shape memory polymer peripheral occlusion device.

    PubMed

    Landsman, Todd L; Bush, Ruth L; Glowczwski, Alan; Horn, John; Jessen, Staci L; Ungchusri, Ethan; Diguette, Katelin; Smith, Harrison R; Hasan, Sayyeda M; Nash, Daniel; Clubb, Fred J; Maitland, Duncan J

    2016-10-01

    Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Characterization of the molar mass distribution of macromolecules in beer for different mashing processes using asymmetric flow field-flow fractionation (AF4) coupled with multiple detectors.

    PubMed

    Choi, Jaeyeong; Zielke, Claudia; Nilsson, Lars; Lee, Seungho

    2017-07-01

    The macromolecular composition of beer is largely determined by the brewing and the mashing process. It is known that the physico-chemical properties of proteinaceous and polysaccharide molecules are closely related to the mechanism of foam stability. Three types of "American pale ale" style beer were prepared using different mashing protocols. The foam stability of the beers was assessed using the Derek Rudin standard method. Asymmetric flow field-flow fractionation (AF4) in combination with ultraviolet (UV), multiangle light scattering (MALS) and differential refractive index (dRI) detectors was used to separate the macromolecules present in the beers and the molar mass (M) and molar mass distributions (MD) were determined. Macromolecular components were identified by enzymatic treatments with β-glucanase and proteinase K. The MD of β-glucan ranged from 10 6 to 10 8  g/mol. In addition, correlation between the beer's composition and foam stability was investigated (increased concentration of protein and β-glucan was associated with increased foam stability).

  14. Numerical study of two-dimensional wet foam over a range of shear rates

    NASA Astrophysics Data System (ADS)

    Kähärä, T.

    2017-09-01

    The shear rheology of two-dimensional foam is investigated over a range of shear rates with the numerical DySMaL model, which features dynamically deformable bubbles. It is found that at low shear rates, the rheological behavior of the system can be characterized by a yield stress power-law constitutive equation that is consistent with experimental findings and can be understood in terms of soft glassy rheology models. At low shear rates, the system rheology is also found to be subject to a scaling law involving the bubble size, the surface tension, and the viscosity of the carrier fluid. At high shear rates, the model produces a dynamic phase transition with a sudden change in the flow pattern, which is accompanied by a drop in the effective viscosity. This phase transition can be linked to rapid changes in the average bubble deformation and nematic order of the system. It is very likely that this phase transition is a result of the model dynamics and does not happen in actual foams.

  15. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    NASA Astrophysics Data System (ADS)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-03-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  16. Numerical Simulation of Molten Flow in Directed Energy Deposition Using an Iterative Geometry Technique

    NASA Astrophysics Data System (ADS)

    Vincent, Timothy J.; Rumpfkeil, Markus P.; Chaudhary, Anil

    2018-06-01

    The complex, multi-faceted physics of laser-based additive metals processing tends to demand high-fidelity models and costly simulation tools to provide predictions accurate enough to aid in selecting process parameters. Of particular difficulty is the accurate determination of melt pool shape and size, which are useful for predicting lack-of-fusion, as this typically requires an adequate treatment of thermal and fluid flow. In this article we describe a novel numerical simulation tool which aims to achieve a balance between accuracy and cost. This is accomplished by making simplifying assumptions regarding the behavior of the gas-liquid interface for processes with a moderate energy density, such as Laser Engineered Net Shaping (LENS). The details of the implementation, which is based on the solver simpleFoam of the well-known software suite OpenFOAM, are given here and the tool is verified and validated for a LENS process involving Ti-6Al-4V. The results indicate that the new tool predicts width and height of a deposited track to engineering accuracy levels.

  17. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  18. Study of Polyurethane Foaming Dynamics Using a Heat Flow Meter

    NASA Astrophysics Data System (ADS)

    Koniorczyk, P.; Trzyna, M.; Zmywaczyk, J.; Zygmunt, B.; Preiskorn, M.

    2017-05-01

    This work presents the results of the study concerning the effects of fillers addition on the heat flux density \\dot{q}( t ) of foaming of polyurethane-polystyrene porous composite (PSUR) and describes the dynamics of this process during the first 600 s. This foaming process resulted in obtaining porous materials that were based on HFC 365/225 blown rigid polyurethane foam (PUR) matrix, which contained thermoplastic expandable polystyrene (EPS) beads as the filler. In PSUR composites, the EPS beads were expanded after being heated to a temperature above the glass transition temperature of EPS and vaporing gas incorporated inside, by using the heat of exothermic reaction of polyol with isocyanate. From the start (t=0) to the end of the PSUR composite foaming process (t=tk), \\dot{q}( t ) was measured with the use of the heat flow meter. For the purpose of the study two PUR systems were selected: one with high and one with low heat density of foaming process q. EPS beads were selected from the same manufacturer with large and small diameter. The mass fraction of EPS in PSUR foam varied during the measurements. Additionally, a study of volume fractions of expanded EPS phase in PSUR foams as a function of mass fractions of EPS was conducted. In order to verify effects of the EPS addition on the heat flux density during PSUR foaming process, the thermal conductivity measurements were taken.

  19. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  20. Experimental investigation of solidification in metal foam enhanced phase change material

    NASA Astrophysics Data System (ADS)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  1. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng

    2016-04-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.

  2. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    PubMed

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Size and density avalanche scaling near jamming.

    PubMed

    Arévalo, Roberto; Ciamarra, Massimo Pica

    2014-04-28

    The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.

  5. Shooting in a foam.

    PubMed

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2014-09-21

    We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.

  6. Holographic study of non-affine deformation in copper foam with a negative Poisson's ratio of -0.8

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Lakes, R. S.

    1993-01-01

    While conventional foams have positive Poisson's ratios (become smaller in cross-section when stretched and larger when compressed), foam materials have recently been defined which possess 'reentrant' cellular architectures; in these, inwardly-protruding cell ribs are responsible for negative Poisson's ratio behavior, yielding greater resilience than conventional foams. Double-exposure holographic interferometry is presently used to examine the microdeformation of a reentrant copper foam. Attention is given to the nonaffine (inhomogeneous) deformation of this foam.

  7. Foam imbibition in a Hele-Shaw cell via laminated microfluidic ``T-junction'' device

    NASA Astrophysics Data System (ADS)

    Parra, Dina; Ward, Thomas

    2013-11-01

    In this talk we analyze experimental results of a novel microfluidic ``T-junction'' device, made from laminated plastic, that is used to produce foam in porous media. The fluids, both Newtonian and non-Newtonian liquids and air, are driven using constant-static pressure fluid pumping. For the T-junction geometry studied there are novel observations with this type of pumping: 1) at low pressure ratios there is an increase in the liquid and total flow rates and 2) at higher pressure ratios there is a decrease in the liquid flow rate. To understand this phenomenon we visualize the drop production process near the T-junction. Furthermore, flow rates for the liquid and total volume are estimated by imbibing the foam into a Hele-Shaw cell. Foam is produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight.

  8. 30 CFR 75.1101-5 - Installation of foam generator systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (b) Foam generator systems shall be equipped with a fire sensor which actuates the system, and each.... (d) Water, power, and chemicals required shall be adequate to maintain water or foam flow for no less than 25 minutes. (e) Water systems shall include strainers with a flush-out connection and a manual...

  9. Thermal Infrared Signatures and Heat Fluxes of Sea Foam

    DTIC Science & Technology

    2015-01-13

    4 air flow 0.5 m 0.5 m MWIR LWIR FTIR Pitot tube and Temperature air diffuser 1 m EO foam IR H20 vapor analyzer Heat...verify this, we measured velocity profiles with a pitot tube over 5 water and foam surfaces spanning our range of tested wind speeds. The profiles (not

  10. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    NASA Astrophysics Data System (ADS)

    Tisovský, Tomáš; Vít, Tomáš

    Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  11. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  12. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  13. Foamability and structure analysis of foams in Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Caps, H.; Vandewalle, N.; Broze, G.; Zocchi, G.

    2007-05-01

    The authors have generated two-dimensional foams by imposing an intermittent drainage in a Hele-Shaw cell partially filled with a detergent/water mixture. The foam generation associated with this process is reproducible and depends on the surfactant molecules composing the solution. A kinetic model can be proposed for the foam evolution. The structure of the foam is also investigated: the average bubble side number and correlation functions are measured. Distinguishable behaviors are observed for different surfactant molecules. This way of producing a foam is thus adequate for applied foam structure characterizations and fundamental studies.

  14. The effect of water binder ratio and fly ash on the properties of foamed concrete

    NASA Astrophysics Data System (ADS)

    Saloma, Hanafiah, Urmila, Dea

    2017-11-01

    Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.

  15. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  16. Newly Discovered Ring-Moat Dome Structures in the Lunar Maria: Possible Origins and Implications

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Head, James W.; Basilevsky, Alexander T.; Bugiolacchi, Roberto; Komatsu, Goro; Wilson, Lionel; Fa, Wenzhe; Zhu, Meng-Hua

    2017-09-01

    We report on a newly discovered morphological feature on the lunar surface, here named Ring-Moat Dome Structure (RMDS). These low domes (a few meters to 20 m height with slopes <5°) are typically surrounded by narrow annular depressions or moats. We mapped about 2,600 RMDSs in the lunar maria with diameters ranging from tens to hundreds of meters. Four candidate hypotheses for their origin involving volcanism are considered. We currently favor a mechanism for the formation of the RMDS related to modification of the initial lava flows through inflated flow squeeze-ups and/or extrusion of magmatic foams below a cooling lava flow surface. These newly discovered features provide new insights into the nature of emplacement of lunar lava flows, suggesting that in the waning stages of a dike emplacement event, magmatic foams can be produced, extrude to the surface as the dike closes, and break through the upper lava flow thermal boundary layer (crust) to form foam mounds and surrounding moats.

  17. Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem

    NASA Technical Reports Server (NTRS)

    Cappelli, Daniele; Mansour, Nagi N.

    2012-01-01

    Separation can be seen in most aerodynamic flows, but accurate prediction of separated flows is still a challenging problem for computational fluid dynamics (CFD) tools. The behavior of several Reynolds Averaged Navier-Stokes (RANS) models in predicting the separated ow over a wall-mounted hump is studied. The strengths and weaknesses of the most popular RANS models (Spalart-Allmaras, k-epsilon, k-omega, k-omega-SST) are evaluated using the open source software OpenFOAM. The hump ow modeled in this work has been documented in the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control. Only the baseline case is treated; the slot flow control cases are not considered in this paper. Particular attention is given to predicting the size of the recirculation bubble, the position of the reattachment point, and the velocity profiles downstream of the hump.

  18. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  19. A Jamming Phase Diagram for Pressing Polymers

    NASA Astrophysics Data System (ADS)

    Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration

    2011-03-01

    Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.

  20. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    PubMed

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  1. Effect of foaming temperature on the mechanical properties of produced closed-cell A356Aluminum foams with melting method

    NASA Astrophysics Data System (ADS)

    Movahedi, N.; Mirbagheri, S. M. H.; Hoseini, S. R.

    2014-07-01

    In this study an attempt was carried out to determine the effect of production temperature on the mechanical properties and energy absorption behavior of closed-cell A356 alloy foams under uniaxial compression test. For this purpose, three different A356 alloy closed-cell foams were synthesized at three different casting temperatures, 650 °C, 675 °C and 700 °C by adding the same amounts of granulated calcium as thickening and TiH2 as blowing agent. The samples were characterized by SEM to study the pore morphology at different foaming temperatures. Compression tests of the A356 foams were carried out to assess their mechanical properties and energy absorption behavior. The results indicated that increasing the foaming temperature from 650 °C to 675 °C and 700 °C reduces the relative density of closed cell A356 alloys by 18.3% and 38% respectively and consequently affects the compressive strength and energy absorption of cellular structures by changing them from equiaxed polyhedral closed cells to distorted cells. Also at 700 °C foaming temperature, growth of micro-pores and coalescence with other surrounding pores leads to several big voids.

  2. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.

    PubMed

    Pierre, Juliette; Giraudet, Brice; Chasle, Patrick; Dollet, Benjamin; Saint-Jalmes, Arnaud

    2015-04-01

    We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid foams, as a function of the foam physical and chemical parameters. We have first implemented an original setup, using transducers in a transmission configuration. The foam coarsening was used to vary the bubble size (remaining in the submillimeter range), and we have made foams with various chemical formulations, to investigate the role of the chemicals at the bubble interfaces or in bulk. The results are compared with recently published theoretical works, and good agreements are found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and large bubble size, connected by a nontrivial resonant behavior, associated to an effective negative density. These qualitative features are robust whatever the chemical formulation; we discuss the observed differences between the samples, in relation to the interfacial and bulk viscoelasticity. These results demonstrate the rich and complex acoustic behavior of foams. While the bubble size remain here always smaller than the sound wavelength, it turns out that one must go well beyond mean-field modeling to describe the foam acoustic properties.

  3. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters

    NASA Astrophysics Data System (ADS)

    Pierre, Juliette; Giraudet, Brice; Chasle, Patrick; Dollet, Benjamin; Saint-Jalmes, Arnaud

    2015-04-01

    We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid foams, as a function of the foam physical and chemical parameters. We have first implemented an original setup, using transducers in a transmission configuration. The foam coarsening was used to vary the bubble size (remaining in the submillimeter range), and we have made foams with various chemical formulations, to investigate the role of the chemicals at the bubble interfaces or in bulk. The results are compared with recently published theoretical works, and good agreements are found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and large bubble size, connected by a nontrivial resonant behavior, associated to an effective negative density. These qualitative features are robust whatever the chemical formulation; we discuss the observed differences between the samples, in relation to the interfacial and bulk viscoelasticity. These results demonstrate the rich and complex acoustic behavior of foams. While the bubble size remain here always smaller than the sound wavelength, it turns out that one must go well beyond mean-field modeling to describe the foam acoustic properties.

  4. Identification of the full anisotropic flow resistivity tensor for multiple glass wool and melamine foam samples.

    PubMed

    Van der Kelen, Christophe; Göransson, Peter

    2013-12-01

    The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of porous materials used in acoustic treatments. Due to the manufacturing processes involved, these porous materials are most often geometrically anisotropic on a microscopic scale, and for demanding applications, there is a need for improved characterization methods. This paper discusses recent refinements of a method for the identification of the anisotropic flow resistivity tensor. The inverse estimation is verified for three fictitious materials with different degrees of anisotropy. Measurements are performed on nine glass wool samples and seven melamine foam samples, and the anisotropic flow resistivity tensors obtained are validated by comparison to measurements performed on uni-directional cylindrical samples, extracted from the same, previously measured cubic samples. The variability of flow resistivity in the batch of material from which the glass wool is extracted is discussed. The results for the melamine foam suggest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.

  5. Role of foam drainage in producing protein aggregates in foam fractionation.

    PubMed

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Visualizing Oil Process Dynamics in Porous Media with Micromodels

    NASA Astrophysics Data System (ADS)

    Biswal, S. L.

    2016-12-01

    The use of foam in enhanced oil recovery (EOR) applications is being considered for gas mobility control to ensure pore-trapped oil can be effectively displaced. In fractured reservoirs, gas tends to channel only through the highly permeability regions, bypassing the less permeable porous matrix, where most of the residual oil remains. Because of the unique transport problems presented by the large permeability contrast between fractures and adjacent porous media, we aim to understand the mechanism by which foam transitions from the fracture to the matrix and how initially trapped oil can be displaced and ultimately recovered. My lab has generated micromodels, which are combined with high-speed imaging to visualize foam transport in models with permeability contrasts, fractures, and multiple phases. The wettability of these surfaces can be altered to mimic the heterogeneous wettability found in reservoir systems. We have shown how foam quality can be modulated by adjusting the ratio of gas flow ratio to aqueous flow rate in a flow focusing system and this foam quality influences sweep efficiency in heterogeneous porous media systems. I will discuss how this understanding has allowed us to design better foam EOR processes. I will also highlight our recent efforts in ashaltene deposition. Asphaltene deposition is a common cause of significant flow assurance problems in wellbores and production equipment as well as near-wellbore regions in oil reservoirs. I will present our results for visualizing real time asphaltene deposition from model and crude oils using microfluidic devices. In particular, we consider porous-media micromodel designs to represent various flow conditions typical of that found in oil flow processes. Also, four stages of deposition have been found and investigated in the pore scale and with qualitatively macroscopic total collector efficiency as well as Hamaker expressions for interacting asphaltenes with surfaces. By understanding the nature and the mechanisms of asphaltene deposits, we increase our ability to design cost effective mitigation strategies that includes the development of a new generation of asphaltene deposition inhibitors and improved methods for prevention and treatment of this problem.

  7. A study of the crystallization, melting, and foaming behaviors of polylactic acid in compressed CO₂.

    PubMed

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B

    2009-12-16

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO(2) was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO(2) exposure significantly increased PLA's crystallization rate; a high crystallinity of 16.5% was achieved after CO(2) treatment for only 1 min at 100 degrees C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA's crystallization equilibrium.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  9. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  10. A study of tensile test on open-cell aluminum foam sandwich

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  11. The Temperature Effect on the Compressive Behavior of Closed-Cell Aluminum-Alloy Foams

    NASA Astrophysics Data System (ADS)

    Movahedi, Nima; Linul, Emanoil; Marsavina, Liviu

    2018-01-01

    In this research, the mechanical behavior of closed-cell aluminum (Al)-alloy foams was investigated at different temperatures in the range of 25-450 °C. The main mechanical properties of porous Al-alloy foams are affected by the testing temperature, and they decrease with the increase in the temperature during uniaxial compression. From both the constant/serrated character of stress-strain curves and macro/microstructural morphology of deformed cellular structure, it was found that Al foams present a transition temperature from brittle to ductile behavior around 192 °C. Due to the softening of the cellular structure at higher temperatures, linear correlations of the stress amplitude and that of the absorbed energy with the temperature were proposed. Also, it was observed that the presence of inherent defects like micropores in the foam cell walls induced further local stress concentration which weakens the cellular structure's strength and crack propagation and cell-wall plastic deformation are the dominant collapse mechanisms. Finally, an energy absorption study was performed and an optimum temperature was proposed.

  12. Experimental analysis of R134a flow boiling inside a 5 PPI copper foam

    NASA Astrophysics Data System (ADS)

    Diani, A.; Mancin, S.; Rossetto, L.

    2014-04-01

    Heat dissipation is one of the most important issues for the reliability of electronic equipment. Boiling can be a very efficient heat transfer mechanism when used to face with the electronic technology needs of efficient and compact heat sinks. Recently, cellular structured materials both stochastic and periodic, particularly open cell metal foams, have been proposed as possible enhanced surfaces to lower the junction temperatures at high heat fluxes. Up today, most of the research on metal foams only regards single phase flow, whereas the two phase flow is still almost unexplored. This paper presents an experimental study on the heat transfer of R134a during flow boiling inside a 5 PPI (Pores Per linear Inch) copper foam, which is 5 mm high, 10 mm wide and 200 mm long, and it is brazed on a 10 mm thick copper plate. The experimental measurements were carried out by imposing three different heat fluxes (50, 75, and 100 kW m-2) and by varying the refrigerant mass velocity between 50 and 200 kg m-2 s-1 and the vapour quality from 0.2 to 0.90, at constant saturation temperature (30°C). The effects of the refrigerant mass flow rate, heat flux and vapour quality on the heat transfer coefficient, dry out phenomenon, and pressure drop are studied.

  13. Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications

    NASA Astrophysics Data System (ADS)

    Najafi Chaloupli, Naqi

    Plastic materials are extensively used in automotive structures since they make cars more energy efficient. Recently, the automotive industry is searching for bio-based and renewable alternatives to petroleum-based plastics to reduce the dependence on fossil fuels. Among polymers originating from renewable sources, polylactide (PLA) has attracted significant interest. The use of this polymer in durable industries is promising. Fuel-efficient automobiles are nowadays demanded due to the increasing concerns about environmental and fuel issues. The automobile fuel efficiency can be improved by using a lightweight material and, thereby, reducing the automobile weight. A potential method to achieve this objective is the use of the foaming technology. Foam is a material where a gas phase is encapsulated by a solid phase. Foaming technology helps to manufacture lightweight parts with superior properties in comparison with their solid counterparts. The basic mechanisms of foaming process normally consists of gas implementation, formation of uniform polymer-gas solution, cell nucleation, cell growth and, finally, cell stabilization. PLA foaming has, however, proved to be difficult mainly due to poor rheological properties, small processing window, and slow crystallization kinetics. The ultimate purpose of this work is to reduce by 30 % the weight of polylactide (PLA)-clay based nanocomposites by manufacturing injection-molded foamed parts. To use standard processing equipment, a chemical blowing agent (CBA) was employed. The injection molding technique was utilized in this project because it is the most widely used fabrication process in industry that can produce complex shaped articles. This process, however, is more challenging than other foaming processes since it deals with many additional controlling parameters. In the first part of this project, we illustrated how long chain branching (LCB) and molecular structure impact the melt rheology, crystallization and batch foaming behavior of PLA. To this end, LCB-PLAs were prepared in the presence of a multifunctional chain extender (CE) using two different processing strategies. In the first strategy, the dried PLA was directly mixed in the molten state with various quantities of CE (the formation of LCB structure). To further examine the impact of CE and molecular topology, a LCB-PLA was also prepared using a second approach, strategy S2. In this approach, a highly branched PLA was first prepared and then mixed with the neat PLA at a weight ratio of 50:50 (the introduction of LCB structure). The steady and transient rheological properties of the linear and LCB-PLAs revealed that the LCB-PLAs exhibited an increased viscosity, shear sensitivity and longer relaxation time in comparison with the linear PLA. The presence of the LCB structure, moreover, led to a strong strain-hardening behavior in uniaxial elongational flow whereas no strain hardening was observed for the linear PLA. The batch foaming of the samples was conducted using CO2 at different foaming temperatures ranging from 130 to 155 °C. The impact of molecular structure and foaming temperature on the void fraction, cell density, and cell size were examined. It was found that the increased melt strength and elasticity, resulting from branching, strongly affected the cell uniformity, cell density and void fraction. Among the investigated compositions, LCB-PLA prepared by strategy S2 provided smaller cell size and higher cell density than the other compositions. In most polymer processing operations such as extrusion and injection molding the polymeric chains are subjected to complex flow fields (elongation, shear, and mixed flows). Shearing the molten polymer during processing plays an essential role on crystallization and, thus, on the final properties of the product. The impact of the LCB structure and shear on the isothermal shear-induced crystallization kinetics, and the crystal morphology of PLA were studied in the second part of this work. The quiescent crystallization behavior was investigated and the results were, then, used as the reference point for the study of the shear-induced crystallization. To determine the effect of shear strain, a pre-shear treatment was applied on the melt at two constant shear rates for a period of 1, 5, and 10 min. The onset time of crystallization was decreased with increasing total shear strain. Meanwhile, the impact of shear strain was more pronounced as the degree of LCB and molecular weight increased. To investigate the effect of shear rate on the induced crystallization, pre-shear was applied at three different shear rates while keeping the total strain constant. The induction time of the linear PLA and LCB-PLAs was found to reduce as the shear rate increased, even though the total strain was the same. The crystal morphology of the linear PLA and LCB-PLAs under quiescent and shear flow conditions was observed. These micrographs provided information about the spherulite density and growth rate. An increase in the spherulite density was achieved in the strained melt of both linear and LCB-PLAs, as compared with those of unstrained counterparts. A comparison of the crystal structure of linear PLA with that of LCB-PLA revealed that long chain branching significantly promoted the nucleation density, although it diminished the crystal growth rate. In the next step, the injection foam molding of the linear PLA and LCB-PLAs with different formulations was performed using a chemical blowing agent (CBA) in a conventional injection molding machine. Several factors including CBA content, degree of LCB, and injection molding processing parameters such as shot size, injection speed, back pressure, cooling time, and nozzle temperature were varied to optimize the formulation and processing conditions. The optimized formulation and processing conditions were selected for the last step of the project. In the third and last part of this work, the impact of LCB and nanoclay inclusion on the low pressure injection foaming behavior of PLA were examined. The linear PLA and LCB-PLA nanocomposites were prepared via melt compounding using a twin-screw extruder. An organo-modified clay, Cloisite 30B, at concentrations of 0.25, 0.5, and 1 wt% was used in this step. The resulting compositions were then foamed in a conventional injection molding using a CBA. The degree of crystallinity, clay dispersion, cellular morphology and mechanical properties were studied. The addition of clay increased the linear PLA crystallinity while a reverse effect was observed for the LCB-PLA. The morphological observations and quantifications revealed that a more uniform, finer, and denser cellular structure was achieved in the LCB-PLA reinforced by nanoclay. In addition, 0.5 wt % clay was found to be the optimum content for achieving a uniform morphology with high cell density and relative foam density of 0.7 in the LCB-PLA. The mechanical properties of the foamed specimens were significantly influenced by the cellular structure. A significant improvement of the mechanical properties was observed at 0.5 wt% clay loading. Finally, it is worth noting that the addition of just 0.4 wt% CE and 0.5 wt% nanoclay led to the formation of a uniform cellular structure with relative density of 0.7, 10 times increase of the cell density and improved mechanical properties if they are judiciously added to the PLA.

  14. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  15. Experimental Investigations of Space Shuttle BX-265 Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2009-01-01

    This report presents a variety of experimental studies on the polyurethane foam, BX-265. This foam is used as a close-out foam insulation on the space shuttle external tank. The purpose of this work is to provide a better understanding of the foam s behavior and to support advanced modeling efforts. The following experiments were performed: Thermal expansion was measured for various heating rates. The in situ expansion of foam cells was documented by heating the foam in a scanning electron microscope. Expansion mechanisms are described. Thermogravimetric analysis was performed at various heating rates and for various environments. The glass transition temperature was also measured. The effects of moisture on the foam were studied. Time-dependent effects were measured to give preliminary data on viscoelastoplastic properties.

  16. Impact of boundaries on velocity profiles in bubble rafts.

    PubMed

    Wang, Yuhong; Krishan, Kapilanjan; Dennin, Michael

    2006-03-01

    Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e., regions of flow coexisting with regions of solidlike behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi two-dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the "quasistatic limit," i.e., when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from 10(-3) to 10(-2) s(-1). This corresponds to the quoted rate of strain that had been used in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain. When a top is present, the flow is localized to a narrow band near the wall, and without a top, there is flow throughout the system.

  17. Evaluating the performance of the two-phase flow solver interFoam

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious currents, we followed the analysis of Galusinski and Vigneaux (2008 J. Comput. Phys. 227 6140-64) and arrived at the following criterion for stable capillary simulations for interFoam: \\Delta t\\leqslant \\max (10\\tau _\\mu , 0.1\\tau _\\rho) where \\tau _\\mu =\\mu \\Delta x/\\sigma ,~ {and}~\\tau _\\rho =\\sqrt {\\rho \\Delta x^3/\\sigma } . Finally, some capillary flows relevant to atomization were simulated, resulting in good agreement with the results from the literature.

  18. RANS Simulations using OpenFOAM Software

    DTIC Science & Technology

    2016-01-01

    Averaged Navier- Stokes (RANS) simulations is described and illustrated by applying the simpleFoam solver to two case studies; two dimensional flow...to run in parallel over large processor arrays. The purpose of this report is to illustrate and test the use of the steady-state Reynolds Averaged ...Group in the Maritime Platforms Division he has been simulating fluid flow around ships and submarines using finite element codes, Lagrangian vortex

  19. Fluid-Driven Deformation of a Soft Porous Medium

    NASA Astrophysics Data System (ADS)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  20. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    PubMed Central

    Zhai, Wentao; Ko, Yoorim; Zhu, Wenli; Wong, Anson; Park, Chul B.

    2009-01-01

    The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium. PMID:20054476

  1. Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride

    NASA Astrophysics Data System (ADS)

    Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong

    2016-05-01

    Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.

  2. The Melting of Aqueous Foams

    NASA Technical Reports Server (NTRS)

    Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.

    1996-01-01

    Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.

  3. Al-TiH2 Composite Foams Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Prasada Rao, A. K.; Oh, Y. S.; Ain, W. Q.; A, Azhari; Basri, S. N.; Kim, N. J.

    2016-02-01

    The work presented here in describes the synthesis of aluminum based titanium-hydride particulate composite by casting method and its foaming behavior of magnesium alloy. Results obtained indicate that the Al-10TiH2 composite can be synthesized successfully by casting method. Further, results also reveal that closed-cell magnesium alloy foam can be synthesized by using Al-10TiH2 composite as a foaming agent.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbertson, Robert D.; Patterson, Brian M.; Smith, Zachary

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micromore » CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.« less

  5. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  6. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    NASA Astrophysics Data System (ADS)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  7. Foamed emulsion drainage: flow and trapping of drops.

    PubMed

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  8. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    PubMed

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  9. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    PubMed Central

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-01-01

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis. PMID:28788573

  10. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    PubMed

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  11. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    PubMed Central

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875

  12. Integrated Microfluidic Flow-Through Microbial Fuel Cells

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang

    2017-01-01

    This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.

  13. Biot theory and acoustical properties of high porosity fibrous materials and plastic foams

    NASA Technical Reports Server (NTRS)

    Allard, J.; Aknine, A.

    1987-01-01

    Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.

  14. Fiber reinforced hybrid phenolic foam

    NASA Astrophysics Data System (ADS)

    Desai, Amit

    Hybrid composites in recent times have been developed by using more than one type of fiber reinforcement to bestow synergistic properties of the chosen filler and matrix and also facilitating the design of materials with specific properties matched to end use. However, the studies for hybrid foams have been very limited because of problems related to fiber dispersion in matrix, non uniform mixing due to presence of more than one filler and partially cured foams. An effective approach to synthesize hybrid phenolic foam has been proposed and investigated here. Hybrid composite phenolic foams were reinforced with chopped glass and aramid fibers in varied proportions. On assessing mechanical properties in compression and shear several interesting facts surfaced but overall hybrid phenolic foams exhibited a more graceful failure, greater resistance to cracking and were significantly stiffer and stronger than foams with only glass and aramid fibers. The optimum fiber ratio for the reinforced hybrid phenolic foam system was found to be 1:1 ratio of glass to aramid fibers. Also, the properties of hybrid foam were found to deviate from rule of mixture (ROM) and thus the existing theories of fiber reinforcement fell short in explaining their complex behavior. In an attempt to describe and predict mechanical behavior of hybrid foams a statistical design tool using analysis of variance technique was employed. The utilization of a statistical model for predicting foam properties was found to be an appropriate tool that affords a global perspective of the influence of process variables such as fiber weight fraction, fiber length etc. on foam properties (elastic modulus and strength). Similar approach could be extended to study other fiber composite foam systems such as polyurethane, epoxy etc. and doing so will reduce the number of experimental iterations needed to optimize foam properties and identify critical process variables. Diffusivity, accelerated aging and flammability of hybrid foams were evaluated and the results indicate that hybrid foam surpassed several commercial foams and thus could fulfill the current needs for an insulation material which is low cost, has excellent fire properties and retains compressive stiffness even after aging.

