Sample records for focal traumatic brain

  1. [Changes of focal and brainstem neurologic signs in patients with traumatic brain injury and their dependence on the -675 4G/5G polymorphism in the PAI-1 gene].

    PubMed

    Potapov, O; Kmyta, O

    2014-09-01

    Regressive course of neurological signs and symptoms is an important factor of evaluating the clinical course and treatment efficacy of traumatic brain injury. This article presents changes evaluation of focal and brainstem symptoms in 200 patients with traumatic brain injury, and determines the association between these changes and the -675 4G/5G polymorphism in the PAI-1 gene. We have found a connection between 4G/4G and 4G/5G genotypes for the studied polymorphism and the changes of focal and brainstem symptoms in patients with traumatic brain injury. Thus, we have demonstrated that the clinical course of traumatic brain injury is influenced by the -675 4G/5G polymorphism in the PAI-1 gene.

  2. Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.

    PubMed

    Yamakami, I; Yamaura, A; Isobe, K

    1993-01-01

    To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.

  3. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  4. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  5. Secondary Insults of Traumatic Brain Injury in CCATT Patients Returning from Iraq/Afghanistan: 2001-2006

    DTIC Science & Technology

    2010-08-31

    and hemorrhage. Hemorrhage is further divided into epidural hematoma , subdural hematoma , and intracerebral hematoma . Diffuse brain injuries...fiber Brain Injury Focal Injuries Contusion Laceration Hemorrhage Epidural Hematoma Subdural Hematoma Intracerebral Hematoma Diffuse

  6. Attention and driving in traumatic brain injury: a question of coping with time-pressure.

    PubMed

    Brouwer, Wiebo H; Withaar, Frederiec K; Tant, Mark L M; van Zomeren, Adriaan H

    2002-02-01

    Diffuse and focal traumatic brain injury (TBI) can result in perceptual, cognitive, and motor dysfunction possibly leading to activity limitations in driving. Characteristic dysfunctions for severe diffuse TBI are confronted with function requirements derived from the hierarchical task analysis of driving skill. Specifically, we focus on slow information processing, divided attention, and the development of procedural knowledge. Also the effects of a combination of diffuse and focal dysfunctions, specifically homonymous hemianopia and the dysexecutive syndrome, are discussed. Finally, we turn to problems and challenges with regard to assessment and rehabilitation methods in the areas of driving and fitness to drive.

  7. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.

    PubMed Central

    Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J

    1996-01-01

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661

  8. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    PubMed

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  9. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  10. The spectrum of disease in chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Stern, Robert A; Nowinski, Christopher J; Stein, Thor D; Alvarez, Victor E; Daneshvar, Daniel H; Lee, Hyo-Soon; Wojtowicz, Sydney M; Hall, Garth; Baugh, Christine M; Riley, David O; Kubilus, Caroline A; Cormier, Kerry A; Jacobs, Matthew A; Martin, Brett R; Abraham, Carmela R; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L; Budson, Andrew E; Goldstein, Lee E; Kowall, Neil W; Cantu, Robert C

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer's disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.

  11. The spectrum of disease in chronic traumatic encephalopathy

    PubMed Central

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I–IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I–III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer’s disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein. PMID:23208308

  12. Focal traumatic brain stem injury is a rare type of head injury resulting from assault: a forensic neuropathological study.

    PubMed

    Al-Sarraj, Safa; Fegan-Earl, Ashley; Ugbade, Antonia; Bodi, Istvan; Chapman, Rob; Poole, Simon; Swift, Ben; Jerreat, Peter; Cary, Nat

    2012-04-01

    Brainstem haemorrhage is common in cases of head injury when it is associated with space-occupying lesion and increases in the intracranial pressure (duret haemorrhage), in cases of diffuse axonal injury (in dorso-lateral quadrant) and diffuses vascular injury (in the periventricular tissue). However focal traumatic brainstem injury is rare. We identified 12 cases of focal traumatic brainstem injury from review of 319 case of head injury. The head trauma had been caused by different mechanisms of complex fall from height and assault. 10/12 are associated with skull fracture, 11/12 with contre coup contusions in the frontal and temporal lobes, 5/12 direct contusions to cerebellum, 5/12 haemorrhage in corpus callosum and 2/11 have gliding contusions. None of the cases had pathological evidence of increase in the intracranial pressure. The bleeding in the pons was at the edge in 2/12 and cross the section in 10/12. The majority of patients were unconscious immediately after the incident (10/12) and 9/12 died within one day. Focal traumatic brainstem injury occurs most likely due to direct impact at the back of the head or stretching forces affecting the brainstem in cases of complex fall from height and after assault, particularly those associated with kicks. It is a serious and commonly fatal brain damage, which needed to be differentiated from other causes of brainstem haemorrhages. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  13. The value of the identification of predisposing factors for post-traumatic amnesia in management of mild traumatic brain injury.

    PubMed

    Fotakopoulos, George; Makris, Demosthenes; Tsianaka, Eleni; Kotlia, Polikceni; Karakitsios, Paulos; Gatos, Charalabos; Tzannis, Alkiviadis; Fountas, Kostas

    2018-01-01

    To identify the risk factors for post-traumatic amnesia (PTA) and to document the incidence of PTA after mild traumatic brain injuries. This was a prospective study, affecting mild TBI (mTBI) (Glasgow Coma Scale 14-15) cases attending to the Emergency Department between January 2009 and April 2012 (40 months duration). Patients were divided into two groups (Group A: without PTA, and Group B: with PTA, and they were assessed according to the risk factors. A total of 1762 patients (males: 1002, 56.8%) were meeting study inclusion criteria [Group A: n = 1678 (83.8%), Group B: n = 84 (4.2%)]. Age, CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs, and skull base fractures), anticoagulation therapy and seizures were independent factors of PTA. There was no statistically significant correlation between PTA and sex, convexity fractures, stroke event, mechanism of mTBI (fall +/or beating), hypertension, coronary heart disease, chronic smokers and diabetes (p > 0.005). CT findings: (traumatic focal HCs in the frontal and temporal lobes or more diffuse punctate HCs and skull base fractures), age, seizures and anticoagulation/antiplatelet therapy, were independent factors of PTA and could be used as predictive factors after mTBI.

  14. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.

    PubMed

    Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L

    2014-07-01

    Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased understanding of mechanisms underlying delayed microvascular damage following TBI could provide novel insights into chronic pathological responses to TBI and potential common mechanisms underlying TBI and neurodegenerative diseases.

  15. Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice

    PubMed Central

    Kislin, Mikhail; Sword, Jeremy; Fomitcheva, Ioulia V.; Croom, Deborah; Pryazhnikov, Evgeny; Lihavainen, Eero; Toptunov, Dmytro; Rauvala, Heikki; Ribeiro, Andre S.

    2017-01-01

    Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1–2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions. PMID:28077713

  16. Tau and Beta-Amyloid Deposition, Microhemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    DTIC Science & Technology

    2015-10-01

    imaging and 7T- MRI to the Australian Imaging Biomarkers and Lifestyle - Veterans study (AIBL-VETS) of post-traumatic stress disorder and...focal and widespread changes in white matter integrity. 4: 7T- MRI will reveal more extensive microhemorrhage than seen on 3T- MRI and this will relate to...PET imaging, and MRI as well as clinical and neuropsychological tools to identify war veterans at risk of Alzheimer’s disease (AD) and chronic

  17. Acute Traumatic Brain Injury Does Not Exacerbate Amyotrophic Lateral Sclerosis in the SOD1G93A Rat Model1,2,3

    PubMed Central

    Thomsen, Gretchen M.

    2015-01-01

    Abstract Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which upper and lower motor neurons degenerate, leading to muscle atrophy, paralysis, and death within 3 to 5 years of onset. While a small percentage of ALS cases are genetically linked, the majority are sporadic with unknown origin. Currently, etiological links are associated with disease onset without mechanistic understanding. Of all the putative risk factors, however, head trauma has emerged as a consistent candidate for initiating the molecular cascades of ALS. Here, we test the hypothesis that traumatic brain injury (TBI) in the SOD1 G93A transgenic rat model of ALS leads to early disease onset and shortened lifespan. We demonstrate, however, that a one-time acute focal injury caused by controlled cortical impact does not affect disease onset or survival. Establishing the negligible involvement of a single acute focal brain injury in an ALS rat model increases the current understanding of the disease. Critically, untangling a single focal TBI from multiple mild injuries provides a rationale for scientists and physicians to increase focus on repeat injuries to hopefully pinpoint a contributing cause of ALS. PMID:26464984

  18. Tau and Beta-Amyloid Deposition, Micro-Hemorrhage and Brain Function after Traumatic Brain Injury in War Veterans

    DTIC Science & Technology

    2016-10-01

    tau PET imaging and 7T- MRI to the Australian Imaging Biomarkers and Lifestyle - Veterans study (AIBL-VETS) of post-traumatic stress disorder and...focal and widespread changes in white matter integrity. 4. 7T- MRI will reveal more extensive microhemorrhage than seen on 3T- MRI and this will relate...injury in war veterans. 6 | P a g e 1. Introduction The project will utilize tau, amyloid and FDG PET imaging, and MRI as well as clinical and

  19. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    PubMed

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice

    PubMed Central

    Guley, Natalie H.; Rogers, Joshua T.; Del Mar, Nobel A.; Deng, Yunping; Islam, Rafiqul M.; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J.; Marchetta, Jeffrey G.; Rex, Tonia S.; Honig, Marcia G.

    2016-01-01

    Abstract Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25–40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50–60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  1. The structural basis of moderate disability after traumatic brain damage

    PubMed Central

    Adams, J; Graham, D; Jennett, B

    2001-01-01

    The objective was to discover the nature of brain damage in survivors of head injury who are left with moderate disability. Macroscopic and microscopic examination was carried out on the brains of 20 persons who had died long after a head injury that had been treated in a neurosurgical unit. All had become independent but had various disabilities (moderate disability on the Glasgow outcome scale) Most deaths had been sudden, which had led to their referral from forensic pathologists. Post-traumatic epilepsy was a feature in 75%. An intracranial haematoma had been evacuated in 75%, and in 11 of the 15 with epilepsy. Diffuse axonal injury was found in six patients, five of the mildest type (grade 1) and one of grade 2. No patient had diffuse thalamic damage but one had a small focal ischaemic lesion in the thalamus. No patient had severe ischaemic brain damage, but three had moderate lesions which were bilateral in only one. No patient had severe cortical contusions. In conclusion, the dominant lesion was focal damage from an evacuated intracranial haematoma. Severe diffuse damage was not found, with diffuse axonal injury only mild and thalamic damage in only one patient.

 PMID:11561038

  2. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Mineff, Kristyo N.; Elsaid, Anas M.; Nicholas, Spero C.

    2015-01-01

    Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. Conclusion: The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI. PMID:25691880

  3. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    PubMed Central

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639

  4. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    PubMed

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  5. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    PubMed

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p < 0.001) or sustained moderate/severe TBI (p < 0.001). Patients with MVA and those with post-traumatic seizures, intracranial hemorrhage, petechial brain hemorrhages, and/or focal cortical contusions are at particular risk for serious pituitary dysfunction, including adrenal insufficiency and DI, and should be referred for neuroendocrine testing. However, a substantial proportion of patients without these risk factors also developed hypopituitarism.

  6. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    PubMed

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  7. Chronic traumatic encephalopathy.

    PubMed

    Omalu, Bennet

    2014-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative syndrome, which is caused by single, episodic, or repetitive blunt force impacts to the head and transfer of acceleration-deceleration forces to the brain. CTE presents clinically as a composite syndrome of mood disorders and behavioral and cognitive impairment, with or without sensorimotor impairment. Symptoms of CTE may begin with persistent symptoms of acute traumatic brain injury (TBI) following a documented episode of brain trauma or after a latent period that may range from days to weeks to months and years, up to 40 years following a documented episode of brain trauma or cessation of repetitive TBI. Posttraumatic encephalopathy is distinct from CTE, can be comorbid with CTE, and is a clinicopathologic syndrome induced by focal and/or diffuse, gross and/or microscopic destruction of brain tissue following brain trauma. The brain of a CTE sufferer may appear grossly unremarkable, but shows microscopic evidence of primary and secondary proteinopathies. The primary proteinopathy of CTE is tauopathy, while secondary proteinopathies may include, but are not limited to, amyloidopathy and TDP proteinopathy. Reported prevalence rates of CTE in cohorts exposed to TBI ranges from 3 to 80% across age groups. © 2014 S. Karger AG, Basel.

  8. Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits.

    PubMed

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2013-01-01

    Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. © 2013 S. Karger AG, Basel.

  9. Traumatic injury to the immature frontal lobe: A new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits

    PubMed Central

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2014-01-01

    Traumatic brain injury in children commonly involves the frontal lobes, and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p) 21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 and 7 d later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to Bregma. While cell death and accumulated beta-amyloid precursor protein were characteristic features of the peri-contusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory, likely reflect several variables including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. PMID:24247103

  10. SPET brain perfusion imaging in mild traumatic brain injury without loss of consciousness and normal computed tomography.

    PubMed

    Abu-Judeh, H H; Parker, R; Singh, M; el-Zeftawy, H; Atay, S; Kumar, M; Naddaf, S; Aleksic, S; Abdel-Dayem, H M

    1999-06-01

    We present SPET brain perfusion findings in 32 patients who suffered mild traumatic brain injury without loss of consciousness and normal computed tomography. None of the patients had previous traumatic brain injury, CVA, HIV, psychiatric disorders or a history of alcohol or drug abuse. Their ages ranged from 11 to 61 years (mean = 42). The study was performed in 20 patients (62%) within 3 months of the date of injury and in 12 (38%) patients more than 3 months post-injury. Nineteen patients (60%) were involved in a motor vehicle accident, 10 patients (31%) sustained a fall and three patients (9%) received a blow to the head. The most common complaints were headaches in 26 patients (81%), memory deficits in 15 (47%), dizziness in 13 (41%) and sleep disorders in eight (25%). The studies were acquired approximately 2 h after an intravenous injection of 740 MBq (20.0 mCi) of 99Tcm-HMPAO. All images were acquired on a triple-headed gamma camera. The data were displayed on a 10-grade colour scale, with 2-pixel thickness (7.4 mm), and were reviewed blind to the patient's history of symptoms. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in the cortex or basal ganglia less than 70%, or less than 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. The results show that 13 (41%) had normal studies and 19 (59%) were abnormal (13 studies performed within 3 months of the date of injury and six studies performed more than 3 months post-injury). Analysis of the abnormal studies revealed that 17 showed 48 focal lesions and two showed diffuse supratentorial hypoperfusion (one from each of the early and delayed imaging groups). The 12 abnormal studies performed early had 37 focal lesions and averaged 3.1 lesions per patient, whereas there was a reduction to--an average of 2.2 lesions per patient in the five studies (total 11 lesions) performed more than 3 months post-injury. In the 17 abnormal studies with focal lesions, the following regions were involved in descending frequency: frontal lobes 58%, basal ganglia and thalami 47%, temporal lobes 26% and parietal lobes 16%. We conclude that: (1) SPET brain perfusion imaging is valuable and sensitive for the evaluation of cerebral perfusion changes following mild traumatic brain injury; (2) these changes can occur without loss of consciousness; (3) SPET brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions; and (4) the changes may explain a neurological component of the patient's symptoms in the absence of morphological abnormalities using other imaging modalities.

  11. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis.

    PubMed

    Nakayama, N; Okumura, A; Shinoda, J; Nakashima, T; Iwama, T

    2006-07-01

    The cerebral metabolism of patients in the chronic stage of traumatic diffuse brain injury (TDBI) has not been fully investigated. To study the relationship between regional cerebral metabolism (rCM) and consciousness disturbance in patients with TDBI. 52 patients with TDBI in the chronic stage without large focal lesions were enrolled, and rCM was evaluated by fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) with statistical parametric mapping (SPM). All the patients were found to have disturbed consciousness or cognitive function and were divided into the following three groups: group A (n = 22), patients in a state with higher brain dysfunction; group B (n = 13), patients in a minimally conscious state; and group C (n = 17), patients in a vegetative state. rCM patterns on FDG-PET among these groups were evaluated and compared with those of normal control subjects on statistical parametric maps. Hypometabolism was consistently indicated bilaterally in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus. Hypometabolism in these regions was the most widespread and prominent in group C, and that in group B was more widespread and prominent than that in group A. Bilateral hypometabolism in the medial prefrontal regions, the medial frontobasal regions, the cingulate gyrus and the thalamus may reflect the clinical deterioration of TDBI, which is due to functional and structural disconnections of neural networks rather than due to direct cerebral focal contusion.

  12. Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis

    DTIC Science & Technology

    2017-10-01

    subacute and chronic post -injury periods as a potential prognostic marker for PTE. The SNTF blood test is an electrochemiluminescence-based sandwich...contribution of each of these types of injury to epileptogenic brain activity and ultimately post traumatic epilepsy (PTE) is unclear, as are the mechanisms...nine months post injury, and blood biomarkers are being analyzed throughout in order to evaluate them as potential prognostic measures for the

  13. Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel

    2016-03-01

    We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.

  14. Rapamycin preconditioning attenuates transient focal cerebral ischemia/reperfusion injury in mice.

    PubMed

    Yin, Lele; Ye, Shasha; Chen, Zhen; Zeng, Yaoying

    2012-12-01

    Rapamycin, an mTOR inhibitor and immunosuppressive agent in clinic, has protective effects on traumatic brain injury and neurodegenerative diseases. But, its effects on transient focal ischemia/reperfusion disease are not very clear. In this study, we examined the effects of rapamycin preconditioning on mice treated with middle cerebral artery occlusion/reperfusion operation (MCAO/R). We found that the rapamycin preconditioning by intrahippocampal injection 20 hr before MCAO/R significantly improved the survival rate and longevity of mice. It also decreased the neurological deficit score, infracted areas and brain edema. In addition, rapamycin preconditioning decreased the production of NF-κB, TNF-α, and Bax, but not Bcl-2, an antiapoptotic protein in the ischemic area. From these results, we may conclude that rapamycin preconditioning attenuate transient focal cerebral ischemia/reperfusion injury and inhibits apoptosis induced by MCAO/R in mice.

  15. The neural basis of impaired self-awareness after traumatic brain injury

    PubMed Central

    Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert

    2014-01-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network. PMID:24371217

  16. The neural basis of impaired self-awareness after traumatic brain injury.

    PubMed

    Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J

    2014-02-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.

  17. Interleukin-1 receptor 1 deletion in focal and diffuse experimental traumatic brain injury in mice.

    PubMed

    Chung, Joon Yong; Krapp, Nicolas; Wu, Limin; Lule, Sevda; McAllister, Lauren; Edmiston Iii, William; Martin, Samantha; Levy, Emily; Songtachalert, Tanya; Sherwood, John; Buckley, Erin; Sanders, Bharat; Izzy, Saef; Hickman, Suzanne; Guo, Shuzhen; Lok, Josephine; El Khoury, Joseph; Lo, Eng; Kaplan, David; Whalen, Michael

    2018-05-17

    Important differences in the biology of focal and diffuse traumatic brain injury (TBI) subtypes may result in unique pathophysiological responses to shared molecular mechanisms. Interleukin-1 (IL-1) signaling has been tested as a potential therapeutic target in preclinical models of cerebral contusion and diffuse TBI, and in a phase II clinical trial, but no published studies have examined IL-1 signaling in an impact/acceleration closed head injury (CHI) model. We hypothesized that genetic deletion of IL-1 receptor-1 (IL-1R1 KO) would be beneficial in focal (contusion) and CHI in mice. Wild type and IL-1R1 KO mice were subjected to controlled cortical impact (CCI), or to CHI. CCI produced brain leukocyte infiltration, HMGB1 translocation and release, edema, cell death, and cognitive deficits. CHI induced peak rotational acceleration of 9.7 x 105 + 8.1 x 104 rad/s2, delayed time to righting reflex, and robust Morris water maze deficits without deficits in tests of anxiety, locomotion, sensorimotor function, or depression. CHI produced no discernable acute plasmalemma damage or cell death, blood-brain barrier permeability to IgG, or brain edema and only a modest increase in brain leukocyte infiltration at 72 h. In both models, mature (17 kDa) interleukin-1 beta (IL-1β) was induced by 24 h in CD31+ endothelial cells isolated from injured brain but was not induced in CD11b+ cells in either model. High mobility group box protein-1 was released from injured brain cells in CCI but not CHI. Surprisingly, cognitive outcome in mice with global deletion of IL-1R1 was improved in CHI, but worse after CCI without affecting lesion size, edema, or infiltration of CD11b+/CD45+ leukocytes in CCI. IL-1R1 may induce unique biological responses, beneficial or detrimental to cognitive outcome, after TBI depending on the pathoanatomical subtype. Brain endothelium is a hitherto unrecognized source of mature IL-1β in both models.

  18. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  19. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    PubMed

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  20. [Factors indicative of differentiated approach to the treatment of severe focal lesions of the brain].

    PubMed

    Mamytov, M M; Yrysov, K B; Mamytova, É M

    2012-01-01

    The article is devoted the study of complex research 126 patients with a heavy craniocerebral trauma, accompanied vnutrimozgovoy traumatic haematoma and hearth crushing of cerebrum, passing treatment in the clinic of neuro-surgery. The use of modern diagnostic methods of research considerably changed the informative providing of diagnostic and medical process at the different hearth defeats of cerebrum, including traumatic hearth injuries of cerebrum. The long-term looking after intracraneal haematomas allowed to mark that haematomas suffer successive changes which are expressly traced on computer tomography researches in course of time.

  1. Neuropsychological outcome after traumatic temporal lobe damage.

    PubMed

    Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F

    1991-01-01

    The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.

  2. Investigation of blast-induced traumatic brain injury.

    PubMed

    Taylor, Paul A; Ludwigsen, John S; Ford, Corey C

    2014-01-01

    Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.

  3. Investigation of blast-induced traumatic brain injury

    PubMed Central

    Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

  4. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  5. Late-onset social anxiety disorder following traumatic brain injury.

    PubMed

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  6. Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions

    PubMed Central

    2014-01-01

    Emotional empathy—the ability to recognize, share in, and make inferences about another person’s emotional state—is critical for all social interactions. The neural mechanisms underlying emotional empathy have been widely studied with functional imaging of healthy participants. However, functional imaging studies reveal correlations between areas of activation and performance of a task, so that they can only reveal areas engaged in a task, rather than areas of the brain that are critical for the task. Lesion studies complement functional imaging, to identify areas necessary for a task. Impairments in emotional empathy have been mostly studied in neurological diseases with fairly diffuse injury, such as traumatic brain injury, autism and dementia. The classic ‘focal lesion’ is stroke. There have been scattered studies of patients with impaired empathy after stroke and other focal injury, but these studies have included small numbers of patients. This review will bring together data from these studies, to complement evidence from functional imaging. Here I review how focal lesions affect emotional empathy. I will show how lesion studies contribute to the understanding of the cognitive and neural mechanisms underlying emotional empathy, and how they contribute to the management of patients with impaired emotional empathy. PMID:24293265

  7. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  8. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  9. Animal models of post-traumatic epilepsy.

    PubMed

    Ostergard, Thomas; Sweet, Jennifer; Kusyk, Dorian; Herring, Eric; Miller, Jonathan

    2016-10-15

    Post-traumatic epilepsy (PTE) is defined as the development of unprovoked seizures in a delayed fashion after traumatic brain injury (TBI). PTE lies at the intersection of two distinct fields of study, epilepsy and neurotrauma. TBI is associated with a myriad of both focal and diffuse anatomic injuries, and an ideal animal model of epilepsy after TBI must mimic the characteristics of human PTE. The three most commonly used models of TBI are lateral fluid percussion, controlled cortical injury, and weight drop. Much of what is known about PTE has resulted from use of these models. In this review, we describe the most commonly used animal models of TBI with special attention to their advantages and disadvantages with respect to their use as a model of PTE. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Imaging of mild traumatic brain injury using 57Co and 99mTc HMPAO SPECT as compared to other diagnostic procedures.

    PubMed

    Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap

    2003-10-01

    Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.

  11. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model

    PubMed Central

    Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E

    2018-01-01

    Abstract The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood–brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood–brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath. PMID:29360998

  12. Comparison of Coil Designs for Transcranial Magnetic Stimulation on Mice

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    2015-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive treatment for neurological disorders using time varying magnetic field. The electric field generated by the time varying magnetic field is used to depolarize the brain neurons which can lead to measurable effects. TMS provides a surgical free method for the treatment of neurological brain disorders like depression, post-traumatic stress disorder, traumatic brain injury and Parkinson's disease. Before using TMS on human subjects, it is appropriate that its effects are verified on animals such as mice. The magnetic field intensity and stimulated region of the brain can be controlled by the shape, position and current in the coils. There are few reports on the designs of the coils for mice. In this paper, different types of coils are developed and compared using an anatomically realistic mouse model derived from MRI images. Parameters such as focality, depth of the stimulation, electric field strength on the scalp and in the deep brain regions, are taken into account. These parameters will help researchers to determine the most suitable coil design according to their need. This should result in improvements in treatment of specific disorders. Carver Charitable Trust.

