Science.gov

Sample records for focal length optics

  1. Sighting optics including an optical element having a first focal length and a second focal length

    DOEpatents

    Crandall, David Lynn

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  2. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    DOEpatents

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  3. Traceability of high focal length cameras with diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Lages Martins, L.; Silva Ribeiro, A.; Sousa, J. Alves e.

    2016-11-01

    This paper describes the use of diffractive optical elements (DOEs) for metrological traceable geometrical testing of high focal length cameras applied in the observation of large- scale structures. DOEs and related mathematical models are briefly explained. Laboratorial activities and results are described for the case of a high focal length camera used for longdistance displacement measurement of a long-span (2278 m) suspension bridge.

  4. Design of a variable-focal-length optical system

    NASA Technical Reports Server (NTRS)

    Ricks, D.; Shannon, R. R.

    1984-01-01

    Requirements to place an entire optical system with a variable focal length ranging from 20 to 200 cm within a overall length somewhat less than 100 cm placed severe restrictions on the design of a zoom lens suitable for use on a comet explorer. The requirements of a wavelength range of 0.4 to 1.0 microns produced even greater limitations on the possibilities for a design that included a catadioptric (using mirrors and glass) front and followed by a zooming refractive portion. Capabilities available commercial zoom lenses as well as patents of optical systems are reviewed. Preliminary designs of the refractive optics zoom lens and the catadioptric system are presented and evaluated. Of the two, the latter probably has the best chance of success, so long as the shortest focal lengths are not really needed.

  5. Fiber-optic backreflectance method for determining the effective focal lengths of optical elements.

    PubMed

    Ilev, I; Uttamchandani, D; Culshaw, B

    1996-02-01

    An alternative and simple fiber-optic backreflectance method for indirectly determining the effective focal lengths of optical elements by the spatial location of three specific points (the focal point and two object points) is presented. The basic optical element of the method is the single-mode optical fiber. It serves simultaneously as a point light source, an object for projecting, and a point receiver that is highly sensitive to spatial displacements for focused backreflectance laser emission. The method provides high accuracy for both locating the spatial points (1 µm) and determining the effective focal length (less than 0.5%).

  6. Measurement of MODIS optics effective focal length, distortion, and modulation transfer function

    NASA Astrophysics Data System (ADS)

    Thurlow, Paul E.; Cline, Richard W.

    1993-08-01

    A combination MODIS optics characteristics, short back focal length, and relatively distorting optics, has required major revisions in techniques used earlier to characterize effective focal length (EFL) and modulation transfer function (MTF) in the thematic mapper (TM) project. This paper compares measurement approaches used to characterize TM optics and revised methodology intended to characterize MODIS optics at an integration and assembly level.

  7. Simple fiber-optic autocollimation method for determining the focal lengths of optical elements.

    PubMed

    Ilev, I K

    1995-03-15

    A novel simple fiber-optic autocollimation method for determining the focal lengths of lenses and objectives is presented. This method is based on the intensity sensing of reflected light, photoelectric measurement, and the use of single-mode optical fiber. This fiber serves simultaneously as a point light source for the formation of a collimated input laser beam and as a receiver that is highly sensitive to spatial displacements for the autocollimation backreflectance. The method permits us to locate the focal point spatially and to determine the back focal length of a focusing optical element with accuracies exceeding 1 and 2 microm, respectively, which are confirmed by both experimental and analytical investigations.

  8. Continuously variable focal length lens

    DOEpatents

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  9. Optical design of a dual-channel two-focal-length system by utilizing azimuth property of PAL structure

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Cheng, Dewen; Wang, Yongtian

    2016-10-01

    An approach to design a dual-channel two-focal-length lens based on the panoramic annular lens (PAL) structure is presented in this paper. The method of establishing the second channel to eliminate the blind area has been explored in some documents, and mostly it is achieved by utilizing the front surface of the PAL block. But in this paper, we modified the PAL block and divided it into two channels according to their different azimuth direction. These two channels have different focal lengths. Thus, by rotating the system around its axis, optical step-zoom effect can be obtained. Finally, a dual-channel system with a radial zoom ratio of 3× is designed, of which the wide-angle channel has a field-of-view (FOV) of 60° (radial) ×60° (azimuthal) and the long focal length channel has a FOV of 20° (radial)×20° (azimuthal). These two channels share the same stop surface, relay lens, and the image sensor. And a thin glass plate with diffractive structure is placed before the image plane to further correct aberration and obtain a common back focal length for the two channels. This system may have applications in many fields, such as surveillance, robot vision, and foveal imaging.

  10. A modified method for determining the focal ratio degradation and length properties of optical fibres in astronomy

    NASA Astrophysics Data System (ADS)

    Yan, Yunxiang; Wang, Gang; Sun, Weimin; Luo, A.-Li; Ma, Zhenyu; Li, Jian; Wang, Shuqing

    2017-04-01

    Focal ratio degradation (FRD) is a major contributor to throughput and light loss in a fibre spectroscopic telescope system. We combine the guided mode theory in geometric optics and a well-known model, the power distribution model (PDM), to predict and explain the FRD dependence properties. We present a robust method by modifying the energy distribution method with f-intercept to control the input condition. This method provides a way to determine the proper position of the fibre end on the focal plane to improve energy utilization and FRD performance, which lifts the relative throughput up to 95 per cent with variation of output focal ratio less than 2 per cent. This method can also help to optimize the arrangement of the position of focal-plane plate to enhance the coupling efficiency in a telescope. To investigate length properties, we modified the PDM by introducing a new parameter, the focal distance f, into the original model to make it available for a multiposition measurement system. The results show that the modified model is robust and feasible for measuring the key parameter d0 to simulate the transmission characteristics. The output focal ratio in the experiment does not follow the prediction trend but shows an interesting phenomenon: the output focal ratio increases first to the peak, then decreases and remains stable finally with increasing fibre length longer than 15 m. This provides a reference for choosing the appropriate length of fibre to improve the FRD performance for the design of the fibre system in a telescope.

  11. Variable focal length deformable mirror

    DOEpatents

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  12. A variable-focal-length telescope

    NASA Astrophysics Data System (ADS)

    Irkaev, Bahor; Popov, Gennadiy; Nekhaeva, Svetlana

    2005-04-01

    A special additional optical system (AOS) to develop any telescope into a zoom or a variable-focal-length telescope (variotelescope) is proposed. This system permits the telescope optics and detector (charge-couped device) to be matched in order to obtain the best resolution. An analysis of the resolution of the system consisting of the ‘V-telescope and detector’ is performed, and it is shown that the best way to match the optics and detector is to change the focal length, that is to change the image scale. The proposed AOS consists of two spherical mirrors: a large concave mirror and a small convex mirror. The AOS is illustrated by means of figures and tables.

  13. A simple method for focal length measurement

    NASA Astrophysics Data System (ADS)

    Ma, Hua; Ren, Huan; Zhang, Lin; Shi, Zhengdong; Yuan, Quan; Yang, Yi

    2016-09-01

    A simple method for focal length measurement based on image processing is demonstrated and discussed. The collimated beam, detector, motorized translation stage and computer make up of this test system. The two spots pass through the tested lens is accepted by detector, which is transferred twice by motorized translation stage. By acquired the difference of two spots by image processing, the focal length of the tested lens can be gained. The error sources in the measurement are analyzed. Then the results of experiment show that the relative error was 0.1%. This method can be used in workshop and labs for its convenience and low cost.

  14. Crystal diffraction lens with variable focal length

    DOEpatents

    Smither, R.K.

    1991-04-02

    A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.

  15. Crystal diffraction lens with variable focal length

    DOEpatents

    Smither, Robert K.

    1991-01-01

    A method and apparatus for altering the focal length of a focusing element o one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels.

  16. Laser multi-reflection confocal long focal-length measurement

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Qiu, Lirong; Zhao, Weiqian; Xiao, Yang

    2016-06-01

    We propose a new laser multi-reflection confocal focal-length measurement (MCFM) method to meet the requirements of a high-precision measurement for a long focal-length more than 2 m. It places an optical flat and a reflector behind the test lens for reflecting the measuring beam repeatedly, and then, uses the property that the peak points of confocal response curves precisely corresponds to the convergence points of a multi-reflected measuring beam to exactly identify the positions of the convergence points. Subsequently, it obtains the position variation of the reflector with a different number of reflections by a distance measuring instrument, and thereby achieving the high precise long focal-length measurement. The theoretical analyses and preliminary experimental results indicate that MCFM has a relative standard uncertainty of 0.066% for a test lens with the focal-length of 9.76 m. MCFM can provide a novel approach for the high-precision focal-length measurement.

  17. Focal lengths of Venus Monitoring Camera from limb locations

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay S.; Markiewicz, W. J.; Krauss, R.; Ignatiev, N.; Roatsch, T.; Matz, K. D.

    2015-08-01

    The Venus Monitoring Camera (VMC) carried by European Space Agency's Venus Express orbiter (Svedhem et al., 2007) consists of four optical units, each with a separate filter casting an image on a single CCD (Markiewicz et al., 2007a, 2007b). The desire to capture as much of the planet in a single frame during the spacecraft's 24 h, 0.84 eccentricity orbit led to optics with 18° field of view. Analysis of Venus images obtained by the VMC indicated that the computed limb radius and altitude of haze layers were somewhat inconsistent with prior knowledge and expectations. Possible causes include errors in the knowledge of image geometry, misalignment of the optic axis from the pointing direction, and optical distortion. These were explored and eliminated, leaving only deviations from the ground and pre-solar damage estimate of the focal length lengths as the most likely reason. We use the location of planet's limb to estimate the focal length of each camera using images of the planet when the orbiter was more than 20,000 km from planet center. The method relies on the limb radius to be constant at least over a small range of solar zenith angles. We were able to achieve better estimates for the focal lengths for all four cameras and also estimate small offsets to the boresight alignment. An outcome of this analysis is the finding that the slant unit optical depth varies more rapidly with solar zenith angle in the afternoon as compared to morning, with lowest values at local noon. A variation of this level is also observed with latitude. Both are indicative of the presence of overlying haze above the clouds, and the morning afternoon asymmetry suggests different photochemical processes in destruction and production of the haze.

  18. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits.

  19. Custom Fixed-Focal Length Versus Zoom Lenses

    NASA Astrophysics Data System (ADS)

    Mills, Richard; Stoltzman, David

    1989-03-01

    Automated optical inspection (A0I) technology has become vital in the printed wiring board (PWB) industry. AOI systems inspect automatically by scanning to acquire an image, processing the image to detect flaws, and displaying flaws to the operator for rework or rejection. AOI reduces costs by reducing scrap and improving yield. AOI systems pay for themselves by catching defects as early in the manufacturing process as possible: Before flawed artwork is used to print, before good layers are laminated with bad, before misdrilled boards are populated. The AOI-PWB industry places severe demands on optics technology. Features as small as six mils must be imaged clearly and registered exactly, and flaws as small as one mil can be fatal. We shall discuss how optics can be optimized for AOI;in particular, we shall explain the distinct advantages of fixed-focal length lenses over zoom lenses, and of custom lenses over general-purpose lenses.

  20. A simple focal-length measurement technique for adaptive microlenses using z-scan

    NASA Astrophysics Data System (ADS)

    Abdelaziez, Yasser; Banerjee, Partha P.

    2004-10-01

    A simple technique for focal length measurements of adaptive micro-lenses using z-scan is reported. Focal length is one of the most important parameters of any lens. The effective focal length is measured with reference to the principal points that are not easy to find especially for micro-lenses. In addition, variable focal length microlenses pose a different challenge that makes the process of determining their exact focal length a tedious and difficult process. Classical methods such as nodal slide and magnification have been used for focal length determination. Also, advanced Interference techniques such as Talbot, Moire, Digital Speckle, Zygo and Joint Fourier Transform were used for focal length measurements. These techniques require more elaborate setups and difficult to implement, especially for microlenses. Recently a power meter was used to find the focal length of an unknown lens. Most of the techniques mentioned above proof to be not simple for microlens characterization. The z-scan technique has been implemented, for quite sometimes, to characterize the third-order effects of a nonlinear optical material. The z-scan provides information on both the sign and magnitude of the non-linear refractive index and offer advantage of simplicity. We have used a regular lens to collimate and focus light unto the lens under test. By scanning the lens under test and measuring the on-axis intensity, one can find the focal length. This is because the on-axis intensity is proportional to the phase of the lens and therefore the focal length. In the case of an adaptive lens with its focal length is a function of the applied voltage, the scanning occurs for each voltage value that will correspond to the on-axis refractive index change and therefore the far field on-axis intensity. This described technique above is easy to implement and can achieve good accuracy due to the inherent sensitivity of the z-scan.

  1. Test facility for long-focal-length mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Shaffer, John J.

    1993-06-01

    Testing the optical figure and focal length of laser mirrors with radii of curvature in the 10 to 100 m range is difficult. If the mirror is concave, a source can be placed at the center of curvature. Air turbulence over these long path lengths makes interferometry difficult, however, and greatly reduces measurement accuracy. Convex mirrors are even more difficult to measure. A solution is to produce a slightly converging or diverging beam from a virtual source. The actual optical path in which turbulence may develop can then be made very short. A three-element test system consisting of a parabola, a transmission sphere, and a folding flat is described. It is capable of measuring both optical flats and convex or concave mirrors up to 40 cm in diameter with radii of curvature from 10 m to infinity. System accuracy is 1/20th wave rms in optical figure and 0.2% in radius of curvature. A discussion is given of the systematic errors introduced when the parabola is used in other than parallel light.

  2. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  3. Focal Length Affects Depicted Shape and Perception of Facial Images

    PubMed Central

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject’s facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  4. RF/Optical Demonstration: Focal Plane Assembly

    NASA Astrophysics Data System (ADS)

    Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.

    2016-11-01

    In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.

  5. Determination of long focal length of lenses with Talbot interferometer

    NASA Astrophysics Data System (ADS)

    Jin, Xiaorong; Yu, Honglei; Bai, Jian; Hou, Xiyun

    2012-10-01

    In this paper, a method for high-accuracy determination of long focal length based on Talbot interferometer is presented. Through changing the angle between two gratings, systematic errors are reduced effectively by calibration. The collimation of the light is determined by a standard concave mirror. The experimental results reveal that the relative error is 0.1%, and the repeatability is better than 0.1%. As the method is simple and somewhat insensitive to environmental effects, it is especially useful for measuring long focal-length lenses.

  6. Focal length evaluation by inverse ray-tracing Ronchi test

    NASA Astrophysics Data System (ADS)

    Juarez-Salazar, Rigoberto; Diaz-Gonzalez, Gerardo; Robledo-Sánchez, Carlos

    2016-09-01

    A simple method to evaluate the focal length of concave mirrors is proposed. The inverse ray-tracing approach of the Ronchi test is used in the measurement stage. The theoretical principles are given and a numerical method for ronchigram processing is proposed. The results verify the feasibility of the proposal.

  7. Four-group stabilized zoom lens design of two focal-length-variable elements.

    PubMed

    Hao, Qun; Cheng, Xuemin; Du, Ke

    2013-03-25

    We present a theoretical method for analyzing the first-order optics of stabilized zoom lenses with two focal-length-variable elements. The zoom equations are established through the use of the Gaussian brackets method. This is done because the optical power of the focal-length-variable elements varies during the zooming process. The first and second derivatives and the Hessian matrix of the zoom equations with respect to the Gaussian parameters are determined using the equations. These parameters could represent the sensitivity of the zoom ratio of the system to changes in the corresponding system variables. We select the initial values of these system variables, i.e. the magnification of the focal-length-variable element and the structure parameters of the fixed lens group, to be close to the steepest gradient direction. Here the sensitivity of the system focal length is high with respect to variations in the zoom variables. This process leads to an increase in the zoom ratio of the zoom system. The results show successful four-group stabilized zoom lens designs with 2:1 and 5:1 zoom ratios, using two deformable mirrors as focal-length-variable elements. This system, with the inherent characteristics of a steepest gradient, could miniaturize zoom systems.

  8. Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light

    PubMed Central

    Qin, Fei; Huang, Kun; Wu, Jianfeng; Jiao, Jiao; Luo, Xiangang; Qiu, Chengwei; Hong, Minghui

    2015-01-01

    Flat optics, which could planarize and miniaturize the traditional optical elements, possesses the features of extremely low profile and high integration for advanced manipulation of light. Here we proposed and experimentally demonstrated a planar metalens to realize an ultra-long focal length of ~240λ with a large depth of focus (DOF) of ~12λ, under the illumination of azimuthally polarized beam with vortical phase at 633 nm. Equally important is that such a flat lens could stably keep a lateral subwavelength width of 0.42λ to 0.49λ along the needle-like focal region. It exhibits one-order improvement in the focal length compared to the traditional focal lengths of 20~30λ of flat lens, under the criterion of having subwavelength focusing spot. The ultra-long focal length ensures sufficient space for subsequent characterization behind the lens in practical industry setups, while subwavelength cross section and large DOF enable high resolution in transverse imaging and nanolithography and high tolerance in axial positioning in the meantime. Such planar metalens with those simultaneous advantages is prepared by laser pattern generator rather than focused ion beam, which makes the mass production possible. PMID:25943500

  9. Alignment techniques required by precise measurement of effective focal length

    NASA Technical Reports Server (NTRS)

    Wise, T. D.

    1980-01-01

    The characteristics of false color imagery produced by instrumentation on earth resource mapping satellites are examined. The spatial fidelity of the imagery is dependent upon the geometric accuracy (GA) and the band-to-band registration (BBR) with which the telescope instrument is assembled. BBR and GA require knowledge of telescope effective focal length (EFL) to one part in 10,000 in order that the next generation of earth mappers be able to carry out their missions. The basis for this level of precision is briefly considered, and a description is given of the means by which such precise EFL measurements have been carried out. Attention is given to accuracy requirements, the technique used to measure effective focal length, possible sources of error in the EFL measurement, approaches for eliminating errors, and the results of the efforts to control measurement errors in EFL determinations.

  10. Exhaustive linearization for robust camera pose and focal length estimation.

    PubMed

    Penate-Sanchez, Adrian; Andrade-Cetto, Juan; Moreno-Noguer, Francesc

    2013-10-01

    We propose a novel approach for the estimation of the pose and focal length of a camera from a set of 3D-to-2D point correspondences. Our method compares favorably to competing approaches in that it is both more accurate than existing closed form solutions, as well as faster and also more accurate than iterative ones. Our approach is inspired on the EPnP algorithm, a recent O(n) solution for the calibrated case. Yet we show that considering the focal length as an additional unknown renders the linearization and relinearization techniques of the original approach no longer valid, especially with large amounts of noise. We present new methodologies to circumvent this limitation termed exhaustive linearization and exhaustive relinearization which perform a systematic exploration of the solution space in closed form. The method is evaluated on both real and synthetic data, and our results show that besides producing precise focal length estimation, the retrieved camera pose is almost as accurate as the one computed using the EPnP, which assumes a calibrated camera.

  11. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  12. High speed multi focal plane optical system

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1983-01-01

    An apparatus for eliminating beamsplitter generated optical aberrations in a pupil concentric optical system providing a plurality of spatially separated images on different focal planes or surfaces is presented. The system employs a buried surface beamsplitter having spherically curved entrance and exit faces which are concentric to a system aperture stop with the entrance face being located in the path of a converging light beam directed there from an image forming objective element which is also concentric to the aperture stop.

  13. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer.

  14. Robust motion-free and error-correcting method of estimating the focal length of a lens.

    PubMed

    Reza, Syed Azer; Anjum, Arslan

    2017-01-10

    This paper presents a motion-free technique to characterize the focal length of any spherical convex or concave lens. The measurement test-bench uses a Gaussian laser beam, an electronically controlled variable focus lens (ECVFL), a digital micro-mirror device (DMD), and a standard photo-detector (PD). The method requires measuring beam spot sizes for different focal length settings of the ECVFL and using the measurement data to obtain a focal length estimate through an iterative least-squares-based curve-fitting algorithm. The method is also shown to overcome potential measurement errors that arise due to inaccurate placement of optical components on the test-bench as well as unknown principal plane locations of asymmetric lens samples such as plano-convex lenses. Contrary to the commercially deployed and other proposed methods of focal length characterization, this method does not involve any bulk mechanical motion of optical elements. This approach eliminates measurement errors due to gradual mechanical wear and tear and improves measurement repeatability by minimizing mechanical hysteresis. The compact and fully automated method delivers fast, repeatable, and reliable measurements, which we believe makes it ideal for deployment in industrial lens production units and characterizing lenses used in sensitive imaging systems and various other optical experiments and systems. Measured focal lengths are within the 1% manufacturer-provided tolerance values showing excellent agreement between theory and experiments. We also demonstrate measurement robustness by rectifying discrepancies between known and actual separation distances on the measurement test bench.

  15. The Modernization of a Long-Focal Length Fringe-Type Laser Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.; Fletcher, Mark T.

    2012-01-01

    A long-focal length laser velocimeter constructed in the early 1980's was upgraded using current technology to improve usability, reliability and future serviceability. The original, free-space optics were replaced with a state-of-the-art fiber-optic subsystem which allowed most of the optics, including the laser, to be remote from the harsh tunnel environment. General purpose high-speed digitizers were incorporated in a standard modular data acquisition system, along with custom signal processing software executed on a desktop computer, served as the replacement for the signal processors. The resulting system increased optical sensitivity with real-time signal/data processing that produced measurement precisions exceeding those of the original system. Monte Carlo simulations, along with laboratory and wind tunnel investigations were used to determine system characteristics and measurement precision.

  16. Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens.

    PubMed

    Fang, Chaolong; Dai, Bo; Zhuo, Ran; Yuan, Xupeng; Gao, Xiumin; Wen, Jing; Sheng, Bin; Zhang, Dawei

    2016-01-15

    A liquid plano-convex lens with focal length tuning is proposed, which is formed by sinking an oil droplet onto the bottom of an elastomer. A simple and low-cost fabrication method is presented. The lens aperture and initial focal length can be controlled during the fabrication. Furthermore, focal length tuning is demonstrated. The lens made of a 40 mg oil droplet can achieve the tuning range from 12 to 17 mm. The effective aperture of the lens is about 2.8 mm. In the demonstration of an imaging system, the lens assists in focusing and a clear image can be observed.

  17. Focal length calibration of an electrically tunable lens by digital holography.

    PubMed

    Wang, Zhaomin; Qu, Weijuan; Yang, Fang; Asundi, Anand Krishna

    2016-02-01

    The electrically tunable lens (ETL) is a novel current-controlled adaptive optical component which can continuously tune its focus in a specific range via changing its surface curvature. To quantitatively characterize its tuning power, here we assume the ETL to be a pure phase object and present a novel calibration method to dynamically measure its wavefront by use of digital holographic microscopy (DHM). The least squares method is then used to fit the radius of curvature of the wavefront. The focal length is obtained by substituting the radius into the Zemax model of the ETL. The behavior curve between the focal length of the ETL and its driven current is drawn, and a quadratic mathematic model is set up to characterize it. To verify our model, an ETL and offset lens combination is proposed and applied to ETL-based transport of intensity equation (TIE) phase retrieval microscopy. The experimental result demonstrates the calibration works well in TIE phase retrieval in comparison with the phase measured by DHM.

  18. Analysis and design of coaxial three-mirror anastigmat with long effective focal length and full two-dimensional field

    NASA Astrophysics Data System (ADS)

    Lin, Han; Baoqi, Mao; Wen, Sun; Weimin, Shen

    2016-10-01

    There is a race to develop spaceborne high-resolution video cameras since Skybox's success. For low manufacture cost and adaption to micro and small satellites, it is urgent to design and develop compact long focal length optical system with not only small volume, light weight and easy implementation, and also two dimensional field. Our focus is on the Coaxial Three-Mirror Anastigmat (CTMA) with intermediate real image for its no need outer hood and compactness and for its easy alignment, low-order aspheric surface and low cost. The means to deflect its image space beam for accessibility of focal plane array detector and to eliminate its inherent secondary obscuration from its primary mirror central hole and deflection flat mirror is discussed. The conditions to satisfy the above-mentioned requirements are presented with our derived relationship among its optical and structural parameters based on Gaussian optics and geometry. One flat mirror near its exit pupil can be used to deflect its image plane from its axis. And its total length can be decreased with other some flat mirrors. Method for determination of its initial structure with the derived formulae is described through one design example. Furthermore, optimized CTMA without secondary obscuration and with effective focal length (EFFL) of 10m is reported. Its full field, F-number and total length are respectively 1.1°×1°, F/14.3, and one eighth of its EFFL. And its imaging quality is near diffraction limit.

  19. A 3D fiber probe based on orthogonal micro focal-length collimation and fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Cui, Jiwen; Li, Junying; Feng, Kunpeng; Tan, Jiubin; Zhang, Jian

    2016-07-01

    A 3D fiber probe is proposed for the precision measurement of micro parts with high aspect ratios. The probing system consists of two measuring systems: two mutually orthogonal micro focal-length collimation optical paths for the radial tactile probing measurement, and a matched fiber Bragg grating (FBG) pair interrogation system for the axial tactile probing measurement. The fiber probe consists of a fiber stylus and a probe tip, the fiber stylus works as a micro focal-length cylindrical lens, and the FBG inscribed in the fiber stylus works as a measuring FBG. The radial displacement of the probe tip is transformed into the centroid position shift of the two mutually orthogonal micro focal-length collimation optical paths; the axial displacement of the probe tip is transformed into the power ratio change of the matched FBG pair interrogation system. Experimental results indicate that the probe has a radial sensitivity of 71 pixel μm-1 in both X and Y directions, and an axial sensitivity of 4.9% μm-1 in Z direction; the probe can reach a radial resolution of 5 nm, and an axial resolution of 8 nm. The probe has a capability of decoupling the 3D tactility and it can be applied in the measurement of micro parts.

  20. Microlenses with tuned focal characteristics for optical wireless imaging

    NASA Astrophysics Data System (ADS)

    Jin, Xian; Guerrero, Daniel; Klukas, Richard; Holzman, Jonathan F.

    2014-07-01

    Microlenses are fabricated and investigated for integrated imaging applications. The microlenses are fabricated by an in situ polymer electro-dispensing technique that enables user-controlled microlens sizes and shapes, by direct-dispensing and voltage-tuning with a metal micro-needle tip in a filler solution. Theoretical and experimental analyses are carried out for three limiting-cases of electro-dispensed microlenses: an acute-angle microlens with a 30° contact angle, a right-angle microlens with a 90° contact angle, and an obtuse-angle microlens with a 120° contact angle. It is found that the right-angle microlens, with a 500 μm diameter, yields an especially short focal length (700 μm) and exceedingly large numerical aperture (0.533). These characteristics can meet the needs of emerging applications, such as optical wireless devices, which demand compact device integration and broad field-of-view imaging. The microlenses are tested in optical wireless imaging receivers, for signal-to-noise ratio performance, and it is found that the right-angle microlens can offer significant (10 dB) performance enhancements.

  1. Focal length measurement of a varifocal liquid lens with capacitance detection

    NASA Astrophysics Data System (ADS)

    Noda, Kentaro; Binh-Khiem, Nguyen; Takei, Yusuke; Takahata, Tomoyuki; Matsumoto, Kiyoshi; Shimoyama, Isao

    2014-04-01

    This paper reports on a detailed deformation model of varifocal liquid lenses fabricated by Parylene-on-liquid-deposition (POLD), which can be applied to measure and adjust the focal length of such lenses without using extra sensors or sensing mechanisms. The lens was fabricated by encapsulating a liquid between a transparent electrode and a polymer film that was covered with a metal electrode. When voltage is applied to the two electrodes, the lens deforms due to the electrostatic force, and its focal length and the capacitance between the two electrodes change simultaneously. This characteristic enables the focal length of the lens to be adjusted and detected by measuring the capacitance change. The focal length of the fabricated varifocal liquid lens changed from 153.6 to 82.6 mm by applying 150-V. The focal length change of the liquid lens was calculated from the change in its capacitance. Finally, to confirm the efficiency of this varifocal liquid lens, we fabricated a confocal distance sensor using the lens for laser scanning and demonstrated that this system can be used to measure distances of 94-140 mm with an average error of 0.83 mm and a standard deviation of 0.77 mm.

  2. Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers.

    PubMed

    Schwarz, Jens; Geissel, Matthias; Rambo, Patrick; Porter, John; Headley, Daniel; Ramsey, Marc

    2006-11-13

    An optical surface of variable concave parabolic shape and a clear aperture of 30 mm was created using two rings to deform a flat 50.8 mm diameter mirror. The deformable mirror assembly was modeled using finite element analysis software as well as analytical solutions. Measured parabolic surface deformation showed good agreement with those models. Mirror performance was quantitatively studied using an interferometer and focal lengths from hundreds of meters down to the meter scale have been achieved. In this publication, the deformable mirror has been applied to compensate on shot thermal lensing in 16 mm diameter and 25 mm diameter Nd:Phosphate glass rod amplifiers by using only a single actuator. The possibility to rapidly change focal lengths across two to three orders of magnitude has applications for remote sensing, such as laser induced breakdown spectroscopy, LIDAR, and control of laser filament formation.

  3. Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers

    NASA Astrophysics Data System (ADS)

    Schwarz, Jens; Geissel, Matthias; Rambo, Patrick; Porter, John; Headley, Daniel; Ramsey, Marc

    2006-11-01

    An optical surface of variable concave parabolic shape and a clear aperture of 30 mm was created using two rings to deform a flat 50.8 mm diameter mirror. The deformable mirror assembly was modeled using finite element analysis software as well as analytical solutions. Measured parabolic surface deformation showed good agreement with those models. Mirror performance was quantitatively studied using an interferometer and focal lengths from hundreds of meters down to the meter scale have been achieved. In this publication, the deformable mirror has been applied to compensate on shot thermal lensing in 16 mm diameter and 25 mm diameter Nd:Phosphate glass rod amplifiers by using only a single actuator. The possibility to rapidly change focal lengths across two to three orders of magnitude has applications for remote sensing, such as laser induced breakdown spectroscopy, LIDAR, and control of laser filament formation.

  4. Bioluminescence microscopy using a short focal-length imaging lens.

    PubMed

    Ogoh, K; Akiyoshi, R; May-Maw-Thet; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H

    2014-03-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera. As bioluminescence microscopy requires no excitation light, it lacks the photo-toxicity associated with fluorescence imaging and permits the long-term, nonlethal observation of living cells. Thus, bioluminescence microscopy would be a powerful tool in cellular biology that complements fluorescence microscopy.

  5. Cryogenic focal plane flatness measurement with optical zone slope tracking

    NASA Astrophysics Data System (ADS)

    Edelstein, Jerry; Sirk, Martin; Jelinsky, Patrick N.; Besuner, Robert W.; Hoff, Matthew; Perry, Paul; Heetderks, Henry D.; Bebek, Christopher J.; Levi, Michael E.

    2011-10-01

    We describe a non-contact optical measurement method used to determine the surface flatness of a cryogenic sensor array developed for the JDEM mission. Large focal planes envisioned for future visible to near infra-red astronomical large area point-source surveys such as JDEM, WFIRST, or EUCLID must operate at cryogenic temperatures while maintaining focal plane flatness within a few 10's of μm over half-meter scales. These constraints are imposed by sensitivity conditions that demand low noise observations from the sensors and the large-field, fast optical telescopes necessary to obtain the science yield. Verifying cryogenic focal plane flatness is challenging because μm level excursions need to be measured within and across many multi-cm sized sensors using no physical contact and while situated within a high-vacuum chamber. We have used an optical metrology Shack-Hartmann scheme to measure the 36x18 cm focal plane developed for the JDEM mission at the Lawrence Berkeley National Laboratory. The focal plane holds a 4x8 array of CCDs and HgCdTe detectors. The flatness measurement scheme uses a telescope-fed micro-lens array that samples the focal plane to determine slope changes of individual sensor zones.

  6. Focal Plane Alignment Utilizing Optical CMM

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

    2012-01-01

    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation

  7. A calibration technology for multi-camera system with various focal lengths

    NASA Astrophysics Data System (ADS)

    Yang, Ruihua; Zhang, Jin; Deng, Huaxia; Yu, Liandong

    2016-01-01

    Calibration is the basis of three-dimensional (3D) reconstruction for machine vision technology. Nowadays, the most widely used calibration method among computer vision is the technique for binocular stereo measurement. However, binocular stereo vision has limited view field which is difficult to measure large-scale mechanical components synchronously. Thus, enlarging the view field is urgent in need for the large scale measurement. With the application of multi-camera system, the calibration for cameras with different focal lengths is required. In this paper, a method aiming at calibration problems for multi-camera system of different focal lengths is proposed. An imaging model for multi-camera system with various focal lengths is analyzed. The Harris corner detector is applied to determine the relationship between signal camera and checkerboard. Finally, the external parameters of different cameras can be obtained by the link with the checkerboard. The calibration results indicate that the calculation method used in this work can calibrate multi-camera with various focal lengths.

  8. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  9. Optical measurement of focal offset in tunable lenses

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2016-01-01

    Electrically tunable lenses are becoming a widely used optical tool, and have brought significant innovation to microscopy methods. One current limitation of such systems is the difficulty of directly monitor the focal change in real time. Affordable and reliable feedback for such lenses, compatible with any microscopy setup, represents a much-needed improvement that is still not widely available. We discuss here the implementation and technical performance of an optical device to measure with a high frequency response the displacement of the focal offset of a commercial tunable lens with a precision in the range of the axial Point Spread Function (PSF) of the microscope. The technology presented is cost effective and can be employed on any microscopy setup. PMID:26832485

  10. Optical measurement of focal offset in tunable lenses.

    PubMed

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2016-01-25

    Electrically tunable lenses are becoming a widely used optical tool, and have brought significant innovation to microscopy methods. One current limitation of such systems is the difficulty of directly monitor the focal change in real time. Affordable and reliable feedback for such lenses, compatible with any microscopy setup, represents a much-needed improvement that is still not widely available. We discuss here the implementation and technical performance of an optical device to measure with a high frequency response the displacement of the focal offset of a commercial tunable lens with a precision in the range of the axial Point Spread Function (PSF) of the microscope. The technology presented is cost effective and can be employed on any microscopy setup.

  11. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    NASA Astrophysics Data System (ADS)

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  12. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment

    PubMed Central

    Attwood, Simon J.; Cortes, Ernesto; Haining, Alexander William M.; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; del Río Hernández, Armando

    2016-01-01

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour. PMID:27686622

  13. Adhesive ligand tether length affects the size and length of focal adhesions and influences cell spreading and attachment.

    PubMed

    Attwood, Simon J; Cortes, Ernesto; Haining, Alexander William M; Robinson, Benjamin; Li, Danyang; Gautrot, Julien; Del Río Hernández, Armando

    2016-09-30

    Cells are known to respond to physical cues from their microenvironment such as matrix rigidity. Discrete adhesive ligands within flexible strands of fibronectin connect cell surface integrins to the broader extracellular matrix and are thought to mediate mechanosensing through the cytoskeleton-integrin-ECM linkage. We set out to determine if adhesive ligand tether length is another physical cue that cells can sense. Substrates were covalently modified with adhesive arginylglycylaspartic acid (RGD) ligands coupled with short (9.5 nm), medium (38.2 nm) and long (318 nm) length inert polyethylene glycol tethers. The size and length of focal adhesions of human foreskin fibroblasts gradually decreased from short to long tethers. Furthermore, we found cell adhesion varies in a linker length dependent manner with a remarkable 75% reduction in the density of cells on the surface and a 50% reduction in cell area between the shortest and longest linkers. We also report the interplay between RGD ligand concentration and tether length in determining cellular spread area. Our findings show that without varying substrate rigidity or ligand density, tether length alone can modulate cellular behaviour.

  14. Three-dimensional fiber probe based on orthogonal micro focal-length collimation for the measurement of micro parts.

    PubMed

    Cui, Jiwen; Li, Junying; Feng, Kunpeng; Tan, Jiubin

    2015-10-05

    A 3-dimensional fiber probe based on orthogonal micro focal-length collimation (MFL-collimation) is proposed for the measurement of micro parts with high aspect ratios. The probe consists of a fiber stylus which acts as a micro focal-length cylindrical lens (MFLC-lens) of the two orthogonal MFL-collimation optical paths and a probe tip fixed on the free end of the fiber stylus for touching the workpiece. The fiber stylus will deflect (deflection mode) or buckle (buckling mode) under contacts, and the deflection or buckling of the fiber stylus will cause corresponding shifts of the fringe images of the two orthogonal MFL-collimation optical paths. Therefore, the 3-dimensional displacements of the probe tip are transformed into the centroid position shifts of the zero-order fringe images. Experimental results indicate that the fiber probe has a measuring capability in 3-dimensional tactility, and a radial and axial resolution of 5 nm and 3 nm can be obtained respectively. The probe is easily applied in the measurement of micro parts because of its high resolution, low cost, high measurable aspect ratio, low probing forces and capability in three-dimensional tactility.

  15. Optical design of the post-focal relay of MAORY

    NASA Astrophysics Data System (ADS)

    Lombini, M.; De Rosa, A.; Ciliegi, P.; Cortecchia, F.; Diolaiti, E.; Patti, Mauro; Bonaglia, M.; Busoni, L.; De Caprio, V.; Esposito, S.; Feautrier, P.; Rabou, P.; Riva, M.; Stadler, E.

    2016-08-01

    The Multi Conjugate Adaptive Optics RelaY (MAORY) for the European Extremely Large Telescope is planned to be located on the straight-through port of the telescope Nasmyth platform and shall re-image the telescope focal plane to a wide field camera (MICADO) and a possible future second instrument. By means of natural and artificial (laser) reference sources for wavefront sensing, and of deformable mirrors for wavefront correction, MAORY shall be able to compensate the wavefront disturbances affecting the scientific observations, achieving high Strehl ratio and high sky coverage. A trade-off study among different design options has been carried out addressing optical performance at the exit ports (wave front error, field distortion, throughput), structure stability, interface constraints (mass, size, location and accessibility of the two client instruments), and the overall adaptive optics performance. We discuss the baseline configuration of the opto-mechanical design.

  16. 2D focal-field aberration dependence on time/phase screen position and correlation lengths

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter

    2004-05-01

    For high-frequency annular array transducers used in medical ultrasound imaging, aberrations due to tissue and body wall have a significant effect on energy transfer from the main lobe to the sidelobes of the acoustic field: that is, the aberrations make the total sidelobe level increase. This effect makes the ultrasound image poor when imaging heterogeneous organs. This study performs an analysis of the focal-field quality as a function of time/phase screen z position and time/phase screen correlation length. It establishes some rules of thumb which indicate when the focal-field sidelobe energy is at its highest. It also introduces a simple screen-scaling model which is useful as long as the screen position is not closer to the focus than a certain limit distance. The scaling model allows the real screen at a depth z=zscreen to be treated as a scaled screen at the position z=ztransd. 2D sound fields after 3D propagation from the annular arrays to the focal plane have been simulated using an angular spectrum method. The aberrators are represented by amplitude and phase/time screens.

  17. Three-dimensional fiber probe based on micro focal-length collimation and a fiber Bragg grating for the measurement of micro parts.

    PubMed

    Cui, Jiwen; Li, Junying; Feng, Kunpeng; Tan, Jiubin

    2015-07-15

    A three-dimensional (3D) fiber probe is proposed for the measurement of micro parts. The probe is made of a fiber Bragg grating (FBG) that acts as a micro focal-length cylindrical lens (MFLC-lens) of two mutually orthogonal micro focal-length collimation (MFL-collimation) optical paths. The radial displacement of the probe tip is transformed into the shift of the fringe image collimated by the MFL-collimation optical path; the axial displacement of the probe tip is transformed into the power ratio variation caused by the Bragg wavelength shift. Advantages of the probe are high precision, low cost, high measurable aspect ratio, and capability of decoupling the 3D tactility.

  18. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  19. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation.

    PubMed

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-06-29

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What's more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication.

  20. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-06-01

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What’s more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication.

  1. Influence of transform-lens focal length on spectral beam combining in an external cavity with a microlens array

    NASA Astrophysics Data System (ADS)

    Zhan, Sheng-bao; Wu, Zhuo-liang; He, Feng; Zhang, Jie; You, Jian-cun; Ma, Ye-wan

    2017-03-01

    An experimental system of spectral beam combining of 3 large-mode-area double-clad fiber lasers has been built on the basis of an external cavity with a microlens array. The analysis models of coupling and combining efficiency, as well as beam quality were established. According to the models, the influences of focal length of transform lens on the coupling, combining efficiency, as well as beam quality were analyzed. The results show that the longer focal length of transform lens increases the number of combined emitters, while hardly affects the combining efficiency. In the tunable experiment of individual fiber laser, the laser can be tuned in a range of 40.62 nm for using transform lens with focal length of 50 mm, slightly wider than that for another one with focal length of 100 mm (40.36 nm). In the combining experiment of three fiber lasers, the measured combining efficiency for the transform lens with focal length of 50 mm was about 77.0%, with the output power of about 1.01 W, and the beam quality factor (Mx2) of 1.318. For another one with focal length of 100 mm, the measured combining efficiency was about 83.3%, with the output power of about 1.09 W, and the beam quality factor (Mx2) of 1.312.

  2. Materials for intraocular lenses enabling photo-controlled tuning of focal length in vivo

    NASA Astrophysics Data System (ADS)

    Träger, Jens; Heinzer, Jasmin; Kim, Hee-Cheol; Hampp, Norbert

    2007-07-01

    Typical postoperative complications in cataract surgery are that refractive power and curvature of the implanted intraocular lens (IOL) do not have optimum values, requiring the patient to wear viewing aids. This is mainly because biometric data relevant for calculation of the IOL's shape cannot be determined with the required precision. Hence, there is a need for methods to tune the focal length postoperatively in a non-invasive manner. We have developed polymers where we can induce a change in refractive index by linking or cleaving bonds between a su.ciently large number of side groups of the polymer main chain in a photoinduced cycloaddition or cycloreversion reaction, respectively. These photoreactions lead to a change in refractive index great enough to be interesting for the concept of in vivo tunable IOL's. The photochemical reaction can be triggered by a two-photon process (TPA) using a pulsed laser system, i.e. the energy required for bond breaking is provided by two photons in the visible range. This is important because light in the UV cannot induce undesired changes of the refractive index owing to the strong UV-absorption of the cornea. Undesired changes due to light in the visible range of the spectrum are unlikely to happen because photon density of sun light is much too low for TPA. Due to the excellent spatial resolution that can be achieved with two-photon processes one cannot only modify the refractive index of the entire lens but also selectively in well defined areas enabling to correct for aberrations such as astigmatism. Here, we present new polymers that do not only exhibit a photo induced change of refractive index great enough to induce a change of focal length of more than two diopters in a standard IOL. These new polymers have also significantly improved material properties with respect to the fabrication of the IOL and the TPA-sensitivities and the light energy required to induce the refractive index change.