  15. Graphene oxide foams and their excellent adsorption ability for acetone gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; School of Science, Tianjin University, Tianjin 300072; Zhang, Nana

    2013-09-01

    Graphical abstract: - Highlights: • GO and RGO foams were prepared using a simple and green method, unidirectional freeze-drying. • The porous structure of the foams can be adjusted by changing GO concentrations. • GO and RGO foams show good adsorption efficiency for acetone gas. - Abstract: Graphene oxide (GO) and reduced graphene oxide (RGO) foams were prepared using a unidirectional freeze-drying method. These porous carbon materials were characterized by thermal gravimetric analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy and scanning electron microscopy. The adsorption behavior of the two kinds of foams for acetone was studied. The result showed thatmore » the saturated adsorption efficiency of the GO foams was over 100%, and was higher than that of RGO foams and other carbon materials.« less

  16. Development of porous carbon foam polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Cunningham, Nicolas

    In order to prove the feasibility of using porous carbon foam material in a polymer electrolyte membrane fuel cell (PEMFC), a single PEMFC is constructed with a piece of 80PPI (pores per linear inch) Reticulated Vitreous Carbon (RVC) foam at a thickness of 3.5 mm employed in the cathode flow-field. The cell performance of such design is compared with that of a conventional fuel cell with serpentine channel design in the cathode and anode flow-fields. Experimental results show that the RVC foam fuel cell not only produces comparative power density to, but also offers interesting benefits over the conventional fuel cell. A 250 h long term test conducted on a RVC foam fuel cell shows that the durability and performance stability of the material is deemed to be acceptable. Furthermore, a parametric study is conducted on single RVC foam fuel cells. Effect of geometrical and material parameters of the RVC foam such as PPI and thickness and operating conditions such as pressure, temperature, and stoichiometric ratio of the reactant gases on the cell performance is experimentally investigated in detail. The single cell with the 80PPI RVC foam exhibits the best performance, especially if the thinnest foam (3.5 mm) is used. The cell performance improves with increasing the operating gauge pressure from 0 kPa to 80 kPa and the operating temperature from 40 °C to 60 °C, but deteriorates as it further increases to 80 °C. The cell performance improves as the stoichiometric ratio of air increases from 1.5 to 4.5; however, the improvement becomes marginal when it is raised above 3.0. On the other hand, changing the stoichiometric ratio of hydrogen does not have a significant impact on the cell performance.

  17. Modifications Of A Commercial Spray Gun

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  18. Verification of ANSYS Fluent and OpenFOAM CFD platforms for prediction of impact flow

    NASA Astrophysics Data System (ADS)

    Tisovská, Petra; Peukert, Pavel; Kolář, Jan

    The main goal of the article is a verification of the heat transfer coefficient numerically predicted by two CDF platforms - ANSYS-Fluent and OpenFOAM on the problem of impact flows oncoming from 2D nozzle. Various mesh parameters and solver settings were tested under several boundary conditions and compared to known experimental results. The best solver setting, suitable for further optimization of more complex geometry is evaluated.

  19. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    PubMed

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  20. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    NASA Astrophysics Data System (ADS)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  1. Mechanical Properties of 17-4PH Stainless Steel Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Lerch, B. a.; Hebsur, M.; Cosgriff, L. M.; Fedor, J.

    2007-01-01

    Rectangular 17-4PH stainless steel sandwiched foam panels were fabricated using a commercial manufacturing technique by brazing two sheets to a foam core. Microstructural observations and ultrasonic nondestructive evaluation of the panels revealed large variations in the quality of the brazed areas from one panel to the next as well as within the same panel. Shear tests conducted on specimens machined from the panels exhibited failures either in the brazed region or in the foam core for the poorly brazed and well-brazed samples, respectively. Compression tests were conducted on the foam cores to evaluate their elastic and plastic deformation behavior. These data were compared with published data on polymeric and metallic foams, and with theoretical deformation models proposed for open cell foams.

  2. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    PubMed

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A novel approach for improving the drying behavior of sludge by the appropriate foaming pretreatment.

    PubMed

    Huang, Jing; Yang, Zhao-Hui; Zeng, Guang-Ming; Wang, Hui-Ling; Yan, Jing-Wu; Xu, Hai-Yin; Gou, Cheng-Liu

    2015-01-01

    Foaming pretreatment has long been recognized to promote drying materials with sticky and viscous behaviors. A novel approach, CaO addition followed by appropriate mechanical whipping, was employed for the foaming of dewatered sludge at a moisture content of 80-85%. In the convective drying, the foamed sludge at 0.70 g/mL had the best drying performance at any given temperature, which saved 35-41% drying time for reaching 20% moisture content compared with the non-foamed sludge. Considering the maximum foaming efficiency, the optimal CaO addition was found at 2.0 wt%. For a better understanding of the foaming mechanisms, the foamability of sludge processed with other pretreatment methods, including NaOH addition (0-3.0 wt%) and heating application (60-120 °C), were investigated while continuously whipping. Their recovered supernatant phases were characterized by pH, surface tension, soluble chemical oxygen demand (sCOD), protein concentration, polysaccharide concentration and spectra of excitation-emission matrices (EEM). These comparative studies indicated that the sludge foaming was mainly derived from the decreased surface tension by the surfactants and the promoted foam persistence by the protein derived compounds. Further, a comprehensive analysis of the sludge drying characteristics was performed including the surface moisture evaporation, the effective moisture diffusivity and the micromorphology of dried sludge. The results indicated that the drying advantages of foamed sludge were mainly attributed to the larger evaporation surface in a limited drying area and the more active moisture capillary movement through the liquid films, which resulted in longer constant evaporation rate periods and better effective moisture diffusivity, respectively.

  4. Effect of water on foaming properties of diglycerol fatty acid ester-oil systems.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Solans, Conxita; Aramaki, Kenji

    2007-06-19

    We have studied the effect of added water on the nonaqueous foaming properties of diglycerol fatty acid ester nonionic surfactant systems. Diglycerol monomyristate (designated as DGM) could not foam in nonpolar oils squalane and hexadecane at normal room temperature. Nevertheless, addition of a small amount of water induces a dramatic change in foaming properties. Both the foamability and foam stability increases with the amount of added water within the studied concentration range. Phase behavior study showed that in the dilute regions there is dispersion of solid surfactant in the aforementioned oils in the DGM systems. The particle size of the dispersed solid phase was found to be several tens of microns in the water free system, and hence it tends to coagulate and precipitate. In the case of shorter alkyl chain length, diglycerol monolaurate (DGL) surfactant-oil systems, dispersion of lamellar liquid crystal (Lalpha) is observed at room temperature, and the poor foaming properties were attributed to the large particle size of the liquid crystal. In both the DGL and DGM-oil systems, we observed a tendency of the particle size to decrease with the increasing concentration of added water. At higher temperature, the solid surfactant transforms to lamellar liquid crystal phase, and foaming is improved in the DGM/squalane system. Foams are stable for several minutes. Judging from the foaming test and particle size distribution data it can be concluded that the poor foaming in the diglycerol fatty acid esters-oil systems may possibly be due to bigger particle size, which causes precipitation. Addition of water results in the dispersion of smaller particles and improves the foaming behavior.

  5. 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry

    NASA Astrophysics Data System (ADS)

    Özdemir, İ. Bedii; Akar, Fırat

    2018-05-01

    The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.

  6. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  7. Tunable thiol-epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Ellson, Gregory; Di Prima, Matthew; Ware, Taylor; Tang, Xiling; Voit, Walter

    2015-05-01

    Shape memory polymers (SMPs) are uniquely suited to a number of applications due to their shape storage and recovery abilities and the wide range of available chemistries. However, many of the desired performance properties are tied to the polymer chemistry which can make optimization difficult. The use of foaming techniques is one way to tune mechanical response of an SMP without changing the polymer chemistry. In this work, a novel thiol-epoxy SMP was foamed using glass microspheres (40 and 50% by volume Q-Cel 6019), using expandable polymer microspheres (1% 930 DU 120), and by a chemical blowing agent (1% XOP-341). Each approach created SMP foam with a differing density and microstructure from the others. Thermal and thermomechanical analysis was performed to observe the behavioral difference between the foaming techniques and to confirm that the glass transition (Tg) was relatively unchanged near 50 °C while the glassy modulus varied from 19.1 to 345 MPa and the rubbery modulus varied from 0.04 to 2.2 MPa. The compressive behavior of the foams was characterized through static compression testing at different temperatures, and cyclic compression testing at Tg. Constrained shape recovery testing showed a range of peak recovery stress from 5 MPa for the syntactic Q-Cel foams to ˜0.1 MPa for the chemically blown XOP-341 foam. These results showed that multiple foaming approaches can be used with a novel SMP to vary the mechanical response independent of Tg and polymer chemistry.

  8. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.

    PubMed

    Katgert, Gijs; Latka, Andrzej; Möbius, Matthias E; van Hecke, Martin

    2009-06-01

    We probe the flow of two-dimensional (2D) foams, consisting of a monolayer of bubbles sandwiched between a liquid bath and glass plate, as a function of driving rate, packing fraction, and degree of disorder. First, we find that bidisperse, disordered foams exhibit strongly rate-dependent and inhomogeneous (shear-banded) velocity profiles, while monodisperse ordered foams are also shear banded but essentially rate independent. Second, we adapt a simple model [E. Janiaud, D. Weaire, and S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006)] based on balancing the averaged drag forces between the bubbles and the top plate F[over ]_{bw} and the averaged bubble-bubble drag forces F[over ]_{bb} by assuming that F[over ]_{bw} approximately v;{2/3} and F[over ]_{bb} approximately ( partial differential_{y}v);{beta} , where v and ( partial differential_{y}v) denote average bubble velocities and gradients. This model captures the observed rate-dependent flows for beta approximately 0.36 , and the rate independent flows for beta approximately 0.67 . Third, we perform independent rheological measurements of F[over ]_{bw} and F[over ]_{bb} , both for ordered and disordered systems, and find these to be fully consistent with the forms assumed in the simple model. Disorder thus leads to a modified effective exponent beta . Fourth, we vary the packing fraction phi of the foam over a substantial range and find that the flow profiles become increasingly shear banded when the foam is made wetter. Surprisingly, the model describes flow profiles and rate dependence over the whole range of packing fractions with the same power-law exponents-only a dimensionless number k that measures the ratio of the prefactors of the viscous drag laws is seen to vary with packing fraction. We find that k approximately (phi-phi_{c});{-1} , where phi_{c} approximately 0.84 corresponds to the 2D jamming density, and suggest that this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work shows that the presence of disorder qualitatively changes the effective bubble-bubble drag forces and suggests a route to rationalize aspects of the ubiquitous Herschel-Bulkley (power-law) rheology observed in a wide range of disordered materials.

  9. Theoretical Evaluation of Foam Proppant Carriers

    NASA Astrophysics Data System (ADS)

    von Holt, H.; Kam, S.; Williams, W. C.

    2017-12-01

    Hydraulic fracturing in oil wells results in a large amount of produced water which must be properly disposed of and is currently a key environmental issue preventing further development in US domestic oil and gas production. The primary function of this liquid is to carry particulates, a.k.a. Proppant, into the stress fractures in order to hold open a pathway in which petroleum can flow into the wellbore. A potential superior technique is to use foam instead of liquid; liquids rely on turbulence to suspend proppant while foams carry particulates on the surfaces. Therefore, foams can carry more proppant deeper into the fractures while typically using 50%-90% less liquid, depending on foam quality. This comparative analysis uses the vorticity equation for a liquid to approximate the base case of particle suspension. This is then compared to a multitude of foam transport models in order to demonstrate the efficacy of foams when used in hydraulic fracturing. This work serves as the basis for future laboratory and hopefully field scale studies of foam proppant carriers.

  10. Fire-resistant materials for aircraft passenger seat construction

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Tesoro, G. C.; Moussa, A.; Kourtides, D. A.

    1979-01-01

    The thermal response characteristics of fabric and fabric-foam assemblies are described. The various aspects of the ignition behavior of contemporary aircraft passenger seat upholstery fabric materials relative to fabric materials made from thermally stable polymers are evaluated. The role of the polymeric foam backing on the thermal response of the fabric-foam assembly is also ascertained. The optimum utilization of improved fire-resistant fabric and foam materials in the construction of aircraft passenger seats is suggested.

  11. Investigation of compression behavior of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  12. Fabrication, morphology and mechanical properties of Ti and metastable Ti-based alloy foams for biomedical applications.

    PubMed

    Rivard, J; Brailovski, V; Dubinskiy, S; Prokoshkin, S

    2014-12-01

    Metallic foams with porosity ranging from 0.25 to 0.65 have been produced from TiCp, Ti-Nb-Zr and Ti-Nb-Ta prealloyed powder by using the space-holder technique, and analysed from both the pore morphology and mechanical properties' points of view. For all the foams, the most suitable porosity range for bone ingrowth appears to be 0.35 to 0.45, since these porosities lead to a pore size that is globally encompassed in the recommended 100-600 μm range. From the mechanical behavior point of view, all of the as-sintered foams demonstrate similar compression behavior in terms of their apparent Young's modulus and critical stresses. In the recommended 0.3-0.45 porosity range, their Young's modulus varies from 15 to 8 GPa, whilst their yield stress varies from 300 to 150 MPa. The first characteristic comes close to that of cortical bone, whilst the second significantly exceeds bone resistance. Compared to Ti foams, the mechanical properties of metastable TNZ and TNT alloy foams can also be regulated within a ±20% range, by selecting an appropriate post-sintering thermal treatment. This effect, which is initiated by activating reversible stress-induced β to α″ martensitic transformation, is strongly perceptible for TNZ foams, whilst much less pronounced for TNT foams. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Jet impact on a soap film

    NASA Astrophysics Data System (ADS)

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  14. Jet impact on a soap film.

    PubMed

    Kirstetter, Geoffroy; Raufaste, Christophe; Celestini, Franck

    2012-09-01

    We experimentally investigate the impact of a liquid jet on a soap film. We observe that the jet never breaks the film and that two qualitatively different steady regimes may occur. The first one is a refractionlike behavior obtained at small incidence angles when the jet crosses the film and is deflected by the film-jet interaction. For larger incidence angles, the jet is absorbed by the film, giving rise to a new class of flows in which the jet undulates along the film with a characteristic wavelength. Besides its fundamental interest, this paper presents a different way to guide a micrometric flow of liquid in the inertial regime and to probe foam stability submitted to violent perturbations at the soap film scale.

  15. Numerical modelling of flow through foam's node.

    PubMed

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal

    2017-10-15

    In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by Boussinesq number. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A pore-network model for foam formation and propagation in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharabaf, H.; Yortsos, Y.C.

    1996-12-31

    We present a pore-network model, based on a pores-and-throats representation of the porous medium, to simulate the generation and mobilization of foams in porous media. The model allows for various parameters or processes, empirically treated in current models, to be quantified and interpreted. Contrary to previous works, we also consider a dynamic (invasion) in addition to a static process. We focus on the properties of the displacement, the onset of foam flow and mobilization, the foam texture and the sweep efficiencies obtained. The model simulates an invasion process, in which gas invades a porous medium occupied by a surfactant solution.more » The controlling parameter is the snap-off probability, which in turn determines the foam quality for various size distributions of pores and throats. For the front to advance, the applied pressure gradient needs to be sufficiently high to displace a series of lamellae along a minimum capillary resistance (threshold) path. We determine this path using a novel algorithm. The fraction of the flowing lamellae, X{sub f} (and, consequently, the fraction of the trapped lamellae, X{sub f}) which are currently empirical, are also calculated. The model allows the delineation of conditions tinder which high-quality (strong) or low-quality (weak) foams form. In either case, the sweep efficiencies in displacements in various media are calculated. In particular, the invasion by foam of low permeability layers during injection in a heterogeneous system is demonstrated.« less

  17. Effect of thermal hydrolysis and ultrasounds pretreatments on foaming in anaerobic digesters.

    PubMed

    Alfaro, N; Cano, R; Fdz-Polanco, F

    2014-10-01

    Foam appears regularly in anaerobic digesters producing operational and safety problems. In this research, based on the operational observation at semi-industrial pilot scale where sludge pretreatment mitigated foaming in anaerobic digesters, this study aimed at evaluating any potential relationship between foaming tools applied to activated sludge at lab-scale (foam potential, foam stability and Microthrix parvicella abundance) and the experimental behavior observed in pilot scale and full-scale anaerobic digesters. The potential of thermal hydrolysis and ultrasounds for reducing foaming capacity was also evaluated. Filamentous bacteria abundance was directly linked to foaming capacity in anaerobic processes. A maximum reduction of M.parvicella abundance (from 5 to 2) was reached using thermal hydrolysis with steam explosion at 170°C and ultrasounds at 66.7kWh/m(3), showing both good anti-foaming properties. On the other hand, foam potential and stability determinations showed a lack of consistency with the bacteria abundance results and experimental evidences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. X-ray micro computed tomography characterization of cellular SiC foams for their applications in chemical engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Xiaoxia

    Open-cell SiC foams clearly are promising materials for continuous-flow chemical applications such as heterogeneous catalysis and distillation. X-ray micro computed tomography characterization of cellular β-SiC foams at a spatial voxel size of 13.6{sup 3} μm{sup 3} and the interpretation of morphological properties of SiC open-cell foams with implications to their transport properties are presented. Static liquid hold-up in SiC foams was investigated through in-situ draining experiments for the first time using the μ-CT technique providing thorough 3D information about the amount and distribution of liquid hold-up inside the foam. This will enable better modeling and design of structured reactors basedmore » on SiC foams in the future. In order to see more practical uses, μ-CT data of cellular foams must be exploited to optimize the design of the morphology of foams for a specific application. - Highlights: •Characterization of SiC foams using novel X-ray micro computed tomography. •Interpretation of structural properties of SiC foams regarding to their transport properties. •Static liquid hold-up analysis of SiC foams through in-situ draining experiments.« less

  19. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  20. Resonant acoustic propagation and negative density in liquid foams.

    PubMed

    Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin

    2014-04-11

    We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.

  1. Resonant Acoustic Propagation and Negative Density in Liquid Foams

    NASA Astrophysics Data System (ADS)

    Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin

    2014-04-01

    We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.

  2. An Eulerian two-phase flow model for sediment transport under realistic surface waves

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.

    2017-12-01

    Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.

  3. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    NASA Astrophysics Data System (ADS)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  4. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  5. Probing nanodispersions of clays for reactive foaming.

    PubMed

    Harikrishnan, G; Lindsay, Chris I; Arunagirinathan, M A; Macosko, Christopher W

    2009-09-01

    Nanodispersions of clays in polyurethane components have been prepared. Nanoclays (both natural and organically modified) of various aspect ratios are used. The fillers are dispersed separately in polyurethane components, viz., polyol and polyisocyanate. The nanodispersions are characterized by the combined use of solution rheology, X-ray scattering, cryo-electron microscopy, and IR spectroscopy. Reactive foaming of these nanodispersions is carried out to make polyurethane nanocomposite foams. The status of the dispersion of fillers in components and in foams has been compared to investigate the effect of the foaming process in exfoliation. Interpretation of the results from different characterization techniques describes the state of the dispersion of fillers in components and in foam. The rheological and physicochemical behaviors of nanodispersions are shown to have a significant influence on the properties of nanocomposite foams.

  6. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    NASA Technical Reports Server (NTRS)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    The Space Shuttle External Tank is covered with rigid polymeric closed-cell foam insulation to prevent ice formation, protect the metallic tank from aerodynamic heating, and control the breakup of the tank during re-entry. The cryogenic state of the tank, as well as the ascent into a vacuum environment, places this foam under significant stress. Because the loss of the foam during ascent poses a critical risk to the shuttle orbiter, there is much interest in understanding the stress state in the foam insulation and how it may contribute to fracture and debris loss. Several foam applications on the external tank have been analyzed using finite element methods. This presentation describes the approach used to model the foam material behavior and compares analytical results to experiments.

  7. Acoustic properties of reticulated plastic foams

    NASA Astrophysics Data System (ADS)

    Cummings, A.; Beadle, S. P.

    1994-08-01

    Some general aspects of sound propagation in rigid porous media are discussed, particularly with reference to the use of a single - dimensionless - frequency parameter and the role of this, in the light of the possibility of varying gas properties, is examined. Steady flow resistance coefficients of porous media are also considered, and simple scaling relationships between these coefficients and `system parameters' are derived. The results of a series of measurements of the bulk acoustic properties of 12 geometrically similar, fully reticulated, polyurethane foams are presented, and empirical curve-fitting coefficients are found; the curve-fitting formulae are valid within the experimental range of values of the frequency parameter. Comparison is made between the measured data and an alternative, fairly recently published, semi-empirical set of formulae. Measurements of the steady flow-resistive coefficients are also given and both the acoustical and flow-resistive data are shown to be consistent with theoretical ideas. The acoustical and flow-resistive data should be of use in predicting the acoustic bulk properties of open-celled foams of types similar to those used in the experimental tests.

  8. Drop coalescence and liquid flow in a single Plateau border

    NASA Astrophysics Data System (ADS)

    Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe

    2015-05-01

    We report a comprehensive study of the flow of liquid triggered by injecting a droplet into a liquid foam microchannel, also called a Plateau border. This drop-injected experiment reveals an intricate dynamics for the liquid redistribution, with two contrasting regimes observed, ruled either by inertia or viscosity. We devoted a previous study [A. Cohen et al., Phys. Rev. Lett. 112, 218303 (2014), 10.1103/PhysRevLett.112.218303] to the inertial imbibition regime, unexpected at such small length scales. Here we report other features of interest of the drop-injected experiment, related to the coalescence of the droplet with the liquid microchannel, to both the inertial and viscous regimes, and to the occurrence of liquid flow through the soap films as well as effects of the interfacial rheology. The transition between the two regimes is investigated and qualitatively accounted for. The relevance of our results to liquid foam drainage is tackled by considering the flow of liquid at the nodes of the network of interconnected microchannels. Extensions of our study to liquid foams are discussed.

  9. Application of foam-extend on turbulent fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  10. Quantum group spin nets: Refinement limit and relation to spin foams

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian

    2014-07-01

    So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.

  11. Surface effects on the radiation response of nanoporous Au foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, E. G.; Caro, M.; Wang, Y. Q.

    2012-11-05

    We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.

  12. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.

    PubMed

    Ogam, Erick; Fellah, Z E A; Baki, Paul

    2013-03-01

    The efficient use of plastic foams in a diverse range of structural applications like in noise reduction, cushioning, and sleeping mattresses requires detailed characterization of their permeability and deformation (load-bearing) behavior. The elastic moduli and airflow resistance properties of foams are often measured using two separate techniques, one employing mechanical vibration methods and the other, flow rates of fluids based on fluid mechanics technology, respectively. A multi-parameter inverse acoustic scattering problem to recover airflow resistivity (AR) and mechanical properties of an air-saturated foam cylinder is solved. A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory and plane-wave decomposition using orthogonal cylindrical functions is employed to solve the inverse problem. The solutions to the inverse problem are obtained by constructing the objective functional given by the total square of the difference between predictions from the model and scattered acoustic field data acquired in an anechoic chamber. The value of the recovered AR is in good agreement with that of a slab sample cut from the cylinder and characterized using a method employing low frequency transmitted and reflected acoustic waves in a long waveguide developed by Fellah et al. [Rev. Sci. Instrum. 78(11), 114902 (2007)].

  13. An experimental study of a quasi-two dimensional rising foam

    NASA Astrophysics Data System (ADS)

    Bennani, Nora; Fujiwara, Akiko; Takagi, Shu; Matsumoto, Yoichiro

    2006-11-01

    Motivated by the use of the flotation process to clean a non-homogeneous liquid, we here report on an experimental study of quasi-two dimensional flowing foam. Conditions are free-drainage which is driven by gravity and capillarity. The coarsening process, which is due to the aging of the foam, is also occurring, changing the general shape of this polydispersed foam cells. Tea seed saponin was used as surfactant, and Rhodamine-B fluorescent particles were tracked using the Particle Tracking Velocimetry technique. Experiments were performed in an acrylic tank filled with tap water (height H= 1m, width W= 0.15 m and Depth D= 8mm). The air was injected from its bottom part with a fixed flow rate, and went through a porous plate (size of the pores was 10μm), and created 3mm diameter non-spherical bubbles. The void fraction, in the liquid phase, was estimated to be around 1%. Fluorescent particles were beforehand added in the liquid phase in order to trace wastewater particle motion. The generated foam gas cells sizes were in the range of 0.5 to 5 cm, depending on the surfactant concentration and the coarsening process. The behaviours of these particle tracers and of the liquid, with these herein foaming conditions, are here presented and are compared to available data and theories.

  14. Assessment of Multiaxial Mechanical Response of Rigid Polyurethane Foams

    NASA Astrophysics Data System (ADS)

    Pettarin, Valeria; Fasce, Laura A.; Frontini, Patricia M.

    2014-02-01

    Multiaxial deformation behavior and failure surface of rigid polyurethane foams were determined using standard experimental facilities. Two commercial foams of different densities were assayed under uniaxial, biaxial, and triaxial stress states. These different stress states were reached in a uniaxial universal testing machine using suitable testing configurations which imply the use of special grips and lateral restricted samples. Actual strains were monitored with a video extensometer. Polyurethane foams exhibited typical isotropic brittle behavior, except under compressive loads where the response turned out to be ductile. A general failure surface in the stress space which accounts for density effects could be successfully generated. All of failure data, determined at the loss of linear elasticity point, collapsed in a single locus defined as the combination of a brittle crushing of closed-cell cellular materials criterion capped by an elastic buckling criterion.

  15. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    PubMed

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  16. Application of an Elongated Kelvin Model to Space Shuttle Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2009-01-01

    The space shuttle foams are rigid closed-cell polyurethane foams. The two foams used most-extensively oil space shuttle external tank are BX-265 and NCFL4-124. Because of the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a nonisotropic mechanical behavior. A detailed microstructural characterization of the two foams is presented. Key features of the foam cells are described and the average cell dimensions in the two foams are summarized. Experimental studies are also conducted to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise). The measured elastic modulus, proportional limit stress, ultimate tensile strength, and Poisson's ratios are reported. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are summarized. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson's ratios are predicted for both foams and are compared with the experimental data. The predicted tensile strength ratio is in close agreement with the measured strength ratio for both BX-265 and NCFI24-124. The comparison between the predicted Poisson's ratios and the measured values is not as favorable.

  17. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    PubMed

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  18. Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams

    NASA Astrophysics Data System (ADS)

    Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.

    2006-05-01

    A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.

  19. Dynamics of Polydisperse Foam-like Emulsion

    NASA Astrophysics Data System (ADS)

    Hicock, Harry; Feitosa, Klebert

    2011-10-01

    Foam is a complex fluid whose relaxation properties are associated with the continuous diffusion of gas from small to large bubbles driven by differences in Laplace pressures. We study the dynamics of bubble rearrangements by tracking droplets of a clear, buoyantly neutral emulsion that coarsens like a foam. The droplets are imaged in three dimensions using confocal microscopy. Analysis of the images allows us to measure their positions and radii, and track their evolution in time. We find that the droplet size distribution fits a Weibull distribution characteristics of foam systems. Additionally, we observe that droplets undergo continuous evolution interspersed by occasional large rearrangements in par with local relaxation behavior typical of foams.

  20. Dust control at longwalls with water infusion and foam. Technical progress report through November 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    Foam spray equipment and materials for dust suppression on longwall double drum shearer faces have been procured. This equipment includes metering pumps, foam generators and mounting brackets, foam solutions, flow meters, real time and gravimetric sampling equipment, hoses and valve banks. Initial tests have been conducted in the laboratory with three types of generators and five types of foam solutions. Based on these tests, Senior Conflow's cluster spray and Onyx Chemical Company's millifoam solution have been selected. For pumping foam solution to the shearer, Jon Bean's 2 hp, 120 VAC single-phase ceramic lined piston pump has been selected. For fieldmore » tests, equipment has been installed underground in Dobbin mine in Upper Freeport seam on Eickhoff EDW 300 double drum shearer. Foamspray tests have been conducted. Real time and gravimetric dust samples have been collected. Real time sampling results indicate a dust level reduction of up to 37 percent with foam spray compared to the base case of water sprays.« less

  1. Lightweight Ceramics for Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Kwan, H. W.; Spamer, G. T.; Yu, J.; Yasukawa, B.

    1997-01-01

    The use of a HTP (High Temperature Performance) ceramic foam for aeroacoustic applications is investigated. HTP ceramic foam is a composition of silica and alumina fibers developed by LMMS. This foam is a lightweight high-temperature fibrous bulk material with small pore size, ultra high porosity, and good strength. It can be used as a broadband noise absorber at both room and high temperature (up to 1800 F). The investigation included an acoustic assessment as well as material development, and environmental and structural evaluations. The results show that the HTP ceramic foam provides good broadband noise absorbing capability and adequate strength when incorporating the HTP ceramic foam system into a honeycomb sandwich structure. On the other hand, the material is sensitive to Skydrol and requires further improvements. Good progress has been made in the impedance model development. A relationship between HTP foam density, flow resistance, and tortuosity will be established in the near future. Additional effort is needed to investigate the coupling effects between face sheet and HTP foam material.

  2. Capillary rise of oil in an aqueous foam

    NASA Astrophysics Data System (ADS)

    Piroird, Keyvan; Lorenceau, Élise

    2012-11-01

    Oil is usually known as an anti-foaming agent. Yet, it has been shown that oil droplets present in the foaming solution can have the opposite effect and stabilize a foam when unable to cross the air/water interface. In these previous studies, oil is first emulsified and then mixed with air to generate a foam. In this work, we report experiments where an aqueous foam is put in direct contact with a large oil drop. With the appropriate choice of oil and surfactants, oil spontaneously invades the liquid network of the foam without damaging it. We study the dynamics of penetration at the scale of a single Plateau border, that acts as a ``liquid capillary tube'' in which oil flows in an unbroken stream. At the end of the experiment, a long and stable cylinder of oil is formed in the Plateau border. This cylinder breaks up into droplets when, following a rearrangement, oil is transferred from the Plateau border to a soap film.

  3. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  4. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    NASA Technical Reports Server (NTRS)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  5. Hypersonic simulations using open-source CFD and DSMC solvers

    NASA Astrophysics Data System (ADS)

    Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.

    2016-11-01

    Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.

  6. Permeability studies on 3D Ni foam/graphene composites

    NASA Astrophysics Data System (ADS)

    Yang, Zhuxian; Chen, Hongmei; Wang, Nannan; Xia, Yongde; Zhu, Yanqiu

    2017-09-01

    This study investigates the permeability of new 3D Ni foam/graphene composites (Ni foam covered with graphene) using compressed air, Ar and N2 as the probe gases. The results show that the introduction of graphene on the surface of Ni foam via in situ chemical vapour deposition is not detrimental to the permeability of the composites; on the contrary, in some cases it improves permeability. A modified Ergun-type correlation has been proposed, which represents very well the permeability of the Ni foam/graphene composites, especially at flow rates higher than 0.3 m s-1. Further studies show that graphene also helps to improve the thermal conductivity of the composite. These results suggest that the graphene involvement will make the Ni foam/graphene composite a good candidate for potential applications such as filters or heat exchangers suitable for working under harsh conditions such as at high temperatures, in corrosive environments, etc.