  13. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  14. Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Paul, Erick; Forbes, Chad; Krueger, Frank; Goldman, David; Grafman, Jordan

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI. PMID:24586380

  15. P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury

    PubMed Central

    Yao, Changping; Williams, Anthony J.; Ottens, Andrew K.; Lu, X.-C. May; Liu, Ming Cheng; Hayes, Ronald L.; Wang, Kevin K.; Tortella, Frank C.

    2009-01-01

    Abstract To gain additional insights into the pathogenic cellular and molecular mechanisms underlying different types of brain injury (e.g., trauma versus ischemia), recently attention has focused on the discovery and study of protein biomarkers. In previous studies, using a high-throughput immunoblotting (HTPI) technique, we reported changes in 29 out of 998 proteins following acute injuries to the rat brain (penetrating traumatic versus focal ischemic). Importantly, we discovered that one protein, endothelial monocyte-activating polypeptide II precursor (p43/pro-EMAPII), was differentially expressed between these two types of brain injury. Among other functions, p43/pro-EMAPII is a known pro-inflammatory cytokine involved in the progression of apoptotic cell death. Our current objective was to verify the changes in p43/pro-EMAPII expression, and to evaluate the potentially important implications that the differential regulation of this protein has on injury development. At multiple time points following either a penetrating ballistic-like brain injury (PBBI), or a transient middle cerebral artery occlusion (MCAo) brain injury, tissue samples (6–72 h), CSF samples (24 h), and blood samples (24 h) were collected from rats for analysis. Changes in protein expression were assessed by Western blot analysis and immunohistochemistry. Our results indicated that p43/pro-EMAPII was significantly increased in brain tissues, CSF, and plasma following PBBI, but decreased after MCAo injury compared to their respective sham control samples. This differential expression of p43/pro-EMAPII may be a useful injury-specific biomarker associated with the underlying pathologies of traumatic versus ischemic brain injury, and provide valuable information for directing injury-specific therapeutics. PMID:19317603

  16. Shock wave-induced brain injury in rat: novel traumatic brain injury animal model.

    PubMed

    Nakagawa, Atsuhiro; Fujimura, Miki; Kato, Kaoruko; Okuyama, Hironobu; Hashimoto, Tokitada; Takayama, Kazuyoshi; Tominaga, Teiji

    2008-01-01

    In blast wave injury and high-energy traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. However, due to lack of reliable and reproducible technical approaches, extensive study of this type of injury has not yet been reported. The present study aims to develop reliable SW-induced brain injury model by focusing micro-explosion generated SW in the rat brain. Adult male rats were exposed to single SW focusing created by detonation of microgram order of silver azide crystals with laser irradiation at a focal point of a truncated ellipsoidal cavity of20 mm minor diameter and the major to minor diameter ratio of 1.41 after craniotomy. The pressure profile was recorded using polyvinylidene fluoride needle hydrophone. Animals were divided into three groups according to the given overpressure: Group I: Control, Group II: 12.5 +/- 2.5 MPa (high pressure), and Group III: 1.0 +/- 0.2 MPa (low pressure). Histological changes were evaluated over time by hematoxylin-eosin staining. Group II SW injuries resulted in contusional hemorrhage in reproducible manner. Group III exposure resulted in spindle-shaped changes of neurons and elongation of nucleus without marked neuronal injury. The use of SW loading by micro-explosion is useful to provide a reliable and reproducible SW-induced brain injury model in rats.

  17. Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model.

    PubMed

    Tagge, Chad A; Fisher, Andrew M; Minaeva, Olga V; Gaudreau-Balderrama, Amanda; Moncaster, Juliet A; Zhang, Xiao-Lei; Wojnarowicz, Mark W; Casey, Noel; Lu, Haiyan; Kokiko-Cochran, Olga N; Saman, Sudad; Ericsson, Maria; Onos, Kristen D; Veksler, Ronel; Senatorov, Vladimir V; Kondo, Asami; Zhou, Xiao Z; Miry, Omid; Vose, Linnea R; Gopaul, Katisha R; Upreti, Chirag; Nowinski, Christopher J; Cantu, Robert C; Alvarez, Victor E; Hildebrandt, Audrey M; Franz, Erich S; Konrad, Janusz; Hamilton, James A; Hua, Ning; Tripodis, Yorghos; Anderson, Andrew T; Howell, Gareth R; Kaufer, Daniela; Hall, Garth F; Lu, Kun P; Ransohoff, Richard M; Cleveland, Robin O; Kowall, Neil W; Stein, Thor D; Lamb, Bruce T; Huber, Bertrand R; Moss, William C; Friedman, Alon; Stanton, Patric K; McKee, Ann C; Goldstein, Lee E

    2018-02-01

    The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Functional Status after Blast-Plus-Impact Complex Concussive Traumatic Brain Injury in Evacuated United States Military Personnel

    PubMed Central

    MacDonald, Christine L.; Johnson, Ann M.; Nelson, Elliot C.; Werner, Nicole J.; Fang, Raymond; Flaherty, Stephen F.

    2014-01-01

    Abstract Fundamental questions remain unanswered about the longitudinal impact of blast-plus-impact complex traumatic brain injuries (TBI) from wars in Iraq and Afghanistan. This prospective, observational study investigated measures of clinical outcome in US military personnel evacuated to Landstuhl Regional Medical Center (LRMC) in Germany after such “blast-plus” concussive TBIs. Glasgow Outcome Scale-Extended assessments completed 6–12 months after injury indicated a moderate overall disability in 41/47 (87%) blast-plus TBI subjects and a substantial but smaller number (11/18, 61%, p=0.018) of demographically similar US military controls without TBI evacuated for other medical reasons. Cognitive function assessed with a neuropsychological test battery was not different between blast-plus TBI subjects and controls; performance of both groups was generally in the normal range. No subject was found to have focal neurological deficits. However, 29/47 (57%) of blast-plus subjects with TBI met all criteria for post-traumatic stress disorder (PTSD) versus 5/18 (28%) of controls (p=0.014). PTSD was highly associated with overall disability; 31/34 patients with PTSD versus 19/31 patients who did not meet full PTSD criteria had moderate to severe disability (p=0.0003). Symptoms of depression were also more severe in the TBI group (p=0.05), and highly correlated with PTSD severity (r=0.86, p<0.0001). Thus, in summary, high rates of PTSD and depression but not cognitive impairment or focal neurological deficits were observed 6–12 months after concussive blast-plus-impact complex TBI. Overall disability was substantially greater than typically reported in civilian non-blast concussive (“mild”) patients with TBI, even with polytrauma. The relationship between these clinical outcomes and specific blast-related aspects of brain injuries versus other combat-related factors remains unknown. PMID:24367929

  19. A review of mild traumatic brain injury diagnostics: current perspectives, limitations, and emerging technology.

    PubMed

    Cook, Glen A; Hawley, Jason S

    2014-10-01

    Mild traumatic brain injury (mTBI) or concussion is a common battlefield and in-garrison injury caused by transmission of mechanical forces to the head. The energy transferred in such events can cause structural and/or functional changes in the brain that manifest as focal neurological, cognitive, or behavioral dysfunction. Current diagnostic criteria for mTBI are highly limited, variable, and based on subjective self-report. The subjective nature of the symptoms, both in quantity and quality, together with their large overlap in other physical and behavioral maladies, limit the clinician's ability to accurately diagnose, treat, and make prognostic decisions after such injuries. These diagnostic challenges are magnified in an operational environment as well. The Department of Defense has invested significant resources into improving the diagnostic tools and accuracy for mTBI. This focus has been to supplement the clinician's examination with technology that is better able to objectify brain dysfunction after mTBI. Through this review, we discuss the current state of three promising technologies--soluble protein biomarkers, advanced neuroimaging, and quantitative electroencephalography--that are of particular interest within military medicine. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  20. Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide.

    PubMed

    Omalu, Bennet; Hammers, Jennifer L; Bailes, Julian; Hamilton, Ronald L; Kamboh, M Ilyas; Webster, Garrett; Fitzsimmons, Robert P

    2011-11-01

    Following his discovery of chronic traumatic encephalopathy (CTE) in football players in 2002, Dr. Bennet Omalu hypothesized that posttraumatic stress disorder (PTSD) in military veterans may belong to the CTE spectrum of diseases. The CTE surveillance at the Brain Injury Research Institute was therefore expanded to include deceased military veterans diagnosed with PTSD. The authors report the case of a 27-year-old United States Marine Corps (USMC) Iraqi war veteran, an amphibious assault vehicle crewman, who committed suicide by hanging after two deployments to Fallujah and Ramadi. He experienced combat and was exposed to mortar blasts and improvised explosive device blasts less than 50 m away. Following his second deployment he developed a progressive history of cognitive impairment, impaired memory, behavioral and mood disorders, and alcohol abuse. Neuropsychiatric assessment revealed a diagnosis of PTSD with hyperarousal (irritability and insomnia) and numbing. He committed suicide approximately 8 months after his honorable discharge from the USMC. His brain at autopsy appeared grossly unremarkable except for congestive brain swelling. There was no atrophy or remote focal traumatic brain injury such as contusional necrosis or hemorrhage. Histochemical and immunohistochemical brain tissue analysis revealed CTE changes comprising multifocal, neocortical, and subcortical neurofibrillary tangles and neuritic threads (ranging from none, to sparse, to frequent) with the skip phenomenon, accentuated in the depths of sulci and in the frontal cortex. The subcortical white matter showed mild rarefaction, sparse perivascular and neuropil infiltration by histiocytes, and mild fibrillary astrogliosis. Apolipoprotein E genotype was 3/4. The authors report this case as a sentinel case of CTE in an Iraqi war veteran diagnosed with PTSD to possibly stimulate new lines of thought and research in the possible pathoetiology and pathogenesis of PTSD in military veterans as part of the CTE spectrum of diseases, and as chronic sequelae and outcomes of repetitive traumatic brain injuries.

  1. Oxaloacetate decreases the infarct size and attenuates the reduction in evoked responses after photothrombotic focal ischemia in the rat cortex.

    PubMed

    Nagy, David; Marosi, Mate; Kis, Zsolt; Farkas, Tamas; Rakos, Gabriella; Vecsei, Laszlo; Teichberg, Vivian I; Toldi, Jozsef

    2009-09-01

    A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.

  2. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    PubMed

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  3. Neuroprotective effects of N-acetylcysteine amide on experimental focal penetrating brain injury in rats.

    PubMed

    Günther, Mattias; Davidsson, Johan; Plantman, Stefan; Norgren, Svante; Mathiesen, Tiit; Risling, Mårten

    2015-09-01

    We examined the effects of N-acetylcysteine amide (NACA) in the secondary inflammatory response following a novel method of focal penetrating traumatic brain injury (TBI) in rats. N-acetylcysteine (NAC) has limited but well-documented neuroprotective effects after experimental central nervous system ischemia and TBI, but its bioavailability is very low. We tested NACA, a modified form of NAC with higher membrane and blood-brain barrier permeability. Focal penetrating TBI was produced in male Sprague-Dawley rats randomly selected for NACA treatment (n=5) and no treatment (n=5). In addition, four animals were submitted to sham surgery. After 2 hours or 24 hours the brains were removed, fresh frozen, cut in 14 μm coronal sections and subjected to immunohistochemistry, immunofluorescence, Fluoro-Jade and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses. All treated animals were given 300 mg/kg NACA intraperitoneally (IP) 2 minutes post trauma. The 24 hour survival group was given an additional bolus of 300 mg/kg IP after 4 hours. NACA treatment decreased neuronal degeneration by Fluoro-Jade at 24 hours with a mean change of 35.0% (p<0.05) and decreased TUNEL staining indicative of apoptosis at 2 hours with a mean change of 38.7% (p<0.05). Manganese superoxide dismutase (MnSOD) increased in the NACA treatment group at 24 hours with a mean change of 35.9% (p<0.05). Levels of migrating macrophages and activated microglia (Ox-42/CD11b), nitric oxide-producing inflammatory enzyme iNOS, peroxynitrite marker 3-nitrotyrosine, NFκB translocated to the nuclei, cytochrome C and Bcl-2 were not affected. NACA treatment decreased neuronal degeneration and apoptosis and increased levels of antioxidative enzyme MnSOD. The antiapoptotic effect was likely regulated by pathways other than cytochrome C. Therefore, NACA prevents brain tissue damage after focal penetrating TBI, warranting further studies towards a clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Wilde, Elisabeth A; McClelland, Michelle M; Hanten, Gerri; Krawczyk, Daniel C; Cook, Lori G; Chu, Zili D; Vásquez, Ana C; Yallampalli, Ragini; Lin, Xiaodi; Hunter, Jill V; Levin, Harvey S

    2011-01-01

    The ability to make accurate judgments about the mental states of others, sometimes referred to as theory of mind (ToM), is often impaired following traumatic brain injury (TBI), and this deficit may contribute to problems with interpersonal relationships. The present study used an animated social attribution task (SAT) with functional magnetic resonance imaging (fMRI) to examine structures mediating ToM in adolescents with moderate to severe TBI. The study design also included a comparison group of matched, typically developing (TD) adolescents. The TD group exhibited activation within a number of areas that are thought to be relevant to ToM, including the medial prefrontal and anterior cingulate cortex, fusiform gyrus, and posterior temporal and parietal areas. The TBI subjects had significant activation within many of these same areas, but their activation was generally more intense and excluded the medial prefrontal cortex. Exploratory regression analyses indicated a negative relation between ToM-related activation and measures of white matter integrity derived from diffusion tensor imaging, while there was also a positive relation between activation and lesion volume. These findings are consistent with alterations in the level and pattern of brain activation that may be due to the combined influence of diffuse axonal injury and focal lesions.

  5. Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks.

    PubMed

    Lusch, Bethany; Weholt, Jake; Maia, Pedro D; Kutz, J Nathan

    2018-06-01

    The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to interpreting cognitive deficits from complex systems such as the human brain. However, we provide important insight and a quantitative framework for disorders in which FAS are implicated. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Assessing Quantitative Changes in Intrinsic Thalamic Networks in Blast and Nonblast Mild Traumatic Brain Injury: Implications for Mechanisms of Injury.

    PubMed

    Nathan, Dominic E; Bellgowan, Julie F; Oakes, Terrence R; French, Louis M; Nadar, Sreenivasan R; Sham, Elyssa B; Liu, Wei; Riedy, Gerard

    2016-06-01

    In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.

  7. [Evaluation of diffuse cerebral atrophy in patients with a history of traumatic brain injury and its relation to cognitive deterioration].

    PubMed

    Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M

    Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.

  8. Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia.

    PubMed

    Wion, Didier

    2017-07-01

    Surgery precedes both radiotherapy and chemotherapy as the first-line therapy for glioma. However, despite multimodal treatment, most glioma patients die from local recurrence in the resection margin. Glioma surgery is inherently lesional, and the response of brain tissue to surgery includes hemostasis, angiogenesis, reactive gliosis and inflammation. Unfortunately, these processes are also associated with tumorigenic side-effects. An increasing amount of evidence indicates that the response to a surgery-related brain injury is hijacked by residual glioma cells and participates in the local regeneration of tumor tissues at the resection margin. Inducing therapeutic hypothermia in the brain has long been used to treat the secondary damage, such as neuroinflammation and edema, that are caused by accidental traumatic brain injuries. There is compelling evidence to suggest that inducing therapeutic hypothermia at the resection margin would delay the local recurrence of glioma by (i) limiting cell proliferation, (ii) disrupting the pathological connection between inflammation and glioma recurrence, and (iii) limiting the consequences of the functional heterogeneity and complexity inherent to the tumor ecosystem. While the global whole-body cooling methods that are currently used to treat stroke in clinical practice may not adequately treat the resection margin, the future lies in implantable focal microcooling devices similar to those under development for the treatment of epilepsy. Preclinical and clinical strategies to evaluate focal hypothermia must be implemented to prevent glioma recurrence in the resection margin. Placing the resection margin in a state of hibernation may potentially provide such a long-awaited therapeutic breakthrough.

  9. Diffuse optical systems and methods to image physiological changes of the brain in response to focal TBI (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Volkov, Boris; Kofman, Itamar

    2017-02-01

    During the last four decades, various optical techniques have been proposed and intensively used for biomedical diagnosis and therapy both in animal model and in human. These techniques have several advantages over the traditional existing methods: simplicity in structure, low-cost, easy to handle, portable, can be used repeatedly over time near the patient bedside for continues monitoring, and offer high spatiotemporal resolution. In this work, we demonstrate the use of two optical imaging modalities namely, spatially modulated illumination and dual-wavelength laser speckle to image the changes in brain tissue chromophores, morphology, and metabolic before, during, and after the onset of focal traumatic brain injury in intact mouse head (n=15). Injury was applied in anesthetized mice by weight-drop apparatus using 50gram metal rod striking the mouse's head. Following data analysis, we show a series of hemodynamic and structural changes over time including higher deoxyhemoglobin, reduction in oxygen saturation and blood flow, cell swelling, etc., in comparison with baseline measurements. In addition, to validate the monitoring of cerebral blood flow by the imaging system, measurements with laser Doppler flowmetry were also performed (n=5), which confirmed reduction in blood flow following injury. Overall, our result demonstrates the capability of diffuse optical modalities to monitor and map brain tissue optical and physiological properties following brain trauma.

  10. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain

    PubMed Central

    Giammarinaro, B.; Coulouvrat, F.; Pinton, G.

    2016-01-01

    Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries. PMID:26833489

  11. Lesion Size Is Exacerbated in Hypoxic Rats Whereas Hypoxia-Inducible Factor-1 Alpha and Vascular Endothelial Growth Factor Increase in Injured Normoxic Rats: A Prospective Cohort Study of Secondary Hypoxia in Focal Traumatic Brain Injury.

    PubMed

    Thelin, Eric Peter; Frostell, Arvid; Mulder, Jan; Mitsios, Nicholas; Damberg, Peter; Aski, Sahar Nikkhou; Risling, Mårten; Svensson, Mikael; Morganti-Kossmann, Maria Cristina; Bellander, Bo-Michael

    2016-01-01

    Hypoxia following traumatic brain injury (TBI) is a severe insult shown to exacerbate the pathophysiology, resulting in worse outcome. The aim of this study was to investigate the effects of a hypoxic insult in a focal TBI model by monitoring brain edema, lesion volume, serum biomarker levels, immune cell infiltration, as well as the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). Female Sprague-Dawley rats (n = 73, including sham and naive) were used. The rats were intubated and mechanically ventilated. A controlled cortical impact device created a 3-mm deep lesion in the right parietal hemisphere. Post-injury, rats inhaled either normoxic (22% O2) or hypoxic (11% O2) mixtures for 30 min. The rats were sacrificed at 1, 3, 7, 14, and 28 days post-injury. Serum was collected for S100B measurements using ELISA. Ex vivo magnetic resonance imaging (MRI) was performed to determine lesion size and edema volume. Immunofluorescence was employed to analyze neuronal death, changes in cerebral macrophage- and neutrophil infiltration, microglia proliferation, apoptosis, complement activation (C5b9), IgG extravasation, HIF-1α, and VEGF. The hypoxic group had significantly increased blood levels of lactate and decreased pO2 (p < 0.0001). On MRI post-traumatic hypoxia resulted in larger lesion areas (p = 0.0173), and NeuN staining revealed greater neuronal loss (p = 0.0253). HIF-1α and VEGF expression was significantly increased in normoxic but not in hypoxic animals (p < 0.05). A trend was seen for serum levels of S100B to be higher in the hypoxic group at 1 day after trauma (p = 0.0868). No differences were observed between the groups in cytotoxic and vascular edema, IgG extravasation, neutrophils and macrophage aggregation, microglia proliferation, or C5b-9 expression. Hypoxia following focal TBI exacerbated the lesion size and neuronal loss. Moreover, there was a tendency to higher levels of S100B in the hypoxic group early after injury, indicating a potential validity as a biomarker of injury severity. In the normoxic group, the expression of HIF-1α and VEGF was found elevated, possibly indicative of neuro-protective responses occurring in this less severely injured group. Further studies are warranted to better define the pathophysiology of post-TBI hypoxia.

  12. A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]).

    PubMed

    Mahmood, Abda; Roberts, Ian; Shakur, Haleema

    2017-07-17

    Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. The CRASH-3 Intracranial Bleeding Mechanistic Sub-Study (CRASH-3 IBMS) is nested within a prospective, double-blind, multi-centre, parallel-arm randomised trial called the CRASH-3 trial. The CRASH-3 IBMS will be conducted in a cohort of approximately 1000 isolated traumatic brain injury patients enrolled in the CRASH-3 trial. In the CRASH-3 IBMS, brain scans acquired before and after randomisation are examined, using validated methods, for evidence of intracranial bleeding and cerebral ischaemia. The primary outcome is the total volume of intracranial bleeding measured on computed tomography after randomisation, adjusting for baseline bleeding volume. Secondary outcomes include progression of intracranial haemorrhage (from pre- to post-randomisation scans), new intracranial haemorrhage (seen on post- but not pre-randomisation scans), intracranial haemorrhage following neurosurgery, and new focal ischaemic lesions (seen on post-but not pre-randomisation scans). A linear regression model will examine whether receipt of the trial treatment can predict haemorrhage volume. Bleeding volumes and new ischaemic lesions will be compared across treatment groups using relative risks and 95% confidence intervals. The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury. The CRASH-3 trial was prospectively registered and the CRASH-3 IBMS is an addition to the original protocol registered at the International Standard Randomised Controlled Trials registry ( ISRCTN15088122 ) 19 July 2011, and ClinicalTrials.gov on 25 July 2011 (NCT01402882).

  13. Surgical Treatment of Severe Traumatic Brain Injury in Switzerland: Results from a Multicenter Study.

    PubMed

    Rossi-Mossuti, Frédéric; Fisch, Urs; Schoettker, Patrick; Gugliotta, Marinella; Morard, Marc; Schucht, Philippe; Schatlo, Bawarjan; Levivier, Marc; Walder, Bernhard; Fandino, Javier

    2016-01-01

    Since the introduction of modern surgical techniques and monitoring tools for the treatment of severe traumatic brain injury (TBI) in Switzerland, standardized nationwide operative procedures are still lacking. This study aimed to assess surgical management and monitoring strategies in patients admitted throughout Switzerland with severe TBI. Demographic, clinical, and radiologic data from a prospective national cohort study on severe brain-injured patients (Patient-relevant Endpoints after Brain Injury from Traumatic Accidents [PEBITA]) were collected during a 3-year period. This study evaluated patients admitted to 7 of the 11 trauma centers included in PEBITA. We retrospectively analyzed surgery-related computed tomography (CT) findings prior to and after treatment, intracranial pressure (ICP) monitoring, size and technical features of craniotomy, as well as surgical complications. ResULTS: This study included 353 of the 921 patients enrolled in PEBITA who underwent surgical treatment for severe TBI. At admission, acute subdural hematoma was the most frequent focal lesion diagnosed (n = 154 [44%]), followed by epidural hematoma (n = 96 [27%]) and intracerebral hematoma (n = 84 [24%]). A total of 198 patients (61%) presented with midline shift. Clinical deterioration in terms of Glasgow Coma Scale scores or intractable ICP values as an indication for surgical evacuation or decompression were documented in 20% and 6%, respectively. A total of 97 (27.5%) only received a catheter/probe for ICP monitoring. Surgical procedures to treat a focal lesion or decompress the cerebrum were performed in 256 patients (72.5%). Of the 290 surgical procedures (excluding ICP probe implantation), craniotomy (137 [47.2%]) or decompressive craniectomy (133 [45.9%]) were performed most frequently. The mean size of craniectomy in terms of maximal linear width on the CT axial slice was 8.4 ± 2.9 cm. Intraoperative ICP monitoring was reported in 61% of the interventions. Significant intraoperative brain swelling was documented in 50.6% of the procedures. Surgery-related complications occurred in 89 cases (32%). This study highlights the lack of standardized and systematic documentation of technical aspects of surgical treatment of patients presenting with severe TBI in Switzerland. Technical strategies such as size of craniectomy and the use of perioperative ICP measurement were not documented in a standardized manner. A prospective systematic surgical documentation system might contribute to future formulation of recommendations for the surgical treatment of patients presenting with severe TBI in Switzerland. Georg Thieme Verlag KG Stuttgart · New York.

  14. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.

    PubMed

    Taylor, Paul A; Ford, Corey C

    2009-06-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  15. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Corey C.; Taylor, Paul Allen

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots ofmore » maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.« less

  16. Motor, Visual and Emotional Deficits in Mice after Closed-Head Mild Traumatic Brain Injury Are Alleviated by the Novel CB2 Inverse Agonist SMM-189

    PubMed Central

    Reiner, Anton; Heldt, Scott A.; Presley, Chaela S.; Guley, Natalie H.; Elberger, Andrea J.; Deng, Yunping; D’Surney, Lauren; Rogers, Joshua T.; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G.; Gurley, Steven N.; Moore, Bob M.