  3. Tunable liquid crystal lens array by encapsulation with a photo-reactive polymer for short focal length

    NASA Astrophysics Data System (ADS)

    Kim, Se-Um; Lee, Sanghun; Na, Jun-Hee; Lee, Sin-Doo

    2014-02-01

    We demonstrated an electrically tunable liquid crystal (LC) lens array with a short focal length by self-encapsulation with a polymer layer of photo-reactive mesogens (RMs). The underlying concept relies primarily on the encapsulation of the LC with a thin curvilinear polymer layer in contact with air for the reduction of the focal length. The polymer-encapsulated (PE)-LC lens array was produced on a patterned substrate by selective wetting inscription through the phase separation of the LC and the RMs. In the field-off state, the focal length of the PE-LC lens was measured to be about 3 mm which is shorter than a conventional case by a factor of three (about 9 mm). The wettability inscription by ultraviolet light enables to build up any size of the LC lens in array over large-area without using a wet-chemical etching process for flexible optoelectronic and photonic applications.

  4. Alternative method for measuring effective focal length of lenses using the front and back surface reflections from a reference plate.

    PubMed

    Kim, Do-Hyun; Shi, Dexiu; Ilev, Ilko K

    2011-09-10

    We present a simple method for measuring the effective focal length without determining the location of principle plane of the lens. The method is based on the measurement of confocal backreflection axial responses from the front and back surfaces of a reference plate with known refractive index and thickness. We proved the concept by measuring the effective focal lengths of thin singlet lenses and complex microscope objectives. The theoretical limit of measurement precision varies depending on the numerical aperture of the lens. This method can provide an alternative focal length measurement method for complex lenses or lenses that are permanently attached to other structures. Measurement errors were analyzed theoretically and improvements in measurement accuracy were discussed.

  5. Modeling of a Variable Focal Length Flat Lens Using Left Handed Metamaterials

    NASA Technical Reports Server (NTRS)

    Reinert, Jason

    2004-01-01

    Left Handed Metamaterials (LHM) were originally purposed by Victor Veselago in1968. These substances would allow a flat structure to focus electromagnetic (EM) waves because they have a negative index of refraction. A similar structure made from conventional materials, those with a positive index of refraction, would disperse the waves. But until recently, these structures have been purely theoretical because substances with both a negative permittivity and negative permeability, material properties necessary for a negative index of refraction, do not naturally exist, Recent developments have produced a structure composed of an array of thin wires and split ring resonators that shows a negative index of refraction. area smaller than a square wavelength. How small the area is can be determined by how perfectly the lens is polished and how pure the substance is that composes the lens. These lenses must also be curved for focusing to occur. The focal length is determined by the curvature of the lens and the material. On the other hand, a flat structure made from LHM would focus light because of the effect of a negative index of refraction in Snell s law. The focal length could also be varied by simply adjusting the distance of the lens from the source of radiation. This could create many devices that are adjustable to different situations in fields such as biomedical imaging and communication. the software package XFDTD which solves Maxwell s equations in the frequency domain as well as the time domain. The program used Drude models of materials to simulate the effect of negative permittivity and negative permeability. Because of this, a LHM can be simulated as a solid block of material instead of an array of wires and split ring resonators. After a flat lens is formed, I am to examine the focusing effect of the lens and determine if a higher resolution flat lens can be developed. Traditional lenses made from conventional materials cannot focus an EM wave onto an My

  6. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    SciTech Connect

    Codona, Johanan L.; Kenworthy, Matthew

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  7. An Introduction to the E-ELT Instrumentation and Post-focal Adaptive Optics Module Studies

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.; Ramsay, S.; Hubin, N.; Gonzalez, J. C.; Zerbi, F. M.

    2010-06-01

    The following eleven articles provide short summaries of the conceptual design studies for the European Extremely Large Telescope instruments and post-focal adaptive optics modules. The background and scope of these studies is outlined in this introduction.

  8. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  9. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  10. Digital holography for mechanical vibration measurements in rigid body displacement: elimination of the latter by means of a variable focal length adjustment

    NASA Astrophysics Data System (ADS)

    Pérez-López, Carlos; Mendoza Santoyo, Fernando; Gutiérrez Hernández, David Asael; Muñoz Solis, Silvino

    2008-06-01

    We present our investigation on the separation of mechanical vibrations from rigid body displacements. Pairs of digital holograms acquired between two consecutive time intervals from this type of events produce phase maps that contain both the vibration and rigid body motion information, or even further fully decorrelated phase maps after computer processing. In order to compensate for body displacements, a conjugate object-image experimental arrangement for digital holography is used to measure the mechanical vibrations in a rectangular flat plate. This is achieved by including an extra lens with variable focal length adjustments in front of the typical lens-aperture combination used in the optical head of a digital holographic set up. Out of plane data is obtained from a framed metal plate subjected to a known modal vibration that is also allowed to move perpendicularly to its surface. We will demonstrate that due to the power adjustment of the added lens the angular phase change in the digital hologram from the known object motion allows the separation of the vibration mode at the image plane. The proposed lens addition into a new optical head arrangement in digital holography combined with an a priori knowledge of the rigid body displacement is able to accurately separate the mechanical vibrations making it a promising method in experiments performed under noisy environments. This research suggests the inclusion of adaptive lenses to control the effective focal length when there is a need to separate two distinctive motion types, i.e., vibration from rigid body motion.

  11. Precise annealing of focal plane arrays for optical detection

    DOEpatents

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  12. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    NASA Astrophysics Data System (ADS)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  13. Optical frequency standards for time and length applications

    NASA Astrophysics Data System (ADS)

    Hong, Feng-Lei

    2017-01-01

    The last decade has witnessed tremendous progress in research on optical frequency metrology. Optical frequency standards using optical lattice and single-ion trap technologies have reached levels of stability and accuracy that surpass the performance of the best Cs fountain atomic clocks by orders of magnitude. Optical frequency standards are also used for various applications including length metrology. Optical frequency measurement and links using optical frequency combs and optical fibres play important roles in the development of optical frequency standards. This article introduces optical frequency standards recommended by the International Committee for Weights and Measures (CIPM) along with updates provided by recent research results. Frequency ratio measurements and remote frequency comparisons are addressed in relation to the work whose goal is to redefine the second. Optical frequency standard and optical frequency comb applications are also described.

  14. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  15. Spot size and effective focal length measurements for a fast axial flow CO{sub 2} laser

    SciTech Connect

    Steele, R.J.; Fuerschbach, P.W.; MacCallum, D.O.

    1997-12-31

    An evaluation of the variation in focal plane position and spot size for a 1,650 W fast axial flow CO{sub 2} laser was performed. Multiple measurements of the focused beam were taken at stepped intervals along the beam axis to create a composite representation of the focus region. Measurements were made at several power levels from low to full power for each of five nominally identical lenses. It was found that as laser output power increases, the minimum focused spot radius increases, and the position of minimum focus shifts toward the laser resonator. These effects were attributed to observed variations in the diameter of the beam entering the focusing lens. For the ZnSe (f = 127 mm) lenses examined, variations in spot radius and focal plane position were seen. Lenses with high rated absorption had a larger variation in spot size and effective focal length than those with low absorption. Lenses that had previously been degraded by welding had the greatest variation.

  16. MEMS Terahertz Focal Plane Array With Optical Readout

    DTIC Science & Technology

    2016-06-01

    THz sensing can be achieved by integrating a metamaterial absorber with bi-material legs to form a sensor . Moveable mirror- like surfaces on the...optical readout system. In this thesis, the construction of the optical readout system for characterization of sensor pixels as well as THz imaging is...THz sensing can be achieved by integrating a metamaterial absorber with bi-material legs to form a sensor . Moveable mirror-like surfaces on the

  17. Measurement of Trap Length for an Optical Trap

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.

    2009-01-01

    The trap length along the beam axis for an optical trap formed with an upright, oil-immersion microscope was measured. The goals for this effort were twofold. It was deemed useful to understand the depth to which an optical trap can reach for purposes of developing a tool to assist in the fabrication of miniature devices. Additionally, it was desired to know whether the measured trap length favored one or the other of two competing theories to model an optical trap. The approach was to trap a microsphere of known size and mass and raise it from its initial trap position. The microsphere was then dropped by blocking the laser beam for a pre-determined amount of time. Dropping the microsphere in a free-fall mode from various heights relative to the coverslip provides an estimate of how the trapping length changes with depth in water in a sample chamber on a microscope slide. While it was not possible to measure the trap length with sufficient precision to support any particular theory of optical trap formation, it was possible to find regions where the presence of physical boundaries influenced optical traps, and determine that the trap length, for the apparatus studied, is between 6 and 7 m. These results allow more precise control using optical micromanipulation to assemble miniature devices by providing information about the distance over which an optical trap is effective.

  18. Calculation of focal positions in an optical head for parallel data processing with a monolithic four-beam laser diode.

    PubMed

    Shinoda, M

    2001-03-01

    A method for calculating focal positions in a multibeam optical head by use of a multibeam laser diode, in which conditions for misalignment of the light source are taken into consideration, is introduced. One calculates the focal positions by using the practical characteristics of a monolithic four-beam laser diode and the practical specifications of the optics in an optical head. The results show that each focal position is defocused mainly as a result of curvature of the fields of the lenses. The adaptability of focal positions for various calculated conditions is discussed from the standpoint of depth of focus.

  19. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  20. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1986-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  1. Phase-Length Optical Phase-Locked-Loop Sensor (PLOPS)

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Rogawski, Robert S.

    1988-01-01

    PLOPS system designed to provide high-resolution measurement of change in optical length from optical-system source to any optical reflector, including diffuse reflector. Serves as adjustable optical ruler, providing high resolution in measurements of small and large changes in distance to target. Use is broad and includes most measurement situations requiring information on length, vibration, and their derivatives. Applications include building dynamics, remote sensing of vibrations in such systems as turbine-based machinery, monitoring of structural dynamics, noncontacting sensing of surface contours, measurement of large strains as in earthquake monitoring, measurement of atmospheric dynamics and turbulence, high-resolution sensing of humidity, detection of surface acoustic waves by optical microscopy, and related areas.

  2. Nonlinear optical microscopy improvement by focal-point axial modulation

    NASA Astrophysics Data System (ADS)

    Dashtabi, Mahdi Mozdoor; Massudi, Reza

    2016-05-01

    Among the most important challenges of microscopy-even more important than the resolution enhancement, especially in biological and neuroscience applications-is noninvasive and label-free imaging deeper into live scattering samples. However, the fundamental limitation on imaging depth is the signal-to-background ratio in scattering biological tissues. Here, using a vibrating microscope objective in conjunction with a lock-in amplifier, we demonstrate the background cancellation in imaging the samples surrounded by turbid and scattering media, which leads to more clear images deeper into the samples. Furthermore, this technique offers the localization and resolution enhancement as well as resolves ambiguities in signal interpretation, using a single-color laser. This technique is applicable to most nonlinear as well as some linear point-scanning optical microscopies.

  3. Measurement of the Length of an Optical Trap

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.

    2010-01-01

    NASA Glenn has been involved in developing optical trapping and optical micromanipulation techniques in order to develop a tool that can be used to probe, characterize, and assemble nano and microscale materials to create microscale sensors for harsh flight environments. In order to be able to assemble a sensor or probe candidate sensor material, it is useful to know how far an optical trap can reach; that is, the distance beyond/below the stable trapping point through which an object will be drawn into the optical trap. Typically, to measure the distance over which an optical trap would influence matter in a horizontal (perpendicular to beam propagation) direction, it was common to hold an object in one optical trap, place a second optical trap a known distance away, turn off the first optical trap, and note if the object was moved into the second trap when it was turned on. The disadvantage of this technique is that it only gives information of trap influence distance in horizontal (x y) directions. No information about the distance of the influence of the trap is gained in the direction of propagation of the beam (the z direction). A method was developed to use a time-of-flight technique to determine the length along the propagation direction of an optical trap beam over which an object may be drawn into the optical trap. Test objects (polystyrene microspheres) were held in an optical trap in a water-filled sample chamber and raised to a pre-determined position near the top of the sample chamber. Next, the test objects were released by blocking the optical trap beam. The test objects were allowed to fall through the water for predetermined periods of time, at the end of which the trapping beam was unblocked. It was noted whether or not the test object returned to the optical trap or continued to fall. This determination of the length of an optical trap's influence by this manner assumes that the test object falls through the water in the sample chamber at

  4. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  5. Phase Length Optical Phase-Locked-Loop Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor)

    1988-01-01

    The invention is a device that provides a high resolution measurement of the change in optical phase length from the device optical system source to an optical reflector. The invention consists of a optical phase locked loop that uses a laser beam as a carrier of an intensity modulated energy source. The novelty of the invention appears to lie in the overall combination of elements which provide high resolution without loss of wide dynamic range. The invention does not depend on coherent reflection from a target, and thus can measure targets that do not have special preparation or corner reflectors. The use of carrier modulation achieves high resolution without the problems of high speed pulse duration systems. Thus the invention has the advantages of simplicity, low cost, and small size without sacrificing resolution.

  6. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    PubMed

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF.

  7. Active stabilization of a fiber-optic two-photon interferometer using continuous optical length control.

    PubMed

    Cho, Seok-Beom; Kim, Heonoh

    2016-05-16

    The practical realization of long-distance entanglement-based quantum communication systems strongly rely on the observation of highly stable quantum interference between correlated single photons. This task must accompany active stabilization of the optical path lengths within the single-photon coherence length. Here, we provide two-step interferometer stabilization methods employing continuous optical length control and experimentally demonstrate two-photon quantum interference using an actively stabilized 6-km-long fiber-optic Hong-Ou-Mandel interferometer. The two-step active control techniques are applied for measuring highly stable two-photon interference fringes by scanning the optical path-length difference. The obtained two-photon interference visibilities with and without accidental subtraction are found to be approximately 90.7% and 65.4%, respectively.

  8. Measurement and compensation of laser-induced wavefront deformations and focal shifts in near IR optics.

    PubMed

    Stubenvoll, Martin; Schäfer, Bernd; Mann, Klaus

    2014-10-20

    We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.

  9. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering.

    PubMed

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation.

  10. Parallel optical-path-length-shifting digital holography.

    PubMed

    Awatsuji, Yasuhiro; Koyama, Takamasa; Tahara, Tatsuki; Ito, Kenichi; Shimozato, Yuki; Kaneko, Atsushi; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2009-12-01

    The authors propose an optical-path-length-shifting digital holography as a technique capable of single-shot recording of three-dimensional information of objects. With a single image sensor, the proposed technique can simultaneously record all of the holograms required for the in-line digital holography that reconstruct the image of an object from two intensity measurements at different planes. The technique can be optically implemented by using an optical-path-length-shifting array device located in the common path of the reference and object waves. The array device has periodic structure of two-step optical-path difference. The configuration of the array device of the proposed technique is simpler than the phase-shifting array device required for parallel phase-shifting digital holographies. Therefore, the optical system of the proposed technique is more suitable for the realization of a single-shot in-line digital holography system that removes the conjugate image from the reconstructed image. The authors conducted both a numerical simulation and a preliminary experiment of the proposed technique. The reconstructed images were quantitatively evaluated by using root mean squared error. In comparison to single-shot digital holography using the Fresnel transform alone, with the proposed technique the root mean squared errors of the technique were reduced to less than 1/6 in amplitude and 1/3 in phase. Also the results of the simulation and experiment agreed well with the images of an object. Thus the effectiveness of the proposed technique is verified.

  11. Polymers for refractive index change in intraocular lenses: a novel approach for photoinduced tuning of focal length

    NASA Astrophysics Data System (ADS)

    Träger, Jens; Kim, Hee-Cheol; Hampp, Norbert

    2006-02-01

    Before an intraocular lens (IOL) is implanted during cataract surgery, biometric data of the patient's eye have to be determined to calculate the thickness and shape of the IOL. In particular the postoperative anterior chamber depth is an important parameter to predict the correct shape of the IOL. This value, however, cannot be measured without significant uncertainities. We present a solution to this problem, describe novel polymers suitable for IOLs which refractive indices can be changed non-invasively in a photo-induced process. The focal length can be modified by about 2 D, which is sufficient to achive ideal acuteness of vision for almost all patients with implanted IOLs. The change in refractive index is accomplished by linking or cleaving bonds between a sufficiently large number of side groups of the polymer main chain in a photoinduced cyloaddition or cycloreversion, respectively. The photochemical reaction can also be triggered by a two-photon process (TPA) using a pulsed laser system, i.e. the energy required for bond breaking is provided by two photons in the visible range. Light in the UV as well as the visible range of the spectrum cannot induce undesired changes of the refractive index owing to the strong UV-absorption of the cornea and photon densities much too low for TPA, respectively. Due to the excellent spatial resolution that can be achieved with two-photon processes not only modification of the refractive index of the entire lens but also selectively in well defined areas is possible enabling the correction for aberrations such as astigmatism.

  12. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    NASA Astrophysics Data System (ADS)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  13. Optical scattering lengths in large liquid-scintillator neutrino detectors

    SciTech Connect

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Hofmann, M.; Lewke, T.; Meindl, Q.; Moellenberg, R.; Oberauer, L.; Potzel, W.; Tippmann, M.; Todor, S.; Winter, J.; Lachenmaier, T.; Traunsteiner, C.; Undagoitia, T. Marrodan

    2010-05-15

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  14. Optical scattering lengths in large liquid-scintillator neutrino detectors.

    PubMed

    Wurm, M; von Feilitzsch, F; Göger-Neff, M; Hofmann, M; Lachenmaier, T; Lewke, T; Marrodán Undagoitia, T; Meindl, Q; Möllenberg, R; Oberauer, L; Potzel, W; Tippmann, M; Todor, S; Traunsteiner, C; Winter, J

    2010-05-01

    For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents phenylxylylethane, linear alkylbenzene (LAB), and dodecane, which are under discussion for next-generation experiments such as SNO+ (Sudbury Neutrino Observatory), HanoHano, or LENA (Low Energy Neutrino Astronomy). Results comprise the wavelength range of 415-440 nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.

  15. Derivatives of optical path length: from mathematical formulation to applications.

    PubMed

    Lin, Psang Dain

    2015-05-01

    The optical path length (OPL) of an optical system is a highly important parameter since it determines the phase of the light passing through the system and governs the interference and diffraction of the rays as they propagate. The Jacobian and Hessian matrices of the OPL are of fundamental importance in tuning the performance of a system. However, the OPL varies as a recursive function of the incoming ray and the boundary variable vector, and hence computing the Jacobian and Hessian matrices is extremely challenging. In an earlier study by the present group, this problem was addressed by deriving the Jacobian matrix of the OPL with respect to all of the independent system variables of a nonaxially symmetric system. In the present study, the proposed method is extended to the Hessian matrix of a nonaxially symmetric optical system. The proposed method facilitates the cross-sensitivity analysis of the OPL with respect to arbitrary system variables and provides an ideal basis for automatic optical system design applications in which the merit function is defined in terms of wavefront aberrations. An illustrative example is given. It is shown that the proposed method requires fewer iterations than that based on the Jacobian matrix and yields a more reliable and precise optimization performance.

  16. Optical microangiography reveals collateral blood perfusion dynamics in mouse cerebral cortex after focal stroke

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2015-03-01

    Arteriolo-arteriolar anastomosis's role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.

  17. Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers

    NASA Astrophysics Data System (ADS)

    Bordeleau, François; Bessard, Judicael; Marceau, Normand; Sheng, Yunlong

    2011-09-01

    The ability of cells to sustain mechanical stress is largely modulated by the cytoskeleton. We present a new application of optical tweezers to study cell's mechanical properties. We trap a fibronectin-coated bead attached to an adherent H4II-EC3 rat hepatoma cell in order to apply the force to the cell surface membrane. The bead position corresponding to the cell's local mechanical response at focal adhesions is measured with a quadrant detector. We assessed the cell response by tracking the evolution of the equilibrium force for 40 cells selected at random and selected a temporal window to assess the cell initial force expression at focal adhesions. The mean value of the force within this time window over 40 randomly selected bead/cell bounds was 52.3 pN. Then, we assessed the responses of the cells with modulation of the cytoskeletons, namely the ubiquitous actin-microfilaments and microtubules, plus the differentiation-dependent keratin intermediate filaments. Notably, a destabilization of the first two networks led to around 50 and 30% reductions in the mean equilibrium forces, respectively, relative to untreated cells, whereas a loss of the third one yielded a 25% increase. The differences in the forces from untreated and treated cells are resolved by the optical tweezers experiment.

  18. Holographic optical tweezers combined with back-focal-plane displacement detection.

    PubMed

    Marsà, Ferran; Farré, Arnau; Martín-Badosa, Estela; Montes-Usategui, Mario

    2013-12-16

    A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.

  19. Laser Metrology for an Optical-Path-Length Modulator

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta

    2005-01-01

    Laser gauges have been developed to satisfy requirements specific to monitoring the amplitude of the motion of an optical-path-length modulator that is part of an astronomical interferometer. The modulator includes a corner-cube retroreflector driven by an electromagnetic actuator. During operation of the astronomical interferometer, the electromagnet is excited to produce linear reciprocating motion of the corner-cube retroreflector at an amplitude of 2 to 4 mm at a frequency of 250, 750, or 1,250 Hz. Attached to the corner-cube retroreflector is a small pick-off mirror. To suppress vibrations, a counterweight having a mass equal to that of the corner-cube retroreflector and pick-off mirror is mounted on another electromagnetic actuator that is excited in opposite phase. Each gauge is required to measure the amplitude of the motion of the pick-off mirror, assuming that the motions of the pick-off mirror and the corner-cube retroreflector are identical, so as to measure the amplitude of motion of the corner- cube retroreflector to within an error of the order of picometers at each excitation frequency. Each gauge is a polarization-insensitive heterodyne interferometer that includes matched collimators, beam separators, and photodiodes (see figure). The light needed for operation of the gauge comprises two pairs of laser beams, the beams in each pair being separated by a beat frequency of 80 kHz. The laser beams are generated by an apparatus, denoted the heterodyne plate, that includes stabilized helium-neon lasers, acousto-optical modulators, and associated optical and electronic subsystems. The laser beams are coupled from the heterodyne plate to the collimators via optical fibers.

  20. Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Associated With Focal Choroidal Excavation.

    PubMed

    Chawla, Rohan; Mittal, Kanhaiya; Vohra, Rajpal

    2016-10-01

    The authors report the use of optical coherence tomography angiography (OCTA) (DRI OCT Triton; Topcon, Tokyo, Japan) to localize, characterize, and confirm the presence of a choroidal neovascular membrane in a patient of focal choroidal excavation (FCE) with recent-onset metamorphopsia and visual blurring. En face OCTA images just above the level of the retinal pigment epithelium-Bruch's membrane complex typically showed the presence of a glomerulus-like neovascular network with an adjacent dark area suggestive of a Type 2 choroidal neovascularization (CNV). OCTA was found to be a very useful, noninvasive, and quick imaging modality to detect secondary CNV formation in a case of FCE. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:969-971.].

  1. The focal plane adaptive optics test box of the Observatoire du Mont-Mégantic

    NASA Astrophysics Data System (ADS)

    Deschênes, William; Brousseau, Denis; Lavigne, Jean-Francois; Thibault, Simon; Véran, Jean-Pierre

    2014-08-01

    With the upcoming construction of Extremely Large Telescopes, several existing technologies are being pushed beyond their performance limit and it becomes essential to develop and evaluate new alternatives. The "Observatoire du Mont Mégantic" (OMM) hosts a telescope having a 1.6-meter diameter primary. The OMM telescope is known to be an excellent location to develop and test precursor instruments which are then upscaled to larger telescopes (ex. SPIOMM which led to SITELLE at the CFHT). We present a specifically designed focal plane box for the OMM which will allow to evaluate, directly on-sky, the performance of a number of next generation adaptive optics related technologies The system will able us to compare the performance of several new wavefront sensors in contrast with the current standard, the Shack-Hartman wavefront sensor.

  2. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

  3. 3D modeling of architectural objects from video data obtained with the fixed focal length lens geometry

    NASA Astrophysics Data System (ADS)

    Deliś, Paulina; Kędzierski, Michał; Fryśkowska, Anna; Wilińska, Michalina

    2013-12-01

    The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 ÷ 0.13 m compared to TLS data. Artykuł zawiera opis procesu opracowania modeli 3D obiektów architektonicznych na podstawie obrazów wideo pozyskanych kamerą wideo Sony NEX-VG10E ze stałoogniskowym obiektywem. Przyjęto założenie, że na podstawie danych wideo i danych z naziemnego skaningu laserowego (NSL) możliwe jest opracowanie modeli 3D obiektów architektonicznych. Pozyskanie danych wideo zostało poprzedzone kalibracją kamery wideo. Model matematyczny kamery był oparty na rzucie perspektywicznym. Proces opracowania modeli 3D na podstawie danych wideo składał się z następujących etapów: wybór klatek wideo do procesu orientacji, orientacja klatek wideo na

  4. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    PubMed

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.

  5. Calibration of optical tweezers with positional detection in the back focal plane

    SciTech Connect

    Tolic-Noerrelykke, Simon F.; Schaeffer, Erik; Howard, Jonathon; Pavone, Francesco S.; Juelicher, Frank; Flyvbjerg, Henrik

    2006-10-15

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped object as an input. Thus, neither the viscosity, nor the size of the trapped object, nor its distance to nearby surfaces needs to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could be moved instead, e.g., by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a microsphere in nonconstant motion parallel to it. We give such a formula.

  6. Probing focal cortical dysplasia in formalin fixed samples using tissue optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Conti, Valerio; Guerrini, Renzo; Pavone, Francesco Saverio

    2016-03-01

    Focal cortical dysplasia (FCD) is one of most common causes of intractable epilepsy in pediatric population and these are often insensitive to anti-epileptic drugs. FCD is characterized by a disarray in localized regions of the cerebral cortex and abnormal neurons which results them to misfire with incorrect signals. Resective neurosurgery to remove or disconnect the affected parts from the rest of the brain seems to be a viable option to treat FCD. Before neurosurgery the subject could undergo imaging studies including magnetic resonance imaging (MRI) or computed tomography (CT) scans. On the downside FCD could be elusive in MRI images and may be practically invisible in CT scans. Furthermore, unnecessary removal of normal tissues is to be taken into consideration as this could lead to neurological defects. In this context, optical spectroscopy have been widely investigated as an alternative technique for the detection of abnormal tissues in different organ sites. Disease progression is accompanied by a number of architectural, biochemical and morphological changes. These variations are reflected in the spectral intensity and line shape. Here, in this proof of concept study we propose to investigate the application of tissue optical spectroscopy based on fluorescence excitation at two wavelength 378 and 445 nm coupled along with Raman spectroscopy for the detection of FCD on formalin fixed tissue specimens from pediatric subjects. For fluorescence at both the excitation wavelengths FCD showed a decreased intensity at longer wavelength when compared to normal tissues. Also, differences exist in the Raman spectral profiles of normal and FCD.

  7. Multispectral Thermal Imager Optical Assembly Performance and Intergration of the Flight Focal Plane Assembly

    SciTech Connect

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-06-08

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82° along the direction of spacecraft motion and 1.38° across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 µm. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than ± 20 µm over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA.

  8. Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography.

    PubMed

    Kim, Jihoon; Oh, Junghwan; Milner, Thomas E

    2006-01-01

    Differential phase optical coherence tomography (DPOCT) is introduced to measure optical path length changes in response to pulsed laser irradiation (585 nm). An analytical equation that includes thermoelastic surface displacement and thermorefractive index change is derived to predict optical path length change in response to pulsed laser irradiation for both "confined surface" and "free surface" model systems. The derived equation is tested by comparing predicted values with data recorded from experiments using two model systems. Thermorefractive index change and the thermal expansion coefficient are deduced from differential phase change (dDeltaphi) and temperature increase (DeltaT0) measurements. The measured n(T0)beta(T0)+dndT[=1.7410(-4)+/-1.710(-6) (1K)] in the free surface experiment matches with the National Institute of Standards and Technology (NIST) data value [=1.7710(-4) (1K)]. Exclusion of lateral thermal expansion in the analytical model for the confined surface experiment causes difference between the measured dndT[=-2.310(-4)+/-7.310(-6)(1K)] and the NIST value [=-9.4510(-5) (1K)]. In spite of the difference in the confined surface experiment, results of our studies indicate DPOCT can detect dynamic optical path length change in response to pulsed laser irradiation with high sensitivity, and applications to tissue diagnostics may be possible.

  9. The Focal Plane Package of the Solar Optical telescope on Solar B

    NASA Astrophysics Data System (ADS)

    Tarbell, Theodore D.

    2006-06-01

    The Solar-B satellite will be launched into a full-sun low-earth orbit in the fall of 2006 from Japan's Uchinoura Space center. It includes the 50-cm diameter Solar Optical Telescope with its Focal Plane Package (FPP), for near-UV and visible observations of the photosphere and chromosphere at very high (diffraction limited) angular resolution. The FPP has a Spectro-Polarimeter (SP) for precision measurements of photospheric vector magnetic fields over a 160 x 320 arcsecond field of view; a Narrowband Filter Imager (NFI) with a tunable birefringent filter for magnetic, Doppler, and intensity maps over the same field of view; and a Broadband Filter Imager (BFI) for highest resolution images in six wavelengths (G band, Ca II H, continua, etc.) over two-thirds of that field of view. A polarization modulator in the telescope allows measurement of Stokes parameters at all wavelengths in the SP and NFI. The NFI wavelengths include both photospheric and chromospheric lines (Fe I, Mg b, Na D, H-alpha). All images are stabilized by a tip-tilt mirror and correlation tracker. This presentation will include pictures and description of the instrument, results from calibration and sun testing, portions of the draft science plan, and some preliminary JOP's. Solar-B is an international cooperative mission between JAXA/ISAS of Japan, NASA of the United States, and PPARC of the United Kingdom. The Solar Optical Telescope has been developed by the National Astronomical Observatory of Japan, Mitsubishi Electric Company, and JAXA/ISAS. The FPP has been developed by the Lockheed Martin Advanced Technology Center, High Altitude Observatory, and NASA.

  10. Estimation of partial optical path length in the brain in subject-specific head models for near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Kurihara, Kazuki; Kawaguchi, Hiroshi; Obata, Takayuki; Ito, Hiroshi; Okada, Eiji

    2016-04-01

    Three-dimensional head models with the structures constructed from the MR head images of 40 volunteers were constructed to analyze light propagation in the subject-specific head models. The mean optical path length in the head and the partial optical path length in the brain at 13 fiducial points for each volunteer were estimated to evaluate the intersubject and spatial variability in the optical path lengths. Although the intersubject variability in the optical path lengths is very high, the spatial variability in the average of the mean optical path length and partial optical path length is similar to the previously reported data. The mean optical path length in the head increases, whereas the partial optical path length in the brain decreases with an increase in the depth of the brain surface. The partial optical path length is highly correlated with the depth of the brain surface in comparison to the mean optical path length in the head.

  11. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  12. Focal Choroidal Excavation

    PubMed Central

    Cebeci, Zafer; Bayraktar, Şerife; Oray, Merih; Kır, Nur

    2016-01-01

    Focal choroidal excavation is a choroidal pit that can be detected by optical coherence tomography. Central serous chorioretinopathy, choroidal neovascularization and polypoidal choroidal vasculopathy are pathologies associated with focal choroidal excavation. In this article, we present the follow-up and treatment outcomes of three eyes of two patients with focal choroidal excavation. PMID:28050329

  13. Focal Choroidal Excavation.

    PubMed

    Cebeci, Zafer; Bayraktar, Şerife; Oray, Merih; Kır, Nur

    2016-12-01

    Focal choroidal excavation is a choroidal pit that can be detected by optical coherence tomography. Central serous chorioretinopathy, choroidal neovascularization and polypoidal choroidal vasculopathy are pathologies associated with focal choroidal excavation. In this article, we present the follow-up and treatment outcomes of three eyes of two patients with focal choroidal excavation.

  14. [Effect of Optical Length on Detection Accuracy of Camellia Oil Adulteration by Near Infrared Spectroscopy].

    PubMed

    Sun, Tong; Wu, Yi-qing; Xu, Peng; Wen, Zhen-cai; Hu, Tian; Liu, Mu-hua

    2015-07-01

    In this research, near infrared spectroscopy was used to detect adulterated percent of camellia oil adulterated with soybean oil quantificationally at different optical lengths, and the effect of optical length on detection accuracy of adulterated percent was investigated. Soybean oil was put into camellia oil according to different mass fraction, the adulterated mass fraction was ranged from 1% to 50%. Transmission spectra of samples were acquired by a Quality Specspectrometer at different optical lengths (1, 2, 4, 10 mm), and effect of optical length on detection accuracy of adulterated percent was analyzed by comparing quantitative prediction models that developed at different calibration methods, pretreatment methods and wavelength range. The results indicate that the performance of quantitative prediction model of adulterated percent is improved as the optical length is increasing from 1 to 4 mm, while the performance of quantitative prediction model of adulterated percent is deteriorated as the optical length is increasing from 4 to 10 mm. 4 mm is a better optical length for camellia oil adulteration. The coefficients of determination of prediction (R2(P)) and root mean square error of prediction (RMSEP) in quantitative prediction models of adulterated percent for optical lengths of 1, 2, 4, 10 mm are 0.923, 0.977, 0.989, 0.962 and 4.58%, 2.54%, 1.72%, 3.20%, respectively.

  15. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  16. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    NASA Astrophysics Data System (ADS)

    Vishnyakov, A. V.; Stuchinsky, V. A.; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-01

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents jph being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at jph ≠ 0) charge-carrier diffusion length ld eff as a function of jph for jph → 0 inferred from our experimental data proved to be consistent with the behavior of ld eff vs jph as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  17. Computationally efficient gradient matrix of optical path length in axisymmetric optical systems.

    PubMed

    Hsueh, Chun-Che; Lin, Psang-Dain

    2009-02-10

    We develop a mathematical method for determining the optical path length (OPL) gradient matrix relative to all the system variables such that the effects of variable changes can be evaluated in a single pass. The approach developed avoids the requirement for multiple ray-tracing operations and is, therefore, more computationally efficient. By contrast, the effects of variable changes on the OPL of an optical system are generally evaluated by utilizing a ray-tracing approach to determine the OPL before and after the variable change and then applying a finite-difference (FD) approximation method to estimate the OPL gradient with respect to each individual variable. Utilizing a Petzval lens system for verification purposes, it is shown that the approach developed reduces the computational time by around 90% compared to that of the FD method.

  18. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  19. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  20. Adaptive optical zoom sensor.

    SciTech Connect

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  1. Experimental prediction of the wavelength-dependent path-length factor for optical intrinsic signal analysis.

    PubMed

    Sakaguchi, Koichiro; Tachibana, Tomoya; Furukawa, Shunsuke; Katsura, Takushige; Yamazaki, Kyoko; Kawaguchi, Hideo; Maki, Atsushi; Okada, Eiji

    2007-05-10

    Analysis of the optical intrinsic signal of an exposed cortex has been applied to measurement of functional brain activation. It is important for accurate measurement of concentration changes in oxygenated hemoglobin and deoxygenated hemoglobin to consider the wavelength dependence of the mean optical path lengths for the reflectance of cortical tissue. A method is proposed to experimentally estimate the wavelength dependence of the mean optical path length in cortical tissue from the multispectral reflectance of the exposed cortex without any additional instruments. The trend in the wavelength dependence of the mean optical path length estimated by the proposed method agrees with that estimated by the model-based prediction, whereas the magnitude of the wavelength dependence predicted by the proposed method is greater than that of the model-based prediction. The experimentally predicted mean optical path length minimizes the difference in the measured changes in the concentrations of the oxygenated hemoglobin and deoxygenated hemoglobin calculated from different wavelength pairs.

  2. An adjustable short-focal length, high-gradient PMQ electron-beam final-focus system for the PLEIADES ultra-fast x-ray Thomson source

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Ku

    In the span of a 100 year since the discovery of first x-rays by Roentgen that won him the first Nobel prize in physics, several types of radiation sources have been developed. Currently, radiations at extremely short wavelengths have only been accessed at synchrotron radiation sources. However, the current 3rd generation synchrotron sources can only produce x-rays of energy up to 60 keV and pulse lengths of several picoseconds long. But needs for shorter wavelength and shorter pulse duration radiations demanded by scientists to understand the nature of matter at atomic/molecular scale initiated the new scientific research for the production of sub-picosecond, hard x-rays. At the Lawrence Livermore National Laboratory, a Thomson x-ray source in the backscattering mode---a head-on collision between a high intensity Ti:Sapphire Chirped Pulse Amplification laser and a relativistic electron beam---called the PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) laboratory has been developed. Early works demonstrated the production of quasi-monochromatic, femto-second long, hard x-rays. Initially reported x-ray flux was in the low range of 105--10 6 photons per shot. During the early stage of PLEIADES experiments, 15 T/m electromagnet final focusing quadrupoles (in a triplet lattice configuration) were employed to focus the beam to a 40-50 mum spot-size. A larger focal spot-size beam has a low-density of electron particles available at the interaction with incident photons, which leads to a low scattering probability. The current dissertation shows that by employing a 560 T/m PMQ (Permanent-Magnet Quadrupole) final focus system, an electron beam as small as 10-20 mum can be achieved. The implementation of this final focus system demonstrated the improvement of the total x-ray flux by two orders of magnitude. The PMQ final focus system also produced small electron beams consistently over 30-100 MeV electron beam energy, which

  3. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  4. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    SciTech Connect

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated on one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.

  5. To construct a stable and tunable optical trap in the focal region of a high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Kandasamy, Gokulakrishnan; Ponnan, Suresh; Sivasubramonia Pillai, T. V.; Balasundaram, Rajesh K.

    2014-05-01

    Based on the diffraction theory, the focusing properties of a radially polarized quadratic Bessel-Gaussian beam (QBG) with on-axis radial phase variance wavefront are investigated theoretically in the focal region of a high numerical aperture (NA) objective lens. The phase wavefront C and pupil beam parameter μ of QBG are the functions of the radial coordinate. The detailed numerical calculation of the focusing property of a QBG beam is presented. The numerical calculation shows that the beam parameter μ and phase parameter C have greater effect on the total electric field intensity distribution. It is observed that under the condition of different μ, evolution principle of focal pattern differs very remarkably on increasing C. Also, some different focal shapes may appear, including rhombic shape, quadrangular shape, two-spherical crust focus shape, two-peak shape, one dark hollow focus, two dark hollow focuses pattern, and triangle dark hollow focus, which find wide optical applications such as optical trapping and nanopatterning.

  6. Zero Length Intrastation Fiber Optics Links Test and Evaluation Program.

    DTIC Science & Technology

    1981-05-01

    WOirCS (Continue on, ev- icb. it r .~53r’Od Idern~f b’ lock r-urmher) Fiber Optics Digital Transmissic-, Analoo Transmission 20. AtiSTRACT (Cowfou. am...typified Defcnse Communications Systems (DCS) transmission node between DCS digital multir!exers and radios. The intent being to evaluate fiber optics...1920 under the technical dircction of the US Army Comunication Electronics Engi’-Vring In*’allation h\\keN)J (USACJEIA). Supplei.,ental testing ’.ws

  7. Investigation of Outer Length Scale In Optical Turbulence

    DTIC Science & Technology

    2003-12-01

    experimental situations. This thesis investigated three outer scales of turbulence using experimental data from two instruments: microthermal probes...represents the size of the velocity fluctuations and the boundary thermal convective cell size. The microthermal balloon data had excessive scatter...optical structure parameter C than the microthermal balloon data. The separation of daytime convective thermal plumes was found from the acoustic

  8. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots.

    PubMed

    Yi, Hui; Long, Jing; Li, Hongquan; He, Xiaolong; Yang, Tian

    2015-04-06

    Recent years have witnessed fast progress in the development of spatially variant states of polarization under high numerical aperture focusing, and intensive exploration of their applications. We report a vectorial, broadband, high contrast and subwavelength resolution method for focal spot profiling. In this experiment, a 100 nm diameter gold nanosphere on a silica aerogel substrate is raster scanned across the focal spots, and the orthogonal polarization components can be obtained simultaneously by measuring the scattering far field in a confocal manner. The metallic-nanosphere-on-aerogel structure ensures negligible distortion to the focal spots, low crosstalk between orthogonal polarization components (1/39 in experiment), and a low level background noise (1/80 of peak intensity in experiment), while high contrast imaging is not limited by the resonance bandwidth.

  9. Optical study of thin-film photovoltaic cells with apparent optical path length

    NASA Astrophysics Data System (ADS)

    Cho, Changsoon; Jeong, Seonju; Lee, Jung-Yong

    2016-09-01

    Extending the insufficient optical path length (OPL) in thin-film photovoltaic cells (PVs) is the key to achieving a high power conversion efficiency (PCE) in devices. Here, we introduce the apparent OPL (AOPL) as a figure of merit for light absorbing capability in thin-film PVs. The optical characteristics such as the structural effects and angular responses in thin-film PVs were analyzed in terms of the AOPL. Although the Lambertian scattering surface yields a broadband absorption enhancement in thin-film PVs, the enhancement is not as effective as in thick-film PVs. On the other hand, nanophotonic schemes are introduced as an approach to increasing the single-pass AOPL by inducing surface plasmon resonance. The scheme using periodic metal gratings is proved to increase the AOPL in a narrow wavelength range and specific polarization, overcoming the Yablonovitch limit. The AOPL calculation can be also adopted in the experimental analysis and a maximum AOPL of 4.15d (where d is the active layer thickness) is exhibited in the absorption band edge region of PTB7:PC70BM-based polymer PVs.

  10. Calibration of effective optical path length for hollow-waveguide based gas cell using absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Du, Zhenhui; Li, Jinyi

    2016-10-01

    The Hollow Waveguide (HWG) has emerged as a novel tool to transmit laser power. Owing to its long Effective Optical Path Length (EOPL) within a relatively small volume, it is suitable for the application as a gas cell in concentration measurement by using laser spectroscopy. The measurement of effective optical path length for a hollow waveguide, which possesses the physical length of 284.0 cm, by using Tunable Diode Laser Absorption Spectroscopy (TDLAS) was demonstrated. Carbon dioxide was used as a sample gas for a hollow waveguide calibration. A 2004 nm Distributed Feed-Back (DFB) laser was used as the light source to cover a CO2 line near 2003 nm, which was selected as the target line in the measurement. The reference direct absorption spectroscopy signal was obtained by delivering CO2 into a reference cell possessing a length of 29.4 cm. Then the effective optical path length of HWG was calculated by least-squares fitting the measured absorption signal to the reference absorption signal. The measured EOPL of HWG was 282.8 cm and the repeatability error of effective optical path length was calculated as 0.08 cm. A detection limit of 0.057 cm (with integral time 5 s) characterized by the Allan variance, was derived. The effective optical path length is obtained as the significant parameter to calculate the concentration of gases and it is of great importance to precise measurement of absorption spectroscopy.