  7. Toluene diisocyanate emission to air and migration to a surface from a flexible polyurethane foam.

    PubMed

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Because of the potential for respiratory sensitization following exposure to TDI, concerns have been raised about potential consumer exposure to TDI from residual 'free TDI' in FPF products. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. Because residual TDI results are most often intended for application in assessment of potential human exposure to TDI from FPF products, testing techniques that more accurately simulated human contact with foam were designed. To represent inhalation exposure to TDI from polyurethane foam, a test that measured the emission of TDI to air was conducted. For simulation of human dermal exposure to TDI from polyurethane foam, a migration test technique was designed. Emission of TDI to air was determined for a representative FPF using three different emission test cells. Two were commercially available cells that employ air flow over the surface of the foam [the Field and Laboratory Emission Cell (FLEC®) and the Micro-Chamber/Thermal Extraction™ cell]. The third emission test cell was of a custom design and features air flow through the foam sample rather than over the foam surface. Emitted TDI in the air of the test cells was trapped using glass fiber filters coated with 1-(2-methoxyphenyl)-piperazine (MP), a commonly used derivatizing agent for diisocyanates. The filters were subsequently desorbed and analyzed by liquid chromatography/mass spectrometry. Measurement of TDI migration from representative foam was accomplished by placing glass fiber filters coated with MP on the outer surfaces of a foam disk and then compressing the filters against the disk using a clamping apparatus for periods of 8 and 24 h. The sample filters were subsequently desorbed and analyzed in the same manner as for the emission tests. Although the foam tested had detectable levels of solvent-extractable TDI (56ng TDI g(-1) foam for the foam used in emissions tests; 240-2800ng TDI g(-1) foam for the foam used in migration tests), no TDI was detected in any of the emission or migration tests. Method detection limits (MDLs) for the emissions tests ranged from 0.03 to 0.5ng TDI g(-1) foam (0.002-0.04ng TDI cm(-2) of foam surface), whereas those for the migration tests were 0.73ng TDI g(-1) foam (0.16ng TDI cm(-2) of foam surface). Of the three emission test methods used, the FLEC® had the lowest relative MDLs (by a factor of 3-10) by virtue of its high chamber loading factor. In addition, the FLEC® cell offers well-established conformity with emission testing standard methods.

  8. Performance evaluation of OpenFOAM on many-core architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzobohatý, Tomáš; Říha, Lubomír; Karásek, Tomáš, E-mail: tomas.karasek@vsb.cz

    In this article application of Open Source Field Operation and Manipulation (OpenFOAM) C++ libraries for solving engineering problems on many-core architectures is presented. Objective of this article is to present scalability of OpenFOAM on parallel platforms solving real engineering problems of fluid dynamics. Scalability test of OpenFOAM is performed using various hardware and different implementation of standard PCG and PBiCG Krylov iterative methods. Speed up of various implementations of linear solvers using GPU and MIC accelerators are presented in this paper. Numerical experiments of 3D lid-driven cavity flow for several cases with various number of cells are presented.

  9. 10 CFR 431.303 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Transmission Properties by Means of the Heat Flow Meter Apparatus, approved May 1, 2004, IBR approved for § 431... insulation products for buildings—Factory made products of extruded polystyrene foam (XPS)—Specification..., (“DIN EN 13165”), Thermal insulation products for buildings—Factory made rigid polyurethane foam (PUR...

  10. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    DOEpatents

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  11. Comparison/Validation Study of Lattice Boltzmann and Navier Stokes for Various Benchmark Applications: Report 1 in Discrete Nano-Scale Mechanics and Simulations Series

    DTIC Science & Technology

    2014-09-15

    solver, OpenFOAM version 2.1.‡ In particular, the incompressible laminar flow equations (Eq. 6-8) were solved in conjunction with the pressure im- plicit...central differencing and upwinding schemes, respectively. Since the OpenFOAM code is inherently transient, steady-state conditions were ob- tained...collaborative effort between Kitware and Los Alamos National Laboratory. ‡ OpenFOAM is a free, open-source computational fluid dynamics software developed

  12. Shock Tube Test for Energy Absorbing Materials

    DTIC Science & Technology

    2013-09-13

    rigid and lightweight foam material with a closed-cell structure, and a very high strength-to-weight ratio (7). It is commonly used as a sandwich...including application in helmet liners (8). Zorbium™ is the viscoelastic polyurethane foam used in military helmet suspension system pads (9). 8...viscoelastic polyurethane foam which shows strain rate dependent behavior when compressed. This is displayed by the significant difference in response

  13. Propagation of sound in highly porous open-cell elastic foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1983-01-01

    This work presents both theoretical predictions and experimental measurements of attenuation and progressive phase constants of sound in open-cell, highly porous, elastic polyurethane foams. The foams are available commercially in graded pore sizes for which information about the static flow resistance, thermal time constant, volume porosity, dynamic structure factor, and speed of sound is known. The analysis is specialized to highly porous foams which can be efficient sound absorbers at audio frequencies. Negligible effect of internal wave coupling on attenuation and phase shift for the frequency range 16-6000 Hz was predicted and no experimentally significant effects were observed in the bulk samples studied. The agreement between predictions and measurements in bulk materials is excellent. The analysis is applicable to both the regular and compressed elastic open-cell foams.

  14. Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques

    NASA Astrophysics Data System (ADS)

    Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan

    2018-03-01

    Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.

  15. Structural applications of metal foams considering material and geometrical uncertainty

    NASA Astrophysics Data System (ADS)

    Moradi, Mohammadreza

    Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.

  16. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.

    PubMed

    Anic, Iva; Nath, Arijit; Franco, Pedro; Wichmann, Rolf

    2017-09-20

    In this report, a method for a simultaneous production and separation of a microbially synthesized rhamnolipid biosurfactant is presented. During the aerobic cultivation of flagella-free Pseudomonas putida EM383 in a 3.1L stirred tank reactor on glucose as a sole carbon source, rhamnolipids are produced and excreted into the fermentation liquid. Here, a strategy for biosurfactant capture from rhamnolipid enriched fermentation foam using hydrophobic-hydrophobic interaction was investigated. Five adsorbents were tested independently for the application of this capture technique and the best performing adsorbent was tested in a fermentation process. Cell-containing foam was allowed to flow out of the fermentor through the off-gas line and an adsorption packed bed. Foam was observed to collapse instantly, while the resultant liquid flow-through, which was largely devoid of the target biosurfactant, eluted towards the outlet channel of the packed bed column and was subsequently pumped back into the fermentor. After 48h of simultaneous fermentation and ex situ adsorption of rhamnolipids from the foam, 90% out of 5.5g of total rhamnolipids produced were found in ethanol eluate of the adsorbent material, indicating the suitability of this material for ex situ rhamnolipid capture from fermentation processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Drainage and Stratification Kinetics of Foam Films

    NASA Astrophysics Data System (ADS)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  18. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less

  19. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    DTIC Science & Technology

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  20. Foaming and adsorption behavior of bovine and camel proteins mixed layers at the air/water interface.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2017-03-01

    The aim of this work was to examine foaming and interfacial behavior of three milk protein mixtures, bovine α-lactalbumin-β-casein (M1), camel α-lactalbumin-β-casein (M2) and β-lactoglobulin-β-casein (M3), alone and in binary mixtures, at the air/water interface in order to better understand the foaming properties of bovine and camel milks. Different mixture ratios (100:0; 75:25; 50:50; 25:75; 0:100) were used during foaming tests and interfacial protein interactions were studied with a pendant drop tensiometer. Experimental results evidenced that the greatest foam was obtained with a higher β-casein amount in all camel and bovine mixtures. Good correlation was observed with the adsorption and the interfacial rheological properties of camel and bovine protein mixtures. The proteins adsorbed layers are mainly affected by the presence of β-casein molecules, which are probably the most abundant protein at interface and the most efficient in reducing the interfacial properties. In contrast of, the globular proteins, α-lactalbumin and β-lactoglobulin that are involved in the protein layer composition, but could not compact well at the interface to ensure foams creation and stabilization because of their rigid molecular structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Preparation and characterization of triple shape memory composite foams.

    PubMed

    Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T

    2014-10-28

    Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.

  2. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  3. Modeling Study: Mechanism of Foam Propagation in Porous Media at Different Levels of Minimum Mobilization Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Izadi, M.; Kam, S.

    2017-12-01

    Scope: Numerous laboratory and field tests revealed that foam can effectively control gas mobility and improve sweep efficiency in enhanced-oil-recovery and subsurface-remediation processes, if correctly designed. The objective of this study is to answer (i) how mechanistic foam model parameters can be determined by fitting lab experiments in a step-by-step manner; (ii) how different levels of mobilization pressure gradient for foam generation affects the fundamentals of foam propagation; and (iii) how foam propagation distance can be estimated in the subsurface. This study for the first time shows why, and by how much, supercritical CO2 foams are advantaged over other types of foams such as N2 foam. Methods: First of all, by borrowing experimental data existing in the literature, this study shows how to capture mechanistic foam model parameters. The model, then, is applied to a wide range of mobilization pressure gradient to represent different types of foams that have been applied in the field (Note that supercritical CO2 foams exhibit much lower mobilization pressure compared to other types of foams (N2, steam, air, etc.). Finally, the model and parameters are used to evaluate different types of foam injection scenarios in order to predict how far foams can propagate with what properties in the field condition. Results and Conclusions: The results show that (i) the presence of three different foam states (strong, weak, intermediate) as well as two different strong-foam flow regimes (high-quality and low-quality regimes) plays a key role in model fit and field-scale propagation prediction and (ii) the importance of complex non-Newtonian foam rheology should not be underestimated. More specifically, this study finds that (i) supercritical CO2 foams can propagate a few hundreds of feet easily, which is a few orders of magnitude higher than other foams such as N2 foams; (ii) for dry foams (or, strong foams in the high-quality regime), the higher gas fractions the less foams travel, while for wet foams (or, strong foams in the low-quality regime) the distance is not sensitive to gas fraction; and (iii) the higher injection rates (or pressures), the farther foams propagate (this effect is much more pronounced for dry foams).

  4. Micromechanics of Spray-On Foam Insulation

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.

    2007-01-01

    Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC/GMC software package, giving the model access to a range of nonlinear constitutive models for the polymeric foam skeleton material. A repeating unit cell architecture was constructed that, while relatively simple, still accounts for the geometric anisotropy of the porous foam microstructure and its thin walls and thicker edges. With the lack of reliable polymeric foam skeleton materia1 properties, many simulations were executed aimed at backing out these material properties. Then, using these properties, predictions of the thermo-mechanical behavior of the foam, including calculated internal applied pressure profiles, were performed and compared with appropriate experimental data.

  5. Some issues in the simulation of two-phase flows: The relative velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräbel, J.; Hensel, S.; Ueberholz, P.

    In this paper we compare numerical approximations for solving the Riemann problem for a hyperbolic two-phase flow model in two-dimensional space. The model is based on mixture parameters of state where the relative velocity between the two-phase systems is taken into account. This relative velocity appears as a main discontinuous flow variable through the complete wave structure and cannot be recovered correctly by some numerical techniques when simulating the associated Riemann problem. Simulations are validated by comparing the results of the numerical calculation qualitatively with OpenFOAM software. Simulations also indicate that OpenFOAM is unable to resolve the relative velocity associatedmore » with the Riemann problem.« less

  6. Benchmark studies of thermal jet mixing in SFRs using a two-jet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omotowa, O. A.; Skifton, R.; Tokuhiro, A.

    To guide the modeling, simulations and design of Sodium Fast Reactors (SFRs), we explore and compare the predictive capabilities of two numerical solvers COMSOL and OpenFOAM in the thermal jet mixing of two buoyant jets typical of the outlet flow from a SFR tube bundle. This process will help optimize on-going experimental efforts at obtaining high resolution data for V and V of CFD codes as anticipated in next generation nuclear systems. Using the k-{epsilon} turbulence models of both codes as reference, their ability to simulate the turbulence behavior in similar environments was first validated for single jet experimental datamore » reported in literature. This study investigates the thermal mixing of two parallel jets having a temperature difference (hot-to-cold) {Delta}T{sub hc}= 5 deg. C, 10 deg. C and velocity ratios U{sub c}/U{sub h} = 0.5, 1. Results of the computed turbulent quantities due to convective mixing and the variations in flow field along the axial position are presented. In addition, this study also evaluates the effect of spacing ratio between jets in predicting the flow field and jet behavior in near and far fields. (authors)« less

  7. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    PubMed

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  8. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  9. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys

    PubMed Central

    Karczewski, Krzysztof; Stepniowski, Wojciech J.

    2017-01-01

    Fabrication of metallic foams by sintering metal powders mixed with thermally degradable compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen, minimizing interactions between the formed gases and metallic foam by diluting other combustion products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was carried out by optical microscopy with image analysis, scanning electron microscopy with energy dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and 46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the foams formed in the presence of cysteine have enough interconnections between the pores, thanks to the improved air flow through the porous materials. The foams formed with cysteine can be applied as filters and industrial catalysts. PMID:28773106

  10. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella--a case study in triple oxidation ditch at a wastewater treatment plant.

    PubMed

    Xie, B; Dai, X-C; Xu, Y-T

    2007-05-08

    The cause and control of foaming and bulking in triple oxidation ditch at a wastewater treatment plant (WWTP) were investigated. The results showed that the foaming and bulking was mainly caused by the excessive propagation of Microthrix parvicella, and mostly occurred in the cold winter and spring. Batch and continuous flow experiments indicated that biological techniques such as reducing sludge retention time (SRT) and increasing F/M ratio, chemical methods such as addition of chlorine (NaOCl), quaternary ammonium salt (QAS), or cationic polyacrylamide flocculants (PAM), polyaluminum salt (PAC) could decrease Sludge Volume Index (SVI) and control foaming and bulking at different levels. In practical application, the shorter SRT was effective to control foaming and bulking in initial stage, although it took longer time. Addition of 10gClkgMLSSd(-1) could gradually change the activated sludge with serious foaming and bulking to normal state within a week. Pre-alert control strategies should be established for the control of filamentous foaming and bulking.

  11. A Numerical Analysis on a Compact Heat Exchanger in Aluminum Foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2016-09-01

    A numerical investigation on a compact heat exchanger in aluminum foam is carried out. The governing equations in two-dimensional steady state regime are written in local thermal non-equilibrium (LTNE). The geometrical domain under investigation is made up of a plate in aluminum foam with inside a single array of five circular tubes. The presence of the open-celled metal foam is modeled as a porous media by means of the Darcy-Forchheimer law. The foam has a porosity of 0.93 with 20 pores per inch and the LTNE assumption is used to simulate the heat transfer between metal foam and air. The compact heat exchanger at different air flow rates is studied with an assigned surface tube temperature. The results in terms of local heat transfer coefficient and Nusselt number on the external surface of the tubes are given. Moreover, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes, as a function of Reynolds number are showed. The performance evaluation criteria (PEC) is assessed in order to evaluate the effectiveness of the metal foam.

  12. Influence of bubble size and thermal dissipation on compressive wave attenuation in liquid foams

    NASA Astrophysics Data System (ADS)

    Monloubou, M.; Saint-Jalmes, A.; Dollet, B.; Cantat, I.

    2015-11-01

    Acoustic or blast wave absorption by liquid foams is especially efficient and bubble size or liquid fraction optimization is an important challenge in this context. A resonant behavior of foams has recently been observed, but the main local dissipative process is still unknown. In this paper, we evidence the thermal origin of the dissipation, with an optimal bubble size close to the thermal boundary layer thickness. Using a shock tube, we produce typical pressure variation at time scales of the order of the millisecond, which propagates in the foam in linear and slightly nonlinear regimes.

  13. Design and development of polyphenylene oxide foam as a reusable internal insulation for LH2 tanks, phase 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    PPO form was tested for mechanical strength, for the effects of 100 thermal cycles from 450 K (359 F) to 21 K (-423 F) and for gas flow resistance characteristics. PPO foam panels were investigated for density variations, methods for joining panels were studied and panel joint thermal test specimens were fabricated. The range of foam panel thickness under investigation was extended to include 7 mm (0.3 in) and 70 mm (2.8 in) panels which also were tested for thermal performance.

  14. A Marine Aerosol Reference Tank system as a breaking wave analogue for the production of foam and sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Stokes, M. D.; Deane, G. B.; Prather, K.; Bertram, T. H.; Ruppel, M. J.; Ryder, O. S.; Brady, J. M.; Zhao, D.

    2013-04-01

    In order to better understand the processes governing the production of marine aerosols a repeatable, controlled method for their generation is required. The Marine Aerosol Reference Tank (MART) has been designed to closely approximate oceanic conditions by producing an evolving bubble plume and surface foam patch. The tank utilizes an intermittently plunging sheet of water and large volume tank reservoir to simulate turbulence, plume and foam formation, and the water flow is monitored volumetrically and acoustically to ensure the repeatability of conditions.

  15. Physical and physiological impacts of different foam control strategies during a process involving hydrophobic substrate for the lipase production by Yarrowia lipolytica.

    PubMed

    Kar, Tambi; Destain, Jacqueline; Thonart, Philippe; Delvigne, Frank

    2012-05-01

    The potentialities for the intensification of the process of lipase production by the yeast Yarrowia lipolytica on a renewable hydrophobic substrate (methyl oleate) have to be investigated. The key factor governing the lipase yield is the intensification of the oxygen transfer rate, considering the fact that Y. lipolytica is a strict aerobe. However, considering the nature of the substrate and the capacity for protein excretion and biosurfactant production of Y. lipolytica, intensification of oxygen transfer rate is accompanied by an excessive formation of foam. Two different foam control strategies have thus been implemented: a classical chemical foam control strategy and a mechanical foam control (MFM) based on the Stirring As Foam Disruption principle. The second strategy allows foam control without any modifications of the physico-chemical properties of the broth. However, the MFM system design induced the formation of a persistent foam layer in the bioreactor. This phenomenon has led to the segregation of microbial cells between the foam phase and the liquid phase in the case of the bioreactors operated with MFM control, and induced a reduction at the level of the lipase yield. More interestingly, flow cytometry experiments have shown that the residence time of microbial cells in the foam phase tends to induce a dimorphic transition which could potentially explain the reduction of lipase excretion.

  16. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter.

    PubMed

    Jain, Prashant; Pradeep, T

    2005-04-05

    Silver nanoparticles can be coated on common polyurethane (PU) foams by overnight exposure of the foams to nanoparticle solutions. Repeated washing and air-drying yields uniformly coated PU foam, which can be used as a drinking water filter where bacterial contamination of the surface water is a health risk. Nanoparticles are stable on the foam and are not washed away by water. Morphology of the foam was retained after coating. The nanoparticle binding is due to its interaction with the nitrogen atom of the PU. Online tests were conducted with a prototypical water filter. At a flow rate of 0.5 L/min, in which contact time was of the order of a second, the output count of Escherichia coli was nil when the input water had a bacterial load of 10(5) colony-forming units (CFU) per mL. Combined with the low cost and effectiveness in its applications, the technology may have large implications to developing countries. Copyright (c) 2005 Wiley Periodicals, Inc.

  17. Effect of melter feed foaming on heat flux to the cold cap

    NASA Astrophysics Data System (ADS)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard; Klouzek, Jaroslav; VanderVeer, Bradley J.; Dixon, Derek R.; Luksic, Steven A.; Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.

    2017-12-01

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolved gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in quenched cold caps from the laboratory-scale melter.

  18. Effect of melter feed foaming on heat flux to the cold cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Pokorny, Richard

    The glass production rate, which is crucial for the nuclear waste cleanup lifecycle, is influenced by the chemical and mineralogical nature of melter feed constituents. The choice of feed materials affects both the conversion heat and the thickness of the foam layer that forms at the bottom of the cold cap and controls the heat flow from molten glass. We demonstrate this by varying the alumina source, namely, substituting boehmite or corundum for gibbsite, in a high-alumina high-level-waste melter feed. The extent of foaming was determined using the volume expansion test and the conversion heat with differential scanning calorimetry. Evolvedmore » gas analysis was used to identify gases responsible for the formation of primary and secondary foam. The foam thickness, a critical factor in the rate of melting, was estimated using known values of heat conductivities and melting rates. The result was in reasonable agreement with the foam thickness experimentally observed in the laboratory-scale melter.« less

  19. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system greatly enhanced the heat transfer because of the increased interaction with the porous graphite foam fins.

  20. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    NASA Astrophysics Data System (ADS)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  1. High-energy redox-flow batteries with hybrid metal foam electrodes.

    PubMed

    Park, Min-Sik; Lee, Nam-Jin; Lee, Seung-Wook; Kim, Ki Jae; Oh, Duk-Jin; Kim, Young-Jun

    2014-07-09

    A nonaqueous redox-flow battery employing [Co(bpy)3](+/2+) and [Fe(bpy)3](2+/3+) redox couples is proposed for use in large-scale energy-storage applications. We successfully demonstrate a redox-flow battery with a practical operating voltage of over 2.1 V and an energy efficiency of 85% through a rational cell design. By utilizing carbon-coated Ni-FeCrAl and Cu metal foam electrodes, the electrochemical reactivity and stability of the nonaqueous redox-flow battery can be considerably enhanced. Our approach intoduces a more efficient conversion of chemical energy into electrical energy and enhances long-term cell durability. The cell exhibits an outstanding cyclic performance of more than 300 cycles without any significant loss of energy efficiency. Considering the increasing demands for efficient energy storage, our achievement provides insight into a possible development pathway for nonaqueous redox-flow batteries with high energy densities.

  2. Technical Development for S-CO 2 Advanced Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Ranjan, Devesh; Hassan, Yassin

    This report is divided into four parts. First part of the report describes the methods used to measure and model the flow of supercritical carbon dioxide (S-CO 2) through annuli and straight-through labyrinth seals. The effects of shaft eccentricity in small diameter annuli were observed for length-to-hydraulic diameter (L/D) ratios of 6, 12, 143, and 235. Flow rates through tooth-cavity labyrinth seals were measured for inlet pressures of 7.7, 10, and 11 MPa with corresponding inlet densities of 325, 475, and 630 kg/m 3. Various leakage models were compared to this result to describe their applicability in supercritical carbon dioxidemore » applications. Flow rate measurements were made varying tooth number for labyrinth seals of same total length. Second part of the report describes the computational study performed to understand the leakage through the labyrinth seals using Open source CFD package OpenFOAM. Fluid Property Interpolation Tables (FIT) program was implemented in OpenFOAM to accurately model the properties of CO2 required to solve the governing equations. To predict the flow behavior in the two phase dome Homogeneous Equilibrium Model (HEM) is assumed to be valid. Experimental results for plain orifice (L/D ~ 5) were used to show the capabilities of the FIT model implemented in OpenFOAM. Error analysis indicated that OpenFOAM is capable of predicting experimental data within ±10% error with the majority of data close to ±5% error. Following the validation of computational model, effects of geometrical parameters and operating conditions are isolated from each other and a parametric study was performed in two parts to understand their effects on leakage flow. Third part of the report provides the details of the constructed heat exchanger test facility and presents the experimental results obtained to investigate the effects of buoyancy on heat transfer characteristics of Supercritical carbon dioxide in heating mode. Turbulent flows with Reynolds numbers up to 60,000, at operating pressures of 7.5, 8.1, and 10.2 MPa were tested in a round tube. Local heat transfer coefficients were obtained from measured wall temperatures over a large set of experimental parameters that varied inlet temperature from 20 °C to 55 °C,mass flux from 150 to 350 kg/m 2s, and a maximum heat flux of 65 KW/m 2. Horizontal, upward and downward flows were tested to investigate the unusual heat-transfer characteristics to the effect of buoyancy and flow acceleration caused by large variation in density. Final part of this report presents the simplified analysis performed to investigate the possibility of using wet cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle power convertor for AFR-100 and ABR-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified by comparing the calculations to a vendor quote. The effect of ambient air and water conditions on the sizing and construction of the cooling tower as well as the cooler is studied. Finally, a cost-based optimization technique is used to estimate the optimum water conditions which will improve the plant economics.« less

  3. Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guymer, T. M., E-mail: Thomas.Guymer@awe.co.uk; Moore, A. S.; Morton, J.

    A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets inmore » both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.« less

  4. Foam Experiment Hardware are Flown on Microgravity Rocket MAXUS 4

    NASA Astrophysics Data System (ADS)

    Lockowandt, C.; Löth, K.; Jansson, O.; Holm, P.; Lundin, M.; Schneider, H.; Larsson, B.

    2002-01-01

    The Foam module was developed by Swedish Space Corporation and was used for performing foam experiments on the sounding rocket MAXUS 4 launched from Esrange 29 April 2001. The development and launch of the module has been financed by ESA. Four different foam experiments were performed, two aqueous foams by Doctor Michele Adler from LPMDI, University of Marne la Vallée, Paris and two non aqueous foams by Doctor Bengt Kronberg from YKI, Institute for Surface Chemistry, Stockholm. The foam was generated in four separate foam systems and monitored in microgravity with CCD cameras. The purpose of the experiment was to generate and study the foam in microgravity. Due to loss of gravity there is no drainage in the foam and the reactions in the foam can be studied without drainage. Four solutions with various stabilities were investigated. The aqueous solutions contained water, SDS (Sodium Dodecyl Sulphate) and dodecanol. The organic solutions contained ethylene glycol a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) and decanol. Carbon dioxide was used to generate the aqueous foam and nitrogen was used to generate the organic foam. The experiment system comprised four complete independent systems with injection unit, experiment chamber and gas system. The main part in the experiment system is the experiment chamber where the foam is generated and monitored. The chamber inner dimensions are 50x50x50 mm and it has front and back wall made of glass. The front window is used for monitoring the foam and the back window is used for back illumination. The front glass has etched crosses on the inside as reference points. In the bottom of the cell is a glass frit and at the top is a gas in/outlet. The foam was generated by injecting the experiment liquid in a glass frit in the bottom of the experiment chamber. Simultaneously gas was blown through the glass frit and a small amount of foam was generated. This procedure was performed at 10 bar. Then the pressure was lowered in the experiment chamber to approximately 0,1 bar to expand the foam to a dry foam that filled the experiment chamber. The foam was regenerated during flight by pressurise the cell and repeat the foam generation procedures. The module had 4 individual experiment chambers for the four different solutions. The four experiment chambers were controlled individually with individual experiment parameters and procedures. The gas system comprise on/off valves and adjustable valves to control the pressure and the gas flow and liquid flow during foam generation. The gas system can be divided in four sections, each section serving one experiment chamber. The sections are partly connected in two pairs with common inlet and outlet. The two pairs are supplied with a 1l gas bottle each filled to a pressure of 40 bar and a pressure regulator lowering the pressure from 40 bar to 10 bar. Two sections are connected to the same outlet. The gas outlets from the experiment chambers are connected to two symmetrical placed outlets on the outer structure with diffusers not to disturb the g-levels. The foam in each experiment chamber was monitored with one tomography camera and one overview camera (8 CCD cameras in total). The tomography camera is placed on a translation table which makes it possible to move it in the depth direction of the experiment chamber. The video signal from the 8 CCD cameras were stored onboard with two DV recorders. Two video signals were also transmitted to ground for real time evaluation and operation of the experiment. Which camera signal that was transmitted to ground could be selected with telecommands. With help of the tomography system it was possible to take sequences of images of the foam at different depths in the foam. This sequences of images are used for constructing a 3-D model of the foam after flight. The overview camera has a fixed position and a field of view that covers the total experiment chamber. This camera is used for monitoring the generation of foam and the overall behaviour of the foam. The experiment was performed successfully with foam generation in all 4 experiment chambers. Foam was also regenerated during flight with telecommands. The experiment data is under evaluation.

  5. Toucan and hornbill beaks: a comparative study.

    PubMed

    Seki, Yasuaki; Bodde, Sara G; Meyers, Marc A

    2010-02-01

    The structure and mechanical behavior of Toco Toucan (Ramphastos toco) and Wreathed Hornbill (Rhyticeros undulatus) beaks were compared. The beak of both species is a sandwich-structured composite, having an exterior, or rhamphotheca, consisting of multiple layers of keratin scales and a core composed of a fibrous network of bony closed-cell foam. The rhamphotheca is an arrangement of approximately 50microm diameter, overlapping, keratin tiles. The hornbill rhamphotheca exhibits a surface morphology on the ridged casque that is distinguishable from that observed on the bill proper. Intermediate filaments in the keratin matrix were observed by transmission electron microscopy. The Young's modulus measurements of toucan rhamphotheca indicate isotropy in longitudinal and transverse directions, whereas those of hornbill rhamphotheca may suggest anisotropy. The compressive response of beak foam is governed by brittle crushing behavior. The crushing strength of hornbill foam is six times higher than that of toucan foam. Micro- and nanoindentation hardness values were measured for rhamphotheca and foam trabeculae of toucan and hornbill specimens. The sandwich design of beaks was analyzed using the Karam-Gibson and Dawson-Gibson models. The presence of a cellular core increases the bending resistance (Brazier moment) by a factor of 3-6 while decreasing the compressive strength by only 50%.

  6. Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.

    2018-01-01

    Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.

  7. Results from the MARBLE Campaign on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Devolder, B. G.; Fincke, J. R.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y. H.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2016-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first uses partially deuterated foam and hydrogen gas fill to understand the burn in the foam. The second uses undeuterated foam and deuterium gas fill to understand the dynamics of the gas. Experiments using deuterated foam and tritium gas are planned. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  8. Dynamics of poroelastic foams

    NASA Astrophysics Data System (ADS)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  9. In vitro analysis of polyurethane foam as a topical hemostatic agent.

    PubMed

    Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M

    2011-04-01

    Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.

  10. Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams

    NASA Astrophysics Data System (ADS)

    Ries, S.; Spoerrer, A.; Altstaedt, V.

    2014-05-01

    Polymer foams play an important role caused by the steadily increasing demand to light weight design. In case of soft polymers, like thermoplastic elastomers (TPE), the haptic feeling of the surface is affected by the inner foam structure. Foam injection molding of TPEs leads to so called structural foam, consisting of two compact skin layers and a cellular core. The properties of soft structural foams like soft-touch, elastic and plastic behavior are affected by the resulting foam structure, e.g. thickness of the compact skins and the foam core or density. This inner structure can considerably be influenced by different processing parameters and the chosen blowing agent. This paper is focused on the selection and characterization of suitable blowing agents for foam injection molding of a TPE-blend. The aim was a high density reduction and a decent inner structure. Therefore DSC and TGA measurements were performed on different blowing agents to find out which one is appropriate for the used TPE. Moreover a new analyzing method for the description of processing characteristics by temperature dependent expansion measurements was developed. After choosing suitable blowing agents structural foams were molded with different types of blowing agents and combinations and with the breathing mold technology in order to get lower densities. The foam structure was analyzed to show the influence of the different blowing agents and combinations. Finally compression tests were performed to estimate the influence of the used blowing agent and the density reduction on the compression modulus.

  11. Finite Element Modeling of Deployment, and Foam Rigidization of Struts and Quarter Scale Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Leigh, Larry, Jr.