    2014-01-01

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50–60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50–60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI. PMID:25561230

  17. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189.

    PubMed

    Reiner, Anton; Heldt, Scott A; Presley, Chaela S; Guley, Natalie H; Elberger, Andrea J; Deng, Yunping; D'Surney, Lauren; Rogers, Joshua T; Ferrell, Jessica; Bu, Wei; Del Mar, Nobel; Honig, Marcia G; Gurley, Steven N; Moore, Bob M

    2014-12-31

    We have developed a focal blast model of closed-head mild traumatic brain injury (TBI) in mice. As true for individuals that have experienced mild TBI, mice subjected to 50-60 psi blast show motor, visual and emotional deficits, diffuse axonal injury and microglial activation, but no overt neuron loss. Because microglial activation can worsen brain damage after a concussive event and because microglia can be modulated by their cannabinoid type 2 receptors (CB2), we evaluated the effectiveness of the novel CB2 receptor inverse agonist SMM-189 in altering microglial activation and mitigating deficits after mild TBI. In vitro analysis indicated that SMM-189 converted human microglia from the pro-inflammatory M1 phenotype to the pro-healing M2 phenotype. Studies in mice showed that daily administration of SMM-189 for two weeks beginning shortly after blast greatly reduced the motor, visual, and emotional deficits otherwise evident after 50-60 psi blasts, and prevented brain injury that may contribute to these deficits. Our results suggest that treatment with the CB2 inverse agonist SMM-189 after a mild TBI event can reduce its adverse consequences by beneficially modulating microglial activation. These findings recommend further evaluation of CB2 inverse agonists as a novel therapeutic approach for treating mild TBI.

  18. Concussion in Motor Vehicle Accidents: The Concussion Identification Index

    ClinicalTrials.gov

    2016-08-03

    Motor Vehicle Accidents; TBI (Traumatic Brain Injury); Brain Contusion; Brain Injuries; Cortical Contusion; Concussion Mild; Cerebral Concussion; Brain Concussion; Accidents, Traffic; Traffic Accidents; Traumatic Brain Injury With Brief Loss of Consciousness; Traumatic Brain Injury With no Loss of Consciousness; Traumatic Brain Injury With Loss of Consciousness

  19. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  20. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    PubMed

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  2. Substance P Mediates Reduced Pneumonia Rates After Traumatic Brain Injury

    PubMed Central

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D.; Pritts, Timothy A.; Caldwell, Charles C.; Remick, Daniel G.; Lentsch, Alex B.

    2014-01-01

    Objectives Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Design Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Setting Academic medical centers in Cincinnati, OH, and Boston, MA. Patients/Subjects Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8–10 weeks old. Interventions Administration of a substance P receptor antagonist in mice. Measurements and Main Results Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury–associated increases in bacterial clearance and survival. Conclusions The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non–head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury–induced release of substance P, which improves innate immunity to decrease pneumonia. PMID:25014065

  3. Substance P mediates reduced pneumonia rates after traumatic brain injury.

    PubMed

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B

    2014-09-01

    Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury-induced release of substance P, which improves innate immunity to decrease pneumonia.

  4. Sonographic diagnosis of hepatic erosion caused by umbilical catheterization.

    PubMed

    Schiavone, R; Narese, D; Ognibene, N; Rossi, E; Antonello, M; Basile, M; Di Maurizio, M; Defilippi, C

    2016-01-01

    The use of umbilical venous catheter (UVC) is common practice in neonatal units. The traumatic injury of the hepatic parenchyma is a rare complication. We present a case of a preterm newborn underwent ultrasound examination revealing a hyperechogenic focal lesion at the confluence of the hepatic veins This finding, according to patient's history, was suspected to be a traumatic injury of the liver parenchyma caused by umbilical catheterization. During sonographic follow-up this lesion gradually reduced until complete resolution. Finally, when focal hyperechogenic hepatic lesion is incidentally detected in newborn with history of UVC placement, the radiologists must consider the traumatic etiology.

  5. Memory and anatomical change in severe non missile traumatic brain injury: ∼1 vs. ∼8 years follow-up.

    PubMed

    Tomaiuolo, Francesco; Bivona, Umberto; Lerch, Jason P; Di Paola, Margherita; Carlesimo, Giovanni A; Ciurli, Paola; Matteis, Mariella; Cecchetti, Luca; Forcina, Antonio; Silvestro, Daniela; Azicnuda, Eva; Sabatini, Umberto; Di Giacomo, Dina; Caltagirone, Carlo; Petrides, Michael; Formisano, Rita

    2012-03-10

    In previous studies, we investigated a group of subjects who had suffered from a severe non missile traumatic brain injury (nmTBI) without macroscopic focal lesions and we found brain atrophy involving the hippocampus, fornix, corpus callosum, optic chiasm, and optic radiations. Memory test scores correlated mainly with fornix volumes [37,38]. In the present study, we re-examined 11 of these nmTBI subjects approximately 8 yr later. High-spatial resolution T1 weighted magnetic resonance images of the brain (1mm(3)) and standardised memory tests were performed once more in order to compare brain morphology and memory performance originally assessed 3-13 months after head injury (first study) and after 8-10 yr (present study). An overall improvement of memory test performance was demonstrated in the latest assessment, indicating that cognitive recovery in severe nmTBI subjects had not been completed within 3-13 months post-injury. It is notable that the volumes of the fornix and the hippocampus were reduced significantly from normal controls, but these volumes do not differ appreciatively between nmTBI subjects at first (after ∼1 yr) and at second (after ∼8 yr) scans. On the contrary, a clear reduction in the volume of the corpus callosus can be observed after ∼1 yr and a further significant reduction is evident after ∼8 yr, indicating that the neural degeneration in severe nmTBI continues long after the head trauma and relates to specific structures and not to the overall brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Prevalence of traumatic brain injury in incarcerated groups compared to the general population: a meta-analysis.

    PubMed

    Farrer, Thomas J; Hedges, Dawson W

    2011-03-30

    Traumatic brain injury can cause numerous behavioral abnormalities including aggression, violence, impulsivity, and apathy, factors that can be associated with criminal behavior and incarceration. To better characterize the association between traumatic brain injury and incarceration, we pooled reported frequencies of lifetime traumatic brain injury of any severity among incarcerated samples and compared the pooled frequency to estimates of the lifetime prevalence of traumatic brain injury in the general population. We found a significantly higher prevalence of traumatic brain injury in the incarcerated groups compared to the general population. As such, there appears to be an association between traumatic brain injury and incarceration. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Hitting a Moving Target: Basic Mechanisms of Recovery from Acquired Developmental Brain Injury

    PubMed Central

    Giza, Christopher C.; Kolb, Bryan; Harris, Neil G.; Asarnow, Robert F.; Prins, Mayumi L.

    2009-01-01

    Acquired brain injuries represent a major cause of disability in the pediatric population. Understanding responses to developmental acquired brain injuries requires knowledge of the neurobiology of normal development, age-at-injury effects and experience-dependent neuroplasticity. In the developing brain, full recovery cannot be considered as a return to the premorbid baseline, since ongoing maturation means that cerebral functioning in normal individuals will continue to advance. Thus, the recovering immature brain has to ‘hit a moving target’ to achieve full functional recovery, defined as parity with age-matched uninjured peers. This review will discuss the consequences of developmental injuries such as focal lesions, diffuse hypoxia and traumatic brain injury (TBI). Underlying cellular and physiological mechanisms relevant to age-at-injury effects will be described in considerable detail, including but not limited to alterations in neurotransmission, connectivity/network functioning, the extracellular matrix, response to oxidative stress and changes in cerebral metabolism. Finally, mechanisms of experience-dependent plasticity will be reviewed in conjunction with their effects on neural repair and recovery. PMID:19956795

  8. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  9. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  10. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  11. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  12. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  13. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    PubMed Central

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  14. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    NASA Astrophysics Data System (ADS)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (<2μg/L) 120 hours after injury and increased BDNF (>6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  15. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  16. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    PubMed

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo neuroimaging after minor head trauma. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  17. Employment outcome four years after a severe traumatic brain injury: results of the Paris severe traumatic brain injury study.

    PubMed

    Ruet, Alexis; Jourdan, Claire; Bayen, Eléonore; Darnoux, Emmanuelle; Sahridj, Dalila; Ghout, Idir; Azerad, Sylvie; Pradat Diehl, Pascale; Aegerter, Philippe; Charanton, James; Vallat Azouvi, Claire; Azouvi, Philippe

    2017-05-18

    To describe employment outcome four years after a severe traumatic brain injury by the assessment of individual patients' preinjury sociodemographic data, injury-related and postinjury factors. A prospective, multicenter inception cohort of 133 adult patients in the Paris area (France) who had received a severe traumatic brain injury were followed up postinjury at one and four years. Sociodemographic data, factors related to injury severity and one-year functional and cognitive outcomes were prospectively collected. The main outcome measure was employment status. Potential predictors of employment status were assessed by univariate and multivariate analysis. At the four-year follow-up, 38% of patients were in paid employment. The following factors were independent predictors of unemployment: being unemployed or studying before traumatic brain injury, traumatic brain injury severity (i.e., a lower Glasgow Coma Scale score upon admission and a longer stay in intensive care) and a lower one-year Glasgow Outcome Scale-Extended score. This study confirmed the low rate of long-term employment amongst patients after a severe traumatic brain injury. The results illustrated the multiple determinants of employment outcome and suggested that students who had received a traumatic brain injury were particularly likely to be unemployed, thus we propose that they may require specific support to help them find work. Implications for rehabilitation Traumatic brain injury is a leading cause of persistent disablity and can associate cognitive, emotional, physical and sensory impairments, which often result in quality-of-life reduction and job loss. Predictors of post-traumatic brain injury unemployment and job loss remains unclear in the particular population of severe traumatic brain injury patients. The present study highlights the post-traumatic brain injury student population require a close follow-up and vocational rehabilitation. The study suggests that return to work post-severe traumatic brain injury is frequently unstable and workers often experience difficulties that caregivers have to consider.

  18. Alcohol Exposure after Mild Focal Traumatic Brain Injury Impairs Neurological Recovery and Exacerbates Localized Neuroinflammation

    PubMed Central

    Teng, Sophie X; Katz, Paige S; Maxi, John K; Mayeux, Jacques P; Gilpin, Nicholas W; Molina, Patricia E

    2014-01-01

    Traumatic brain injury (TBI) represents a leading cause of morbidity and mortality among young individuals. Alcohol abuse is a risk factor associated with increased TBI incidence. In addition, up to 26% of TBI patients engage in alcohol consumption after TBI. Limited preclinical studies have examined the impact of post-injury alcohol exposure on TBI recovery. The aim of this study was to determine the isolated and combined effects of TBI and alcohol on cognitive, behavioral, and physical recovery, as well as on associated neuroinflammatory changes. Male Sprague-Dawley rats (~300 g) were subjected to a mild focal TBI by lateral fluid percussion (~30 PSI, ~25 ms) under isoflurane anesthesia. On day 4 after TBI, animals were exposed to either sub-chronic intermittent alcohol vapor (95% ethanol 14h on /10h off; BAL~200 mg/dL) or room air for 10 days. TBI induced neurological dysfunction reflected by an increased neurological severity score (NSS) showed progressive improvement in injured animals exposed to room air (TBI/air). In contrast, TBI animals exposed to alcohol vapor (TBI/alcohol) showed impaired NSS recovery throughout the 10-day period of alcohol exposure. Open-field exploration test revealed an increased anxiety-like behavior in TBI/alcohol group compared to TBI/air group. Additionally, alcohol-exposed animals showed decreased locomotion and impaired novel object recognition. Immunofluorescence showed enhanced reactive astrocytes, microglial activation, and HMGB1 expression localized to the injured cortex of TBI/alcohol as compared to TBI/air animals. The expression of neuroinflammatory markers showed significant positive correlation with NSS. These findings indicated a close relationship between accentuated neuroinflammation and impaired neurological recovery from post-TBI alcohol exposure. The clinical implications of long-term consequences in TBI patients exposed to alcohol during recovery warrant further investigation. PMID:25489880

  19. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury

    PubMed Central

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783

  20. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    PubMed

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  1. Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.

    PubMed

    Campbell, John N; Register, David; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. This study used a modified Golgi-Cox technique to track changes in spine density on the proximal dendrites of principal cells in rat forebrain regions. Spine density was assessed at 1 h, 24 h, and 1 week after a lateral fluid percussion TBI of moderate severity. At 1 h after TBI, no changes in spine density were observed in any of the brain regions examined. By 24 h after TBI, however, spine density had decreased in ipsilateral neocortex in layer II and III and dorsal dentate gyrus (dDG). This apparent loss of spines was prevented by a single, post-injury administration of the calcineurin inhibitor FK506. These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.

  2. 77 FR 13578 - Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... DEPARTMENT OF EDUCATION Disability and Rehabilitation Research Project; Traumatic Brain Injury... Rehabilitation Research Project--Traumatic Brain Injury Model Systems Centers. CFDA Number: 84.133A-5. SUMMARY... for Disability and Rehabilitation Research Projects (DRRPs) to serve as Traumatic Brain Injury Model...

  3. Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury Research Informatics Systems

    DTIC Science & Technology

    2016-10-01

    Traumatic Brain Injury Research Informatics Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0564 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AWARD NUMBER: W81XWH-14-1-0564 TITLE: Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury...Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113

  4. 78 FR 63452 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...). SUPPLEMENTARY INFORMATION: Title; Associated Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress...-service U.S. military personnel, with a special focus on the effects of traumatic brain injury (TBI) and...) to carry out the research study ``TRAUMATIC BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG...

  5. Protection by Neuroglobin Expression in Brain Pathologies

    PubMed Central

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E.

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes. PMID:27672379

  6. Focal stimulation of the brain by entirely extracranial means. An example of radiation controlled focal pharmacology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remler, M.P.

    A method for focal stimulation of the brain by entirely extracranial means is presented. A focal x ray lesion of cortex was made that reduces the blood-brain barrier in that area. Then parenteral penicillin was administered. Penicillin is primarily confined to the vascular space by the blood-brain barrier in all parts of the brain except for some leakage into the brain at higher doses. An increased concentration of penicillin is created in the irradiated cortex. The penicillin creates a focal epileptic lesion in the irradiated area. This is an example of radiation-controlled focal pharmacology in the central nervous system. (auth)

  7. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  8. The Spectrum of Disease in Chronic Traumatic Encephalopathy

    ERIC Educational Resources Information Center

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…

  9. 75 FR 81242 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of... personnel, with a special focus on the effects of traumatic brain injury (TBI) and Post-traumatic Stress... BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG-TERM QUALITY OF LIFE OUTCOMES IN INJURED TRI...

  10. Myelin and oligodendrocyte lineage cells in white matter pathology and plasticity after traumatic brain injury.

    PubMed

    Armstrong, Regina C; Mierzwa, Amanda J; Sullivan, Genevieve M; Sanchez, Maria A

    2016-11-01

    Impact to the head or rapid head acceleration-deceleration can cause traumatic brain injury (TBI) with a characteristic pathology of traumatic axonal injury (TAI) and secondary damage in white matter tracts. Myelin and oligodendrocyte lineage cells have significant roles in the progression of white matter pathology after TBI and in the potential for plasticity and subsequent recovery. The myelination pattern of specific brain regions, such as frontal cortex, may also increase susceptibility to neurodegeneration and psychiatric symptoms after TBI. White matter pathology after TBI depends on the extent and distribution of axon damage, microhemorrhages and/or neuroinflammation. TAI occurs in a pattern of damaged axons dispersed among intact axons in white matter tracts. TAI accompanied by bleeding and/or inflammation produces focal regions of overt tissue destruction, resulting in loss of both axons and myelin. White matter regions with TAI may also exhibit demyelination of intact axons. Demyelinated axons that remain viable have the potential for remyelination and recovery of function. Indeed, animal models of TBI have demonstrated demyelination that is associated with evidence of remyelination, including oligodendrocyte progenitor cell proliferation, generation of new oligodendrocytes, and formation of thinner myelin. Changes in neuronal activity that accompany TBI may also involve myelin remodeling, which modifies conduction efficiency along intact myelinated fibers. Thus, effective remyelination and myelin remodeling may be neurobiological substrates of plasticity in neuronal circuits that require long-distance communication. This perspective integrates findings from multiple contexts to propose a model of myelin and oligodendrocyte lineage cell relevance in white matter injury after TBI. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Published by Elsevier Ltd.

  11. Combined Blockade of Interleukin-1α and -1β Signaling Protects Mice from Cognitive Dysfunction after Traumatic Brain Injury

    PubMed Central

    Newell, Elizabeth A.; Todd, Brittany P.; Mahoney, Jolonda; Pieper, Andrew A.; Ferguson, Polly J.

    2018-01-01

    Abstract Diffuse activation of interleukin-1 inflammatory cytokine signaling after traumatic brain injury (TBI) elicits progressive neurodegeneration and neuropsychiatric dysfunction, and thus represents a potential opportunity for therapeutic intervention. Although interleukin (IL)-1α and IL-1β both activate the common type 1 IL-1 receptor (IL-1RI), they manifest distinct injury-specific roles in some models of neurodegeneration. Despite its potential relevance to treating patients with TBI, however, the individual contributions of IL-1α and IL-1β to TBI-pathology have not been previously investigated. To address this need, we applied genetic and pharmacologic approaches in mice to dissect the individual contributions of IL-1α, IL-β, and IL-1RI signaling to the pathophysiology of fluid percussion–mediated TBI, a model of mixed focal and diffuse TBI. IL-1RI ablation conferred a greater protective effect on brain cytokine expression and cognitive function after TBI than did individual IL-1α or IL-1β ablation. This protective effect was recapitulated by treatment with the drug anakinra, a recombinant naturally occurring IL-1RI antagonist. Our data thus suggest that broad targeting of IL-1RI signaling is more likely to reduce neuroinflammation and preserve cognitive function after TBI than are approaches that individually target IL-1α or IL-1β signaling. PMID:29662944

  12. Combined Blockade of Interleukin-1α and -1β Signaling Protects Mice from Cognitive Dysfunction after Traumatic Brain Injury.

    PubMed

    Newell, Elizabeth A; Todd, Brittany P; Mahoney, Jolonda; Pieper, Andrew A; Ferguson, Polly J; Bassuk, Alexander G

    2018-01-01

    Diffuse activation of interleukin-1 inflammatory cytokine signaling after traumatic brain injury (TBI) elicits progressive neurodegeneration and neuropsychiatric dysfunction, and thus represents a potential opportunity for therapeutic intervention. Although interleukin (IL)-1α and IL-1β both activate the common type 1 IL-1 receptor (IL-1RI), they manifest distinct injury-specific roles in some models of neurodegeneration. Despite its potential relevance to treating patients with TBI, however, the individual contributions of IL-1α and IL-1β to TBI-pathology have not been previously investigated. To address this need, we applied genetic and pharmacologic approaches in mice to dissect the individual contributions of IL-1α, IL-β, and IL-1RI signaling to the pathophysiology of fluid percussion-mediated TBI, a model of mixed focal and diffuse TBI. IL-1RI ablation conferred a greater protective effect on brain cytokine expression and cognitive function after TBI than did individual IL-1α or IL-1β ablation. This protective effect was recapitulated by treatment with the drug anakinra, a recombinant naturally occurring IL-1RI antagonist. Our data thus suggest that broad targeting of IL-1RI signaling is more likely to reduce neuroinflammation and preserve cognitive function after TBI than are approaches that individually target IL-1α or IL-1β signaling.

  13. Selective Cognitive Dysfunction Is Related to a Specific Pattern of Cerebral Damage in Persons With Severe Traumatic Brain Injury.

    PubMed

    Di Paola, Margherita; Phillips, Owen; Costa, Alberto; Ciurli, Paola; Bivona, Umberto; Catani, Sheila; Formisano, Rita; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2015-01-01

    Cognitive dysfunction is a common sequela of traumatic brain injury (TBI); indeed, patients show a heterogeneous pattern of cognitive deficits. This study was aimed at investigating whether patients who show selective cognitive dysfunction after TBI present a selective pattern of cerebral damage. Post-Coma Unit, IRCCS Santa Lucia Foundation, Rome, Italy. We collected data from 8 TBI patients with episodic memory disorder and without executive deficits, 7 patients with executive function impairment and preserved episodic memory capacities, and 16 healthy controls. We used 2 complementary analyses: (1) an exploratory and qualitative approach in which we investigated the distribution of lesions in the TBI groups, and (2) a hypothesis-driven and quantitative approach in which we calculated the volume of hippocampi of individuals in the TBI and control groups. Neuropsychological scores and hippocampal volumes. We found that patients with TBI and executive functions impairment presented focal lesions involving the frontal lobes, whereas patients with TBI and episodic memory disorders showed atrophic changes of the mesial temporal structure (hippocampus). The complexity of TBI is due to several heterogeneous factors. Indeed, studying patients with TBI and selective cognitive dysfunction should lead to a better understanding of correlations with specific brain impairment and damage, better follow-up of long-term outcome scenarios, and better planning of selective and focused rehabilitation programs.

  14. A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas.

    PubMed

    García-Panach, Javier; Lull, Nuria; Lull, Juan José; Ferri, Joan; Martínez, Carlos; Sopena, Pablo; Robles, Montserrat; Chirivella, Javier; Noé, Enrique

    2011-09-01

    The objective was to study the correlations and the differences in glucose metabolism between the thalamus and cortical structures in a sample of severe traumatic brain injury (TBI) patients with different neurological outcomes. We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). The patients were divided into three groups: a vegetative or minimally-conscious state (MCS&VS) group (n=17), which included patients who were in a vegetative or a minimally conscious state; an In-post-traumatic amnesia (In-PTA) group (n=12), which included patients in PTA; and an Out-PTA group (n=20), which included patients who had recovered from PTA. SPM5 software was used to determine the metabolic differences between the groups. FDG-PET images were normalized and four regions of interest were generated around the thalamus, precuneus, and the frontal and temporal lobes. The groups were parameterized using Student's t-test. Principal component analysis was used to obtain an intensity-estimated-value per subject to correlate the function between the structures. Differences in glucose metabolism in all structures were related to the neurological outcome, and the most severe patients showed the most severe hypometabolism. We also found a significant correlation between the cortico-thalamo-cortical metabolism in all groups. Voxel-based analysis suggests a functional correlation between these four areas, and decreased metabolism was associated with less favorable outcomes. Higher levels of activation of the cortico-cortical connections appear to be related to better neurological condition. Differences in the thalamo-cortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.

  15. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...

  16. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.

    PubMed

    Carroll, Linda J; Cassidy, J David; Holm, Lena; Kraus, Jess; Coronado, Victor G

    2004-02-01

    The WHO Collaborating Centre for Neurotrauma Task Force on Mild Traumatic Brain Injury performed a comprehensive search and critical review of the literature published between 1980 and 2002 to assemble the best evidence on the epidemiology, diagnosis, prognosis and treatment of mild traumatic brain injury. Of 743 relevant studies, 313 were accepted on scientific merit and comprise our best-evidence synthesis. The current literature on mild traumatic brain injury is of variable quality and we report the most common methodological flaws. We make recommendations for avoiding the shortcomings evident in much of the current literature and identify topic areas in urgent need of further research. This includes the need for large, well-designed studies to support evidence-based guidelines for emergency room triage of children with mild traumatic brain injury and to explore more fully the issue of prognosis after mild traumatic brain injury in the elderly population. We also advocate use of standard criteria for defining mild traumatic brain injury and propose a definition.

  17. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  18. SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.

    PubMed

    Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q

    1998-05-01

    The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.

  19. Traumatic brain injury and delayed sequelae: a review--traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia.

    PubMed

    Kiraly, Michael; Kiraly, Stephen J

    2007-11-12

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  20. Lateral automobile impacts and the risk of traumatic brain injury.

    PubMed

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year in the United States.

  1. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  2. The functional neuroanatomy of decision-making.

    PubMed

    Rosenbloom, Michael H; Schmahmann, Jeremy D; Price, Bruce H

    2012-01-01

    Decision-making is a complex executive function that draws on past experience, present goals, and anticipation of outcome, and which is influenced by prevailing and predicted emotional tone and cultural context. Functional imaging investigations and focal lesion studies identify the orbitofrontal, anterior cingulate, and dorsolateral prefrontal cortices as critical to decision-making. The authors review the connections of these prefrontal regions with the neocortex, limbic system, basal ganglia, and cerebellum, highlight current ideas regarding the cognitive processes of decision-making that these networks subserve, and present a novel integrated neuroanatomical model for decision-making. Finally, clinical relevance of this circuitry is illustrated through a discussion of frontotemporal dementia, traumatic brain injury, and sociopathy.

  3. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at autopsy; however, promising efforts to develop imaging, spinal fluid, and peripheral blood biomarkers are underway to diagnose and monitor the course of disease in living subjects. © 2015 Elsevier B.V. All rights reserved.