  11. The design and validation of an optical coherence tomography-based classification system for focal vitreomacular traction

    PubMed Central

    Steel, D H W; Downey, L; Greiner, K; Heimann, H; Jackson, T L; Koshy, Z; Laidlaw, D A H; Wickham, L; Yang, Y

    2016-01-01

    Purpose To develop and validate a classification system for focal vitreomacular traction (VMT) with and without macular hole based on spectral domain optical coherence tomography (SD-OCT), intended to aid in decision-making and prognostication. Methods A panel of retinal specialists convened to develop this system. A literature review followed by discussion on a wide range of cases formed the basis for the proposed classification. Key features on OCT were identified and analysed for their utility in clinical practice. A final classification was devised based on two sequential, independent validation exercises to improve interobserver variability. Results This classification tool pertains to idiopathic focal VMT assessed by a horizontal line scan using SD-OCT. The system uses width (W), interface features (I), foveal shape (S), retinal pigment epithelial changes (P), elevation of vitreous attachment (E), and inner and outer retinal changes (R) to give the acronym WISPERR. Each category is scored hierarchically. Results from the second independent validation exercise indicated a high level of agreement between graders: intraclass correlation ranged from 0.84 to 0.99 for continuous variables and Fleiss' kappa values ranged from 0.76 to 0.95 for categorical variables. Conclusions We present an OCT-based classification system for focal VMT that allows anatomical detail to be scrutinised and scored qualitatively and quantitatively using a simple, pragmatic algorithm, which may be of value in clinical practice as well as in future research studies. PMID:26768921

  12. Propagation equation of Hermite-Gauss beams through a complex optical system with apertures and its application to focal shift.

    PubMed

    Peng, Sun; Jin, Guo; Tingfeng, Wang

    2013-07-01

    Based on the generalized Huygens-Fresnel diffraction integral (Collins' formula), the propagation equation of Hermite-Gauss beams through a complex optical system with a limiting aperture is derived. The elements of the optical system may be all those characterized by an ABCD ray-transfer matrix, as well as any kind of apertures represented by complex transmittance functions. To obtain the analytical expression, we expand the aperture transmittance function into a finite sum of complex Gaussian functions. Thus the limiting aperture is expressed as a superposition of a series of Gaussian-shaped limiting apertures. The advantage of this treatment is that we can treat almost all kinds of apertures in theory. As application, we define the width of the beam and the focal plane using an encircled-energy criterion and calculate the intensity distribution of Hermite-Gauss beams at the actual focus of an aperture lens.

  13. Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel

    2016-03-01

    We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.

  14. Starch-based second-harmonic-generated collinear frequency-resolved optical gating pulse characterization at the focal plane of a high-numerical-aperture lens.

    PubMed

    Amat-Roldán, Ivan; Cormack, Iain G; Loza-Alvarez, Pablo; Artigas, David

    2004-10-01

    We report the use of starch as an ideal nonlinear medium with which to perform collinear frequency-resolved optical gating measurements of ultrashort pulses at the focal plane of a high-numerical-aperture (NA) lens. We achieved these measurements by simply sandwiching starch granules (suspended in water) between two coverslips and placing them within the focal plane of a high-NA lens. The natural nonlinear characteristics of starch allow the correct phase matching of pulses at the focal plane of a high-NA lens at different wavelengths. This elegant arrangement overcomes all the complexity and problems that were previously associated with pulse characterization within a multiphoton microscope.

  15. Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes.

    PubMed

    Chen, Lei; Kirchberg, Stefan; Jiang, Bing-Yan; Xie, Lei; Jia, Yun-Long; Sun, Lei-Lei

    2014-11-01

    A uniform plano-convex spherical microlens array with a long focal length was fabricated by combining the micromilling and injection molding processes in this work. This paper presents a quantitative study of the injection molding process parameters on the uniformity of the height of the microlenses. The variation of the injection process parameters, i.e., barrel temperature, mold temperature, injection speed, and packing pressure, was found to have a significant effect on the uniformity of the height of the microlenses, especially the barrel temperature. The filling-to-packing switchover point is also critical to the uniformity of the height of the microlenses. The optimal uniformity was achieved when the polymer melts completely filled the mold cavity, or even a little excessively filled the cavity, during the filling stage. In addition, due to the filling resistance, the practical filling-to-packing switchover point can vary with the change of the filling processing conditions and lead to a non-negligible effect on the uniformity of the height of the microlenses. Furthermore, the effect of injection speed on the uniformity of the height of the microlenses was analyzed in detail. The results indicated that the effect of injection speed on the uniformity of the height of the microlenses is mainly attributed to the two functions of injection speed: transferring the filling-to-packing switchover point and affecting the distribution of residual flow stress in the polymer melt.

  16. Unilateral optic disc pit and orbital cyst in an eye with normal axial length.

    PubMed

    Dhir, Luna; Thaller, Vladimir T

    2010-01-01

    Orbital cyst and optic disc pits are both congenital embryological anomalies. Orbital cysts occurring in association with optic disc colobomata and microphthalmic eyes have been widely reported in literature. The authors describe the case of a 69-year-old man with an asymptomatic orbital mass, who was investigated and found to have a coexistent optic disc pit and orbital cyst. The axial length was normal. Visual acuity was reduced due to epiretinal membrane at the macula as a consequence of serous maculopathy secondary to the optic disc pit. No active intervention was offered due to poor visual potential, and no changes in the cyst occurred over time. This is an unusual case of coexistent orbital cyst and optic disc pit in an eye with normal axial length, although the dual pathology has previously been described in a microphthalmic eye.

  17. Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry

    NASA Astrophysics Data System (ADS)

    Varghese, B.; Rajan, V.; van Leeuwen, T. G.; Steenbergen, W.

    2007-07-01

    We show experimental validation of a novel technique to measure optical path length distributions and path length resolved Doppler broadening in turbid media for different reduced scattering coefficients and anisotropies. The technique involves a phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. Water suspensions of Polystyrene microspheres with high scattering and low absorption levels are used as calibrated scattering phantoms. The path length dependent diffusion broadening or Doppler broadening of scattered light is shown to agree with Diffusive Wave Spectroscopy within 5%. The optical path lengths are determined experimentally from the zero order moment of the phase modulation peak around the modulation frequency in the power spectrum and the results are validated with Monte Carlo simulations.

  18. Quantification of optical Doppler broadening and optical path lengths of multiply scattered light by phase modulated low coherence interferometry.

    PubMed

    Varghese, B; Rajan, V; van Leeuwen, T G; Steenbergen, W

    2007-07-23

    We show experimental validation of a novel technique to measure optical path length distributions and path length resolved Doppler broadening in turbid media for different reduced scattering coefficients and anisotropies. The technique involves a phase modulated low coherence Mach-Zehnder interferometer, with separate fibers for illumination and detection. Water suspensions of Polystyrene microspheres with high scattering and low absorption levels are used as calibrated scattering phantoms. The path length dependent diffusion broadening or Doppler broadening of scattered light is shown to agree with Diffusive Wave Spectroscopy within 5%. The optical path lengths are determined experimentally from the zero order moment of the phase modulation peak around the modulation frequency in the power spectrum and the results are validated with Monte Carlo simulations.

  19. Relations between ac-dc components and optical path length in photoplethysmography

    NASA Astrophysics Data System (ADS)

    Lee, Chungkeun; Sik Shin, Hang; Lee, Myoungho

    2011-07-01

    Photoplethysmography is used in various areas such as vital sign measurement, vascular characteristics analysis, and autonomic nervous system assessment. Photoplethysmographic signals are composed of ac and dc, but it is difficult to find research about the interaction of photoplethysmographic components. This study suggested a model equation combining two Lambert-Beer equations at the onset and peak points of photoplethysmography to evaluate ac characteristics, and verified the model equation through simulation and experiment. In the suggested equation, ac was dependent on dc and optical path length. In the simulation, dc was inversely proportionate to ac sensitivity (slope), and ac and optical path length were proportionate. When dc increased from 10% to 90%, stabilized ac decreased from 1 to 0.89 +/- 0.21, and when optical path length increased from 10% to 90%, stabilized ac increased from 1 to 1.53 +/- 0.40.

  20. [Research on the blood components detecting by multi-optical path length spectroscopy technique].

    PubMed

    Li, Gang; Zhao, Zhe; Liu, Rui; Wang, Hui-quan; Wu, Hong-jie; Lin, Ling

    2010-09-01

    To discuss the feasibility of using the serum's multi-optical path length spectroscopy information for measuring the concentration of the human blood components, the automatic micro-displacement measuring device was designed, which can obtain the near-infrared multi-optical path length from 0 to 4.0 mm (interval is 0.2 mm) spectra of 200 serum samples with multioptical path length spectrum of serum participated in building the quantitative analysis model of four components of the human blood: glucose (GLU), total cholesterol (TC), total protein (TP) and albumin (ALB), by mean of the significant non-linear spectral characteristic of blood. Partial least square (PLS) was used to set up the calibration models of the multi-optical path length near-infrared absorption spectrum of 160 experimental samples against the biochemical analysis results of them. The blood components of another 40 samples were predicted according to the model. The prediction effect of four blood components was favorable, and the correlation coefficient (r) of predictive value and biochemical analysis value were 0.9320, 0.9712, 0.9462 and 0.9483, respectively. All of the results proved the feasibility of the multi-optical path length spectroscopy technique for blood components analysis. And this technique established the foundation of detecting the components of blood and other liquid conveniently and rapidly.

  1. High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking

    PubMed Central

    Holenstein, Claude N.; Silvan, Unai; Snedeker, Jess G.

    2017-01-01

    The accurate determination of cellular forces using Traction Force Microscopy at increasingly small focal attachments to the extracellular environment presents an important yet substantial technical challenge. In these measurements, uncertainty regarding accuracy is prominent since experimental calibration frameworks at this size scale are fraught with errors – denying a gold standard against which accuracy of TFM methods can be judged. Therefore, we have developed a simulation platform for generating synthetic traction images that can be used as a benchmark to quantify the influence of critical experimental parameters and the associated errors. Using this approach, we show that TFM accuracy can be improved >35% compared to the standard approach by placing fluorescent beads as densely and closely as possible to the site of applied traction. Moreover, we use the platform to test tracking algorithms based on optical flow that measure deformation directly at the beads and show that these can dramatically outperform classical particle image velocimetry algorithms in terms of noise sensitivity and error. We then report how optimized experimental and numerical strategy can improve traction map accuracy, and further provide the best available benchmark to date for defining practical limits to TFM accuracy as a function of focal adhesion size. PMID:28164999

  2. Length-adaptive graph search for automatic segmentation of pathological features in optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Keller, Brenton; Cunefare, David; Grewal, Dilraj S.; Mahmoud, Tamer H.; Izatt, Joseph A.; Farsiu, Sina

    2016-07-01

    We introduce a metric in graph search and demonstrate its application for segmenting retinal optical coherence tomography (OCT) images of macular pathology. Our proposed "adjusted mean arc length" (AMAL) metric is an adaptation of the lowest mean arc length search technique for automated OCT segmentation. We compare this method to Dijkstra's shortest path algorithm, which we utilized previously in our popular graph theory and dynamic programming segmentation technique. As an illustrative example, we show that AMAL-based length-adaptive segmentation outperforms the shortest path in delineating the retina/vitreous boundary of patients with full-thickness macular holes when compared with expert manual grading.

  3. Intermodal beat length measurement with Fabry-Perot optical fiber cavities.

    PubMed

    Vaziri, M; Chen, C L

    1997-05-20

    We present a new technique for measuring the intermodal beat length of a two-mode optical fiber. We formed a Fabry-Perot fiber cavity by depositing reflective mirrors on the fiber tips. As the fiber is stretched, two series of resonance peaks are observed. One series is due to the resonance of LP(01 q) modes and the other is due to the LP(11 q) modes. From the separation of resonance peaks as a function of cavity length, we deduce the intermodal beat length of the fiber. The measurement principle and the experimental confirmation are discussed.

  4. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display.

    PubMed

    Hu, Xinda; Hua, Hong

    2015-11-20

    By elegantly combining recent advancements of free-form optical technology and multi-focal-plane (MFP) display technology, we developed a high-performance true 3D augmented reality (AR) display that is capable of rendering a large volume of 3D scenes with accurate focus cues; this display overcomes the accommodation-convergence discrepancy problem in conventional AR display. In this paper, we concentrate on various aspects of engineering challenges in the design and integration of a free-form optical see-through eyepiece with MFP technology for our AR display prototype. We present the design and optimization strategy in coupling free-form optics with a rotational-symmetric lens system to achieve high image quality. A comprehensive tolerance analysis of this complicated optical system is also presented, including an effective tolerance method for random surface figure errors on aspheric and free-form surfaces. Finally, the image quality of the virtual display is evaluated, which shows the as-built performance matches very well with the optical design results and tolerance analysis.

  5. Temporal characterization of FEL micropulses as function of cavity length detuning using frequency-resolved optical gating

    SciTech Connect

    Richman, B.A.; DeLong, K.W.; Trebino, R.

    1995-12-31

    Results of frequency resolved optical gating (FROG) measurements on the Stanford mid-IR FEL system show the effect of FEL cavity length detuning on the micropulse temporal structure. The FROG technique enables the acquisition of complete and uniquely invertible amplitude and phase temporal dependence of optical pulses. Unambiguous phase and amplitude profiles are recovered from the data. The optical pulses are nearly transform limited, and the pulse length increases with cavity length detuning.

  6. Quasi-optical verification of the focal plane optics of the heterodyne instrument for the far-infrared (HIFI)

    NASA Astrophysics Data System (ADS)

    Candotti, Massimo; Cahill, Gary A.; Finn, Timothy J.; Jellema, Willem; Lavelle, John; Murphy, J. Anthony; O'Sullivan, Creidhe; Trappe, Neil A.

    2004-09-01

    HIFI is one of the three instruments for the Herschel Space Observatory, an ESA cornerstone mission. HIFI is a high resolution spectrometer operating at wavelengths between 157 and 625 µm. The need for a compact layout reducing the volume and mass as much as possible has important consequences for the optical design. Many mirrors are located in the near-field of the propagating beam. Especially in the long wavelength limit diffraction effects might therefore introduce significant amplitude and phase distortions. A classical geometrical optical approach is consequently inadequate. In this paper we present a rigorous quasi-optical analysis of the entire optical system including the signal path, local oscillator path and onboard calibration source optical layout. In order to verify the results of the front-to-end coherent propagation of the detector beams, near-field measurement facilities capable of measuring both amplitude and phase have beam developed. A remarkable feature of these facilities is that the absolute coordinates of the measured field components are known to within fractions of a wavelength. Both measured and simulated fields can therefore compared directly since they are referenced to one single absolute position. We present a comparison of experimental data with software predictions obtained from the following packages: GRASP (Physical Optics Analysis) and GLAD (Plane Wave Decomposition). We also present preliminary results for a method to correct for phase aberrations and optimize the mirror surfaces without changing the predesigned mechanical layout of the optical system.

  7. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    NASA Astrophysics Data System (ADS)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  8. A Focal Chorioretinal Bartonella Lesion Analyzed by Optical Coherence Tomography Angiography.

    PubMed

    Pichi, Francesco; Srivastava, Sunil K; Levinson, Ashleigh; Baynes, Kimberly M; Traut, Caitlyn; Lowder, Careen Y

    2016-06-01

    Neovascularization may be associated with cat-scratch neuroretinitis in the absence of retinal vascular occlusion. Bartonella organisms establish an intimate relationship with the vascular endothelium, causing angioproliferative lesions, which might represent a dedicated pathogenic strategy for expanding the bacterial host cell habitat. In the eye, pathological angiogenesis caused by Bartonella has been described as peripapillary or macular choroidal neovascularization, but the presence of neovascularization within foci of chorioretinitis has never before been reported. The authors present a case of Bartonella chorioretinitis in which optical coherence tomography angiography, by detecting erythrocyte motion, was able to identify neovessels inside the infectious focus. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:585-588.].

  9. CODEX optical stability under microvibration environment: Is the Nasmith focal station suitable or not?

    NASA Astrophysics Data System (ADS)

    Riva, M.; Zerbi, F. M.; Pasquini, L.

    2012-09-01

    This paper wants to address the opto-mechanical stability of the Codex instrument pending onto vibration environment. CODEX is a study for an high resolution spectrograph for the European ELT. In particular the aim of the work is a preliminary verification of the instrument performances if mounted at the E-ELT Folded Nasmith location. Hence Dynamic environment of the Coudé and the folded Nasmith locations were alternatively applied to the optical layout to verify the image performances in terms of image displacements and FWHM deformations. In addition damping strategies has been verified for the improvement of the performances.

  10. Evaluating the thermal stability of multi-pass cells' effective optical path length using optical frequency domain reflectometer

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Cao, Xiuhan; Li, Jinyi; Du, Zhenhui

    2016-10-01

    Multi-pass cells (MPCs) are commonly used to improve the sensitivity for trace gas detection using spectroscopy technologies. The determination of Effective Optical Path Length (EOPL) of a MPC is very important and challenging in applications which aim at absolute measurements. It is well-known that the temperature changing will exercise some influence on the MPCs' spatial structure, however, measurements of the influence haven't been reported which might due to the limitation of measuring method. In this paper, we used a direct high-precision measuring method with Optical Frequency Domain Reflectometer (OFDR) to evaluate the thermal stability of a multi-pass cell. To simulate the environment with a large range of temperature changing, this paper gave a series of experiments by setting the temperature control unit in system from 25 to 175 degree Celsius, and the MPC's EOPL was measured simultaneously for the investigation of temperature response. The results showed that the effective optical path length increase monotonically along with the variation of the temperature, and the rising rate is 0.5 mm/ºC with the total length of about 3 meters which should be pay attention to when the ultra-high accuracy results are demanded. To stabilize the EOPL of the system, if it is possible, the environment temperature of gas cell can be controlled with a constant temperature. In practical applications, the real-time monitoring of EOPL with a direct measuring method may be necessary.

  11. Pattern detection through the use of long-gauge length spatially weighted fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Huston, Dryver R.

    1996-11-01

    Multiplexed and distributed sensor systems are generally employed when the number of sensing points makes the use of an individually addressed sensor array prohibitive based upon some system cost function. Fiber optic sensing techniques offer great potential for the creation of multiplexed, quasi-distributed and distributed sensor systems. In addition, fiber optic sensors can be spatially weighted and configured for maximum sensitivity to particular patterns of extended parameter fields. This allows such sensors to perform a patten recognition preprocessing function, reducing system cost and processing overhead. In this paper, the appropriate use of multiplexed sensor systems, distributed sensor systems and long gauge length sensor systems with pattern matching capability are discussed as a function of system size and purpose. Design options for long gauge length sensors in terms of preprocessing functionality also are discussed. Finally, a specific example of the use of a spatially weighted sensor for vehicle identification is covered.

  12. Optical CDMA system using 2-D run-length limited code

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Jiang, Joe-Air

    2010-10-01

    In this paper, time-spreading wavelength-hopping optical CDMA system using 2-D run-length limited code is investigated. The run-length limited code we use here is predicated upon spatial coding scheme, which can improve system performance significantly. In our proposed system, we employ carrier-hopping prime code and its shifted version as signature sequences. Based on the zero auto-correlation sidelobes property of signature sequence, we propose a two-state trellis coding architecture, which utilizes 2-D parallel detection scheme. The proposed scheme is compact and simple that can be applied to more complicated trellis to further enhance system performance. Multiple access interference is the main deterioration factor in optical CDMA system that affects system performance adversely. Aside from the multiple access interference, some of the adverse impacts of system performance are also taken into consideration, which include thermal noise, shot noise, relative intensity noise, and beat noise.

  13. Length measurement in absolute scale via low-dispersion optical cavity

    NASA Astrophysics Data System (ADS)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  14. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer.

    PubMed

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  15. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer

    NASA Astrophysics Data System (ADS)

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  16. All optical contention detection and resolution for asynchronous variable length optical packets switching

    NASA Astrophysics Data System (ADS)

    Farhat, Rim; Farhat, Amel; Menif, Mourad

    2016-04-01

    We proposed a novel 2×2 all optical packet switching router architecture supporting asynchronous, labelled and variablelength packet. A proof of concept through Matlab Simulink simulation is validated. Then we discussed the three possible scenarios to demonstrate the contention resolution technique based on deflection routing. We have showing that the contending packet is detected and forwarded according FIFO (First In First Out) strategy to another output.

  17. Optical experimental evidence for a universal length scale for the dynamic charge inhomogeneity of cuprate superconductors.

    PubMed

    Mihailovic, D

    2005-05-27

    Time-resolved optical experiments can give unique information on the characteristic length scales of dynamic charge inhomogeneity on femtosecond time scales. From data on the effective quasiparticle relaxation time tau(r) in La(2-x)SrxCuO4 and Nd(2-x)Ce(x)CuO4, we derive the temperature and doping dependence of the intrinsic phonon escape length l(e), which can be a direct measure of charge inhomogeneity. Remarkably, a common feature of both p- and n-type cuprates is that, as T --> Tc, l(e) approaches the superconducting coherence length l(e) --> xi(s)0. In the normal state l(e) is found to be in excellent agreement with the mean free path l(m) obtained from the resistivity data and structural coherence lengths l(s) from neutron scattering experiments, implying the existence of complex intrinsic textures on different length scales which may have a profound effect on the functional properties of these materials.

  18. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  19. The Effect of Axial Length on the Variability of Stratus Optical Coherence Tomography

    PubMed Central

    Bae, Jeong Hun; Han, So Young; Kim, Hyunjoong; Park, Ki Ho; Cho, Jung Gon

    2012-01-01

    Purpose To evaluate the effect of axial length on the variability of retinal nerve fiber layer (RNFL) thickness measurements using the Stratus optical coherence tomography (OCT) in normal and glaucomatous eyes. Methods We measured the RNFL thickness in 474 subjects using the Stratus OCT twice during the same day. Axial length was measured with the IOLMaster, and refractive error was the absolute value of the spherical equivalent measured with an auto ref-keratometer. Standard deviation in overall mean RNFL thickness was used as the dependent variable to identify significant correlations. Results Long axial length affected the variability in the RNFL thickness value by stratus OCT at the temporal quadrant (p = 0.006) and clock-hour sector 9 (p = 0.001). Refractive error also affected the variability of the RNFL thickness value by stratus OCT at the temporal quadrant (p = 0.025) and clock-hour sector 9 (p = 0.024). Conclusions It is clinically significant that longer axial length demonstrates greater variability in temporal area as detected by OCT, a measurement which correlates with the preferably damaged position in the myopic glaucoma eye. PMID:22870026

  20. Optical path-length modulation for three-dimensional particle measurement in mirror-embedded microchannels.

    PubMed

    Choi, Sungyoung; Kim, Seung-Hoon; Park, Je-Kyun

    2010-02-07

    Simple and low-cost implementation of three-dimensional (3D) particle measurement is vital for designing and characterizing microfluidic devices that show spatiotemporally varying characteristics in three dimensions. However, the conventional 3D particle image velocimetry or particle streak velocimetry has proven difficult to address the needs, requiring complex and expensive equipment, precise alignment between optical components, and specialized image-processing algorithms. Here, we report mirror-embedded microchannels and a method of optical path-length (OPL) modulation for 3D particle measurement in the channels. The mirror, ideally at 45 degrees, reflects the side view of the channels and enables 3D positional information to be obtained easily from two different orthogonal-axis images with different optical paths. To offset the optical path difference between two image views, we utilized a cover glass as a medium of high refractive index and placed it in the light path through which the side-view image propagates, thereby prolonging the OPL of the side view and simultaneously shifting its depth of field (DOF) range. This modulation ensures imaging of in-focus side view as well as top view. This 3D imaging principle was verified by observing 3D positions of 6 mum-sized beads in the linear and grooved microchannels. The mirror-embedded scheme can be readily fabricated with existing microfluidic designs, and offer easy and simple implementation of 3D particle measurement.

  1. Correlation of Retinal Nerve Fiber Layer Thickness and Axial Length on Fourier Domain Optical Coherence Tomography

    PubMed Central

    Dhasmana, Renu; Nagpal, R.C.

    2016-01-01

    Introduction The assessment of the peripapillary Retinal Nerve Fiber Layer (RNFL) thickness has been an important tool for evaluating and diagnosing glaucoma and its progression. Literature suggests that myopic eyes are at an increased risk for developing glaucoma. This study gives an insight into the relationship of RNFL thickness to the axial length in normal population. Aim To correlate the RNFL thickness and the axial length in normal individuals with Fourier domain Optical Coherence Tomography (OCT). Materials and Methods In the current study, 298 eyes of 149 normal individuals (10 years or older) with or without refractive error were recruited. The RNFL thickness was measured using Optovue (RTVue) three-dimensional Fourier domain OCT. Results We observed an inverse relationship between average RNFL thickness and increasing axial length(p=0.003). Maximum RNFL thickness was seen in the Infero-Temporal (IT) quadrant and minimum in the Supero-Nasal (SN) quadrant. RNFL thickness did not show any tendency to decline with age using the Pearsons correlation (r=0.07). Females had an increased RNFL thickness in the Supero-Temporal (ST) and Infero-Nasal (IN) quadrant (p-value 0.046 and 0.02) in comparison to males. There was a statistically significant thinning in Ganglion Cell Complex (GCC) with increasing axial length (p-value 0.000) Conclusion The current study suggests that the average RNFL thickness does not decrease with age. The RNFL and GCC thickness shows an inverse correlation with axial length of the eyeball hence observations have to be carefully interpreted in myopic eyes. Clinicians need to keep the anatomical variations in RNFL for better patient management. PMID:27190850

  2. Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements

    NASA Astrophysics Data System (ADS)

    Tao, Long; Liu, Zhigang; Zhang, Weibo

    2015-09-01

    Because of its compact size and portability, optical fiber has been wildly used as optical paths in frequency-scanning interferometers for high-precision absolute distance measurements. However, since the fiber is sensitive to ambient temperature, its length and refractive index change with temperature, resulting in an optical path length drift that influences the repeatability of measurements. To improve the thermal stability of the measurement system, a novel frequency-scanning interferometer composed of two Michelson-type interferometers sharing a common fiber optical path is proposed. One interferometer defined as origin interferometer is used to monitor the drift of the measurement origin due to the optical path length drift of the optical fiber under on-site environment. The other interferometer defined as measurement interferometer is used to measure the distance to the target. Because the optical path length drift of the fiber appears in both interferometers, its influence can be eliminated by subtracting the optical path difference of the origin interferometer from the optical path difference of the measurement interferometer. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability. Under on-site environment, an accuracy about 4 μm was achieved for a distance of about 1 m.

  3. Measurement of the optical path length difference in an interferometer using a sinusoidally frequency-modulated light source.

    PubMed

    Shimada, Shumpei; Shizuka, Makoto; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2016-04-10

    We develop a technique for measuring the optical path length difference (OPLD) in an interferometer using a frequency-modulated light source. Compared with conventional methods, this technique offers a high sampling rate, high precision, and cost efficiency, and is capable of determining which of the two optical paths is longer. In addition, we show that this technique works properly even when the OPLD is significantly longer than the coherence length of the light source.

  4. Optic Disc - Fovea Distance, Axial Length and Parapapillary Zones. The Beijing Eye Study 2011

    PubMed Central

    Jonas, Rahul Arvo; Wang, Ya Xing; Yang, Hua; Li, Jian Jun; Xu, Liang; Panda-Jonas, Songhomitra; Jonas, Jost Bruno

    2015-01-01

    Purpose To measure the distance between the optic disc center and the fovea (DFD) and to assess its associations. Methods The population-based cross-sectional Beijing Eye Study 2011 included 3468 individuals aged 50+ years. The DFD was measured on fundus photographs. Results Readable fundus photographs were available for 2836 (81.8%) individuals. Mean DFD was 4.76 ± 0.34mm (median: 4.74 mm; range: 3.76–6.53mm). In multivariate analysis, longer DFD was associated with longer axial length (P<0.001; standardized correlation coefficient beta: 0.62), higher prevalence of axially high myopia (P<0.001; beta:0.06), shallower anterior chamber depth (P<0.001; beta:-0.18), thinner lens thickness (P = 0.004; beta: -0.06), smaller optic disc-fovea angle (P = 0.02; beta: -0.04), larger parapapillary alpha zone (P = 0.008; beta: 0.05), larger parapapillary beta/gamma zone (P<0.001; beta: 0.11), larger optic disc area (P<0.001; beta: 0.08), lower degree of cortical cataract (P = 0.002; beta: -0.08), and lower prevalence of age-related macular degeneration (P = 0.001; beta: -0.06). Bruch´s membrane opening-fovea distance (DFD minus disc radius minus parapapillary beta/gamma zone width) in non-glaucomatous eyes was not significantly (P = 0.60) related with axial length in emmetropic or axially myopic eyes (axial length ≥23.5 mm), while it increased significantly (P<0.001; r: 0.32) with longer axial length in eyes with an axial length of <23.5mm. Ratio of mean DFD to disc diameter was 2.65 ± 0.30. If the ratio of disc-fovea distance to disc diameter was considered constant and if the individual disc diameter was calculated as the individual disc-fovea distance divided by the constant factor of 2.65, the resulting calculated disc diameter differed from the directly measured disc diameter by 0.16 ±0.13 mm (median: 0.13 mm, range: 0.00–0.89 mm) or 8.9 ± 7.3% (median: 7.4%; range: 0.00–70%) of the measured disc diameter. Conclusions DFD (mean: 4.76mm) increases with longer

  5. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    SciTech Connect

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  6. Time division approach to separate overlapped interference fringes of multiple pulse trains of femtosecond optical frequency comb for length measurement

    NASA Astrophysics Data System (ADS)

    Wei, Dong; Aketagawa, Masato

    2017-01-01

    In this study, we attempt the separation of overlapped interference fringes arising from multiple pulse trains of a femtosecond optical frequency comb for length measurement. Based on an optical experiment, we test the performance of the separation of two overlapped interference fringes by time division for an absolute length measurement, which is about one adjacent pulse repetition interval length. We compare our results with those of a commercial He-Ne interferometer system. The two sets of results show an agreement within 0.7 μm.

  7. Modelling and implementation of a fixed-length-extension to measure fluorescent intensity in bioprocesses using an optical sensor

    NASA Astrophysics Data System (ADS)

    Sardesai, Neha; Al-Adhami, Mustafa; Rao, Govind; Kostov, Yordan

    2016-05-01

    Fluorescent proteins are often used as reporters of protein concentration in biology and biomedicine applications. They can be detected using a fluorimeter equipped with fiber optics for ease of access. However, small changes in the path length due to change in the position, or immersion depth of the optical fiber results in large changes in readings. To alleviate the situation, the fiber is equipped with a fixed-length-extension that provides constant path length. The operation of the fiber equipped fluorimeter is theoretically modelled and practically verified in this paper.

  8. Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing.

    PubMed Central

    Roos, K P; Brady, A J

    1982-01-01

    Discrete sarcomere lengths have been determined from dynamically contracting isolated cardiac cells with a high-speed, high-resolution direct optical imaging system. Calcium-tolerant cardiac cells from the rat are isolated by perfusion with collagenase and hyaluronidase. Individual sarcomere lengths can be determined by directly imaging the cell's striation pattern onto a solid-state charge-coupled device (CCD) detector interfaced with a digital computer. The precision of detection in a real light microscopic optical system is discussed in relation to the type of image detector, optical contract enhancement techniques, and digital image processing. The optical performance of the direct striation pattern image apparatus has been determined empirically with test grids under standard bright-field and Nomarski-differential interference contrast (DIC) conditions for application to real muscle imaging. Discrete striation positions of isolated cells have been detected and followed with high precision during phasic contraction-relaxation cycles down to average sarcomere lengths as short as 1.43 +/- 0.053 microns. The maximum rates of contraction and relaxation are rapid and synchronous in time course along the length of the cell. These results indicate that direct optical imaging can provide an accurate means to monitor discrete striations and sarcomere lengths along the length of Ca2+-tolerant heart cells. Images FIGURE 1 FIGURE 4 PMID:7183337

  9. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  10. Vitelliform focal choroidal excavation.

    PubMed

    Or, Chris; Forooghian, Farzin

    2014-05-30

    Focal choroidal excavations (FCE) are characterized by foveal or perifoveal choroid excavations seen on optical coherence tomography (OCT). The authors report a case of FCE associated with a vitelliform lesion within the excavation. A case of FCE associated with a small vitelliform lesion has been described previously, but the larger extent of the vitelliform lesion observed in the current case has not been previously reported. This may represent a novel category of FCE, vitelliform focal choroidal excavation, in which deposition of vitelliform material is associated with its development.

  11. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution.

    PubMed

    Koos, Krisztian; Molnár, József; Kelemen, Lóránd; Tamás, Gábor; Horvath, Peter

    2016-07-25

    Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available.

  12. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  13. DIC image reconstruction using an energy minimization framework to visualize optical path length distribution

    PubMed Central

    Koos, Krisztian; Molnár, József; Kelemen, Lóránd; Tamás, Gábor; Horvath, Peter

    2016-01-01

    Label-free microscopy techniques have numerous advantages such as low phototoxicity, simple setup and no need for fluorophores or other contrast materials. Despite their advantages, most label-free techniques cannot visualize specific cellular compartments or the location of proteins and the image formation limits quantitative evaluation. Differential interference contrast (DIC) is a qualitative microscopy technique that shows the optical path length differences within a specimen. We propose a variational framework for DIC image reconstruction. The proposed method largely outperforms state-of-the-art methods on synthetic, artificial and real tests and turns DIC microscopy into an automated high-content imaging tool. Image sets and the source code of the examined algorithms are made publicly available. PMID:27453091

  14. Hybrid plasmonic waveguide with centimeter-scale propagation length for nanoscale optical confinement.

    PubMed

    Dahiya, Sandeep; Kumar, Suresh; Kaushik, B K

    2016-12-20

    A centimeter-scale hybrid plasmonic waveguide (HPW) structure based on a grating is proposed at telecom wavelengths. The high-contrast grating is formed by Si and air placed in an air slot created in the high-index region for attaining nanoscale optical confinement. High-contrast gratings help enhance the propagation length up to 3.6 cm with very low loss of 0.11  dB/mm. Further, the extremely large figure of merit 1,129,623 (>107) with nanoscale confinement of 0.00081/μm2 is introduced. In the present work, finite-element-method-based COMSOL Multiphysics software was applied to simulate and analyze the properties of a HPW structure. The proposed HPW device can be used for next-generation applications of nanolasers and modulators.

  15. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    NASA Astrophysics Data System (ADS)

    Chwalla, M.; Danzmann, K.; Fernández Barranco, G.; Fitzsimons, E.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Lieser, M.; Perreur-Lloyd, M.; Robertson, D. I.; Schuster, S.; Schwarze, T. S.; Tröbs, M.; Ward, H.; Zwetz, M.

    2016-12-01

    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments.

  16. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  17. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  18. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.

    PubMed

    Duocastella, Martí; Sun, Bo; Arnold, Craig B

    2012-05-01

    Traditional white-light and fluorescent imaging techniques provide powerful methods to extract high-resolution information from two-dimensional (2-D) sections, but to retrieve information from a three-dimensional (3-D) volume they require relatively slow scanning methods that result in increased acquisition time. Using an ultra-high speed liquid lens, we circumvent this problem by simultaneously acquiring images from multiple focal planes. We demonstrate this method by imaging microparticles and cells flowing in 3-D microfluidic channels.

  19. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NASA Astrophysics Data System (ADS)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-12-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological range.

  20. OPTICAL SYSTEMS: Calculation of the illuminance distribution in the focal spot of a focusing system taking into account aberrations in this system and divergence of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2007-03-01

    The dependence of the focal-spot size of a 'deep' parabolic mirror reflector on the laser-beam divergence is analysed by the method of elementary reflections. The dependence of the focal-beam diameter of an ideal focusing optical system on the laser-beam parameters is described. The expression is obtained for calculating the illumination distribution in the focal spot of a 'deep' mirror reflector which takes into account both aberrations and light-gathering power of the reflector and the divergence of a focused laser beam.

  1. Effect of focal size on the laser ignition of compressed natural gas-air mixture

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-07-01

    Laser ignition of compressed natural gas-air mixtures was investigated in a constant volume combustion chamber (CVCC) as well as in a single cylinder engine. Laser ignition has several potential advantages over conventional spark ignition system. Laser ignition relies on the fact that optical breakdown (plasma generation) in gases occurs at high intensities of ≈1011 W/cm2. Such high intensities can be achieved by focusing a pulsed laser beam to small focal sizes. The focal spot size depends on several parameters such as laser wavelength, beam diameter at the converging lens, beam quality and focal length. In this investigation, the focal length of the converging lens and the beam quality were varied and the corresponding effects on minimum ignition energy as well as pressure rise were recorded. The flame kernel was visualized and correlated with the rate of pressure rise inside the combustion chamber. This investigation will be helpful in the optimization of laser and optics parameters in laser ignition. It was found that beam quality factor and focal length of focusing lens have a strong impact on the minimum ignition energy required for combustion. Combustion duration depends on the energy density at the focal spot and size of the flame kernel.

  2. A Method for Determining the Nominal Occular Hazard Zone for Gaussian Beam Laser Rangers with a Firmware Controlled Variable Focal Length

    NASA Technical Reports Server (NTRS)

    Picco, C. E.; Shavers, M. R.; Victor, J. M.; Duron, J. L.; Bowers, W. h.; Gillis, D. B.; VanBaalen, M.

    2009-01-01

    LIDAR systems that maintain a constant beam spot size on a retroreflector in order to increase the accuracy of bearing and ranging data must use a software controlled variable position lens. These systems periodically update the estimated range and set the position of the focusing lens accordingly. In order to precisely calculate the r NOHD for such a system, the software method for setting the variable position lens and gaussian laser propagation can be used to calculate the irradiance at any point given the range estimation. NASA s Space Shuttle LIDAR, called the Trajectory Control Sensor (TCS), uses this configuration. Analytical tools were developed using Excel and VBA to determine the radiant energy to the International Space Station (ISS) crewmembers eyes while viewing the shuttle on approach and departure. Various viewing scenarios are considered including the use of through-the-lens imaging optics and the window transmissivity at the TCS wavelength. The methodology incorporates the TCS system control logic, gaussian laser propagation, potential failure mode end states, and guidance from American National Standard for the Safe Use of Lasers (ANSI Z136.1-2007). This approach can be adapted for laser safety analyses of similar LIDAR systems.

  3. Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm

    NASA Astrophysics Data System (ADS)

    Gao, Zhenghong; Oudjedi, Laura; Faes, Romain; Moroté, Fabien; Jaillet, Christèle; Poulin, Philippe; Lounis, Brahim; Cognet, Laurent

    2015-11-01

    Ultrashort single-walled carbon nanotubes, i.e. with length below ~30 nm, display length-dependent physical, chemical and biological properties that are attractive for the development of novel nanodevices and nanomaterials. Whether fundamental or applicative, such developments require that ultrashort nanotube lengths can be routinely and reliably characterized with high statistical data for high-quality sample production. However, no methods currently fulfill these requirements. Here, we demonstrate that photothermal microscopy achieves fast and reliable optical single nanotube analysis down to ~10 nm lengths. Compared to atomic force microscopy, this method provides ultrashort nanotubes length distribution with high statistics, and neither requires specific sample preparation nor tip-dependent image analysis.

  4. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; Larkin, Kieran G.; Biggs, David

    2017-01-01

    We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ˜0.5 nm and lateral resolution if ˜300 nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems.

  5. Assessment of optical path length in tissue using neodymium and water absorptions for application to near-infrared spectroscopy.

    PubMed

    Nighswander-Rempel, Stephen P; Kupriyanov, Valery V; Shaw, R Anthony

    2005-01-01

    Quantitative analysis of blood oxygen saturation using near-IR spectroscopy is made difficult by uncertainties in both the absolute value and the wavelength dependence of the optical path length. We introduce a novel means of assessing the wavelength dependence of path length, exploiting the relative intensities of several absorptions exhibited by an exogenous contrast agent (neodymium). Combined with a previously described method that exploits endogenous water absorptions, the described technique estimates the absolute path length at several wavelengths throughout the visible/near-IR range of interest. Isolated rat hearts (n = 11) are perfused separately with Krebs-Henseleit buffer (KHB) and a KHB solution to which neodymium had been added, and visible/near-IR spectra are acquired using an optical probe made up of emission and collection fibers in concentric rings of diameters 1 and 3 mm, respectively. Relative optical path lengths at 520, 580, 679, 740, 800, 870, and 975 nm are 0.41+/-0.13, 0.49+/-0.21, 0.90+/-0.09, 0.94+/-0.01, 1.00, 0.84+/-0.01, and 0.78+/-0.08, respectively. The absolute path length at 975 nm is estimated to be 3.8+/-0.6 mm, based on the intensity of the water absorptions and the known tissue water concentration. These results are strictly valid only for the experimental geometry applied here.

  6. The optics of the growing lungfish eye: lens shape, focal ratio and pupillary movements in Neoceratodus forsteri (Krefft, 1870).

    PubMed

    Bailes, Helena J; Trezise, Ann E O; Collin, Shaun P

    2007-01-01

    Lungfish (order Dipnoi) evolved during the Devonian period and are believed to be the closest living relatives to the land vertebrates. Here we describe the previously unknown morphology of the lungfish eye in order to examine ocular adaptations present in early sarcopterygian fish. Unlike many teleosts, the Australian lungfish Neoceratodus forsteri possesses a mobile pupil with a slow pupillary response similar to amphibians. The structure of the eye changes from juvenile to adult, with both eye and lens becoming more elliptical in shape with growth. This change in structure results in a decrease in focal ratio (the distance from lens center to the retina divided by the lens radius) and increased retinal illumination in adult fish. Despite a degree of lenticular correction for spherical aberration, there is considerable variation across the lens. A re-calculation of spatial resolving power using measured focal ratios from cryosectioning reveals a low ability to discriminate fine detail. The dipnoan eye shares more features with amphibian eyes than with most teleost eyes, which may echo the visual needs of this living fossil.

  7. CO2 laser beam propagation with ZnSe optics

    NASA Astrophysics Data System (ADS)

    Leong, K. H.; Liu, Yi; Holdridge, D. J.

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO2 laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO2 laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM(sub 00), TEM(sub 01), TEM(sub 10), and TEM(sub 20). Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive, and cylindrical lenses of 5 in. focal length and a 10 in. focal length integrating lens. Reflective optics included an integrator and a 5 in. focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size, and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  8. Ostrich ocular optics.

    PubMed

    Martin, G R; Ashash, U; Katzir, G

    2001-01-01

    The optical structure of the eyes of ostriches (Struthio camelus; Struthionidae; Struthioniformes) was determined by the construction of a schematic eye model for paraxial optics. The eye is large (axial length = 38 mm) and of globose shape with an anterior focal length (posterior nodal distance) of 21.8 mm. The optical design of the eye is such that the lens and cornea contribute equally to its total optical power. Interspecific comparison shows that optically the ostrich eye is a larger scaled version of the eyes of common starlings (Sturnus vulgaris) and an owl (Strix aluco).