    2002-01-01

    Inflated cylindrical struts constructed of kapton polyimide film and rigidized with foam have considerable practical application and potential for use as components of inflatable concentrator assemblies, antenna structures and space power systems, Because of their importance, it is of great interest to characterize the dynamic behavior of these components and structures both experimentally and analytically. It is very helpful to take a building-block approach to modeling and understanding inflatable assemblies by first investigating in detail the behavior of the components such as the struts. The foam material used for rigidization of such cylinders has varying modulus, which is a function of different factors, such as density of the foam. Thus, the primary motivation of the tests and analytical modeling efforts was to determine and understand the response of foam-rigidized cylinders for different densities, sizes, and construction methods, In recent years, inflatable structures have been the subject of renewed interest for space applications such as communications antennae, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is that they are extremely lightweight. This makes inflatables a perfect match for solar thermal propulsion because of the low thrust levels available. An obvious second advantage is on-orbit deployability and subsequent space savings in launch configuration. It can be seen that inflatable cylindrical struts and torus are critical components of structural assemblies. In view of this importance, structural dynamic and static behaviors of typical rigidized polyimide struts are investigated in this paper. The paper will focus on the finite element models that were used to model the behavior of the complete solar collector structure, and the results that they provided, as compared to test data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model wasmore » developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.« less

  13. Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre

    NASA Astrophysics Data System (ADS)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.

    2017-11-01

    In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.

  14. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    PubMed Central

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; Horn, John; Yang, Cheng-Kang; Wilson, Thomas S.; Ortega, Jason M.; Small, Ward; Nash, Landon; Skoog, Hunter; Maitland, Duncan J.

    2014-01-01

    Predominantly closed-cell low density shape memory polymer (SMP) foam was recently reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching. Reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model. PMID:25222869

  15. Experimental design to generate strong shear layers in a high-energy-density plasma

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Gillespie, R. S.; Grosskopf, M. J.; Weaver, J. L.; Velikovich, A. L.; Visco, A.; Ditmar, J. R.

    2010-06-01

    The development of a new experimental system for generating a strong shear flow in a high-energy-density plasma is described in detail. The targets were designed with the goal of producing a diagnosable Kelvin-Helmholtz (KH) instability, which plays an important role in the transition turbulence but remains relatively unexplored in the high-energy-density regime. To generate the shear flow the Nike laser was used to drive a flow of Al plasma over a low-density foam surface with an initial perturbation. The interaction of the Al and foam was captured with a spherical crystal imager using 1.86 keV X-rays. The selection of the individual targets components is discussed and results are presented.

  16. The acoustical structure of highly porous open-cell foams

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1982-01-01

    This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.

  17. An Investigation on Axial Deformation Behavior of Thin-Wall Unfilled and Filled Tube with Aluminum Alloy (Al-Si7Mg) Foam Reinforced with SiC Particles

    NASA Astrophysics Data System (ADS)

    Kumaraswamidhas, L. A.; Rajak, Dipen Kumar; Das, S.

    2016-08-01

    The objective of this research is to produce superior quality aluminum alloy foam with low relative density and higher resistance against compression deformation. This investigation has studied crash energy capacities of unfilled and filled aluminum alloy foams in mild steel tubes. The foam has been prepared by the melt route process with an addition of 5wt.% silicon carbide particles. The fabricated aluminum alloy foams were characterized by field emission scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, and Material Pro analyzer. It was observed that the foam-filled tubes could absorb more energy as compared to the unfilled tubes before reaching the complete densification point. Also, the aluminum alloy foams had better energy absorption capacity during the crash or impact loading. This article demonstrates the excellent ability of aluminum alloy foam application in the field where there is a need to absorb crash energy. It is to be noted that the amount of energy absorption will be greater for low-density foam filled in thin-wall rectangular section tubes. We have seen an increasing trend in the application of aluminum foams inside the thin-wall mild steel tubes for maximum energy absorption.

  18. Preparation and characterization of novel foamed porous glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasmal, Nibedita; Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2015-05-15

    Foamed glass-ceramics without using foaming agent have been synthesized in a novel glass system of SrO-CaO-Al{sub 2}O{sub 3}-TiO{sub 2}-B{sub 2}O{sub 3}-SiO{sub 2}-P{sub 2}O{sub 5}-M{sub x}O{sub y} (where M = Ba, Mg, La, Ce and Ni) by a simple process of powder sintering. The glass and glass-ceramics are characterized by dilatometry, differential scanning calorimetry (DSC), heating stage microscopy (HSM), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), optical microscopy and Fourier transformed infrared spectroscopy (FTIR). All the glasses formed are amorphous and the glass transition temperature and dilatometric softening temperature of these glasses are found to be in the rangemore » 673–678 °C and 706–728 °C respectively. The glasses are highly stable as indicated by the DSC evaluated glass stability parameters of the range 195–240 °C. Quantitative sintering study of glass powder compacts revealed swelling in the samples with NiO and CeO{sub 2} corresponding to a geometry change of 75 and 108% around 900 °C respectively. With reference to this finding the glass powder compacts are heated to 900 °C and the foamed glass-ceramics are obtained. Characteristic crystalline silicate phases have been identified in the XRD studies and their microstructures are recorded by FESEM. Optical microscope study of the foamed samples revealed formation of bigger foamed cavity with residual pores in samples with NiO and CeO{sub 2} in comparison to samples with BaO, MgO and La{sub 2}O{sub 3}. The mean pore diameters of the samples with NiO and CeO{sub 2} are determined to be 43 and 32 μm, and their respective porosities are 2.34 and 1.82 cm{sup 3}/g respectively. Thus NiO and CeO{sub 2} are found to be very effective to obtain foamed glass-ceramics without using foaming agent by the viscous flow sintering of fine glass powder compacts along with the reduction of the respective polyvalent ions. - Highlights: • Synthesis of foamed porous glass-ceramics without foaming agent by sintering method • Only powder compact yielded foamed porous glass-ceramics but bulk glass did not. • Glasses containing NiO and CeO{sub 2} exhibited significant foaming efficiency. • Bloating of entrapped gas during viscous flow sintering is the origin of foaming. • Residual void created pores in the sintered glass-ceramics as evidenced in FESEM.« less

  19. A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Atalla, Noureddine; Dong, Kevin

    2013-02-01

    This paper proposes simple semi-phenomenological models to predict the sound absorption efficiency of highly porous polyurethane foams from microstructure characterization. In a previous paper [J. Appl. Phys. 110, 064901 (2011)], the authors presented a 3-parameter semi-phenomenological model linking the microstructure properties of fully and partially reticulated isotropic polyurethane foams (i.e., strut length l, strut thickness t, and reticulation rate Rw) to the macroscopic non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity ϕ, airflow resistivity σ, tortuosity α∝, viscous Λ, and thermal Λ' characteristic lengths). The model was based on existing scaling laws, validated for fully reticulated polyurethane foams, and improved using both geometrical and empirical approaches to account for the presence of membrane closing the pores. This 3-parameter model is applied to six polyurethane foams in this paper and is found highly sensitive to the microstructure characterization; particularly to strut's dimensions. A simplified micro-/macro model is then presented. It is based on the cell size Cs and reticulation rate Rw only, assuming that the geometric ratio between strut length l and strut thickness t is known. This simplified model, called the 2-parameter model, considerably simplifies the microstructure characterization procedure. A comparison of the two proposed semi-phenomenological models is presented using six polyurethane foams being either fully or partially reticulated, isotropic or anisotropic. It is shown that the 2-parameter model is less sensitive to measurement uncertainties compared to the original model and allows a better estimation of polyurethane foams sound absorption behavior.

  20. Shrinkage Behavior of Polystyrene-based Foam Molded Parts Depending on Volatile Matter Content and Other Factors

    NASA Astrophysics Data System (ADS)

    Ghafafian, Carineh

    Polymer foam materials play a large role in the modern world. Expanded polystyrene (EPS) bead foam is a lightweight, low density, and good thermal and acoustic insulating material whose properties make it attractive for a number of applications, especially as building insulation. However, EPS also experiences post-molding shrinkage; it shrinks dimensionally from its molded size after processing. This means parts must be stored in warehouses until they are considered stable by the industry standard, DIN EN 1603. This often takes 11--18 weeks and is thus very timely and expensive. This study aims to decrease the post-molding shrinkage time of EPS foam by understanding the mechanisms of shrinkage behavior. Samples were split into two groups based on their amount of initial volatile matter content and storage conditions, then compared to a control group. Based on thermogravimetric analysis and gas chromatography with mass spectrometry, the volatile matter content and composition was found to not be the sole contributor to EPS foam dimensional stability. Residual stress testing was done with the hole drilling method and Raman spectroscopy. As this type of testing has not been done with polymer foams before, the aim was to see if either method could reliably produce residual stress values. Both methods measured residual stress values with unknown accuracy. All samples stored at a higher temperature (60°C) reached dimensional stability by the end of this study. Thus, air diffusion into EPS foam, encouraged by the high temperature storage, was found to play a significant role in post-molding shrinkage.

  1. Urban Flow and Pollutant Dispersion Simulation with Multi-scale coupling of Meteorological Model with Computational Fluid Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yushi; Poh, Hee Joo

    2014-11-01

    The Computational Fluid Dynamics analysis has become increasingly important in modern urban planning in order to create highly livable city. This paper presents a multi-scale modeling methodology which couples Weather Research and Forecasting (WRF) Model with open source CFD simulation tool, OpenFOAM. This coupling enables the simulation of the wind flow and pollutant dispersion in urban built-up area with high resolution mesh. In this methodology meso-scale model WRF provides the boundary condition for the micro-scale CFD model OpenFOAM. The advantage is that the realistic weather condition is taken into account in the CFD simulation and complexity of building layout can be handled with ease by meshing utility of OpenFOAM. The result is validated against the Joint Urban 2003 Tracer Field Tests in Oklahoma City and there is reasonably good agreement between the CFD simulation and field observation. The coupling of WRF- OpenFOAM provide urban planners with reliable environmental modeling tool in actual urban built-up area; and it can be further extended with consideration of future weather conditions for the scenario studies on climate change impact.

  2. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

    PubMed Central

    2017-01-01

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10–2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion. PMID:29093612

  3. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  4. A Micromechanics Finite Element Model for Studying the Mechanical Behavior of Spray-On Foam Insulation (SOFI)

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Sullivan, Roy M.; Lerch, Bradley A.

    2006-01-01

    A micromechanics model has been constructed to study the mechanical behavior of spray-on foam insulation (SOFI) for the external tank. The model was constructed using finite elements representing the fundamental repeating unit of the SOFI microstructure. The details of the micromechanics model were based on cell observations and measured average cell dimensions discerned from photomicrographs. The unit cell model is an elongated Kelvin model (fourteen-sided polyhedron with 8 hexagonal and six quadrilateral faces), which will pack to a 100% density. The cell faces and cell edges are modeled using three-dimensional 20-node brick elements. Only one-eighth of the cell is modeled due to symmetry. By exercising the model and correlating the results with the macro-mechanical foam behavior obtained through material characterization testing, the intrinsic stiffness and Poisson s Ratio of the polymeric cell walls and edges are determined as a function of temperature. The model is then exercised to study the unique and complex temperature-dependent mechanical behavior as well as the fracture initiation and propagation at the microscopic unit cell level.

  5. Field demonstration of foam injection to confine a chlorinated solvent source zone.

    PubMed

    Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier

    2018-05-01

    A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling

    NASA Astrophysics Data System (ADS)

    Park, Ju Hyuk; Yang, Sei Hyun; Lee, Hyeong Rae; Yu, Cheng Bin; Pak, Seong Yeol; Oh, Chi Sung; Kang, Yeon June; Youn, Jae Ryoun

    2017-06-01

    Sound absorption of a polyurethane (PU) foam was predicted for various geometries to fabricate the optimum microstructure of a sound absorbing foam. Multiscale numerical analysis for sound absorption was carried out by solving flow problems in representative unit cell (RUC) and the pressure acoustics equation using Johnson-Champoux-Allard (JCA) model. From the numerical analysis, theoretical optimum cell diameter for low frequency sound absorption was evaluated in the vicinity of 400 μm under the condition of 2 cm-80 K (thickness of 2 cm and density of 80 kg/m3) foam. An ultrasonic foaming method was employed to modulate microcellular structure of PU foam. Mechanical activation was only employed to manipulate the internal structure of PU foam without any other treatment. A mean cell diameter of PU foam was gradually decreased with increase in the amplitude of ultrasonic waves. It was empirically found that the reduction of mean cell diameter induced by the ultrasonic wave enhances acoustic damping efficiency in low frequency ranges. Moreover, further analyses were performed with several acoustic evaluation factors; root mean square (RMS) values, noise reduction coefficients (NRC), and 1/3 octave band spectrograms.

  7. Mechanism of oil bank formation, coalescence in porous media and emulsion and foam stability. Quarterly research progress report, July 1, 1984-September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, D.T.

    The relative permeability model for two phase flow in porous media (Wasan 1983; Ramakrishnan and Wasan 1984) provides the necessary fractional flow curves at a given capillary number. These curves can be utilized in modeling both enhanced secondary and tertiary recovery processes. Important parameters in the fractional flow curves of our relative permeability model are the residual wetting and nonwetting phase saturations in a low capillary number flooding process. To understand, what constitutes the residual saturations, this quarter we have studied the displacement of one incompressible fluid by another in a porous medium using the network representation. The Bernoulli percolationmore » model for an infinite lattice graph is utilized in the interpretation of the capillary behavior of the medium, which ultimately determines residual saturations. The calculated capillary pressure-saturation relationship using Bethe lattice results agrees qualitatively with experimental data. 4 references, 2 figures.« less

  8. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    NASA Astrophysics Data System (ADS)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  9. Multiscale Mass-Spring Models of Carbon Nanotube Foams

    DTIC Science & Technology

    2010-09-06

    Mesarovic et al., 2007). The study of thin structural foams (Gibson and Ashby, 1998) for cushioning (Zhang et al., 2009), energy dissipation ( Teo et al...compressible foam-like behavior under compressive cycling loads (Suhr et al., 2007; Teo et al., 2007; Tao et al., 2008; Deck et al., 2007; Cao et al., 2005). 2...and electrostatic interaction be- tween individual and bundles of carbon nanotubes (Suhr et al., 2007; Teo et al., 2007; Tao et al., 2008; Deck et al

  10. A flow boiling microchannel thermosyphon for fuel cell thermal management

    NASA Astrophysics Data System (ADS)

    Garrity, Patrick Thomas

    To provide a high power density thermal management system for proton exchange membrane (PEM) fuel cell applications, a passively driven thermal management system was assembled to operate in a closed loop two-phase thermosyphon. The system has two major components; a microchannel evaporator plate and a condenser. The microchannel evaporator plate was fabricated with 56 square channels that have a 1 mm x 1 mm cross section and are 115 mm long. Experiments were conducted with a liquid cooled condenser with heat flux as the control variable. Measurements of mass flow rate, temperature field, and pressure drop have been made for the thermosyphon loop. A model is developed to predict the system characteristics such as the temperature and pressure fields, flow rate, flow regime, heat transfer coefficient, and maximum heat flux. When the system is subjected to a heat load that exceeds the maximum heat flux, an unstable flow regime is observed that causes flow reversal and eventual dryout near the evaporator plate wall. This undesirable phenomenon is modeled based on a quasi-steady state assumption, and the model is capable of predicting the heat flux at the onset of instability for quasi-steady two-phase flow. Another focus of this work is the performance of the condenser portion of the loop, which will be air cooled in practice. The aim is to reduce air side thermal resistance and increase the condenser performance, which is accomplished with extended surfaces. A testing facility is assembled to observe the air side heat transfer performance of three aluminum foam samples and three modified carbon foam samples, used as extended surfaces. The aluminum foam samples have a bulk density of 216 kilograms per cubic meter with pore sizes of 0.5, 1, and 2 mm. The modified carbon foam samples have bulk densities of 284, 317, and 400 kilograms per cubic meter and machined flow passages of 3.2 mm. in diameter. Each sample is observed under forced convection with air velocity as the control variable. Thermocouples and pressure taps are distributed axially along the test section and measurements of pressure and temperature are recorded for air velocities ranging from 1-6 meters per second. Using the Darcy-Forcheimer equation, the porosity is determined for each sample. The volumetric heat transfer coefficient is extracted by means of solving the coupled energy equations of both the solid and fluid respectively. Nusselt number is correlated with Reynolds number. The optimal foam configuration is explored based on a Coefficient of Performance, (COP), Compactness Factor (CF) and Power Density (PD). The COP is the ratio of total heat removed to electrical heat consumption of the blower, CF is the total heat removed per unit volume, and PD is the total heat removed per unit mass. These performance parameters are computed for a hypothetical heat exchanger using each foam sample at various fluid velocities. They are also compared against those for the hypothetical heat exchanger fitted with conventional louvered fins. Given a proper weighting function based on the importance of CF, COP, and PD in the condenser design, an optimal configuration for an air cooled condenser can be obtained for various operating conditions.

  11. Development of a multi-body nonlinear model for a seat-occupant system

    NASA Astrophysics Data System (ADS)

    Azizi, Yousof

    A car seat is an important component of today's cars, which directly affects ride comfort experienced by occupants. Currently, the process of ride comfort evaluation is subjective. Alternatively, the ride comfort can be evaluated by a series of objective metrics in the dynamic response of the occupant. From previous studies it is well known that the dynamic behavior of a seat-occupant system is greatly affected by soft nonlinear viscoelastic materials used in the seat cushion. Therefore, in this research, especial attention was given to efficiently modeling the behavior of seat cushion. In the first part of this research, a phenomenological nonlinear viscoelastic foam model was proposed and its ability to capture uniaxial behavior of foam was investigated. The model is based on the assumption that the total stress can be decomposed into the sum of a nonlinear elastic component, modeled by a higher order polynomial of strain, and a nonlinear hereditary type viscoelastic component. System identification procedures were developed to estimate the model parameters using uniaxial cyclic compression data from experiments conducted at different rates on two types of low density polyurethane foams and three types of high density CONFOR foams. The performance of the proposed model was compared to that of other traditional continuum models. For each foam type, it was observed that lower order models are sufficient to describe the uniaxial behavior of the foam compressed at different rates. Although, the estimated model parameters were functions of the input strain rate. Alternatively, higher order comprehensive models, with strain independent parameters, were estimated as well. The estimated comprehensive model predicts foam responses under different compression rates. Also, a methodology was proposed to predict the stress-response of a layered foam system using the estimated models of each foam in the layers. Next, the estimated foam model was incorporated into a single-degree of freedom foam-mass model which is also the simplest model of seat-occupant systems. The steady-state response of the system when it is subjected to harmonic base excitation was studied using the incremental harmonic balance method. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. Experiments are conducted on a single-degree of freedom foam-mass system subjected to harmonic base excitation. Initially, the simulated response predictions were found to deviate from the experimental results. The foam-mass model was then modified to incorporate rate dependency of foam parameters resulting in response predictions that were in good agreement with experimental results. In the second part of this research, the dynamic response of a seat-occupant system was examined through a more realistic planar multi-body seat-occupant model. A constraint Lagrangian formulation was used to derive the governing equations for the seat-occupant model. First, the governing equations were solved numerically to obtain the occupant transient response, the occupant's H-Point location and the interfacial pressure distribution. Variations in the H-Point location and the seat-occupant pressure distribution with changes in the seat-occupant parameters, including the seat geometry and the occupant's characteristics, were studied. The estimated pressure was also investigated experimentally and was found to match with the results obtained using the seat-occupant model. Next, the incremental harmonic balance method was modified and used to obtain the occupant's steady-state response when the seat-occupant system was subjected to harmonic base excitation at different frequencies. The system frequency response and mode shapes at different frequencies were also obtained and compared to the previously measured experimental frequency responses. Finally, variations in the estimated frequency response with changes in the seat-occupant parameters, including the seat geometry and the occupant characteristics, were studied.

  12. Ultralight anisotropic foams from layered aligned carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Faraji, Shaghayegh; L. Stano, Kelly; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D.

    2015-10-01

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm-3, the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03899e

  13. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins.

    PubMed

    Davis, J P; Foegeding, E A

    2007-02-15

    Whipped foams (10%, w/v protein, pH 7.0) were prepared from commercially available samples of whey protein isolate (WPI) and egg white protein (EWP), and subsequently compared based on yield stress (tau(0)), overrun and drainage stability. Adsorption rates and interfacial rheological measurements at a model air/water interface were quantified via pendant drop tensiometry to better understand foaming differences among the ingredients. The highest tau(0) and resistance to drainage were observed for standard EWP, followed by EWP with added 0.1% (w/w) sodium lauryl sulfate, and then WPI. Addition of 25% (w/w) sucrose increased tau(0) and drainage resistance of the EWP-based ingredients, whereas it decreased tau(0) of WPI foams and minimally affected their drainage rates. These differing sugar effects were reflected in the interfacial rheological measurements, as sucrose addition increased the dilatational elasticity for both EWP-based ingredients, while decreasing this parameter for WPI. Previously observed relationships between tau(0) and interfacial rheology did not hold across the protein types; however, these measurements did effectively differentiate foaming behaviors within EWP-based ingredients and within WPI. Interfacial data was also collected for purified beta-lactoglobulin (beta-lg) and ovalbumin, the primary proteins of WPI and EWP, respectively. The addition of 25% (w/w) sucrose increased the dilatational elasticity for adsorbed layers of beta-lg, while minimally affecting the interfacial rheology of adsorbed ovalbumin, in contrast to the response of WPI and EWP ingredients. These experiments underscore the importance of utilizing the same materials for interfacial measurements as used for foaming experiments, if one is to properly infer interfacial information/mechanisms and relate this information to bulk foaming measurements. The effects of protein concentration and measurement time on interfacial rheology were also considered as they relate to bulk foam properties. This data should be of practical assistance to those designing aerated food products, as it has not been previously reported that sucrose addition improves the foaming characteristics of EWP-based ingredients while negatively affecting the foaming behavior of WPI, as these types of protein isolates are common to the food industry.

  14. Preliminary report of the discovery of a new pharmaceutical granulation process using foamed aqueous binders.

    PubMed

    Keary, Colin M; Sheskey, Paul J

    2004-09-01

    Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.

  15. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites

    PubMed Central

    Huber, Otto

    2017-01-01

    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  16. Application of an Elongated Kelvin Model to Space Shuttle Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2008-01-01

    Spray-on foam insulation is applied to the exterior of the Space Shuttle s External Tank to limit propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are BX-265 and NCFI24-124. Since the catastrophic loss of the Space Shuttle Columbia, numerous studies have been conducted to mitigate the likelihood and the severity of foam shedding during the Shuttle s ascent to space. Due to the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a non-isotropic mechanical behavior. In this paper, a detailed microstructural characterization of the two foams is presented. The key features of the foam cells are summarized and the average cell dimensions in the two foams are compared. Experimental studies to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise) are also reported. The measured elastic modulus, proportional limit stress, ultimate tensile stress and the Poisson s ratios for the two foams are compared. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are presented. The resulting equations show that the ratio of the elastic modulus in the rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the two material directions is only a function of the microstructural dimensions. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson s ratios are predicted for both foams. The predicted tensile strength ratio is in close agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison between the predicted Poisson s ratios and the measured values is not as favorable.

  17. Intercomparison of granular stress and turbulence models for unidirectional sheet flow applications

    NASA Astrophysics Data System (ADS)

    Chauchat, J.; Cheng, Z.; Hsu, T. J.

    2016-12-01

    The intergranular stresses are one of the key elements in two-phase sediment transport models. There are two main existing approaches, the kinetic theory of granular flows (Jenkins and Hanes, 1998; Hsu et al., 2004) and the phenomenological rheology such as the one proposed by Bagnold (Hanes and Bowen, 1985) or the μ(I) dense granular flow rheology (Revil-Baudard and Chauchat, 2013). Concerning the turbulent Reynolds stress, mixing length and k-ɛ turbulence models have been validated by previous studies (Revil-Baudard and Chauchat, 2013; Hsu et al., 2004). Recently, sedFoam was developed based on kinetic theory of granular flows and k-ɛ turbulence models (Cheng and Hsu, 2014). In this study, we further extended sedFoam by implementing the mixing length and the dense granular flow rheology by following Revil-Baudard and Chauchat (2013). This allows us to objectively compare the different combinations of intergranular stresses (kinetic theory or the dense granular flow rheology) and turbulence models (mixing length or k-ɛ) under unidirectional sheet flow conditions. We found that the calibrated mixing length and k-ɛ models predicts similar velocity and concentration profiles. The differences observed between the kinetic theory and the dense granular flow rheology requires further investigation. In particular, we hypothesize that the extended kinetic theory proposed by Berzi (2011) would probably improve the existing combination of the kinetic theory with a simple Coulomb frictional model in sedFoam. A semi-analytical solution proposed by Berzi and Fraccarollo(2013) for sediment transport rate and sheet layer thickness versus the Shields number is compared with the results obtained by using the dense granular flow rheology and the mixing length model. The results are similar which demonstrate that both the extended kinetic theory and the dense granular flow rheology can be used to model intergranular stresses under sheet flow conditions.

  18. Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties.

    PubMed

    Sadahira, Mitie S; Lopes, Fernanda C Rezende; Rodrigues, Maria I; Yamada, Aureo T; Cunha, Rosiane L; Netto, Flavia M

    2015-07-10

    Egg white protein (EW) is used as surface-active ingredient in aerated food and hydroxypropylmethylcellulose (HPMC) is a polysaccharide that behaves as a surfactant. This study aimed at investigating the effects of process parameters biopolymer concentration (2.0-5.0%, w/w), EW:HPMC ratio (2:1-18:1), pH (3.0-6.0), and the influence of biopolymers' behavior in aqueous solution at different pH on the foaming properties (overrun, drainage, and bubble growth rate). Process parameters had effect on foaming properties. The pH was the major factor influencing the type of EW/HPMC interaction and affected the foaming properties of biopolymer mixture. At pH 3.0, EW and HPMC showed thermodynamic compatibility leading to better foaming properties, higher foaming capacity, and stability than without HPMC addition whereas at pH 4.5 and 6.0, EW and HPMC are incompatible that causes lower stability concerning the disproportionation comparing to foam without HPMC. At pH between 3.0 and 4.5, HPMC improves foaming properties of aerated products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Oviduct modifications in foam-nesting frogs, with emphasis on the genus Leptodactylus (Amphibia, Leptodactylidae)

    USGS Publications Warehouse

    Furness, Andrew I.; McDiarmid, Roy W.; Heyer, W. Ronald; Zug, George R.

    2010-01-01

    Various species of frogs produce foam nests that hold their eggs during development. We examined the external morphology and histology of structures associated with foam nest production in frogs of the genus Leptodactylus and a few other taxa. We found that the posterior convolutions of the oviducts in all mature female foam-nesting frogs that we examined were enlarged and compressed into globular structures. This organ-like portion of the oviduct has been called a "foam gland" and these structures almost certainly produce the secretion that is beaten by rhythmic limb movements into foam that forms the nest. However, the label "foam gland" is a misnomer because the structures are simply enlarged and tightly folded regions of the pars convoluta of the oviduct, rather than a separate structure; we suggest the name pars convoluta dilata (PCD) for this feature. Although all the foam-nesters we examined had a pars convoluta dilata, its size and shape showed considerable interspecific variation. Some of this variation likely reflects differences in the breeding behaviors among species and in the size, type, and placement of their foam nests. Other variation, particularly in size, may be associated with the physiological periodicity and reproductive state of the female, her age, and/or the number of times she has laid eggs.

  20. Soft and Flexible Bilayer Thermoplastic Polyurethane Foam for Development of Bioinspired Artificial Skin.

    PubMed

    Li, Huan; Sinha, Tridib K; Oh, Jeong Seok; Kim, Jin Kuk

    2018-04-25

    Inspired by the epidermis-dermis composition of human skin, here we have simply developed a lightweight, robust, flexible, and biocompatible single-electrode triboelectric nanogenerator (S-TENG)-based prototype of bilayer artificial skin, by attaching one induction electrode with unfoamed skin layer of microcellular thermoplastic polyurethane (TPU) foam, which shows high-performance object manipulation [by responding differently toward different objects, viz., aluminum foil, balloon, cotton glove, human finger, glass, rubber glove, artificial leather, polyimide, poly(tetrafluoroethylene) (PTFE), paper, and wood], due to electrification and electrostatic induction during contact with the objects having different chemical functionalities. Comparative foaming behavior of ecofriendly supercritical fluids, viz., CO 2 over N 2 under variable temperatures (e.g., 130 and 150 °C) and constant pressure (15 MPa), have been examined here to pursue the soft and flexible triboelectric TPU foam. The foam derived by CO 2 foaming at 150 °C has been prioritized for development of S-TENG. Foam derived by CO 2 foaming at 130 °C did not respond as well due to the smaller cell size, higher hardness, and thicker skin. Inflexible N 2 -derived foam was not considered for S-TENG fabrication. Object manipulation performance has been visualized by principal component analysis (PCA), which shows good discrimination among responses to different objects.

  1. Simple model of foam drainage

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.; Coughlan, S.

    1994-10-01

    A simple model of foam drainage is introduced in which the Plateau borders and quadruple junctions are identified with pools that discharge through channels to pools underneath. The flow is driven by gravity and there are friction losses in the exhausting channels. The equation of Bernoulli combined with the Hagen-Poiseuille equation is applied to describe the flow. The area of the cross section of the exhausting channels can be taken as a constant or may vary during drainage. The predictions of the model are compared with standard drainage curves and with the results of a recently reported experiment in which additional liquid is supplied at the top of the froth.

  2. Foam fractionation as a tool to study the air-water interface structure-function relationship of wheat gluten hydrolysates.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Schoebrechts, Nele; Fierens, Ellen; Brijs, Kristof; Blecker, Christophe; Delcour, Jan A

    2017-03-01

    Enzymatic hydrolysis of wheat gluten protein improves its solubility and produces hydrolysates with foaming properties which may find applications in food products. First, we here investigated whether foam-liquid fractionation can concentrate wheat gluten peptides with foaming properties. Foam and liquid fractions had high and very low foam stability (FS), respectively. In addition, foam fractions were able to decrease surface tension more pronouncedly than un-fractionated samples and liquid fractions, suggesting they are able to arrange themselves more efficiently at an interface. As a second objective, foam fractionation served as a tool to study the structural properties of the peptides, causing these differences in air-water interfacial behavior. Zeta potential and surface hydrophobicity measurements did not fully explain these differences but suggested that hydrophobic interactions at the air-water interface are more important than electrostatic interactions. RP-HPLC showed a large overlap between foam and liquid fractions. However, a small fraction of very hydrophobic peptides with relatively high average molecular mass was clearly enriched in the foam fraction. These peptides were also more concentrated in un-fractionated DH 2 hydrolysates, which had high FS, than in DH 6 hydrolysates, which had low FS. These peptides most likely play a key role in stabilizing the air-water interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams

    NASA Astrophysics Data System (ADS)

    Yaman, Bilge; Onuklu, Eren; Korpe, Nese O.

    2017-09-01

    Pure Al and alumina (2, 5, 10 wt.% Al2O3)-added Al composite foams were fabricated through powder metallurgy technique, where boric acid (H3BO3) is employed as a new alternative foaming agent. It is aimed to determine the effects of boric acid on the foaming behavior and cellular structure and also purposed to develop the mechanical properties of Al foams by addition of Al2O3. Al and Al composite foams with porosity fraction in the range of 46-53% were achieved by sintering at 620 °C for 2 h. Cell morphology was characterized using a combination of stereomicroscope equipped with image analyzer and scanning electron microscopy. Microhardness values were measured via using Vickers indentation technique. Quasi-static compression tests were performed at strain rate of 10-3 s-1. Compressive strength and energy absorption of the composite foams enhanced not only by the increasing weight fraction of alumina, but also by the usage of boric acid which leads to formation of boron oxide (B2O3) acting as a binder in obtaining dense cell walls. The results revealed that the boric acid has outstanding potential as foaming agent in the fabrication of Al and Al composite foams by providing improved mechanical properties.