  4. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-11-2-0011 TITLE: Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Oct 2014 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...fluid percussion, traumatic brain injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids , microglia and 16

  5. Differences in MMPI-2 FBS and RBS scores in brain injury, probable malingering, and conversion disorder groups: a preliminary study.

    PubMed

    Peck, C P; Schroeder, R W; Heinrichs, R J; Vondran, E J; Brockman, C J; Webster, B K; Baade, L E

    2013-01-01

    This study examined differences in raw scores on the Symptom Validity Scale and Response Bias Scale (RBS) from the Minnesota Multiphasic Personality Inventory-2 in three criterion groups: (i) valid traumatic brain injured, (ii) invalid traumatic brain injured, and (iii) psychogenic non-epileptic seizure disorders. Results indicate that a >30 raw score cutoff for the Symptom Validity Scale accurately identified 50% of the invalid traumatic brain injured group, while misclassifying none of the valid traumatic brain injured group and 6% of the psychogenic non-epileptic seizure disorder group. Using a >15 RBS raw cutoff score accurately classified 50% of the invalid traumatic brain injured group and misclassified fewer than 10% of the valid traumatic brain injured and psychogenic non-epileptic seizure disorder groups. These cutoff scores used conjunctively did not misclassify any members of the psychogenic non-epileptic seizure disorder or valid traumatic brain injured groups, while accurately classifying 44% of the invalid traumatic brain injured individuals. Findings from this preliminary study suggest that the conjunctive use of the Symptom Validity Scale and the RBS from the Minnesota Multiphasic Personality Inventory-2 may be useful in differentiating probable malingering from individuals with brain injuries and conversion disorders.

  6. Altruistic decisions following penetrating traumatic brain injury.

    PubMed

    Moll, Jorge; de Oliveira-Souza, Ricardo; Basilio, Rodrigo; Bramati, Ivanei Edson; Gordon, Barry; Rodríguez-Nieto, Geraldine; Zahn, Roland; Krueger, Frank; Grafman, Jordan

    2018-05-01

    The cerebral correlates of altruistic decisions have increasingly attracted the interest of neuroscientists. To date, investigations on the neural underpinnings of altruistic decisions have primarily been conducted in healthy adults undergoing functional neuroimaging as they engaged in decisions to punish third parties. The chief purpose of the present study was to investigate altruistic decisions following focal brain damage with a novel altruistic decision task. In contrast to studies that have focused either on altruistic punishment or donation, the Altruistic Decision Task allows players to anonymously punish or donate to 30 charitable organizations involved with salient societal issues such as abortion, nuclear energy and civil rights. Ninety-four Vietnam War veterans with variable patterns of penetrating traumatic brain injury and 28 healthy veterans who also served in combat participated in the study as normal controls. Participants were asked to invest $1 to punish or reward real societal organizations, or keep the money for themselves. Associations between lesion distribution and performance on the task were analysed with multivariate support vector regression, which enables the assessment of the joint contribution of multiple regions in the determination of a given behaviour of interest. Our main findings were: (i) bilateral dorsomedial prefrontal lesions increased altruistic punishment, whereas lesions of the right perisylvian region and left temporo-insular cortex decreased punishment; (ii) altruistic donations were increased by bilateral lesions of the dorsomedial parietal cortex, whereas lesions of the right posterior superior temporal sulcus and middle temporal gyri decreased donations; (iii) altruistic punishment and donation were only weakly correlated, emphasizing their dissociable neuroanatomical associations; and (iv) altruistic decisions were not related to post-traumatic personality changes. These findings indicate that altruistic punishment and donation are determined by largely non-overlapping cerebral regions, which have previously been implicated in social cognition and moral experience such as evaluations of intentionality and intuitions of justice and morality.10.1093/brain/awy064_video1awy064media15758316955001.

  7. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    PubMed

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  8. Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk.

    PubMed

    Nasser, Mohammad; Bejjani, Fabienne; Raad, Mohamad; Abou-El-Hassan, Hadi; Mantash, Sarah; Nokkari, Amaly; Ramadan, Naify; Kassem, Nouhad; Mondello, Stefania; Hamade, Eva; Darwish, Hala; Zibara, Kazem; Kobeissy, Firas

    2016-01-01

    Traumatic brain injury, often referred to as the "silent epidemic," is a nondegenerative, non-congenital insult to the brain due to a blow or penetrating object that disrupts the function of the brain leading to permanent or temporary impairment of cognition, physical and psychosocial functions. Traumatic brain injury usually has poor prognosis for long-term treatment and is a major cause of mortality and morbidity worldwide; approximately 10 million deaths and/or hospitalizations annually are directly related to traumatic brain injury. Traumatic brain injury involves primary and secondary insults. Primary injury occurs during the initial insult, and results from direct or indirect force applied to the physical structures of the brain. Secondary injury is characterized by longer-term degeneration of neurons, glial cells, and vascular tissues due to activation of several proteases, glutamate and pro-inflammatory cytokine secretion. In addition, there is growing evidence that the blood-brain barrier is involved in the course of traumatic brain injury pathophysiology and has detrimental effects on the overall pathology of brain trauma, as will be discussed in this work.

  9. A comparison of participation outcome measures and the International Classification of Functioning, Disability and Health Core Sets for traumatic brain injury.

    PubMed

    Chung, Pearl; Yun, Sarah Jin; Khan, Fary

    2014-02-01

    To compare the contents of participation outcome measures in traumatic brain injury with the International Classification of Functioning, Disability and Health (ICF) Core Sets for traumatic brain injury. A systematic search with an independent review process selected relevant articles to identify outcome measures in participation in traumatic brain injury. Instruments used in two or more studies were linked to the ICF categories, which identified categories in participation for comparison with the ICF Core Sets for traumatic brain injury. Selected articles (n = 101) identified participation instruments used in two or more studies (n = 9): Community Integration Questionnaire, Craig Handicap Assessment and Reporting Technique, Mayo-Portland Adaptability Inventory-4 Participation Index, Sydney Psychosocial Reintegration Scale Version-2, Participation Assessment with Recombined Tool-Objective, Community Integration Measure, Participation Objective Participation Subjective, Community Integration Questionnaire-2, and Quality of Community Integration Questionnaire. Each instrument was linked to 4-35 unique second-level ICF categories, of which 39-100% related to participation. Instruments addressed 86-100% and 50-100% of the participation categories in the Comprehensive and Brief ICF Core Sets for traumatic brain injury, respectively. Participation measures in traumatic brain injury were compared with the ICF Core Sets for traumatic brain injury. The ICF Core Sets for traumatic brain injury could contribute to the development and selection of participation measures.

  10. Prehospital Tranexamic Acid Use for Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-2-0090 TITLE: Prehospital Tranexamic Acid Use for Traumatic Brain...2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Prehospital Tranexamic Acid Use for Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...N/A 7. Appendices-N/A Page 7 Early Tranexamic Acid Use for Traumatic Brain Injury DMRDP Funding Opportunity Number: W81XWH-12-CCCJPC

  11. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    PubMed Central

    Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.

    2011-01-01

    BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.) PMID:21631321

  12. Increased calcineurin expression after pilocarpine-induced status epilepticus is associated with brain focal edema and astrogliosis.

    PubMed

    Liu, Jinzhi; Li, Xiaolin; Chen, Liguang; Xue, Ping; Yang, Qianqian; Wang, Aihua

    2015-07-28

    Calcineurin plays an important role in the development of neuronal excitability, modulation of receptor's function and induction of apoptosis in neurons. It has been established in kindling models that status epilepticus induces brain focal edema and astrocyte activation. However, the role of calcineurin in brain focal edema and astrocyte activation in status epilepticus has not been fully understood. In this study, we employed a model of lithium-pilocarpine-induced status epilepticus and detected calcineurin expression in hippocampus by immunoblotting, brain focal edema by non-invasive magnetic resonance imaging (MRI-7T) and astrocyte expression by immunohistochemistry. We found that the brain focal edema was seen at 24 h after status epilepticus, and astrocyte expression was obviously seen at 7 d after status epilepticus. Meanwhile, calcineurin expression was seen at24 h and retained to 7 d after status epilepticus. A FK506, a calcineurin inhibitor, remarkably suppressed the status epilepticus-induced brain focal edema and astrocyte expression. Our data suggested that calcineurin overexpression plays a very important role in brain focal edema and astrocyte expression. Therefore, calcineurin may be a novel candidate for brain focal edema occurring and intracellular trigger of astrogliosis in status epilepticus.

  13. Head Trauma: First Aid

    MedlinePlus

    ... id=258&terms=cpr. Accessed Oct. 8, 2014. Traumatic brain injury. The Merck Manual Professional Edition. http://www.merckmanuals.com/professional/injuries_poisoning/traumatic_brain_injury_tbi/traumatic_brain_injury.html. Accessed Oct. 8, ...

  14. Earliest Cranio-Encephalic Trauma from the Levantine Middle Palaeolithic: 3D Reappraisal of the Qafzeh 11 Skull, Consequences of Pediatric Brain Damage on Individual Life Condition and Social Care

    PubMed Central

    Coqueugniot, Hélène; Dutour, Olivier; Arensburg, Baruch; Duday, Henri; Vandermeersch, Bernard; Tillier, Anne-marie

    2014-01-01

    The Qafzeh site (Lower Galilee, Israel) has yielded the largest Levantine hominin collection from Middle Palaeolithic layers which were dated to circa 90–100 kyrs BP or to marine isotope stage 5b–c. Within the hominin sample, Qafzeh 11, circa 12–13 yrs old at death, presents a skull lesion previously attributed to a healed trauma. Three dimensional imaging methods allowed us to better explore this lesion which appeared as being a frontal bone depressed fracture, associated with brain damage. Furthermore the endocranial volume, smaller than expected for dental age, supports the hypothesis of a growth delay due to traumatic brain injury. This trauma did not affect the typical human brain morphology pattern of the right frontal and left occipital petalia. It is highly probable that this young individual suffered from personality and neurological troubles directly related to focal cerebral damage. Interestingly this young individual benefited of a unique funerary practice among the south-western Asian burials dated to Middle Palaeolithic. PMID:25054798

  15. Post traumatic Headache and Psychological Health: Mindfulness Training for Mild TraumaticBrain Injury

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-10-1-1021 TITLE: Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury...traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...health, and quality of life of our soldiers. This project addresses multiple FY09 TBI/PH topic areas by validating an evidence-based, mind -body approach

  16. Experiences of giving and receiving care in traumatic brain injury: An integrative review.

    PubMed

    Kivunja, Stephen; River, Jo; Gullick, Janice

    2018-04-01

    To synthesise the literature on the experiences of giving or receiving care for traumatic brain injury for people with traumatic brain injury, their family members and nurses in hospital and rehabilitation settings. Traumatic brain injury represents a major source of physical, social and economic burden. In the hospital setting, people with traumatic brain injury feel excluded from decision-making processes and perceive impatient care. Families describe inadequate information and support for psychological distress. Nurses find the care of people with traumatic brain injury challenging particularly when experiencing heavy workloads. To date, a contemporary synthesis of the literature on people with traumatic brain injury, family and nurse experiences of traumatic brain injury care has not been conducted. Integrative literature review. A systematic search strategy guided by the PRISMA statement was conducted in CINAHL, PubMed, Proquest, EMBASE and Google Scholar. Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) integrative review framework guided data reduction, data display, data comparison and conclusion verification. Across the three participant categories (people with traumatic brain injury/family members/nurses) and sixteen subcategories, six cross-cutting themes emerged: seeking personhood, navigating challenging behaviour, valuing skills and competence, struggling with changed family responsibilities, maintaining productive partnerships and reflecting on workplace culture. Traumatic brain injury creates changes in physical, cognitive and emotional function that challenge known ways of being in the world for people. This alters relationship dynamics within families and requires a specific skill set among nurses. Recommendations include the following: (i) formal inclusion of people with traumatic brain injury and families in care planning, (ii) routine risk screening for falls and challenging behaviour to ensure that controls are based on accurate assessment, (iii) formal orientation and training for novice nurses in the management of challenging behaviour, (iv) professional case management to guide access to services and funding and (v) personal skill development to optimise family functioning. © 2018 John Wiley & Sons Ltd.

  17. Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI.

    PubMed

    Lotan, E; Morley, C; Newman, J; Qian, M; Abu-Amara, D; Marmar, C; Lui, Y W

    2018-05-24

    Cerebral microhemorrhages are a known marker of mild traumatic brain injury. Blast-related mild traumatic brain injury relates to a propagating pressure wave, and there is evidence that the mechanism of injury in blast-related mild traumatic brain injury may be different from that in blunt head trauma. Two recent reports in mixed cohorts of blunt and blast-related traumatic brain injury in military personnel suggest that the prevalence of cerebral microhemorrhages is lower than in civilian head injury. In this study, we aimed to characterize the prevalence of cerebral microhemorrhages in military service members specifically with chronic blast-related mild traumatic brain injury. Participants were prospectively recruited and underwent 3T MR imaging. Susceptibility-weighted images were assessed by 2 neuroradiologists independently for the presence of cerebral microhemorrhages. Our cohort included 146 veterans (132 men) who experienced remote blast-related mild traumatic brain injury (mean, 9.4 years; median, 9 years after injury). Twenty-one (14.4%) reported loss of consciousness for <30 minutes. Seventy-seven subjects (52.7%) had 1 episode of blast-related mild traumatic brain injury; 41 (28.1%) had 2 episodes; and 28 (19.2%) had >2 episodes. No cerebral microhemorrhages were identified in any subject, as opposed to the frequency of SWI-detectable cerebral microhemorrhages following blunt-related mild traumatic brain injury in the civilian population, which has been reported to be as high as 28% in the acute and subacute stages. Our results may reflect differences in pathophysiology and the mechanism of injury between blast- and blunt-related mild traumatic brain injury. Additionally, the chronicity of injury may play a role in the detection of cerebral microhemorrhages. © 2018 by American Journal of Neuroradiology.

  18. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    PubMed

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  19. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    PubMed

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can affect recovery.

  20. Mild Traumatic Brain Injury

    MedlinePlus

    ... Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity of TBI Symptoms ... across the country. National Center for Telehealth and Technology t2health.dcoe.mil The National Center for Telehealth ...

  1. Playground Safety

    MedlinePlus

    ... 000 of these children are treated for a traumatic brain injury (TBI), including concussion. 2 Overall, more research is ... the Playground: Concussion Safety Tips for Parents CDC's Traumatic Brain Injury Learn more about traumatic brain injury and concussion. ...

  2. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    PubMed

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  4. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    PubMed

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  5. Transforming Research and Clinical Knowledge in Traumatic Brain Injury

    DTIC Science & Technology

    2016-12-01

    Szuflita, N., Orman, J., and Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: common data ele- ments...Szuflita N, Orman J, et al. Advancing Integrated Research in Psychological Health and Traumatic Brain Injury: Common Data Elements. Arch Phys Med Rehabil...R, Gleason T, et al. Advancing integrated research in psychological health and traumatic brain injury: common data elements. Arch Phys Med Rehabil

  6. High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-07

    RE, Melo B, Christensen B, Ngo L-A, Monette G, Bradbury C. 2008. Measuring premorbid IQ in traumatic brain injury: An examination of the validity of...High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury by Brendan J. Finton Thesis...Mild Traumatic Brain Injury" is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. Brendan J

  7. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  8. Training communication partners of people with severe traumatic brain injury improves everyday conversations: a multicenter single blind clinical trial.

    PubMed

    Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael

    2013-07-01

    To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.

  9. Executive functioning of complicated-mild to moderate traumatic brain injury patients with frontal contusions.

    PubMed

    Ghawami, Heshmatollah; Sadeghi, Sadegh; Raghibi, Mahvash; Rahimi-Movaghar, Vafa

    2017-01-01

    Executive dysfunctions are among the most prevalent neurobehavioral sequelae of traumatic brain injuries (TBIs). Using culturally validated tests from the Delis-Kaplan Executive Function System (D-KEFS: Trail Making, Verbal Fluency, Design Fluency, Sorting, Twenty Questions, and Tower) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS: Rule Shift Cards, Key Search, and Modified Six Elements), the current study was the first to examine executive functioning in a group of Iranian TBI patients with focal frontal contusions. Compared with a demographically matched normative sample, the frontal contusion patients showed substantial impairments, with very large effect sizes (p ≤ .003, 1.56 < d < 3.12), on all the executive measures. Controlling for respective lower-level/fundamental conditions, the differences on the highest-level executive (cognitive switching) conditions were still significant. The frontal patients also committed more errors. Patients with lateral prefrontal (LPFC) contusions were qualitatively worst. For example, only the LPFC patients committed perseverative repetition errors. Altogether, our results support the notion that the frontal lobes, specifically the lateral prefrontal regions, play a critical role in cognitive executive functioning, over and above the contributions of respective lower-level cognitive abilities. The results provide clinical evidence for validity of the cross-culturally adapted versions of the tests.

  10. The role of abnormalities in the corpus callosum in social cognition deficits after Traumatic Brain Injury.

    PubMed

    McDonald, Skye; Rushby, Jacqueline A; Dalton, Katie I; Allen, Samantha K; Parks, Nicklas

    2018-08-01

    The corpus callosum (CC) is vulnerable to severe traumatic brain injury (TBI). Social cognition requires integration of non-verbal and verbal information in order to understand social behaviour and may be compromised if the CC is damaged. 17 adults with severe, chronic TBI and 17 control participants underwent structural MRI and Diffusion Tensor Imaging. A region of interest analysis examined fractional anisotropy (FA) and mean diffusivity (MD) across regions of the CC. Performance on The Awareness of Social Inference Test (TASIT): part 1 (emotion recognition) and parts 2 and 3 (social inference), was examined in relation to FA and MD. Across participants, higher genu FA values were related to higher TASIT part 3 scores. Increased splenium FA was associated with better performance for TASIT parts 1-3. There was no association between DTI values and TASIT in the controls alone. In the TBI group, FA of the genu and splenium was correlated with TASIT part 3. The pattern of performance was similar when controlling for non-social cognitive ability. In conclusion, social information is complex and multi-modal requiring inter-hemispheric connection. People with TBI, regardless of focal grey matter injury, may lose social cognitive ability due to trauma related changes to the corpus callosum.

  11. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  12. Selective Vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury

    PubMed Central

    Marmarou, Christina R.; Liang, Xiuyin; Abidi, Naqeeb H.; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C.; Young, Harold F.; Filippidis, Aristotelis S.; Baumgarten, Clive M.

    2014-01-01

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5 h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm2) versus sham groups (78.3±0.1%; 9.5±0.9 µm2), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8 µm2). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03± 0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. PMID:24933327

  13. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.

    PubMed

    Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L

    2015-05-01

    High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    PubMed

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance in individuals at genetic risk for Alzheimer's disease, with the caveat that the order of causal effects cannot be inferred from cross-sectional studies. These results underscore the importance of documenting head injuries even within the mild range as they may interact with genetic risk to produce negative long-term health consequences such as neurodegenerative disease. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.

  15. 77 FR 25708 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of Life... effects of traumatic brain injury (TBI) and Post-traumatic Stress Disorder (PTSD). Information collected...

  16. Concussion and Traumatic Brain Injury

    MedlinePlus

    ... please turn JavaScript on. Feature: Concussion Concussion and Traumatic Brain Injury Past Issues / Summer 2015 Table of Contents Children ... Flutie: "Be on the Safe Side." / Concussion and Traumatic Brain Injury Summer 2015 Issue: Volume 10 Number 2 Page ...

  17. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for...multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to identify progressive tau...after traumatic brain injury. Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in

  18. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    PubMed Central

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  19. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    DTIC Science & Technology

    2011-06-02

    hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging ( DTI ), an advanced form of magnetic... DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mecha- nism of injury (e.g...other injuries but no clinical diagnosis of traumatic brain injury. Results Abnormalities revealed on DTI were consistent with traumatic axonal injury in

  20. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    PubMed Central

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  1. Brain injury in sports.

    PubMed

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of all ages, the authors propose thresholds for all sports helmets based on a peak linear acceleration no greater than 90 g and a peak angular acceleration not exceeding 1700 rad/sec(2).

  2. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    MedlinePlus

    ... NICHD Research Information Find a Study More Information Traumatic Brain Injury (TBI) Condition Information NICHD Research Information Find a ... Care Providers Home Health A to Z List Traumatic Brain Injury (TBI) Condition Information What are common symptoms? Share ...

  3. Traumatic Brain Injury and Infectious Encephalopathy in Children From Four Resource-Limited Settings in Africa.

    PubMed

    Fink, Ericka L; von Saint Andre-von Arnim, Amelie; Kumar, Rashmi; Wilson, Patrick T; Bacha, Tigist; Aklilu, Abenezer Tirsit; Teklemariam, Tsegazeab Laeke; Hooli, Shubhada; Tuyisenge, Lisine; Otupiri, Easmon; Fabio, Anthony; Gianakas, John; Kochanek, Patrick M; Angus, Derek C; Tasker, Robert C

    2018-04-16

    To assess the frequency, interventions, and outcomes of children presenting with traumatic brain injury or infectious encephalopathy in low-resource settings. Prospective study. Four hospitals in Sub-Saharan Africa. Children age 1 day to 17 years old evaluated at the hospital with traumatic brain injury or infectious encephalopathy. None. We evaluated the frequency and outcomes of children presenting consecutively over 4 weeks to any hospital department with traumatic brain injury or infectious encephalopathy. Pediatric Cerebral Performance Category score was assessed pre morbidity and at hospital discharge. Overall, 130 children were studied (58 [45%] had traumatic brain injury) from hospitals in Ethiopia (n = 51), Kenya (n = 50), Rwanda (n = 20), and Ghana (n = 7). Forty-six percent had no prehospital care, and 64% required interhospital transport over 18 km (1-521 km). On comparing traumatic brain injury with infectious encephalopathy, there was no difference in presentation with altered mental state (80% vs 82%), but a greater proportion of traumatic brain injury cases had loss of consciousness (80% vs 53%; p = 0.004). Traumatic brain injury patients were older (median [range], 120 mo [6-204 mo] vs 13 mo [0.3-204 mo]), p value of less than 0.001, and more likely male (73% vs 51%), p value of less than 0.01. In 78% of infectious encephalopathy cases, cause was unknown. More infectious encephalopathy cases had a seizure (69% vs 12%; p < 0.001). In regard to outcome, infectious encephalopathy versus traumatic brain injury: hospital lengths of stay were longer for infectious encephalopathy (8 d [2-30 d] vs 4 d [1-36 d]; p = 0.003), discharge rate to home, or for inpatient rehabilitation, or death differed between infectious encephalopathy (85%, 1%, and 13%) and traumatic brain injury (79%, 12%, and 1%), respectively, p value equals to 0.044. There was no difference in the proportion of children surviving with normal or mild disability (73% traumatic brain injury vs 79% infectious encephalopathy; p = 0.526). The epidemiology and outcomes of pediatric traumatic brain injury and infectious encephalopathy varied by center and disease. To improve outcomes of these conditions in low-resource setting, focus should be on neurocritical care protocols for pre-hospital, hospital, and rehabilitative care.

  4. Delusion of inanimate doubles: description of a case of focal retrograde amnesia.

    PubMed

    Abbate, Carlo; Trimarchi, Pietro Davide; Salvi, Gian Pietro; Quarenghi, Anna Maria; Vergani, Carlo; Luzzatti, Claudio

    2012-01-01

    This paper reports the case of a patient, M.P., who developed delusion of inanimate doubles, without Capgras syndrome, after traumatic brain injury. His delusional symptoms were studied longitudinally and the cognitive impairments associated with delusion were investigated. Data suggest that M.P. did 'perceive' the actual differences between doubles and originals rather than 'confabulate' them. The cognitive profile, characterized by retrograde episodic amnesia, but neither object processing impairment nor confabulations, supports this hypothesis. The study examines the nature of object misidentification based on Ellis' and Staton's account and proposes a new account based on concurrent unbiased retrieval of semantic memory traces and biased recollection of episodic memory traces.

  5. Decorticate posture

    MedlinePlus

    Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...

  6. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  7. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey

    PubMed Central

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-01-01

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767–3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss. PMID:29156847

  8. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey.

    PubMed

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-10-17

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767-3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss.

  9. Usability of World Health Organization Disability Assessment Schedule in chronic traumatic brain injury.

    PubMed

    Tarvonen-Schröder, Sinikka; Tenovuo, Olli; Kaljonen, Anne; Laimi, Katri

    2018-06-15

    To investigate functioning measured with the 12-item World Health Organization Disability Assessment Schedule (WHODAS 2.0) in patients with mild, moderate and severe traumatic brain injury, and to compare patients' experiences with assessments made by their significant others and by consultant neurologists. A total of 112 consecutive patients with traumatic brain injury (29 mild, 43 moderate, 40 severe) and their significant others completed a 12-item WHODAS 2.0 survey. A neurologist assessed functioning with the International Classification of Functioning, Disability and Health minimal generic set. The total patient and proxy WHODAS 2.0 sum score was rated as severe, and impairments in household tasks, learning, community life, emotional functions, concentrating, dealing with strangers, maintaining friendships, and working ability as around moderate in all 3 severity groups. In standing, walking, washing, and dressing oneself the reported impairments increased from mild in mild traumatic brain injury to moderate in severe traumatic brain injury. A neurologist rated the overall functioning, working ability, and motor activities most impaired in severe traumatic brain injury, while there were no between-group differences in energy and drive functions and emotional functions. Patients with chronic traumatic brain injury perceive a diversity of significant difficulties in activities and participation irrespective of the severity of the injury. We recommend assessing disability in traumatic brain injury with the short and understandable WHODAS 2.0 scale, when planning client-oriented services.