  9. Pillar cuvettes: capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy.

    PubMed

    Holzner, Gregor; Kriel, Frederik Hermanus; Priest, Craig

    2015-05-05

    The goal of most analytical techniques is to reduce the lower limit of detection; however, it is sometimes necessary to do the opposite. High sample concentrations or samples with high molar absorptivity (e.g., dyes and metal complexes) often require multiple dilution steps or laborious sample preparation prior to spectroscopic analysis. Here, we demonstrate dilution-free, one-step UV-vis spectroscopic analysis of high concentrations of platinum(IV) hexachloride in a micropillar array, that is, "pillar cuvette". The cuvette is spontaneously filled by wicking of the liquid sample into the micropillar array. The pillar height (thus, the film thickness) defines the optical path length, which was reduced to between 10 and 20 μm in this study (3 orders of magnitude smaller than in a typical cuvette). Only one small droplet (∼2 μL) of sample is required, and the dispensed volume need not be precise or even known to the analyst for accurate spectroscopy measurements. For opaque pillars, we show that absorbance is linearly related to platinum concentration (the Beer-Lambert Law). For fully transparent or semitransparent pillars, the measured absorbance was successfully corrected for the fractional surface coverage of the pillars and the transmittance of the pillars and reference. Thus, both opaque and transparent pillars can be applied to absorbance spectroscopy of high absorptivity, microliter samples. It is also shown here that the pillar array has a useful secondary function as an integrated (in-cuvette) filter for particulates. For pillar cuvette measurements of platinum solutions spiked with 6 μm diameter polystyrene spheres, filtered and unfiltered samples gave identical spectra.

  10. 3D optical two-mirror scanner with focus-tunable lens.

    PubMed

    Pokorny, Petr; Miks, Antonin

    2015-08-01

    The paper presents formulas for a ray tracing in the optical system of two-mirror optical scanner with a focus-tunable lens. Furthermore, equations for the calculation of focal length which ensure focusing of a beam in the desired point in a detection plane are derived. The uncertainty description of such focal length follows as well. The chosen vector approach is general; therefore, the application of formulas in various configurations of the optical systems is possible. In the example situation, the authors derived formulas for mirrors' rotations and the focal length depending on the position of the point in the detection plane.

  11. Simultaneous water vapor and dry air optical path length measurements and compensation with the large binocular telescope interferometer

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Hinz, P.; Downey, E.; Böhm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; Millan-Gabet, R.; Montoya, M.; Pott, J.-U.; Skemer, A.; Spalding, E.; Stone, J.; Vaz, A.

    2016-08-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  12. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  13. Electro-optic KTN Devices

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Fujiura, Kazuo

    We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.

  14. Theoretical evaluation of Brillouin dynamic grating length localized by optical correlation domain technique through reflection spectrum simulation

    NASA Astrophysics Data System (ADS)

    Kendy Yamashita, Rodrigo; Kishi, Masato; Hotate, Kazuo

    2017-04-01

    We derive formulae based on Fourier transformation to calculate the reflection spectrum of a Brillouin dynamic grating (BDG), which is localized along an optical fiber by an optical correlation domain technique. First, we calculate the typical reflection spectra of the BDG localized by the technique and confirm the validity of the formulae by showing coincidence with previous theoretical or experimental works. Next, we evaluate theoretically the spatial resolution in the BDG distributed measurement by the technique, through simulations considering different strained fiber lengths. It is confirmed theoretically, for the first time, that the resolution in the BDG measurement is worse than that for the Brillouin gain spectrum.

  15. Distinct Length Scales in the VO{sub 2} Metal–Insulator Transition Revealed by Bi-chromatic Optical Probing

    SciTech Connect

    Wang, Lei; Novikova, Irina B.; Klopf, John M.; Madaras, Scott E.; Williams, Gwyn P.; Madaras, Eric; Lu, Liwei; Wolf, Stuart A.; Lukaszew, Rosa A.

    2014-01-01

    Upon a heating-induced metal–instulator transition (MIT) in VO{sub 2}, microscopic metallic VO{sub 2} puddles nucleate and coarsen within the insulating matrix. This coexistence of the two phases across the transition spans distinct length scales as their relative domain sizes change. Far-field optical probing is applied to follow the dynamic evolution of the highly correlated metallic domains as the MIT progresses.

  16. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks.

    PubMed

    Simien, Daneesh; Fagan, Jeffrey A; Luo, Wei; Douglas, Jack F; Migler, Kalman; Obrzut, Jan

    2008-09-23

    We study the optical and electrical properties of transparent conducting films made from length-sorted single-wall carbon nanotubes (SWCNT). Thin films of length-sorted SWCNTs, formed through filtration from a dispersing solvent onto a filter substrate ("buckypaper"), exhibit sharp changes in their optical properties and conductivity (sigma) with increasing SWCNT surface concentration. At a given surface concentration, tubes longer than 200 nm are found to form networks that are more transparent and conducting. We show that changes of sigma with SWCNT concentration can be quantitatively described by the generalized effective medium (GEM) theory. The scaling universal exponents describing the "percolation" transition from an insulating to a conducting state with increasing concentration are consistent with the two-dimensional (2D) percolation model. Shorter tubes and mixed length tubes form 3D networks. Furthermore, we demonstrate that the conductivity percolation threshold (x(c)) varies with the aspect ratio L as, x(c) approximately 1/L, a result that is also in accordance with the percolation theory. These findings provide a framework for engineering the optical and electrical properties of SWCNT networks for technological applications where flexibility, transparency, and conductivity are required.

  17. High-extinction ratio and short-length polarization splitter based on microstructured optical fiber with tellurite glass

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Li, Shuguang; Liu, Qiang; Fan, Zhenkai; Wang, Guangyao; Zhao, Yunyan

    2017-04-01

    A new type of tellurite glass based on dual-core microstructured optical fiber with an Au wire has been numerically evaluated. This novel substance is a suitable optical fiber material for nonlinear applications due to its high nonlinear coefficient. A full-vector finite element method is employed to analyze the characteristics of the polarization splitter. A splitter with an ultrashort length of 1.079 mm and a high extinction ratio of 174.92 dB at the wavelength of 1.55 μm has been obtained. Moreover, the splitter exhibits a bandwidth with an extinction ratio as high as 20 dB of about 70 nm. An effective mode area Aeff of the optical fiber of 21.53 μm2 for one of the supermodes of the x even mode has been calculated.

  18. CO[sub 2] laser beam propagation with ZnSe optics

    SciTech Connect

    Leong, K.H.; Liu, Yi; Holdridge, D.J.

    1992-01-01

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO[sub 2] laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO[sub 2] laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM[sub 00], TEM[sub 01], TEM[sub 10] and TEM[sub 20]. Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive and cylindrical lenses of 5in focal length and a 10in focal length integrading lens. Reflective optics included an integrator and a 5in focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  19. CO{sub 2} laser beam propagation with ZnSe optics

    SciTech Connect

    Leong, K.H.; Liu, Yi; Holdridge, D.J.

    1992-11-01

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO{sub 2} laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO{sub 2} laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM{sub 00}, TEM{sub 01}, TEM{sub 10} and TEM{sub 20}. Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive and cylindrical lenses of 5in focal length and a 10in focal length integrading lens. Reflective optics included an integrator and a 5in focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  20. Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse)

    NASA Astrophysics Data System (ADS)

    Lim, Juhee; Chang, Seunghyuk; Pak, Soojong; Kim, Youngju; Park, Won-Kee; Im, Myungshin

    2013-08-01

    A focal reducer is developed for CQUEAN (Camera for QUasars in EArly uNiverse), which is a CCD imaging system on the 2.1 m Otto Struve telescope at the McDonald observatory. It allows CQUEAN to secure a wider field of view by reducing the effective focal length by a factor of three. The optical point spread function without seeing effects is designed to be within one pixel (0.283 arcsec) over the field of view of 4.82 arcmin × 4.82 arcmin in optimum wavelength ranges of 0.8-1.1 μm. In this paper, we describe and discuss the characteristics of optical design, the lens and barrel fabrications and the alignment processes.The observation results show that the image quality of the focal reducer confirms the expectations from the design.

  1. Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch

    PubMed Central

    Ruggeri, Marco; Uhlhorn, Stephen R.; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie

    2012-01-01

    Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time. PMID:22808424

  2. Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key.

    PubMed

    Zhao, Qingchun; Wang, Yuncai; Wang, Anbang

    2009-06-20

    An external-cavity laser (ECL) operating in a chaotic state is usually used in a chaotic optical secure communication system and its feedback length (FL) is often regarded as an additional key. Our analyses show that an eavesdropper's (Eve) laser can synchronize with a transmitter (Alice) without any knowledge of the FL by simply increasing the injection strength. A sequence of a 1 Gbit/s nonreturn-to-zero message encoded by the FL as the key is successfully eavesdropped. The reason for the synchronization deviation between Alice's and Eve's lasers is given. Our results indicate that the FL as a key cannot enhance the security of chaotic optical communication using long-ECLs.

  3. Location of Tessellations in Ocular Fundus and Their Associations with Optic Disc Tilt, Optic Disc Area, and Axial Length in Young Healthy Eyes

    PubMed Central

    Terasaki, Hiroto; Yamashita, Takehiro; Yoshihara, Naoya; Kii, Yuya; Tanaka, Minoru; Nakao, Kumiko; Sakamoto, Taiji

    2016-01-01

    Tessellated fundus is found as common and early-phase characteristic of myopic eyes and their locations are varied among patients. However, the relationship between their locations and morphological parameters of the eyes is still unknown. The purpose is this study is to determine the locations of the tessellations in the ocular fundus of young healthy eyes, and to determine relationships between their locations and morphological parameters of the eyes. This is a prospective observational cross sectional study of 126 eyes of 126 healthy volunteers (mean age 26.0±4.1 years). The eyes were classified into eight groups based on the location of the tessellations; no tessellation, temporal, infra-temporal, inferior, nasal, peripapillary, whole retina, and unclassified tessellations. The degree of optic disc tilt was quantified using a sine curve fitting program on the optical coherence tomographic circle scan images. The correlations between each tessellation location and the axial length, area of the optic disc plus conus (AOC), and optic disc tilt were determined. Forty-four eyes were place in the no tessellation group, 12 eyes in the temporal, 21 eyes in the infra-temporal, 9 eyes in the inferior, 8 eyes in the nasal, 15 eyes in the peripapillary, 11 eyes in the whole, and 6 eyes in the unclassified groups. The differences in the axial lengths between the no tessellation group and the infra-temporal groups were significant. A significant difference was found in the AOC between the no tessellation and the inferior, infra-temporal, and peripapilalry groups. A significant difference was found in the optic disc tilt between the no tessellation and infra-temporal groups (P<0.05). The tessellations are located at specific sites in the fundus of young healthy eyes with the infra-temporal location most frequent. It was correlated with some parameters associated with myopia. PMID:27275584

  4. Comparative analysis of post-focal filamentation of focused UV and IR laser pulses in air

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2015-04-30

    We report the results of laboratory experiments and numerical calculations of the spatial position and structure of a plasma channel produced in air by high-power focused femtosecond laser radiation with wavelengths of 740 and 248 nm as a result of its self-focusing and filamentation. A comparative analysis of the physical patterns of filamentation of IR and UV laser beams with variations in the beam focal length, transverse size and power is performed. It is found that a plasma channel beyond the linear focal waist of the laser beam is formed differently for two different spectral ranges. (nonlinear optical phenomena)

  5. Unilateral Isolated Proximal Femoral Focal Deficiency

    PubMed Central

    Doğer, Emek; Köpük, Şule Y.; Çakıroğlu, Yiğit; Çakır, Özgür; Yücesoy, Gülseren

    2013-01-01

    Objective. To discuss a patient with a prenatal diagnosis of unilateral isolated femoral focal deficiency. Case. Antenatal diagnosis of unilateral isolated femoral focal deficiency was made at 20 weeks of gestation. The length of left femur was shorter than the right, and fetal femur length was below the fifth percentile. Proximal femoral focal deficiency was diagnosed. After delivery, the diagnosis was confirmed with skeletal radiographs and magnetic resonance imaging. In prenatal ultrasonographic examination, the early recognition and exclusion of skeletal dysplasias is important; moreover, treatment plans should be initiated, and valuable information should be provided to the family. PMID:23984135

  6. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    SciTech Connect

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; Weber, M. R.; Gehrke, C. R.; Polonowski, C. J.; Mueller, C. J.

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate, and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.

  7. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE PAGES

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  8. Large stroke MOEMS actuators for optical path length modulation in miniaturized FTIR spectrometers

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Drabe, Christian; Schenk, Harald; Kenda, Andreas

    2009-05-01

    In this paper we present a novel translatory MOEMS device with extraordinary large stroke especially designed for fast optical path modulation in an improved miniaturized Fourier-transform infrared (FTIR) spectrometer capable to perform time resolved measurements from NIR to MIR. Recently, we presented a first MOEMS based FTIR system using a different translatory MOEMS actuator with bending suspensions of the mirror plate and +/-100μm oscillation amplitude resulting in a limited spectral resolution of 30 cm-1. For the novel MOEMS actuator an advanced pantograph suspension of the mirror plate was used to guarantee an extraordinary large stroke of up to 500 μm required for an improved spectral resolution. To optimize the optical throughput of the spectrometer the mirror aperture was increased to 7 mm2. The MOEMS actuators are driven electro statically resonant using out-of-plane comb drives and operate at a resonant frequency of 500 (1000) Hz, respectively. Hence, this enables to realize an improved MOEMS based FTIR-spectrometer with a spectral resolution of up to 10 cm-1, a SNR of > 1000:1 and an acquisition time of 1 ms per spectrum of the miniaturized FTIR-system. In this article we discuss in detail the design and the experimental characteristics of the novel large stroke translatory MOEMS device. The application and system integration, especially the optical vacuum packaging, of this MOEMS device in an improved miniaturized MOEMS based FTIR spectrometer enabling ultra rapid measurements in the NIRMIR spectral region with 12cm-1 spectral resolution is discussed in a separate paper submitted to this conference.

  9. Fast speed MWIR imager for uncooled focal plane array

    NASA Astrophysics Data System (ADS)

    Lin, Liu

    2007-12-01

    Recent advances of uncooled detector technology especially the development of uncooled micro-bolometer array hold promise for us to develop low-cost and compact MWIR earth observation imager. For comparative lower radiometric performance of uncooled focal plane array, fast speed optical system operating in large spectral bands is compatible. In addition, in order to exhibit advantages over imagers based on cooled detector technology, the optical system should be as compact as possible which means fewer elements, smaller size and light weight. In this article, a high speed optical design meeting these requirement is provided with 100mm focal length, F/1 F number,+/-2.5°field of view woking in 3-5um wave band. The fast speed MWIR imager has properties mentioned as follows: First, the optical system utilizes a hybrid system including refractive and diffractive elements. Second, the optical system realizes athermalization in simple passive way through distributing power among the refractive elements. It can work under typical temperature scope from -20°C to 60°C for typical space application. Third, Because of high speed aperture, the design makes use of aspheric surface to correct spherical aberration and spherochromatism .Finally, we use Ge and Si material. instead of expensive ZnS material.

  10. Thermal-induced phase-shift error of a fiber-optic gyroscope due to fiber tail length asymmetry.

    PubMed

    Zhang, Yunhao; Zhang, Yonggang; Gao, Zhongxing

    2017-01-10

    As a high-precision angular sensor, the fiber-optic gyroscope (FOG) usually shows high sensitivity to disturbances of the environmental temperature. Research on thermal-induced error of the FOG is meaningful to improve its robust performance and reliability in practical applications. In this paper, thermal-induced nonreciprocal phase-shift error of the FOG due to asymmetric fiber tail length is discussed in detail, based on temperature diffusion theory. Theoretical analysis shows that the increase of thermal-induced nonreciprocal phase shift of the FOG is proportional to the asymmetric tail length. Moreover, experiments with temperature ranging from -40°C to 60°C are performed to confirm the analysis. The analysis and experiment results indicate that we may compensate the asymmetry of fiber coil due to imperfect winding and the assembly process by adjusting the fiber tail length, which can reduce the thermal-induced phase-shift error and further improve the adaptability of the FOG in a changing ambient temperature.

  11. Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

    NASA Astrophysics Data System (ADS)

    Park, Sun-Youp; Choi, Jin; Roh, Dong-Goo; Park, Maru; Jo, Jung Hyun; Yim, Hong-Suh; Park, Young-Sik; Bae, Young-Ho; Park, Jang-Hyun; Moon, Hong-Kyu; Choi, Young-Jun; Cho, Sungki; Choi, Eun-Jung

    2016-09-01

    As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

  12. Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy

    PubMed Central

    Motaghian Nezam, S. M. R.; Joo, C; Tearney, G. J.; de Boer, J. F.

    2009-01-01

    Spectral-domain optical coherence phase microscopy (SD-OCPM) measures minute phase changes in transparent biological specimens using a common path interferometer and a spectrometer based optical coherence tomography system. The Fourier transform of the acquired interference spectrum in spectral-domain optical coherence tomography (SD-OCT) is complex and the phase is affected by contributions from inherent random noise. To reduce this phase noise, knowledge of the probability density function (PDF) of data becomes essential. In the present work, the intensity and phase PDFs of the complex interference signal are theoretically derived and the optical path length (OPL) PDF is experimentally validated. The full knowledge of the PDFs is exploited for optimal estimation (Maximum Likelihood estimation) of the intensity, phase, and signal-to-noise ratio (SNR) in SD-OCPM. Maximum likelihood (ML) estimates of the intensity, SNR, and OPL images are presented for two different scan modes using Bovine Pulmonary Artery Endothelial (BPAE) cells. To investigate the phase accuracy of SD-OCPM, we experimentally calculate and compare the cumulative distribution functions (CDFs) of the OPL standard deviation and the square root of the Cramér-Rao lower bound (1/2SNR) over 100 BPAE images for two different scan modes. The correction to the OPL measurement by applying ML estimation to SD-OCPM for BPAE cells is demonstrated. PMID:18957999

  13. White-light interferometers with polarizing optics for length measurements with an applicable zero-point detection

    NASA Astrophysics Data System (ADS)

    Ullmann, V.; Emam, S.; Manske, E.

    2015-08-01

    For absolute length and form measurements at a large working distance (>150 mm) two special interferometers, a tandem interferometer and a Michelson interferometer with achromatic polarizing optics are constructed. In our experiments, both consist of a combination of one low-coherence interferometer and one laser interferometer. For the low-coherence interferometer part, a simple white-light source with less than 100 µW optical power output is chosen. It bases upon a low-cost fiber-coupled near-infrared LED with a large spectral width (FWHM > 68 nm at 825 nm). The use of achromatic polarizing optics such as broadband polarizing beamsplitters and achromatic quarter-wave plates in the low-coherence interferometer parts increases the contrast level of the white-light signal fringe pattern to nearly 100%. Furthermore, the fringe pattern in a polarized interferometer has no subsignatures and is unique. Hence, different algorithms are tested for signal processing and automated zero-point detection of the white-light signature. The software for an automated measurement is tested in a standard room without thermal control and without damped oscillation. Therefore, in experiments with the tandem interferometer, it was possible to measure the zero-point position of a white-light signature with a peak-to-peak difference of 154 nm under uncontrolled environmental conditions without thermal stabilization. The white-light Michelson interferometer with polarizing achromatic optics allows zero-point detections with a standard deviation (mean value) of less than 15 nm. The drift is proved through measurement results.

  14. Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry.

    PubMed

    Ohno, Shingo; Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2016-08-22

    Long-range C-OFDR measurement of fiber Rayleigh scatter signature is described. The Rayleigh scatter signature, which is an interference pattern of backscatters from the random refractive indices in fibers, is known to be applicable to fiber identification and temperature or strain sensing by measuring its repeatability and its spectral shift. However, these applications have not been realized at ranges beyond the laser coherence length since laser phase noise degrades its repeatability. This paper proposes and demonstrates a method for analyzing the optical power spectrum of local Rayleigh backscatter to overcome the limitation imposed by laser phase noise. The measurable range and spatial performance are also investigated experimentally with respect to the remaining phase noise and noise reduction by signal averaging with the proposed method. The feasibility of Rayleigh scatter signature measurement for long-range applications is confirmed.

  15. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    SciTech Connect

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  16. Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil.

    PubMed

    Somogyi, Andrea; Medjoubi, Kadda; Baranton, Gil; Le Roux, Vincent; Ribbens, Marc; Polack, François; Philippot, Pascal; Samama, Jean Pierre

    2015-07-01

    The Nanoscopium 155 m-long beamline of Synchrotron Soleil is dedicated to scanning hard X-ray nanoprobe techniques. Nanoscopium aims to reach ≤100 nm resolution in the 5-20 keV energy range for routine user experiments. The beamline design tackles the tight stability requirements of such a scanning nanoprobe by creating an overfilled secondary source, implementing all horizontally reflecting main beamline optics, applying high mechanical stability equipment and constructing a dedicated high-stability building envelope. Multi-technique scanning imaging and tomography including X-ray fluorescence spectrometry and spectro-microscopy, absorption, differential phase and dark-field contrasts are implemented at the beamline in order to provide simultaneous information on the elemental distribution, speciation and sample morphology. This paper describes the optical concept and the first measured performance of the Nanoscopium beamline followed by the hierarchical length-scale multi-technique imaging experiments performed with dwell times down to 3 ms per pixel.

  17. Fabrication of ZnO nanorods and assessment of changes in optical and gas sensing properties by increasing their lengths

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein

    2013-12-01

    We report a low-temperature process to synthesize highly oriented arrays of ZnO nanorods, based on the epitaxial growth of the ZnO seed layer at a low temperature of 70 °C. The ZnO seed layer was deposited by sol-gel process under mild conditions on the glass substrates. The morphologies and crystal structures of the film and nanorods were characterized by x-ray diffraction and scanning electron microscopy, respectively. ZnO nanorods were grown on ZnO seed layers by hydrothermal method. The effect of growth period on the morphology and optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and gas sensing properties of the grown ZnO seed layer (film) and nanorods were investigated. The long nanorods on the seed layer were observed. The increase in the length of the nanorods resulted in a significant reduction in the optical band-gap energy of the nanorods, which was attributed to the formation of further defects in the nanorods during their fast growth. The surface of the ZnO nanorods grown for 6 h was relatively hydrophilic (with a water contact angle of 18°). The fabricated sensors were used to gauge different concentrations of ethanol vapor in the air at different temperatures and evaluated the surface resistance of the sensors as a function of operating temperature and ethanol concentrations. The results showed that the sensitivity of the nanorods changed from 1.3 to 6 (at 300 °C) by increasing the growth period.

  18. Defocus compensation system of long focal aerial camera based on auto-collimation

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-ye; Zhao, Yu-liang; Xu, Zhao-lin

    2010-10-01

    Nowadays, novel aerial reconnaissance camera emphasizes on the shooting performance in high altitude or in long distance of oblique photography. In order to obtain the larger scale pictures which are easier for image interpretation, we need the camera has long focal length. But long focal length camera is easier to be influenced by environmental condition and lead to great change of lens' back focus which can result in the lens' resolution decreased greatly. So, we should do precise defocusing compensation to long focal aerial camera system. In order to realize defocusing compensation, a defocusing compensation system based on autocollimation is designed. Firstly, the reason which can lead to long focal camera's defocusing was discussed, then the factors such as changes of atmospheric pressure and temperature and oblique photographic distance were pointed out, and mathematical equation which could compute camera's defocusing amount was presented. Secondly, after camera's defocusing was analyzed, electro-optical autocollimation of higher automation and intelligent was adopted in the system. Before shooting , focal surface was located by electro-optical autocollimation focal detection mechanism, the data of airplane's height was imported through electronic control system. Defocusing amount was corrected by computing defocusing amount and the signal was send to focusing control motor. And an efficient improved mountain climb-searching algorithm was adopted for focal surface locating in the correction process. When confirming the direction of curve, the improved algorithm considered both twice focusing results and four points. If four points continue raised, the curve would be confirmed as rising direction. On the other hand, if four points continue decreased, the curve would be confirmed as decrease direction. In this way, we could avoid the local peak value appeared in two focusing steps. The defocusing compensation system consists of optical component and precise

  19. A Review of Focal Reducer Interferometer Systems

    DTIC Science & Technology

    1986-06-01

    searches. G.Courtes has also proposed a design for a focal reducer for the E.S.O. 3.6m. Ritchey -Chretien telescope (Fig. 4b). He uses a Schmidt camera...spaced components, with a modified Wynne camera design (Fig. 7). The instrument proposed used folded optics and would operate at the F/8 Ritchey Cretien ...G.Courtes for the 3.6m Ritchey Chretien telescope . a, telescope focal plane and field lens; b, collimator; c, camera. Figure 5 The focal reducer of A.B

  20. Active optical zoom system.

    PubMed

    Wang, Di; Wang, Qiong-Hua; Shen, Chuan; Zhou, Xin; Liu, Chun-Mei

    2014-11-01

    In this work, we propose an active optical zoom system. The zoom module of the system is formed by a liquid lens and a spatial light modulator (SLM). By controlling the focal lengths of the liquid lens and the encoded digital lens on the SLM panel, we can change the magnification of an image without mechanical moving parts and keep the output plane stationary. The magnification can change from 1/3 to 3/2 as the focal length of the encoded lens on the SLM changes from infinity to 24 cm. The proposed active zoom system is simple and flexible, and has widespread application in optical communications, imaging systems, and displays.

  1. Silicon pore optics for the ATHENA telescope

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barriere, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; van der Hoeven, Roy; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Massahi, Sonny; Christensen, Finn E.; Valsecchi, Giuseppe

    2016-07-01

    Silicon Pore Optics is a high-energy optics technology, invented to enable the next generation of high-resolution, large area X-ray telescopes such as the ATHENA observatory, a European large (L) class mission with a launch date of 2028. The technology development is carried out by a consortium of industrial and academic partners and focuses on building an optics with a focal length of 12 m that shall achieve an angular resolution better than 5". So far we have built optics with a focal length of 50 m and 20 m. This paper presents details of the work carried out to build silicon stacks for a 12 m optics and to integrate them into mirror modules. It will also present results of x-ray tests taking place at PTB's XPBF with synchrotron radiation and the PANTER test facility.

  2. Natural course of symptomatic focal choroidal excavation.

    PubMed

    Pierro, Luisa; Casalino, Giuseppe; Introini, Ugo; Gagliardi, Marco; Sergenti, Jessica; Cascavilla, Maria Lucia; Bandello, Francesco

    2015-01-01

    A 32-year-old man was referred to the authors' department for nonspecified macular dystrophy with persistent metamorphopsia in the right eye diagnosed 10 years before and followed using optical coherence tomography. The patient underwent a comprehensive ocular examination, including multimodal imaging evaluation and electrofunctional testing. The diagnosis was consistent with nonconforming focal choroid excavation. Over 10 years, no complications occurred, visual acuity was stable, and optical coherence tomography showed no progression of the lesion during follow-up. In this case, nonconforming symptomatic focal choroid excavation was a nonprogressive condition with good long-term visual outcome.

  3. Analysis of adaptive laser scanning optical system with focus-tunable components

    NASA Astrophysics Data System (ADS)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  4. Partial (focal) seizure

    MedlinePlus

    ... Jacksonian seizure; Seizure - partial (focal); Temporal lobe seizure; Epilepsy - partial seizures ... Abou-Khalil BW, Gallagher MJ, Macdonald RL. Epilepsies. In: Daroff ... Practice . 7th ed. Philadelphia, PA: Elsevier; 2016:chap 101. ...

  5. Optical measurement with direct traceability to the primary standards of length and time - Toward a system of metrology based entirely on the properties of the photon

    NASA Astrophysics Data System (ADS)

    Clark, Roy

    1993-03-01

    It is proposed that the primary standards of length and time have now reached a sufficient level of maturity that they may be removed from the standards laboratories and used directly for measurement calibration with minimal recourse to the use of intermediate secondary standards. In particular, if a measurement can be configured to give a time-related output such as decay time, time of flight (TOF), frequency, or phase shift, then direct traceability to the primary atomic clock standard can be realized through use of the LORAN C or global position satellite systems. Twelve illustrative examples are considered covering a wide range of optical and spectroscopic measurements. This approach is then extended to mass, the remaining primary standard that is not currently photon-based. An optical definition of mass is realizable in terms of length and time through the angular momentum properties of the photon measured using the torsion balance.

  6. Experimental demonstration of ray-optical refraction with confocal lenslet arrays.

    PubMed

    Courtial, Johannes; Kirkpatrick, Blair C; Logean, Eric; Scharf, Toralf

    2010-12-01

    We observe imaging through windows comprising pairs of confocal lenslet arrays that have different focal lengths but that are otherwise identical. Image space is stretched in the longitudinal direction only. Such windows are examples of METATOYs, optical components that can change light-ray direction in ways that appear wave-optically forbidden.

  7. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  8. Biomimetic optical system using polymer lenses with tunable focus

    NASA Astrophysics Data System (ADS)

    Liang, Dan; Xiang, Ke; Du, Jia-Wei; Yang, Jun-Nan; Wang, Xuan-Yin

    2014-10-01

    A biomimetic system using polymer lenses for the optical design and application is developed. The system mainly consisted of a bionic cornea lens, voice coil motor, compression ring, bionic crystalline lens, substrate, and CCD sensor. By controlling the current of the voice coil motor, we could change the motion of the compression ring to alter the curvature radius of the bionic crystalline lens, thus adjusting the focal length of the whole system. The integrated constructure of the optical system was presented, as well as the detailed description of the lens composition, material, and fabrication process. Images under different displacement loads were captured, the relationship among the curvature radius, observed back focal length, and predicted effective focal length was analyzed, and the spot diagram of the optical system was simulated using ZEMAX software. The focal length of the optical system ranged from 17.3 to 24.5 mm under a tiny displacement load from 0 to 0.14 mm. Besides, the images captured at different rotating angles presented almost identical patterns and the same image quality, which showed good robustness to the gravity. The biomimetic optical system is of interest to develop an integrated, low-cost, and stable imaging system.

  9. Holographic optical elements as scanning lidar telescopes

    NASA Astrophysics Data System (ADS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2006-09-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. Rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  10. Nonintrusive electro-optic field sensor

    NASA Astrophysics Data System (ADS)

    Hales, Walter L.

    1990-08-01

    This invention utilizes the property of an electro-optic crystal which changes its index of refraction in the presence of electric field. Such a crystal is placed inside the resonant cavity of a Fabry-Perot type interferometer. Laser light travelling through the cavity and the crystal experiences modified optical path length in the presence of electric field. The fringe pattern at the focal plan is observed and used to detect and measures the ambient electric field.

  11. Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Parks, Rick; Coleman, Michelle

    2004-01-01

    The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.

  12. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  13. The design and application of large area intensive lens array focal spots measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  14. [Focal epithelial hyperplasia].

    PubMed

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign epithelial growth, usually in the mucosa of the lower lip. It is mainly associated with HPV serotypes 13 and 32 and there is a clear racial predilection for the disease in Native Americans and Eskimos. We describe the case of a 17-year-old girl from Ecuador with multiple papular lesions in both lips that were clinically and histologically consistent with focal epithelial hyperplasia. Analysis by polymerase chain reaction detected HPV serotype 13.

  15. SNAP focal plane

    SciTech Connect

    Lampton, Michael L.; Kim, A.; Akerlof, C.W.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Berkovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers Jr., W.C.; Commins, E.D.; Day, C.; Deustua, S.E.; DiGennaro,R.; Ealet, A.; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.E.; Harvey, P.R.; Heetderks, H.D.; Holland, S.E.; Huterer, D.; Karcher, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Levi, M.E.; Levin, D.S.; Linder,E.V.; Loken, S.C.; Malina, R.; Massey, R.; McKay, T.; McKee, S.P.; Miquel, R.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tarle, G.; Tomasch,A.; von der Lippe, H.; Vincent, R.; Walder, J.-P.; Wang, G.

    2002-07-29

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation--visible and near-infrared imagers, spectrograph, and star guiders--share one common focal plane.

  16. Decision-aided maximum likelihood phase estimation with optimum block length in hybrid QPSK/16QAM coherent optical WDM systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Yulong

    2016-01-01

    We propose a general model to entirely describe XPM effects induced by 16QAM channels in hybrid QPSK/16QAM wavelength division multiplexed (WDM) systems. A power spectral density (PSD) formula is presented to predict the statistical properties of XPM effects at the end of dispersion management (DM) fiber links. We derive the analytical expression of phase error variance for optimizing block length of QPSK channel coherent receiver with decision-aided (DA) maximum-likelihood (ML) phase estimation (PE). With our theoretical analysis, the optimum block length can be employed to improve the performance of coherent receiver. Bit error rate (BER) performance in QPSK channel is evaluated and compared through both theoretical derivation and Monte Carlo simulation. The results show that by using the DA-ML with optimum block length, bit signal-to-noise ratio (SNR) improvement over DA-ML with fixed block length of 10, 20 and 40 at BER of 10-3 is 0.18 dB, 0.46 dB and 0.65 dB, respectively, when in-line residual dispersion is 0 ps/nm.

  17. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  18. Optical instruments and imaging: the use of optics by 15th-century master painters

    NASA Astrophysics Data System (ADS)

    Hockney, David; Falco, Charles M.

    2005-02-01

    We discuss some of the details of the optical technology that was known at the dawn of the Renaissance. We shown that it is quite easy to fabricate concave mirrors of suitable focal length, diameter, and resolution for 15th century artists to have used to project images. The information in this paper complements information on the actual optical evidence that we have presented elsewhere.

  19. Size effects on the structural, electronic, and optical properties of (5,0) finite-length carbon nanotube: An ab-initio electronic structure study

    NASA Astrophysics Data System (ADS)

    Tarighi Ahmadpour, Mahdi; Hashemifar, S. Javad; Rostamnejadi, Ali

    2016-07-01

    We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4-44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization. The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.

  20. Controlling the thermally induced focal shift in laser processing heads

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Abt, Felix; Blázquez-Sánchez, David; Austerschulte, Armin; Hafner, Margit; Liebig, Thomas; von Strobl-Albeg, Philipp; Weber, Rudolf; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-03-01

    A system being able to in situ measure and control not simply the distance between the workpiece and the focusing optics, but the true focal position on the workpiece including the thermally induced focal shift in a laser processing head is presented. In order to achieve this, a bundle of astigmatic measurement beams is used following the same optical path as the welding beam. A camera and a software algorithm allow to keep the focal position constant within a range of 4 mm and with a resolution between 150 μm and 500 μm.

  1. Dense Pattern Optical Multipass Cell

    NASA Technical Reports Server (NTRS)

    Silver, Joel A. (Inventor)

    2009-01-01

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  2. Dense pattern optical multipass cell

    DOEpatents

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  3. Oral focal epithelial hyperplasia.

    PubMed

    Bassioukas, K; Danielides, V; Georgiou, I; Photos, E; Zagorianakou, P; Skevas, A

    2000-01-01

    Focal epithelial hyperplasia (FEH) or Heck disease, is a rare viral infection of the oral mucosa caused by HPV 13 or HPV 32. In Caucasians there have been only a few cases reported. We present the first case in Greece in a young Caucasian girl in which HPV 13 was detected with PCR analysis. The patient was successfully treated with CO2 laser.

  4. Focal Plane Metrology for the LSST Camera

    SciTech Connect

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

    2007-01-10

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

  5. Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Schweiger, Martin; Arridge, Simon R.; Firbank, Michael; Delpy, David T.

    1996-07-01

    To validate models of light propagation in biological tissue, experiments to measure the mean time of flight have been carried out on several solid cylindrical layered phantoms. The optical properties of the inner cylinders of the phantoms were close to those of adult brain white matter, whereas a range of scattering or absorption coefficients was chosen for the outer layer. Experimental results for the mean optical path length have been compared with the predictions of both an exact Monte Carlo (MC) model and a diffusion equation, with two differing boundary conditions implemented in a finite-element method (FEM). The MC and experimental results are in good agreement despite poor statistics for large fiber spacings, whereas good agreement with the FEM prediction requires a careful choice of proper boundary conditions. measurement, Monte Carlo method, finite-element method.

  6. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    DeWames, R.; Littleton, R.; Witte, K.; Wichman, A.; Bellotti, E.; Pellegrino, J.

    2015-08-01

    This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T < 300 K depends on the intrinsic carrier concentration of the In0.53Ga0.47As material, implying that the dominant dark currents are generation and recombination (G-R) currents originating in the depletion regions of the double layer planar heterostructure (DLPH) photodiode. In the analytical model differences from bulk G-R behavior are modeled with a G-R like perimeter-dependent shunt current conjectured to originate at the InP/InGaAs interface. In this description the fitting property is the effective conductivity, σ eff( T), in mho cm-1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10-11-4.6 × 10-11 mho cm-1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight-no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G-R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G-R current for the condition studied are also in agreement

  7. Introduction into service of mature pushbroom electro-optic sensors

    NASA Astrophysics Data System (ADS)

    Brownie, Ralph S.

    2000-11-01

    Pushbroom Electro-Optic sensors have been developed and brought into full production, entering service in year 2000 on RAF Jaguar and Belgian Air Force F-16. The use of fiber- optic gyroscopes, closely coupled to the focal plane electronics, permits correction of all motion effects and provides practical high quality, stereo imagery at high V/H ratios. This paper describes technical features and samples of imagery from a scalable range of sensors incorporating focal lengths from 38mm to 900mm and operating throughout the full flight envelope of modern fighter aircraft.

  8. Oral focal epithelial hyperplasia.

    PubMed

    López-Jornet, Pía; Camacho-Alonso, Fabio; Berdugo, Lucero

    2010-01-01

    Focal epithelial hyperplasia (FEH) is a benign, asymptomatic disease. It appears as papules, principally on the lower lip, although it can also be found on the retro-commissural mucosa and tongue and, less frequently, on the upper lip, gingiva and palate. FEH is caused by human papillomavirus subtype 13 or 32. The condition occurs in many populations and ethnic groups. We present the clinical case of a 31-year-old male with lesions that clinically and histologically corresponded to FEH.

  9. OPO performance with a long pulse length, single frequency Nd:YAG laser pump. [Optical Parametric Oscillators

    NASA Technical Reports Server (NTRS)

    Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.

    1988-01-01

    With the advent of new nonlinear materials and single-frequency pump sources, there is renewed interest in optical parametric oscillators (OPOs). A single-mode diode-laser-pumped monolithic Nd:YAG nonplanar ring laser that is both amplified and frequency doubled is used to pump a monolithic MgO:LiNbO3 pulsed singly resonant OPO. The OPO signal output was temperature tuned from 834 to 958 nm, producing an idler tuning from 1.47 to 1.2 microns. Efforts toward a CW all-solid-state doubly resonant OPO are also described.

  10. A combined electron beam/optical lithography process step for the fabrication of sub-half-micron-gate-length MMIC chips

    NASA Astrophysics Data System (ADS)

    Sewell, James S.; Bozada, Christopher A.

    1994-02-01

    Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially

  11. A combined electron beam/optical lithography process step for the fabrication of sub-half-micron-gate-length MMIC chips

    NASA Technical Reports Server (NTRS)

    Sewell, James S.; Bozada, Christopher A.

    1994-01-01

    Advanced radar and communication systems rely heavily on state-of-the-art microelectronics. Systems such as the phased-array radar require many transmit/receive (T/R) modules which are made up of many millimeter wave - microwave integrated circuits (MMIC's). The heart of a MMIC chip is the Gallium Arsenide (GaAs) field-effect transistor (FET). The transistor gate length is the critical feature that determines the operating frequency of the radar system. A smaller gate length will typically result in a higher frequency. In order to make a phased array radar system economically feasible, manufacturers must be capable of producing very large quantities of small-gate-length MMIC chips at a relatively low cost per chip. This requires the processing of a large number of wafers with a large number of chips per wafer, minimum processing time, and a very high chip yield. One of the bottlenecks in the fabrication of MIMIC chips is the transistor gate definition. The definition of sub-half-micron gates for GaAs-based field-effect transistors is generally performed by direct-write electron beam lithography (EBL). Because of the throughput limitations of EBL, the gate-layer fabrication is conventionally divided into two lithographic processes where EBL is used to generate the gate fingers and optical lithography is used to generate the large-area gate pads and interconnects. As a result, two complete sequences of resist application, exposure, development, metallization and lift-off are required for the entire gate structure. We have baselined a hybrid process, referred to as EBOL (electron beam/optical lithography), in which a single application of a multi-level resist is used for both exposures. The entire gate structure, (gate fingers, interconnects and pads), is then formed with a single metallization and lift-off process. The EBOL process thus retains the advantages of the high-resolution E-beam lithography and the high throughput of optical lithography while essentially

  12. Specific features of measuring the optical power of artificial refractive and diffractive-refractive eye lenses

    NASA Astrophysics Data System (ADS)

    Lenkova, G. A.

    2016-08-01

    Methods for monitoring the optical power of artificial refractive eye lenses (intraocular lenses) based on measuring focal lengths in air and in medium are analyzed. The methods for determining the refraction of diffractive-refractive lenses (in particular, of MIOL-Akkord type), with allowance for the specific features of the diffractive structure, are considered. A computer simulation of the measurement of the focal length of MIOL-Akkord lenses is performed. The effective optical power of the diffractive component of these lenses is shown to depend on the diaphragm diameter. The optimal diaphragm diameter, at which spherical aberrations do not affect the position of foci, is found to be 3 mm. Possible errors in measuring the focal lengths are analyzed, and the necessary corrections that must be introduced into measurement results and calculations of refractions are determined.

  13. Optical mode engineering and high power density per facet length (>8.4 kW/cm) in tilted wave laser diodes

    NASA Astrophysics Data System (ADS)

    Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Gordeev, N. Y.; Kaluzhniy, N. A.; Mintairov, S. A.; Payusov, A. S.; Shernyakov, Yu. M.

    2016-03-01

    Tilted Wave Lasers (TWLs) based on optically coupled thin active waveguide and thick passive waveguide offer an ultimate solution for thick-waveguide diode laser, preventing catastrophic optical mirror damage and thermal smile in laser bars, providing robust operation in external cavity modules thus enabling wavelength division multiplexing and further increase in brightness enabling direct applications of laser diodes in the mainstream material processing. We show that by proper engineering of the waveguide one can realize high performance laser diodes at different tilt angles of the vertical lobes. Two vertical lobes directed at various angles (namely, +/-27° or +/-9°) to the junction plane are experimentally realized by adjusting the compositions and the thicknesses of the active and the passive waveguide sections. The vertical far field of a TWL with the two +/-9° vertical beams allows above 95% of all the power to be concentrated within a vertical angle below 25°, the fact which is important for laser stack applications using conventional optical coupling schemes. The full width at half maximum of each beam of the value of 1.7° evidences diffraction- limited operation. The broad area (50 μm) TWL chips at the cavity length of 1.5 mm reveal a high differential efficiency ~90% and a current-source limited pulsed power >42W for as-cleaved TWL device. Thus the power per facet length in a laser bar in excess of 8.4 kW/cm can be realized. Further, an ultimate solution for the smallest tilt angle is that where the two vertical lobes merge forming a single lobe directed at the zero angle is proposed.