  4. Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release.

    PubMed

    Streubel, A; Siepmann, J; Bodmeier, R

    2003-01-01

    The aim of this study was to develop and physicochemically characterize single unit, floating controlled drug delivery systems consisting of (i). polypropylene foam powder, (ii). matrix-forming polymer(s), (iii). drug, and (iv). filler (optional). The highly porous foam powder provided low density and, thus, excellent in vitro floating behavior of the tablets. All foam powder-containing tablets remained floating for at least 8 h in 0.1 N HCl at 37 degrees C. Different types of matrix-forming polymers were studied: hydroxypropyl methylcellulose (HPMC), polyacrylates, sodium alginate, corn starch, carrageenan, gum guar and gum arabic. The tablets eroded upon contact with the release medium, and the relative importance of drug diffusion, polymer swelling and tablet erosion for the resulting release patterns varied significantly with the type of matrix former. The release rate could effectively be modified by varying the "matrix-forming polymer/foam powder" ratio, the initial drug loading, the tablet geometry (radius and height), the type of matrix-forming polymer, the use of polymer blends and the addition of water-soluble or water-insoluble fillers (such as lactose or microcrystalline cellulose). The floating behavior of the low density drug delivery systems could successfully be combined with accurate control of the drug release patterns.

  5. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE PAGES

    Sanborn, Brett; Song, Bo

    2018-06-03

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  6. Poisson's Ratio of a Hyperelastic Foam Under Quasi-static and Dynamic Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo

    Poisson's ratio is a material constant representing compressibility of material volume. However, when soft, hyperelastic materials such as silicone foam are subjected to large deformation into densification, the Poisson's ratio may rather significantly change, which warrants careful consideration in modeling and simulation of impact/shock mitigation scenarios where foams are used as isolators. The evolution of Poisson's ratio of silicone foam materials has not yet been characterized, particularly under dynamic loading. In this study, radial and axial measurements of specimen strain are conducted simultaneously during quasi-static and dynamic compression tests to determine the Poisson's ratio of silicone foam. The Poisson's ratiomore » of silicone foam exhibited a transition from compressible to nearly incompressible at a threshold strain that coincided with the onset of densification in the material. Poisson's ratio as a function of engineering strain was different at quasi-static and dynamic rates. Here, the Poisson's ratio behavior is presented and can be used to improve constitutive modeling of silicone foams subjected to a broad range of mechanical loading.« less

  7. Resistance of Multi-Wythe Insulted Masonry Walls Subjected to Impulse Loads. Volume 1

    DTIC Science & Technology

    2008-12-01

    17 Fig. 3.5. Stress-strain behavior of Owens - Corning XEPS foam.......................................18 Fig. 3.6. Stress-strain behavior...Z-4 CM-Z-5 Fig. 3.5. Stress-strain behavior of Owens - Corning XEPS foam Strain (in/in) St re ss (p si ) 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64...Specimen Section (in) (lb/ft3) (ksi) (psi) Owens - Corning CM-Z-3 2.50 dia x 2.0 1.507 1.31 32 Owens - Corning CM-Z-4 2.50 dia x 2.0 1.511 1.43 31 Owens

  8. Ceramic Foams for TPS Applications

    NASA Technical Reports Server (NTRS)

    Stockpoole, Mairead

    2003-01-01

    Ceramic foams have potential in many areas of Thermal Protection Systems (TPS) including acreage and tile leading edges as well as being suitable as a repair approach for re-entry vehicles. NASA Ames is conducting ongoing research in developing lower-density foams from pre-ceramic polymer routes. One of the key factors to investigate, when developing new materials for re-entry applications, is their oxidation behavior in the appropriate re-entry environment which can be simulated using ground based arc jet (plasma jet) testing. Arc jet testing is required to provide the appropriate conditions (stagnation pressures, heat fluxes, enthalpies, heat loads and atmospheres) encountered during flight. This work looks at the response of ceramic foams (Si systems) exposed to simulated reentry environments and investigates the influence of microstructure and composition on the material? response. Other foam properties (mechanical and thermal) will also be presented.

  9. Observation and modeling of mixing-layer development in HED blast-wave-driven shear flow

    NASA Astrophysics Data System (ADS)

    di Stefano, Carlos

    2013-10-01

    This talk describes work exploring the sensitivity to initial conditions of hydrodynamic mixing-layer growth due to shear flow in the high-energy-density regime. This work features an approach in two parts, experimental and theoretical. First, an experiment, conducted at the OMEGA-60 laser facility, seeks to measure the development of such a mixing layer. This is accomplished by placing a layer of low-density (initially of either 0.05 or 0.1 g/cm3, to vary the system's Atwood number) carbon foam against a layer of higher-density (initially 1.4 g/cm3) polyamide-imide that has been machined to a nominally-flat surface at its interface with the foam. Inherent roughness of this surface's finish is precisely measured and varied from piece to piece. Ten simultaneous OMEGA beams, comprising a 4.5 kJ, 1-ns pulse focused to a roughly 1-mm-diameter spot, irradiate a thin polycarbonate ablator, driving a blast wave into the foam, parallel to its interface with the polyamide-imide. The ablator is framed by a gold washer, such that the blast wave is driven only into the foam, and not into the polyamide-imide. The subsequent forward motion of the shocked foam creates the desired shear effect, and the system is imaged by X-ray radiography 35 ns after the beginning of the driving laser pulse. Second, a simulation is performed, intending to replicate the flow observed in the experiment as closely as possible. Using the resulting simulated flow parameters, an analytical model can be used to predict the evolution of the mixing layer, as well as track the motion of the fluid in the experiment prior to the snapshot seen in the radiograph. The ability of the model to predict growth of the mixing layer under the various conditions observed in the experiment is then examined. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, and by the National Laser Use.

  10. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  11. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender

    PubMed Central

    Wang, Youyong; Song, Yongming; Du, Jun; Xi, Zhenhao; Wang, Qingwen

    2017-01-01

    Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident. PMID:28846604

  13. Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion

    DOE PAGES

    Rodriguez, Jennifer N.; Miller, Matthew W.; Boyle, Anthony; ...

    2014-08-11

    Recently, predominantly closed-cell low density shape memory polymer (SMP) foam was reported to be an effective aneurysm filling device in a porcine model (Rodriguez et al., Journal of Biomedical Materials Research Part A 2013: (http://dx.doi.org/10.1002/jbm.a.34782)). Because healing involves blood clotting and cell migration throughout the foam volume, a more open-cell structure may further enhance the healing response. This research sought to develop a non-destructive reticulation process for this SMP foam to disrupt the membranes between pore cells. Non-destructive mechanical reticulation was achieved using a gravity-driven floating nitinol pin array coupled with vibratory agitation of the foam and supplemental chemical etching.more » Lastly, reticulation resulted in a reduced elastic modulus and increased permeability, but did not impede the shape memory behavior. Reticulated foams were capable of achieving rapid vascular occlusion in an in vivo porcine model.« less

  14. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  15. Effect of notch position on fracture energy for foamed concrete

    NASA Astrophysics Data System (ADS)

    Naqiuddin Zamri, Mohd; Rahman, Norashidah Abd; Jaini, Zainorizuan Mohd; Shamila Bahador, Nurul

    2017-11-01

    Foamed concrete is one of the lightweight concrete used to replace normal concrete. Foamed concrete has potential as a building construction material in Malaysia due to low density range. However, the behavior of fracture energy on foamed concrete still under investigation. Therefore, a study to determine the fracture energy of foamed concrete was conducted. In this study, foamed concrete fracture energy was obtained using the three-point bending test methods develop by RILEM and Hillerborg. A total of 12 beams with different types of notch and positions of notch were tested on the load-deflection condition. In addition, a total of 9 cube samples were cast to support the result of fracture energy by using model from Bazant and Becq-Giraudon and Comite Euro-International du Beton (CEB). Results showed the far the position of the notch from midpoint, the higher the value of fracture energy. In this study, the value of fracture energy ranges between 15 N/m and 40 N/m.

  16. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

    PubMed

    Ma, Zhongshi; Liu, Dagang; Zhu, Yi; Li, Zehui; Li, Zhenxuan; Tian, Huafeng; Liu, Haiqing

    2016-06-25

    A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming

    Treesearch

    Yottha Srithep; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2012-01-01

    Polyvinyl alcohol (PVOH) and its nanofibrillated cellulose (NFC) reinforced nanocomposites were produced and foamed and its properties-such as the dynamic mechanical properties, crystallization behavior, and solubility of carbon dioxide (CO2)were evaluated. PVOH was mixed with an NFC fiber suspension in water followed by casting. Transmission...

  18. Modeling Heat Transfer and Pressurization of Polymeric Methylene Diisocyanate (PMDI) Polyurethane Foam in a Sealed Container.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Sarah Nicole

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container to protect the electronics from hostile en vironments, such as a crash that produces a fire. However, i n fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of the sealed system . In this work, a detailed study of thermally decomposing polymeric methylene diisocyanate (PMDI) - polyether - polyol based polyurethane foam in a sealed container is presented . Both experimental and computational workmore » is discussed. Three models of increasing physics fidelity are presented: No Flow, Porous Media, and Porous Media with VLE. Each model us described in detail, compared to experiment , and uncertainty quantification is performed. While the Porous Media with VLE model matches has the best agreement with experiment, it also requires the most computational resources.« less

  19. Numerical Simulations of Particle Deposition in Metal Foam Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Sauret, Emilie; Saha, Suvash C.; Gu, Yuantong

    2013-01-01

    Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.

  20. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    PubMed Central

    Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate. PMID:23738054

  1. Les mousses adaptatives pour l'amelioration de l'absorption acoustique: Modelisation, mise en oeuvre, mecanismes de controle

    NASA Astrophysics Data System (ADS)

    Leroy, Pierre

    The objective of this thesis is to conduct a thorough numerical and experimental analysis of the smart foam concept, in order to highlight the physical mechanisms and the technological limitations for the control of acoustic absorption. A smart foam is made of an absorbing material with an embedded actuator able to complete the lack of effectiveness of this material in the low frequencies (<500Hz). In this study, the absorbing material is a melamine foam and the actuator is a piezoelectric film of PVDF. A 3D finite element model coupling poroelastic, acoustic, elastic and piezoelectric fields is proposed. The model uses volume and surface quadratic elements. The improved formulation (u,p) is used. An orthotropic porous element is proposed. The power balance in the porous media is established. This model is a powerful and general tool allowing the modeling of all hybrid configurations using poroelastic and piezoelectric fields. Three smart foams prototypes have been built with the aim of validating the numerical model and setting up experimental active control. The comparison of numerical calculations and experimental measurements shows the validity of the model for passive aspects, transducer behaviors and also for control configuration. The active control of acoustic absorption is carried out in normal incidence with the assumption of plane wave in the frequency range [0-1500Hz]. The criterion of minimization is the reflected pressure measured by an unidirectional microphone. Three control cases were tested: off line control with a sum of pure tones, adaptive control with the nFX-LMS algorithm for a pure tone and for a random broad band noise. The results reveal the possibility of absorbing a pressure of 1.Pa at 1.00Hz with 100V and a broad band noise of 94dB with a hundred Vrms starting from 250Hz. These results have been obtained with a mean foam thickness of 4cm. The control ability of the prototypes is directly connected to the acoustic flow. An important limitation for the broad band control comes from the high distortion level through the system in the low and high frequency range (<500Hz, > 1500Hz). The use of the numerical model, supplemented by an analytical study made it possible to clarify the action mode and the dissipation mechanisms in smart foams. The PVDF moves with the same phase and amplitude of the residual incidental pressure which is not dissipated in the foam. Viscous effect dissipation is then very weak in the low frequencies and becomes more important in the high frequencies. The wave which was not been dissipated in the porous material is transmitted by the PVDF in the back cavity. The outlooks of this study are on the one hand, the improvement of the model and the prototypes and on the other hand, the widening of the field of research to the control of the acoustic transmission and the acoustic radiation of surfaces. The model could be improved by integrating viscoelastic elements able to account for the behavior of the adhesive layer between the PVDF and foam. A modelisation of electro-elastomers materials would also have to be implemented in the code. This new type of actuator could make it possible to exceed the PVDF displacement limitations. Finally it would be interesting for the industrial integration prospects to seek configurations able to maximize acoustic absorption and to limit the transmission and the radiation of surfaces at the same time.

  2. On the determination of a generalized Darcy equation for yield stress fluid in porous media using a LB TRT scheme

    NASA Astrophysics Data System (ADS)

    Talon, Laurent; Chevalier, Thibaud

    2014-11-01

    Non-Newtonian fluids have practical applications in very different domains. Indeed, polymer mixture, paints, slurries, colloidal suspensions, emulsions, foams or heavy oil present complex rheologies. Among the large number of different non-Newtonian fluids an important class of behavior is represented by the yield-stress fluids, viz. fluids that require a minimum of stress to flow. Yield stress fluids are usually modelled as a Bingham fluid or by the Herschel-Bulkley equation. However, simulating flow of a Bingham fluid in porous media still remains a challenging task as the yield stress may significantly alter the numerical stability and precision. In the present work, we use a Lattice-Boltzmann TRT scheme to determine this type of flow in a synthetic porous medium or fracture. Different pressure drops ΔP have been applied in order to derive a generalization of the Darcy's equation. Three different scaling regimes can be distinguished when plotting the dimensionless flow rate q as function of the distance to the critical pressure ΔP - ΔPc . In this presentation, we will investigate the importance of the heterogeneities on those flowing regimes. ANR-12-MONU-0011.

  3. Monopropellant engine investigation for space shuttle reaction control. Volume 2: Design, fabrication, and demonstration test of a catalytic gas generator for the space shuttle APU

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The capability of a catalytic gas generator to meet the requirement specified for the space shuttle APU is established. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The nickel foam metal used for catalyst retention was investigated. Inspection of the foam metal following the first life test revealed significant degradation. Consequently an investigation was conducted to determine the mechanism of degradation and to provide an improved foam metal.

  4. Investigation of the fluid-structure interaction of a high head Francis turbine using OpenFOAM and Code_Aster

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Doujak, E.; Waldner, L.

    2016-11-01

    The increasing energy consumption and highly stressed power grids influence the operating conditions of turbines and pump turbines in the present situation. To provide or use energy as quick as possible, hydraulic turbines are operated more frequent and over longer periods of time in lower part load at off-design conditions. This leads to a more turbulent behavior and to higher requirements of the strength of stressed components (e.g. runner, guide or stay vanes). The modern advantages of computational capabilities regarding numerical investigations allow a precise prediction of appearing flow conditions and thereby induced strains in hydraulic machines. This paper focuses on the calculation of the unsteady pressure field of a high head Francis turbine with a specific speed of nq ≈ 24 min-1 and its impact on the structure at different operating conditions. In the first step, unsteady numerical flow simulations are performed with the open-source CFD software OpenFOAM. To obtain the appearing dynamic flow phenomena, the entire machine, consisting of the spiral casing, the stay vanes, the wicket gate, the runner and the draft tube, is taken into account. Additionally, a reduced model without the spiral casing and with a simplified inlet boundary is used. To evaluate the accuracy of the CFD simulations, operating parameters such as head and torque are compared with the results of site measurements carried out on the corresponding prototype machine. In the second part, the obtained pressure fields are used for a fluid-structure analysis with the open-source Finite Element software Code_Aster, to predict the static loads on the runner.

  5. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  6. Removal of High Concentration Chromium by a Foam-separating Technique Using Casein Proteins as a Foaming Reagent

    NASA Astrophysics Data System (ADS)

    Sugimoto, Futoshi

    Foam separation of high concentration chromium in leather tanning wastewater was investigated using casein protein as a foaming reagent5mL of5w/v% ammonium acetate buffer was added to the sample chromium water. After adjusting the pH to 9.0,4g/L concentrations of casein and gelatin solution were added to recovery the coagulating flocs of chromium resulting foam separation. The sample water containing chromium flocs was incased in reactor, then mixed with distilled water and 1mL of ethanol to sum 200mL total. The foam separation was performed at time intervals of 3min with an air flow rate of 300mL/min. With casein reagent, the removal rate of chromium was not influenced by the presence of NaCl, however, the rate decreased tendency using with the use of gelatin. The proposed method, utilizing 4g/L of casein solution with water, was not influenced by the presence of calcium (<34mM), magnesium (<1mM), carbonate (<0.5mM), bicarbonate (<1.2mM) nor sulfate (<350mM) ions, and is ideal for foam separation in chromium concentrations of about 100mgCr/L.

  7. Elasto-Plastic Behavior of Aluminum Foams Subjected to Compression Loading

    NASA Astrophysics Data System (ADS)

    Silva, H. M.; Carvalho, C. D.; Peixinho, N. R.

    2017-05-01

    The non-linear behavior of uniform-size cellular foams made of aluminum is investigated when subjected to compressive loads while comparing numerical results obtained in the Finite Element Method software (FEM) ANSYS workbench and ANSYS Mechanical APDL (ANSYS Parametric Design Language). The numerical model is built on AUTODESK INVENTOR, being imported into ANSYS and solved by the Newton-Raphson iterative method. The most similar conditions were used in ANSYS mechanical and ANSYS workbench, as possible. The obtained numerical results and the differences between the two programs are presented and discussed

  8. Comparison of mechanical behavior between implant-simulated bone tissue and implant-jaw bone tissue interfaces based on Pull Out testing

    NASA Astrophysics Data System (ADS)

    Lopez, C.; Muñoz, J. C.; Pinillos, J. C.

    2013-11-01

    The main purpose of this research was to achieve a better understanding of the relationship within the mechanical properties of human cadaver jaw bone with kind D2 density regarding a substitute polymer to simulate bone tissue, proposed by the ASTM, to evaluate orthopedic implants. However, despite the existence of several densities of foams and his mechanical characterization has been classified into different degrees of tissue densities to simulate cancellous and cortical bone, the value of the densities are different contrasted with the densities of bone tissue, making difficult to establish direct relationship about mechanical behavior between the polymer and the bone material, and therefore no clear criteria known for choosing the polymeric foam which describes the mechanical behavior of tissue for a specific or particular study. To understand such behavior from bone tissue regarding the polymer samples, on this research was a dental implant inserted into the samples, and subjected to destructive Pull Out test according to ASTM F543The Pull Out strength was compared between implant-jawbone and implant-rigid polyurethane foam interfaces. Thus, the test pieces with mechanical behavior similar to bone tissue, enabling an approximation to choose degree appropriate of polymer to replace the bone tissue in future trials biomechanical.

  9. Results from MARBLE DT Experiments on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Cooley, J. H.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2017-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first experiments using deuterated foam and tritium gas have been performed. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  10. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-01

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  11. Numerical Evidence for a Phase Transition in 4D Spin-Foam Quantum Gravity.

    PubMed

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-09-30

    Building on recent advances in defining Wilsonian renormalization group (RG) flows, and the notion of scales in particular, for background-independent theories, we present a first investigation of the renormalization of the 4D spin-foam path integral for quantum gravity, both analytically and numerically. Focusing on a specific truncation of the model using a hypercubic lattice, we compute the RG flow and find strong indications for a phase transition, as well as an interesting interplay between the different observed phases and the (broken) diffeomorphism symmetry of the model. Most notably, it appears that the critical point between the phases, which is a fixed point of the RG flow, is precisely where broken diffeomorphism symmetry is restored, which suggests that it might allow us to define a continuum limit of the quantum gravity theory.

  12. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D

    2015-10-28

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.

  13. Damping of liquid sloshing by foams

    NASA Astrophysics Data System (ADS)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  14. An Overview of Spray-On Foam Insulation Applications on the Space Shuttle's External Tank: Foam Applications and Foam Shedding Mechanisms

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Lerch, Bradley A.; Rogers, Patrick R.; Sparks, Scotty S.

    2006-01-01

    The Columbia Accident Investigation Board (CAIB) concluded that the cause of the tragic loss of the Space Shuttle Columbia and its crew was a breach in the thermal protection system on the leading edge of the left wing. The breach was initiated by a piece of insulating foam that separated from the left bipod ramp of the External Tank and struck the wing in the vicinity of the lower half of Reinforced Carbon-Carbon panel No. 8 at 81.9 seconds after launch. The CAIB conclusion has spawned numerous studies to identify the cause of and factors influencing foam shedding and foam debris liberation from the External Tank during ascent. The symposium on the Thermo-mechanics and Fracture of Space Shuttle External Tank Spray-On Foam Insulation is a collection of presentations that discuss the physics and mechanics of the ET SOFI with the objective of improving analytical and numerical methods for predicting foam thermo-mechanical and fracture behavior. This keynote presentation sets the stage for the presentations contained in this symposium by introducing the audience to the various types of SOFI applications on the Shuttle s External Tank and by discussing the various mechanisms that are believed to be the cause of foam shedding during the Shuttle s ascent to space

  15. Numerical-experimental investigation of PE/EVA foam injection molded parts

    NASA Astrophysics Data System (ADS)

    Spina, Roberto

    The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.

  16. Erosion of polyurethane insulation.

    NASA Technical Reports Server (NTRS)

    Kraus, S.

    1973-01-01

    Detailed description of the test program in which erosion of the spray foam insulation used in the S-II stage of the Saturn-V Apollo launch vehicle was investigated. The behavior of the spray foam was investigated at the elevated temperature and static pressure appropriate to the S-II stage environment, but in the absence of the aerodynamic shear stress.

  17. Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams

    NASA Astrophysics Data System (ADS)

    Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping

    2018-06-01

    A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).

  18. Applications of Polymer Matrix Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  19. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam.

    PubMed

    Peroni, Marco; Solomos, George; Babcsan, Norbert

    2016-01-05

    An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general "soft" materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB), a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1-2 mm). The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  20. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    PubMed Central

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  1. Origin of accelerated and hindered sedimentation of two particles in wet foam.

    PubMed

    Jing, Zefeng; Feng, Chenchen; Wang, Shuzhong; Xu, Donghai

    2018-03-20

    To explore the origin of interactional settling behaviors of multi-particles in wet foam, the sedimentation of two particles placed one above the other as well as placed side by side is studied. According to the average settling velocity in experiment and the average settling drag force of the two particles in numerical simulation, we show that the particles display accelerated sedimentation as placed one above the other while they display hindered sedimentation in the case of the ones positioned side by side. Furthermore, the evolution of structure and force parameters of the bubbles, such as T1 topological events, displacement vector and principal stress fields, shows that the reciprocal action between the foam and the settling particles placed side by side is more significant. The different levels of interplay for these two settling cases also give rise to the diverse changes of bubble pressure response. The bubble pressure component of the average drag force is higher for the particles placed side by side. Especially, for the first time, it reveals that these interactional sedimentation behaviors in the foam are mainly attributed to the changed pressure of bubbles caused by these settling particles at the mesoscopic level. The present results may suggest potential explanations to the cause of the complex accelerated or hindered sedimentation of more particles in wet foam.

  2. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads.

    PubMed

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Waske, Anja; Krüger, Lutz; Martin, Ulrich

    2018-04-24

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α ′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α ′ -martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.

  3. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    NASA Astrophysics Data System (ADS)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  4. Microstructure and Mechanical Behavior of Amorphous Al-Cu-Ti Metal Foams Synthesized by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Li, Maoyuan; Lu, Lin; Dai, Zhen; Hong, Yiqiang; Chen, Weiwei; Zhang, Yuping; Qiao, Yingjie

    Amorphous Al-Cu-Ti metal foams were prepared by spark plasma sintering (SPS) process with the diameter of 10mm. The SPS process was conducted at the pressure of 200 and 300MPa with the temperature of 653-723K, respectively. NaCl was used as the space-holder, forming almost separated pores with the porosity of 65 vol%. The microstructure and mechanical behavior of the amorphous Al-Cu-Ti metal foams were systematically investigated. The results show that the crystallinity increased at elevated temperatures. The effect of pressure and holding time on the crystallization was almost negligible. The intermetallic compounds, i.e. Al-Ti, Al-Cu and Al-Cu-Ti were identified from X-ray diffraction (XRD) patterns. It was found that weak adhesion and brittle intermetallic compounds reduced the mechanical properties, while lower volume fraction and smaller size of NaCl powders improved the mechanical properties.

  5. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    NASA Astrophysics Data System (ADS)

    Javadi, Ardalan; Nilsson, Håkan

    2014-03-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.

  6. Modeling of single film bubble and numerical study of the plateau structure in foam system

    NASA Astrophysics Data System (ADS)

    Sun, Zhong-guo; Ni, Ni; Sun, Yi-jie; Xi, Guang

    2018-02-01

    The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit (MPS) method, a single-film double-gas-liquid-interface surface tension (SDST) model is established for the single-film bubble, which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film. In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.

  7. On the development of OpenFOAM solvers based on explicit and implicit high-order Runge-Kutta schemes for incompressible flows with heat transfer

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Valerio; Binci, Lorenzo; Montelpare, Sergio; Ricci, Renato

    2018-01-01

    Open-source CFD codes provide suitable environments for implementing and testing low-dissipative algorithms typically used to simulate turbulence. In this research work we developed CFD solvers for incompressible flows based on high-order explicit and diagonally implicit Runge-Kutta (RK) schemes for time integration. In particular, an iterated PISO-like procedure based on Rhie-Chow correction was used to handle pressure-velocity coupling within each implicit RK stage. For the explicit approach, a projected scheme was used to avoid the "checker-board" effect. The above-mentioned approaches were also extended to flow problems involving heat transfer. It is worth noting that the numerical technology available in the OpenFOAM library was used for space discretization. In this work, we additionally explore the reliability and effectiveness of the proposed implementations by computing several unsteady flow benchmarks; we also show that the numerical diffusion due to the time integration approach is completely canceled using the solution techniques proposed here.

  8. Tapered plug foam spray apparatus

    NASA Technical Reports Server (NTRS)

    Allen, Peter B. (Inventor)

    1996-01-01

    A two-component foam spray gun is readily disassembled for cleaning. It includes a body (1) with reactant (12, 14) and purge gas (16) inlet ports. A moldable valve packing (32) inside the body has a tapered conical interior surface (142), and apertures which match the reactant ports. A valve/tip (40) has a conical outer surface (48) which mates with the valve packing (32). The valve/tip (40) is held in place by a moldable packing washer (34), held at non-constant pressure by a screw (36, 38). The interior of the valve/tip (40) houses a removable mixing chamber (50). The mixing chamber (50) has direct flow orifices (60) and an auxiliary flow path (58, 60) which ameliorate pressure surges. The spray gun can be disassembled for cleaning without disturbing the seal, by removing the valve/tip (40) to the rear, thereby breaking it free of the conical packing. Rotation of the valve/tip (40) relative to the body (1) shuts off the reactant flow, and starts the purge gas flow.

  9. Fluidic Vectoring of a Planar Incompressible Jet Flow

    NASA Astrophysics Data System (ADS)

    Mendez, Miguel Alfonso; Scelzo, Maria Teresa; Enache, Adriana; Buchlin, Jean-Marie

    2018-06-01

    This paper presents an experimental, a numerical and a theoretical analysis of the performances of a fluidic vectoring device for controlling the direction of a turbulent, bi-dimensional and low Mach number (incompressible) jet flow. The investigated design is the co-flow secondary injection with Coanda surface, which allows for vectoring angles up to 25° with no need of moving mechanical parts. A simple empirical model of the vectoring process is presented and validated via experimental and numerical data. The experiments consist of flow visualization and image processing for the automatic detection of the jet centerline; the numerical simulations are carried out solving the Unsteady Reynolds Average Navier- Stokes (URANS) closed with the k - ω SST turbulence model, using the PisoFoam solver from OpenFOAM. The experimental validation on three different geometrical configurations has shown that the model is capable of providing a fast and reliable evaluation of the device performance as a function of the operating conditions.

  10. Four-way coupling of a three-dimensional debris flow solver to a Lagrangian Particle Simulation: method and first results

    NASA Astrophysics Data System (ADS)

    von Boetticher, Albrecht; Rickenmann, Dieter; McArdell, Brian; Kirchner, James W.

    2017-04-01

    Debris flows are dense flowing mixtures of water, clay, silt, sand and coarser particles. They are a common natural hazard in mountain regions and frequently cause severe damage. Modeling debris flows to design protection measures is still challenging due to the complex interactions within the inhomogeneous material mixture, and the sensitivity of the flow process to the channel geometry. The open-source, OpenFOAM-based finite-volume debris flow model debrisInterMixing (von Boetticher et al, 2016) defines rheology parameters based on the material properties of the debris flow mixture to reduce the number of free model parameters. As a simplification in this first model version, gravel was treated as a Coulomb-viscoplastic fluid, neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. Here we present an extension of that solver, accounting for the particle-to-particle and particle-to-boundary contacts with a Lagrangian Particle Simulation composed of spherical grains and a user-defined grain size distribution. The grain collisions of the Lagrangian particles add granular flow behavior to the finite-volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell, and among all individual particles contained in that cell, allowing the user to choose from a number of different drag models. The momentum exchange is implemented in the momentum equation and in the pressure equation (ensuring continuity) of the so-called PISO-loop, resulting in a stable 4-way coupling (particle-to-particle, particle-to-boundary, particle-to-fluid and fluid-to-particle) that represents the granular and viscous flow behavior of debris flow material. We will present simulations that illustrate the relative benefits and drawbacks of explicitly representing grain collisions, compared to the original debrisInterMixing solver.

  11. Temperature and speed of testing influence on the densification and recovery of polyurethane foams

    NASA Astrophysics Data System (ADS)

    Apostol, Dragoş Alexandru; Constantinescu, Dan Mihai

    2013-02-01

    Polyurethane foams with densities of 35, 93, and 200 kg/m3 were tested in compression at three levels of temperatures as: -60 °C, 23 °C, and 80 °C. The influence of speed of testing from 2 mm/min up to 6 m/s (0.0014 to 545 s-1) on the response of the foams is analyzed. Testing is done separately on the rise direction and on the in-plane direction of the foams, and differences in their behavior are commented. With interpolation functions which approximate the plateau and densification region, the specific strain energy is calculated together with the energy efficiency and onset strain of densification. A Nagy-type phenomenological strain-rate-dependent model is proposed to generate engineering stress-strain curves and is validated through comparison with experimental stress-strain curves obtained at different speeds of testing. Starting from a reference experimental curve, two material parameters which are density and temperature dependent are established. Foam recovery for each density of the polyurethane foams is analyzed as a function of direction of testing, temperature, and speed of testing.

  12. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.

    PubMed

    Luong, Dung; Lehmhus, Dirk; Gupta, Nikhil; Weise, Joerg; Bayoumi, Mohamed

    2016-02-18

    The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

  13. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE PAGES

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  14. Implementation of density-based solver for all speeds in the framework of OpenFOAM

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Sun, Fengxian; Xia, Xinlin

    2014-10-01

    In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.

  15. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  16. Development of Polyimide Foam for Aircraft Sidewall Applications

    NASA Technical Reports Server (NTRS)

    Silcox, Richard; Cano, Roberto J.; Howerton, Brian M.; Bolton, J. Stuart; Kim, Nicholas N.