  10. Laser ignition of traumatically embedded firework debris.

    PubMed

    Taylor, C R

    1998-01-01

    The Q-switched ruby laser (QSRL) has a good track record for traumatic tattoo removal. An unusual case of QSRL-treatment of a traumatic tattoo composed of firework debris is presented. A young man's traumatic tattoo, composed of firework debris, underwent QSRL ablation at 4-7 J/cm2 (pulse width 5 mm; duration 20 ns). Each test pulse produced visible sparks and focal projectile ejection of skin with pox-like scar formation. Caution is advised when using the QSRL for the treatment of traumatic tattoos composed of potentially combustible debris.

  11. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  12. Long-term employment outcomes following traumatic brain injury and orthopaedic trauma: A ten-year prospective study.

    PubMed

    Dahm, Jane; Ponsford, Jennie

    2015-11-01

    To investigate the trajectory and predictors of employment over a period of 10 years following traumatic brain injury and traumatic orthopaedic injury. Prospective follow-up at 1, 2, 5 and 10 years post-injury. Seventy-nine individuals with traumatic brain injury and 79 with traumatic orthopaedic injury recruited from Epworth HealthCare in Melbourne, Australia during inpatient rehabilitation. Information was obtained from medical files and self-report questionnaires. Individuals with traumatic brain injury were less likely to be competitively employed during the period up to 10 years post-injury compared with individuals with traumatic orthopaedic injury, although there was evidence of increasing employment participation during that time. More severe traumatic brain injury, older age, pre-injury psychological treatment, and studying or having a blue-collar occupation at time of injury were associated with poorer employment outcomes. Individuals with traumatic brain injury had spent less time with their current employer and were less likely to have increased responsibility since the injury than those with traumatic orthopaedic injury. At least half of each group reported difficulty at work due to fatigue. Given the potential for gains in employment participation over an extended time-frame, there may be benefit in ongoing access to individualized vocational rehabilitation. Particular areas of focus would include managing fatigue and psychiatric disorders, and exploring supported occupational activity for all levels of injury severity.

  13. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2013-11-01

    phosphatase in the etiology of tauopathy and chronic traumatic encephalopathy . National Capital Region Traumatic Brain Injury Research Symposium... encephalopathy after traumatic brain injury. USUHS Research Day held at Bethesda, MD – May 13, 2013 7 CONCLUSION As the result of substantial...and countermeasures to lessen short-term impairments as well as chronic debilitation (e.g. chronic traumatic encephalopathy ). 8 Fig 1. BOP

  14. 38 CFR 3.310 - Disabilities that are proximately due to, or aggravated by, service-connected disease or injury.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Traumatic brain injury. (1) In a veteran who has a service-connected traumatic brain injury, the following shall be held to be the proximate result of the service-connected traumatic brain injury (TBI), in the.../mental state. PTA—Post-traumatic amnesia. GCS—Glasgow Coma Scale. (For purposes of injury stratification...

  15. Traumatic Brain Injury Rehabilitation Comparative Effectiveness Research: Introduction to the Traumatic Brain Injury-Practice Based Evidence Archives Supplement.

    PubMed

    Horn, Susan D; Corrigan, John D; Dijkers, Marcel P

    2015-08-01

    This supplement of the Archives of Physical Medicine and Rehabilitation is devoted to the Traumatic Brain Injury-Practice Based Evidence study, the first practice-based evidence study, to our knowledge, of traumatic brain injury rehabilitation. The purpose of this preface is to place this study in the broader context of comparative effectiveness research and introduce the articles in the supplement. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2014-03-01

    military environments, affected in- dividuals (e.g. football players) often sustain additional mild injuries. mTBI symptoms are typically mild and... concussion andmild traumatic brain injury. PM R 3, S354–358; DOI:10.1016/j.pmrj.2011.07.017 (2011). 2. Hendricks, A. M. et al. Screening for mild traumatic...Mendez, M. F. et al. Mild traumatic brain injury from primary blast vs. blunt forces: post- concussion consequences and functional neuroimaging

  17. Traumatic Brain Injury in the United States: An Epidemiologic Overview

    DTIC Science & Technology

    2009-01-01

    discussed. Mt Sinai J Med 76:105–110, 2009.  2009 Mount Sinai School of Medicine Key Words: epidemiology, head injury, traumatic brain injury. A...traumatic brain injury in the civilian population of the United States. J Head Trauma Rehabil 2008; 23: 394–400. 3. Sosin DM, Sniezek JE, Thurman DJ...consciousness, a practical scale. Lancet 1974; 2: 81–84. 5. Kay T, Harrington DE, Adams R, et al. Definition of mild traumatic brain injury. J Head

  18. Characterizing on-road driving performance in individuals with traumatic brain injury who pass or fail an on-road driving assessment.

    PubMed

    Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L

    2018-01-15

    To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors with observation, speed regulation, gap selection, and vehicle control and accordingly had difficulty executing a diverse range of common driving manoeuvres. Comprehensive, formal on-road assessments, incorporating a range of skills, and manoeuvres, are needed to evaluate readiness to return to driving following traumatic brain injury. Individually tailored driver rehabilitation programs need to address these heterogeneous skill deficits to best support individuals to make a successful return to driving post-traumatic brain injury.

  19. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    ERIC Educational Resources Information Center

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  20. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    PubMed

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  1. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury

    PubMed Central

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William

    2017-01-01

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  2. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access...-days of the date of this publication. Proposed Collection: Federal Interagency Traumatic Brain Injury...

  3. Neural stem cells in the immature, but not the mature, subventricular zone respond robustly to traumatic brain injury.

    PubMed

    Goodus, Matthew T; Guzman, Alanna M; Calderon, Frances; Jiang, Yuhui; Levison, Steven W

    2015-01-01

    Pediatric traumatic brain injury is a significant problem that affects many children each year. Progress is being made in developing neuroprotective strategies to combat these injuries. However, investigators are a long way from therapies to fully preserve injured neurons and glia. To restore neurological function, regenerative strategies will be required. Given the importance of stem cells in repairing damaged tissues and the known persistence of neural precursors in the subventricular zone (SVZ), we evaluated regenerative responses of the SVZ to a focal brain lesion. As tissues repair more slowly with aging, injury responses of male Sprague Dawley rats at 6, 11, 17, and 60 days of age and C57Bl/6 mice at 14 days of age were compared. In the injured immature animals, cell proliferation in the dorsolateral SVZ more than doubled by 48 h. By contrast, the proliferative response was almost undetectable in the adult brain. Three approaches were used to assess the relative numbers of bona fide neural stem cells, as follows: the neurosphere assay (on rats injured at postnatal day 11, P11), flow cytometry using a novel 4-marker panel (on mice injured at P14) and staining for stem/progenitor cell markers in the niche (on rats injured at P17). Precursors from the injured immature SVZ formed almost twice as many spheres as precursors from uninjured age-matched brains. Furthermore, spheres formed from the injured brain were larger, indicating that the neural precursors that formed these spheres divided more rapidly. Flow cytometry revealed a 2-fold increase in the percentage of stem cells, a 4-fold increase in multipotential progenitor-3 cells and a 2.5-fold increase in glial-restricted progenitor-2/multipotential-3 cells. Analogously, there was a 2-fold increase in the mitotic index of nestin+/Mash1- immunoreactive cells within the immediately subependymal region. As the early postnatal SVZ is predominantly generating glial cells, an expansion of precursors might not necessarily lead to the production of many new neurons. On the contrary, many BrdU+/doublecortin+ cells were observed streaming out of the SVZ into the neocortex 2 weeks after injuries to P11 rats. However, very few new mature neurons were seen adjacent to the lesion 28 days after injury. Altogether, these data indicate that immature SVZ cells mount a more robust proliferative response to a focal brain injury than adult cells, which includes an expansion of stem cells, primitive progenitors and neuroblasts. Nonetheless, this regenerative response does not result in significant neuronal replacement, indicating that new strategies need to be implemented to retain the regenerated neurons and glia that are being produced. © 2014 S. Karger AG, Basel.

  4. Does gender matter? Differences in social-emotional behavior among infants and toddlers before and after mild traumatic brain injury: a preliminary study.

    PubMed

    Kaldoja, Mari-Liis; Kolk, Anneli

    2015-06-01

    Traumatic brain injury is a common cause of acquired disability in childhood. While much is known about cognitive sequelae of brain trauma, gender-specific social-emotional problems in children with mild traumatic brain injury is far less understood. The aims of the study were to investigate gender differences in social-emotional behavior before and after mild traumatic brain injury. Thirty-five 3- to 65-month-old children with mild traumatic brain injury and 70 controls were assessed with Ages and Stages Questionnaires: Social-Emotional. Nine months later, 27 of 35 patients and 54 of 70 controls were reassessed. We found that before injury, boys had more self-regulation and autonomy difficulties and girls had problems with adaptive functioning. Nine months after injury, boys continued to struggle with self-regulation and autonomy and new difficulties with interaction had emerged, whereas in girls, problems in interaction had evolved. Even mild traumatic brain injury in early childhood disrupts normal social-emotional development having especially devastating influence on interaction skills. © The Author(s) 2014.

  5. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request. 0925-NEW...

  6. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  7. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    DATES COVERED 4 October 2011- 3 October 2012 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a...interventions aimed at modulation of the endocannabinoid (EC) system targeting degradation of 20arachidonoyl glycerlol (2- AG) and N-arachidonoyl...percussion, traumatic brain injury, blood brain barrier, neuroinflammination, neurological dysfunction, endocannabinoids . 16. SECURITY CLASSIFICATION

  8. Narrative literature review: Health, activity and participation issues for women following traumatic brain injury.

    PubMed

    O'Reilly, Kate; Wilson, Nathan; Peters, Kath

    2017-06-06

    This narrative review will draw attention to the current limitations within the literature related to women following traumatic brain injury in order to stimulate discussion and inform future directions for research. There is a wide-ranging body of research about traumatic brain injury with the higher incidence of brain injury among males reflected in this body of work. As a result, the specific gendered issues facing women with traumatic brain injury are not as well understood. A search of electronic databases was conducted using the terms "traumatic brain injury", "brain injury", "women", "participation", "concussion" and "outcomes". The 36 papers revealed the following five themes (1) Relationships and life satisfaction; (2) Perception of self and body image; (3) Meaningful occupation; (4) Sexuality and sexual health; and (5) Physical function. Without research, which focuses specifically on the experience of women and girls with traumatic brain injury there is a risk that clinical care, policy development and advocacy services will not effectively accommodate them. Implications for rehabilitation Exploring the gendered issues women may experience following traumatic brain injury will enhance clinicians understanding of the unique challenges they face. Such information has the potential to guide future directions for research, policy, and practice. Screening women for hormonal imbalances such as hypopituitarism following traumatic brain injury is recommended as this may assist clinicians in addressing the far reaching implications in regard to disability, quality of life and mood. The growing literature regarding the cumulative effect of repeat concussions following domestic violence and women's increased risk of sport-related concussion may assist clinicians in advocating for appropriate rehabilitation and community support services.

  9. Autobiographical memory and structural brain changes in chronic phase TBI.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    DTIC Science & Technology

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  11. 78 FR 27972 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Administration (HRSA)--Funded Traumatic Brain Injury Grants (OMB No. 0915-xxxx)--New Abstract: This survey is designed to collect information from HRSA- funded Traumatic Brain Injury (TBI) State Implementation Partnership Grants and Protection and Advocacy for Traumatic Brain Injury (TBI) Grants regarding the impact of...

  12. 75 FR 60431 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ..., Department of Defense. DPR 41 DoD System Name: Combined Mild Traumatic Brain Injury Registry. System Location... concussive or mild traumatic brain injury and/or related incidents in deployed settings, to include blast... Type Memoranda 09-033, Policy Guidance for Management of Concussion/Mild Traumatic Brain Injury in the...

  13. Towards sustainable traumatic brain injury care systems: healthcare leadership imperatives in Canada.

    PubMed

    Caro, Denis

    2011-01-01

    Traumatic brain injuries pose strategic population health challenges in the face of burgeoning clinical demands that continue to tax capital, financial, and social resource capacities. The sustainability of traumatic brain injury care systems depends on paradigmatic shifts in healthcare leadership thinking. In quest for high-performance care and sustained quality of life for traumatic brain injury patients, this article presents a unique paradigm of seven care performance layers and seven health leadership imperatives that together form the paradigm for the systemic sustainability of TBI care systems of the future.

  14. Combat-related headache and traumatic brain injury.

    PubMed

    Waung, Maggie W; Abrams, Gary M

    2012-12-01

    Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.

  15. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  16. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  17. A voxel-based lesion study on facial emotion recognition after penetrating brain injury

    PubMed Central

    Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan

    2013-01-01

    The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440

  18. Psychogenic or neurogenic origin of agrammatism and foreign accent syndrome in a bipolar patient: a case report.

    PubMed

    Poulin, Stéphane; Macoir, Joël; Paquet, Nancy; Fossard, Marion; Gagnon, Louis

    2007-01-04

    Foreign accent syndrome (FAS) is a rare speech disorder characterized by the appearance of a new accent, different from the speaker's native language and perceived as foreign by the speaker and the listener. In most of the reported cases, FAS follows stroke but has also been found following traumatic brain injury, cerebral haemorrhage and multiple sclerosis. In very few cases, FAS was reported in patients presenting with psychiatric disorders but the link between this condition and FAS was confirmed in only one case. In this report, we present the case of FG, a bipolar patient presenting with language disorders characterized by a foreign accent and agrammatism, initially categorized as being of psychogenic origin. The patient had an extensive neuropsychological and language evaluation as well as brain imaging exams. In addition to FAS and agrammatism, FG also showed a working memory deficit and executive dysfunction. Moreover, these clinical signs were related to altered cerebral activity on an FDG-PET scan that showed diffuse hypometabolism in the frontal, parietal and temporal lobes bilaterally as well as a focal deficit in the area of the anterior left temporal lobe. When compared to the MRI, these deficits were related to asymmetric atrophy, which was retrospectively seen in the left temporal and frontal opercular/insular region without a focal lesion. To our knowledge, FG is the first case of FAS imaged with an 18F-FDG-PET scan. The nature and type of neuropsychological and linguistic deficits, supported by neuroimaging data, exclude a neurotoxic or neurodegenerative origin for this patient's clinical manifestations. For similar reasons, a psychogenic etiology is also highly improbable. To account for the FAS and agrammatism in FG, various explanations have been ruled out. Because of the focal deficit seen on the brain imaging, involving the left insular and anterior temporal cortex, two brain regions frequently involved in aphasic syndrome but also in FAS, a cerebrovascular origin must be considered the best explanation to account for FG's language deficits.

  19. [Guidelines for the diagnosis and treatment of severe traumatic brain injury. Part 2. Intensive care and neuromonitoring].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Oshorov, A V; Sychev, A A; Alexandrova, E V; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability in young and middle-aged people. The most problematic group is comprised of patients with severe TBI who are in a coma. The adequate diagnosis of primary brain injuries and timely prevention and treatment of the secondary injury mechanisms largely define the possibility of reducing mortality and severe disabling consequences. When developing these guidelines, we used our experience in the development of international and national recommendations for the diagnosis and treatment of mild traumatic brain injury, penetrating gunshot wounds to the skull and brain, severe traumatic brain injury, and severe consequences of brain injuries, including a vegetative state. In addition, we used international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe traumatic brain injury, which had been published in recent years. The proposed guidelines concern intensive care of severe TBI in adults and are particularly intended for neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in the treatment of these patients.

  20. A mouse model of human repetitive mild traumatic brain injury

    PubMed Central

    Kane, Michael J.; Pérez, Mariana Angoa; Briggs, Denise I.; Viano, David C.; Kreipke, Christian W.; Kuhn, Donald M.

    2011-01-01

    A novel method for the study of repetitive mild traumatic brain injury (rmTBI) that models the most common form of head injury in humans is presented. Existing animal models of TBI impart focal, severe damage unlike that seen in repeated and mild concussive injuries, and few are configured for repetitive application. Our model is a modification of the Marmarou weight drop method and allows repeated head impacts to lightly anesthetized mice. A key facet of this method is the delivery of an impact to the cranium of an unrestrained subject allowing rapid acceleration of the free-moving head and torso, an essential characteristic known to be important for concussive injury in humans, and a factor that is missing from existing animal models of TBI. Our method does not require scalp incision, emplacement of protective skull helmets or surgery and the procedure can be completed in 1-2 minutes. Mice spontaneously recover the righting reflex and show no evidence of seizures, paralysis or impaired behavior. Skull fractures and intracranial bleeding are very rare. Minor deficits in motor coordination and locomotor hyperactivity recover over time. Histological analyses reveal mild astrocytic reactivity (increased expression of GFAP) and increased phospho-tau but a lack of blood-brain-barrier disruption, edema and microglial activation. This new animal model is simple and cost-effective and will facilitate characterization of the neurobiological and behavioral consequences of rmTBI. It is also ideal for high throughput screening of potential new therapies for mild concussive injuries as experienced by athletes and military personnel. PMID:21930157

  1. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel

    PubMed Central

    2014-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs in association with repetitive traumatic brain injury experienced in sport and military service. In most instances, the clinical symptoms of the disease begin after a long period of latency ranging from several years to several decades. The initial symptoms are typically insidious, consisting of irritability, impulsivity, aggression, depression, short-term memory loss and heightened suicidality. The symptoms progress slowly over decades to include cognitive deficits and dementia. The pathology of CTE is characterized by the accumulation of phosphorylated tau protein in neurons and astrocytes in a pattern that is unique from other tauopathies, including Alzheimer’s disease. The hyperphosphorylated tau abnormalities begin focally, as perivascular neurofibrillary tangles and neurites at the depths of the cerebral sulci, and then spread to involve superficial layers of adjacent cortex before becoming a widespread degeneration affecting medial temporal lobe structures, diencephalon and brainstem. Most instances of CTE (>85% of cases) show abnormal accumulations of phosphorylated 43 kDa TAR DNA binding protein that are partially colocalized with phosphorylated tau protein. As CTE is characterized pathologically by frontal and temporal lobe atrophy, by abnormal deposits of phosphorylated tau and by 43 kDa TAR DNA binding protein and is associated clinically with behavioral and personality changes, as well as cognitive impairments, CTE is increasingly categorized as an acquired frontotemporal lobar degeneration. Currently, some of the greatest challenges are that CTE cannot be diagnosed during life and the incidence and prevalence of the disorder remain uncertain. Furthermore, the contribution of age, gender, genetics, stress, alcohol and substance abuse to the development of CTE remains to be determined. PMID:24423082

  2. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function

  3. Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses.

    PubMed

    Kaminska, Bozena; Gaweda-Walerych, Katarzyna; Zawadzka, Malgorzata

    2004-01-01

    Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.

  4. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  5. 77 FR 40412 - Rehabilitation Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Spinal Cord Injury. August 7-8 Brain Injury: Traumatic Brain Injury and Stroke; Musculoskeletal... Program. August 14 Brain Injury: Traumatic Brain Injury and Stroke. August 14-15 Psychological Health and...

  6. Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury.

    PubMed

    Marmarou, Christina R; Liang, Xiuyin; Abidi, Naqeeb H; Parveen, Shanaz; Taya, Keisuke; Henderson, Scott C; Young, Harold F; Filippidis, Aristotelis S; Baumgarten, Clive M

    2014-09-18

    A secondary and often lethal consequence of traumatic brain injury is cellular edema that we posit is due to astrocytic swelling caused by transmembrane water fluxes augmented by vasopressin-regulated aquaporin-4 (AQP4). We therefore tested whether vasopressin 1a receptor (V1aR) inhibition would suppress astrocyte AQP4, reduce astrocytic edema, and thereby diminish TBI-induced edematous changes. V1aR inhibition by SR49059 significantly reduced brain edema after cortical contusion injury (CCI) in rat 5h post-injury. Injured-hemisphere brain water content (n=6 animals/group) and astrocytic area (n=3/group) were significantly higher in CCI-vehicle (80.5±0.3%; 18.0±1.4 µm(2)) versus sham groups (78.3±0.1%; 9.5±0.9 µm(2)), and SR49059 blunted CCI-induced increases in brain edema (79.0±0.2%; 9.4±0.8µm(2)). CCI significantly up-regulated GFAP, V1aR and AQP4 protein levels and SR49059 suppressed injury induced up regulation (n=6/group). In CCI-vehicle, sham and CCI-SR49059 groups, GFAP was 1.58±0.04, 0.47±0.02, and 0.81±0.03, respectively; V1aR was 1.00±0.06, 0.45±0.05, and 0.46±0.09; and AQP4 was 2.03±0.34, 0.49±0.04, and 0.92±0.22. Confocal immunohistochemistry gave analogous results. In CCI-vehicle, sham and CCI-SR49059 groups, fluorescence intensity of GFAP was 349±38, 56±5, and 244±30, respectively, V1aR was 601±71, 117.8±14, and 390±76, and AQP4 was 818±117, 158±5, and 458±55 (n=3/group). The results support that edema was predominantly cellular following CCI and documented that V1aR inhibition with SR49059 suppressed injury-induced up regulation of GFAP, V1A and AQP4, blunting edematous changes. Our findings suggest V1aR inhibitors may be potential therapeutic tools to prevent cellular swelling and provide treatment for post-traumatic brain edema. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    indicator of mTBI. Further, these results establish a baseline data set, which may be useful in comparing concussed individuals. 14. SUBJECT TERMS... Concussion , mild traumatic brain injury (mTBI), traumatic brain injury (TBI), balance, Sensory Organization Test, Balance Error Scoring System, center of...43 5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix A Military Acute Concussion Evaluation 47

  8. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2016-06-01

    investigators through the Federal Interagency Traumatic Brain Injury (FITBIR) Informatics System. This trial was funded by National Institute of Neurological...Effects of Erythropoietin (Epo) on Cerebral Vascular Dysfunction and Anemia in Traumatic Brain Injury (TBI)” which we will share with other...the format required by FITBIR. 2. KEYWORDS: Traumatic brain injury Erythropoietin Anemia Transfusion threshold 3. ACCOMPLISHMENTS: What

  9. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    DTIC Science & Technology

    2012-02-01

    Subdural hemor- rhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the du- ra and arachnoid mater (in meningeal...to an hour. Subdural hemorrhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the dura and arachnoid mater (in

  10. 77 FR 37909 - Meeting: Board of Scientific Counselors, National Center for Injury Prevention and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Traumatic Brain Injury (TBI) among Children in the United States (U01); CE12-005: Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking Anticoagulants or Platelet Inhibitors (U01); CE12-006: Alcohol... Short and Long Term Consequences of Traumatic Brain Injury (TBI) among Children in the United States...

  11. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    ERIC Educational Resources Information Center

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  12. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    PubMed

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  13. "In my before life": relationships, coping and post-traumatic growth in adolescent survivors of a traumatic brain injury.

    PubMed

    Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki

    2014-11-01

    Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.

  14. Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    PubMed

    Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J

    2015-06-01

    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  15. 78 FR 39299 - National Institute of Neurological Disorders and Stroke; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Disorders and Stroke Special, Emphasis Panel, International Traumatic Brain Injury Research Initiative. Date... Traumatic Encephalopathy and Delayed Effects of Traumatic Brain Injury. Date: July 19, 2013. Time: 1:30 p.m...

  16. Military-related traumatic brain injury and neurodegeneration

    PubMed Central

    McKee, Ann C.; Robinson, Meghan E.

    2014-01-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and pathological features that overlap with postconcussion syndrome and posttraumatic stress disorder, suggesting that the three disorders might share some biological underpinnings. PMID:24924675

  17. Military-related traumatic brain injury and neurodegeneration.

    PubMed

    McKee, Ann C; Robinson, Meghan E

    2014-06-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and pathological features that overlap with postconcussion syndrome and posttraumatic stress disorder, suggesting that the three disorders might share some biological underpinnings. Copyright © 2014. Published by Elsevier Inc.

  18. Retirement-from-sport considerations following pediatric sports-related concussion: case illustrations and institutional approach.