  14. Tunable Length and Optical Properties of CsPbX3 (X = Cl, Br, I) Nanowires with a Few Unit Cells.

    PubMed

    Amgar, Daniel; Stern, Avigail; Rotem, Dvir; Porath, Danny; Etgar, Lioz

    2017-02-08

    Perovskite nanostructures, both hybrid organo-metal and fully inorganic perovskites, have gained a lot of interest in the past few years for their intriguing optical properties in the visible region. We report on inorganic cesium lead bromide (CsPbBr3) nanowires (NWs) having quantum confined dimensions corresponding to 5 unit cells. The addition of various hydrohalic acids (HX, X = Cl, Br, I) was found to highly affect the NW length, composition, and optical properties. Hydrochloric (HCl) and hydroiodic (HI) acids mixed in the reaction solution influence the crystal structure and optical properties and shorten the NWs, while the hydrobromic acid (HBr) addition results solely in shorter NWs, without any structural change. The addition of HX increases the acidity of the reaction solution, resulting in protonation of the oleylamine ligands from oleylamine into oleyl-ammonium cations that behave similarly to Cs(+) during crystallization. Therefore, the positions of the Cs(+) at the growing surface of the NWs are taken by the oleyl-ammonium cations, thus blocking further growth in the favored direction. The emission of the NWs is tunable between ∼423-505 nm and possesses a potential in the optoelectronic field. Moreover, electrical conductivity measurements of the NWs are discussed to give a new point of view regarding the conductivity of perovskite nanostructures.

  15. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI

    PubMed Central

    Chan, Kevin C.; Zhou, Iris Y.; Liu, Stanley S.; van der Merwe, Yolandi; Fan, Shu-Juan; Hung, Victor K.; Chung, Sookja K.; Wu, Wu-tian; So, Kwok-fai; Wu, Ed X.

    2017-01-01

    Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes. PMID:28230106

  16. Optical design of an UV camera for a Ritchey-Chretien space telescope

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Falomo, R.; Corrain, G.

    1993-11-01

    A study for the optical design of an UV-imaging camera is briefly reported. We emphasize the guidelines that drove the design choices adopted, as trade-off between optical quality and efficiency. Optical solutions for an additional long focal length channel are also given. This study is performed in the framework of the SUV project, a 170 cm Ritchey-Chretian space telescope to be made with the collaboration of Russia, Ukraine, Italy and Germany.

  17. Angle amplifying optics using plane and ellipsoidal reflectors

    DOEpatents

    Glass, Alexander J.

    1977-01-01

    An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.

  18. Creation of identical multiple focal spots with prescribed axial distribution.

    PubMed

    Yu, Yanzhong; Zhan, Qiwen

    2015-10-01

    We present a scheme for the construction of coaxially equidistant multiple focal spots with identical intensity profiles for each individual focus and a predetermined number and spacing. To achieve this, the radiation field from an antenna is reversed and then gathered by high numerical aperture objective lenses. Radiation patterns from three types of line sources, i.e., the electric current, magnetic current and electromagnetic current distributions, with cosine-squared taper are respectively employed to generate predominately longitudinally polarized bright spots, azimuthally polarized doughnuts, and focal spots with a perfect spherically symmetric intensity distribution. The required illuminations at the pupil plane of a 4Pi focusing configuration for the creation of these identical multiple focal spots can be easily derived by solving the inverse problem of the antenna radiation field. These unique focal field distributions may find potential applications in laser direct writing and optical microscopy, as well as multiple-particle trapping, alignment, and acceleration along the optical axis.

  19. [Focal epithelial hyperplasia].

    PubMed

    Delgado, Yolanda; Torrelo, Antonio; Colmenero, Isabel; Zambrano, Antonio

    2005-12-01

    Focal epithelial hyperplasia (FEH) is a benign proliferation of the oral mucosa with well defined clinical and histological characteristics. It has been associated with infection of the oral mucosa by types 13 and 32 of the human papillomavirus (HPV), and to a lesser extent, with other types. Its clinical course is variable, although it usually persists for months or years; cases with spontaneous resolution have been described, as have others with prolonged persistence. We present the case of an Ecuadorian boy whose visit was motivated by lesions in the oral mucosa consistent with a diagnosis of FEH, which were confirmed in the histological study, and in which HPV type 13 DNA was identified.

  20. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  1. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  2. Analysis and Evaluation of Technical Data on the Photochromic and Non-Linear Optical Properties of Materials. Appendix. Eye/Sensor Protection by an Optical Fuse Mirror at a Focal Plane: Feasibility Assessment

    DTIC Science & Technology

    1989-08-07

    Outside the focal point the film need not be free standing but may be supported on a suitale sustance . One could envision a mirror/fuse system, located...8217 5U7SRAII to* - free filf% nsSJ P I0H o n the-wl wctijtvity. radially or in de9 mq ri of ia. less thar, focused spot size for artica! gains 10 to S or i Wst0...1. 15 P ! 08 0, ~l 1. O7i t.343 V . 98 OS OMBE 11 1. 19 -k i.1901 0.1391 B. Om 0. b376 0.52 CB CAS63 loc 1.656-06 1.6573? 0.154S 0.010C 0.B6, C.263S

  3. Test chamber for low-background IR focal plane testing

    NASA Technical Reports Server (NTRS)

    Staller, Craig; Capps, Richard W.; Butler, Douglas; Moss, Nancy; Norwood, Wynn

    1989-01-01

    A unique and versatile vacuum chamber has been designed for JPL's IR Focal Plane Technology Group. This chamber is equipped with multiple ports for cryogen and electrical vacuum feedthroughs, pumping units, vacuum gages, sources, and detector camera heads. The design incorporates a liquid-nitrogen-cooled optical table and radiation shield for low-background IR detector testing. Focal planes can be tested at temperatures ranging from 300 K to that of liquid helium. This paper describes the design and construction of this low-background IR focal plane test chamber and discusses some of its distinctive features. An analysis of the test chamber's performance is also presented.

  4. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores.

    PubMed

    Gieseking, Rebecca L; Risko, Chad; Brédas, Jean-Luc

    2015-06-18

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries.

  5. Determination of critical diameters for intrinsic carrier diffusion-length of GaN nanorods with cryo-scanning near-field optical microscopy

    PubMed Central

    Chen, Y. T.; Karlsson, K. F.; Birch, J.; Holtz, P. O.

    2016-01-01

    Direct measurements of carrier diffusion in GaN nanorods with a designed InGaN/GaN layer-in-a-wire structure by scanning near-field optical microscopy (SNOM) were performed at liquid-helium temperatures of 10 K. Without an applied voltage, intrinsic diffusion lengths of photo-excited carriers were measured as the diameters of the nanorods differ from 50 to 800 nm. The critical diameter of nanorods for carrier diffusion is concluded as 170 nm with a statistical approach. Photoluminescence spectra were acquired for different positions of the SNOM tip on the nanorod, corresponding to the origins of the well-defined luminescence peaks, each being related to recombination-centers. The phenomenon originated from surface oxide by direct comparison of two nanorods with similar diameters in a single map has been observed and investigated. PMID:26876009

  6. The Effect of Side-Chain Length on the Solid-State Structure and Optical Properties of F8BT: A DFT Study

    NASA Astrophysics Data System (ADS)

    Javad Eslamibidgoli, Mohammad; Lagowski, Jolanta B.

    2012-02-01

    Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.

  7. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  8. Extensive focal epithelial hyperplasia.

    PubMed

    Hashemipour, Maryam Alsadat; Shoryabi, Ali; Adhami, Shahrzad; Mehrabizadeh Honarmand, Hoda

    2010-01-01

    Heck's disease or focal epithelial hyperplasia is a benign contagious disease caused by human papillomavirus types 13 or 32. It occurs with low frequency in the Iranian population. This condition is characterized by the occurrence of multiple, small papules or nodules in the oral cavity, especially on the labial and buccal mucosa and tongue. In some populations, up to 39% of children are affected. Conservative surgical excision of lesions may be performed for diagnostic or aesthetic purposes. The risk of recurrence after this therapy is minimal, and there seems to be no malignant transformation potential. In the present work, we presented the clinical case of a 12-year-old Iranian girl with oral lesions that clinically and histologically correspond to Heck's disease.

  9. Precision evaluation of lens systems using a nodal slide/MTF optical bench

    NASA Astrophysics Data System (ADS)

    Doherty, Victor J.; Chapnik, Philip D.

    1992-01-01

    A compact, self-contained production instrument designed to permit the rapid and precise performance characterization of a wide variety of lenses and optical systems has been developed by Eidolon Corporation. The Eidolon Production Nodal Slide/MTF Measurement System can be used to measure effective focal length (EFL), distortion, field curvature, chromatic aberration, spot size, and modulation transfer function (MTF).

  10. Electro-optically actuated liquid-lens zoom

    NASA Astrophysics Data System (ADS)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  11. Electromyogram-evoked focal myositis

    PubMed Central

    Snipes, George; Quan, Carolyn

    2017-01-01

    Focal myositis is a rarely reported inflammatory disease of skeletal muscle, particularly of an extremity. It is often misinterpreted as an infectious syndrome, leading to prolonged antibiotic use and a delay in immunosuppressive therapy. Without a confirmed etiology to date, we present a case of recurrent focal myositis following an electromyogram. PMID:28127151

  12. Jell-O Optics: Edibly Exploring Snell's Law and Optical Power

    NASA Astrophysics Data System (ADS)

    Hendryx, Jennifer; Reynolds, Mathias

    2012-03-01

    This presentation details a laboratory exercise and/or demonstration of refraction with an inexpensive, simple set-up: a pan of Jell-O, protractors, and laser pointers. This activity is presented from the perspective of an optical sciences graduate student who has spent the school year team-teaching high school math and physics (through Academic Decathlon). The goal is to present some of the fundamentals of optics with an enjoyable and affordable approach. The concepts include Snell's law, index of refraction, and optical power/focal length as they relate to the curvature of a lens.

  13. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings

    SciTech Connect

    Kim, Seyoon; Lim, Yongjun; Kim, Hwi; Park, Junghyun; Lee, Byoungho

    2008-01-07

    A method for optical beam focusing by a single subwavelength metal slit surrounded by surface gratings is proposed. In our proposed method, the period of each surface grating is chirped so that the radiation fields of surface plasmon polaritons can be controlled to make a beam spot at the desired focal length. Through our proposed method, it is numerically shown that we can make a beam spot which is located at the several times of wavelength distance from the slit, and its focal length can be controlled.

  14. Robust focusing optics for high-power laser welding

    NASA Astrophysics Data System (ADS)

    McAllister, Blake

    2014-02-01

    As available power levels from both fiber and disc lasers rapidly increase, so does the need for more robust beam delivery solutions. Traditional transmissive optics for 1 micron lasers have proven to be problematic in the presence of higher power densities and are more susceptible to focal shift. A new, fully-reflective, optical solution has been developed using mirrors rather than lenses and windows to achieve the required stable focal spot, while still protecting the delicate fiber end. This patent-approved beam focusing solution, referred to as high power reflective focusing optic (HPRFO), involves specialty mirrors and a flowing gas orifice that prevents ingress of contaminants into the optically sensitive region of the assembly. These mirrors also provide a unique solution for increasing the distance between the sensitive optics and the contamination-filled region at the work, without sacrificing spot size. Longer focal lengths and lower power densities on large mass, water-cooled, copper mirrors deliver the robustness needed at increasingly high power levels. The HPRFO exhibits excellent beam quality and minimal focal shift at a fraction of commercially available optics, and has demonstrated consistent reliability on applications requiring 15 kW with prolonged beam-on times.

  15. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    NASA Astrophysics Data System (ADS)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  16. Fabrication of D-type fiber optic sensors with a long interaction length and studying effects of critical parameters on sensor response

    NASA Astrophysics Data System (ADS)

    Guleryuz, Burcu; Durucan, Caner; Aslan, Mustafa M.

    2014-05-01

    Today evanescent wave based fiber optic (F/O) platforms are in favor of the use for monitoring molecular interactions since they are practical, economic and easy to operate which make them ideal turnkey systems for clinical, pharmaceutical, environmental and security applications. The side polishing is one of techniques for reshaping the geometry of the waveguide to make the F/O sensor more sensitive to surrounding refractive index (RI) in evanescent field. In this study D-type F/O sensors with a 25 mm-long interaction lengths are fabricated. In addition to that, effects of the critical parameters such as the polishing depth, the wavelength, and the temperature on the sensor response are determined for the RI in the range of 1.33 - 1.47. The developing key of these F/O sensors is reaching high strength and penetration depth of evanescent wave in varying RI of the surrounding bio-layer. Development steps of D-type F/O sensors are; fabrication of supporting elements - silicon V channels, F/O cable preparation, adhesion, lapping and polishing, fusing the FC connectors, construction of the optical system, and RI measurements. Details of these steps are explained and the general characteristics of the D-type F/O sensor are presented. Results indicate that the sensor's responses in three different RI ranges can be improved by the polishing depth. A maximum sensitivity of around 2x105 for the D-type F/O sensors is demonstrated in the RI range of 1.44-1.46.

  17. Simple method for manufacturing and optical characterization of tapered optical fibres

    NASA Astrophysics Data System (ADS)

    Zakrzewski, A.; Pięta, A.; Patela, S.

    2016-12-01

    Photonic devices often use light delivered by a single-mode telecommunication fibre. However, as the diameter of the core of the optical fibre is of 10 microns, and the transverse dimensions of the photonic waveguides are usually micrometer or less, there is an issue of incompatibility. The problem may be solved by application of tapered optical fibres. For efficient light coupling, the taper should be prepared so as to create a beam of long focal length and small spot diameter in the focus. The article describes the design, fabrication and characterization of tapered optical fibres prepared with a fibre-optic fusion splicer. We modelled the tapers with FDTD method, for estimation of the influence of the tapered length and angle on the spot diameter and the focal length of an outgoing beam. We fabricated tapers from a standard single mode fibre by the Ericsson 995 PMfi- bre-optic fusion splicer. We planned the splicing technology so as to get the needed features of the beam. We planned a multistep fusion process, with optimized fusion current and fusion time. The experimental measurements of best tapered optical fibres were carried out by the knife-edge method.

  18. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  19. DESI focal plate mechanical integration and cooling

    NASA Astrophysics Data System (ADS)

    Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier

  20. Recent performance of the normal incident x-ray telescope with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kitamoto, S.; Ishii, R.; Nukamori, S.; Imai, K.; Mochida, A.; Sato, S.; Ohgi, Y.; Yoshida, Y.; Hoshino, A.

    2016-09-01

    We report recent results of the performance measurement of our X-ray telescope with adaptive optics. The telescope is designed to use the 13.5nm EUV with the Mo/Si multilayers, making a normal incident optics. The primary mirror is 80mm in its diameter and the focal length of 2m. The deformable mirror is controlled by measuring a wave-front of an optical laser. Effects of a difference between the light paths from the reference and from an object are examined. The angular resolution is measured with optical light and we confirm almost diffraction limited resolution as well as its appropriate function as adaptive optics.

  1. Dependence of the absorption of pulsed CO2-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    NASA Astrophysics Data System (ADS)

    Bl/aŻejowski, Jerzy; Gruzdiewa, Ludwika; Rulewski, Jacek; Lampe, Frederick W.

    1995-05-01

    The absorption of three lines [P(20), 944.2 cm-1; P(14), 949.2 cm-1; and R(24), 978.5 cm-1] of the pulsed CO2 laser (0001-1000 transition) by SiH4 was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO2 laser. The experimental dependencies show deviations from the phenomenological Beer-Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer-Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  2. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  3. Genetics Home Reference: focal dermal hypoplasia

    MedlinePlus

    ... Home Health Conditions focal dermal hypoplasia focal dermal hypoplasia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Focal dermal hypoplasia is a genetic disorder that primarily affects the ...

  4. A Study of Computer-Aided Geometric Optical Design.

    DTIC Science & Technology

    1982-10-01

    WAHLSTEDT OCT B2 AFIT/GEP/PH/82D-24 UNCLASSIFIED F /’G 9/2 N smhohmohholi EohhhhhhhhhhhE 1111.2 1 .6 mmiima __’___ MICROCOPY RESOLUTION TEST CHART NATIONAL...The irting point () f the desigri was a Questar 3 inch telescope.. Avidj tional optic:l elements were added and " the design impoved until the desirF...The P|WI? J ) f e the lens is defined as the index of refractioni at ,ither focal point divided by the respective focal length. The power of the lens

  5. Intrinsic parameterization of a computational optical system for long-distance displacement structural monitoring

    NASA Astrophysics Data System (ADS)

    Martins, Luís F. Lages; Rebordão, José Manuel N. V.; Ribeiro, Álvaro Silva

    2015-01-01

    We aim at the intrinsic parameterization of a computational optical system applied in long-distance displacement measurement of large-scale structures. In this structural-monitoring scenario, the observation distance established between the digital camera and reference targets, which is composed of the computational optical system, can range from 100 up to 1000 m, requiring the use of long-focal length lenses in order to obtain a suitable sensitivity for the three-dimensional displacement measurement of the observed structure which can be of reduced magnitude. Intrinsic parameterization of long-focal length cameras is an emergent issue since conventional approaches applied for reduced focal length cameras are not suitable mainly due to ill-conditioned matrices in least squares estimation procedures. We describe the intrinsic parameterization of a long-focal length camera (600 mm) by the diffractive optical element method and present the obtained estimates and measurement uncertainties, discussing their contribution for the system's validation by calibration field test and displacement measurement campaigns in a long-span suspension bridge.

  6. Long wavelength infrared dual field-of-view optical system

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Yang, Chang-cheng

    2007-12-01

    For cooled 320×240 staring focal plane array (FPA), a novel long wavelength infrared dual field-of-view optical system is presented in the paper. The optical system is composed of re-imaging part and zooming part. The parameters of the system are 1.96 f/number, 100% cold shield efficiency, 180mm/60mm effective focal length (EFL) and 8-10 μm spectrum region. The optical system is analyzed from two modes of narrow field of view (NFOV) and wide field of view (WFOV). The system can be used in the temperature range from-30°Cand 60°C without significant degradation of optical performance. The final test results prove the designed performance is good..

  7. Focal performance analysis of closed-boundary cylindrical microlenses made of uniaxial crystal

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Ye, Jiasheng; Liu, Jianlong; Liu, Shutian

    2007-11-01

    In this paper, we investigate the focal performance of closed-boundary cylindrical microlenses (CBCMs) made of anisotropic uniaxial crystal based on rigorous electromagnetic theory and the boundary element method (BEM). For both TE and TM polarizations, focal performances of the anisotropic CBCMs with different f-numbers are studied in detail. The influence of illumination type on focal performances of CBCMs are also considered. Several focal performance quantities, such as the real focal position, the focal spot size, the diffraction efficiency and the normalized transmitted power, are presented. Numerical results indicate that the focal performance of anisotropic CBCMs made of uniaxial crystal differs greatly in the case of different polarizations. Especially, there exists a large focal shift, which is due to the birefringence effect of a uniaxial crystal. In contrast, for conventional isotropic CBCMs, the focal characteristics for different polarizations are similar. Meanwhile, our analysis indicates that the focal performances of CBCMs with small f-number are sensitive to illumination type. It is expected that the CBCMs made of uniaxial crystal should be used as a micropolarization optical filter in micro-optical systems and also offer useful help in application of CBCMs with small f-number.

  8. Statistical Earthquake Focal Mechanism Forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    The new whole Earth focal mechanism forecast, based on the GCMT catalog, has been created. In the present forecast, the sum of normalized seismic moment tensors within 1000 km radius is calculated and the P- and T-axes for the focal mechanism are evaluated on the basis of the sum. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms. This average angle shows tectonic complexity of a region and indicates the accuracy of the prediction. The method was originally proposed by Kagan and Jackson (1994, JGR). Recent interest by CSEP and GEM has motivated some improvements, particularly to extend the previous forecast to polar and near-polar regions. The major problem in extending the forecast is the focal mechanism calculation on a spherical surface. In the previous forecast as our average focal mechanism was computed, it was assumed that longitude lines are approximately parallel within 1000 km radius. This is largely accurate in the equatorial and near-equatorial areas. However, when one approaches the 75 degree latitude, the longitude lines are no longer parallel: the bearing (azimuthal) difference at points separated by 1000 km reach about 35 degrees. In most situations a forecast point where we calculate an average focal mechanism is surrounded by earthquakes, so a bias should not be strong due to the difference effect cancellation. But if we move into polar regions, the bearing difference could approach 180 degrees. In a modified program focal mechanisms have been projected on a plane tangent to a sphere at a forecast point. New longitude axes which are parallel in the tangent plane are corrected for the bearing difference. A comparison with the old 75S-75N forecast shows that in equatorial regions the forecasted focal mechanisms are almost the same, and the difference in the forecasted focal mechanisms rotation angle is close to zero. However, though the forecasted focal mechanisms are similar

  9. Stabilized dispersive focal plane systems for space

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Bayless, Amanda J.; Beebe, Chip R.; Brooks, Mark J.; Davis, Michael W.; Klar, Robert A.; Roberts, John M.; Rose, Randall J.; Winters, Gregory S.

    2012-09-01

    As the costs of space missions continue to rise, the demand for compact, low mass, low-cost technologies that maintain high reliability and facilitate high performance is increasing. One such technology is the stabilized dispersive focal plane system (SDFPS). This technology provides image stabilization while simultaneously delivering spectroscopic or direct imaging functionality using only a single optical path and detector. Typical systems require multiple expensive optical trains and/or detectors, sometimes at the expense of photon throughput. The SDFPS is ideal for performing wide-field low-resolution space-based spectroscopic and direct-imaging surveys. In preparation for a suborbital flight, we have built and ground tested a prototype SDFPS that will concurrently eliminate unwanted image blurring due to the lack of adequate platform stability, while producing images in both spectroscopic and direct-imaging modes. We present the overall design, testing results, and potential scientific applications.

  10. Extra focal convective suppressing solar collector. Final technical progress report

    SciTech Connect

    1996-05-01

    This progress report describes work done on the Extra Focal Convective Suppressing Solar Collector. The topics of the report include sensor refinement for the tracking electronics, tracking controller refinement, system optics evaluation, absorber system material evaluation and performance, tracking hardware evaluation and refinement, and full scale prototype construction and testing.

  11. The Characteristics of Broad and Narrow Focal Zone Lithotripters

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; VonDerHaar, R. Jason; Pishchalnikova, Irina V.; Williams, James C.

    2008-09-01

    The focal width of a lithotripter is a measure of the diameter of its focal zone, the region where acoustic pressures are at least half the maximum positive pressure generated at a given power level. Different lithotripters have different focal widths. The Dornier HM3, for example, has a focal width of ˜10-12 mm and for many years this was the widest focal zone among clinical machines. Electromagnetic lithotripters tend to have narrower focal zones, in the range of ˜4-6 mm. Recent studies suggesting that focal width plays an important role in stone breakage prompted this assessment of two electromagnetic lithotripters. Acoustical mapping using a fiber optic probe hydrophone (FOPH-500) and breakage of U-30 gypsum model stones were used to compare a conventional lithotripter (Dornier DoLi-50) and a broad focal zone device (XiXin XX-ES). FOPH mapping characterized the focal width of the DoLi to be about 5mm and that of the XX-ES to be much wider (˜18 mm). For stone breakage experiments the DoLi was fired at power level 3 (mid-range) and the XX-ES was operated at the recommended clinical setting of 9.3 kV. Both lithotripters were fired at 60 SW/min. U-30 model stones held in a 2mm mesh basket were positioned at the clinical target point on the acoustic axis and at 5mm steps laterally, and the number of SW's to complete fragmentation was counted. Breakage on-axis was similar for the two machines (DoLi 676±105 SW's versus XX-ES 644±123 SW's, p>0.6), but at 15mm the DoLi required nearly twice the number of SW's as the XX-ES (DoLi 3006±780 SW's versus 1726±972 SW's, p<0.006). This demonstrates that a broad focal zone lithotripter is more effective in breaking stones off axis and supports the idea that focal width is an important feature, likely to be relevant in the clinical setting where respiratory motion may limit the effectiveness of narrow focal zone machines.

  12. Switch-zoom optical system design of large aperture ground-based photoelectric detection

    NASA Astrophysics Data System (ADS)

    Yan, Peipei; Liu, Kai; Duan, Jing; Jiang, Kai; Shan, Qiusha

    2016-10-01

    Binary optics can be used to increase optical performances, decrease size and weight, and decrease systems costs in numerous applications. By means of hybrid diffractive-refractive, a switch-zoom optical system of catadioptric large aperture ground-based photoelectric detection is designed. The characteristic of the system is that it is a compact optical system without moving parts which can get two focal lengths. And the quality of image approaches the diffraction limited. Ritchey-Chrétien (R-C) mirror and a field lens are common for long-focus system and short-focus system. Two refract groups transmitting optical system are used for zooming. In order to satisfy the demand of energy regulation, it is designed afocal beam between field lens and later refract optical system. Filter and variable density plate are placed in it to guarantee the imaging quality. The focal length is 3750mm and F number is 7.5 for the long-focus system, and the focal length is 1850mm and F number is 3.75 for the short-focus system. Former part and later lens of the system are both perfect imaging. They can be fabricated and detected independently. So the design demand can be satisfied better and the imaging quality can be improved.

  13. Micro-optics metrology using advanced interferometry

    NASA Astrophysics Data System (ADS)

    Reichelt, Stephan; Bieber, Alexander; Aatz, Bernd; Zappe, Hans

    2005-06-01

    Interferometric testing of micro-optical components involves some challenges due to problems such as Fresnel diffraction artefacts, the non-common path interferometer configuration, coherent noise as well disturbing interferences, and uncertainties in distance measurements. Recently we have developed a versatile Mach-Zehnder / Twyman-Green hybride interferometer for micro-optics testing. The system combines the advantages of both interferometer types and allows full characterization of lens and surface figure errors as well as radius of curvature and focal length measurements. The interferometer system is explained and measurement results of micro-lenses are presented. Furthermore, this paper is concerned with the metrology challenges of interferometric testing on microscopic scales.

  14. Illustrative EDOF topics in Fourier optics

    NASA Astrophysics Data System (ADS)

    George, Nicholas; Chen, Xi; Chi, Wanli

    2011-10-01

    In this talk we present a series of illustrative topics in Fourier Optics that are proving valuable in the design of EDOF camera systems. They are at the level of final examination problems that have been made solvable by a student or professoi having studied from one of Joseph W. Goodman's books---our tribute for his 75fr year. As time permits, four illustrative topics are l) Electromagnetic waves and Fourier optics;2) The perfect lens; 3) Connection between phase delay and radially varying focal length in an asphere and 4) tailored EDOF designs.

  15. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  16. Variable focal lens controlled by an external voltage: An application of electrowetting

    NASA Astrophysics Data System (ADS)

    Berge, B.; Peseux, J.

    2000-10-01

    We use electrocapillarity in order to change the contact angle of a transparent drop, thus realizing a lens of variable focal length (B. Berge, J. Peseux, Patent deposited in Grenoble France, October 8th 1997, numéro d'enregistrement national 97 12781). The key point is the application of gradients of wettability, which control the shape of the drop edge, in our case a centered circle of variable radius. The quality and reversibility of the lens are surprisingly good. The optical power variation can be 5 to 10 times the one of the human eye, for a comparable diameter, with a typical response time of 0.03 s and a dissipated power of a few mW.

  17. Longitudinally extensive optic neuritis in pediatric patients.

    PubMed

    Graves, Jennifer; Kraus, Verena; Soares, Bruno P; Hess, Christopher P; Waubant, Emmanuelle

    2015-01-01

    Extensive optic nerve demyelinating lesions on magnetic resonance imaging (MRI) in adults could indicate a diagnosis other than multiple sclerosis with worse prognosis such as neuromyelitis optica. We report the frequency of longitudinally extensive lesions in children with first events of optic neuritis. Subjects had brain or orbit MRI within 3 months of onset and were evaluated at the University of California, San Francisco, Pediatric Multiple Sclerosis Center. Lesion length, determined by T2 hyperintensity or contrast enhancement, was blindly graded as absent, focal or longitudinally extensive (at least 2 contiguous segments of optic nerve). Of 25 subjects, 9 (36%) had longitudinally extensive optic neuritis. Extensive lesions were not associated with non-multiple sclerosis versus multiple sclerosis diagnosis (P = 1.00). No association between age and lesion extent was observed (P = .26). Prospective studies are needed to determine if longitudinally extensive optic neuritis can predict visual outcome.

  18. Genetic models of focal epilepsies.

    PubMed

    Boillot, Morgane; Baulac, Stéphanie

    2016-02-15

    Focal epilepsies were for a long time thought to be acquired disorders secondary to cerebral lesions. However, the important role of genetic factors in focal epilepsies is now well established. Several focal epilepsy syndromes are now proven to be monogenic disorders. While earlier genetic studies suggested a strong contribution of ion channel and neurotransmitter receptor genes, later work has revealed alternative pathways, among which the mammalian target of rapamycin (mTOR) signal transduction pathway with DEPDC5. In this article, we provide an update on the mutational spectrum of neuronal nicotinic acetylcholine receptor genes (CHRNA4, CHRNB2, CHRNA2) and KCNT1 causing autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), and of LGI1 in autosomal dominant epilepsy with auditory features (ADEAF). We also emphasize, through a review of the current literature, the contribution of in vitro and in vivo models developed to unveil the pathogenic mechanisms underlying these two epileptic syndromes.

  19. Focal epithelial hyperplasia: Case report.

    PubMed

    Puriene, Alina; Rimkevicius, Arunas; Gaigalas, Mindaugas

    2011-01-01

    The purpose of the present article is to present a 15 year-old patient with focal epithelial hyperplasia and to review the references on the subject-related etiological, pathological, diagnostic and treatment aspects. Focal epithelial hyperplasia is a rare human papilloma virus (HPV) related to oral lesion with very low frequency within our population. Surgical treatment with a biopsy was performed, acanthosis and parakeratosis are consistent histopathological features, since the patient had no history of sexual contact and HIV infection, the virus was probably acquired from environmental sources.

  20. Phase retrieval in the focal plane

    NASA Astrophysics Data System (ADS)

    Gaessler, W.; Peter, D.; Storz, C.

    Phase retrieval in the focal plane is a very appealing technique, which would simplify the optomechanics of an Adaptive Optics (AO) system a lot and could gain sensitivity under certain conditions. For conventional AO systems the limiting magnitude of the system does not depend on the diameter of the telescope, since any wave front sensor splits the light into sub-apertures, which are in number related to the telescope diameter. Having this in mind the phase retrieval technique looks promising as it breaks this paradigm in the diffraction limited case and thus yields some gain in limiting magnitude with larger telescope diameter. Until now this path was not followed deeply in astronomical AO systems, as the solution of the inversion is non unique and demands much higher calculation power as in conventional AO. This might change with state of the art computers. We give a short overview of some existing techniques and algorithms of focal plane AO and report results of other groups, which tested them in laboratory and on sky. To solve the drawback of the large computational demands and to increase the sensitivity we propose a bootstrapping process with dynamical binning.

  1. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  2. Combining single-molecule optical trapping and small-angle x-ray scattering measurements to compute the persistence length of a protein ER/K alpha-helix.

    PubMed

    Sivaramakrishnan, S; Sung, J; Ali, M; Doniach, S; Flyvbjerg, H; Spudich, J A

    2009-12-02

    A relatively unknown protein structure motif forms stable isolated single alpha-helices, termed ER/K alpha-helices, in a wide variety of proteins and has been shown to be essential for the function of some molecular motors. The flexibility of the ER/K alpha-helix determines whether it behaves as a force transducer, rigid spacer, or flexible linker in proteins. In this study, we quantify this flexibility in terms of persistence length, namely the length scale over which it is rigid. We use single-molecule optical trapping and small-angle x-ray scattering, combined with Monte Carlo simulations to demonstrate that the Kelch ER/K alpha-helix behaves as a wormlike chain with a persistence length of approximately 15 nm or approximately 28 turns of alpha-helix. The ER/K alpha-helix length in proteins varies from 3 to 60 nm, with a median length of approximately 5 nm. Knowledge of its persistence length enables us to define its function as a rigid spacer in a translation initiation factor, as a force transducer in the mechanoenzyme myosin VI, and as a flexible spacer in the Kelch-motif-containing protein.

  3. LWIR scene simulator developed for end-to-end performance evaluation of focal planes

    NASA Technical Reports Server (NTRS)

    Thompson, Niels A.; Bowser, William M.; Song, Sung H.; Skiff, Laura T.; Powell, William W.; Romero, Charles

    1992-01-01

    The development of a long-wave infrared optical simulator facilitates evaluation of the end-to-end performance of long wavelength infrared (LWIR) focal plane arrays (FPAs) in a system-like environment. This simulator provides selectable structured scene inputs to a focal plane module or array. Background irradiances as low as 10 exp 10 photons/sq cm s are achievable when the simulator is cooled with liquid helium. The optical simulator can generate single or multiple targets of controllable intensities, and uniform or structured background irradiances. The infrared scenes can be viewed in a stationary mode or dynamically scanned across the focal plane.

  4. Monolithically integrated HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, Silviu; Lee, Tae-Seok; Ashokan, Renganathan; Grein, Christoph H.; Boieriu, Paul; Chen, Y. P.; Dinan, John H.; Lianos, Dimitrios

    2003-12-01

    The cost and performance of hybrid HgCdTe infrared focal plane arrays are constrained by the necessity of fabricating the detector arrays on a CdZnTe substrate. These substrates are expensive, fragile, are available only in small rectangular formats, and are not a good thermal expansion match to the silicon readout integrated circuit. We discuss in this paper an infrared sensor technology based on monolithically integrated infrared focal plane arrays that could replace the conventional hybrid focal plane array technology. We have investigated the critical issues related to the growth of HgCdTe on Si read-out integrated circuits and the fabrication of monolithic focal plane arrays: (1) the design of Si read-out integrated circuits and focal plane array layouts, (2) the low temperature cleaning of Si(001) wafers, (3) growth of CdTe and HgCdTe layers on read-out integrated circuits, (4) array fabrication, interconnection between focal plane array and read-out integrated circuit input nodes and demonstration of the photovoltaic operation, and (5) maintenance of the read-out integrated circuit characteristics after substrate cleaning, molecular beam epitaxy growth and device fabrication. Crystallographic, optical and electrical properties of the grown layers are presented. Electrical properties for diodes fabricated on misoriented Si and read-out integrated circuit substrates are discussed. The fabrication of arrays with demonstrated I-V properties show that monolithic integration of HgCdTe-based infrared focal plane arrays on Si read-out integrated circuits is feasible and could be implemented in the 3rd generation of infrared systems.

  5. Statistical earthquake focal mechanism forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2014-04-01

    Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.

  6. Prototype focal plane assembly for multispectral remote sensing

    SciTech Connect

    Rienstra, J.L.; Vampola, J.A.

    1995-09-01

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing. A prototype multispectral sensor system is under development. The three major subsystems making up the prototype sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding The optical filters define 15 spectral bands in a range from 0.45 {mu}m to 10.7 {mu}m. All the linear arrays are mounted on a single motherboard and are designed to operate at 75 K. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 16.4 megapixels per second. The diverse requirements for the focal plane assembly make this a challenging, sensor to design and build.

  7. Very large aperture optics for space applications

    NASA Astrophysics Data System (ADS)

    Horwath, T. G.; Smith, J. P.; Johnson, M. T.

    1994-09-01

    A new type of space optics technology is presented which promises the realization of very large apertures (tens of meters), while packagable into lightweight, small volume containers compatible with conventional launch vehicles. This technology makes use of thin foils of circular shape which are uniformly mass loaded around the perimeter. Once unfurled and set into rapid rotation about the transversal axis, the foil is stretched into a perfectly flat plane by the centrifugal forces acting on the peripheral masses. The simplest applications of this novel technology are optically flat reflectors, using metallized foils of Mylar, Kevlar, or Kapton. Other more complex optical components can be realized by use of binary optics techniques, such as depositing holograms by selective local microscale removal of the reflective surface. Electrostatic techniques, in conjunction with an auxiliary foil, under local, distributed real-time control of the optical parameters, allow implementation of functions like beam steering and focal length adjustments. Gas pressurization allows stronger curvatures and thus smaller focal ratios for non-imaging applications. Limits on aperture are imposed primarily by manufacturing capabilities. Applications of such large optics in space are numerous. They range from military, such as space based lasers, to the civilian ones of power beaming, solar energy collection, and astronomy. This paper examines this simple and innovative concept in detail, discusses deployment and attitude control issues and presents approaches for realization.

  8. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  9. Focal hyperhidrosis: diagnosis and management

    PubMed Central

    Haider, Aamir; Solish, Nowell

    2005-01-01

    HYPERHIDROSIS, A CONDITION CHARACTERIZED by excessive sweating, can be generalized or focal. Generalized hyperhidrosis involves the entire body and is usually part of an underlying condition, most often an infectious, endocrine or neurologic disorder. Focal hyperhidrosis is idiopathic, occurring in otherwise healthy people. It affects 1 or more body areas, most often the palms, armpits, soles or face. Almost 3% of the general population, largely people aged between 25 and 64 years, experience hyperhidrosis. The condition carries a substantial psychological and social burden, since it interferes with daily activities. However, patients rarely seek a physician's help because many are unaware that they have a treatable medical disorder. Early detection and management of hyperhidrosis can significantly improve a patient's quality of life. There are various topical, systemic, surgical and nonsurgical treatments available with efficacy rates greater than 90%–95%. PMID:15632408

  10. Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations

    DTIC Science & Technology

    2012-06-01

    slopes, the measured offset of the spot centers have to be divided by the focal length of the lenslets. In this study, the slope error measured by the...moves the mirror surface in one direction from a flat reference producing concave shapes. In order to allow bidirectional control, the mirror is...Adaptive Optics (AO) testbed. In most custom-built adaptive optics control problems, spatial resolution and available stroke of the deformable mirror

  11. Comparative study of two CPV optical concentrators, using a Fresnel lens as primary optical element

    NASA Astrophysics Data System (ADS)

    El Himer, S.; El-Yahyaoui, S.; Mechaqrane, A.; Ahaitouf, A.

    2017-03-01

    In this work, the performances of two optimized reflective secondary optics elements a CPC (Compound Parabolic Concentrator) and a Cone for use in a CPV concentrator system are studied using ray-tracing simulation for the same primary optical element: a Fresnel lens. These optical elements are compared in terms of concentration, acceptance angle, exit angle and output light distribution. Our results show that the power distribution at the end of the concentrator is more uniform in the case of the cone. The optical efficiency is higher when the secondary element is placed at a distance f + \\frac{\\text{R}}{{\\tan \\text{θ }}} with f the focal length; R the input radius of the secondary optical element and θ the acceptance angle of the secondary optical element. Also, we found that the length and the input radius of each optical element decrease when the Fresnel lens diameter increases but the input radius of the CPC stills the larger. Finally, our calculation show that the CPC is longer than the cone while the Fresnel lens diameter is less than 200 mm and beyond this value both the cone and the CPC mostly present the same length.

  12. Stigmatic flat focal field spectrograph

    NASA Astrophysics Data System (ADS)

    Niemczyk, T. M.; Gobeli, G. W.

    Advances in two dimensional detectors have created a need for a spectrograph that can produce high fidelity images. Aberrations that detract from image quality in conventional spectrographs are discussed. Ray trace and experimental results obtained for a unique spectrograph designed for use with array detectors, i.e., designed to produce high fidelity images, are presented. The spectrograph employs toroidal mirrors to achieve stigmatic imaging in a flat focal field.

  13. Holographic Optical Elements as Scanning Lidar Telescopes

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Rallison, Richard D.; Wilkerson, Thomas D.; Guerra, David V.

    2005-01-01

    We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.

  14. Almost Unilateral Focal Dermal Hypoplasia

    PubMed Central

    Lee, Solam; Choe, Sung Jay

    2017-01-01

    Focal dermal hypoplasia, caused by mutations in PORCN, is an X-linked ectodermal dysplasia, also known as Goltz syndrome. Only seven cases of unilateral or almost unilateral focal dermal hypoplasia have been reported in the English literature and there have been no previously reported cases in the Republic of Korea. A 19-year-old female presented with scalp defects, skin lesions on the right leg and the right trunk, and syndactyly of the right fourth and fifth toes. Cutaneous examination revealed multiple atrophic plaques and a brown and yellow mass with fat herniation and telangiectasia that was mostly located on the lower right leg. She had syndactyly on the right foot and the scalp lesion appeared to be an atrophic, membranous, fibrotic alopecic scar. A biopsy of the calf revealed upper dermal extension of fat cells, dermal atrophy, and loss of dermal collagen. A diagnosis of almost unilateral focal dermal hypoplasia was made on the basis of physical and histologic findings. Henceforth, the patient was referred to a plastic surgeon and an orthopedics department to repair her syndactyly. PMID:28223754

  15. Persistent Focal Behavior and Physical Activity Performance

    ERIC Educational Resources Information Center

    Erfle, Stephen E.

    2014-01-01

    This article examines the proclivity and performance attributes of focal students across time and activities using data from 9,345 students. Three systematic focal behavior partitions are examined: Across activities, across time, and across activities and time. A student's performance is focal if it ends in 0 or 5 for push-ups and 0 for curl-ups.…

  16. Slope sensitivities for optical surfaces

    NASA Astrophysics Data System (ADS)

    Rogers, John R.

    2015-09-01

    Setting a tolerance for the slope errors of an optical surface (e.g., surface form errors of the "mid-spatial-frequencies") requires some knowledge of how those surface errors affect the final image of the system. While excellent tools exist for simulating those effects on a surface-by-surface basis, considerable insight may be gained by examining, for each surface, a simple sensitivity parameter that relates the slope error on the surface to the ray displacement at the final image plane. Snell's law gives a relationship between the slope errors of a surface and the angular deviations of the rays emerging from the surface. For a singlet or thin doublet acting by itself, these angular deviations are related to ray deviations at the image plane by the focal length of the lens. However, for optical surfaces inside an optical system having a substantial axial extent, the focal length of the system is not the correct multiplier, as the sensitivity is influenced by the optical surfaces that follow. In this paper, a simple expression is derived that relates the slope errors at an arbitrary optical surface to the ray deviation at the image plane. This expression is experimentally verified by comparison to a real-ray perturbation analysis. The sensitivity parameter relates the RMS slope errors to the RMS spot radius, and also relates the peak slope error to the 100% spot radius, and may be used to create an RSS error budget for slope error. Application to various types of system are shown and discussed.

  17. Efficient analytic model to optimum design laser resonator and optical coupling system of diode-end-pumped solid-state lasers: influence of gain medium length and pump beam M2 factor.

    PubMed

    Shayeganrad, Gholamreza; Mashhadi, Leila

    2008-02-10

    A comprehensive analytical model for optimization longitudinal pumping of ideal four-level lasers is presented for accurate analysis by removing limiting assumptions on active length and pump-beam radius in the gain medium. By taking into account the circular-symmetric Gaussian pump beam including the M2 factor, an analytical formula for the root mean square of the pump beam in the active medium is developed to relate properties of the gain medium and pump beam to the requirement on efficient optimum design. Under the condition of minimum root mean square of pump-beam radius inside the active medium, the key parameters of the optimum optical coupling system have been analytically derived. Using these parameters, optimum mode size and maximum output efficiency are derived as a function of the gain medium length, absorption coefficient, pump-beam M2 factor, and input power. Dependence of the obtained parameters on the gain medium length, absorption coefficient, pump-beam M2 factor, and input power has been investigated. The results of this theory are found to be more comprehensive than the previous theoretical investigations. The present model provides a straightforward procedure to design the optimum laser resonator and the coupling optics for maximizing the output.

  18. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  19. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    NASA Astrophysics Data System (ADS)

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-12-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min-1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.