    2013-01-01

    In this paper, the use of polyimide foam as a lining in double panel applications is considered. It is being investigated here as a replacement for aircraft grade glass fiber and has a number of attractive functional attributes, not the least of which is its high fire resistance. The test configuration studied here consisted of two 1mm (0.04 in.) thick, flat aluminum panels separated by 12.7 cm (5.0 in.) with a 7.6 cm (3.0 in.) thick layer of foam centered in that space. Random incidence transmission loss measurements were conducted on this buildup, and conventional poro-elastic models were used to predict the performance of the lining material. Results from two densities of foam are considered. The Biot parameters of the foam were determined by a combination of direct measurement (for density, flow resistivity and Young s modulus) and inverse characterization procedures (for porosity, tortuosity, viscous and thermal characteristic length, Poisson s ratio and loss factor). The inverse characterization procedure involved matching normal incidence standing wave tube measurements of absorption coefficient and transmission loss of the isolated foam with finite element predictions. When the foam parameters determined in this way were used to predict the performance of the complete double panel system, reasonable agreement was obtained between the measured transmission loss and predictions made using a commercial statistical energy analysis code.

  17. Toxicity studies of a polyurethane rigid foam

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.

    1977-01-01

    Relative toxicity tests were performed on a polyurethane foam containing a trimethylopropane-based polyol and an organophosphate flame retardant. The routine screening procedure involved the exposure of four Swiss albino male mice in a 4.2 liter hemispherical chamber to the products generated by pyrolyzing a 1.00 g sample at a heating rate of 40 deg C/min from 200 to 800 C in the absence of air flow. In addition to the routine screening, experiments were performed with a very rapid rise to 800 C, with nominal 16 and 48 ml/sec air flow and with varying sample rates. No unusual toxicity was observed with either gradual or rapid pyrolysis to 800 C. Convulsions and seizures similar to those previously reported were observed when the materials were essentially flash pyrolyzed at 800 C in the presence of air flow, and the toxicity appeared unusual because of low sample weights required to produce death.

  18. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Small, W.

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component inmore » our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.« less

  19. Enhanced Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam for Metal, Radionuclide, and NAPL Remediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.

    2010-12-01

    In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.

  20. Nucleation of Super-Critical Carbon Dioxide in a Venturi Nozzle

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin; Pidaparti, Sandeep; Ranjan, Devesh

    2015-11-01

    The supercritical carbon dioxide (S-CO2) Brayton cycle combines the primary advantages of the ideal Brayton and Rankine cycles by utilizing CO2 above its critical pressure. In addition to single phase and small back work ratios, supercritical fluids offer other advantages, e.g. heat transfer augmentation and low specific volume. Pressure reduction at the entrance of the compressor may cause homogenous nucleation, vapor production, and collapse of bubbles due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and affect the materials used in design. The flow of S-CO2 through a venturi nozzle near the critical point has been studied. A transient compressible 3D Navier-Stokes solver, coupled with continuity, and energy equation has been used. Developed FIT libraries based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO2 properties. The mass fraction of vapor created in the venturi has been calculated using homogeneous equilibrium model (HEM). The flow conditions that lead to nucleation have been investigated. The sensitivity of nucleation to the inlet pressure and temperature, flow rate, and venturi profile has been shown.

  1. A full 3D model of fluid flow and heat transfer in an E.B. heated liquid metal bath

    NASA Astrophysics Data System (ADS)

    Matveichev, A.; Jardy, A.; Bellot, J. P.

    2016-07-01

    In order to study the dissolution of exogeneous inclusions in the liquid metal during processing of titanium alloys, a series of dipping experiments has been performed in an Electron Beam Melting laboratory furnace. Precise determination of the dissolution kinetics requires knowing and mastering the exact thermohydrodynamic behavior of the melt pool, which implies full 3D modeling of the process. To achieve this goal, one needs to describe momentum and heat transfer, phase change, as well as the development of flow turbulence in the liquid. EB power input, thermal radiation, heat loss through the cooling circuit, surface tension effects (i.e. Marangoni-induced flow) must also be addressed in the model. Therefore a new solver dealing with all these phenomena was implemented within OpenFOAM platform. Numerical results were compared with experimental data from actual Ti melting, showing a pretty good agreement. In the second stage, the immersion of a refractory sample rod in the liquid pool was simulated. Results of the simulations showed that the introduction of the sample slightly disturbs the flow field inside the bath. The amount of such disturbance depends on the exact location of the dipping.

  2. CFD-DEM based numerical simulation of liquid-gas-particle mixture flow in dam break

    NASA Astrophysics Data System (ADS)

    Park, Kyung Min; Yoon, Hyun Sik; Kim, Min Il

    2018-06-01

    This study investigates the multiphase flow of a liquid-gas-particle mixture in dam break. The open source codes, OpenFOAM and CFDEMproject, were used to reproduce the multiphase flow. The results of the present study are compared with those of previous results obtained by numerical and experimental methods, which guarantees validity of present numerical method to handle the multiphase flow. The particle density ranging from 1100 to 2500 kg/m3 is considered to investigate the effect of the particle density on the behavior of the free-surface and the particles. The particle density has no effect on the liquid front, but it makes the particle front move with different velocity. The time when the liquid front reach at the opposite wall is independent of particle density. However, such time for particle front decrease as particle density increases, which turned out to be proportional to particle density. Based on these results, we classified characteristics of the movement by the front positions of the liquid and the particles. Eventually, the response of the free-surface and particles to particle density is identified by three motion regimes of the advancing, overlapping and delaying motions.

  3. Foam flotation as a separation process

    NASA Technical Reports Server (NTRS)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  4. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    NASA Astrophysics Data System (ADS)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  5. Development of steel foam processing methods and characterization of metal foam

    NASA Astrophysics Data System (ADS)

    Park, Chanman

    2000-10-01

    Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.

  6. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.

  7. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Zhou, Qingfeng; Gong, Yun; Lin, Jianhua

    2018-05-01

    In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.

  8. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  9. Porous inorganic-organic shape memory polymers.

    PubMed

    Zhang, Dawei; Burkes, William L; Schoener, Cody A; Grunlan, Melissa A

    2012-06-21

    Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic-organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(ε-caprolactone) (PCL) segments, diacrylated PCL(40)-block-PDMS(37)-block-PCL(40). To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained.

  10. Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete

    NASA Astrophysics Data System (ADS)

    Jhatial, Ashfaque Ahmed; Inn, Goh Wan; Mohamad, Noridah; Johnson Alengaram, U.; Mo, Kim Hung; Abdullah, Redzuan

    2017-11-01

    As almost half of the world’s population now lives in the urban areas, the raise in temperature in these areas has necessitated the development of thermal insulating material. Conventional concrete absorbs solar radiation during the daytime while releasing it at night causing raise in temperature in urban areas. The thermal conductivity of 2200 kg/m3 density conventional concrete is 1.6 W/mK. Higher the thermal conductivity value, greater the heat flow through the material. To reduce this heat transfer, the construction industry has turned to lightweight foamed concrete. Foamed concrete, due to its air voids, gives excellent thermal properties and sound absorption apart from fire-resistance and self-leveling properties. But due to limited studies on different densities of foamed concrete, the thermal properties are not understood properly thus limiting its use as thermal insulating material. In this study, thermal conductivity is determined for 1400, 1600 and 1800 kg/m3 densities of foamed concrete. 0.8% of Polypropylene fibres (PP) is used to reinforce the foamed concrete and improve the mechanical properties. Based upon the results, it was found that addition of PP fibres enhances the tensile strength and slightly reduced the thermal conductivity for lower densities, while the reverse affect was noticed in 1800 kg/m3 density.

  11. Water Impact of Syntactic Foams

    PubMed Central

    Shams, Adel; Zhao, Sam; Porfiri, Maurizio

    2017-01-01

    Syntactic foams are particulate composite materials that are extensively integrated in naval and aerospace structures as core materials for sandwich panels. While several studies have demonstrated the potential of syntactic foams as energy absorbing materials in impact tests, our understanding of their response to water impact remains elusive. In this work, we attempt a first characterization of the behavior of a vinyl ester/glass syntactic subject to slamming. High-speed imaging is leveraged to elucidate the physics of water impact of syntactic foam wedges in a free-fall drop tower. From the images, we simultaneously measure the deformation of the wedge and the hydrodynamic loading, thereby clarifying the central role of fluid–structure interaction during water impact. We study two different impact heights and microballoon density to assess the role of impact energy and syntactic foam composition on the slamming response. Our results demonstrate that both these factors have a critical role on the slamming response of syntactic foams. Reducing the density of microballoons might help to reduce the severity of the hydrodynamic loading experienced by the wedge, but this comes at the expense of a larger deformation. Such a larger deformation could ultimately lead to failure for large drop heights. These experimental results offer compelling evidence for the role of hydroelastic coupling in the slamming response of syntactic foams. PMID:28772581

  12. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams.

    PubMed

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S; Maitland, Duncan J

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (T(g)) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T(g) of the foam, with a maximum water uptake shifting the T(g) from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  13. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    PubMed Central

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 °C to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h. PMID:21949469

  14. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Yu, Ya-Jen; Hearon, Keith; Wilson, Thomas S.; Maitland, Duncan J.

    2011-08-01

    The effect of moisture absorption on the glass transition temperature (Tg) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the Tg of the foam, with a maximum water uptake shifting the Tg from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

  15. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.

  16. An innovative three-dimensional gelatin foam culture system for improved study of glioblastoma stem cell behavior.

    PubMed

    Yang, Meng-Yin; Chiao, Ming-Tsang; Lee, Hsu-Tung; Chen, Chien-Min; Yang, Yi-Chin; Shen, Chiung-Chyi; Ma, Hsin-I

    2015-04-01

    Three-dimensional (3-D) tissue engineered constructs provide a platform for examining how the local extracellular matrix contributes to the malignancy of various cancers, including human glioblastoma multiforme. Here, we describe a simple and innovative 3-D culture environment and assess its potential for use with glioblastoma stem cells (GSCs) to examine the diversification inside the cell mass in the 3-D culture system. The dissociated human GSCs were cultured using gelatin foam. These cells were subsequently identified by immunohistochemical staining, reverse transcriptase-polymerase chain reaction, and Western blot assay. We demonstrate that the gelatin foam provides a suitable microenvironment, as a 3-D culture system, for GSCs to maintain their stemness. The gelatin foam culture system contributes a simplified assessment of cell blocks for immunohistochemistry assay. We show that the significant transcription activity of hypoxia and the protein expression of inflammatory responses are detected at the inside of the cell mass in vitro, while robust expression of PROM1/CD133 and hypoxia-induced factor-1 alpha are detected at the xenografted tumor in vivo. We also examine the common clinical trials under this culture platform and characterized a significant difference of drug resistance. The 3-D gelatin foam culture system can provide a more realistic microenvironment through which to study the in vivo behavior of GSCs to evaluate the role that biophysical factors play in the hypoxia, inflammatory responses and subsequent drug resistance. © 2014 Wiley Periodicals, Inc.

  17. Neonatal response to control of noise inside the incubator.

    PubMed

    Johnson, A N

    2001-01-01

    The purpose of this study was to test the effect of acoustical foam on the level of noise inside the incubator and examine neonatal response behaviors to changes in environmental noise. The study used a repeated measure, within subject, comparative design. Data on 65 premature neonates were collected over a 14-month period at a large teaching hospital in Delaware. Sound levels, oxygen saturation, and infant states were measured and recorded during three study conditions: pre-study neonate in incubator, neonate in incubator with 5 x 5 x 1 inch acoustical foam pieces placed in each of four corners, and post-study recovery of neonate in incubator with foam removed. All state assessments were measured with oxygen saturation and sound level measurements every 2 minutes of the study for a total 40 minutes. The findings demonstrate a significant treatment effect of acoustical foam on decreasing environmental noise measurements inside the incubator (p = 0.006). Findings also demonstrate significantly changed neonatal state response behaviors with decreasing environmental noise measurements inside the incubator (p = 0.00). The results of this study support the use of acoustical foam as one method of environmental noise management in the intensive care nursery. Because there was a significant correlation between higher noise levels and oxygen support therapy, the findings suggest that special nursing considerations should be taken when caring for ventilator-dependent infants. Noise control protocols should focus on essential environmental interventions for care of these infants.

  18. Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution

    NASA Astrophysics Data System (ADS)

    Franciska, P. L.; Erryani, A.; Annur, D.; Kartika, I.

    2017-05-01

    Metal foam is a new class of materials with promising applications and a unique combination of physical, chemical, and mechanical properties. The purpose of biodegradable implants is to support tissue regeneration and healing in a particular application by material degradation and implant replacement through the surrounding tissue. Magnesium alloys are expected to be degraded in the body and its corrosion products not deleterious to the surrounding tissue. In the present study, the foam metal was manufactured via powder metallurgy with a different variation of sintering temperature and TiH2 used as a foaming agent which are added to Mg-1Ca-3Zn alloy as much 3% wt TiH2. The sintering temperatures were 500, 550 and 600 °C with a constant holding time of 5 hours. It’s critical that the sintering temperature is carefully selected in consideration of their corrosion behavior. This paper reports the study of the behavior of the Mg-Ca-Zn alloy metal foam which evaluated by SEM, EDX, and electrochemical corrosion test in Hank’s solutions. After exposure, the SEM result of Mg-Ca-Zn-3TiH2 to Hank’s solution, a volcano-like structure is formed. The streams of H2 bubbles form at local sites on the Mg alloy surface where electrochemical reactions are taking place, leading to the particular structure with around shape and often with a hole in the center. The corresponding EDS result maps reveal enrichment of O, Ca, P and Mg as corrosion product. Potentiodynamic polarization experiments conducted at 37 °C and pH 7.4 indicated the increased biodegradation rates resulted from porous structure of foam samples. Corrosion rate in 500oC sintering temperature were 1.99 millimiles per year (mmpy) with corrosion current density (I corr ) 87.3.10-6 A/cm2, corrosion rate in 550 °C sintering temperature were 2,16 mmpy with I corr 94.4.10-6 A/cm2 and rate in 600 °C sintering temperature were 2.41 mmpy with I corr 105.10-6 A/cm2. The results showed that the increasing of sintering temperature could influence the corrosion resistance of Mg alloy.

  19. Removing adsorbed heavy metal ions from sand surfaces via applying interfacial properties of rhamnolipid.

    PubMed

    Haryanto, Bode; Chang, Chien-Hsiang

    2015-01-01

    In this study, the interfacial properties of biosurfactant rhamnolipid were investigated and were applied to remove adsorbed heavy metal ions from sand surfaces with flushing operations. The surface tension-lowering activity, micelle charge characteristic, and foaming ability of rhamnolipid were identified first. For rhamnolipid in water, the negatively charged characteristic of micelles or aggregates was confirmed and the foaming ability at concentrations higher than 40 mg/L was evaluated. By using the rhamnolipid solutions in a batch washing approach, the potential of applying the interfacial properties of rhamnolipid to remove adsorbed copper ions from sand surfaces was then demonstrated. In rhamnolipid solution flushing operations for sand-packed medium, higher efficiency was found for the removal of adsorbed copper ions with residual type than with inner-sphere interaction type, implying the important role of interaction type between the copper ion and the sand surface in the removal efficiency. In addition, the channeling effect of rhamnolipid solution flow in the sand-packed medium was clearly observed in the solution flushing operations and was responsible for the low removal efficiency with low contact areas between solution and sand. By using rhamnolipid solution with foam to flush the sand-packed medium, one could find that the channeling effect of the solution flow was reduced and became less pronounced with the increase in the rhamnolipid concentration, or with the enhanced foaming ability. With the reduced channeling effect in the flushing operations, the removal efficiency for adsorbed copper ions was significantly improved. The results suggested that the foam-enhanced rhamnolipid solution flushing operation was efficient in terms of surfactant usage and operation time.

  20. Foam Cushioning

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  1. Development of fine-celled bio-fiber composite foams using physical blowing agents and nano-particles

    NASA Astrophysics Data System (ADS)

    Guo, Gangjian

    As one of eco-friendly bio-fibers, wood-fiber has been incorporated in plastics to make wood-fiber/plastic composites (WPC) with an increased stiffness, durability and lowered cost. However, these improvements are usually accompanied by loss in the ductility and impact strength of the composites. These shortcomings can be significantly improved by incorporating a fine-cell foam structure in the composites. This thesis presents the development of the foaming technology for the manufacture of fine-cell WPC foams with environmentally benign physical blowing agents (PBAs), and focuses on the elucidation of the fundamental foaming mechanisms and the related issues involved. One critical issue comes from the volatiles evolved from the wood-fiber during high temperature processing. The volatiles, as a blowing agent, can contribute to the foaming process. However, they lead to gross deterioration of the cell structure of WPC foams. The presence of volatiles makes foaming of WPC "a poorly understood black art". With the use of PBAs, a strategy of lowering processing temperature becomes feasible, to suppress the generation of volatiles. A series of PBA-based experiments were designed using a statistical design of experiments (DOE) technique, and were performed to establish the relationship of processing and material variables with the structure of WPC foams. Fundamental foaming behaviors for two different PBAs and two different polymer systems were identified. WPC foams with a fine-cell morphology and a desired density were successfully obtained at the optimized conditions. Another limitation for the wider application of WPC is their flammability. Innovative use of a small amount of nano-clay in WPC significantly improved the flame-retarding property of WPC, and the key issue was to achieve a high degree of exfoliation of nano-particles in the polymer matrix, to achieve a desired flammability reduction. The synergistic effects of nano-particles in foaming of WPC were identified as well.

  2. Foam structure, rheology and coarsening : the shape, feel and aging of random soap froth.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinelt, Douglas A.; van Swol, Frank B.; Hilgenfeldt, Sascha

    2010-05-01

    Simulations are in excellent agreement with experiments: structure - Matzke, shear modulus - Princen and Kiss E = 3.30 {sigma}/R{sub 32} = 5.32/(1 + p) {sigma}/(V){sup 1/2}, G {approx} 0.155 E = 0.512 {sigma}/R{sub 32}. IPP theory captures dependence of cell geometry on V and F. Future challenges are: simulating simple shearing flow is very expensive because of frequent topological transitions. Random wet foams require very large simulations.

  3. Hypercuboidal renormalization in spin foam quantum gravity

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2017-06-01

    In this article, we apply background-independent renormalization group methods to spin foam quantum gravity. It is aimed at extending and elucidating the analysis of a companion paper, in which the existence of a fixed point in the truncated renormalization group flow for the model was reported. Here, we repeat the analysis with various modifications and find that both qualitative and quantitative features of the fixed point are robust in this setting. We also go into details about the various approximation schemes employed in the analysis.

  4. Carbon Fiber Foam Composites and Methods for Making the Same

    NASA Technical Reports Server (NTRS)

    Atwater, Mark Andrew (Inventor); Leseman, Zayd Chad (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  5. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    PubMed

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fabrics for fire resistant passenger seats in aircraft

    NASA Technical Reports Server (NTRS)

    Tesoro, G. C.

    1978-01-01

    The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.

  7. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    NASA Astrophysics Data System (ADS)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  8. Stability of foam films of oppositely charged polyelectrolyte/surfactant mixtures: effect of isoelectric point.

    PubMed

    Kristen-Hochrein, Nora; Laschewsky, André; Miller, Reinhard; von Klitzing, Regine

    2011-12-15

    In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam film properties were studied using a fixed surfactant concentration of 3 × 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP. At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4) M.

  9. Numerical investigation on thermal behaviors of two-dimensional latent thermal energy storage with PCM and aluminum foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2017-01-01

    A numerical investigation on Latent Heat Thermal Energy Storage System (LHTESS) based on a phase change material (PCM) is accomplished. The PCM is a pure paraffin wax with a low thermal conductivity. An aluminum metal foam is employed to enhance the PCM thermal behaviors. The geometry is a vertical shell-and-tube LHTESS made with two concentric aluminum tubes. The internal surface of the hollow cylinder is assumed at a constant temperature above the melting temperature of the PCM to simulate the heat transfer from a hot fluid. The external surface is assumed adiabatic. The phase change of the PCM is modelled with the enthalpy porosity theory while the metal foam is considered as a porous media in Darcy-Forchheimer assumption and the Boussinesq approximation is employed. Local thermal non-equilibrium (LTNE) model is assumed. The results are compared in terms of melting time and temperature fields as a function of time for the charging and discharging phases for different porosities and an assigned pore per inch. Results show that the metal foam improves significantly the heat transfer in the LHTESS giving a faster phase change process with respect to pure PCM, reducing the melting time more than one order of magnitude.

  10. Bioactive Glass-Ceramic Foam Scaffolds from ‘Inorganic Gel Casting’ and Sinter-Crystallization

    PubMed Central

    Molino, Giulia; Vitale Brovarone, Chiara

    2018-01-01

    Highly porous bioactive glass-ceramic scaffolds were effectively fabricated by an inorganic gel casting technique, based on alkali activation and gelification, followed by viscous flow sintering. Glass powders, already known to yield a bioactive sintered glass-ceramic (CEL2) were dispersed in an alkaline solution, with partial dissolution of glass powders. The obtained glass suspensions underwent progressive hardening, by curing at low temperature (40 °C), owing to the formation of a C–S–H (calcium silicate hydrate) gel. As successful direct foaming was achieved by vigorous mechanical stirring of gelified suspensions, comprising also a surfactant. The developed cellular structures were later heat-treated at 900–1000 °C, to form CEL2 glass-ceramic foams, featuring an abundant total porosity (from 60% to 80%) and well-interconnected macro- and micro-sized cells. The developed foams possessed a compressive strength from 2.5 to 5 MPa, which is in the range of human trabecular bone strength. Therefore, CEL2 glass-ceramics can be proposed for bone substitutions. PMID:29495498

  11. Numerical study of metal foam heat sinks under uniform impinging flow

    NASA Astrophysics Data System (ADS)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  12. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.

    PubMed

    Nennig, Benoit; Tahar, Mabrouk Ben; Perrey-Debain, Emmanuel

    2011-07-01

    In the present work, the propagation of sound in a lined duct containing sheared mean flow is studied. Walls of the duct are acoustically treated with absorbent poroelastic foams. The propagation of elasto-acoustic waves in the liner is described by Biot's model. In the fluid domain, the propagation of sound in a sheared mean flow is governed by the Galbrun's equation. The problem is solved using a mixed displacement-pressure finite element formulation in both domains. A 3D implementation of the model has been performed and is illustrated on axisymmetric examples. Convergence and accuracy of the numerical model are shown for the particular case of the modal propagation in a infinite duct containing a uniform flow. Practical examples concerning the sound attenuation through dissipative silencers are discussed. In particular, effects of the refraction effects in the shear layer as well as the mounting conditions of the foam on the transmission loss are shown. The presence of a perforate screen at the air-porous interface is also considered and included in the model. © 2011 Acoustical Society of America

  13. A numerical study of granular dam-break flow

    NASA Astrophysics Data System (ADS)

    Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.

    2017-12-01

    Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.

  14. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.

    PubMed

    Ogam, Erick; Depollier, Claude; Fellah, Z E A

    2010-09-01

    Gas-saturated porous skeleton materials such as geomaterials, polymeric and metallic foams, or biomaterials are fundamental in a diverse range of applications, from structural materials to energy technologies. Most polymeric foams are used for noise control applications and knowledge of the manner in which the energy of sound waves is dissipated with respect to the intrinsic acoustic properties is important for the design of sound packages. Foams are often employed in the audible, low frequency range where modeling and measurement techniques for the recovery of physical parameters responsible for energy loss are still few. Accurate acoustic methods of characterization of porous media are based on the measurement of the transmitted and/or reflected acoustic waves by platelike specimens at ultrasonic frequencies. In this study we develop an acoustic method for the recovery of the material parameters of a rigid-frame, air-saturated polymeric foam cylinder. A dispersion relation for sound wave propagation in the porous medium is derived from the propagation equations and a model solution is sought based on plane-wave decomposition using orthogonal cylindrical functions. The explicit analytical solution equation of the scattered field shows that it is also dependent on the intrinsic acoustic parameters of the porous cylinder, namely, porosity, tortuosity, and flow resistivity (permeability). The inverse problem of the recovery of the flow resistivity and porosity is solved by seeking the minima of the objective functions consisting of the sum of squared residuals of the differences between the experimental and theoretical scattered field data.

  15. Development and characterization of a rechargeable carbon foam electrode containing nickel oxyhydroxide active mass

    NASA Astrophysics Data System (ADS)

    Chye, Matthew B.

    2011-12-01

    Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.

  16. Investigation of structural changes of β-casein and lysozyme at the gas-liquid interface during foam fractionation.

    PubMed

    Barackov, Ivana; Mause, Anika; Kapoor, Shobhna; Winter, Roland; Schembecker, Gerhard; Burghoff, Bernhard

    2012-10-15

    Purification and separation of proteins play a major role in biotechnology. Nowadays, alternatives to multistep operations suffering from low product yields and high costs are investigated closely amidst which one of the promising options is foam fractionation. The molecular behavior at the gas-liquid interface plays an important role in the formation and stabilization of enriched foam. This study for the first time correlates the physico-chemical parameters to the molecular structure in view of protein enrichment during foam fractionation of the two relatively different proteins lysozyme and β-casein employing biophysical techniques such as circular dichroism (CD) spectroscopy and infrared reflection absorption spectroscopy (IRRAS). In case of lysozyme, high enrichment was achieved at pH

  17. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    PubMed

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  18. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.

  19. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams

    PubMed Central

    Singhal, Pooja; Rodriguez, Jennifer N.; Small, Ward; Eagleston, Scott; Van de Water, Judy; Maitland, Duncan J.; Wilson, Thomas S.

    2012-01-01

    We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in-vitro cell activation induced by the foam compared to controls demonstrates low acute bio-reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. PMID:22570509

  20. Wave transmission through silicone foam pads in a compression Kolsky bar apparatus. Comparisons between simulations and measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, Edmundo; Song, Bo

    This memo concerns the transmission of mechanical signals through silicone foam pads in a compression Kolsky bar set-up. The results of numerical simulations for four levels of pad pre-compression and two striker velocities were compared directly to test measurements to assess the delity of the simulations. The nite element model simulated the Kolsky tests in their entirety and used the hyperelastic `hyperfoam' model for the silicone foam pads. Calibration of the hyperfoam model was deduced from quasi-static compression data. It was necessary, however, to augment the material model by adding sti ness proportional damping in order to generate results thatmore » resembled the experimental measurements. Based on the results presented here, it is important to account for the dynamic behavior of polymeric foams in numerical simulations that involve high loading rates.« less

  1. Observations of shear flows in high-energy-density plasmas

    NASA Astrophysics Data System (ADS)

    Harding, Eric C.

    The research discussed in this thesis represents work toward the demonstration of experimental designs for creating a Kelvin-Helmholtz (KH) unstable shear layer in a high-energy-density (HED) plasma. Such plasmas are formed by irradiating materials with several kilo-Joules of laser light over a few nanoseconds, and are defined as having an internal pressure greater than one-million atmospheres. Similar plasmas exist in laboratory fusion experiments and in the astrophysical environment. The KH instability is a fundamental fluid instability that arises when strong velocity gradients exist at the interface between two fluids. The KH instability is important because it drives the mixing of fluids and initiates the transition to turbulence in the flow. Until now, the evolution of the KH instability has remained relatively unexplored in the HED regime This thesis presents the observations and analysis of two novel experiments carried out using two separate laser facilities. The first experiment used 1.4 kJ from the Nike laser to generate a supersonic flow of Al plasma over a low-density, rippled foam surface. The Al flow interacted with the foam and created distinct features that resulted from compressible effects. In this experiment there is little evidence of the KH instability. Nevertheless, this experimental design has perhaps pioneered a new method for generating a supersonic shear flow that has the potential to produce the KH instability if more laser energy is applied. The second experiment was performed on the Omega laser. In this case 4.3 kJ of laser energy drove a blast wave along a rippled foam/plastic interface. In response to the vorticity deposited and the shear flow established by the blast wave, the interface rolls up into large vorticies characteristic of the KH instability. The Omega experiment was the first HED experiment to capture the evolution of the KH instability.

  2. rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows - Simulation of planar detonations -

    NASA Astrophysics Data System (ADS)

    Gutiérrez Marcantoni, L. F.; Tamagno, J.; Elaskar, S.

    2017-10-01

    A new solver developed within the framework of OpenFOAM 2.3.0, called rhoCentralRfFoam which can be interpreted like an evolution of rhoCentralFoam, is presented. Its use, performing numerical simulations on initiation and propagation of planar detonation waves in combustible mixtures H2-Air and H2-O2-Ar, is described. Unsteady one dimensional (1D) Euler equations coupled with sources to take into account chemical activity, are numerically solved using the Kurganov, Noelle and Petrova second order scheme in a domain discretized with finite volumes. The computational code can work with any number of species and its corresponding reactions, but here it was tested with 13 chemically active species (one species inert), and 33 elementary reactions. A gaseous igniter which acts like a shock-tube driver, and powerful enough to generate a strong shock capable of triggering exothermic chemical reactions in fuel mixtures, is used to start planar detonations. The following main aspects of planar detonations are here, treated: induction time of combustible mixtures cited above and required mesh resolutions; convergence of overdriven detonations to Chapman-Jouguet states; detonation structure (ZND model); and the use of reflected shocks to determine induction times experimentally. The rhoCentralRfFoam code was verified comparing numerical results and it was validated, through analytical results and experimental data.

  3. Foam flow and liquid films motion: role of the surfactants properties

    NASA Astrophysics Data System (ADS)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  4. Permeability of a bubble assembly: From the very dry to the wet limit

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Pitois, Olivier; Lorenceau, Elise; Louvet, Nicolas

    2010-04-01

    Bubble assemblies offer the remarkable property of adjusting their packing fraction over three orders of magnitude, thus providing an interesting system for the study of liquid flows through granular matter. Although significant work has been done in several fields of research, e.g., foams, porous media, and suspensions, a complete set of data over such a wide range of porosity ɛ is still lacking. In this paper, we measure the permeability of a bubbly system in the range 0.1<ɛ<0.8 and we connect these new data with a recently published set obtained for foams corresponding to ɛ <0.2 [E. Lorenceau et al., Eur. Phys. J. E 28, 293 (2009)]. Moreover, measurements performed with two different surfactants, the so-called "mobile" and "nonmobile" interfaces, allow us to determine the influence of the bubbles' surface mobility, which is proved to be a significant parameter up to ɛ ≈0.6, thus well above the bubbles packing fraction. Above ɛ ≈0.6, surface elasticity is fully mobilized over the bubbles' surface and the behavior of rigid spheres is observed for both solutions. We show that all the permeability values obtained for the bubble assembly with "nonmobile" interfaces are properly described with the Carman-Kozeny model.

  5. Implementation and application of the actuator line model by OpenFOAM for a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Riva, L.; Giljarhus, K.-E.; Hjertager, B.; Kalvig, S. M.

    2017-12-01

    University of Stavanger has started The Smart Sustainable Campus & Energy Lab project, to gain knowledge and facilitate project based education in the field of renewable and sustainable energy and increase the research effort in the same area. This project includes the future installation of a vertical axis wind turbine on the campus roof. A newly developed Computational Fluid Dynamics (CFD) model by OpenFOAM have been implemented to study the wind behavior over the building and the turbine performance. The online available wind turbine model case from Bachant, Goude and Wosnik from 2016 is used as the starting point. This is a Reynolds-Averaged Navier-Stokes equations (RANS) case set up that uses the Actuator Line Model. The available test case considers a water tank with controlled external parameters. Bachant et al.’s model has been modified to study a VAWT in the atmospheric boundary layer. Various simulations have been performed trying to verify the models use and suitability. Simulation outcomes help to understand the impact of the surroundings on the turbine as well as its reaction to parameters changes. The developed model can be used for wind energy and flow simulations for both onshore and offshore applications.