    PubMed

    Ellis, Michael J; McDonald, Patrick J; Cordingley, Dean; Mansouri, Behzad; Essig, Marco; Ritchie, Lesley

    2016-04-01

    The decision to advise an athlete to retire from sports following sports-related concussion (SRC) remains a persistent challenge for physicians. In the absence of strong empirical evidence to support recommendations, clinical decision making must be individualized and should involve a multidisciplinary team of experts in concussion and traumatic brain injury. Although previous authors have advocated for a more conservative approach to these issues in child and adolescent athletes, there are few reports outlining considerations for this process among this unique population. Here, the authors use multiple case illustrations to discuss 3 subgroups of clinical considerations for sports retirement among pediatric SRC patients including the following: those with structural brain abnormalities identified on neuroimaging, those presenting with focal neurological deficits and abnormalities on physical examination, and those in whom the cumulative or prolonged effects of concussion are suspected or demonstrated. The authors' evolving multidisciplinary institutional approach to return-to-play and retirement decision making in pediatric SRC is also presented.

  19. Macrophagic and microglial responses after focal traumatic brain injury in the female rat

    PubMed Central

    2014-01-01

    Background After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. Methods The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks. Results By IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI. Conclusions The responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes. PMID:24761998

  20. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    PubMed

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  1. Survivors of a Silent Epidemic: The Learning Experience of College Students with a History of Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schlessman, Heather A.

    2010-01-01

    A significant proportion of young adults experience a traumatic brain injury (TBI) every year, and students with this history are becoming a growing presence on college campuses. A review of the literature revealed very little research exploring the learning experiences of college students with a history of traumatic brain injury. The purpose of…

  2. [The incidence and risk factors of ventilator-associated pneumonia in patients with severe traumatic brain injury].

    PubMed

    Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran

    2011-01-01

    Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.

  3. Cognitive and behavioural post-traumatic impairments: what is the specificity of a brain injury ? A study within the ESPARR cohort.

    PubMed

    Nash, S; Luauté, J; Bar, J Y; Sancho, P O; Hours, M; Chossegros, L; Tournier, C; Charnay, P; Mazaux, J M; Boisson, D

    2014-12-01

    The variety and extent of impairments occurring after traumatic brain injury vary according to the nature and severity of the lesions. In order to better understand their interactions and long-term outcome, we have studied and compared the cognitive and neurobehavioral profile one year post onset of patients with and without traumatic brain injury in a cohort of motor vehicle accident victims. The study population is composed of 207 seriously injured persons from the ESPARR cohort. This cohort, which has been followed up in time, consists in 1168 motor vehicle accident victims (aged 16 years or more) with injuries with all degrees of severity. Inclusion criteria were: living in Rhone county, victim of a traffic accident having involved at least one wheel-conducted vehicle and having occurred in Rhone county, alive at the time of arrival in hospital and having presented in one of the different ER facilities of the county. The cohort's representativeness regarding social and geographic criteria and the specificities of the accidents were ensured by the specific targeting of recruitment. Deficits and impairments were assessed one year after the accident using the Neurobehavioral Rating Scale - Revised and the Trail-Making Test. Within our seriously injured group, based on the Glasgow Score, the presence of neurological deficits, aggravation of neurological condition in the first 72hours and/or abnormal cerebral imaging, we identified three categories: (i) moderate/severe traumatic brain injury (n=48), (ii) mild traumatic brain injury (n=89), and (iii) severely injured but without traumatic brain injury (n=70). The most frequently observed symptoms were anxiety, irritability, memory and attention impairments, depressive mood and emotional lability. While depressive mood and irritability were observed with similar frequency in all three groups, memory and attention impairments, anxiety and reduced initiative were more specific to traumatic brain injury whereas executive disorders were associated with moderate/severe traumatic brain injury. The presence and the initial severity of a traumatic brain injury condition the nature and frequency of residual effects after one year. Some impairments such as irritability, which is generally associated with traumatic brain injury, do not appear to be specific to this population, nor does depressive mood. Substantial interactions between cognitive, affective and neurobehavioral disorders have been highlighted. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  5. Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population Based Medical Record Review Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0573 TITLE: Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population-Based...Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease...TERMS Population; epidemiology; dementia; neurocognitive disorders; brain injuries; Parkinsonian disorders 16. SECURITY CLASSIFICATION OF: U 17

  6. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  7. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

    PubMed

    Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William

    2013-01-01

    A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.

  8. EPO improved neurologic outcome in rat pups late after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K

    2018-05-01

    In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2014-02-01

    multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and psychiatric deterioration 1-9. This syndrome is...personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently...11 Appendices……………………………………………………………………………... 12 4 INTRODUCTION: Athletes in contact sports who have sustained multiple concussive traumatic

  10. Omega-3 Fatty Acids for Major Depressive Disorder: A Systematic Review

    DTIC Science & Technology

    2015-01-01

    trademark. iii Preface The Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury is interested in determining the efficacy...the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury and conducted within the Forces and Resources Policy Center of...Excellence for Psychological Health and Traumatic Brain Injury (DCoE). We gratefully acknowledge Kristie Gore for her support and guidance throughout

  11. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast... traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected...mitigation strategies. 15. SUBJECT TERMS Traumatic Brain Injury (TBI), Kevlar Vests, Neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  12. Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology

    DTIC Science & Technology

    2015-12-01

    Clinic. (2013) “Opposing Acute and Chronic Effects of Traumatic Brain Injury in a Mouse Model of Alzheimer’s Disease” Kokiko-Cochran, O.N.  Annual...nanosymposium, Washington, D.C. (2014) “ Traumatic brain injury induces a distinct macrophage response at acute and chronic time points in a mouse model...SUPPLEMENTARY NOTES 14. ABSTRACT Individuals exposed to traumatic brain injury (TBI) are at a greatly increased risk for developing a number of

  13. Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study.

    PubMed

    Easter, Joshua S; Bakes, Katherine; Dhaliwal, Jasmeet; Miller, Michael; Caruso, Emily; Haukoos, Jason S

    2014-08-01

    We evaluate the diagnostic accuracy of clinical decision rules and physician judgment for identifying clinically important traumatic brain injuries in children with minor head injuries presenting to the emergency department. We prospectively enrolled children younger than 18 years and with minor head injury (Glasgow Coma Scale score 13 to 15), presenting within 24 hours of their injuries. We assessed the ability of 3 clinical decision rules (Canadian Assessment of Tomography for Childhood Head Injury [CATCH], Children's Head Injury Algorithm for the Prediction of Important Clinical Events [CHALICE], and Pediatric Emergency Care Applied Research Network [PECARN]) and 2 measures of physician judgment (estimated of <1% risk of traumatic brain injury and actual computed tomography ordering practice) to predict clinically important traumatic brain injury, as defined by death from traumatic brain injury, need for neurosurgery, intubation greater than 24 hours for traumatic brain injury, or hospital admission greater than 2 nights for traumatic brain injury. Among the 1,009 children, 21 (2%; 95% confidence interval [CI] 1% to 3%) had clinically important traumatic brain injuries. Only physician practice and PECARN identified all clinically important traumatic brain injuries, with ranked sensitivities as follows: physician practice and PECARN each 100% (95% CI 84% to 100%), physician estimates 95% (95% CI 76% to 100%), CATCH 91% (95% CI 70% to 99%), and CHALICE 84% (95% CI 60% to 97%). Ranked specificities were as follows: CHALICE 85% (95% CI 82% to 87%), physician estimates 68% (95% CI 65% to 71%), PECARN 62% (95% CI 59% to 66%), physician practice 50% (95% CI 47% to 53%), and CATCH 44% (95% CI 41% to 47%). Of the 5 modalities studied, only physician practice and PECARN identified all clinically important traumatic brain injuries, with PECARN being slightly more specific. CHALICE was incompletely sensitive but the most specific of all rules. CATCH was incompletely sensitive and had the poorest specificity of all modalities. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  14. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  15. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury.

    PubMed

    Helmy, Adel; De Simoni, Maria-Grazia; Guilfoyle, Mathew R; Carpenter, Keri L H; Hutchinson, Peter J

    2011-11-01

    There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series.

    PubMed

    Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P

    2016-08-01

    No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Acute pathophysiological processes after ischaemic and traumatic brain injury.

    PubMed

    Kunz, Alexander; Dirnagl, Ulrich; Mergenthaler, Philipp

    2010-12-01

    Ischaemic stroke and brain trauma are among the leading causes of mortality and long-term disability in the western world. Enormous endeavours have been made to elucidate the complex pathophysiology of ischaemic and traumatic brain injury with the intention of developing new therapeutic strategies for patients suffering from these devastating diseases. This article reviews the current knowledge on cascades that are activated after ischaemic and traumatic brain injury and that lead to progression of tissue damage. Main attention will be on pathophysiological events initiated after ischaemic stroke including excitotoxicity, oxidative/nitrosative stress, peri-infarct depolarizations, apoptosis and inflammation. Additionally, specific pathophysiological aspects after traumatic brain injury will be discussed along with their similarities and differences to ischaemic brain injury. This article provides prerequisites for understanding the therapeutic strategies for stroke and trauma patients which are addressed in other articles of this issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Plasma copeptin level predicts acute traumatic coagulopathy and progressive hemorrhagic injury after traumatic brain injury.

    PubMed

    Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng

    2014-08-01

    Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Monitoring Neurocognitive Performance and Electrophysiological Activity After Mild Traumatic Brain Injury (mTBI)

    DTIC Science & Technology

    2014-03-01

    return to duty’ decisions. 15. SUBJECT TERMS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI, biomarkers, actigraphy 16...within approximately two years of the writing of this report. 3. KEYWORDS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI...Merrifield, PhD) i. Magnetoencephalography ( MEG ) laboratory is fully operational after two weeks of cool down and testing in February 2014. Pilot testing

  20. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain...who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to...repetitive concussive TBI in mice has been optimal. Ongoing efforts include development of more sensitive methods to detect tau, and combinations of

  1. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2015-10-01

    Anemia in Traumatic Brain Injury (TBI)” which we will share with other investigators through the Federal Interagency Traumatic Brain Injury (FITBIR... Informatics System. This trial was funded by National Institute of Neurological Disorders and Stroke (NINDS) grant #P01-NS38660. The study began...Data Elements (CDEs) for TBI, and therefore requires work to convert the data to the format required by FITBIR. 2. KEYWORDS: Traumatic brain

  2. Synergistic Mechanisms Between Traumatic Brain Injury and Migraine

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0209 TITLE: Synergistic Mechanisms Between Traumatic Brain Injury and Migraine PRINCIPAL INVESTIGATOR: Amynah Pradhan...SUBTITLE Synergistic Mechanisms Between Traumatic Brain Injury and Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0209 5c. PROGRAM ELEMENT...and can persist for months after the initial trauma. The most severe and long lasting posttraumatic headaches are usually classified as migraine ; and

  3. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    DTIC Science & Technology

    2010-09-01

    communication among clinicians and along the care continuum during the treatment of a patient’s emergent conditions. Ancillary reports are distributed...data necessary to improve the treatment of traumatic brain injury and compare treatment and outcomes by injury type. Specific Aims: 1. Develop and...Our research will utilize both of these tests to assess patients during treatment in the Emergency Department at GMH for mild traumatic brain

  4. Differences in Callosal and Forniceal Diffusion between Patients with and without Postconcussive Migraine.

    PubMed

    Alhilali, L M; Delic, J; Fakhran, S

    2017-04-01

    Posttraumatic migraines are common after mild traumatic brain injury. The purpose of this study was to determine if a specific axonal injury pattern underlies posttraumatic migraines after mild traumatic brain injury utilizing Tract-Based Spatial Statistics analysis of diffusion tensor imaging. DTI was performed in 58 patients with mild traumatic brain injury with posttraumatic migraines. Controls consisted of 17 patients with mild traumatic brain injury without posttraumatic migraines. Fractional anisotropy and diffusivity maps were generated to measure white matter integrity and were evaluated by using Tract-Based Spatial Statistics regression analysis with a general linear model. DTI findings were correlated with symptom severity, neurocognitive test scores, and time to recovery with the Pearson correlation coefficient. Patients with mild traumatic brain injury with posttraumatic migraines were not significantly different from controls in terms of age, sex, type of injury, or neurocognitive test performance. Patients with posttraumatic migraines had higher initial symptom severity ( P = .01) than controls. Compared with controls, patients with mild traumatic brain injury with posttraumatic migraines had decreased fractional anisotropy in the corpus callosum ( P = .03) and fornix/septohippocampal circuit ( P = .045). Injury to the fornix/septohippocampal circuit correlated with decreased visual memory ( r = 0.325, P = .01). Injury to corpus callosum trended toward inverse correlation with recovery ( r = -0.260, P = .05). Injuries to the corpus callosum and fornix/septohippocampal circuit were seen in patients with mild traumatic brain injury with posttraumatic migraines, with injuries in the fornix/septohippocampal circuit correlating with decreased performance on neurocognitive testing. © 2017 by American Journal of Neuroradiology.

  5. Defense.gov Special Report: Traumatic Brain Injury

    Science.gov Websites

    Excellence TBI Resources Brainline Military The Michael E. DeBakey VA Medical Center Congressionally Directed Medical Research Program NIH: National Institute of Neurological Disorders NIH: Traumatic Brain Injury Research CDC: Give Brain Injury a Voice Center for Medical Excellence for Multimedia Brainline.org - Brain

  6. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study

    PubMed Central

    Tisdall, Martin M.; Girbes, Armand R.; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin

    2011-01-01

    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse axonal injury and neuronal loss in traumatic brain injury. PMID:21278408

  7. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.

    PubMed

    Hagos, Fanuel T; Empey, Philip E; Wang, Pengcheng; Ma, Xiaochao; Poloyac, Samuel M; Bayır, Hülya; Kochanek, Patrick M; Bell, Michael J; Clark, Robert S B

    2018-05-07

    To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment. Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009). Thirty-six-bed PICU in a university-affiliated children's hospital. Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects. Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube. The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation. This proof-of-concept neuropharmacometabolomics assessment reveals alterations in known and previously unidentified metabolic pathways and supports therapeutic target engagement of the combination of probenecid and N-acetylcysteine treatment after severe traumatic brain injury in children.

  8. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review.

    PubMed

    Simpson-Jones, Mary E; Hunt, Anne W

    2018-04-10

    To broadly examine the literature to identify vision interventions following mild traumatic brain injury. Objectives are to identify: (1) evidence-informed interventions for individuals with visual dysfunction after mild traumatic brain injury; (2) professions providing these interventions; (3) gaps in the literature and areas for further research. A scoping review was conducted of four electronic databases of peer-reviewed literature from the databases earliest records to June 2017. Articles were included if the study population was mild traumatic brain injury/concussion and a vision rehabilitation intervention was tested. Two independent reviewers screened articles for inclusion, extracted data, and identified themes. The initial search identified 3111 records. Following exclusions, 22 articles were included in the final review. Nine studies evaluated optical devices, such as corrective spectacles, contact lenses, prisms, or binasal occlusion. Two studies assessed vision therapy. Ten studies examined vision therapy using optical devices. One study investigated hyperbaric oxygen therapy. Optometrists performed these interventions in most of the studies. Future research should address quality appraisal of this literature, interventions that include older adult and pediatric populations, and interdisciplinary interventions. There are promising interventions for vision deficits following mild traumatic brain injury. However, there are multiple gaps in the literature that should be addressed by future research. Implications for Rehabilitation Mild traumatic brain injury may result in visual deficits that can contribute to poor concentration, headaches, fatigue, problems reading, difficulties engaging in meaningful daily activities, and overall reduced quality of life. Promising interventions for vision rehabilitation following mild traumatic brain injury include the use of optical devices (e.g., prism glasses), vision or oculomotor therapy (e.g., targeted exercises to train eye movements), and a combination of optical devices and vision therapy. Rehabilitation Professionals (e.g., optometrists, occupational therapists, physiotherapists) have an important role in screening for vision impairments, recommending referrals appropriately to vision specialists, and/or assessing and treating functional vision deficits in individuals with mild traumatic brain injury.

  9. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.

    PubMed

    Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S

    2016-01-01

    The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.

  10. Concussion - what to ask your doctor - adult

    MedlinePlus

    ... Adult brain injury - what to ask your doctor; Traumatic brain injury - what to ask the doctor ... Begaz T. Traumatic brain injury (adult). In: Adams JG, ed. Emergency Medicine . 2nd ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 73. Giza CC, ...

  11. Argon attenuates the emergence of secondary injury after traumatic brain injury within a 2-hour incubation period compared to desflurane: an in vitro study.

    PubMed

    Grüßer, Linda; Blaumeiser-Debarry, Rosmarie; Krings, Matthias; Kremer, Benedikt; Höllig, Anke; Rossaint, Rolf; Coburn, Mark

    2017-01-01

    Despite years of research, treatment of traumatic brain injury (TBI) remains challenging. Considerable data exists that some volatile anesthetics might be neuroprotective. However, several studies have also revealed a rather neurotoxic profile of anesthetics. In this study, we investigated the effects of argon 50%, desflurane 6% and their combination in an in vitro TBI model with incubation times similar to narcotic time slots in a daily clinical routine. Organotypic hippocampal brain slices of 5- to 7-day-old mice were cultivated for 14 days before TBI was performed. Slices were eventually incubated for 2 hours in an atmosphere containing no anesthetic gas, argon 50% or desflurane 6% or both. Trauma intensity was evaluated via fluorescent imagery. Our results show that neither argon 50% nor desflurane 6% nor their combination could significantly reduce the trauma intensity in comparison to the standard atmosphere. However, in comparison to desflurane 6%, argon 50% displayed a rather neuroprotective profile within the first 2 hours after a focal mechanical trauma ( P = 0.015). A 2-hour incubation in an atmosphere containing both gases, argon 50% and desflurane 6%, did not result in significant effects in comparison to the argon 50% group or the desflurane 6% group. Our findings demonstrate that within a 2-hour incubation time neither argon nor desflurane could affect propidium iodide-detectable cell death in an in vitro TBI model in comparison to the standard atmosphere, although cell death was less with argon 50% than with desflurane 6%. The results show that within this short time period processes concerning the development of secondary injury are already taking place and may be manipulated by argon.

  12. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189

    PubMed Central

    McAfee, Samuel S.; Guley, Natalie M.; Del Mar, Nobel; Bu, Wei; Heldt, Scott A.; Honig, Marcia G.; Moore, Bob M.

    2017-01-01

    Abstract Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189. PMID:28828401

  13. Abnormalities in Dynamic Brain Activity Caused by Mild Traumatic Brain Injury Are Partially Rescued by the Cannabinoid Type-2 Receptor Inverse Agonist SMM-189.

    PubMed

    Liu, Yu; McAfee, Samuel S; Guley, Natalie M; Del Mar, Nobel; Bu, Wei; Heldt, Scott A; Honig, Marcia G; Moore, Bob M; Reiner, Anton; Heck, Detlef H

    2017-01-01

    Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and β (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.

  14. Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report

    PubMed Central

    2009-01-01

    A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822

  15. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    PubMed Central

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow-up period, as well as to changes in memory performance, prior to multiple comparison correction. In conclusion, traumatic brain injury results in progressive loss of brain tissue volume, which continues for many years post-injury. Atrophy is most prominent in the white matter, but is also more pronounced in cortical sulci compared to gyri. These findings suggest the Jacobian determinant provides a method of quantifying brain atrophy following a traumatic brain injury and is informative in determining the long-term neurodegenerative effects after injury. Power calculations indicate that Jacobian determinant images are an efficient surrogate marker in clinical trials of neuroprotective therapeutics. PMID:29309542

  16. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress.

    PubMed

    Dretsch, Michael N; Williams, Kathy; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2016-01-01

    In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2)  = 0.22, P < 0.001). However, predeployment traumatic stress, alone, accounted for 17% of the postdeployment PTSD scores. These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.

  17. The history and evolution of traumatic brain injury rehabilitation in military service members and veterans.

    PubMed

    Cifu, David X; Cohen, Sara I; Lew, Henry L; Jaffee, Michael; Sigford, Barbara

    2010-08-01

    The field of traumatic brain injury has evolved since the time of the Civil War in response to the needs of patients with injuries and disabilities resulting from war. The Department of Veterans Affairs and the Defense and Veterans Brain Injury Center have been in the forefront of the development of the interdisciplinary approach to the rehabilitation of soldiers with traumatic brain injury, particularly those injured from the recent conflicts in Iraq and Afghanistan. The objectives of this literature review are to examine how the casualties resulting from major wars in the past led to the establishment of the current model of evaluation and treatment of traumatic brain injury and to review how the field has expanded in response to the growing cohort of military service members and veterans with TBI.

  18. Post-traumatic stress symptoms and psychological functioning in children of parents with acquired brain injury.

    PubMed

    Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels

    2011-01-01

    The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.

  19. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  20. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and...11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17...To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing efforts include

  1. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2016-02-01

    14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive...pugilistica 3, 11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain...Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing

  2. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive...TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...NUMBER Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  3. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-10-01

    SUBJECT TERMS Traumatic Brain Injury, Alcohol Use , Mood , Mood Stabilization 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18...1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive episodes during long...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL

  4. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  5. American Indians/Native Alaskans with Traumatic Brain Injury: Examining the Impairments of Traumatic Brain Injury, Disparities in Service Provision, and Employment Outcomes

    ERIC Educational Resources Information Center

    Whitfield, Harold Wayne; Lloyd, Rosalind

    2008-01-01

    The researchers analyzed data from fiscal year 2006 and found that American Indians/Native Alaskans (AI/NA) with traumatic brain injury experienced similar functional limitations at application as did non-AI/NA. Fewer funds were expended on purchased services for AI/NA than for non-AI/NA. The wages of AI/NA were equitable to those of non-AI/NA at…

  6. Functional brain imaging and the induction of traumatic recall: a cross-correlational review between neuroimaging and hypnosis.

    PubMed

    Vermetten, Eric; Douglas Bremner, J

    2004-07-01

    The behavioral and psychophysiological alterations during recall in patients with trauma disorders often resemble phenomena that are seen in hypnosis. In studies of emotional recall as well as in neuroimaging studies of hypnotic processes similar brain structures are involved: thalamus, hippocampus, amygdala, medial prefrontal cortex, anterior cingulate cortex. This paper focuses on cross-correlations in traumatic recall and hypnotic responses and reviews correlations between the involvement of brain structures in traumatic recall and processes that are involved in hypnotic responsiveness. To further improve uniformity of results of brain imaging specifically for traumatic recall studies, attention is needed for standardization of hypnotic variables, isolation of the emotional process of interest (state),and assessment of trait-related differences.

  7. Bang to the Brain: What We Know about Concussions

    MedlinePlus

    ... as a concussion. More than 1 million mild traumatic brain injuries occur nationwide each year. These injuries can be ... olds treated in an emergency room for mild traumatic brain injury. “We found that the majority of these kids ...

  8. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  9. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  10. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    PubMed

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  11. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  12. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury.

    PubMed

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper

    2013-09-01

    To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.

  13. Preventable and Potentially Preventable Traumatic Death Rates in Neurosurgery Department: A Single Center Experience.

    PubMed

    Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho; Choi, Hyuk Jin

    2016-10-01

    Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required.

  14. Preventable and Potentially Preventable Traumatic Death Rates in Neurosurgery Department: A Single Center Experience

    PubMed Central

    Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho

    2016-01-01

    Objective Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. Methods A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. Results The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. Conclusion We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required. PMID:27857910

  15. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    PubMed

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P < 0.001). Logistic regression showed a significant association between moderate to severe psychiatric symptoms and moderate to severe sleep symptoms (P < 0.05). Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P < 0.05). There was significant correlation between motor vehicle accident and drowsiness and difficulty falling asleep (P < 0.05). Medications given in the emergency department had a positive correlation with drowsiness (P < 0.05). Individuals who report moderate to severe headache, dizziness, and psychiatric symptoms have a higher likelihood of reporting moderate to severe sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  17. White Matter Atrophy and Cognitive Dysfunctions in Neuromyelitis Optica

    PubMed Central

    Blanc, Frederic; Noblet, Vincent; Jung, Barbara; Rousseau, François; Renard, Felix; Bourre, Bertrand; Longato, Nadine; Cremel, Nadjette; Di Bitonto, Laure; Kleitz, Catherine; Collongues, Nicolas; Foucher, Jack; Kremer, Stephane; Armspach, Jean-Paul; de Seze, Jerome

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM. PMID:22509264

  18. Anti-epileptic drugs in pediatric traumatic brain injury.

    PubMed

    Tanaka, Tomoko; Litofsky, N Scott

    2016-10-01

    Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.

  19. [What happens after the accident? Psychosocial needs of people with traumatic brain injury and their families].