  20. Focal plane detectors possible detector technologies for OWL/AIRWATCH

    SciTech Connect

    Flyckt, Esso

    1998-06-15

    New satellite-born projects OWL and AIRWATCH will need single-photon focal-plane detectors of a million pixels in a design which is optimized to the focusing optics and electronics at acceptable cost. We discuss different phototube possibilities and their pros and cons with crude cost estimates. We conclude that a multichannel-photomultiplier solution is safe. A better compromise may be to adapt a 6 or 9 inch X-ray image intensifier tube or develop a 12 inch image intensifier for detecting individual photons, and adapt the optics to have many mirror modules. The possibility of developing super-large-area phototubes is also discussed.

  1. Silicon pore optics development for ATHENA

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.

    2015-09-01

    The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.

  2. Acousto-optic infrared spectral imager for Pluto fast flyby

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Hillman, J. J.

    1993-01-01

    Acousto-optic tunable filters (AOTF's) enable the design of compact, two-dimensional imaging spectrometers with high spectral and spatial resolution and with no moving parts. Tellurium dioxide AOTF's operate from about 400 nm to nearly 5 microns, and a single device will tune continuously over one octave by changing the RF acoustic frequency applied to the device. An infrared (1.2-2.5 micron) Acousto-Optic Imaging Spectrometer (AImS) was designed that closely conforms to the surface composition mapping objectives of the Pluto Fast Flyby. It features a 75-cm focal length telescope, infrared AOTF, and 256 x 256 NICMOS-3 focal plane array for acquiring narrowband images with a spectral resolving power (lambda/delta(lambda)) exceeding 250. We summarize the instrument design features and its expected performance at the Pluto-Charon encounter.

  3. Comparison of methods for transfer of calibration models in near-infared spectroscopy: a case study based on correcting path length differences using fiber-optic transmittance probes in in-line near-infrared spectroscopy.

    PubMed

    Sahni, Narinder Singh; Isaksson, Tomas; Naes, Tormod

    2005-04-01

    This article addresses problems related to transfer of calibration models due to variations in distance between the transmittance fiber-optic probes. The data have been generated using a mixture design and measured at five different probe distances. A number of techniques reported in the literature have been compared. These include multiplicative scatter correction (MSC), path length correction (PLC), finite impulse response (FIR), orthogonal signal correction (OSC), piecewise direct standardization (PDS), and robust calibration. The quality of the predictions was expressed in terms of root mean square error of prediction (RMSEP). Robust calibration gave good calibration transfer results, while the other methods did not give acceptable results.

  4. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions.

  5. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  6. Focal epithelial hyperplasia: Heck disease.

    PubMed

    Cohen, P R; Hebert, A A; Adler-Storthz, K

    1993-09-01

    Two sisters of Mexican ancestry had focal epithelial hyperplasia (FEH). The lesions on the oral mucosa of the older child were initially misinterpreted as representing sexual abuse. Microscopic evaluation of a hematoxylin and eosin-stained section from a lower lip papule demonstrated the histologic features of FEH. Although human papillomavirus (HPV) type 13 and HPV32 have been most consistently present in FEH lesions, types 6, 11, 13, and 32 were not detected in the paraffin-embedded tissue specimen of our patient using an in situ hybridization technique. The lesions persisted or recurred during management using destructive modalities; subsequently, they completely resolved spontaneously.

  7. Interferon Induced Focal Segmental Glomerulosclerosis

    PubMed Central

    Bayram Kayar, Nuket; Alpay, Nadir; Hamdard, Jamshid; Emegil, Sebnem; Bag Soydas, Rabia; Baysal, Birol

    2016-01-01

    Behçet's disease is an inflammatory disease of unknown etiology which involves recurring oral and genital aphthous ulcers and ocular lesions as well as articular, vascular, and nervous system involvement. Focal segmental glomerulosclerosis (FSGS) is usually seen in viral infections, immune deficiency syndrome, sickle cell anemia, and hyperfiltration and secondary to interferon therapy. Here, we present a case of FSGS identified with kidney biopsy in a patient who had been diagnosed with Behçet's disease and received interferon-alpha treatment for uveitis and presented with acute renal failure and nephrotic syndrome associated with interferon. PMID:27847659

  8. SNAP Satellite Focal Plane Development

    SciTech Connect

    Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

    2003-07-07

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.

  9. Optical Design of Telescopes and other Reflective Systems using SLIDERS

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.

    2007-01-01

    Optical design tools are presented to provide automatic generation of reflective optical systems for design studies and educational use. The tools are graphical in nature and use an interactive slider interface with freely available optical design software, OSLO EDU. Operation of the sliders provides input to adjust first-order and other system parameters (e.g. focal length), while appropriate system construction parameters are automatically updated to correct aberrations. Graphical output is also presented in real-time (e.g. a lens drawing) to provide the opportunity for a truly visual approach to optical design. Available systems include two- three- and four-mirror telescopes, relays, and afocal systems, either rotationally symmetric or having just a plane of symmetry. Demonstrations are presented, including a brief discussion of interfacing optical design software to MATLAB, and general research opportunities at NASA.

  10. Focal-plane irradiance tailoring using the concept of Woofer-Tweeter deformable mirrors.

    PubMed

    Feng, Zexin; Huang, Lei; Gong, Mali

    2014-04-21

    Deformable mirror (DM) is a common-used active freeform optical element. We introduce the concept of Woofer-Tweeter DM system for controlling focal-plane irradiance profiles. We firstly determine a freeform reflective surface for transforming a given incident laser beam into the desired focal-plane irradiance distribution by numerically solving a standard Monge-Ampère equation. Then, we use a low-bandwidth Woofer DM to approximate the required freeform reflective surface and a high-bandwidth Tweeter DM to compensate the residual error. Simulation results show that, compared with single DMs, the Woofer-Tweeter DM system brings the best focal-plane irradiance performances.

  11. Research and implementation of the integrated cooling system for focal plate

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Cheng, Lixuan; Chu, Jiaru; Hu, Hongzhuan; Zhou, Zengxiang

    2016-07-01

    With the rapid development of multi-objective astronomical survey telescope technology, the heat of focal plate which high-density optical fiber positioners were mounted in has become the key factor of system precision. The new integrated cooling system designed multi curved composite grooves on the surface of focal plate for forced convection was proposed. Meanwhile, the manufacturing process, sealing structure and heat dissipation performance of the system were analyzed and tested with detail in the paper. The experimental results suggested that the new integrated cooling system of focal plate has a fast response speed and good heat dissipation performance.

  12. Optical passive athermalization for infrared zoom system

    NASA Astrophysics Data System (ADS)

    Li, Shenghui; Yang, Changcheng; Zheng, Jia; Lan, Ning; Xiong, Tao; Li, Yong

    2007-12-01

    In an infrared zoom system, it is difficult to obtain the best thermal compensation for all effective focal length (EFL) simultaneously by moving a single lens group. According to the principle of optical passive athermalization, the equations of focal length, achromatization and athermalization of both long and short EFL are established respectively. By analyzing the thermal aberration value relations between long EFL and short EFL, the thermal aberration values of the switching groups for short EFL athermalization are calculated. Firstly, the athermalization of long EFL is designed. Then through reasonable optical materials matching of the switching groups, the short EFL achieves athermalization as well. In this paper, a re-imaging switching zoom system is designed. It has a relative aperture of f/4.0, 100% cold shield efficiency, the EFL of 180mm/30mm at 3.7-4.8μm. The long EFL includes four refractive elements and one hybrid refractive/diffractive element. The switching groups of short EFL have two types, one is composed of four refractive elements, and the other is composed of two refractive elements and one hybrid refractive/diffractive element. Both of the short EFL achieve athermalization. With the aluminum materials of system structures, the zoom system achieves optical passive athermalization. It has the diffraction limited image quality and stable image plane from -30°C to 70°C.

  13. Polarization structuring for focal volume shaping in high-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Iglesias, Ignacio; Vohnsen, Brian

    2007-03-01

    We examined pupil-plane polarization structures for high numerical-aperture objective lenses that generate light distributions at the focal volume similar to those produced by purely radial and azimuthal polarizations. The engineered structures can be dynamically generated with spatial light modulators without the need for additional moving parts in the optical system. Computer simulations show that the method can be considered a valuable addition to the tools available for controlling the interaction of light with matter at the focal region.

  14. Fast focal zooming scheme for direct drive fusion implemented by inserting KD2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Zhong, Zheqiang; Hu, Xiaochuan; Zhang, Bin

    2016-06-01

    The highly required uniformity of target in direct-drive fusion is difficult to achieve and maintain during the entire laser fusion implosion. To mitigate the increasing nonuniformity, the fast focal zooming scheme implemented by inserting an electro-optic (EO) crystal in the front end of beamline has been proposed. Functioning as a phase plate, the specifically designed EO crystal may add the induced spherical wavefront to the laser beam and alter its focusing characteristics. However, in order to zoom out the focal spot by half, the required voltage for KD2PO4 (DKDP) with single pair of electrodes is relatively high. In order to decrease the voltage while maintaining the zooming performance, the DKDP cylinder with multi pairs of electrodes has been presented. The continuous phase plate (CPP) is designed according to both the injected beam and the output field. However, the conventional CPP is designed based on the assumption of an injected beam without wavefront distortion, which would zoom in the focal spot variation in the focal zooming scheme. In order to zoom out the focal spot, a redesigned CPP has been proposed by adding a spherical wavefront to the phase variation of the conventional CPP and further optimizing. On the basis, the focusing characteristics of laser beam during the fast focal zooming process have been analyzed. Results indicate that the focal spot size decreases with the increasing voltage on DKDP crystal, meanwhile the uniformity maintains high during the focal zooming process.

  15. Pathogenesis of Focal Segmental Glomerulosclerosis

    PubMed Central

    Lim, Beom Jin; Yang, Jae Won; Do, Woo Sung; Fogo, Agnes B.

    2016-01-01

    Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs) has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice. PMID:27744657

  16. Adaptive beam shaping by controlled thermal lensing in optical elements.

    PubMed

    Arain, Muzammil A; Quetschke, Volker; Gleason, Joseph; Williams, Luke F; Rakhmanov, Malik; Lee, Jinho; Cruz, Rachel J; Mueller, Guido; Tanner, D B; Reitze, David H

    2007-04-20

    We describe an adaptive optical system for use as a tunable focusing element. The system provides adaptive beam shaping via controlled thermal lensing in the optical elements. The system is agile, remotely controllable, touch free, and vacuum compatible; it offers a wide dynamic range, aberration-free focal length tuning, and can provide both positive and negative lensing effects. Focusing is obtained through dynamic heating of an optical element by an external pump beam. The system is especially suitable for use in interferometric gravitational wave interferometers employing high laser power, allowing for in situ control of the laser modal properties and compensation for thermal lensing of the primary laser. Using CO(2) laser heating of fused-silica substrates, we demonstrate a focal length variable from infinity to 4.0 m, with a slope of 0.082 diopter/W of absorbed heat. For on-axis operation, no higher-order modes are introduced by the adaptive optical element. Theoretical modeling of the induced optical path change and predicted thermal lens agrees well with measurement.

  17. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  18. NIF optics phase gradient specfication

    SciTech Connect

    Williams, W.; Auerbach, J.; Hunt, J.; Lawson, L.; Manes, K.; Orth, C.; Sacks, R.; Trenholme, J.; Wegner, P.

    1997-05-02

    A root-mean-square (rms) phase gradient specification seems to allow a good connection between the NIP optics quality and focal spot requirements. Measurements on Beamlet optics individually, and as a chain, indicate they meet the assumptions necessary to use this specification, and that they have a typical rms phase gradient of {approximately}80 {angstrom}/cm. This may be sufficient for NIP to meet the proposed Stockpile Stewardship Management Program (SSMP) requirements of 80% of a high- power beam within a 200-250 micron diameter spot. Uncertainties include, especially, the scale length of the optics phase noise, the ability of the adaptive optic to correct against pump-induced distortions and optics noise, and the possibility of finding mitigation techniques against whole-beam self-focusing (e.g. a pre- correction optic). Further work is needed in these areas to better determine the NIF specifications. This memo is a written summary of a presentation on this topic given by W. Williams 24 April 1997 to NIP and LS&T personnel.

  19. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization.

    PubMed

    Collery, Ross F; Veth, Kerry N; Dubis, Adam M; Carroll, Joseph; Link, Brian A

    2014-01-01

    Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2=0.9548, R2=0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of -0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of -0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors.

  20. Single-mode laser studies: Design and performance of a fixed-wave length source and coupling of lasers to thin-film optical waveguides

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Hammer, J. M.

    1980-01-01

    A module developed for the generation of a stable single wavelength to be used for a fiber optic multiplexing scheme is described. The laser is driven with RZ pulses, and the temperature is stabilized thermoelectrically. The unit is capable of maintaining a fixed wavelength within about 6 A as the pulse duty cycle is changed between 0 and 100 percent. This is considered the most severe case, and much tighter tolerances are obtainable for constant input power coding schemes. Using a constricted double heterostructure laser, a wavelength shift of 0.083 A mA is obtained due to laser self-heating by a dc driving current. The thermoelectric unit is capable of maintaining a constant laser heat-sink temperature within 0.02 C. In addition, miniature lenses and couplers are described which allow efficient coupling of single wavelength modes of junction lasers to thin film optical waveguides. The design of the miniature cylinder lenses and the prism coupling techniques allow 2 mW of single wavelength mode junction laser light to b coupled into thin film waveguides using compact assemblies. Selective grating couplers are also studied.

  1. Signal processing on the focal plane array: an overview

    NASA Astrophysics Data System (ADS)

    Graham, Roger W.; Trautfield, Walter C.; Taylor, Scott M.; Murray, Mark P.; Mesh, Frank J.; Horn, Stuart B.; Finch, James A.; Dang, Khoa V.; Caulfield, John T.

    2000-12-01

    Raytheon's Infrared Operations (RIO) has invented and developed a new class of focal plane arrays; the Adaptive IR Sensor (AIRS) and Thinfilm Analog Image Processor (TAIP). The AIRS FPA is based upon biologically inspired on-focal- plane circuitry, which adaptively removes detector and optic temperature drift and l/f induced fixed pattern noise. This third-generation multimode IRFPA, also called a Smart FPA, is a 256x256-array format capable of operation in four modes: 1) Direct Injection (DI), 2) Adaptive Non-uniformity Correction (NUC), 3) Motion/Edge Detection, and 4) Subframe Averaging. Also the 320x240 TAIP results have shown excellent image processing in the form of Spatial and Temporal processing.

  2. Focal choroidal excavation associated with polypoidal choroidal vasculopathy.

    PubMed

    Say, Emil Anthony T; Jani, Pooja D; Appenzeller, Matthew F; Houghton, Odette M

    2013-01-01

    A 48-year-old woman presented with blurred vision in her right eye for 6 weeks. Visual acuity was 20/300 and 20/25 in the right and left eyes, respectively. Fundus examination showed subretinal hemorrhage in the superonasal macula in the right eye, whereas the left eye was normal. Fluorescein angiography showed blocked fluorescence from hemorrhage and a round distinct hypofluorescent spot along the inferotemporal arcade. Indocyanine green angiography revealed hyperfluorescent tubular and aneurysmal dilatations consistent with polypoidal choroidal vasculopathy in the superior macula. Spectral-domain optical coherence tomography showed retinal pigment epithelial irregularities and detachment. Scans through the round area of hypofluorescence revealed a conforming focal choroidal excavation and thinning of the underlying choriocapillaries. Because the pathogenesis of focal choroidal excavation is currently unclear, the authors propose the possibility of an acquired etiology related to loss of choriocapillaries from perfusion abnormalities as evidenced here.

  3. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  4. Digital scanner infrared focal plane technology

    NASA Astrophysics Data System (ADS)

    Ortiz, M. A.; Malone, N. R.; Harris, M.; Shin, J.; Byers, S.; Price, D.; Vampola, J.

    2011-09-01

    Advancements in finer geometry and technology advancements in circuit design now allow placement of digital architecture on cryogenic focal planes while using less power than heritage analog designs. These advances in technology reduce the size, weight, and power of modern focal planes. In addition, the interface to the focal plane is significantly simplified and is more immune to Electromagnetic Interference (EMI). The cost of the customer's instrument after integration with the digital scanning Focal Plane Array (FPA) has been significantly reduced by placing digital architecture such as Analog to digital convertors and Low Voltage Differential Signaling (LVDS) Inputs and Outputs (I/O) on the Read Out Integrated Circuit (ROIC).

  5. Focal epithelial hyperplasia - an update.

    PubMed

    Said, Ahmed K; Leao, Jair C; Fedele, Stefano; Porter, Stephen R

    2013-07-01

    Focal epithelial hyperplasia (FEH) is an asymptomatic benign mucosal disease, which is mostly observed in specific groups in certain geographical regions. FEH is usually a disease of childhood and adolescence and is generally associated with people who live in poverty and of low socioeconomic status. Clinically, FEH is typically characterized by multiple, painless, soft, sessile papules, plaques or nodules, which may coalesce to give rise to larger lesions. Human papillomavirus (HPV), especially genotypes 13 and 32, have been associated and detected in the majority of FEH lesions. The clinical examination and social history often allow diagnosis, but histopathological examination of lesional tissue is usually required to confirm the exact diagnosis. FEH sometimes resolves spontaneously however, treatment is often indicated as a consequence of aesthetic effects or any interference with occlusion. There remains no specific therapy for FEH, although surgical removal, laser excision or possibly topical antiviral agents may be of benefit. There remains no evidence that FEH is potentially malignant.

  6. Smov Baseline Focal Plane Check

    NASA Astrophysics Data System (ADS)

    Gilmozzi, Roberto

    1994-01-01

    This test will be executed during the period after the servicing mission and before the extension of the COSTAR assembly. Its purpose is to verify that the FOS, HRS, and FOC focal planes have not been altered by the activities performed by Story and the Astronauts during the servicing mission. A large unknown deviation in aperture position would severly impact subsequent COSTAR alignment activities. If this test reveals a deviation, we may be able to compensate for any offsets prior to the complex and delicate COSTAR alignment calibrations. This enhanced version of the Heptathlon is designed to verify course alignments and measure relative aperture positions to within a few arcsecs. SPECIAL REQUIREMENTS: ***This test uses pre-servicing parameters for HRS, FOS, and FOC and the Cycle 4 parameters for WFPC2.*** ***This test requires special alignment and special guide stars.** ***This test requires special commanding for telemetry setups.**

  7. First-order analysis of zoom system based on variable focal power lens.

    PubMed

    Cheng, Hongtao; Liu, Hang; Li, Hengyu

    2015-05-04

    We present our analysis of a zoom system based on the variable focal power lens, and we demonstrate how our analysis can be used in zoom system design. The transverse magnification is considered as an independent first-order optics control parameter in the zoom system. The zoom system equations are established through the use of matrix optics. Formulas related to the zoom principles and performance of such optical systems are derived, and numerical and theoretical values are compared using examples.

  8. Simultaneous multispectral framing infrared camera using an embedded diffractive optical lenslet array

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2011-06-01

    Recent advances in micro-optical element fabrication using gray scale technology have opened up the opportunity to create simultaneous multi-spectral imaging with fine structure diffractive lenses. This paper will discuss an approach that uses diffractive optical lenses configured in an array (lenslet array) and placed in close proximity to the focal plane array which enables a small compact simultaneous multispectral imaging camera [1]. The lenslet array is designed so that all lenslets have a common focal length with each lenslet tuned for a different wavelength. The number of simultaneous spectral images is determined by the number of individually configured lenslets in the array. The number of spectral images can be increased by a factor of 2 when using it with a dual-band focal plane array (MWIR/LWIR) by exploiting multiple diffraction orders. In addition, modulation of the focal length of the lenslet array with piezoelectric actuation will enable spectral bin fill-in allowing additional spectral coverage while giving up simultaneity. Different lenslet array spectral imaging concept designs are presented in this paper along with a unique concept for prefiltering the radiation focused on the detector. This approach to spectral imaging has applications in the detection of chemical agents in both aerosolized form and as a liquid on a surface. It also can be applied to the detection of weaponized biological agent and IED detection in various forms from manufacturing to deployment and post detection during forensic analysis.

  9. Bioinspired Polarization Imaging Sensors: From Circuits and Optics to Signal Processing Algorithms and Biomedical Applications: Analysis at the focal plane emulates nature's method in sensors to image and diagnose with polarized light.

    PubMed

    York, Timothy; Powell, Samuel B; Gao, Shengkui; Kahan, Lindsey; Charanya, Tauseef; Saha, Debajit; Roberts, Nicholas W; Cronin, Thomas W; Marshall, Justin; Achilefu, Samuel; Lake, Spencer P; Raman, Baranidharan; Gruev, Viktor

    2014-10-01

    In this paper, we present recent work on bioinspired polarization imaging sensors and their applications in biomedicine. In particular, we focus on three different aspects of these sensors. First, we describe the electro-optical challenges in realizing a bioinspired polarization imager, and in particular, we provide a detailed description of a recent low-power complementary metal-oxide-semiconductor (CMOS) polarization imager. Second, we focus on signal processing algorithms tailored for this new class of bioinspired polarization imaging sensors, such as calibration and interpolation. Third, the emergence of these sensors has enabled rapid progress in characterizing polarization signals and environmental parameters in nature, as well as several biomedical areas, such as label-free optical neural recording, dynamic tissue strength analysis, and early diagnosis of flat cancerous lesions in a murine colorectal tumor model. We highlight results obtained from these three areas and discuss future applications for these sensors.

  10. The AIRES Optical Design

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    AIRES (Airborne InfraRed Echelle Spectrometer) is the facility spectrometer for SOFIA (Stratospheric Observatory For Infrared Astronomy). AIRES is a long-slit (approximately 160 in) spectrometer designed to cover the 17 to 210-micron range with good sensitivity using three spectroscopic arrays. Initially, only the 30-130 micron, mid-wavelength array will be available. The instrument has a cryogenic K-mirror to perform field rotation and a slit-viewing camera (lambda < 28 microns, FOV = 160 in diameter) to image source morphology and verify telescope pointing. AIRES employs a large echelle grating to achieve a spectral resolving power (lambda/delta lambda) of approximately 1.0 x 10(exp 6)/lambda (sub mu), where lambda (sub mu) is the wavelength in microns. Hyperfine, Inc. has ruled and tested the AIRES' echelle; its wave-front error is 0.028 waves RMS (root mean square) at 10.6 microns. The instrument is housed in a liquid-helium cryostat which is constrained in diameter (approximately 1 m) and length (approximately 2 m) by the observatory. Hence, the length of the echelle (approximately 1.1 m) and the focal length of its collimator (approximately 5.2 m) severely drive the optical design and packaging. The final design uses diamond-turned aluminum optics and has up to 19 reflections inside the cryostat, depending on the optical path. This design was generated, optimized, and toleranced using Code V. The predicted performance is nearly diffraction-limited at 17 microns; the error budget is dominated by design residuals. Light loss due to slit rotation and slit curvature has been minimized. A thorough diffraction analysis with GLAD (G-Level Analysis Drawer) was used to size the mirrors and baffles; the internal light loss is shown to be a strong function of slit width.

  11. Optical lenses design and experimental investigations of a dynamic focusing unit for a CO2 laser scanning system

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Yue; Zhang, Huaxin; Liu, Peng; Jiao, Guohua

    2016-09-01

    Laser scanners are critical components in material processing systems, such as welding, cutting, and drilling. To achieve high-accuracy processing, the laser spot size should be small and uniform in the entire objective flat field. However, traditional static focusing method using F-theta objective lens is limited by the narrow flat field. To overcome these limitations, a dynamic focusing unit consisting of two lenses is presented in this paper. The dual-lens system has a movable plano-concave lens and a fixed convex lens. As the location of the movable optical elements is changed, the focal length is shifted to keep a small focus spot in a broad flat processing filed. The optical parameters of the two elements are theoretical analyzed. The spot size is calculated to obtain the relationship between the moving length of first lens and the shift focus length of the system. Also, the Zemax model of the optical system is built up to verify the theoretical design and optimize the optical parameter. The proposed lenses are manufactured and a test system is built up to investigate their performances. The experimental results show the spot size is smaller than 450um in all the 500*500mm 2 filed with CO2 laser. Compared with the other dynamic focusing units, this design has fewer lenses and no focusing spot in the optical path. In addition, the focal length minimal changes with the shit of incident laser beam.

  12. Investigation of Optical Fibers for Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy in Reacting Flows (Postprint)

    DTIC Science & Technology

    2012-03-01

    hydrocar- bon-fueled combustors . 1 Introduction Various nonlinear spectroscopic techniques exist for measuring temperature, velocity, and chemical...CARS signal. Hence, performing state-of-the-art CARS measurements based on free-stand- ing optics in harsh environments such as combustors and gas...practical combustor , with a focal spot diameter of *100 lm and an interaction length of *1.5 mm, it was observed that the optimal energy for a 8- to 10-ns

  13. Steering Compensation for Strong Vertical Refraction Gradients in a Long-Distance Free-Space Optical Communication Link Over Water

    DTIC Science & Technology

    2005-01-01

    The receiver is a 16” Meade telescope with a focal length of four meters. A round-trip FSO lasercom link over the Chesapeake Bay is used to test...characterize and compensate for refraction effects in free-space optical laser communication ( FSO lasercom). The refractive index depends on various...varying thermal gradients have been observed at the NRL Chesapeake Bay lasercom testbed, which offers a 16 km one-way (32 km round-trip) FSO lasercom

  14. The optical system for JASMINE and the CCD centroiding experiment

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Hanada, Hideo; Yamada, Yoshiyuki; Araki, Hiroshi; Tazawa, Seiichi; Asari, Kazuyoshi; Tsuruta, Seiitsu; Kawano, Nobuyuki; Takato, Naruhisa

    2005-04-01

    We have investigated the optical design for the Japan astrometry satellite mission (JASMINE). In order to accomplish measurements of astrometric parameters with high accuracy, optics with a long focal length and a wide focal plane for astrometry are required. In 1977 Korsch proposed a three mirror system with a long focal length and a wide focal plane. The Korsch system is one of the convincing models. However, the center of the field is totally vignetted because of the fold mirror. Therefore we consider an improved Korsch system in which the center of the field is not vignetted. Finally, we obtain the diffraction limited optical design with small distortion. Our project needs a common astrometric technique to obtain precise positions of star images on solid state detectors to accomplish its objectives. In order to determine the centers of stars, an image of the point source must be focused onto the CCD array with a spread of a few pixels. The distribution of photons (photoelectrons) over a set of pixels enables us to estimate positions of stars with sub-pixel accuracy. We modify the algorithm to estimate the real positions of stars from the photon weighted mean, which was originally developed by the FAME (Full-Sky Astrometric Mapping Explorer) group. Finally, we obtain the results from the experiment that the accuracy of estimation of distance between two stars has a variance of about 1/300 pixel; that is, the error for one measurement is about 1/300 pixel, which is almost an ideal result given by Poisson photon noise. We also investigate the accuracy of estimation of positions with a different size of PSF. In this case also, we find that the accuracy of estimation has a variance of about 1/300 pixel.

  15. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  16. Optics for Athena

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni

    The ATHENA mision will be based on a single X-ray telescope, with a focal length of 12m and an unprecedented effective area (2 m(2) at 1 keV), achieved by means of a single large diameter optics system that will host a very high number (up to 800) of mirror modules, each formed by 40 two-reflection segmented mirror shells.The inner and outer radiaii will be 250 mm and1500 mmrespectively.The requirement of the angular resolution is 5 arc seconds HEW, kept at the same level across a very wide field of view of 40-50 arcmin diameters. The X-ray telescope employs Silicon Pore Optics (SPO), an innovative technology that has been pioneered in Europe over the last decade mostly with ESA support. SPO is a highly modular concept, based on a set of compact individual mirror modules, which has an excellent effective area-to-mass ratio and can achieve high angular resolution. An alternative technology also ebvisage forsees the use of thin slumped glass mirrors. In this paper we will review the design, technology and develoment plan to address the ATHENA optics implementation.

  17. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  18. Assessment of Macular Function during Vitrectomy: New Approach Using Intraoperative Focal Macular Electroretinograms

    PubMed Central

    Matsumoto, Celso Soiti; Shinoda, Kei; Terauchi, Gaku; Matsumoto, Harue; Mizota, Atsushi; Miyake, Yozo

    2015-01-01

    Purpose To describe a new technique to record focal macular electroretinograms (FMERGs) during vitrectomy to assess macular function. Methods Intraoperative FMERGs (iFMERGs) were recorded in ten patients (10 eyes) who undergo vitrectomy. iFMERGs were elicited by focal macular stimulation. The stimulus light was directed to the macular area through a 25 gauge (25G) glass fiber optic bundle. Background light was delivered through a dual chandelier-type light fiber probe. Focal macular responses elicited with combinations of stimulus and background luminances were analyzed. Results A stimulus luminance that was approximately 1.75 log units brighter than the background light was able to elicit focal macular responses that were not contaminated by stray light responses. Thus, a stimulus luminance of 160 cd/m2 delivered on a background of 3 cd/m2 elicited iFMEGs from only the stimulated area. This combination of stimulus and background luminances did not elicit a response when the stimulus was projected onto the optic nerve head. The iFMERGs elicited by a 10° stimulus with a duration of 100 ms and an interstimulus interval of 150 ms consisted of an a-, b-, and d-waves, the oscillatory potentials, and the photopic negative response (PhNR). Conclusions Focal ERGs with all components can be recorded from the macula and other retinal areas during vitreous surgery. This new technique will allow surgeons to assess the function of focal areas of the retina intraoperatively. PMID:26658489

  19. Focal liver lesions found incidentally

    PubMed Central

    Algarni, Abdullah A; Alshuhri, Abdullah H; Alonazi, Majed M; Mourad, Moustafa Mabrouk; Bramhall, Simon R

    2016-01-01

    Incidentally found focal liver lesions are a common finding and a reason for referral to hepatobiliary service. They are often discovered in patients with history of liver cirrhosis, colorectal cancer, incidentally during work up for abdominal pain or in a trauma setting. Specific points should considered during history taking such as risk factors of liver cirrhosis; hepatitis, alcohol consumption, substance exposure or use of oral contraceptive pills and metabolic syndromes. Full blood count, liver function test and tumor markers can act as a guide to minimize the differential diagnosis and to categorize the degree of liver disease. Imaging should start with B-mode ultrasound. If available, contrast enhanced ultrasound is a feasible, safe, cost effective option and increases the ability to reach a diagnosis. Contrast enhanced computed tomography should be considered next. It is more accurate in diagnosis and better to study anatomy for possible operation. Contrast enhanced magnetic resonance is the gold standard with the highest sensitivity. If doubt still remains, the options are biopsy or surgical excision. PMID:27028805

  20. Focal brain inflammation and autism.

    PubMed

    Theoharides, Theoharis C; Asadi, Shahrzad; Patel, Arti B

    2013-04-09

    Increasing evidence indicates that brain inflammation is involved in the pathogenesis of neuropsychiatric diseases. Autism spectrum disorders (ASD) are characterized by social and learning disabilities that affect as many as 1/80 children in the USA. There is still no definitive pathogenesis or reliable biomarkers for ASD, thus significantly curtailing the development of effective therapies. Many children with ASD regress at about age 3 years, often after a specific event such as reaction to vaccination, infection, stress or trauma implying some epigenetic triggers, and may constitute a distinct phenotype. ASD children respond disproportionally to stress and are also affected by food and skin allergies. Corticotropin-releasing hormone (CRH) is secreted under stress and together with neurotensin (NT) stimulates mast cells and microglia resulting in focal brain inflammation and neurotoxicity. NT is significantly increased in serum of ASD children along with mitochondrial DNA (mtDNA). NT stimulates mast cell secretion of mtDNA that is misconstrued as an innate pathogen triggering an auto-inflammatory response. The phosphatase and tensin homolog (PTEN) gene mutation, associated with the higher risk of ASD, which leads to hyper-active mammalian target of rapamycin (mTOR) signalling that is crucial for cellular homeostasis. CRH, NT and environmental triggers could hyperstimulate the already activated mTOR, as well as stimulate mast cell and microglia activation and proliferation. The natural flavonoid luteolin inhibits mTOR, mast cells and microglia and could have a significant benefit in ASD.

  1. Early vision and focal attention

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1991-07-01

    At the thirty-year anniversary of the introduction of the technique of computer-generated random-dot stereograms and random-dot cinematograms into psychology, the impact of the technique on brain research and on the study of artificial intelligence is reviewed. The main finding-that stereoscopic depth perception (stereopsis), motion perception, and preattentive texture discrimination are basically bottom-up processes, which occur without the help of the top-down processes of cognition and semantic memory-greatly simplifies the study of these processes of early vision and permits the linking of human perception with monkey neurophysiology. Particularly interesting are the unexpected findings that stereopsis (assumed to be local) is a global process, while texture discrimination (assumed to be a global process, governed by statistics) is local, based on some conspicuous local features (textons). It is shown that the top-down process of "shape (depth) from shading" does not affect stereopsis, and some of the models of machine vision are evaluated. The asymmetry effect of human texture discrimination is discussed, together with recent nonlinear spatial filter models and a novel extension of the texton theory that can cope with the asymmetry problem. This didactic review attempts to introduce the physicist to the field of psychobiology and its problems-including metascientific problems of brain research, problems of scientific creativity, the state of artificial intelligence research (including connectionist neural networks) aimed at modeling brain activity, and the fundamental role of focal attention in mental events.

  2. Focal Choroidal Excavation in Best Vitelliform Macular Dystrophy: Case Report.

    PubMed

    Esfahani, Mohammad Riazi; Esfahani, Hamid Riazi; Mahmoudi, Alireza; Johari, Mohammad Karim; Hemati, Karim

    2015-05-01

    Focal choroidal excavation (FCE) was first reported as a choroidal posteriorly excavated zone without any scleral change. Choroidal excavation also divided into conforming and nonconforming type. Numerous reports demonstrated association between FCE and other disease such as choroidal neovascularization and central serous choroidoretinopathy. Here, we report a rare case of FCE in a patient with Best disease. The patient was diagnosed by spectoral domain optical coherence tomography (SD-OCT). To the best of our knowledge, our patient is the second report of choroidal excavation in Best vitelliform macular dystrophy.

  3. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-03-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers.

  4. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna

    PubMed Central

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-01-01

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers. PMID:27009383

  5. Far-field radially polarized focal spot from plasmonic spiral structure combined with central aperture antenna.

    PubMed

    Mao, Lei; Ren, Yuan; Lu, Yonghua; Lei, Xinrui; Jiang, Kang; Li, Kuanguo; Wang, Yong; Cui, Chenjing; Wen, Xiaolei; Wang, Pei

    2016-03-24

    Manipulation of a vector micro-beam with an optical antenna has significant potentials for nano-optical technology applications including bio-optics, optical fabrication, and quantum information processing. We have designed and demonstrated a central aperture antenna within an Archimedean spiral that extracts the bonding plasmonic field from a surface to produce a new vector focal spot in far-field. The properties of this vector focal field are revealed by confocal microscopy and theoretical simulations. The pattern, polarization and phase of the focal field are determined by the incident light and by the chirality of the Archimedean spiral. For incident light with right-handed circular polarization, the left-handed spiral (one-order chirality) outputs a micro-radially polarized focal field. Our results reveal the relationship between the near-field and far-field distributions of the plasmonic spiral structure, and the structure has the potential to lead to advances in diverse applications such as plasmonic lenses, near-field angular momentum detection, and optical tweezers.

  6. Optical zoom camera module using two poly-dimethylsiloxane deformable mirrors.

    PubMed

    Huang, Yu-Hung; Wei, Hsiang-Chun; Hsu, Wei-Yao; Cheng, Yuan-Chieh; Su, Guo-Dung John

    2014-10-10

    Miniaturization is an essential trend in the design of portable devices. Motor-driven lens technology is a traditional way to achieve autofocus and optical zoom functions. This approach usually requires considerable space and consumes significant power. Reflective optics is a methodology that not only can fold the optical path, but it has the advantage of low chromatic aberration. In this paper, we use a deformable mirror as a reflecting element in an optical zoom system. For its low Young's modulus and residual stress, we choose polydimethylsiloxane as a deformable membrane that can provide a large stroke. The optical zoom module consists of a pair of micromachined deformable mirrors. The thickness of this module is 10 mm, which enables 2× optical zoom. The smallest effective focal length is 4.7 mm at a full field angle of 52°, and the f-number is 4.4. The largest effective focal length of the module is 9.4 mm, and the f-number is 6.4.

  7. Effects of alkyl chain length on properties of 1-alkyl-3-methylimidazolium fluorohydrogenate ionic liquid crystals.

    PubMed

    Xu, Fei; Matsumoto, Kazuhiko; Hagiwara, Rika

    2010-11-15

    A series of 1-alkyl-3-methylimidazolium fluorohydrogenate salts (C(x)MIm(FH)(2)F, x=8, 10, 12, 14, 16, and 18) have been characterized by thermal analysis, polarized optical microscopy, IR spectroscopy, X-ray diffraction, and anisotropic ionic conductivity measurements. Liquid crystalline mesophases with a smectic A interdigitated bilayer structure are observed from C(10) to C(18), showing a fan-like or focal conic texture. The temperature range of the mesophase increases with the increase in the alkyl chain length (from 10.1 °C for C(10)MIm(FH)(2)F to 123.1 °C for C(18)MIm(FH)(2)F). The distance between the two layers in the smectic structure gradually increases with increasing alkyl chain length and decreases with increasing temperature. Conductivity parallel to the smectic layers is around 10 mS cm(-1) regardless of the alkyl chain length, whereas that perpendicular to the smectic layers decreases with increasing alkyl chain length because of the thicker insulating sheet with the longer alkyl chain.

  8. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  9. Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Busch, J. R.; Verber, C. M.

    1982-01-01

    Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties.

  10. A holographic projection system with an electrically tuning and continuously adjustable optical zoom.

    PubMed

    Lin, Hung-Chun; Collings, Neil; Chen, Ming-Syuan; Lin, Yi-Hsin

    2012-12-03

    A holographic projection system with optical zoom is demonstrated. By using a combination of a LC lens and an encoded Fresnel lens on the LCoS panel, we can control zoom in a holographic projector. The magnification can be electrically adjusted by tuning the focal length of the combination of the two lenses. The zoom ratio of the holographic projection system can reach 3.7:1 with continuous zoom function. The optical zoom function can decrease the complexity of the holographic projection system.

  11. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  12. Mosaic focal plane for star sensors

    NASA Astrophysics Data System (ADS)

    Chang, N. C.

    1981-02-01

    The basic principles of star sensors are reviewed with reference to the advantages of replacing photodiodes, image dissectors, and vidicons with mosaic charge transfer device (CTD) focal planes. The desirable characteristics of CTD focal planes include: high uniformity, high transfer effect, low dark current, low hot and cold spots, low dead space, low angular misalignment, high coplanarity, and high thermal stability. An implementation of a mosaic CTD array star sensor which achieves high angular position accuracy and frequency attitude update is presented. Two focal plane packaging concepts, the planar and vertical board packagings, are examined.

  13. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  14. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  15. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  16. The reconnaissance and early-warning optical system design for dual field of space-based "solar blind ultraviolet"

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu

    2016-07-01

    With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.

  17. Bunch Length Measurements in SPEAR3

    SciTech Connect

    Corbett, W.J.; Fisher, A.; Huang, X.; Safranek, J.; Sebek, J.; Lumpkin, A.; Sannibale, F.; Mok, W.; /Unlisted

    2007-11-28

    A series of bunch length measurements were made in SPEAR3 for two different machine optics. In the achromatic optics the bunch length increases from the low-current value of 16.6ps rms to about 30ps at 25ma/bunch yielding an inductive impedance of -0.17{Omega}. Reducing the momentum compaction factor by a factor of {approx}60 [1] yields a low-current bunch length of {approx}4ps rms. In this paper we review the experimental setup and results.

  18. Integrated fiber optic probe for dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Khan, Romel R.; Suh, Kwang

    1993-01-01

    An integrated fiber optic probe, comprising a monomode optical fiber fusion spliced to a short length of a graded-index multimode fiber, is fabricated for use as a coherent receiver in dynamic light scattering. The multimode fiber is cleaved to provide a gradient-index fiber lens with a focal length of 125 microns and an f-number close to unity. An integrated fiber receiver is used to measure the intensity-intensity autocorrelation data from a 0.05 percent by weight concentration of an aqueous suspension of polystyrene latex spheres. Analysis of 100 independent data sets indicates that the particle size can be recovered with an accuracy of +/- 1 percent.

  19. The design and evaluation of grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.

    1989-01-01

    X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.

  20. Submillisecond Optical Knife-Edge Testing

    NASA Technical Reports Server (NTRS)

    Thurlow, P.

    1983-01-01

    Fast computer-controlled sampling of optical knife-edge response (KER) signal increases accuracy of optical system aberration measurement. Submicrosecond-response detectors in optical focal plane convert optical signals to electrical signals converted to digital data, sampled and feed into computer for storage and subsequent analysis. Optical data are virtually free of effects of index-of-refraction gradients.

  1. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia.

    PubMed

    Glasser, A; Campbell, M C

    1999-06-01

    The biometric, optical and physical properties of 19 pairs of isolated human eye-bank lenses ranging in age from 5 to 96 years were compared. Lens focal length and spherical aberration were measured using a scanning laser apparatus, lens thickness and the lens surface curvatures were measured by digitizing the lens profiles and equivalent refractive indices were calculated for each lens using this data. The second lens from each donor was used to measure resistance to physical deformation by providing a compressive force to the lens. The lens capsule was then removed from each lens and each measurement was repeated to ascertain what role the capsule plays in determining these optical and physical characteristics. Age dependent changes in lens focal length, lens surface curvatures and lens resistance to physical deformation are described. Isolated lens focal length was found to be significantly linearly correlated with both the anterior and posterior surface curvatures. No age dependent change in equivalent refractive index of the isolated lens was found. Although decapsulating human lenses causes similar changes in focal length to that which we have shown to occur when human lenses are mechanically stretched into an unaccommodated state, the effects are due to nonsystematic changes in lens curvatures. These studies reinforce the conclusion that lens hardening must be considered as an important factor in the development of presbyopia, that age changes in the human lens are not limited to the loss of accommodation that characterizes presbyopia but that the lens optical and physical properties change substantially with age in a complex manner.

  2. Finding the Focal Axes of Offset Antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    Focal axis of offset paraboloidal reflector antennas determined by direct measurement instead of trial and error. Two feed horns transmit sum or difference pattern to antenna under test, which reflects energy to far-field detector. When axis of feed horns coincides with focal axis of antenna reflector, far-field detector records minimum in amplitude difference and maximum in absolute-magnitude phase difference between sum and difference signals.

  3. An uncommon focal epithelial hyperplasia manifestation.

    PubMed

    dos Santos-Pinto, Lourdes; Giro, Elisa Maria Aparecida; Pansani, Cyneu Aguiar; Ferrari, Junia; Massucato, Elaine Maria Sgavioli; Spolidório, Luis Carlos

    2009-01-01

    Focal epithelial hyperplasia is a rare, contagious disease associated with infection of the oral mucosa by human papillomavirus types 13 or 32, characterized by multiple soft papules of the same color as the adjacent normal mucosa. It mainly affects the lower lip, buccal mucosa, and tongue. The purpose of this case report was to describe a rare verrucal lesion located in the upper gingiva that was clinically and histologically consistent with focal epithelial hyperplasia.