  6. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies.

    PubMed

    Even-Tzur, Nurit; Weisz, Ety; Hirsch-Falk, Yifat; Gefen, Amit

    2006-01-01

    Modern sport shoes are designed to attenuate mechanical stress waves, mainly through deformation of the viscoelastic midsole which is typically made of ethylene vinyl acetate (EVA) foam. Shock absorption is obtained by flow of air through interconnected air cells in the EVA during shoe deformation under body-weight. However, when the shoe is overused and air cells collapse or thickness of the EVA is reduced, shock absorption capacity may be affected, and this may contribute to running injuries. Using lumped system and finite element models, we studied heel pad stresses and strains during heel-strike in running, considering the viscoelastic constitutive behavior of both the heel pad and EVA midsole. In particular, we simulated wear cases of the EVA, manifested in the modeling by reduced foam thickness, increased elastic stiffness, and shorter stress relaxation with respect to new shoe conditions. Simulations showed that heel pad stresses and strains were sensitive to viscous damping of the EVA. Wear of the EVA consistently increased heel pad stresses, and reduced EVA thickness was the most influential factor, e.g., for a 50% reduction in thickness, peak heel pad stress increased by 19%. We conclude that modeling of the heel-shoe interaction should consider the viscoelastic properties of the tissue and shoe components, and the age of the studied shoe.

  7. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    NASA Astrophysics Data System (ADS)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the workability, and having a higher expulsion rate from the foamed binder compared to water as a foaming agent. The addition of foaming agents to the asphalt binder has also lowered the activation energy of the asphalt binder, which has high potential in lowering the energy demand during production processes. The foamed WMA mixture prepared at 100°C was found to have behavior comparable with the control Hot Mix Asphalt (HMA) prepared at 155°C in terms of coatability, workability and compactability. Based on the mixture performance tests, the foamed WMA has a comparable or better performance than the HMA in terms of resistance to moisture damage, permanent deformation, fracture cracking and thermal cracking. The application of nano-hydrated lime is efficient in enhancing the aggregate coatability and improving the bearing capacity of asphalt pavement to lower the rutting potential and moisture susceptibility of foamed WMA mixtures. Limitations for each of the related parameters are also reported in this dissertation for the lab production of foamed WMA mixtures using ethanol and NaHCO 3 as foaming agents. The specified values were made based on the binder test, service characteristics and performance of foamed WMA mixtures in order to yield a comparable or better performance than the control HMA. Field validations should be carried out to understand the overall performance and durability of the proposed foaming WMA.

  8. Nofoam System Technology for Aircraft Hangar Fire Suppression Foam System

    DTIC Science & Technology

    2011-07-01

    use of a firefighting agent that meets Military Specification MIL - F - 24385 [Reference 2]. Significant amounts of AFFF wastewater is generated...rates, Table 3, were the established baseline for comparison. Table 3 theoretical flow rates were derived from Military Specification MIL - F - 24385 [Reference...flow rates, Table 3, was the established baseline for comparison. Table 3 theoretical flow rates were derived from Military Specification MIL - F - 24385 [Reference

  9. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratiosin uniform and shear currents

    NASA Astrophysics Data System (ADS)

    Duanmu, Yu; Zou, Lu; Wan, De-cheng

    2017-12-01

    This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.

  10. Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure

    NASA Astrophysics Data System (ADS)

    Nam, Kyungju; Kim, Hyeong-Gwan; Choi, Hyelim; Park, Hyeji; Kang, Jin Soo; Sung, Yung-Eun; Lee, Hee Chul; Choe, Heeman

    2017-06-01

    Tin oxide is a commonly used gas-sensing material, which can be applied as an n- or p-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing `wall' pores ranging from 5.3 μm to 10.7 μm, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p-type semiconductor behavior and was used without the addition of any catalyst.

  11. Improving sound absorption property of polyurethane foams doped with natural fiber

    NASA Astrophysics Data System (ADS)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Taufiq Zaliran, M.; Kormin, Shaharuddin

    2017-08-01

    This study investigates the acoustics behavior of wood fibre filler of Red Meranti - filled polyurethane foam as a sound absorbing material. Three different thicknesses have been selected which is 10 mm, 20 mm and 30 mm. By choosing percentage loading of Red Meranti (RM) wood fibre of 5%, 10%, 15% and 20% added with polymer foam is namely as polymer foam (PF) composites of PF5%, PF10%, PF15% and PF20%. The sound absorption coefficient (α) and pore structure of the foam samples have been examined by using Impedance Tube test and Scanning Electron Microscopy (SEM). The results revealed that the highest thickness of highest filler loading (PF20%) gives higher sound absorption coefficient (α). The absorption frequency level is observed at 0.9922 and 0.99889 which contributed from low and high frequency absorption level respectively. The smallest pores size structure was observed with highest filler loading of PF. The higher the thickness and the higher the percentage loading of wood filler gives smaller pore structure, consequently, increased the sound absorption coefficient level.

  12. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  13. HIV-Derived ssRNA Binds to TLR8 to Induce Inflammation-Driven Macrophage Foam Cell Formation

    PubMed Central

    Bernard, Mark A.; Han, Xinbing; Inderbitzin, Sonya; Agbim, Ifunanya; Zhao, Hui; Koziel, Henry; Tachado, Souvenir D.

    2014-01-01

    Even though combined anti-retroviral therapy (cART) dramatically improves patient survival, they remain at a higher risk of being afflicted with non-infectious complications such as cardiovascular disease (CVD). This increased risk is linked to persistent inflammation and chronic immune activation. In this study, we assessed whether this complication is related to HIV-derived ssRNAs inducing in macrophages increases in TNFα release through TLR8 activation leading to foam cell formation. HIV ssRNAs induced foam cell formation in monocyte-derived macrophages (MDMs) in a dose-dependent manner. This response was reduced when either endocytosis or endosomal acidification was inhibited by dynasore or chloroquine, respectively. Using a flow cytometry FRET assay, we demonstrated that ssRNAs bind to TLR8 in HEK cells. In MDMs, ssRNAs triggered a TLR8-mediated inflammatory response that ultimately lead to foam cell formation. Targeted silencing of the TLR8 and MYD88 genes reduced foam cell formation. Furthermore, foam cell formation induced by these ssRNAs was blocked by an anti-TNFα neutralizing antibody. Taken together in MDMs, HIV ssRNAs are internalized; bind TLR8 in the endosome followed by endosomal acidification. TLR8 signaling then triggers TNFα release and ultimately leads to foam cell formation. As this response was inhibited by a blocking anti-TNFα antibody, drug targeting HIV ssRNA-driven TLR8 activation may serve as a potential therapeutic target to reduce chronic immune activation and inflammation leading to CVD in HIV+ patients. PMID:25090652

  14. A Temporal and Spatial Analysis of Wave-Generated Foam Patterns in the Surf Zone

    DTIC Science & Technology

    2017-01-10

    region, rectange B depicts the gap region, rectangle C is the plunging breaker, circle D represents a foam hole, rectangle E depict a top box...structures: The hidden skeleton of fluid flows . Phys. Today, 66, 41–47. 35 V. CONCLUSION Unique surf zone imagery, acquired from a UAV at Sand City...MacMahan, J. H., E . B . Thornton, T. P. Stanton, and A. J. H. M. Reniers, 2005: RIPEX: Observations of a rip current system. Mar. Geol., 218, 113–134

  15. Bioplastic composite foam prepared from poly(lactic acid) and natural wood flour

    NASA Astrophysics Data System (ADS)

    Suwannakas, Pokkes; Petrchwattana, Nawadon; Covavisaruch, Sirijutaratana

    2016-03-01

    The major drawbacks of Poly(lactic acid) (PLA) bioplastic are its cost and brittleness. This study aims to reduce the cost by foaming PLA reinforced with wood flour. A series of PLA/ natural fiber (WF) composite was prepared by using WF of selected conifers up to 5 wt%; each composite formulation was then foamed using 2 wt% of Azodicarbonamide (ADC) as chemical foaming agent. ADC effectively reduced the density of PLA and the PLA/WF composite foam by about 45% to 0.64 g/cm3 from 1.24 g/cm3 of neat PLA and 1.26 g/cm3 of PLA/WF composites when 2 wt% ADC was applied. Mechanical behaviors in terms of compressive and impact properties were investigated. With the presence of WF, the compressive stress increased with the WF content due to the good interfacial adhesion between the PLA matrix and the WF. This was verified by microscopic observation, leading to efficient stress transfer at the interface between PLA matrix and the WF. The presence of WF raised the specific compressive modulus and strength of PLA/WF composites to around 0.94 GPa.cm3/g and 2.65 MPa.cm3/g but foaming the PLA or the PLA/WF composites led to a dramatic reduction of the compressive modulus to 0.2-0.4 GPa.cm3/g, implying that the PLA and the PLA/WF foams had become softened. This was evidently observed in the significant reduction of hardness coupled with the vast drop of stress required to compressively deform the foams.

  16. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.

  17. Sound absorption characteristics of aluminum foam with spherical cells

    NASA Astrophysics Data System (ADS)

    Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie

    2011-12-01

    Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.

  18. Behavior of Shape Memory Epoxy Foams in Microgravity: Experimental Results of STS-134 Mission

    NASA Astrophysics Data System (ADS)

    Santo, Loredana; Quadrini, Fabrizio; Squeo, Erica Anna; Dolce, Ferdinando; Mascetti, Gabriele; Bertolotto, Delfina; Villadei, Walter; Ganga, Pier Luigi; Zolesi, Valfredo

    2012-09-01

    Shape memory epoxy foams were used for an experiment on the International Space Station to evaluate the feasibility of their use for building multi-functional composite structures. A small equipment was designed and built to simulate the actuation of simple devices in micro-gravity conditions: three different configurations (compression, bending and torsion) were chosen during the memory step of the foams so as to produce their recovery on ISS. Two systems were used for the experimentation to avoid damages of the flight model during laboratory tests; however a single ground experiment was performed also on the flight model before the mission. Micro-gravity does not affect the ability of the foams to recover their shape but it poses strong limits for the heating system design because of the difference in heat transfer on earth and in orbit. A full recovery of the foam samples was not achieved due to some limitations in the maximum allowable temperature on ISS for safety reasons: anyway a 70% recovery was also measured at a temperature of 110°C. Ground laboratory experiments showed that 100% recovery could be reached by increasing the maximum temperature to 120°C. Experiment results have provided many useful information for the designing of a new structural composite actuator by using shape memory foams.

  19. Nusselt correlation to predict heat transfer from an oscillated vertical annular fluid column through a porous domain

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Sari, Ugurcan

    2017-04-01

    Experimental evaluation of the heat transfer in oscillating flow under the constant heat flux and constant amplitude fluid displacement conditions is presented for a vertical annular flow through a stainless steel wool porous media. The analysis is carried out for two different heat fluxes and for five different frequencies. The data is acquired from the measurements both in the initial transient period and in the pseudo-steady (cyclic) period by the system. The physical and mathematical behavior of the resulting Nusselt numbers are analyzed, according to data acquired from the experiments and in accordance with the results of the Buckingham Pi theorem. A cycle and space averaged Nusselt number correlation is suggested as a function of kinetic Reynolds number for oscillating flows. The suggested correlation is useful in predicting heat transfer from oscillating flows through highly porous and permeable solid media at low actuation frequencies and at low heat fluxes applied in the wall. The validity of the Nusselt numbers acquired by correlation is discussed using experimental Nusselt numbers for the selected kinetic Reynolds number interval. The present investigation has possible applications in moderate sized wicked heat pipes, solid matrix compact heat exchangers compromising of metallic foams, filtration equipment, and steam generators.

  20. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less

  1. Technical Parameters Modeling of a Gas Probe Foaming Using an Active Experimental Type Research

    NASA Astrophysics Data System (ADS)

    Tîtu, A. M.; Sandu, A. V.; Pop, A. B.; Ceocea, C.; Tîtu, S.

    2018-06-01

    The present paper deals with a current and complex topic, namely - a technical problem solving regarding the modeling and then optimization of some technical parameters related to the natural gas extraction process. The study subject is to optimize the gas probe sputtering using experimental research methods and data processing by regular probe intervention with different sputtering agents. This procedure makes that the hydrostatic pressure to be reduced by the foam formation from the water deposit and the scrubbing agent which can be removed from the surface by the produced gas flow. The probe production data was analyzed and the so-called candidate for the research itself emerged. This is an extremely complex study and it was carried out on the field works, finding that due to the severe gas field depletion the wells flow decreases and the start of their loading with deposit water, was registered. It was required the regular wells foaming, to optimize the daily production flow and the disposal of the wellbore accumulated water. In order to analyze the process of natural gas production, the factorial experiment and other methods were used. The reason of this choice is that the method can offer very good research results with a small number of experimental data. Finally, through this study the extraction process problems were identified by analyzing and optimizing the technical parameters, which led to a quality improvement of the extraction process.

  2. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  3. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghion, E., E-mail: egyon@bgu.ac.il; Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content.more » Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.« less

  4. Transition from Forward Smoldering to Flaming in Small Polyurethane Foam Samples

    NASA Technical Reports Server (NTRS)

    Bar-Ilan, A.; Putzeys, O.; Rein, G.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental observations are presented of the effect of the flow velocity and oxygen concentration, and of a thermal radiant flux, on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smolder to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self propagate because of heat losses to the surrounding environment. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing the heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature and the fourth side is exposed to an upward flow and to a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming, and reduces the delay time to transition. Limiting external ambient conditions for the transition to flaming are reported for the present experimental set-up. The results show that smolder propagation and the transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat.

  5. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.

    PubMed

    Doutres, O; Ouisse, M; Atalla, N; Ichchou, M

    2014-10-01

    This paper deals with the prediction of the macroscopic sound absorption behavior of highly porous polyurethane foams using two unit-cell microstructure-based models recently developed by Doutres, Atalla, and Dong [J. Appl. Phys. 110, 064901 (2011); J. Appl. Phys. 113, 054901 (2013)]. In these models, the porous material is idealized as a packing of a tetrakaidecahedra unit-cell representative of the disordered network that constitutes the porous frame. The non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity, airflow resistivity, tortuosity, etc.) are derived from characteristic properties of the unit-cell and semi-empirical relationships. A global sensitivity analysis is performed on these two models in order to investigate how the variability associated with the measured unit-cell characteristics affects the models outputs. This allows identification of the possible limitations of a unit-cell micro-macro approach due to microstructure irregularity. The sensitivity analysis mainly shows that for moderately and highly reticulated polyurethane foams, the strut length parameter is the key parameter since it greatly impacts three important non-acoustic parameters and causes large uncertainty on the sound absorption coefficient even if its measurement variability is moderate. For foams with a slight inhomogeneity and anisotropy, a micro-macro model associated to cell size measurements should be preferred.

  6. Engineered carbon foam for temperature control applications

    NASA Astrophysics Data System (ADS)

    Almajali, Mohammad Rajab

    The need for advanced thermal management materials is well recognized in the electronics and communication industries. An overall reduction in size of electronic components has lead to higher power dissipation and increased the necessity for innovative cooling designs. In response, material suppliers have developed and are continuing to develop, an increasing number of light weight thermal management materials. The new carbon foam is a low density and high thermal conductivity material which has the potential to radically improve heat transfer, thereby reducing size and weight of equipment while simultaneously increasing its efficiency and capabilities. However, carbon foam exhibits low strength and low heat capacity. The present work is intended to overcome these two main drawbacks using a combinatorial approach: (i) initially, copper coating was carried out to improve the thermo-mechanical properties of carbon foam. The thermal and mechanical properties of coated foam were measured using laser flash technique and compression test, respectively. An analytical model was developed to calculate the effective thermal conductivity. It was observed that the copper-coated carbon foam with 50% porosity can attain a thermal conductivity of 180 W/mK. The results from the analytical model were in a very good agreement with experimental results. The modulus increased from 4.5 MPa to 8.6 MPa and the plateau stress increased from 54 kPa to 171 kPa. The relationships between the measured properties and the copper weight ratio were determined. The above analyses demonstrated the significance of copper coating in tailoring carbon foam properties. (ii) Numerical and experimental studies were performed to analyze the phase change behavior of wax/foam composite encapsulated in metal casing. A two-energy equation model was solved using computational fluid dynamics software (CFD). Interfacial effects at the casing-composite junction and between the wax-foam surfaces and the capillary pressure within the foam matrix were investigated. These factors lowered the heat transfer rate considerably and the melting area was reduced by more than 23%. Two samples, coated and uncoated carbon foam, were infiltrated with PCM and subjected to a uniform heat load test in a vacuum. The coated foam showed excellent performance compared to the uncoated foam. (iii) Finally, the new engineered carbon foam was used as a heat sink and heat exchanger in a thermoelectric cooler for a cooling vest application. Using carbon foam as the core material for this application, the effective transfer of heat was significantly increased while reducing the size and weight of the heat exchanger.

  7. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  8. Modification of foaming properties of soy protein isolate by high ultrasound intensity: Particle size effect.

    PubMed

    Morales, Rocío; Martínez, Karina D; Pizones Ruiz-Henestrosa, Víctor M; Pilosof, Ana M R

    2015-09-01

    The effect of high intensity ultrasound (HIUS) may produce structural modifications on proteins through a friendly environmental process. Thus, it can be possible to obtain aggregates with a determined particle size, and altering a defined functional property at the same time. The objective of this work was to explore the impact of HIUS on the functionality of a denatured soy protein isolate (SPI) on foaming and interfacial properties. SPI solutions at pH 6.9 were treated with HIUS for 20 min, in an ultrasonic processor at room temperature, at 75, 80 and 85°C. The operating conditions were: 20 kHz, 4.27 ± 0.71 W and 20% of amplitude. It was determined the size of the protein particles, before and after the HIUS treatment, by dynamic light scattering. It was also analyzed the interfacial behavior of the different systems as well as their foaming properties, by applying the whipping method. The HIUS treatment and HIUS with temperature improved the foaming capacity by alteration of particle size whereas stability was not modified significantly. The temperature of HIUS treatment (80 and 85°C) showed a synergistic effect on foaming capacity. It was found that the reduction of particle size was related to the increase of foaming capacity of SPI. On the other hand, the invariable elasticity of the interfacial films could explain the stability of foams over time. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microcirculatory responses of sacral tissue in healthy individuals and inpatients on different pressure-redistribution mattresses.

    PubMed

    Bergstrand, S; Källman, U; Ek, A-C; Engström, M; Lindgren, M

    2015-08-01

    The aim of this study was to explore the interaction between interface pressure, pressure-induced vasodilation, and reactive hyperaemia with different pressure-redistribution mattresses. A cross-sectional study was performed with a convenience sample of healthy young individuals, and healthy older individuals and inpatients, at a university hospital in Sweden. Blood flow was measured at depths of 1mm, 2mm, and 10mm using laser Doppler flowmetry and photoplethysmography. The blood flow, interface pressure and skin temperature were measured in the sacral tissue before, during, and after load while lying on one standard hospital mattress and three different pressure-redistribution mattresses. There were significant differences between the average sacral pressure, peak sacral pressure, and local probe pressure on the three pressure-redistribution mattresses, the lowest values found were with the visco-elastic foam/air mattress (23.5 ± 2.5mmHg, 49.3 ± 11.1mmHg, 29.2 ± 14.0mmHg, respectively). Blood flow, measured as pressure-induced vasodilation, was most affected in the visco-elastic foam/air group compared to the alternating pressure mattress group at tissue depths of 2mm (39.0% and 20.0%, respectively), and 10mm (56.9 % and 35.1%, respectively). Subjects in all three groups, including healthy 18-65 year olds, were identified with no pressure-induced vasodilation or reactive hyperaemia on any mattress (n=11), which is considered a high-risk blood flow response. Interface pressure magnitudes considered not harmful during pressure-exposure on different pressure-redistribution mattresses can affect the microcirculation in different tissue structures. Despite having the lowest pressure values compared with the other mattresses, the visco-elastic foam/air mattress had the highest proportion of subjects with decreased blood flow. Healthy young individuals were identified with the high-risk blood flow response, suggesting an innate vulnerability to pressure exposure. Furthermore, the evaluation of pressure-redistribution support surfaces in terms of mean blood flow during and after tissue exposure is not feasible, but assessment of pressure-induced vasodilation and reactive hyperaemia could be a new way to assess individualised physiological measurements of mechanisms known to be related to pressure ulcer development.

  10. Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris

    2009-01-01

    Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.

  11. Mechanical properties of heat-treated organic foams

    NASA Astrophysics Data System (ADS)

    Amaral-Labat, G.; Sahimi, Muhammad; Pizzi, A.; Fierro, V.; Celzard, Alain

    2013-03-01

    The mechanical properties of a class of cellular material were measured. The composition of the material was progressively modified, while its pore structure was kept unchanged. Rigid foam, prepared from a thermoset resin, was gradually converted into reticulated vitreous carbon foam by pyrolysis at increasingly higher heat-treatment temperatures (HHT). The corresponding changes in the Young's modulus Y and the compressive strength σ of the materials were measured over a wide range of porosities. The materials exhibit a percolation behavior with a zero percolation threshold. At very low densities the Young's modulus and the compressive strength appear to follow the power laws predicted by percolation theory near the percolation threshold. But, whereas the exponent τ associated with the power-law behavior of Y appears to vary significantly with the material's density and the HHT, the exponent associated with σ does not change much. The possible cause of the apparent and surprising nonuniversality of τ is discussed in detail, in the light of the fact that only the materials’ composition varies, not the structure of their pore space that could have caused the nonuniversality.

  12. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  13. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    PubMed

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  14. Development of Nanoparticle-Stabilized Foams to Improve Performance of Water-less Hydraulic Fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodanovic, Masa; Johnston, Keith P.

    We have successfully created ultra dry carbon-dioxide-in-water and nitrogen-in-water foams (with water content down to 2-5% range), that are remarkably stable at high temperatures (up to 120 deg, C) and pressures (up to 3000psi) and viscous enough (100-200 cP tunable range) to carry proppant. Two generations of these ultra-dry foams have been developed; they are stabilized either with a synergy of surfactants and nanoparticle, or just with viscoelastic surfactants that viscosify the aqueous phase. Not only does this reduce water utilization and disposal, but it minimizes fluid blocking of hydrocarbon production. Further, the most recent development shows successful use ofmore » environmentally friendly surfactants at high temperature and pressure. We pay special attention to the role of nanoparticles in stabilization of the foams, specifically for high salinity brines. The preliminary numerical simulation for which shows they open wider fractures with shorter half-length and require less clean-up due to minimal water use. We also tested the stability and sand carrying properties of these foams at high pressure, room temperature conditions in sapphire cell. We performed on a preliminary numerical investigation of applicability for improved oil recovery applications. The applicability was evaluated by running multiphase flow injection simulations in a case-study oil reservoir. The results of this research thus expand the options available to operators for hydraulic fracturing and can simplify the design and field implementation of foamed fracturing fluids.« less

  15. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways.

    PubMed

    Ni, Jing; Li, Yuanmin; Li, Weiming; Guo, Rong

    2017-10-10

    Foam cell formation and apoptosis are closely associated with atherosclerosis pathogenesis. We determined the effect of salidroside on oxidized low-density lipoprotein (ox-LDL)-induced foam cell formation and apoptosis in THP1 human acute monocytic leukemia cells and investigated the associated molecular mechanisms. THP1-derived macrophages were incubated with salidroside for 5 h and then exposed to ox-LDL for 24 h to induce foam cell formation. Cytotoxicity, lipid deposition, apoptosis, and the expression of various proteins were tested using the CCK8 kit, Oil Red O staining, flow cytometry, and western blotting, respectively. Ox-LDL treatment alone promoted macrophage-derived foam cell formation, while salidroside treatment alone inhibited it (p < 0.05). The number of early/late apoptotic cells decreased with salidroside treatment in a dose-dependent manner (p < 0.05). Salidroside dramatically upregulated nuclear factor erythroid 2-related factor 2, but had no effect on heme oxygenase-1 expression; moreover, it markedly downregulated ox-LDL receptor 1 and upregulated ATP-binding cassette transporter A1. Salidroside also obviously decreased the phosphorylation of JNK, ERK, p38 MAPK, and increased that of Akt. However, the total expression of these proteins was not affected. Based on our findings, we speculate that salidroside can suppress ox-LDL-induced THP1-derived foam cell formation and apoptosis, partly by regulating the MAPK and Akt signaling pathways.

  16. Foam injection molding of poly(lactic acid) with physical blowing agents

    NASA Astrophysics Data System (ADS)

    Pantani, R.; Sorrentino, A.; Volpe, V.; Titomanlio, G.

    2014-05-01

    Foam injection molding uses environmental friendly blowing agents under high pressure and temperature to produce parts having a cellular core and a compact solid skin (the so-called "structural foam"). The addition of a supercritical gas reduces the part weight and at the same time improves some physical properties of the material through the promotion of a faster crystallization; it also leads to the reduction of both the viscosity and the glass transition temperature of the polymer melt, which therefore can be injection molded adopting lower temperatures and pressures. These aspects are of extreme interest for biodegradable polymers, which often present a very narrow processing window, with the suitable processing temperatures close to the degradation conditions. In this work, foam injection molding was carried out by an instrumented molding machine, able to measure the pressure evolution in different positions along the flow-path. The material adopted was a biodegradable polymer, namely the Poly(lactic acid), PLA. The effect of a physical blowing agent (PBA) on the viscosity was measured. The density reduction and the morphology of parts obtained by different molding conditions was assessed.

  17. Fabrication of a Mechanically Robust Carbon Nanofiber Foam

    DTIC Science & Technology

    2015-06-01

    Erlenmeyer exhaust trap utilizing zeolite and permanganate . ........................ 11   Figure 9.   Early CFF experimental mold...containing zeolite and permanganate to dilute the exhaust gases and trap unreacted ethylene prior to their release. Figure 7. MKS mass flow...controller (model MKS 647a). Figure 8. Erlenmeyer exhaust trap utilizing zeolite and permanganate . 12 c. Gas Mixture A flow of pure compressed

  18. Materials Assessment of Insulating Foam in the 9977 Shipping Package for Long-Term Storage - Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWilliams, A. J.

    The 9977 shipping package is being evaluated for long-term storage applications in the K-Area Complex (KAC) with specific focus on the packaging foam material. A rigid closed cell polyurethane foam, LAST-A-FOAM® FR-3716, produced by General Plastics Manufacturing Company is sprayed and expands to fill the void between the inner container and the outer shell of the package. The foam is sealed in this annular space and is not accessible. During shipping and storage, the foam experiences higher than ambient temperatures from the heat generated by nuclear material within the package creating the potential for degradation of the foam. A seriesmore » of experiments is underway to determine the extent of foam degradation. Foam samples of three densities have been aging at elevated temperatures 160 °F, 160 °F + 50% relative humidity (RH), 185 °F, 215 °F, and 250 °F since 2014. Samples were periodically removed and tested. After approximately 80 weeks, samples conditioned at 160 °F, 160 °F + 50% RH, and 185 °F have retained initial property values while samples conditioned at 215 °F have reduced intumescence. Samples conditioned at 250 °F have shown the most degradation, loss of volume, mass, absorbed energy under compression, intumescence, and increased flammability. Based on the initial data, temperatures up to 185 °F have not yet shown an adverse effect on the foam properties and it is recommended that exposure of FR-3716 foam to temperatures in excess of 250 °F be avoided or minimized. Testing will continue beyond the 96 week mark. This will provide additional data to help define the long-term behavior for the lower temperature conditions. Additional testing will be pursued in an attempt to identify transition points (threshold times and temperatures) at the higher temperatures of interest, as well as possible benefits of aging within the relatively oxygen-free environment the foam experiences inside the 9977 shipping package.« less

  19. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.

    PubMed

    Alzobaidi, Shehab; Da, Chang; Tran, Vu; Prodanović, Maša; Johnston, Keith P

    2017-02-15

    Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is <0.05 water) tend to be inherently unstable given that the large capillary pressures that cause the lamellar films to thin. Herein, we demonstrate that these C/W foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120°C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC 3 H 6 N(CH 3 ) 2 CH 2 CO 2 , where R is varied from C 12 - 14 (coco) to C 18 (oleyl) to C 22 (erucyl). For the surfactants with long C 18 and C 22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C 12 - 14 surfactant. At 90°C, the foam morphology was composed of ∼35μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95-0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO 2 enhanced oil recovery, CO 2 sequestration (by greater control of the CO 2 flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal. Copyright © 2016. Published by Elsevier Inc.

  20. Rapid Plateau border size variations expected in three simple experiments on 2D liquid foams.

    PubMed

    Gay, C; Rognon, P; Reinelt, D; Molino, F

    2011-01-01

    Up to a global scaling, the geometry of foams squeezed between two solid plates (2D GG foams) essentially depends on two independent parameters: the liquid volume fraction and the degree of squeezing (bubble thickness to diameter ratio). We describe it in two main asymptotic regimes: fully dry floor tiles, where the Plateau border radius is smaller than the distance between the solid plates, and dry pancakes, where it is larger. We predict a rapid variation of the Plateau border radius in one part of the pancake regime, namely when the Plateau border radius is larger than the inter-plate distance but smaller than the geometric mean of that distance and the bubble perimeter. This rapid variation is not related to any topological change in the foam: in all the regimes we consider, the bubbles remain in mutual lateral contact through films located at mid-height between both plates. We provide asymptotic predictions in different types of experiments on such 2D GG foams: when foam is being progressively dried or wetted, when it is being squeezed further or stretched, when it coarsens through film breakage or through inter-bubble gas diffusion. Our analysis is restricted to configurations close to equilibrium, as we do not include stresses resulting from bulk viscous flow or from non-homogeneous surfactant concentrations. We also assume that the inter-plate distance is sufficiently small for gravity to be negligible. The present work does not provide a method for measuring small Plateau border radii experimentally, but it indicates that large (and easily observable) Plateau borders should appear or disappear rather suddenly in some types of experiments with small inter-plate gaps. It also gives expected orders of magnitude that should be helpful for designing experiments on 2D GG foams.

  1. Synthesis of three-dimensional mesoporous Cu-Al layered double hydroxide/g-C3N4 nanocomposites on Ni-foam for enhanced supercapacitors with excellent long-term cycling stability.