    PubMed

    Gifre, Mariona; Gil, Ángel; Pla, Laura; Roig, Teresa; Monreal-Bosch, Pilar

    2015-09-01

    To identify factors that people with a traumatic brain injury and their families perceived as helping to improve their quality of life. Three focus groups and five interviews were conducted with a total of 37 participants: 14 persons with traumatic brain injury and 23 caregivers. A content analysis was conducted. The constant comparative method was applied. We detected five factors that improved the quality of life of persons with a traumatic brain and their families: 1) Informal support (family and friends); 2) formal support (counseling, employment, built and bureaucratic environment); 3) type of clinical characteristics; 4) social participation, and 5) social visibility. The needs expressed by our participants primarily focused on social and emotional factors. For persons with severe traumatic brain injury attempting to achieve the best possible community integration, a new semiology is required, not limited to medical care, but also involving social and psychological care tailored to the needs of each individual and family and their environment. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  20. Correlates of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Donders, Jacobus; Boonstra, Tyler

    2007-03-01

    To investigate external correlates of invalid test performance after traumatic brain injury, as assessed by the California Verbal Learning Test - Second Edition (CVLT-II) and Word Memory Test (WMT). Consecutive 2-year series of rehabilitation referrals with a diagnosis of traumatic brain injury (n = 87). Logistic regression analysis was used to determine which demographic and neurological variables best differentiated those with vs. without actuarial CVLT-II or WMT evidence for invalid responding. Twenty-one participants (about 24%) performed in the invalid range. The combination of a premorbid psychiatric history with minimal or no coma was associated with an approximately four-fold increase in the likelihood of invalid performance. Premorbid psychosocial complicating factors constitute a significant threat to validity of neuropsychological test results after (especially mild) traumatic brain injury. At the same time, care should be taken to not routinely assume that all persons with mild traumatic brain injury and premorbid psychiatric histories are simply malingering. The WMT appears to be a promising instrument for the purpose of identifying those cases where neuropsychological test results are confounded by factors not directly related to acquired cerebral impairment.

  1. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies

    PubMed Central

    Knowles, Charles H; Whyte, Greg P

    2007-01-01

    Objective To evaluate the risk of chronic traumatic brain injury from amateur boxing. Setting Secondary research performed by combination of sport physicians and clinical academics. Design, data sources, and methods Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). Results 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. Conclusion There is no strong evidence to associate chronic traumatic brain injury with amateur boxing. PMID:17916811

  2. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies.

    PubMed

    Loosemore, Mike; Knowles, Charles H; Whyte, Greg P

    2007-10-20

    To evaluate the risk of chronic traumatic brain injury from amateur boxing. Secondary research performed by combination of sport physicians and clinical academics. DESIGN, DATA SOURCES, AND METHODS: Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. There is no strong evidence to associate chronic traumatic brain injury with amateur boxing.

  3. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  4. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    PubMed

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. COX-2 regulation and TUNEL-positive cell death differ between genders in the secondary inflammatory response following experimental penetrating focal brain injury in rats.

    PubMed

    Günther, Mattias; Plantman, Stefan; Davidsson, Johan; Angéria, Maria; Mathiesen, Tiit; Risling, Mårten

    2015-04-01

    Traumatic brain injury is followed by secondary neuronal degeneration, largely dependent on an inflammatory response. This response is probably gender specific, since females are better protected than males in experimental models. The reasons are not fully known. We examined aspects of the inflammatory response following experimental TBI in male and female rats to explore possible gender differences at 24 h and 72 h after trauma, times of peak histological inflammation and neuronal degeneration. A penetrating brain injury model was used to produce penetrating focal TBI in 20 Sprague-Dawley rats, 5 males and 5 females for each time point. After 24 and 72 h the brains were removed and subjected to in situ hybridization and immunohistochemical analyses for COX-2, iNOS, osteopontin, glial fibrillary acidic protein, 3-nitrotyrosine, TUNEL and Fluoro-Jade. COX-2 mRNA and protein levels were increased in the perilesional area compared to the uninjured contralateral side and significantly higher in males at 24 h and 72 h (p < 0.05). iNOS mRNA was significantly increased in females at 24 h (p < 0.05) although protein was not. TUNEL was increased in male rats after 24 h (p < 0.05). Glial fibrillary acidic protein, osteopontin, 3-nitrotyrosine and Fluoro-Jade stained degenerating neurons were increased in the perilesional area, showing no difference between genders. COX-2 regulation differed between genders after TBI. The increased COX-2 expression in male rats correlated with increased apoptotic cell death detected by increased TUNEL staining at 24 h, but not with neuronal necrosis measured by Flouro-Jade. Astrogliosis and microgliosis did not differ, confirming a comparable level of trauma. The gender-specific trait of the secondary inflammatory response may be connected to prostaglandin regulation, which may partially explain gender variances in outcome after TBI.

  6. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ...

  7. Levetiracetam-induced neutropenia following traumatic brain injury.

    PubMed

    Bunnell, Kristen; Pucci, Francesco

    2015-01-01

    Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.

  8. Impact of individual clinical outcomes on trial participants' perspectives on enrollment in emergency research without consent.

    PubMed

    Whitesides, Louisa W; Baren, Jill M; Biros, Michelle H; Fleischman, Ross J; Govindarajan, Prasanthi R; Jones, Elizabeth B; Pancioli, Arthur M; Pentz, Rebecca D; Scicluna, Victoria M; Wright, David W; Dickert, Neal W

    2017-04-01

    Evidence suggests that patients are generally accepting of their enrollment in trials for emergency care conducted under exception from informed consent. It is unknown whether individuals with more severe initial injuries or worse clinical outcomes have different perspectives. Determining whether these differences exist may help to structure post-enrollment interactions. Primary clinical data from the Progesterone for the Treatment of Traumatic Brain Injury trial were matched to interview data from the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study. Answers to three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study were analyzed in the context of enrolled patients' initial injury severity (initial Glasgow Coma Scale and Injury Severity Score) and principal clinical outcomes (Extended Glasgow Outcome Scale and Extended Glasgow Outcome Scale relative to initial injury severity). The three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study addressed participants' general attitude toward inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial (general trial inclusion), their specific attitude toward being included in Progesterone for the Treatment of Traumatic Brain Injury trial under the exception from informed consent (personal exception from informed consent enrollment), and their attitude toward the use of exception from informed consent in the Progesterone for the Treatment of Traumatic Brain Injury trial in general (general exception from informed consent enrollment). Qualitative analysis of interview transcripts was performed to provide contextualization and to determine the extent to which respondents framed their attitudes in terms of clinical experience. Clinical data from Progesterone for the Treatment of Traumatic Brain Injury trial were available for all 74 patients represented in the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study (including 46 patients for whom the surrogate was interviewed due to the patient's cognitive status or death). No significant difference was observed regarding acceptance of general trial inclusion or acceptance of general exception from informed consent enrollment between participants with favorable neurological outcomes and those with unfavorable outcomes relative to initial injury. Agreement with personal enrollment in Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent, however, was significantly higher among participants with favorable outcomes compared to those with unfavorable outcomes (89% vs 59%, p = 0.003). There was also a statistically significant relationship between more severe initial injury and increased acceptance of personal exception from informed consent enrollment ( p = 0.040) or general exception from informed consent use ( p = 0.034) in Progesterone for the Treatment of Traumatic Brain Injury trial. Many individuals referenced personal experience as a basis for their attitudes, but these references were not used to support negative views. Patients and surrogates of patients with unfavorable clinical outcomes were somewhat less accepting of their own inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent than were patients or surrogates of patients with favorable clinical outcomes. These findings suggest a need to identify optimal strategies for communicating with patients and their surrogates regarding exception from informed consent enrollment when clinical outcomes are poor.

  9. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  10. 78 FR 27198 - Applications for New Awards; National Institute on Disability and Rehabilitation Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Brain Injury Model Systems Centers Collaborative Research Projects; Notice inviting applications for new... competition. Priority 1, the DRRP Priority for the Traumatic Brain Injury Model Systems Centers Collaborative...

  11. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  12. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2010-10-01

    Susceptibility- weighted MR imaging: a review of clinical applications in children . AJNR Am J Neuroradiol. 2008 Jan;29(1):9-17. Hou DJ, Tong KA, Ashwal S ...2005;33:184-194. Holshouser BA, Tong KA, Ashwal S . “Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury...Proton spectroscopy detected myoinositol in children with traumatic brain injury.” Pediatr Res 2004;56:630-638. Ashwal S , Holshouser B, Tong K, Serna T

  13. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury...and Alcohol Use Following Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  14. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2010-10-01

    comparable to lithium in treating acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with...A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Lability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  15. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Swallowing Disorders

    MedlinePlus

    ... most common cause of dysphagia); traumatic brain injury; cerebral palsy; Parkinson disease and other degenerative neurological disorders such ... most common cause of dysphagia); traumatic brain injury; cerebral palsy; Parkinson disease and other degenerative neurological disorders such ...

  17. Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury.

    PubMed

    Mitsis, E M; Riggio, S; Kostakoglu, L; Dickstein, D L; Machac, J; Delman, B; Goldstein, M; Jennings, D; D'Antonio, E; Martin, J; Naidich, T P; Aloysi, A; Fernandez, C; Seibyl, J; DeKosky, S T; Elder, G A; Marek, K; Gordon, W; Hof, P R; Sano, M; Gandy, S

    2014-09-16

    Single, severe traumatic brain injury (TBI) which elevates CNS amyloid, increases the risk of Alzheimer's disease (AD); while repetitive concussive and subconcussive events as observed in athletes and military personnel, may increase the risk of chronic traumatic encephalopathy (CTE). We describe two clinical cases, one with a history of multiple concussions during a career in the National Football League (NFL) and the second with frontotemporal dementia and a single, severe TBI. Both patients presented with cognitive decline and underwent [(18)F]-Florbetapir positron emission tomography (PET) imaging for amyloid plaques; the retired NFL player also underwent [(18)F]-T807 PET imaging, a new ligand binding to tau, the main constituent of neurofibrillary tangles (NFT). Case 1, the former NFL player, was 71 years old when he presented with memory impairment and a clinical profile highly similar to AD. [(18)F]-Florbetapir PET imaging was negative, essentially excluding AD as a diagnosis. CTE was suspected clinically, and [(18)F]-T807 PET imaging revealed striatal and nigral [(18)F]-T807 retention consistent with the presence of tauopathy. Case 2 was a 56-year-old man with personality changes and cognitive decline who had sustained a fall complicated by a subdural hematoma. At 1 year post injury, [(18)F]-Florbetapir PET imaging was negative for an AD pattern of amyloid accumulation in this subject. Focal [(18)F]-Florbetapir retention was noted at the site of impact. In case 1, amyloid imaging provided improved diagnostic accuracy where standard clinical and laboratory criteria were inadequate. In that same case, tau imaging with [(18)F]-T807 revealed a subcortical tauopathy that we interpret as a novel form of CTE with a distribution of tauopathy that mimics, to some extent, that of progressive supranuclear palsy (PSP), despite a clinical presentation of amnesia without any movement disorder complaints or signs. A key distinguishing feature is that our patient presented with hippocampal involvement, which is more frequently seen in CTE than in PSP. In case 2, focal [(18)F]-Florbetapir retention at the site of injury in an otherwise negative scan suggests focal amyloid aggregation. In each of these complex cases, a combination of [(18)F]-fluorodeoxyglucose, [(18)F]-Florbetapir and/or [(18)F]-T807 PET molecular imaging improved the accuracy of diagnosis and prevented inappropriate interventions.

  18. Superoxide and Nitric Oxide Mechanisms in Traumatic Brain Injury and Hemorrhagic Hypotension.

    DTIC Science & Technology

    1999-12-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Traumatic brain injury (TBI) renders the brain vulnerable to secondary ischemia and poor outcome...cerebral blood flow (CBF) and renders the brain vulnerable to secondary ischemia. There is clinical evidence that hypotension contributes to poor...without TBI. These data indicate that even moderate TBI renders the brain sensitive to ischemic injury during relative mild levels of hypotension that

  19. Standardizing Data Collection in Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    om th is p ro of . 15 Definitions of mild TBI vary considerably across studies ( Comper et al 2005). The American Congress of Rehabilitation...451-627. Comper P, Bisschop S, Carnide N, Tricco A (2005). A Systematic Review of Treatments for Mild Traumatic Brain Injury. Brain Injury 19, 863

  20. Surviving Traumatic Brain Injury: A Study of Post Acute Rehabilitation Services.

    ERIC Educational Resources Information Center

    Schuyler, Suellen

    The problems facing a rehabilitation counselor in successfully working with survivors of brain trauma are myriad. This review examined evaluation techniques, rehabilitation therapies, and existing services that have proven effective with traumatic brain injury (TBI) clients. There is a gap in rehabilitation services that results in the TBI…

  1. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 3 RIN 2900-AN89 Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury Correction In proposed rule document 2012-29709...: The factors considered are: Structural imaging of the brain. LOC--Loss of consciousness. AOC...

  2. 76 FR 68460 - Findings of Research Misconduct

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... Plasticity after Head Injury,'' D.A. Hovda, P.I. R01 NS052406, ``Age-dependent Ketone Metabolism after Brain Injury,'' M.L. Prims, P.I. K08 NS002197, ``NMDA Receptor Dysfunction after Traumatic Brain Injury,'' C.C... of calcium influx and modulation of local neurotransmitters as hallmarks of pediatric traumatic brain...

  3. 76 FR 72957 - 4th Annual Trauma Spectrum Conference: Bridging the Gap Between Research and Clinical Practice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Brain Injury: Prevention, Diagnosis, Treatment and Recovery for the Iraq and Afghanistan Cohort Notice... Clinical Practice of Psychological Health and Traumatic Brain Injury: Prevention, Diagnosis, Treatment and... clinical practices for psychological health and traumatic brain injury (TBI) health concerns for returning...

  4. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  5. Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model

    PubMed Central

    2012-01-01

    Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222

  6. Clinical trials in mild traumatic brain injury.

    PubMed

    Hoffer, Michael E; Szczupak, Mikhaylo; Balaban, Carey

    2016-10-15

    Traumatic brain injury is an increasingly prevalent injury seen in both civilian and military populations. Regardless of the mechanisms of injury, the most common sub-type of injury continues to be mild traumatic brain injury. Within the last decade, there has been tremendous growth in the literature regarding this disease entity. To describe the obstacles necessary to overcome in performing a rigorous and sound clinical research study investigating mild traumatic brain injury. This examination begins by a consideration of changing standards for good faith open and total reporting of any and all conflicts of interest or commitment. This issue is particularly critical in mTBI research. We next examine obstacles that include but are not limited to diagnostic criteria, inclusion/exclusion criteria, source of injury, previous history of injury, presence of comorbid conditions and proper informed consent of participants. Frequently, multi-center studies are necessary for adequate subject accrual with the added challenges of site coordination, data core management and site specific study conduct. We propose a total reversal to the traditional translational research approach where clinical studies drive new concepts for future basic science studies. There have been few mild traumatic brain injury clinical trials in the literature with treatments/interventions that have been able to overcome many of these described obstacles. We look forward to the results of current and ongoing clinical mild traumatic brain injury studies providing the tools necessary for the next generation of basic science projects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The efficacy and safety of extended-release methylphenidate following traumatic brain injury: a randomised controlled pilot study.

    PubMed

    Dymowski, Alicia R; Ponsford, Jennie L; Owens, Jacqueline A; Olver, John H; Ponsford, Michael; Willmott, Catherine

    2017-06-01

    To investigate the feasibility, safety and efficacy of extended-release methylphenidate in enhancing processing speed, complex attentional functioning and everyday attentional behaviour after traumatic brain injury. Seven week randomised, placebo-controlled, double-blind, parallel pilot study. Inpatient and outpatient Acquired Brain Injury Rehabilitation Program. Eleven individuals with reduced processing speed and/or attention deficits following complicated mild to severe traumatic brain injury. Participants were allocated using a blocked randomisation schedule to receive daily extended-release methylphenidate (Ritalin ® LA at a dose of 0.6 mg/kg) or placebo (lactose) in identical capsules. Tests of processing speed and complex attention, and ratings of everyday attentional behaviour were completed at baseline, week 7 (on-drug), week 8 (off-drug) and 9 months follow-up. Vital signs and side effects were monitored from baseline to week 8. Three percent ( n = 11) of individuals screened participated (mean post-traumatic amnesia duration = 63.80 days, SD = 45.15). Results were analysed for six and four individuals on methylphenidate and placebo, respectively. Groups did not differ on attentional test performance or relative/therapist ratings of everyday attentional behaviour. One methylphenidate participant withdrew due to difficulty sleeping. Methylphenidate was associated with trends towards increased blood pressure and reported anxiety. Methylphenidate was not associated with enhanced processing speed, attentional functioning or everyday attentional behaviour after traumatic brain injury. Alternative treatments for attention deficits after traumatic brain injury should be explored given the limited feasibility of methylphenidate in this population.

  8. Whakawhiti Kōrero, a Method for the Development of a Cultural Assessment Tool, Te Waka Kuaka, in Māori Traumatic Brain Injury.

    PubMed

    Elder, Hinemoa; Kersten, Paula

    2015-01-01

    The importance of tools for the measurement of outcomes and needs in traumatic brain injury is well recognised. The development of tools for these injuries in indigenous communities has been limited despite the well-documented disparity of brain injury. The wairua theory of traumatic brain injury (TBI) in Māori proposes that a culturally defined injury occurs in tandem with the physical injury. A cultural response is therefore indicated. This research investigates a Māori method used in the development of cultural needs assessment tool designed to further examine needs associated with the culturally determined injury and in preparation for formal validation. Whakawhiti kōrero is a method used to develop better statements in the development of the assessment tool. Four wānanga (traditional fora) were held including one with whānau (extended family) with experience of traumatic brain injury. The approach was well received. A final version, Te Waka Kuaka, is now ready for validation. Whakawhiti kōrero is an indigenous method used in the development of cultural needs assessment tool in Māori traumatic brain injury. This method is likely to have wider applicability, such as Mental Health and Addictions Services, to ensure robust process of outcome measure and needs assessment development.

  9. Post-traumatic stress disorder vs traumatic brain injury

    PubMed Central

    Bryant, Richard

    2011-01-01

    Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanced risk. Recent evidence suggests that impairment secondary to mild TBI is largely attributable to stress reactions after TBI, which challenges the long-held belief that postconcussive symptoms are a function of neurological insult This recent evidence is pointing to new directions for treatment of postconcussive symptoms that acknowledge that treating stress factors following TBI may be the optimal means to manage the effects of many TBIs, PMID:22034252

  10. Monitoring vigabatrin in head injury patients by cerebral microdialysis: obtaining pharmacokinetic measurements in a neurocritical care setting

    PubMed Central

    Shannon, Richard J; Timofeev, Ivan; Nortje, Jürgens; Hutchinson, Peter J; Carpenter, Keri L H

    2014-01-01

    Aims The aims were to determine blood–brain barrier penetration and brain extracellular pharmacokinetics for the anticonvulsant vigabatrin (VGB; γ-vinyl-γ-aminobutyric acid) in brain extracellular fluid and plasma from severe traumatic brain injury (TBI) patients, and to measure the response of γ-aminobutyric acid (GABA) concentration in brain extracellular fluid. Methods Severe TBI patients (n = 10) received VGB (0.5 g enterally, every 12 h). Each patient had a cerebral microdialysis catheter; two patients had a second catheter in a different region of the brain. Plasma samples were collected 0.5 h before and 2, 4 and 11.5 h after the first VGB dose. Cerebral microdialysis commenced before the first VGB dose and continued through at least three doses of VGB. Controls were seven severe TBI patients with microdialysis, without VGB. Results After the first VGB dose, the maximum concentration of VGB (Cmax) was 31.7 (26.9–42.6) μmol l−1 (median and interquartile range for eight patients) in plasma and 2.41 (2.03–5.94) μmol l−1 in brain microdialysates (nine patients, 11 catheters), without significant plasma–brain correlation. After three doses, median Cmax in microdialysates increased to 5.22 (4.24–7.14) μmol l−1 (eight patients, 10 catheters). Microdialysate VGB concentrations were higher close to focal lesions than in distant sites. Microdialysate GABA concentrations increased modestly in some of the patients after VGB administration. Conclusions Vigabatrin, given enterally to severe TBI patients, crosses the blood–brain barrier into the brain extracellular fluid, where it accumulates with multiple dosing. Pharmacokinetics suggest delayed uptake from the blood. PMID:24802902

  11. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage.

    PubMed

    Shin, Samuel S; Verstynen, Timothy; Pathak, Sudhir; Jarbo, Kevin; Hricik, Allison J; Maserati, Megan; Beers, Sue R; Puccio, Ava M; Boada, Fernando E; Okonkwo, David O; Schneider, Walter

    2012-05-01

    For patients with traumatic brain injury (TBI), current clinical imaging methods generally do not provide highly detailed information about the location of axonal injury, severity of injury, or expected recovery. In a case of severe TBI, the authors applied a novel high-definition fiber tracking (HDFT) to directly visualize and quantify the degree of axonal fiber damage and predict functional deficits due to traumatic axonal injury and loss of cortical projections. This 32-year-old man sustained a severe TBI. Computed tomography and MRI revealed an area of hemorrhage in the basal ganglia with mass effect, but no specific information on the location of axonal injury could be obtained from these studies. Examinations of the patient at Week 3 and Week 8 after TBI revealed motor weaknesses of the left extremities. Four months postinjury, 257-direction diffusion spectrum imaging and HDFT analysis was performed to evaluate the degree of axonal damage in the motor pathway and quantify asymmetries in the left and right axonal pathways. High-definition fiber tracking was used to follow corticospinal and corona radiata pathways from the cortical surface to the midbrain and quantify projections from motor areas. Axonal damage was then localized by assessing the number of descending fibers at the level of the cortex, internal capsule, and midbrain. The motor deficit apparent in the clinical examinations correlated with the axonal losses visualized using HDFT. Fiber loss estimates at 4 months postinjury accurately predicted the nature of the motor deficits (severe, focal left-hand weakness) when other standard clinical imaging modalities did not. A repeat scan at 10 months postinjury, when edema and hemorrhage had receded, replicated the fiber loss. Using HDFT, the authors accurately identified the presence and location of damage to the underlying white matter in this patient with TBI. Detailed information of injury provided by this novel technique holds future potential for precise neuroimaging assessment of TBI.

  12. Concordance of common data elements for assessment of subjective cognitive complaints after mild-traumatic brain injury: a TRACK-TBI Pilot Study.

    PubMed

    Ngwenya, Laura B; Gardner, Raquel C; Yue, John K; Burke, John F; Ferguson, Adam R; Huang, Michael C; Winkler, Ethan A; Pirracchio, Romain; Satris, Gabriela G; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Okonkwo, David O; Manley, Geoffrey T

    2018-06-04

    To determine characteristics and concordance of subjective cognitive complaints (SCCs) 6 months following mild-traumatic brain injury (mTBI) as assessed by two different TBI common data elements (CDEs). The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study was a prospective observational study that utilized the NIH TBI CDEs, Version 1.0. We examined variables associated with SCC, performance on objective cognitive tests (Wechsler Adult Intelligence Scale, California Verbal Learning Test, and Trail Making Tests A and B), and agreement on self-report of SCCs as assessed by the acute concussion evaluation (ACE) versus the Rivermead Post Concussion Symptoms Questionnaire (RPQ). In total, 68% of 227 participants endorsed SCCs at 6 months. Factors associated with SCC included less education, psychiatric history, and being assaulted. Compared to participants without SCC, those with SCC defined by RPQ performed significantly worse on all cognitive tests. There was moderate agreement between the two measures of SCCs (kappa = 0.567 to 0.680). We show that the symptom questionnaires ACE and RPQ show good, but not excellent, agreement for SCCs in an mTBI study population. Our results support the retention of RPQ as a basic CDE for mTBI research. BSI-18: Brief Symptom Inventory; 18CDEs: common data elements; CT: computed tomography; CVLT: California Verbal Learning Test; ED: emergency department; GCS: Glasgow coma scale; LOC: loss of consciousnessm; TBI: mild-traumatic brain injury; PTA: post-traumatic amnesia; SCC: subjective cognitive complaints; TBI: traumatic brain injury; TRACK-TBI: Transforming Research and Clinical Knowledge in Traumatic Brain Injury; TMT: Trail Making Test; WAIS-PSI: Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index.

  13. Disequilibrium after Traumatic Brain Injury: Vestibular Mechanisms

    DTIC Science & Technology

    2012-09-01

    potentially modifiable factors. 0078 Chiropractic Sacro Occipital Technique (SOT) and Cranial Treatment Model for Traumatic Brain Injury Along with...model incorporating laboratory testing to evaluate neurotrans- mitter balance and chiropractic cranial care for the treatment of a patient with traumatic...Approach She has been under care for three years, which consisted of chiropractic sacro occipital technique (SOT) and cranial treat- ment. Within the

  14. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    DTIC Science & Technology

    2014-09-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE...INTRODUCTION: This research addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well- established etiology of temporal ... lobe epilepsy (TLE), a frequently medically intractable and often progressive epilepsy syndrome. Much evidence indicates that abnormalities in

  15. Acute Neuroimmune Modulation Attenuates the Development of Anxiety-Like Freezing Behavior in an Animal Model of Traumatic Brain Injury

    PubMed Central

    Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.

    2012-01-01

    Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644

  16. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study.

    PubMed

    Straudi, Sofia; Severini, Giacomo; Sabbagh Charabati, Amira; Pavarelli, Claudia; Gamberini, Giulia; Scotti, Anna; Basaglia, Nino

    2017-05-10

    Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients. We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task). Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01). Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits. NCT01883830 , April 5 2013.

  17. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  18. Medical Management of the Severe Traumatic Brain Injury Patient.