  4. Comparative merits of multispectral optical polarization to microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.; Duggin, Michael J.

    2002-01-01

    A brief history of RADAR development is followed by an indication of the relevance of LIDAR to ranging and detection of targets. Initially, radiated laser power is discussed. Peak power of 100 kilowatts with a diode pumped solid-state laser appears feasible. Frequency control appears possible with atomic standards controlling the high power laser. Optical characterization of the polarization properties of lasers on targets is being pursued as well as the options. Coherence length of LASER radiation still poses a problem over ranges beyond one hundred meters. Target identification is enhanced using polarization with the aid of higher-resolution focal plane arrays. Coherence applications appear feasible in the near future.

  5. Three-element zoom lens with fixed distance between focal points.

    PubMed

    Mikš, Antonin; Novák, Jiří; Novák, Pavel

    2012-06-15

    This work deals with a theoretical analysis of zoom lenses with a fixed distance between focal points. Equations are derived for the primary (paraxial) design of the basic parameters of a three-element zoom lens. It is shown that the number of optical elements for such a lens must be larger than two.

  6. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  7. Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd

    2004-01-01

    A versatile and simple approach to the design and fabrication of curved-focal-plane arrays of silicon-based photodetectors is being developed. This approach is an alternative to the one described in "Curved Focal-Plane Arrays Using Back- Illuminated High-Purity Photodetectors" (NPO-30566), NASA Tech Briefs, Vol. 27, No. 10 (October 2003), page 10a. As in the cited prior article, the basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (in this case, an array of photodetectors) conform to a curved focal surface, instead of designing the optics to project an image onto a flat focal surface. There is biological precedent for curved-focal-surface designs: retinas - the image sensors in eyes - conform to the naturally curved focal surfaces of eye lenses. The present approach is applicable to both front-side- and back-side-illuminated, membrane photodetector arrays and is being demonstrated on charge-coupled devices (CCDs). The very-large scale integrated (VLSI) circuitry of such a CCD or other array is fabricated on the front side of a silicon substrate, then the CCD substrate is attached temporarily to a second substrate for mechanical support, then material is removed from the back to obtain the CCD membrane, which typically has a thickness between 10 and 20 m. In the case of a CCD designed to operate in back-surface illumination, delta doping can be performed after thinning to enhance the sensitivity. This approach is independent of the design and method of fabrication of the front-side VLSI circuitry and does not involve any processing of a curved silicon substrate. In this approach, a third substrate would be prepared by polishing one of its surfaces to a required focal-surface curvature. A CCD membrane fabricated as described above would be pressed against, deformed into conformity with, and bonded to, the curved surface. The technique used to press and

  8. Near-Field Imaging Based on High Resolution Focal Spot Properties

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.; Lecointre, A.; Vernon, F.

    2015-12-01

    The dense spatial wavefield sampling provided by modern seismological acquisitions allows the resolution of the near-field focal spot. The large-amplitude focal spot emerges from the superposition of a collapsing, time reversed wavefront. We discuss an imaging method that is based on high resolution reconstructions of the focal spot that is obtained from cross correlation. This approach exploits the dependence of the spot's shape on local properties of the propagation medium, i.e., the distance of the first zero crossing is proportional to the wave length. We construct noise correlation functions from data collected by a highly-dense Nodal array centered on the San Jacinto fault zone south of Anza. The focal spot can be obtained from the amplitude distributions at zero lag time. We repeat this analysis using each geophone location as the collapsing point to which the wave length estimate is related. The anisotropic intensity of the converging wavefields leads to distorted focal spots. In addition, strong body and fault zone waves that are associated with the complex fault zone structure prohibit the straightforward analysis of the spatially variable zero-lag time distributions. We discuss strategies to mute the influence of the wavefield anisotropy and the removal of the body and fault zone wave components for improved reconstructions of the symmetric surface wave focal spot. The overall consistency of the local wave speed estimates from the zero crossing and images obtained with more traditional far-field travel time inversions validates the near-field approach. We discuss causes for the remaining inconsistencies and compare limits of the resolution in both cases. At higher frequencies (>3 Hz) both methods reveal a heterogeneous velocity structure that exhibits pronounced low-velocity zones. In addition, near-field based images obtained at wave lengths that are too large for the application of far-field methods suggest a strong velocity contrast across the fault.

  9. Polished Panel Optical Receiver for Simultaneous RF/Optical Telemetry with Large DSN Antennas

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.; Hoppe, Daniel J.

    2011-01-01

    The polished panel optical receiver concept described here makes use of aluminum panels on the main reflector of the Deep Space Network's (DSN's) 34-meter antennas at optical wavelengths by polishing and coating their surface to efficiently reflect near-infrared wavelengths in the 1,064 1,550-nanometer range. Achievable surface smoothness is not a limiting factor for aluminum panels, and initial field experiments indicate that the surface quality of microwave aluminum panels is sufficient to concentrate the light into small, but not diffraction-limited, spots at their primary focus. Preliminary analysis of data from high-quality microwave panels has shown that the light can be concentrated into 200 400 microradian cones, resulting in spot diameters of 2-4 mm at the 10-meter primary focus F(0) shown in the figure, or 2-4 cm spots at F(1) after magnification by the subreflector, which results in an effective focal length of about 100 meters. Three distinct implementation options are possible, with theoretically identical tracking and communications performance: Option 1: The communications assembly could be placed directly behind the subreflector at F(0), but this placement would require replacing the existing all-aluminum subreflector with a new design that transmits optical wavelengths but reflects RF, thus transmitting the optical signal to the primary focus of the parabolic polished aluminum panels at F(0), as shown in the figure. Option 2: Alternately, the optical communications assembly could be located near the first available focal-spot F(1) following reflection by the subreflector (which would have to be polished), next to the input to the beam waveguide on the main reflector as shown in the figure. Option 3: Finally, the optical communications assembly could be placed inside the pedestal room, and separated from the RF signal after the ellipsoid and before the signal reached the microwave receiver via an RF/optical dichroic near F(3).

  10. THE IMAGING PROPERTIES OF THE GAS PIXEL DETECTOR AS A FOCAL PLANE POLARIMETER

    SciTech Connect

    Fabiani, S.; Costa, E.; Del Monte, E.; Muleri, F.; Soffitta, P.; Rubini, A.; Bellazzini, R.; Brez, A.; De Ruvo, L.; Minuti, M.; Pinchera, M.; Sgró, C.; Spandre, G.; Spiga, D.; Tagliaferri, G.; Pareschi, G.; Basso, S.; Citterio, O.; Burwitz, V.; Burkert, W.; and others

    2014-06-01

    X-rays are particularly suited to probing the physics of extreme objects. However, despite the enormous improvements of X-ray astronomy in imaging, spectroscopy, and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as a candidate instrument to fill the gap created by more than 30 yr without measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time, and the polarization angle of every single photon, it allows us to perform polarimetry of subsets of data singled out from the spectrum, the light curve, or an image of the source. The GPD has an intrinsic, very fine imaging capability, and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray testing facility of the Max-Planck-Institut für extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it with a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like pulsar wind nebulae and supernova remnants as case studies for the XIPE configuration and also discuss possible improvements by coupling the detector with advanced optics that have a finer angular resolution and larger effective areas to study extended objects with more detail.

  11. Arc Length Gone Global

    ERIC Educational Resources Information Center

    Boudreaux, Gregory M.; Wells, M. Scott

    2007-01-01

    Everyone with a thorough knowledge of single variable calculus knows that integration can be used to find the length of a curve on a given interval, called its arc length. Fortunately, if one endeavors to pose and solve more interesting problems than simply computing lengths of various curves, there are techniques available that do not require an…

  12. Focal Mechanism determination of local M

    NASA Astrophysics Data System (ADS)

    Vales, Dina; Custório, Susana; Carrilho, Fernando

    2015-04-01

    We determine the focal mechanisms of local small (ML<3.9) earthquakes that occurred between 2013 and 2014 in mainland Portugal. These low magnitude events were recorded by several stations that provide first-motion polarity solutions. However, only few stations are located near the epicenter and record a waveform with a signal-to-noise ratio (SNR) high enough to allow full waveform modelling. To overcome this limitation, we used a new approach called cyclic scanning of the polarity solutions (CSPS) (Fojtíková and Zahradnik, 2014), which performs a joint inversion of full waveform and first motion polarities to retrieve the focal mechanism. This methodology has the advantage of yielding reliable focal mechanism solutions, even when high SNR waveforms are available from only a few near field stations (or in the limiting case, only with one single station). To apply the CSPS method one needs to: i) run the the FOCal MEChanism (FOCMEC) code (Snoke, 2003) to obtain a suite of the DC solutions corresponding to the first motion polarities, and then ii) perform the waveform modelling in order to decrease the uncertainty. The ISOLated Asperities (ISOLA) software (Sokos and Zahradník, 2008, 2013) is used in this second step. We applied this method to weak events recorded by a network of 30 broadband seismic stations that transmit data in real-time to Instituto Português do Mar e da Atmosfera (IPMA), the institution responsible for seismic monitoring in Portugal. We interpret the obtained fault plane solutions in light of active faults and regional tectonics, and in comparison with focal mechanisms previously inferred for events in the region. The focal mechanisms obtained for small earthquakes allow us to significantly expand the database of available focal mechanisms in mainland Portugal, contributing to the understanding of active deformation in the region.

  13. A do-it-yourself optical bench

    NASA Astrophysics Data System (ADS)

    Dvořák, Leoš

    2011-10-01

    When teaching geometrical optics, especially the parts concerning lenses, there are many experiments that can be done just by holding the lenses in your (or your pupils') hands. But if you want to measure something, for example focal lengths, or combine two lenses to demonstrate the principle of a telescope, then something that can fix the lenses is needed. Of course, we can do such demonstrations and measurements using a commercially available optical bench. But a classical optical bench is usually a large and heavy construction that is not easy to transport. Often only one (or even none) may be available per classroom. In many school experiments something less robust, simpler, and less expensive would perhaps suit the needs better. Here we describe a simple and flexible optical bench that may be constructed by students themselves. Apart from the price of the lenses, the construction is also very cheap. So, if you have some spare lenses available, you can build a small optical bench for 10 or less. Each group of students can then use their own optical bench to do experiments.

  14. Transparent Meta-Analysis: Does Aging Spare Prospective Memory with Focal vs. Non-Focal Cues?

    PubMed Central

    Uttl, Bob

    2011-01-01

    Background Prospective memory (ProM) is the ability to become aware of a previously-formed plan at the right time and place. For over twenty years, researchers have been debating whether prospective memory declines with aging or whether it is spared by aging and, most recently, whether aging spares prospective memory with focal vs. non-focal cues. Two recent meta-analyses examining these claims did not include all relevant studies and ignored prevalent ceiling effects, age confounds, and did not distinguish between prospective memory subdomains (e.g., ProM proper, vigilance, habitual ProM) (see Uttl, 2008, PLoS ONE). The present meta-analysis focuses on the following questions: Does prospective memory decline with aging? Does prospective memory with focal vs. non-focal cues decline with aging? Does the size of age-related declines with focal vs. non-focal cues vary across ProM subdomains? And are age-related declines in ProM smaller than age-related declines in retrospective memory? Methods and Findings A meta-analysis of event-cued ProM using data visualization and modeling, robust count methods, and conventional meta-analysis techniques revealed that first, the size of age-related declines in ProM with both focal and non-focal cues are large. Second, age-related declines in ProM with focal cues are larger in ProM proper and smaller in vigilance. Third, age-related declines in ProM proper with focal cues are as large as age-related declines in recall measures of retrospective memory. Conclusions The results are consistent with Craik's (1983) proposal that age-related declines on ProM tasks are generally large, support the distinction between ProM proper vs. vigilance, and directly contradict widespread claims that ProM, with or without focal cues, is spared by aging. PMID:21304905

  15. New multiband IR imaging optics

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam; Sanghera, Jasbinder; Kim, Woohong; Gibson, Daniel; Fleet, Erin; Shaw, Brandon; Hunt, Michael; Aggarwal, Ishwar

    2013-06-01

    We report new multispectral materials that transmit from 0.9 to < 12 µm in wavelength. These materials fill up the glass map for multispectral optics and vary in refractive index from 2.38 to 3.17. They show a large spread in dispersion (Abbe number) and offer some unique solutions for multispectral optics designs. One of the glasses developed is a very good candidate to replace Ge, as it has a combination of excellent properties, including high Abbe number in the LWIR, high index of 3.2, 60% lower dn/dT, and better thermal stability at working temperatures. Our results also provide a wider selection of optical materials to enable simpler achromat designs. For example, we have developed other glasses that have relatively high Abbe number in both the MWIR and LWIR regions, while our MILTRAN ceramic has low Abbe number in both regions. This makes for a very good combination of glasses and MILTRAN ceramic (analogous to crown and flint glasses in the visible) for MWIR + LWIR dual band imaging. We have designed preliminary optics for one such imager with f/2.5, 51 mm focal length and 22 degrees FOV using a spaced doublet of NRL's glass and MILTRAN ceramic. NRL's approach reduces the number of elements, weight, complexity and cost compared with the approach using traditional optics. Another important advantage of using NRL glasses in optics design is their negative or very low positive dn/dT, that makes it easier to athermalize the optical system.

  16. Optics for nano-satellite X-ray monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Burrows, David N.; Prieskorn, Zachary; Hudec, René

    The Schmidt lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space X-ray monitors. It is possible to assemble Schmidt lobster eye telescopes with dimensions and focal lengths acceptable for nano class satellites. In this paper, draft of nano-class space mission providing monitoring of specific sky area is presented. Preliminary optical design study for such mission is performed. Two of possible opticle designs are presented. For those designs, field of view, effective input area and other basic optical parameters are calculated. Examples of observed images are presented.

  17. Optical design for off-axis three-mirror two-channel imaging system with freeform surfaces

    NASA Astrophysics Data System (ADS)

    Lei, Chenglong; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2016-10-01

    This paper presents an optical design for the all-reflective dual-channel imaging system based on freeform surfaces. This system may be useful in remote sensing where coarse searching and fine observation are both needed. For this system, an off-axis three-mirror system with a middle image is chosen to design and the uniform stop is placed before the first optical surface. Meanwhile, beam splitter can be placed between secondary mirror and the location of the middle image to obtain multiple paths and the different curvatures of the tertiary mirrors can be used to differentiate the focal lengths of two channels and then get a zoom ratio of this system. One channel with a wide FOV of 3×1.5° but a small focal length of 700 mm can be used for searching, while the other one with a long focal length of 1480 mm but a narrow FOV of 0.5×0.5° can be used for fine reconnaissance. Furthermore, An XY polynomial, established as an even function of x, was employed to improve imaging quality, so we obtained a system of the symmetry about the YOZ plane, which can bring considerable convenience to alignment and testing for the system. The modulation transfer function curves of both channels are above 0.3 at 50 line pairs per millimeter, which indicates a good imaging quality.

  18. Evaluation of calibration methods for visible-spectrum division-of-focal-plane polarimeters

    NASA Astrophysics Data System (ADS)

    Powell, S. B.; Gruev, Viktor

    2013-09-01

    Polarization imaging sensors using the division-of-focal-plane paradigm have recently emerged on the market. These sensors, due to their compact design, are ideal for field work. One of the major drawbacks in these sensors is the spatial variation of the optical response of individual pixels across the imaging array. These spatial variations are due to variations in the nanowires of the pixelated polarization filters. In this paper, we describe and compare two methods for calibrating a division of focal plane sensors. We present theoretical and experimental data for these calibration methods.

  19. Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband

    NASA Astrophysics Data System (ADS)

    Reshidko, Dmitry; Reshidko, Pavel; Carmeli, Ran

    2015-09-01

    Optical systems can provide simultaneous imaging in several spectral bands and thus be much more useful. A new and current generation of focal plane arrays is allowing detection in more than one spectral region. The design of a refractive imaging lens for such detectors requires correcting chromatic aberrations over the wider range of wavelengths. However, the fewer available refracting materials, the material properties that change between the spectral bands, and the system transmission requirements make the design of such lenses particularly challenging. We present a dual-field zoom lens designed for a cooled detector sensing across short-wave infrared (SWIR) and midwave infrared (MWIR) spectral bands (continuous imaging for 1-5 μm). This zoom lens has a 75 mm focal length in the wide mode and a 250mm focal length in the narrow mode, and operates at f/4.7 in both discrete zoom positions. The lens is actively compensated to work in thermal environments from -20°C to +60°C. We discuss the optical design methodology, review the selection of materials and coatings for the optical elements, and analyze the transmission of the lens and optical performance. A prototype system has been manufactured and assembled. We validate our design with experimental data.

  20. Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor.

    PubMed

    Li, Chenhui; Hall, Gunnsteinn; Zeng, Xuefeng; Zhu, Difeng; Eliceiri, Kevin; Jiang, Hongrui

    2011-04-25

    We demonstrate three-dimensional (3D) surface profiling of the water-oil interface in a tunable liquid microlens using a Shack-Hartmann wave front sensor. The principles and the optical setup for achieving 3D surface measurements are presented and a hydrogel-actuated liquid lens was measured at different focal lengths. The 3D surface profiles are then used to study the optical properties of the liquid lens. Our method of 3D surface profiling could foster the improvement of liquid lens design and fabrication, including surface treatment and aberration reduction.

  1. Oral focal fibrous hyperplasia and squamous cell papilloma treated with an erbium laser. Case presentation.

    PubMed

    Boj, J; Hernandez, M; Espasa, E; Espanya, A

    2014-01-01

    Mouth and oropharynx cancer constitute 5% of all malignancies; 95% of them are head and neck squamous cell carcinomas. Carcinogenesis is a multifactor process. Mutagenesis is also determined by the human papilloma virus which has recently been found to be etiologically associated with 20 to 25% of head and neck squamous cell carcinomas, mostly in the oropharinx. Focal fibrous hyperplasia of the connective tissue comes up as an answer to a chronic irritation in which a big amount of collagen can be found. As there exist certain clinical resemblance between squamous cell papilloma, fibrous focal hyperplasia and other mesenchimal tumors it is recommended to proceed, always, with removal and study. Two cases, one of an oral papilloma and another of a focal fibrous hyperplasia in pediatric patients, treated with an Er,Cr:YSGG laser wave length (mu) of 2780 nm are presented.

  2. Determination of the effective focal characteristics of bicylindrically-focused ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Roberts, R.; Chiou, C.-P.; Thompson, R. B.

    2002-05-01

    Three methods are described for determining the focal characteristics of bicylindrically-focused transducers. The transducer is modeled as an ideal, focused, piston probe whose radiation pattern is determined by four parameters: two effective diameters and two geometrical focal lengths. In each method, ultrasonic responses from a target are measured as the transducer is scanned, and the four focal parameters are adjusted to optimize the agreement between model and experiment. The three methods were applied to a representative transducer. The "V(z) method", in which the front wall echo from a flat surface is measured as a function of water path, was judged to be best overall, on the basis of ease of use and accuracy.

  3. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  4. Measuring microfocus focal spots using digital radiography

    SciTech Connect

    Fry, David A

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  5. Achromatic phase shifting focal plane masks

    NASA Astrophysics Data System (ADS)

    Newman, Kevin

    The search for life on other worlds is an exciting scientific endeavor that could change the way we perceive our place in the universe. Thousands of extrasolar planets have been discovered using indirect detection techniques. One of the most promising methods for discovering new exoplanets and searching for life is direct imaging with a coronagraph. Exoplanet coronagraphy of Earth-like planets is a challenging task, but we have developed many of the tools necessary to make it feasible. The Phase-Induced Amplitude Apodization (PIAA) Coronagraph is one of the highest-performing architectures for direct exoplanet imaging. With a complex phase-shifting focal plane mask, the PIAA Complex Mask Coronagraph (PIAACMC) can approach the theoretical performance limit for any direct detection technique. The architecture design is flexible enough to be applied to any arbitrary aperture shape, including segmented and obscured apertures. This is an important feature for compatibility with next-generation ground and space-based telescopes. PIAA and PIAACMC focal plane masks have been demonstrated in monochromatic light. An important next step for high-performance coronagraphy is the development of broadband phase-shifting focal plane masks. In this dissertation, we present an algorithm for designing the PIAA and PIAACMC focal plane masks to operate in broadband. We also demonstrate manufacturing of the focal plane masks, and show laboratory results. We use simulations to show the potential performance of the coronagraph system, and the use of wavefront control to correct for mask manufacturing errors. Given the laboratory results and simulations, we show new areas of exoplanet science that can potentially be explored using coronagraph technology. The main conclusion of this dissertation is that we now have the tools required to design and manufacture PIAA and PIAACMC achromatic focal plane masks. These tools can be applied to current and future telescope systems to enable new

  6. Kalman Filter for Calibrating a Telescope Focal Plane

    NASA Technical Reports Server (NTRS)

    Kang, Bryan; Bayard, David

    2006-01-01

    The instrument-pointing frame (IPF) Kalman filter, and an algorithm that implements this filter, have been devised for calibrating the focal plane of a telescope. As used here, calibration signifies, more specifically, a combination of measurements and calculations directed toward ensuring accuracy in aiming the telescope and determining the locations of objects imaged in various arrays of photodetectors in instruments located on the focal plane. The IPF Kalman filter was originally intended for application to a spaceborne infrared astronomical telescope, but can also be applied to other spaceborne and ground-based telescopes. In the traditional approach to calibration of a telescope, (1) one team of experts concentrates on estimating parameters (e.g., pointing alignments and gyroscope drifts) that are classified as being of primarily an engineering nature, (2) another team of experts concentrates on estimating calibration parameters (e.g., plate scales and optical distortions) that are classified as being primarily of a scientific nature, and (3) the two teams repeatedly exchange data in an iterative process in which each team refines its estimates with the help of the data provided by the other team. This iterative process is inefficient and uneconomical because it is time-consuming and entails the maintenance of two survey teams and the development of computer programs specific to the requirements of each team. Moreover, theoretical analysis reveals that the engineering/ science iterative approach is not optimal in that it does not yield the best estimates of focal-plane parameters and, depending on the application, may not even enable convergence toward a set of estimates.

  7. Extensive Focal Epithelial Hyperplasia: A Case Report.

    PubMed

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck's disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis.

  8. [Liver ultrasound: focal lesions and diffuse diseases].

    PubMed

    Segura Grau, A; Valero López, I; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    Liver ultrasound is frequently used as a first-line technique for the detection and characterization of the most common liver lesions, especially those incidentally found focal liver lesions, and for monitoring of chronic liver diseases. Ultrasound is not only used in the Bmode, but also with Doppler and, more recently, contrast-enhanced ultrasound. It is mainly used in the diagnosis of diffuse liver diseases, such as steatosis or cirrhosis. This article presents a practical approach for diagnosis workup, in which the different characteristics of the main focal liver lesions and diffuse liver diseases are reviewed.

  9. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    PubMed Central

    Phasukthaworn, Ruedee; Chanprapaph, Kumutnart; Vachiramon, Vasanop

    2016-01-01

    Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies. PMID:27293392

  10. [Antiperspirants for the therapy of focal hyperhidrosis].

    PubMed

    Streker, M; Kerscher, M

    2012-06-01

    In Europe often no clear distinction is made between deodorant and antiperspirant. Particularly in Germany, the labeling "deo" is used for both. Only antiperspirants are capable of influencing the activity of eccrine sweat glands. In the treatment of focal hyperhidrosis, the use of aluminum chloride solutions represents the first choice. The efficacy is well documented in a variety of studies. Subjective side effects include pruritus and - less often - irritant dermatitis, which can be treated symptomatically and usually does not require discontinuation of the treatment. Rare variants of focal hyperhidrosis like auriculotemporal syndrome, Ross syndrome and nevus sudoriferus also are suitable for treatment with topical aluminum chloride hexahydrate solutions.

  11. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.

  12. Calibration method of absolute orientation of camera optical axis

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Guo, Pengyu; Zhang, Xiaohu; Ding, Shaowen; Su, Ang; Li, Lichun

    2013-08-01

    Camera calibration is one of the most basic and important processes in optical measuring field. Generally, the objective of camera calibration is to estimate the internal and external parameters of object cameras, while the orientation error of optical axis is not included yet. Orientation error of optical axis is a important factor, which seriously affects measuring precision in high-precision measurement field, especially for those distant aerospace measurement in which object distance is much longer than focal length, that lead to magnifying the orientation errors to thousands times. In order to eliminate the influence of orientation error of camera optical axis, the imaging model of camera is analysed and established in this paper, and the calibration method is also introduced: Firstly, we analyse the reasons that cause optical axis error and its influence. Then, we find the model of optical axis orientation error and imaging model of camera basing on it's practical physical meaning. Furthermore, we derive the bundle adjustment algorithm which could compute the internal and external camera parameters and absolute orientation of camera optical axis simultaneously at high precision. In numeric simulation, we solve the camera parameters by using bundle adjustment optimization algorithm, then we correct the image points by calibration results according to the model of optical axis error, and the simulation result shows that our calibration model is reliable, effective and precise.

  13. Optically coupled focal plane arrays using lenslets and multiplexers

    DOEpatents

    Veldkamp, Wilfrid B.

    1991-01-01

    A detector array including a substrate having an array of diffractive lenses formed on the top side of the substrate and an array of sensor elements formed on the backside of the substrate. The sensor elements within the sensor array are oriented on the backside so that each sensor is aligned to receive light from a corresponding diffractive lens of the lens array. The detector array may also include a second substrate having an array of diffractive elements formed on one of its surfaces, the second substrate being disposed above and in proximity to the top side of the other substrate so that the elements on the second substrate are substantially aligned with corresponding sensor elements and diffractive lenses on the other substrate.

  14. Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors

    SciTech Connect

    Neumann, V. A.; Laurita, N. J.; Pan, LiDong; Armitage, N. P.

    2015-09-15

    An ongoing limitation of terahertz spectroscopy is that the technique is generally limited to the study of relatively large samples of order 4 mm across due to the generally large size of the focal beam spot. We present a nested concentric parabolic reflector design which can reduce the terahertz focal spot size. This parabolic reflector design takes advantage of the feature that reflected rays experience a relative time delay which is the same for all paths. The increase in effective optical path for reflected light is equivalent to the aperture diameter itself. We have shown that the light throughput of an aperture of 2 mm can be increased by a factor 15 as compared to a regular aperture of the same size at low frequencies. This technique can potentially be used to reduce the focal spot size in terahertz spectroscopy and enable the study of smaller samples.

  15. Optimization of probe-laser focal offsets for single-particle tracking.

    PubMed

    Chang, Ai-Tang; Chang, Yi-Ren; Chi, Sien; Hsu, Long

    2012-08-10

    In optical tweezers applications, tracking a trapped particle is essential for force measurement. One of the most popular techniques for single-particle tracking is achieved by analyzing the forward and backward light pattern, scattered by the target particle trapped by a trap laser beam, of an additional probe-laser beam with different wavelength whose focus is slightly apart from the trapping center. However, the optimized focal offset has never been discussed. In this paper, we investigate the tracking range and sensitivity as a function of the focal offset between the trapping and the probe-laser beams. As a result, the optimized focal offsets are a 3.3-fold radius ahead and a 2.0-fold radius behind the trapping laser focus in the forward tracking and the backward tracking, respectively. The experimental result agrees well with a theoretical prediction using the Mie scattering theory.

  16. Stabilization of a Laser Welding Process Against Focal Shift Effects using Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Thiel, C.; Weber, R.; Johannsen, J.; Graf, T.

    Two measures to enhance welding process stability with respect to a varying focal position are presented and discussed with regards to possible effects of laser power efficiency increase. Spatial beam movement was caused by a deflecting mirror and proved to create a welding process with a higher constancy in welding depth when changing focal position. A larger cross sectional area of the weld seam was measured showing increased laser absorption when compared to a static beam. Sinusoidal laser power modulation was tested for varying focus positions and proves to induce a deeper weld seam at moderately increased cross sectional areas. The power modulated welding process is dominated by the influence of melt dynamics which can be guided by choosing suitable modulation parameters. Both systems can be used to stabilize the welding process against loss of joint area or loss of connection which may occur due to focal shift in high brightness laser beam optics.

  17. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  18. Demonstration Telescopes Using "Dollar Optics"

    NASA Astrophysics Data System (ADS)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  19. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  20. Sensory-motor integration in focal dystonia.

    PubMed

    Avanzino, Laura; Tinazzi, Michele; Ionta, Silvio; Fiorio, Mirta

    2015-12-01

    Traditional definitions of focal dystonia point to its motor component, mainly affecting planning and execution of voluntary movements. However, focal dystonia is tightly linked also to sensory dysfunction. Accurate motor control requires an optimal processing of afferent inputs from different sensory systems, in particular visual and somatosensory (e.g., touch and proprioception). Several experimental studies indicate that sensory-motor integration - the process through which sensory information is used to plan, execute, and monitor movements - is impaired in focal dystonia. The neural degenerations associated with these alterations affect not only the basal ganglia-thalamic-frontal cortex loop, but also the parietal cortex and cerebellum. The present review outlines the experimental studies describing impaired sensory-motor integration in focal dystonia, establishes their relationship with changes in specific neural mechanisms, and provides new insight towards the implementation of novel intervention protocols. Based on the reviewed state-of-the-art evidence, the theoretical framework summarized in the present article will not only result in a better understanding of the pathophysiology of dystonia, but it will also lead to the development of new rehabilitation strategies.

  1. [Focal epithelial hyperplasia. An unusual clinical aspect].

    PubMed

    Bodokh, I; Lacour, J P; Rainero, C; Orth, G; Perrin, C; Hoffman, P; Santini, J; Ortonne, J P

    1993-01-01

    We report a case of focal epithelial hyperplasia in a child born in France of Algerian parents. The clinical appearance was unusual in that certain lesions were verrucous and pediculate. A virological study revealed the presence of papillomavirus 32, one of the two types of HPV specifically associated with this entity.

  2. Pure Gerstmann's syndrome from a focal lesion.

    PubMed

    Roeltgen, D P; Sevush, S; Heilman, K M

    1983-01-01

    It is controversial whether a focal lesion can specifically induce Gerstmann's syndrome (dyscalculia, left-right disorientation, finger agnosia, and agraphia). Also, Gerstmann's tetrad has been attributed to other cerebral symptoms, particularly aphasia. We examined a patient who had all four symptoms of Gerstmann's syndrome, without other symptoms or signs, and who had a discrete left parietal lesion.

  3. Complex source description of focal regions.

    PubMed

    Monzon, Cesar; Forester, Donald W; Moore, Peter

    2006-04-01

    Closed-form solutions of the two-dimensional homogeneous wave equation are presented that provide focal-region descriptions corresponding to a converging bundle of rays. The solutions do have evanescent wave content and can be described as a source-sink pair or particle-antiparticle pair, collocated in complex space, with the complex location being critical in the determination of beam shape and focal region size. The wave solutions are not plagued by singularities, have a finite energy, and have a limitation on how small the focal size can get, with a penalty for limiting small spot sizes in the form of impractically high associated reactive energy. The electric-field-defined spot-size limiting value is 0.35lambda x 0.35lambda, which is about 38% of the Poynting-vector-defined minimum spot size (0.8lambda x 0.4lambda) and corresponds to a condition related to the maximum possible beam angle. A multiple set of solutions is introduced, and the elementary solutions are used to produce new solutions via superposition, resulting in fields with chiral character or with increased depth of focus. We do not claim generality, as the size of focal regions exhibited by the closed-form solutions has a lower bound and hence is not able to account for Pendry's "ideal lens" scenario.

  4. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  5. Estimation of focal and extra-focal radiation profiles based on Gaussian modeling in medical linear accelerators.

    PubMed

    Anai, Shigeo; Arimura, Hidetaka; Nakamura, Katsumasa; Araki, Fujio; Matsuki, Takaomi; Yoshikawa, Hideki; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Honda, Hiroshi; Ikeda, Nobuo

    2011-07-01

    The X-ray source or focal radiation is one of the factors that can degrade the conformal field edge in stereotactic body radiotherapy. For that reason, it is very important to estimate the total focal radiation profiles of linear accelerators, which consists of X-ray focal-spot radiation and extra-focal radiation profiles. Our purpose in this study was to propose an experimental method for estimating the focal-spot and extra-focal radiation profiles of linear accelerators based on triple Gaussian functions. We measured the total X-ray focal radiation profiles of the accelerators by moving a slit in conjunction with a photon field p-type silicon diode. The slit width was changed so that the extra-focal radiation could be optimally included in the total focal radiation. The total focal radiation profiles of an accelerator at 4-MV and 10-MV energies were approximated with a combination of triple Gaussian functions, which correspond to the focal-spot radiation, extra-focal radiation, and radiation transmitted through the slit assembly. As a result, the ratios of the Gaussian peak value of the extra-focal radiation to that of the focal spot for 4 and 10 MV were 0.077 and 0.159, respectively. The peak widths of the focal-spot and extra-focal radiation profiles were 0.57 and 25.0 mm for 4 MV, respectively, and 0.60 and 22.0 mm for 10 MV, respectively. We concluded that the proposed focal radiation profile model based on the triple Gaussian functions may be feasible for estimating the X-ray focal-spot and extra-focal radiation profiles.

  6. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  7. Close Range Calibration of Long Focal Length Lenses in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Robson, Stuart; MacDonald, Lindsay; Kyle, Stephen; Shortis, Mark R.

    2016-06-01

    University College London is currently developing a large-scale multi-camera system for dimensional control tasks in manufacturing, including part machining, assembly and tracking, as part of the Light Controlled Factory project funded by the UK Engineering and Physical Science Research Council. In parallel, as part of the EU LUMINAR project funded by the European Association of National Metrology Institutes, refraction models of the atmosphere in factory environments are being developed with the intent of modelling and eliminating the effects of temperature and other variations. The accuracy requirements for both projects are extremely demanding, so accordingly improvements in the modelling of both camera imaging and the measurement environment are essential. At the junction of these two projects lies close range camera calibration. The accurate and reliable calibration of cameras across a realistic range of atmospheric conditions in the factory environment is vital in order to eliminate systematic errors. This paper demonstrates the challenge of experimentally isolating environmental effects at the level of a few tens of microns. Longer lines of sight promote the use and calibration of a near perfect perspective projection from a Kern 75mm lens with maximum radial distortion of the order of 0.5m. Coordination of a reference target array, representing a manufactured part, is achieved to better than 0.1mm at a standoff of 8m. More widely, results contribute to better sensor understanding, improved mathematical modelling of factory environments and more reliable coordination of targets to 0.1mm and better over large volumes.

  8. Characterization of focal muscle compression under impact loading

    NASA Astrophysics Data System (ADS)

    Butler, B. J.; Sory, D. R.; Nguyen, T.-T. N.; Proud, W. G.; Williams, A.; Brown, K. A.

    2017-01-01

    In modern wars over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome of the extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions.

  9. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions

    PubMed Central

    Deschout, Hendrik; Lukes, Tomas; Sharipov, Azat; Szlag, Daniel; Feletti, Lely; Vandenberg, Wim; Dedecker, Peter; Hofkens, Johan; Leutenegger, Marcel; Lasser, Theo; Radenovic, Aleksandra

    2016-01-01

    Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics. PMID:27991512

  10. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  11. Multi-platform laser communication networking optical antenna system design

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    2016-10-01

    In this paper, a new conclusion based on rotating parabolic model and a different scheme of laser communication networking antenna system has been put forward in the paper. Based on rotating parabolic antenna, a new theory of the optical properties have been deduced, which can realize larger dynamic, duplex, networking communications among multiple platforms in 360° azimuth and pitch range. Meanwhile, depending on the operation mode of the system, multiple mathematical optimization models have been established. Tracking communication range, emission energy efficiency and receiving energy efficiency have been analyzed and optimized. Relationship among opening up and low apertures, the lens unit aperture, focal length of lens unit as well as rotating parabolic focal length have been analyzed. Tracking pitching range and emission energy utilization has carried on the theoretical derivation and optimization and networking platform link between energy receiver and transmitter has been analyzed. Taking some parameters of this new system into calculation, optimized results can be utilized with MATLAB software for its application and system of communication engineering. The rotating parabolic internal can form a hollow structure, which is utilized for miniaturization, light-weighted design and realize duplex communication in a wide range and distance. Circular orbit guidance is the modern way used in dynamic tracking system. The new theory and optical antenna system has widespread applications value as well.

  12. Visual Scanning Hartmann Optical Tester (VSHOT) Uncertainty Analysis (Milestone Report)

    SciTech Connect

    Gray, A.; Lewandowski, A.; Wendelin, T.

    2010-10-01

    In 1997, an uncertainty analysis was conducted of the Video Scanning Hartmann Optical Tester (VSHOT). In 2010, we have completed a new analysis, based primarily on the geometric optics of the system, and it shows sensitivities to various design and operational parameters. We discuss sources of error with measuring devices, instrument calibrations, and operator measurements for a parabolic trough mirror panel test. These help to guide the operator in proper setup, and help end-users to understand the data they are provided. We include both the systematic (bias) and random (precision) errors for VSHOT testing and their contributions to the uncertainty. The contributing factors we considered in this study are: target tilt; target face to laser output distance; instrument vertical offset; laser output angle; distance between the tool and the test piece; camera calibration; and laser scanner. These contributing factors were applied to the calculated slope error, focal length, and test article tilt that are generated by the VSHOT data processing. Results show the estimated 2-sigma uncertainty in slope error for a parabolic trough line scan test to be +/-0.2 milliradians; uncertainty in the focal length is +/- 0.1 mm, and the uncertainty in test article tilt is +/- 0.04 milliradians.

  13. Application study of the optical biopsy system for small experimental animals

    NASA Astrophysics Data System (ADS)

    Sato, Hidetoshi; Suzuki, Toshiaki; Morita, Shin-ichi; Maruyama, Atsushi; Shimosegawa, Toru; Matsuura, Yuji; Kanai, Gen'ichi; Ura, Nobuo; Masutani, Koji; Ozaki, Yukihiro

    2008-02-01

    An optical biopsy system for small experimental animals has been developed. The system includes endoscope probe, portable probe and two kinds of miniaturized Raman probes. The micro Raman probe (MRP) is made of optical fibers and the ball lens hollow optical fiber Raman probe (BHRP) is made of hollow fiber. The former has large focal depth and suitable to measure average spectra of subsurface tissue. The latter has rather small focal depth and it is possible to control focal length by selecting ball lens attached at the probe head. It is suitable to survey materials at the fixed depth in the tissue. The system is applied to study various small animal cancer models, such as esophagus and stomach rat models and subcutaneous mouse models of pancreatic cancers. In the studies of subcutaneous tumor model mouse, it is suggested that protein conformational changes occur in the tumor tissue within few minutes after euthanasia of the mouse. No more change is observed for the following ten minutes. Any alterations in the molecular level are not observed in normal skin, muscle tissues. Since the change completes in such a short time, it is suggested that this phenomenon caused by termination of blood circulation.

  14. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  15. Development and Testing of an Innovative Two-Arm Focal-Plane Thermal Strap (TAFTS)

    NASA Technical Reports Server (NTRS)

    Urquiza, E.; Vasquez, C.; Rodriguez, J.; Van Gorp, B.

    2011-01-01

    Maintaining temperature stability in optical focal planes comes with the intrinsic challenge of creating a pathway that is both extremely flexible mechanically and highly conductive thermally. The task is further complicated because science-caliber optical focal planes are extremely delicate, yet their mechanical resiliency is rarely tested and documented. The mechanical engineer tasked with the thermo-mechanical design must then create a highly conductive thermal link that minimizes the tensile and shear stresses transmitted to the focal plane without design parameters on an acceptable stiffness. This paper will describe the development and testing of the thermal link developed for the Portable Remote Imaging Spectrometer (PRISM) instrument. It will provide experimentally determined mechanical stiffness plots in the three axes of interest. Analytical and experimental thermal conductance results for the two-arm focal-plane thermal strap (TAFTS), from cryogenic to room temperatures, are also presented. The paper also briefly describes some elements of the fabrication process followed in developing a novel design solution, which provides high conductance and symmetrical mechanical loading, while providing enhanced flexibility in all three degrees of freedom.

  16. X-ray sources of medical linear accelerators: focal and extra-focal radiation.

    PubMed

    Jaffray, D A; Battista, J J; Fenster, A; Munro, P

    1993-01-01

    A computerized tomography (CT) reconstruction technique has been used to make quantitative measurements of the size and shape of the focal spot in medical linear accelerators. Using this technique, we have measured the focal spots in a total of nine accelerators, including (i) two Varian Clinac 2100c's, (ii) two Atomic Energy of Canada Ltd. (AECL) Therac-25's, (iii) two AECL Therac 6's, (iv) a Siemens KD-2, (v) a Varian Clinac 600c (4 MV), and (vi) an AECL Therac-20. Some of these focal spots were monitored for changes over a 2-yr period. It has been found that (i) the size and shape of the source spot varies greatly between accelerators of different design ranging from 0.5 to 3.4 mm in full width at half maximum (FWHM); and (ii) for accelerators of the same design, the focal spots are very similar. In addition to the measurements of the focal spot, a new technique for measuring the magnitude and distribution of extra-focal radiation originating from the linear accelerator head (flattening filter, primary collimator) has also been developed. The extra-focal radiation produced by a Varian Clinac 2100c accelerator was measured using this technique and it was found that the extra-focal radiation accounts for as much as 8% of the total photon fluence reaching the isocenter. The majority (75%) of this extra-focal radiation originates from within a circle 6 cm in diameter at the target plane. The source MTFs for each of the measured focal spots have been calculated in order to assess their influence on the spatial resolution of verification images. The limiting spatial resolution (i.e., 10% modulation) for all the source MTFs is 1.8 mm-1 or greater when used for transmission radiography at a magnification of 1.2. The extra-focal radiation, which produces a low-frequency drop in the source MTFs of up to 8%, changes with field size. As a result, the source MTFs of linear accelerators depend not only on the design of individual accelerators and image magnification, but also

  17. Pleiades HR in Flight Geometrical Calibration : Location and Mapping of the Focal Plane

    NASA Astrophysics Data System (ADS)

    de Lussy, F.; Greslou, D.; Dechoz, C.; Amberg, V.; Delvit, J. M.; Lebegue, L.; Blanchet, G.; Fourest, S.