    PubMed

    Adhikari, Surya Prasad; Awasthi, Ganesh Prasad; Kim, Kyung-Suk; Park, Chan Hee; Kim, Cheol Sang

    2018-03-26

    In this study, a novel composite of Cu-Al layered double hydroxide (LDH) nanosheets and g-C3N4-covered Ni-foam was fabricated via a simple and facile two-step process. First, g-C3N4 sheets were deposited on Ni-foam by via electrodeposition method on a three-electrode system (Ni-foam@g-C3N4) and then, Cu-Al LDH nanosheets were grown on the Ni-foam via in situ redox reaction using a hydrothermal process (Ni-foam@Cu-Al LDH/g-C3N4). The FE-SEM image confirmed that the Cu-Al LDH nanosheets arose vertically and were anchored on the surface of electrodeposited g-C3N4 sheets, thus generating unique 3D porous interconnected networks. The electrochemical capacitive performances of the as-prepared samples were evaluated by cyclic volatammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS) Nyquist plots. The specific capacitances of the Ni-foam@Cu-Al LDH/g-C3N4 nanocomposite measured from the CV curve (770.98 F g-1 at 50 mV s-1) and the galvanostatic charge/discharge curve (831.871 at 0.4 A g-1) were significantly higher than the others. Moreover, the Ni-foam@Cu-Al LDH/g-C3N4 nanocomposite revealed a remarkable high-current capacitive behavior and the capacitance retention could be maintained at 92.71% even after 5000 cycles of CV. Thus, the obtained results demonstrated that the as-prepared nanocomposite has great potential to be used as a novel supercapacitor electrode.

  2. Research and analysis on electrochemical performances of α-Fe{sub 2}O{sub 3} electrode in Li-ion battery with different current collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lihong, E-mail: huang.lihong@foxmail.com; Min, Zhonghua; Zhang, Qinyong

    2015-06-15

    Highlights: • We achieved a reversible capacity of 415 mAh g{sup −1} after 30 cycles for α-Fe{sub 2}O{sub 3} electrode in Li-ion battery. • Better electrical performance was obtained when using Cu foam as current collector. • As current collector for α-Fe{sub 2}O{sub 3} electrode, Cu foam is better than Cu foil and Ni foam. • It could avoid the active materials falling off from the current collector during cycling. • It is owe to smaller surface film resistance, charge-transfer resistance, etc. - Abstract: In this work, we reported a simple synthesis of submicron α-Fe{sub 2}O{sub 3} with rod-like structure.more » When it evaluated as electrode material for lithium ion battery, comparing with Cu foil and Ni foam, the as-prepared α-Fe{sub 2}O{sub 3} electrodes with Cu foam current collector exhibited higher reversible capacity of 415 mAh g{sup −1} and more stable cycle performance after 30 cycles. Comparative researches on electrochemical performances of the α-Fe{sub 2}O{sub 3} employing different current collectors (Cu foil, Cu foam and Ni foam) were discussed here in detail. According to our results, the improved electrochemical behaviors of α-Fe{sub 2}O{sub 3} electrode with Cu foam current collector could be attributed to its particular electrode structure, i.e., porous, good electric conductivity, closed adhere to the electrode materials. Just because of that, it may make sure an easy accessibility of electrolytes and fast transportation of lithium ions, importantly, it could avoid the active materials falling off from the current collector on account of volume expansion.« less

  3. Using Improved Equation of State to Model Simultaneous Nucleation and Bubble Growth in Thermoplastic Foams

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Costeux, Stephane; Adrian, David; Cristancho, Diego

    2013-11-01

    Due to environmental regulations carbon-dioxide (CO2) is increasingly being used to replace traditional blowing agents in thermoplastic foams. CO2 is dissolved in the polymer matrix under supercritical conditions. In order to predict the effect of process parameters on foam properties using numerical modeling, the P-V-T relationship of the blowing agents should accurately be represented at the supercritical state. Previous studies in the area of foam modeling have all used ideal gas equation of state to predict the behavior of the blowing agent. In this work the Peng-Robinson equation of state is being used to model the blowing agent during its diffusion into the growing bubble. The model is based on the popular ``Influence Volume Approach,'' which assumes a growing boundary layer with depleted blowing agent surrounds each bubble. Classical nucleation theory is used to predict the rate of nucleation of bubbles. By solving the mass balance, momentum balance and species conservation equations for each bubble, the model is capable of predicting average bubble size, bubble size distribution and bulk porosity. The effect of the improved model on the bubble growth and foam properties are discussed.

  4. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  5. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. © 2013 American Academy of Forensic Sciences.

  6. Preparation and Investigation of Foaming Amphiphilic Fluorinated Nanoparticles for Enhanced Oil Recovery.

    PubMed

    Wang, Keliang; Wang, Gang; Lu, Chunjing; Pei, Cuiying; Wang, Ying

    2017-12-08

    Amphiphilic nanoparticles have attracted increasing interest as Pickering emulsifiers owing to the combined advantages of both traditional surfactants and homogeneous particles. Here, foaming amphiphilic fluorinated nanoparticles were prepared for enhanced oil recovery by the toposelective surface modification method. The structure and properties of amphiphilic nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, a laser diffraction method, fluorescence microscopy, a pendant drop tensiometer, and foamscan. It was found that the amphiphilic fluorinated nanoparticles exhibited significant interfacial activity at the air-water interface and generated stabilized aqueous foams against coalescence and drainage even in the absence of surfactants. When the particle concentration reached 0.6 wt %, the adsorption of the amphiphilic nanoparticles at the interface was saturated and the equilibrium surface tension dropped to around 32.7 mN/m. When the particle concentration reached 0.4 wt %, the Gibbs stability criterion was fulfilled. The amphiphilic nanoparticles foam system has a better plugging capacity and enhanced oil recovery capacity. The results obtained provide fundamental insights into the understanding of the self-assembly behavior and foam properties of amphiphilic fluorinated nanoparticles and further demonstrate the future potential of the amphiphilic nanoparticles used as colloid surfactants for enhanced oil recovery applications.

  7. Preparation and Investigation of Foaming Amphiphilic Fluorinated Nanoparticles for Enhanced Oil Recovery

    PubMed Central

    Wang, Keliang; Lu, Chunjing; Pei, Cuiying; Wang, Ying

    2017-01-01

    Amphiphilic nanoparticles have attracted increasing interest as Pickering emulsifiers owing to the combined advantages of both traditional surfactants and homogeneous particles. Here, foaming amphiphilic fluorinated nanoparticles were prepared for enhanced oil recovery by the toposelective surface modification method. The structure and properties of amphiphilic nanoparticles were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, a laser diffraction method, fluorescence microscopy, a pendant drop tensiometer, and foamscan. It was found that the amphiphilic fluorinated nanoparticles exhibited significant interfacial activity at the air–water interface and generated stabilized aqueous foams against coalescence and drainage even in the absence of surfactants. When the particle concentration reached 0.6 wt %, the adsorption of the amphiphilic nanoparticles at the interface was saturated and the equilibrium surface tension dropped to around 32.7 mN/m. When the particle concentration reached 0.4 wt %, the Gibbs stability criterion was fulfilled. The amphiphilic nanoparticles foam system has a better plugging capacity and enhanced oil recovery capacity. The results obtained provide fundamental insights into the understanding of the self-assembly behavior and foam properties of amphiphilic fluorinated nanoparticles and further demonstrate the future potential of the amphiphilic nanoparticles used as colloid surfactants for enhanced oil recovery applications. PMID:29292747

  8. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    PubMed

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The foaming properties of camel and bovine whey: The impact of pH and heat treatment.

    PubMed

    Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A

    2018-02-01

    The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  11. Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.

    PubMed

    Chevillotte, Fabien; Perrot, Camille

    2017-08-01

    The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.

  12. On the Lateral Compressive Behavior of Empty and Ex-Situ Aluminum Foam-Filled Tubes at High Temperature

    PubMed Central

    Movahedi, Nima; Marsavina, Liviu

    2018-01-01

    In this research work, the effect of lateral loading (LL) on the crushing performance of empty tubes (ETs) and ex situ aluminum foam-filled tubes (FFTs) was investigated at 300 °C. The cylindrical thin-walled steel tube was filled with the closed-cell aluminum alloy foam that compressed under quasi-static loading conditions. During the compression test, the main mechanical properties of the ETs improved due to the interaction effect between the cellular structure of the foam and the inner wall of the empty tube. In addition, the initial propagated cracks on the steel tubes reduced considerably as a result of such interaction. Furthermore, the obtained results of the LL loading were compared with the axial loading (AL) results for both ETs and FFTs at the same temperature. The findings indicated that the application of loading on the lateral surface of the composite causes the lower mechanical properties of both ETs and FFTs in comparison with the axial loading conditions. PMID:29617300

  13. In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation

    DTIC Science & Technology

    2011-03-02

    frompyrolization of iron(II) phthalocyanine , producing vertically aligned CNTs with a nominal outer diameter of 50 nm.11,12 The array was indented using a 40 40 μm...www.acsami.org In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation Matthew R. Maschmann,†,‡Qiuhong Zhang,†,§ Robert Wheeler...multiple length scales. Their behavior is expected to rely heavily on the properties of individual constituent CNTs , interactions and load distribution

  14. Detection of memory loss of symmetry in the blockage of a turbulent flow within a duct

    NASA Astrophysics Data System (ADS)

    Santos, F. Rodrigues; da Silva Costa, G.; da Cunha Lima, A. T.; de Almeida, M. P.; da Cunha Lima, I. C.

    This paper aims to detect memory loss of the symmetry of blockades in ducts and how far the information on the asymmetry of the obstacles travels in the turbulent flow from computational simulations with OpenFOAM. From a practical point of view, it seeks alternatives to detect the formation of obstructions in pipelines. The numerical solutions of the Navier-Stokes equations were obtained through the solver PisoFOAM of the OpenFOAM library, using the large Eddy simulation (LES) for the turbulent model. Obstructions were placed near the duct inlet and, keeping the blockade ratio fixed, five combinations for the obstacles sizes were adopted. The results show that the information about the symmetry is preserved for a larger distance near the ducts wall than in mid-channel. For an inlet velocity of 5m/s near the walls the memory is kept up to distance 40 times the duct width, while in mid-channel this distance is reduced almost by half. The maximum distance in which the symmetry breaking memory is preserved shows sensitivity to Reynolds number variations in regions near the duct walls, while in the mid channel that variations do not cause relevant effects to the velocity distribution.

  15. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less

  16. Comparison between a generalized Newtonian model and a network-type multiscale model for hemodynamic behavior in the aortic arch: Validation with 4D MRI data for a case study.

    PubMed

    Menut, Marine; Boussel, Loïc; Escriva, Xavier; Bou-Saïd, Benyebka; Walter-Le Berre, Hélène; Marchesse, Yann; Millon, Antoine; Della Schiava, Nellie; Lermusiaux, Patrick; Tichy, John

    2018-05-17

    Blood is a complex fluid in which the presence of the various constituents leads to significant changes in its rheological properties. Thus, an appropriate non-Newtonian model is advisable; and we choose a Modified version of the rheological model of Phan-Thien and Tanner (MPTT). The different parameters of this model, derived from the rheology of polymers, allow characterization of the non-Newtonian nature of blood, taking into account the behavior of red blood cells in plasma. Using the MPTT model that we implemented in the open access software OpenFOAM, numerical simulations have been performed on blood flow in the thoracic aorta for a healthy patient. We started from a patient-specific model which was constructed from medical images. Exiting flow boundary conditions have been developped, based on a 3-element Windkessel model to approximate physiological conditions. The parameters of the Windkessel model were calibrated with in vivo measurements of flow rate and pressure. The influence of the selected viscosity of red blood cells on the flow and wall shear stress (WSS) was investigated. Results obtained from this model were compared to those of the Newtonian model, and to those of a generalized Newtonian model, as well as to in vivo dynamic data from 4D MRI during a cardiac cycle. Upon evaluating the results, the MPTT model shows better agreement with the MRI data during the systolic and diastolic phases than the Newtonian or generalized Newtonian model, which confirms our interest in using a complex viscoelastic model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications

    NASA Astrophysics Data System (ADS)

    Deng, R.; Davies, P.; Bajaj, A. K.

    2003-05-01

    A hereditary model and a fractional derivative model for the dynamic properties of flexible polyurethane foams used in automotive seat cushions are presented. Non-linear elastic and linear viscoelastic properties are incorporated into these two models. A polynomial function of compression is used to represent the non-linear elastic behavior. The viscoelastic property is modelled by a hereditary integral with a relaxation kernel consisting of two exponential terms in the hereditary model and by a fractional derivative term in the fractional derivative model. The foam is used as the only viscoelastic component in a foam-mass system undergoing uniaxial compression. One-term harmonic balance solutions are developed to approximate the steady state response of the foam-mass system to the harmonic base excitation. System identification procedures based on the direct non-linear optimization and a sub-optimal method are formulated to estimate the material parameters. The effects of the choice of the cost function, frequency resolution of data and imperfections in experiments are discussed. The system identification procedures are also applied to experimental data from a foam-mass system. The performances of the two models for data at different compression and input excitation levels are compared, and modifications to the structure of the fractional derivative model are briefly explored. The role of the viscous damping term in both types of model is discussed.

  18. Effects of Powder Carrier on the Morphology and Compressive Strength of Iron Foams: Water vs Camphene

    NASA Astrophysics Data System (ADS)

    Park, Hyeji; Um, Teakyung; Hong, Kicheol; Kang, Jin Soo; Nam, Ho-Seok; Kwon, Kyungjung; Sung, Yung-Eun; Choe, Heeman

    2018-06-01

    With its well-known popularity in structural applications, considerable attention has recently been paid to iron (Fe) and its oxides for its promising functional applications such as biodegradable implants, water-splitting electrodes, and the anode of lithium-ion batteries. For these applications, iron and its oxides can be even further utilized in the form of porous structures. In order to control the pore size, shape, and amount, we synthesized Fe foams using suspensions of micrometric Fe2O3 powder reduced to Fe via freeze casting in water or liquid camphene as a solvent through sublimation of either ice or camphene under 5 pct H2/Ar gas and sintering. We then compared them and found that the resulting Fe foam using water as a solvent (p = 71.7 pct) showed aligned lamellar macropores replicating ice dendrite colonies, while Fe foam using camphene as a solvent (p = 68.0 pct) exhibited interconnected equiaxed macropores replicating camphene dendrites. For all directions with respect to the loading axis, the compressive behavior of the water-based Fe foam with a directional elongated wall pore structure was anisotropic (11.6 ± 0.9 MPa vs 7.8 ± 0.8 MPa), whereas that of the camphene-based Fe foam with a random round pore structure was nearly isotropic (12.0 ± 1.1 MPa vs 11.6 ± 0.4 MPa).

  19. Reticulite, Scoria and Lava: Foam Formation in Hawaiian Fire Fountain Eruptions

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Cashman, K. V.

    2006-12-01

    Hawaiian fire fountain eruptions can generate three types of foams: 1) scoria pyroclasts characterized by spherical bubbles and typical vesicularities of 70-85%, 2) reticulite pyroclasts consisting of a polygonal network of trigonal glass struts and vesicularities of 95-99% and 3) lava flows with bubble contents as high as 70-80%. We use bubble textures to explore the origins of these three distinct foams. With these data and the observation that all three foam types can erupt simultaneously, we discuss the dynamics of Hawaiian eruptions. Our main focus is reticulite, which is a minor but ubiquitous product of relatively high Hawaiian fountains. Compared to scoria, reticulite is more vesicular and has a larger mean bubble size and a much more uniform bubble size distribution. It was previously suggested that reticulite results from further expansion of hot scoria foam. However, to form reticulite from scoria requires not only that gas expand faster than it can percolate through bubble networks in scoria, but also requires processes such as Ostwald ripening that will reduce the range of bubble sizes. Such processes commonly occur in the formation of polygonal soap foams for instance. However, we suggest that a better analogue for reticulite formation is popcorn. In particular we propose that reticulite did not evolve from scoria but from magma that experienced (1) near-instantaneous bubble nucleation followed by (2) rapid and uniform expansion to generate (3) a polyhedral 'dry' foam that then (4) experienced near-instantaneous film rupture and quenching throughout the foam. In contrast, it seems that there are other parts of the system where bubble nucleation is not instantaneous and yields a broader size distribution of bubbles that expand more slowly, maintain spherical shapes, and become permeable through coalescence of small melt films between spherical bubble walls. We suggest that reticulite only forms in relatively high fire fountains, not because of longer time for expansion but because of higher ascent rates in these eruptions.

  20. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    NASA Astrophysics Data System (ADS)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  1. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5-{micro}m quartz particles substantially increased because of foaming. The extent of foaming decreased as the particle size of quartz increased. Moreover, samples containing quartz particles 195 {micro}m formed agglomerates at temperatures above 900 C that only slowly dissolved in the melt. This study continues previous work on the feed-melting process, specifically on the effects of the size of silica particles on the formation of nuclear-waste glasses to determine a suitable range of silica particle sizes that causes neither excessive foaming nor undesirable agglomeration. Apart from varying the silica-particle size, carbon was added in the form of sucrose. Sucrose has been used to accelerate the rate of melting. In this study, we have observed its impact on feed foaming and quartz dissolution.« less

  2. A finite element/level set model of polyurethane foam expansion and polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Long, Kevin Nicholas; Roberts, Christine Cardinal

    Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown withmore » water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven curing is very important to the results, since the kinetics, viscosity, and other material properties are all sensitive to temperature. Results from the model are compared to experimental flow visualization data and post-test X-ray computed tomography (CT) data for the density. Several geometries are investigated including two configurations of a mock structural part and a bar geometry to specifically test the density model. We have found that the model predicts both average density and filling profiles well. However, it under predicts density gradients, especially in the gravity direction. Further model improvements are also discussed for future work.« less

  3. Treatment of diseases due to infections and old age using anti-foaming agents.

    PubMed

    Reinemann, Peter Joachim

    2003-06-01

    The biochemical changes taking place in the organism in the course of ageing and infectious processes result in substantial catabolic processes during which a variety of gases are created (in addition to carbon dioxide and nitrogen, depending on the conditions, methane, ammonia, hydrogen sulphide, mercaptan, etc. are also created) in addition to peptides and low molecular organic compounds. These gases are dispersed in the extra-cellular space and in the capillary system of blood and lymph in the form of micro-foam. The accompanied disturbance in the ability to flow considerably impairs the immune defence system which is inseparably connected to the transport of catabolic products. Any resulting diseases can be alleviated or even removed by the application of a simple physical-chemical principle. Anti-foaming agents (solutions, all types of dispersions, micro-emulsions) based on polydimethylsiloxane but also based on fatty acid esters (preferably unsaturated fatty acids) are proposed for treatment purposes.

  4. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  5. MARTINS: A foam/film flow model for molten material relocation in HWRs with U-Al-fueled multi-tube assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalimullah

    1994-03-01

    Some special purpose heavy-water reactors (EM) are made of assemblies consisting of a number of coaxial aluminum-clad U-Al alloy fuel tubes and an outer Al sleeve surrounding the fuel tubes. The heavy water coolant flows in the annular gaps between the circular tubes. Analysis of severe accidents in such reactors requires a model for predicting the behavior of the fuel tubes as they melt and disrupt. This paper describes a detailed, mechanistic model for fuel tube heatup, melting, freezing, and molten material relocation, called MARTINS (Melting and Relocation of Tubes in Nuclear subassembly). The paper presents the modeling of themore » phenomena in MARTINS, and an application of the model to analysis of a reactivity insertion accident. Some models are being developed to compute gradual downward relocation of molten material at decay-heat power levels via candling along intact tubes, neglecting coolant vapor hydrodynamic forces on molten material. These models are inadequate for high power accident sequences involving significant hydrodynamic forces. These forces are included in MARTINS.« less

  6. Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias

    In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less

  7. Numerical simulations of the flow with the prescribed displacement of the airfoil and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Řidký, V.; Šidlof, P.; Vlček, V.

    2013-04-01

    The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.

  8. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging.

    PubMed

    Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of inlet boundary conditions, on the computed flow in the Turbine-99 draft tube, using OpenFOAM and CFX

    NASA Astrophysics Data System (ADS)

    Nilsson, H.; Cervantes, M. J.

    2012-11-01

    The flow in the Turbine-99 Kaplan draft tube was thoroughly investigated at three workshops (1999, 2001, 2005), which aimed at determining the state of the art of draft tube simulations. The flow is challenging due to the different flow phenomena appearing simultaneously such as unsteadiness, separation, swirl, turbulence, and a strong adverse pressure gradient. The geometry and the experimentally determined inlet boundary conditions were provided to the Turbine-99 workshop participants. At the final workshop, angular resolved inlet velocity boundary conditions were provided. The rotating non-axi-symmetry of the inlet flow due to the runner blades was thus included. The effect of the rotating angular resolution was however not fully investigated at that workshop. The first purpose of this work is to further investigate this effect. Several different inlet boundary conditions are applied - the angular resolved experimental data distributed at the Turbine-99 workshop, the angular resolved results of a runner simulation with interpolated values using different resolution in the tangential and radial directions, and an axi-symmetric variant of the same numerical data. The second purpose of this work is to compare the results from the OpenFOAM and CFX CFD codes, using as similar settings as possible. The present results suggest that the experimental angular inlet boundary conditions proposed to the workshop are not adequate to simulate accurately the flow in the T-99 draft tube. The reason for this is that the experimental phase-averaged data has some important differences compared to the previously measured time-averaged data. Using the interpolated data from the runner simulation as inlet boundary condition however gives good results as long as the resolution of that data is sufficient. It is shown that the difference between the results using the angular-resolved and the corresponding symmetric inlet data is very small, suggesting that the importance of the angular resolution is small. The results from OpenFOAM and CFX are very similar as long as the inlet data resolution is fine enough. CFX seems to be more sensitive to that resolution.

  10. High Density Polyetherurethane Foam as a Fragmentation and Radiographic Surrogate for Cortical Bone

    PubMed Central

    Beardsley, Christina L; Heiner, Anneliese D; Brandser, Eric A; Marsh, J Lawrence; Brown, Thomas D

    2000-01-01

    Background Although one of the most important factors in predicting outcome of articular fracture, the comminution of the fracture is only subjectively assessed. To facilitate development of objective, quantitative measures of comminution phenomena, there is need for a bone fragmentation surrogate. Methods Laboratory investigation was undertaken to develop and characterize a novel synthetic material capable of emulating the fragmentation and radiographic behavior of human cortical bone. Result Screening tests performed with a drop tower apparatus identified high-density polyetherurethane foam as having suitable fragmentation properties. The material's impact behavior and its quasi-static mechanical properties are here described. Dispersal of barium sulfate (BaSO4) in the resin achieved radio-density closely resembling that of bone, without detectably altering mechanical behavior. The surrogate material's ultimate strength, elastic modulus, and quasi-static toughness are within an order of magnitude of those of mammalian cortical bone. The spectrum of comminution patterns produced by this material when impacted with varying amounts of energy is very comparable to the spectrum of bone fragment comminution seen clinically. Conclusions A novel high-density polyetherurethane foam, when subjected to impact loading, sustains comminuted fracture in a manner strikingly similar to cortical bone. Moreover, since the material also can be doped with radio-opacifier so as to closely emulate bone's radiographic signature, it opens many new possibilities for CT-based systematic study of comminution phenomena. PMID:10934621

  11. Foam on Tile Impact Modeling for the STS-107 Investigation

    NASA Technical Reports Server (NTRS)

    Stellingwerf, R. F.; Robinson, J. H.; Richardson, S.; Evans, S. W.; Stallworth, R.; Hovater, M.

    2004-01-01

    Following the breakup of the Space Shuttle Columbia during reentry a NASA/Contractor investigation team was formed to examine the probable damage inflicted on Orbiter Thermal Protection System elements by impact of External Tank insulating foam projectiles. The authors formed a working subgroup within the larger team to apply the Smooth Particle Hydrodynamics code SPHC to the damage estimation problem. Numerical models of the Orbiter's tiles and of the Tank's foam were constructed and used as inputs into the code. Material properties needed to properly model the tiles and foam were obtained from other working subgroups who performed tests on these items for this purpose. Two- and three-dimensional models of the tiles were constructed, including the glass outer layer, the main body of LI-900 insulation, the densified lower layer of LI-900, the Nomex felt mounting layer, and the Aluminum 2024 vehicle skin. A model for the BX-250 foam including porous compression, elastic rebound, and surface erosion was developed. Code results for the tile damage and foam behavior were extensively validated through comparison with Southwest Research Institute foam-on-tile impact experiments carried out in 1999. These tests involved small projectiles striking individual tiles and small tile arrays. Following code and model validation we simulated impacts of larger foam projectiles on the examples of tile systems used on the Orbiter. Results for impacts on the main landing gear door are presented in this paper, including effects of impacts at several angles, and of rapidly rotating projectiles. General results suggest that foam impacts on tiles at about 500 mph could cause appreciable damage if the impact angle is greater than about 20 degrees. Some variations of the foam properties, such as increased brittleness or increased density could increase damage in some cases. Rotation up to 17 rps failed to increase the damage for the two cases considered. This does not rule out other cases in which the rotational energy might lead to an increase in tile damage, but suggests that in most cases rotation will not be an important factor.

  12. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    NASA Astrophysics Data System (ADS)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic and defect-free CNTs were shown to produce alumina beads on their surfaces, plasma-treated CNTs with a high concentration of oxygen- containing functional groups on their surface promoted conformal film formation. Furthermore, it was determined that ultrahigh aspect ratio CNT assemblies could be uniformly coated throughout the cross-section by orienting the CNT axes parallel to the direction of precursor flow, as well as by removing any barriers to the pump/purge process such as growth substrates or non-porous sample holders. Heat treatment of CNT-alumina hybrids in air not only led to the crystallization of alumina, but also oxidative removal of CNTs from the core-shell structure. In the case of CNT arrays, this resulted in a weak array of alumina nanotubes. When the same process was applied to alumina-coated CNT foams (CNTFs) however, a robust and resilient aerogel-like material remained post-calcination. Further inspection of this novel material revealed that the foam was made up of a three-dimensional network of interconnect alumina nanotubes resulting from the direct templating of alumina on the CNTF structure. With an average density of 1.2 mg cm-3, it is an order of magnitude lower than the lowest density alumina aerogel reported to date, and is among the lowest density for any inorganic aerogel reported to date as well. The structure, and therefore, properties of these novel foams could be easily tuned by varying the thickness of the alumina coating. Evaluation of the compressive behavior of all foams revealed that their mechanical properties exceed those of various foams with similar densities. This was found to be a result of efficient load transfer through the structure due to good connectivity among nanotube ligaments. This connectivity also provided unprecedented elastic recoverability following compression, particularly for thin-walled samples with CNTFs still intact. Structural stability to liquid infiltration and drying increased with the number of ALD cycles, as well as thermal insulation ability.

  13. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Validation of the analysis of respirable crystalline silica (quartz) in foams used with CIP 10-R samplers.

    PubMed

    Eypert-Blaison, Céline; Moulut, Jean-Claude; Lecaque, Thierry; Marc, Florian; Kauffer, Edmond

    2011-05-01

    Sampling the respirable fraction to measure exposure to crystalline silica is most often carried out using cyclones. However, low flow rates (<4 l min(-1)) and continuing improvement in workplace hygiene means less and less material is sampled for analysis, resulting in increased analytical uncertainty. Use of the CIP 10-R sampler, working at a flow rate of 10 l min(-1), is one attempt to solve current analytical difficulties. To check the ability of the analysis of quartz sampled on foams, known amounts of quartz associated with a matrix have been injected into foams. The results obtained show that the proposed protocol, with prior acid attack and ashing of the foams, satisfies the recommendations of EN 482 Standard [CEN. (2006) Workplace atmospheres-general requirements for the performance of procedures for the measurements of chemical agents. Brussels, Belgium: EN 482 Comité Européen de normalization (CEN).], namely an expanded uncertainty of <50% for quartz weights between 0.1 and 0.5 times the 8-h exposure limit value and <30% for quartz weights between 0.5 and 2 times the 8-h exposure limit value, assuming an exposure limit value equal to 0.1 mg m(-3). Results obtained show that the 101 reflection line allows a quartz quantity of the order of 25 μg to be satisfactorily measured, which corresponds to a 10th of the exposure limit value, assuming an exposure limit value of 0.05 mg m(-3). In this case, the 100 and 112 reflection lines with expanded uncertainties of ~50% would also probably lead to satisfactory quantification. Particular recommendations are also proposed for the preparation of calibration curves to improve the method.

  15. Singularities in Free Surface Flows

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental techniques. The aim of fifth problem is to analyze the coalescence dynamics of drops through a combination of GFEM and scaling theory. Lastly, the sixth problem concerns the thinning and rupture dynamics of thin films of Newtonian and power-law fluids using scaling theory based on asymptotic analysis and the predictions of this theory are corroborated using computations based on GFEM.

  16. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.

    PubMed

    Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar

    2017-01-01

    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.

  17. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    NASA Astrophysics Data System (ADS)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  18. A Thrombus Generation Model Applied to Aneurysms Treated with Shape Memory Polymer Foam and Metal Coils

    NASA Astrophysics Data System (ADS)

    Horn, John; Ortega, Jason; Hartman, Jonathan; Maitland, Duncan

    2015-11-01

    To prevent their rupture, intracranial aneurysms are often treated with endovascular metal coils which fill the aneurysm sac and isolate it from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational model has been developed to predict thrombus formation in blood in response to such cardiovascular implantable devices. The model couples biofluid and biochemical phenomena present as the blood interacts with a device and stimulates thrombus formation. This model is applied to simulations of both metal coil and shape memory polymer foam treatments within an idealized 2D aneurysm geometry. Using the predicted thrombus responses, the performance of these treatments is evaluated and compared. The results suggest that foam-treated aneurysms may fill more quickly and more completely with thrombus than coil-filled aneurysms, potentially leading to improved long-term aneurysm healing. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Cavitating Propeller Performance in Inclined Shaft Conditions with OpenFOAM: PPTC 2015 Test Case

    NASA Astrophysics Data System (ADS)

    Gaggero, Stefano; Villa, Diego

    2018-05-01

    In this paper, we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case (PPTC) in oblique flow. For our calculations, we used the Reynolds-averaged Navier-Stokes equation (RANSE) solver from the open-source OpenFOAM libraries. We selected the homogeneous mixture approach to solve for multiphase flow with phase change, using the volume of fluid (VoF) approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model. Comparing the model results with the experimental measurements collected during the Second Workshop on Cavitation and Propeller Performance - SMP'15 enabled our assessment of the reliability of the open-source calculations. Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines (mesh arrangements and solver setups) for accurate numerical prediction even in off-design conditions. Lastly, we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.

  20. Two-phase flow simulation of scour around a cylindrical pile

    NASA Astrophysics Data System (ADS)

    Nagel, T.; Chauchat, J.; Bonamy, C.; Liu, X.; Cheng, Z.; Hsu, T. J.

    2017-12-01

    Scour around structures is a major engineering issue that requires a detailed description of the flow field but also a consistent description of sediment transport processes that could not only be related to bed shear stress, like Shields parameter based sediment transport formula. In order to address this issue we used a multi-dimensional two-phase flow solver, sedFoam-2.0 (Chauchat et al., GMD 2017) implemented under the open-source CFD toolbox OpenFoam. Three-dimensional simulations have been performed on Roulund et al. (JFM 2005) configurations for clear-water and live bed cases. The k-omega model from Wilcox (AIAA Journal 2006) is used for the turbulent stress and the granular rheology μ(I) is used for the granular stress in the live bed case. The hydrodynamic is validated on the clear water case and the numerical results obtained for the live bed case provide a proof of concept that two-phase flow model is applicable to such problem with quantitative results for the prediction of scour depth upstream and downstream the cylinder at short timescales, up to 300s. Analyzing the simulation results in term of classical dimensionless sediment transport flux versus Shields parameter allows to get more insight into the fine scale sediment transport mechanisms involved in the scour process.

Top