    2012-07-01

    The Pleiades system, ORFEO system optical component (Optical and Radar Federated Earth Observation) consists of a constellation of two satellites for very High Resolution panchromatic and multispectral optical observation of the Earth. Its mission is to cover all European civilian needs (mapping, tracking floods and fires) and defence in the category of metric resolution: 0.7m Nadir. The first Pleiades satellite was launched at the end of last year. One of the key objectives of the Pleiades HR (PHR) project is to achieve a location accuracy that will allow the use of images in GIS (Geographical Information System) without geometrical model improvement by refining on ground control points. The image location without refined model was specified with the precision of the most commonly used tool ie the civil GPS. So the location accuracy has been specified at less than 12m for 90% of the images on a nominal satellite configuration. Very special care has been taken all along the PHR project realization to achieve this very good location accuracy. The final touch is given during the in-orbit commissioning phase which lasts until June 2012. The geometric quality implies to tune the parameters involved in the geolocation model (geometric calibration): besides attitude and orbit restitution tuning (not considered here), it consists in estimating the biases between the instrument orientation and the AOCS reference frame, and also the sight line of each detector in the focal plane. This is called static geometrical model. The analysis of dynamic perturbations outside of the model are the second most important image quality objective of in-flight commissioning, not described in this paper. Finally "image quality assessment" consists in evaluating the image quality obtained in the final products. For geolocation model, it is quantified by the absolute geolocation and the pointing accuracies, and it is a main contributor in length alteration and planimetric and altimetric

  18. Myofilament length dependent activation.

    PubMed

    de Tombe, Pieter P; Mateja, Ryan D; Tachampa, Kittipong; Ait Mou, Younss; Farman, Gerrie P; Irving, Thomas C

    2010-05-01

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca(2+) ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  19. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  20. Myofilament length dependent activation

    SciTech Connect

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C.

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  1. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  2. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    SciTech Connect

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  3. Length of Stay

    PubMed Central

    Gustafson, David H.

    1968-01-01

    Five methodologies for predicting hospital length of stay were developed and compared. Two—a subjective Bayesian forecaster and a regression forecaster—also measured the relative importance of the symptomatic and demographic factors in predicting length of stay. The performance of the methodologies was evaluated with several criteria of effectiveness and one of cost. The results should provide encouragement for those interested in computer applications to utilization review and to scheduling inpatient admissions. PMID:5673664

  4. Molded, wafer level optics for long wave infra-red applications

    NASA Astrophysics Data System (ADS)

    Franks, John

    2016-05-01

    For many years, the Thermal Imaging market has been driven by the high volume consumer market. The first signs of this came with the launch of night vision systems for cars, first by Cadillac and Honda and then, more successfully by BMW, Daimler and Audi. For the first time, simple thermal imaging systems were being manufactured at the rate of more than 10,000 units a year. This step change in volumes enabled a step change in system costs, with thermal imaging moving into the consumer's price range. Today we see that the consumer awareness and the consumer market continues to increase with the launch of a number of consumer focused smart phone add-ons. This has brought a further step change in system costs, with the possibility to turn your mobile phone into a thermal imager for under $250. As the detector technology has matured, the pixel pitches have dropped from 50μm in 2002 to 12 μm or even 10μm in today's detectors. This dramatic shrinkage in size has had an equally dramatic effect on the optics required to produce the image on the detector. A moderate field of view that would have required a focal length of 40mm in 2002 now requires a focal length of 8mm. For wide field of view applications and small detector formats, focal lengths in the range 1mm to 5mm are becoming common. For lenses, the quantity manufactured, quality and costs will require a new approach to high volume Infra-Red (IR) manufacturing to meet customer expectations. This, taken with the SwaP-C requirements and the emerging requirement for very small lenses driven by the new detectors, suggests that wafer scale optics are part of the solution. Umicore can now present initial results from an intensive research and development program to mold and coat wafer level optics, using its chalcogenide glass, GASIR®.

  5. Observations on oesophageal length.

    PubMed Central

    Kalloor, G J; Deshpande, A H; Collis, J L

    1976-01-01

    The subject of oesophageal length is discussed. The great variations in the length of the oesophagus in individual patients is noted, and the practical use of its recognition in oesophageal surgery is stressed. An apprasial of the various methods available for this measurement is made; this includes the use of external chest measurement, endoscopic measurement, and the measurement of the level of the electrical mucosal potential change. Correlative studies of these various methods are made, and these show a very high degree of significance. These studies involved simultaneous measurement of external and internal oesophageal length in 26 patients without a hiatal hernia or gastro-oesophageal length in 26 patients without a hiatal hernia or gastro-oesophageal reflux symptoms, 42 patients with sliding type hiatal hernia, and 17 patients with a peptic stricture in association with hiatal hernia. The method of measuring oesophageal length by the use of the external chest measurement, that is, the distance between the lower incisor teeth and the xiphisternum, measured with the neck fully extended and the patient lying supine, is described in detail, its practical application in oesophageal surgery is illustrated, and its validity tested by internal measurements. The findings of this study demonstrate that the external chest measurement provides a mean of assessing the true static length of the oesophagus, corrected for the size of the individual. Images PMID:941114

  6. Editorial: Redefining Length

    SciTech Connect

    Sprouse, Gene D.

    2011-07-15

    Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.

  7. Aberration analysis based on pinhole-z-scan method near the focal point of refractive systems

    NASA Astrophysics Data System (ADS)

    Castro-Marín, Pablo; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Bruce, Neil C.; Reid, Derryck T.; Farrell, C.; Sandoval-Romero, Gabriel E.

    2016-09-01

    In this work we present a method used to study the spherical and chromatic aberrations contribution near the focal point of a refractive optical system. The actual focal position is measured by scanning a pinhole attached on the front of a power detector, which are scanned along the optical axis using a motorized stage with 1 μm resolution. Spherical aberration contribution was analyzed by changing the pupil aperture, by modifying the size of the input iris diaphragm and for each case, measuring the actual laser power vs the detector position. Chromatic aberration was analyzed by performing the same procedure but in this case we used an ultra-broad-band femtosecond laser. The results between ML and CW operation were compare. Experimental results are presented.

  8. Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth J.; Absil, Olivier; Huby, Elsa; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Piron, Pierre; Swartzlander, Grover A.

    2015-09-01

    We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate "correcting" optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions.

  9. Extensive Focal Epithelial Hyperplasia: A Case Report

    PubMed Central

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck’s disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis. PMID:26351501

  10. Gastric hyperplastic polyp with focal cancer.

    PubMed

    Markowski, Adam Roman; Guzinska-Ustymowicz, Katarzyna

    2016-05-01

    This paper reports a rare case of early adenocarcinoma within the gastric hyperplastic polyp, that was completely resected during an endoscopic procedure, and discusses current recommendations in such cases. Endoscopic resection of polyps with focal dysplasia or cancer is commonly indicated, as long as the procedure can be performed safely. After complete excision of a polyp with atypical focal lesion, endoscopic surveillance is suggested. The frequency of surveillance endoscopy should depend on the precise histopathological diagnosis and possibility of confirming the completeness of the endoscopic resection. If the completeness of the procedure is confirmed both macro- and microscopically, gastric resection does not have to be performed. A follow-up esophago-gastroduodenoscopy should be performed at 1 year and then at 3 years.

  11. Gastric hyperplastic polyp with focal cancer

    PubMed Central

    Markowski, Adam Roman; Guzinska-Ustymowicz, Katarzyna

    2016-01-01

    This paper reports a rare case of early adenocarcinoma within the gastric hyperplastic polyp, that was completely resected during an endoscopic procedure, and discusses current recommendations in such cases. Endoscopic resection of polyps with focal dysplasia or cancer is commonly indicated, as long as the procedure can be performed safely. After complete excision of a polyp with atypical focal lesion, endoscopic surveillance is suggested. The frequency of surveillance endoscopy should depend on the precise histopathological diagnosis and possibility of confirming the completeness of the endoscopic resection. If the completeness of the procedure is confirmed both macro- and microscopically, gastric resection does not have to be performed. A follow-up esophago-gastroduodenoscopy should be performed at 1 year and then at 3 years. PMID:25361760

  12. Focal colors are universal after all

    PubMed Central

    Regier, Terry; Kay, Paul; Cook, Richard S.

    2005-01-01

    It is widely held that named color categories in the world's languages are organized around universal focal colors and that these focal colors tend to be chosen as the best examples of color terms across languages. However, this notion has been supported primarily by data from languages of industrialized societies. In contrast, recent research on a language from a nonindustrialized society has called this idea into question. We examine color-naming data from languages of 110 nonindustrialized societies and show that (i) best-example choices for color terms in these languages cluster near the prototypes for English white, black, red, green, yellow, and blue, and (ii) best-example choices cluster more tightly across languages than do the centers of category extensions, suggesting that universal best examples (foci) may be the source of universal tendencies in color naming. PMID:15923257

  13. Error compensation research on the focal plane attitude measurement instrument

    NASA Astrophysics Data System (ADS)

    Zhou, Hongfei; Zhang, Feifan; Zhai, Chao; Zhou, Zengxiang; Liu, Zhigang; Wang, Jianping

    2016-07-01

    The surface accuracy of astronomical telescope focal plate is a key indicator to precision stellar observation. Combined with the six DOF parallel focal plane attitude measurement instrument that had been already designed, space attitude error compensation of the attitude measurement instrument for the focal plane was studied in order to measure the deformation and surface shape of the focal plane in different space attitude accurately.

  14. Continuous optical zoom module based on two deformable mirrors for mobile device applications

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hung; Su, Guo-Dung J.

    2011-10-01

    In recent years, optical zoom function of the mobile camera phones has been studied. However, traditional systems use motors to change separation of lenses to achieve zoom function, suffering from long total length and high power consumption, which is not suitable for mobile phones use. Adopting MEMS polymer deformable mirrors in zoom systems has the potential to reduce thickness and have the advantage of low chromatic aberration. In this paper, we presented a 2X continuous optical zoom systems for mobile phones, using two deformable mirrors, suitable for 5-Mega-pixel image sensors. In our design, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  15. Optical zoom module based on two deformable mirrors for mobile device applications.

    PubMed

    Lin, Yu-Hung; Liu, Yen-Liang; Su, Guo-Dung J

    2012-04-10

    In recent years, optical zoom functionality in mobile devices has been studied. Traditional zoom systems use motors to change separation of lenses to achieve the zoom function, but these systems result in long total length and high power consumption, which are not suitable for mobile devices. Adopting micromachined polymer deformable mirrors in zoom systems has the potential to reduce thickness and chromatic aberration. In this paper, we propose a 2× continuous optical zoom system with five-megapixel image sensors by using two deformable mirrors. In our design, the thickness of the zoom system is about 11 mm. The effective focal length ranges from 4.7 mm at a field angle of 52° to 9.4 mm. The f-number is 4.4 and 6.4 at the wide-angle and telephoto end, respectively.

  16. Talin determines the nanoscale architecture of focal adhesions

    PubMed Central

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A.; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R.; Davidson, Michael W.; Kanchanawong, Pakorn

    2015-01-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin–talin–actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites. PMID:26283369

  17. Curved Focal-Plane Arrays Using Back-Illuminated High-Purity Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, Michael E.

    2003-01-01

    Curved-focal-plane arrays of back-illuminated silicon-based photodetectors are being developed. The basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (e.g., a photographic film or an array of photodetectors) conform to a curved focal surface, instead of following the customary practice of designing the optics to project an image onto a flat focal surface. Eyes are natural examples of optical systems that have curved focal surfaces on which image sensors (retinas) are located. One prior approach to implementation of this concept involves the use of curved-input-surface microchannel plates as arrays of photodetectors. In comparison with microchannel plates, these curved-focal-plane arrays would weigh less, operate at much lower voltages, and consume less power. It should also be possible to fabricate the proposed devices at lower cost. It would be possible to fabricate an array of photodetectors and readout circuitry in the form of a very-large-scale integrated (VLSI) circuit on a curved focal surface, but it would be difficult and expensive to do so. In a simple and inexpensive alternate approach, a device (see figure) would have (1) a curved back surface, onto which light would be focused; and (2) a flat front surface, on which VLSI circuitry would be fabricated by techniques that are well established for flat surfaces. The device would be made from ultrapure silicon, in which it is possible to form high-resistivity, thick photodetectors that are fully depleted through their thicknesses. (As used here, "thick means having a thickness between a fraction of a millimeter and a few millimeters.) The back surface would be polished to the curvature of the focal surface of the intended application. To enable the collection of charge carriers excited by photons near the back surface or in the bulk of the device, it would be necessary to form a transparent or

  18. Focal epithelial hyperplasia in a Turkish family.

    PubMed

    Gökahmetoğlu, Selma; Ferahbaş, Ayten; Canöz, Özlem

    2014-12-01

    Focal epithelial hyperplasia (FEH) is a benign proliferative condition that is more frequently found in children of certain ethnic groups. Human papillomavirus (HPV) 13 and 32 genotypes has been consistently detected in these lesions. In this study a daughter, mother and father had FEH, and HPV 13 was shown by sequence analysis in the lesions of these patients. Cryotherapy was applied to the lesions and the lesions improved, but did not recover properly. In conclusion, HPV genotyping should be performed in FEH cases.

  19. Extensive focal epithelial hyperplasia: case report.

    PubMed

    Durso, Braz Campos; Pinto, José Marcelo Vargas; Jorge, Jacks; de Almeida, Oslei Paes

    2005-11-01

    Focal epithelial hyperplasia (FEH) is a rare benign lesion caused by human papillomavirus subtype 13 or 32. The condition occurs in numerous populations and ethnic groups. A higher incidence in close communities and among family members indicates infectious pathogenesis. A 21-year-old woman with FEH is described, in whom the lesions had persisted for 10 years. A literature review is also presented, with emphasis on manifestations in the oral mucosa and histopathological features.

  20. Likelihood analysis of earthquake focal mechanism distributions

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2015-06-01

    In our paper published earlier we discussed forecasts of earthquake focal mechanism and ways to test the forecast efficiency. Several verification methods were proposed, but they were based on ad hoc, empirical assumptions, thus their performance is questionable. We apply a conventional likelihood method to measure the skill of earthquake focal mechanism orientation forecasts. The advantage of such an approach is that earthquake rate prediction can be adequately combined with focal mechanism forecast, if both are based on the likelihood scores, resulting in a general forecast optimization. We measure the difference between two double-couple sources as the minimum rotation angle that transforms one into the other. We measure the uncertainty of a focal mechanism forecast (the variability), and the difference between observed and forecasted orientations (the prediction error), in terms of these minimum rotation angles. To calculate the likelihood score we need to compare actual forecasts or occurrences of predicted events with the null hypothesis that the mechanism's 3-D orientation is random (or equally probable). For 3-D rotation the random rotation angle distribution is not uniform. To better understand the resulting complexities, we calculate the information (likelihood) score for two theoretical rotational distributions (Cauchy and von Mises-Fisher), which are used to approximate earthquake source orientation pattern. We then calculate the likelihood score for earthquake source forecasts and for their validation by future seismicity data. Several issues need to be explored when analyzing observational results: their dependence on forecast and data resolution, internal dependence of scores on forecasted angle and random variability of likelihood scores. Here, we propose a simple tentative solution but extensive theoretical and statistical analysis is needed.

  1. Focal epileptic seizures mimicking sleep paralysis.

    PubMed

    Galimberti, Carlo Andrea; Ossola, Maria; Colnaghi, Silvia; Arbasino, Carla

    2009-03-01

    Sleep paralysis (SP) is a common parasomnia. The diagnostic criteria for SP, as reported in the International Classification of Sleep Disorders, are essentially clinical, as electroencephalography (EEG)-polysomnography (PSG) is not mandatory. We describe a subject whose sleep-related events fulfilled the diagnostic criteria for SP, even though her visual hallucinations were elementary, repetitive and stereotyped, thus differing from those usually reported by patients with SP. Video/EEG-PSG documented the focal epileptic nature of the SP-like episodes.

  2. Foveated optics

    NASA Astrophysics Data System (ADS)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  3. Focus in Grade 1: Teaching with Curriculum Focal Points

    ERIC Educational Resources Information Center

    Fuson, Karen; Clements, Douglas; Beckmann, Sybilla

    2010-01-01

    "Focus in Grade 1: Teaching with Curriculum Focal Points" describes and illustrates learning paths for the mathematical concepts and skills of each grade 1 Focal Point as presented in Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics. It includes representational supports for teaching and learning that can facilitate…

  4. Dynamics of Focal Fibrillation Waves during Persistent Atrial Fibrillation.

    PubMed

    Lanters, Eva A H; Allessie, Maurits A; DE Groot, Natasja M S

    2016-04-01

    The incidence and appearance of focal fibrillation waves on the right and left atrial epicardial surface were visualized during 10 seconds of persistent atrial fibrillation in a 71-year-old woman with valvular heart disease. The frequent, nonrepetitive, widespread, and capricious distribution of focal waves suggests that transmural conduction of fibrillation waves is most likely the mechanism underlying focal fibrillation waves.

  5. Limits of spectral resolution in optical measurements

    NASA Astrophysics Data System (ADS)

    Marques, Manuel B.

    2014-08-01

    Nowadays a growing number of scientists relies on optical spectral measurements for their research. The market is full of new plug-and-play equipment for spectral analysis that take the fuss out of the measurements. As with other instruments (computers, lasers, etc.) the researcher doesńt need any longer to work with someone with a post-graduate formation on the technology to be able to do excellent research. But, as in every instrument, there are limitations on the instrument use that affect its precision and resolution. Currently there is in the market a large variety of equipment for spectral measurements. They range from the huge long focal length double pass monochromators to the small pocket size USB connected array spectrometers. The different configurations have different sensitivities on the light input system, light intensity, coherence, polarization, etc. In this talk we will discuss a few of the limitations in spectral measurements that can be found in experimental setups.

  6. Hemispherical infrared focal plane arrays: a new design parameter for the instruments

    NASA Astrophysics Data System (ADS)

    Fendler, M.; Dumas, D.; Chemla, F.; Cohen, M.; Laporte, P.; Tekaya, K.; Le Coarer, E.; Primot, J.; Ribot, H.

    2012-07-01

    In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others. Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 μm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).

  7. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    NASA Astrophysics Data System (ADS)

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  8. Lightweight optical barrel assembly structures for large deployable space telescopes

    NASA Astrophysics Data System (ADS)

    Warren, Peter A.; Silver, Mark J.; Dobson, Benjamin J.

    2009-08-01

    Future space based telescopes will need apertures and focal lengths that exceed the dimensions of the launch vehicle shroud. In addition to deploying the primary mirror and secondary mirror support structure, these large telescopes must also deploy the stray light and thermal barriers needed to ensure proper telescope performance. The authors present a deployable light and thermal optical barrel assembly approach for a very large telescope with a variable sun angle and fast slew rate. The Strain Energy Deployable Optical Barrel Assembly (SEDOBA) uses elastic composite hinges to power the deployment of a hierarchical truss structure that supports the thermal and stray light shroud material that form the overall system. The paper describes the overall design approach, the key component technologies, and the design and preliminary testing of a self deploying scale model prototype.

  9. Kirkpatrick-Baez optics for the Generation-X mission

    NASA Astrophysics Data System (ADS)

    Rajan, Nishanth; Cash, Webster

    2005-08-01

    Generation-X is a Vision Mission for a future x-ray observatory. It is to have an effective area of 150 m2 at 1 keV, a resolution of ~0.1 arc seconds and the goal of probing the universe from redshifts of 5 to 10. Fabrication of the telescope is quite challenging and the best approach is unclear. We report our study of the use of Kirkpatrick-Baez telescopes applied to Gen-X. Such systems can be manufactured relatively inexpensively using simple flat mirrors. Huge effective areas can be obtained without the need for complicated deployable optics. In this study we found that Kirkpatrick-Baez optics provide an attractive and feasible approach to fabrication. The trade off is a 5km focal length.

  10. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.

    PubMed

    Shiono, T; Ogawa, H

    1992-04-15

    Reflection aspherical microlenses are proposed for planar optics. These microlenses have the structure of a nonconcentric elliptical concave mirror. Broadband light can be used for these microlenses because these microlenses have no chromatic aberration. The microlens fabricated by electron-beam lithography and Ag deposition was found to have a smooth surface as designed. The focal length of the microlens was constant independent of the wavelength. The measured spot sizes agreed with diffraction-limited values at two different wavelengths. By using the array of this microlens, multiple images with excellent contrast were obtained under incoherent white-light illumination.

  11. Optimal design of a space target acquisition optical system with small F-number

    NASA Astrophysics Data System (ADS)

    Yan, Peipei; She, Wenji; Liu, Kai; Duan, Jing; Jiang, Kai; Shan, Qiusha

    2016-10-01

    A kind of space target acquisition optical system with small F-number was designed. The system had a working wavelength range of 0.45 0.85μm, an effective focal length of 240 mm, a field of view is 2ω=3°, and an F-Number of F/2. The system characteristic is that the structure is simple. And the especial requirements of the spot, energy concentration, distortion and lateral color etc. are all satisfied. The primary and secondary mirrors are all spheres, so the difficulty and cost of machining are reduced. Moreover, the temperature characteristic of the system is analyzed. The temperature request is satisfied.

  12. Tunable Metasurface and Flat Optical Zoom Lens on a Stretchable Substrate.

    PubMed

    Ee, Ho-Seok; Agarwal, Ritesh

    2016-04-13

    A mechanically reconfigurable metasurface that can continuously tune the wavefront is demonstrated in the visible frequency range by changing the lattice constant of a complex Au nanorod array fabricated on a stretchable polydimethylsiloxane substrate. It is shown that the anomalous refraction angle of visible light at 632.8 nm interacting with the tunable metasurface can be adjusted from 11.4° to 14.9° by stretching the substrate by ∼30%. An ultrathin flat 1.7× zoom lens whose focal length can continuously be changed from 150 to 250 μm is realized, which also demonstrates the potential of utilizing metasurfaces for reconfigurable flat optics.

  13. A Future Generation High Angular Resolution X-ray Telescope Based Upon Physical Optics

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2013-04-01

    Although the highest priority objective for the next major X-ray mission is high resolution spectroscopy we will ultimately want the next generation high angular resolution X-ray observatory. This author believes that the 0.5 arc second angular resolution of the Chandra X-Ray Observatory is likely to be close to the best that can be obtained with grazing incidence optics, especially with larger effective area. Telescopes based upon physical optics, diffraction and refraction that transmit rather than reflect X-rays can have an angular resolution of a mili arc second or better. Combining the diffractive and refractive components into one unit can neutralize the chromatic aberration of each individually over a ~15% bandwidth at 6 keV. The aperture could be divided into several diffractive-refractive pairs to broaden the bandwidth. Furthermore these telescopes would be very low cost, very light weight, and more tolerant of figure errors and surface roughness than grazing incidence telescopes. However, focal lengths are of the order of 1000 km, which requires a new mission architecture consisting of long distance formation-flying between two spacecraft, one hosting the optics, the other, the detector. One of the spacecraft requires propulsion, provided by, for example, ion engines to maintain the optics-detector alignment by counteracting gravity gradient forces, and for changing targets. Although their effective area can be large and their angular resolution very high diffractive-refractive telescopes are not necessarily more sensitive than Chandra because their large focal plane scale (1 mili arc second ~ 1 mm) subjects them to a higher level of cosmic ray background and their opacity results in a lower energy limit of 2 keV. The intrinsic field of view is wide but the large focal length scale and practical limits on the size of the detector array results in a small field of view.

  14. GREAT optics

    NASA Astrophysics Data System (ADS)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.

  15. Designing an all-reflective, long focus and large field of view optical system with freeform surface

    NASA Astrophysics Data System (ADS)

    Wang, Qingfeng; Cheng, Dewen; Wang, YongTian; Liu, Yue

    2012-11-01

    All-reflective optical system has been widely used in the deep space detection applications. We studied the application of freeform surface in all-reflective, off-axis optical systems, which have long effective focal length and large field of view, were designed. The freeform surface was employed to achieve better performance, while reduce the system size and weight. The starting point of the design was calculated by using the geometrical optics and properties of conic. After that we optimized the starting point using the strategy of successive approximation optimization method to reduce the design difficulty. Based on the theory of aberration, the best position of freeform surface in the off-axis system was analyzed. At last, two four-mirror optical systems with long EFL and large field of view were designed, the effective focal length are 1.95m and 4.5m, respectively; the field of view for both systems are 3°. The modulation transfer function is close to diffraction limit.

  16. Development of a real time MTF test bench for visible optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Xinhua; Chen, Yuheng; Fan, Jiming; Xiang, Chunchang; Shen, Weimin

    2010-11-01

    A real-time MTF test bench for visible optical systems is presented in this paper. This test bench can perform quick on-axis and off-axis MTF measurement of optical systems whose aperture are less than 200mm in visible wavelength. A high quality off-axis parabolic collimator is used as object generator of this test bench. The image analyzer is a microscopy with CCD camera installed on a multi-axis motion stage. The software of this MTF test bench provides a good interface for the operators to set measurement parameters and control this bench. Validation of this test bench, performed with a 50mm plano-convex audit lens, shows that MTF measurement error of this bench is within 0.04. Besides MTF measurement, this bench can also perform effective focal length (EFL) and back focal length (BFL) without any hardware modification. Transmittance of optical system can also be performed on this bench with an integrating sphere.

  17. Focal plane actuation to achieve ultra-high resolution on suborbital balloon payloads

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; Miller, Alex; Challa, Priya; Veach, Todd; Groppi, Chris; Mauskopf, Phil

    2014-07-01

    Over the past few years there has been remarkable success flying imaging telescope systems suspended from suborbital balloon payload systems. These imaging systems have covered optical, ultraviolet, sub-­-millimeter and infrared passbands (i.e. BLAST, STO, SBI, Fireball and others). In recognition of these advances NASA is now considering ambitious programs to promote planetary imaging from high altitude at a fraction of the cost of similar fully orbital systems. The challenge with imaging from a balloon payload is delivering the full diffraction-­-limited resolution of the system from a moving payload. Good progress has been made with damping mechanisms and oscillation control to remove most macroscopic movement in the departures of the imaging focal plane from a static configuration, however a jitter component remains that is difficult to remove using external corrections. This paper reports on work to demonstrate in the laboratory the utility and performance of actuating a detector focal plane (of whatever type) to remove the final jitter terms using an agile hexapod design. The input to this demonstration is the jitter signal generated by the pointing system of a previously flown balloon mission (the Stratospheric Terahertz Observatory, STO). Our group has a mature jitter compensation system that thermally isolates the control head from the focal plane itself. This allows the hexapod to remain at ambient temperature in a vacuum environment with the focal plane cooled to cryogenic temperatures. Our lab design mounts the focal plane on the hexapod in a custom cryostat and delivers an active optical stimulus together with the corresponding jitter signal, using the actuation of the hexapod to correct for the departures from a static, stable configuration. We believe this demonstration will make the case for inclusion of this technological solution in future balloon-­-borne imaging systems requiring ultra-­-high resolution.

  18. Upper Extremity Length Equalization

    PubMed Central

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, shortening osteotomy, angulatory correction osteotomy and lengthening. This report reviews the literature relative to upper extremity length inequality and equalization and presents an algorithm for evaluation and planning appropriate treatment for patients with this condition. This algorithm is illustrated by two clinical cases of posttraumatic shortness of the radius which were effectively treated. ImagesFigure 1Figure 2Figure 3

  19. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  20. Imaging Polarimetry With Polarization-Sensitive Focal Planes

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Z.

    2014-01-01

    We present a compact, lightweight, snapshot imaging polarimeter designed for operation in the near-infrared (NIR) and mid-infrared (MIR). Flux, polarization and spectral energy distribution are the fundamental measurements through which we infer properties of the sources of radiation such as intensity, temperature, chemical composition, emission mechanisms and structure. In recent decades, many scientific fields that utilize radiometry and spectroscopy have benefited from revolutionary improvements in instrumentation, for example, charge-coupled devices, hybridized infrared arrays, multi-object spectrometers and adaptive optics. Advances in polarimetric instrumentation have been more modest. Recently, the fabrication of microgrid polarizer arrays (MGPAs), facilitated the development of polarization-sensitive focal planes. These devices have inherent capability to measure the degree and angle of polarization across a scene (i.e., imaging polarimetry) instantaneously, without the need for multiple exposures and moving optics or multiple detectors. MGPA-based devices are compact, lightweight, and mechanically robust and perfectly suited for deployment on space-based and airborne platforms. We describe the design, operation and expected performance of MGPA-based imaging polarimeters and identify the applications for which these polarimeters are best suited.

  1. The impact of domestication on the chicken optical apparatus.

    PubMed

    Roth, Lina S V; Lind, Olle

    2013-01-01

    Domestication processes tend to release animals from natural selection and favour traits desired by humans, such as food-production and co-operative behaviour. A side effect of such selective breeding is the alteration of unintended traits. In this paper, we investigate how active selection for egg production in chickens has affected the visual system, in particular the optical sensitivity that relates to the ability of chickens to see in dim light. We measured eye dimensions as well as the pupil diameter at different light intensities (the steady state pupil dynamics), in adult male and female White Leghorns and the closest relatives to their ancestor, the Red Junglefowls. With this information, we calculated the focal length and optical sensitivity (f-number) of the eyes. Males have larger eyes than females in both breeds and White Leghorn eyes are larger than those of Red Junglefowls in both sexes. The steady state pupil dynamics is less variable, however, the combination of pupil dynamics and eye size gives a higher optical sensitivity in Red Junglefowl eyes than in White Leghorns at light intensities below approximately 10 cd/m(2). While eye size and focal length match the larger body size in White Leghorns compared to Red Junglefowls, the steady state pupil dynamics do not. The reason for this is likely to be that eye morphology and the neuro-muscular control of the pupil have been affected differently by the strong selection for egg production and the simultaneous release of the selection pressure for high performing vision. This study is the first description of how optical sensitivity has changed in a domesticated species and our results demonstrate important considerations regarding domestication processes and sensory ability.

  2. A simple and effective first optical image processing experiment

    NASA Astrophysics Data System (ADS)

    Olson, Dale W.

    2007-06-01

    Optical image processing experiments can contribute to an understanding of optical diffraction and lens image formation. We are trying to discover a highly effective way of introducing lens imaging and related topics, light scattering, point sources, spatially coherent light, and image processing, in a laboratory-based holography-centered introductory optics course serving a mixture of physics, chemistry, and science education sophomores and juniors. As an early experiment in this course, a microscope slide bearing opaque stick-on letters forming a word such as PAL is back-lighted by a point source of laser light. The surround for the letter A is transparent, while the surround for the letters P and L is made translucent with Scotch MAGICTM tape. A 20-cm focal length converging lens forms a bright image of PAL on a screen, and also an image of the laser point source in a (transform) plane between the lens and the screen. Students are startled when they see that they can choose to pass only the image of the letter "A" or only the images of "P" and "L," by very simple manipulations in the transform plane. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. Useful explanatory ray diagrams will be presented. Many demonstrations of optical image processing require long focal length lenses and precise manipulation of somewhat complex passing/blocking filters. In contrast these experiments are easy to set up and easy to perform. Students can fabricate the required objects in a matter of minutes. The use of zero-order laser light helps students discover the essential simplicity of the ideas underlying image processing. The simultaneous presence of both scattered (spatially incoherent) and not scattered (spatially coherent) laser light is thought provoking. Current explorations to further develop these and other closely-related experiments will also be described.

  3. Design of off-axis four-mirror optical system without obscuration based on free-form surface

    NASA Astrophysics Data System (ADS)

    Huang, Chenxu; Liu, Xin

    2015-11-01

    With the development of modern military technology, the requirements of airborne electro-optical search and tracking system are increasing on target detection and recognition. However, traditional off-axis three-mirror system couldn't meet the requirements for reducing weight and compacting size in some circumstances. Based on Seidel aberration theory, by restricting the aberration functions, the optical system could achieve initial construction parameters. During the designing process, decenters and tilts of mirrors were adjusted continuously to eliminate the obscurations. To balance off-axis aberration and increase angle of view, the free-form mirror was introduced into the optical system. Then an unobstructed optical system with effective focal length of 100 mm, FOV of 16°×16°, and relative aperture as F/7 is designed. The results show that the system structure is compact, with imaging qualities approaching diffraction limit.

  4. LSST Camera Optics Design

    SciTech Connect

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  5. 9-fold Fresnel-Köhler concentrator with Fresnel lens of variable focal point.

    PubMed

    Mendes-Lopes, João; Benítez, Pablo; Zamora, Pablo; Miñano, Juan C

    2014-06-30

    Non-uniform irradiance patterns over Multi-Junction Cells gives rise to power losses, especially when considering spectral irradiance distributions over different junctions. Thermal effects on Silicone-on-Glass lenses affect spectral irradiance distributions. A new Photovoltaic Concentrator (CPV), formed by nine optical channels, each one with a Köhler configuration, has been designed to overcome these effects at high concentrations for a large acceptance angle. A Fresnel Lens with a Variable Focal Point is proposed to prevent optical crosstalk in multichannel systems. When integrated into the concentrator, improves the acceptance angle. These designs are designed to fulfill the expected requirements of four junction CPV systems.

  6. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths

    NASA Astrophysics Data System (ADS)

    Liu, Honglin; Xu, Xiao; Lai, Puxiang; Wang, Lihong V.

    2011-08-01

    In turbid media such as biological tissue, multiple scattering hinders direct light focusing at depths beyond one transport mean free path. As a solution to this problem, time-reversed ultrasonically encoded (TRUE) optical focusing is proposed based on ultrasonic encoding of diffused laser light and optical time reversal. In TRUE focusing, a laser beam of long coherence length illuminates a turbid medium, where the incident light undergoes multiple scattering and part of it gets ultrasonically encoded within the ultrasonic focal zone. A conjugated wavefront of the ultrasonically encoded light is then generated by a phase conjugate mirror outside the medium, which traces back the trajectories of the ultrasonically encoded diffused light and converges light to the ultrasonic focal zone. Here, we report the latest experimental improvement in TRUE optical focusing that increases its penetration in tissue-mimicking media from a thickness of 3.75 to 7.00 mm. We also demonstrate that the TRUE focus depends on the focal diameter of the ultrasonic transducer.

  7. Surface Roughness Lengths

    DTIC Science & Technology

    1993-08-01

    m trees 110 - 170 Thom 1972 Pine forest - 20 m trees 128 DeBruin and Moore 1985 Forested plateau, rolling 120 - 130 Ming et al. 1983 Rolling terrain...H. A. R., and C. J. Moore , 1985 , "Zero-Plane Displacement and Roughness Length for Tall Vegetation, Derived from a Simple Mass Conservation

  8. Sampling by Length.

    ERIC Educational Resources Information Center

    Handley, John C.

    1991-01-01

    Discussion of sampling methods used in information science research focuses on Fussler's method for sampling catalog cards and on sampling by length. Highlights include simple random sampling, sampling with probability equal to size without replacement, sampling with replacement, and examples of estimating the number of books on shelves in certain…

  9. The CaSSIS imaging system: optical performance overview

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Piazza, D.; Pommerol, A.; Roloff, V.; Gerber, M.; Ziethe, R.; El-Maarry, M. R.; Weigel, T.; Johnson, M.; Vernani, D.; Pelo, E.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Thomas, N.

    2016-07-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is the high-resolution scientific imager on board the European Space Agency's (ESA) ExoMars Trace Gas Orbiter (TGO) which was launched on 14th March 2016 to Mars. CaSSIS will observe the Martian surface from an altitude of 400 km with an optical system based on a modified TMA telescope (Three Mirrors Anastigmatic configuration) with a 4th powered folding mirror. The camera EPD (Entrance Pupil Diameter) is 135 mm, and the expected focal length is 880 mm, giving an F# 6.5 in the wavelength range of 400- 1100 nm with a distortion designed to be less than 2%. CaSSIS will operate in a "push-frame" mode with a monolithic Filter Strip Assembly (FSA) produced by Optics Balzers Jena GmbH selecting 4 colour bands and integrated on the focal plane by Leonardo-Finmeccanica SpA (under TAS-I responsibility). The detector is a spare of the Simbio-Sys detector of the Italian Space Agency (ASI), developed by Raytheon Vision Systems. It is a 2kx2k hybrid Si-PIN array with a 10 μm pixel pitch. A scale of 4.6 m/px from the nominal orbit is foreseen to produce frames of 9.4 km × 47 km on the Martian surface. The University of Bern was in charge of the full instrument integration as well as the characterization of the focal plane and calibration of the entire instrument. The paper will present an overview of the CaSSIS telescope and FPA optical performance. The preliminary results of on-ground calibration and the first commissioning campaign (April 2016) will be described.

  10. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA

  11. Integrated focal-plane array /IFPA/ approach to large-area infrared focal plane architecture

    NASA Astrophysics Data System (ADS)

    Warren, R. E.

    1980-01-01

    A modular approach to IFPA design is presented which makes it possible to obtain a high-density infrared focal plane amendable to parallel manufacturing techniques as well as to serial plane integration and test. The percent fill factor of the design is dependent on the dimension of the individual detectors; each submodule is manufactured from identical components. The technologies including cables, interconnects, multilayer interconnect structures, and subassembly test requirements, which have direct application to scanning as well as staring integrated focal plane arrays, are discussed.

  12. Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point.

    PubMed

    Miks, Antonin; Novak, Jiri

    2014-06-30

    This work performs an analysis of basic optical properties of zoom lenses with a fixed distance between object and image points and a fixed position of the image-space focal point. Formulas for the calculation of paraxial parameters of such optical systems are derived and the calculation is presented on examples.

  13. Efficacy of lacosamide by focal seizure subtype.

    PubMed

    Sperling, Michael R; Rosenow, Felix; Faught, Edward; Hebert, David; Doty, Pamela; Isojärvi, Jouko

    2014-10-01

    The purpose of this post hoc exploratory analysis was to determine the effects of the antiepileptic drug, lacosamide, on focal (partial-onset) seizure subtypes. Patient data from the three lacosamide pivotal trials were grouped and pooled by focal seizure subtype at Baseline: simple partial seizures (SPS), complex partial seizures (CPS), and secondarily generalized partial seizures (SGPS). Both efficacy outcomes (median percent change from Baseline to Maintenance Phase in seizure frequency per 28 days and the proportion of patients experiencing at least a 50% reduction in seizures) were evaluated by lacosamide dose (200, 400, or 600 mg/day) compared to placebo for each seizure subtype. An additional analysis was performed to determine whether a shift from more severe focal seizure subtypes to less severe occurred upon treatment with lacosamide. In patients with CPS or SGPS at Baseline, lacosamide 400 mg/day (maximum recommended daily dose) and 600 mg/day reduced the frequency of CPS and SGPS compared to placebo. Likewise, a proportion of patients with CPS and SGPS at Baseline experienced at least a 50% reduction in the frequency of CPS and SGPS (≥50% responder rate) in the lacosamide 400 and 600 mg/day groups compared with placebo. For both outcomes, numerically greatest responses were observed in the lacosamide 600 mg/day group among patients with SGPS at Baseline. In patients with SPS at Baseline, no difference between placebo and lacosamide was observed for either efficacy outcome. An additional exploratory analysis suggests that in patients with SPS at Baseline, CPS and SGPS may have been shifted to less severe SPS upon treatment with lacosamide. The results of these exploratory analyses revealed reductions in CPS and SGPS frequency with adjunctive lacosamide. Reduction in CPS and SGPS may confound assessment of SPS since the CPS or SGPS may possibly change to SPS by effective treatment.

  14. Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kurashina, Seiji; Miyoshi, Masaru; Doi, Kohei; Ishi, Tsutomu; Sudou, Takayuki; Morimoto, Takao; Goto, Hideki; Sasaki, Tokuhito

    2015-10-01

    A pixel in an uncooled microbolometer terahertz (THz) focal plane array (FPA) has a suspended structure above read-out integrated circuit (ROIC) substrate. An optical cavity structure is formed between a thin metallic layer deposited on the suspended structure and a thick metallic layer deposited on the ROIC surface. The geometrical optical cavity length for our previous pixel structure, 3-4 μm, is extended three times, so that responsivity can be increased in the sub-THz region. This modification is carried out by depositing a thick SiN layer on the thick metallic layer. The modified pixel structure is applied to 640 × 480 and 320 × 240 THz-FPAs with 23.5 μm pixel pitch. Minimum detectable powers per pixel (MDP) are evaluated for these FPAs at 4.3, 2.5, 0.6, and 0.5 THz, and the MDP values are found to be improved by a factor of ten at 0.6 and 0.5 THz. The MDP values of the THz-FPAs developed in this work are compared with those of other THz detectors, such as uncooled antenna-coupled CMOS (complimentary metal-oxide semiconductor) THz-FPAs and cooled bolometer arrays. It is found that our THz-FPAs are more sensitive in the sub-THz region than the CMOS THz-FPAs, while they are much less sensitive than the cooled bolometer arrays. These THz-FPAs are incorporated into a 640 × 480 THz camera and 320 × 240 THz camera, and imaging equipment is developed. The equipment consists of a linearly polarized sub-THz source, a collimator lens, a beam homogenizer, two wire grids, a quarter-wave plate, and two THz cameras, and sub-THz images are demonstrated. It should be mentioned for the equipment that imaging of transmission and reflection is realized by moving only the quarter-wave plate, and the reflection image is taken along a direction normal to a sample surface so that the reflection image is hardly deformed.

  15. Characterization of DECam focal plane detectors

    SciTech Connect

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  16. The Simbol-X Focal Plane

    NASA Astrophysics Data System (ADS)

    Laurent, P.

    2009-05-01

    The Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background.

  17. Laser skin perforator with focal point detection

    NASA Astrophysics Data System (ADS)

    Ponce, L.; Arronte, M.; Cabrera, J. L.; Flores, T.

    2006-02-01

    The development of laser skin perforator device for obtaining blood samples is presented. The use of photoelectric proximity photoelectric sensor permits to determine the focal point eliminating any contact and them avoiding the risk of contamination. Perforation of about 0.2 mm - 0.5 mm in diameter can be obtained in order to take the sample of blood. The method permits to make the blood analysis not only avoiding the contamination risk but also diminishing the pain sensation in comparison with metal lancet.

  18. Kartagener syndrome with focal segmental glomerulosclerosis.

    PubMed

    Momeni, Ali; Doroushi, Behzad; Taheri, Nadia

    2013-11-01

    Primary ciliary dyskinesia is characterized by congenital impairment of mucociliary clearance. Kartagener syndrome (KS) is a clinical variant of primary ciliary dyskinesia which is involved in situs inversus associated with chronic respiratory infections. In addition, glomerular disease in KS syndrome is rare and reported cases are limited. We had a 27-year-old female patient with KS who presented with proteinuria, hematuria, normal kidney function, and a family history of systemic lupus erythematosus. Kidney biopsy showed segmental scar with adhesion to Bowman capsule, which was indicative of focal segmental glomerulosclerosis.

  19. Quantifying tissue hemodynamics by NIRS versus DOT: global versus focal changes in cerebral hemodynamics

    NASA Astrophysics Data System (ADS)

    Boas, David A.; Cheng, Xuefeng; Marota, John A.; Mandeville, Joseph B.

    1999-09-01

    Near infrared spectroscopy (NIRS) is used to quantify changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin (Hb) concentrations in tissue. The analysis uses the modified Beer-Lambert law, which is generally valid for quantifying global concentration changes. We examine the errors that result from analyzing focal changes in HbO and Hb concentrations. We find that the measured focal change in HbO and Hb are linearly proportional to the actual focal changes but that the proportionally constants are different. Thus relative changes in HbO and Hb cannot, in general, be quantified. However, we show that under certain circumstances it is possible to quantify these relative changes. This builds the case for diffuse optical tomography (DOT) which in general should be able to quantify focal changes in HbO and Hb through the use of image reconstruction algorithms that deconvolve the photon diffusion point-spread-function. We demonstrate the differences between NIRS and DOT using a rat model of somatosensory stimulation.

  20. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.