    PubMed

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  19. 75 FR 62487 - Compassionate Allowances for Cardiovascular Disease and Multiple Organ Transplants, Office of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... hearings concerned rare diseases, cancers, traumatic brain injury and stroke, early-onset Alzheimer's... held five hearings since December 2007. These hearings were on rare diseases, cancers, traumatic brain...

  20. Comparison Of Efficacy Of Phenytoin And Levetiracetam For Prevention Of Early Post Traumatic Seizures.

    PubMed

    Khan, Shahbaz Ali; Bhatti, Sajid Nazir; Khan, Aftab Alam; Khan Afridi, Ehtisham Ahmed; Muhammad, Gul; Gul, Nasim; Zadran, Khalid Khan; Alam, Sudhair; Aurangzeb, Ahsan

    2016-01-01

    The incidence of early post-traumatic seizures after civilian traumatic brain injury ranges 4-25%. The control of early post-traumatic seizure is mandatory because these acute insults may add secondary damage to the already damaged brain with poor outcome. Prophylactic use of anti-epileptic drugs have been found to be have variable efficacy against early post-traumatic seizures. The objective of this study was to compare the efficacy of Phenytion and Levetiracetam in prevention of early post-traumatic seizures in moderate to severe traumatic brain injury. This randomized controlled trial was conducted in department of Neurosurgery, Ayub Medical College, Abbottabad from March, 2012 to March 2013. The patients with moderate to severe head injury were randomly allocated in two groups. Patients in group A were given phenytoin and patients in group B were given Levetiracetam. Patients were followed for one week to detect efficacy of drug in terms of early post traumatic seizures. The 154 patients included in the study were equally divided into two groups. Out of 154 patients 115 (74.7%) were male while 29 (25.3%) were females. Age of patients ranges from 7-48 (24.15±9.56) years. Ninety one (59.1%) patients had moderate head injury while 63 (40.9%) patients had severe head injury. Phenytoin was effective in preventing early post traumatic seizures in 73 (94.8%) patients whereas Levetiracetam effectively controlled seizures in 70 (90.95%) cases (p-value of .348). There is no statistically significant difference in the efficacy of Phenytoin and Levetiracetam in prophylaxis of early posttraumatic seizures in cases of moderate to severe traumatic brain injury.

  1. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  2. 78 FR 53764 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... days of this notice. Proposed Project Examining Traumatic Brain Injury in Youth--NEW--National Center...). Background and Brief Description Traumatic brain injury (TBI) is one of the highest priorities in public... penetrating head injury that disrupts the normal function of the brain. The severity of a TBI may range from...

  3. 77 FR 34359 - Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Projects and Centers Program; Traumatic Brain Injury Model Systems Centers AGENCY: Office of Special... Brain Injury Model Systems Centers (TBIMS). Notice inviting applications for new awards for fiscal year... 28, 2006 (71 FR 25472). The Traumatic Brain Injury Model Systems Centers priority is from the notice...

  4. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  5. Head trauma in the cat: 2. assessment and management of traumatic brain injury.

    PubMed

    Garosi, Laurent; Adamantos, Sophie

    2011-11-01

    Feline trauma patients are commonly seen in general practice and frequently have sustained some degree of brain injury. Cats with traumatic brain injuries may have a variety of clinical signs, ranging from minor neurological deficits to life-threatening neurological impairment. Appropriate management depends on prompt and accurate patient assessment, and an understanding of the pathophysiology of brain injury. The most important consideration in managing these patients is maintenance of cerebral perfusion and oxygenation. For cats with severe head injury requiring decompressive surgery, early intervention is critical. There is a limited clinical evidence base to support the treatment of traumatic brain injury in cats, despite its relative frequency in general practice. Appropriate therapy is, therefore, controversial in veterinary medicine and mostly based on experimental studies or human head trauma studies. This review, which sets out to describe the specific approach to diagnosis and management of traumatic brain injury in cats, draws on the current evidence, as far as it exists, as well as the authors' clinical experience. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  6. 78 FR 76196 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...The Department of Veterans Affairs (VA) amends its adjudication regulations concerning service connection. This final rule acts upon a report of the National Academy of Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. This amendment establishes that if a veteran who has a service-connected TBI also has one of these diagnosable illnesses, then that illness will be considered service connected as secondary to the TBI.

  7. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction

    PubMed Central

    Dang, Baoqi; Chen, Wenli; He, Weichun

    2017-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s. Behavioral problems, mood, cognition, particularly memory, attention, and executive function are commonly impaired by TBI. Spending to assist, TBI survivors with disabilities are estimated to be costly per year. Such impaired functional outcomes following TBI can be improved via various rehabilitative approaches. The objective of the present paper is to review the current rehabilitation treatment of traumatic brain injury in adults. PMID:28491478

  8. Mapping the functional connectome in traumatic brain injury: What can graph metrics tell us?

    PubMed

    Caeyenberghs, Karen; Verhelst, Helena; Clemente, Adam; Wilson, Peter H

    2017-10-15

    Traumatic brain injury (TBI) is associated with cognitive and motor deficits, and poses a significant personal, societal, and economic burden. One mechanism by which TBI is thought to affect cognition and behavior is through changes in functional connectivity. Graph theory is a powerful framework for quantifying topological features of neuroimaging-derived functional networks. The objective of this paper is to review studies examining functional connectivity in TBI with an emphasis on graph theoretical analysis that is proving to be valuable in uncovering network abnormalities in this condition. We review studies that have examined TBI-related alterations in different properties of the functional brain network, including global integration, segregation, centrality and resilience. We focus on functional data using task-related fMRI or resting-state fMRI in patients with TBI of different severity and recovery phase, and consider how graph metrics may inform rehabilitation and enhance efficacy. Moreover, we outline some methodological challenges associated with the examination of functional connectivity in patients with brain injury, including the sample size, parcellation scheme used, node definition and subgroup analyses. The findings suggest that TBI is associated with hyperconnectivity and a suboptimal global integration, characterized by increased connectivity degree and strength and reduced efficiency of functional networks. This altered functional connectivity, also evident in other clinical populations, is attributable to diffuse white matter pathology and reductions in gray and white matter volume. These functional alterations are implicated in post-concussional symptoms, posttraumatic stress and neurocognitive dysfunction after TBI. Finally, the effects of focal lesions have been found to depend critically on topological position and their role in the network. Graph theory is a unique and powerful tool for exploring functional connectivity in brain-injured patients. One limitation is that its results do not provide specific measures about the biophysical mechanism underlying TBI. Continued work in this field will hopefully see graph metrics used as biomarkers to provide more accurate diagnosis and help guide treatment at the individual patient level. Copyright © 2016. Published by Elsevier Inc.

  9. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis.

    PubMed

    Vespa, Paul M; Miller, Chad; McArthur, David; Eliseo, Mathew; Etchepare, Maria; Hirt, Daniel; Glenn, Thomas C; Martin, Neil; Hovda, David

    2007-12-01

    To determine whether nonconvulsive electrographic post-traumatic seizures result in increases in intracranial pressure and microdialysis lactate/pyruvate ratio. Prospective monitoring with retrospective data analysis. Single center academic neurologic intensive care unit. Twenty moderate to severe traumatic brain injury patients (Glasgow Coma Score 3-13). Continuous electroencephalography and cerebral microdialysis were performed for 7 days after injury. Ten patients had seizures and were compared with a matched cohort of traumatic brain injury patients without seizures. The seizures were repetitive and constituted status epilepticus in seven of ten patients. Using a within-subject design, post-traumatic seizures resulted in episodic increases in intracranial pressure (22.4 +/- 7 vs. 12.8 +/- 4.3 mm Hg; p < .001) and an episodic increase in lactate/pyruvate ratio (49.4 +/- 16 vs. 23.8 +/- 7.6; p < .001) in the seizure group. Using a between-subjects comparison, the seizure group demonstrated a higher mean intracranial pressure (17.6 +/- 6.5 vs. 12.2 +/- 4.2 mm Hg; p < .001), a higher mean lactate/pyruvate ratio (38.6 +/- 18 vs. 27 +/- 9; p < .001) compared with nonseizure patients. The intracranial pressure and lactate/pyruvate ratio remained elevated beyond postinjury hour 100 in the seizure group but not the nonseizure group (p < .02). Post-traumatic seizures result in episodic as well as long-lasting increases in intracranial pressure and microdialysis lactate/pyruvate ratio. These data suggest that post-traumatic seizures represent a therapeutic target for patients with traumatic brain injury.

  10. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  11. [Personality Change due to Brain Trauma Caused by Traffic Accidents and Its Assessment of Psychiatric Impairment].

    PubMed

    Fan, Hui-yu; Zhang, Qin-ting; Tang, Tao; Cai, Wei-xiong

    2016-04-01

    To explore the main performance of personality change in people with mild psychiatric impairments which due to the brain trauma caused by traffic accidents and its value in assessment of psychiatric impairment. The condition of personality change of patients with traumatic brain injury caused by traffic accident was evaluated by the Scale of Personality Change Post-traumatic Brain Injury (SPCPTBI). Furthermore, the correlation between the personality change and the degrees of traumatic brain injury and psychiatric impairment were explored. Results In 271 samples, 239 (88.2%) with personality changes. Among these 239 samples, 178 (65.7%), 46 (17.0%), 15 (5.5%) with mild, moderate and severe personality changes, respectively. The ratio based on the extent of personality changes to the degree of brain trauma was not significant (P > 0.05), but the total score difference between the groups was significant (P < 0.05). There was no statistical significance between the medium and high severity brain trauma groups. The higher degree of personality changes, the higher rank of mental disabilities. The total score difference of the scale of personality change among the different mild psychiatric impairment group was significant (P<0.05). The difference between other psychiatric impairment levels had statistical significance (P < 0.05) except level 7 and 8. The occurrence of personality change due to traumatic brain injury caused by traffic accident was high. Correlations exist between the personality change and the degree of psychiatric impairment. Personality change due to brain trauma caused by traffic accident can be assessed effectively by means of SPCPTBI, and the correlation between the total score and the extent of traumatic brain injury can be found.

  12. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology

    PubMed Central

    Ghajari, Mazdak; Hellyer, Peter J; Sharp, David J

    2017-01-01

    Abstract Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter–white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter–white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in sulcal locations, where pathology in cases of chronic traumatic encephalopathy is observed. In addition, the nature of initial head loading can have a significant influence on the magnitude and pattern of injury. Clarifying this relationship is key to understanding the long-term effects of head impacts and improving protective strategies, such as helmet design. PMID:28043957

  13. The role of physical exercise in cognitive recovery after traumatic brain injury: A systematic review.

    PubMed

    Morris, Timothy; Gomes Osman, Joyce; Tormos Muñoz, Jose Maria; Costa Miserachs, David; Pascual Leone, Alvaro

    2016-11-22

    There is a growing body of evidence revealing exercise-induced effects on brain structure and cognitive function across the lifespan. Animal models of traumatic brain injury also suggest exercise is capable of modulating not only the pathophysiological changes following trauma but also the associated cognitive deficits. To evaluate the effect of physical exercise on cognitive impairment following traumatic brain injury in humans. A systematic search of the PubMed database was performed using the search terms "cognition" and "executive function, memory or attention", "traumatic brain injury" and "physical exercise". Adult human traumatic brain injury studies that assessed cognitive function as an outcome measure (primary or secondary) and used physical exercise as a treatment (single or combined) were assessed by two independent reviewers. Data was extracted under the guidance of the population intervention comparison outcome framework wherein, characteristics of included studies (exercise duration, intensity, combined or single intervention, control groups and cognitive measures) were collected, after which, methodological quality (Cochrane criteria) was assessed. A total of 240 citations were identified, but only 6 met our inclusion criteria (3 from search records, 3 from reference lists. Only a small number of studies have evaluated the effect of exercise on cognition following traumatic brain injury in humans, and of those, assessment of efficacy is difficult due to low methodological strength and a high risk of different types of bias. Evidence of an effect of physical exercise on cognitive recovery suggests further studies should explore this treatment option with greater methodological approaches. Recommendations to reduce risk of bias and methodological shortfalls are discussed and include stricter inclusion criteria to create homogenous groups and larger patient pools, more rigorous cognitive assessments and the study and reporting of additional and combined rehabilitation techniques.

  14. TBI Symptoms, Diagnosis, Treatment, Prevention

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury TBI Symptoms, Diagnosis, Treatment, Prevention Past Issues / Fall ... very lucky in my ongoing recovery from the traumatic brain injury I suffered in Iraq." —Bob Woodruff Treatment Immediate ...

  15. Going Local to Find Help

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury Going Local to Find Help Past Issues / Fall ... all the time. From the MedlinePlus page on Traumatic Brain Injury, you can use Go Local to find specific ...

  16. Workplace discrimination and traumatic brain injury: the national EEOC ADA research project.

    PubMed

    McMahon, Brian T; West, Steven L; Shaw, Linda R; Waid-Ebbs, Kay; Belongia, Lisa

    2005-01-01

    Using the Integrated Mission System of the Equal Employment Opportunity Commission, the employment discrimination experience of Americans with traumatic brain injury is documented. Researchers compare and contrast the key dimensions of workplace discrimination involving Americans with traumatic brain injury and persons with other physical, sensory, and neurological impairments. Specifically, the researchers examine demographic characteristics of the charging parties; the industry designation, location, and size of employers against whom complaints are filed; the nature of discrimination (i.e., type of adverse action) alleged to occur; and the outcome or resolution of the investigations. Findings indicate that persons with traumatic brain injury were more likely to encounter discrimination after obtaining employment as opposed to during the hiring process. They were also more likely to encounter discrimination when they were younger or Caucasian or when employed in the Midwestern or Western United States. Implications are addressed.

  17. [Stress adaptive effects after traumatic brain injury].

    PubMed

    Teryaeva, N B; Moshkin, A V

    Neuroendocrine dysfunction, in particular impaired synthesis of anterior pituitary hormones, is a common complication of traumatic brain injury. Deficiency of tropic pituitary hormones entails a hypofunction of the related peripheral endocrine glands and can be accompanied by persistent endocrine and metabolic disorders. In particular, the hypophyseal mechanisms are the key ones in implementation of most stress effects. Adequate implementation of these mechanisms largely determines a favorable outcome in the acute stage of disease. Traumatic brain injury (as well as any significant injury) initiates a stress response that can not develop in full in the case of pituitary gland failure. It is logical to suppose that the course of the acute phase of stress in the presence of hypopituitarism is different to a certain extent from the typical course, which inevitably affects certain adaptation elements. In this review, we analyzed the adaptive effects of stress after traumatic brain injury.

  18. [Methods of data selection from the French medical information system program for trauma patient's analysis: Burns and traumatic brain injuries].

    PubMed

    Paget, L-M; Dupont, A; Pédrono, G; Lasbeur, L; Thélot, B

    2017-10-01

    Data from the French medical information system program in medicine, surgery, obstetrics and dentistry can be adapted in some cases and under certain conditions, to account for hospitalizations for injuries. Two areas have been explored: burn and traumatic brain injury victims. An algorithm selecting data from the Medical information system program was established and implemented for several years for the study of burn victims. The methods of selection of stays for traumatic brain injuries, which are the subject of a more recent exploration, are described. Production of results in routine on the hospitalization for burns. Expected production of results on the hospitalization for traumatic brain injuries. In both cases, the knowledge obtained from these utilizations of the Medical information system program contributes to epidemiological surveillance and prevention and are useful for health care organization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder.

    PubMed

    Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James

    2017-01-01

    Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with changes in brain regions that have been implicated in PTSD and are involved in extinction of fear responses to traumatic memories as well as regulation of the stress response.

  1. Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition.

    PubMed

    McDonald, Skye; Dalton, Katie I; Rushby, Jacqueline A; Landin-Romero, Ramon

    2018-06-14

    Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.

  2. Vascular Neural Network phenotypic transformation after traumatic injury: potential role in long-term sequelae

    PubMed Central

    Badaut, J.; Bix, G.J.

    2014-01-01

    The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up and down stream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders [1]. This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood-flow, smooth muscle cells, matrix, BBB structures and function and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN as this may yield meaningful therapeutic targets to resolve post-traumatic dysfunction. PMID:24323723

  3. Perspectives on Creating Clinically Relevant Blast Models for Mild Traumatic Brain Injury and Post Traumatic Stress Disorder Symptoms

    PubMed Central

    Brenner, Lisa A.; Bahraini, Nazanin; Hernández, Theresa D.

    2012-01-01

    Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic), behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI) and/or post traumatic stress disorder (PTSD). Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast) traumatic brain injury can be used to facilitate the development of clinically relevant blast models. PMID:22408635

  4. Traumatic stress: effects on the brain

    PubMed Central

    Bremner, J. Douglas

    2006-01-01

    Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller hippocampal and anterior cingulate volumes, increased amygdala function, and decreased medial prefrontal/anterior cingulate function. In addition, patients with PTSD show increased cortisol and norepinephrine responses to stress. Treatments that are efficacious for PTSD show a promotion of neurogenesis in animal studies, as well as promotion of memory and increased hippocampal volume in PTSD. PMID:17290802

  5. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  6. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    PubMed

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  7. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.

  8. The clinical spectrum of sport-related traumatic brain injury.

    PubMed

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  9. The Changed Brain: Teacher Awareness of Traumatic Brain Injury and Instruction Methods to Enhance Cognitive Processing in Mathematics

    ERIC Educational Resources Information Center

    Stahl, Judith M.

    2008-01-01

    Traumatic brain injury (TBI) has come to subjugate and exert its authority on education as some survivors re-enter the academic arena. A key component of a TBI student's academic success is dependent upon a teacher's awareness of the TBI learner and a willingness to modify curriculum to promote the uniqueness of the changed brain and therefore,…

  10. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist☆

    PubMed Central

    Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa

    2016-01-01

    The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196

  11. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury.

    PubMed

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R

    2018-02-01

    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Traumatic Brain Injury: A Guide for Caregivers of Service Members and Veterans. Module 1: Introduction to Traumatic Brain Injury

    DTIC Science & Technology

    2010-04-01

    bruising. An MRI scan provides detailed images of the brain using magnetic energy rather than x-ray technology . Intracranial means within the...member/veteran is unable to swallow for many days to weeks, a per cutaneous gastronomy tube (PEG tube) will be placed directly into his or her

  13. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  14. Measurement of Physical Performance and Objective Fatigability in People with Mild-to-Moderate Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Merritta, Catherine; Cherian, Binu; Macaden, Ashish S.; John, Judy Ann

    2010-01-01

    The aims of this study were to objectively measure the physical performance and physical endurance of patients with traumatic brain injury with minimization of cognitive and psychological fatigue, and to compare the physical performance of brain injured patients with that of healthy controls. This was a nonrandomized partially blinded controlled…

  15. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-01

    COVERED 4 October 201 - 3 October 201 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT...injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids Table of Contents Introduction...promote neuroinflammation and potentially lead to neurodegeneration. We have previously demonstrated that treatments to the endocannabinoid system 2

  16. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  17. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    DTIC Science & Technology

    2015-10-01

    behaviors and anxieties among post- deployed SMs with and without traumatic brain injury (TBI), post-traumatic stress syndrome (PTSD) or TBI with...post- traumatic stress syndrome (TBI/PTSD). The goal was to compare SMs who were post-deployment to SMs who had not served in OEF/OIF/OND, however all...in situations when SM would typically drive (p=.02) with TBI/PTSD reporting this more common than TBI and 0Dx. • Move to middle of road or onto

  18. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  19. 77 FR 30015 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... announced below concerns Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking Anticoagulants... received in response to ``Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking...

  20. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy.

    PubMed

    Ribierre, Théo; Deleuze, Charlotte; Bacq, Alexandre; Baldassari, Sara; Marsan, Elise; Chipaux, Mathilde; Muraca, Giuseppe; Roussel, Delphine; Navarro, Vincent; Leguern, Eric; Miles, Richard; Baulac, Stéphanie

    2018-04-30

    DEP domain-containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid-sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit - brain somatic and germline - mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.

  1. A neurovascular perspective for long-term changes after brain trauma.

    PubMed

    Pop, V; Badaut, J

    2011-12-01

    Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.

  2. Hyperbaric oxygen modalities are differentially effective in distinct brain ischemia models

    PubMed Central

    Ostrowski, Robert P.; Stępień, Katarzyna; Pucko, Emanuela; Matyja, Ewa

    2016-01-01

    The effectiveness and efficacy of hyperbaric oxygen (HBO) preconditioning and post-treatment modalities have been demonstrated in experimental models of ischemic cerebrovascular diseases, including global brain ischemia, transient focal and permanent focal cerebral ischemia, and experimental neonatal hypoxia-ischemia encephalopathy. In general, early and repetitive post-treatment of HBO appears to create enhanced protection against brain ischemia whereas delayed HBO treatment after transient focal ischemia may even aggravate brain injury. This review advocates the level of injury reduction upon HBO as an important component for translational evaluation of HBO based treatment modalities. The combined preconditioning and HBO post-treatment that would provide synergistic effects is also worth considering. PMID:27826422

  3. 77 FR 30015 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... announced below concerns Characterizing the Short and Long Term Consequences of Traumatic Brain Injury (TBI... ``Characterizing the Short and Long Term Consequences of Traumatic Brain Injury (TBI) among Children in the United...

  4. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  5. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    PubMed

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  6. Inhibition of 2-AG hydrolysis differentially regulates blood brain barrier permeability after injury.

    PubMed

    Piro, Justin R; Suidan, Georgette L; Quan, Jie; Pi, YeQing; O'Neill, Sharon M; Ilardi, Marissa; Pozdnyakov, Nikolay; Lanz, Thomas A; Xi, Hualin; Bell, Robert D; Samad, Tarek A

    2018-05-14

    Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.

  7. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  8. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  9. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    PubMed

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    PubMed Central

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  11. Assessing Children with Traumatic Brain Injuries: Integrating Educational and Medical Issues.

    ERIC Educational Resources Information Center

    Shaw, Steven R.; Yingst, Christine A.

    1992-01-01

    This overview of traumatic brain injuries discusses (1) incidence and prevalence; (2) characteristics; (3) the recovery process; and (4) educational/medical assessment, including premorbid functioning, current functioning, educationally relevant medical issues, and amount and type of family support. (JDD)

  12. Traumatic Brain Injury: An Overview of School Re-Entry.

    ERIC Educational Resources Information Center

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  13. Mild Traumatic Brain Injury: Facilitating School Success.

    ERIC Educational Resources Information Center

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  14. Plasticity-Based Adaptive Cognitive Remediation (PACR) for OIF/OEF Veterans: A Randomized Controlled Trial

    DTIC Science & Technology

    2015-10-01

    TERMS traumatic brain injury, tbi, concussion , persistent post- concussive symptoms, cognition, cognitive function, cognitive rehabilitation...veterans and active duty military personnel suffering from persistent post- concussive symptoms (PPCS) following mild traumatic brain injury (mTBI) at

  15. Investigation of the Correlation Between Neurocognitive Function with Advanced Magnetic Resonance Imaging (MRI), Electroencephalography (EEG) in Patients with Traumatic Brain Injury Exposure: Neurocognitive function and advanced MRI and EEG

    DTIC Science & Technology

    2011-01-01

    rotation soudaine , à la tête engendré par des forces externes. Des symptômes persistants tels que maux de tête, troubles du sommeil, problèmes...neuropsychological findings in veterans with traumatic brain injury and/or post traumatic stress disorder. Military Medicine. Brenner, L.A. et al . (2010

  16. Developing a Family-Centered Care Model for Critical Care After Pediatric Traumatic Brain Injury.

    PubMed

    Moore, Megan; Robinson, Gabrielle; Mink, Richard; Hudson, Kimberly; Dotolo, Danae; Gooding, Tracy; Ramirez, Alma; Zatzick, Douglas; Giordano, Jessica; Crawley, Deborah; Vavilala, Monica S

    2015-10-01

    This study examined the family experience of critical care after pediatric traumatic brain injury in order to develop a model of specific factors associated with family-centered care. Qualitative methods with semi-structured interviews were used. Two level 1 trauma centers. Fifteen mothers of children who had an acute hospital stay after traumatic brain injury within the last 5 years were interviewed about their experience of critical care and discharge planning. Participants who were primarily English, Spanish, or Cantonese speaking were included. None. Content analysis was used to code the transcribed interviews and develop the family-centered care model. Three major themes emerged: 1) thorough, timely, compassionate communication, 2) capacity building for families, providers, and facilities, and 3) coordination of care transitions. Participants reported valuing detailed, frequent communication that set realistic expectations and prepared them for decision making and outcomes. Areas for capacity building included strategies to increase provider cultural humility, parent participation in care, and institutional flexibility. Coordinated care transitions, including continuity of information and maintenance of partnerships with families and care teams, were highlighted. Participants who were not primarily English speaking reported particular difficulty with communication, cultural understanding, and coordinated transitions. This study presents a family-centered traumatic brain injury care model based on family perspectives. In addition to communication and coordination strategies, the model offers methods to address cultural and structural barriers to meeting the needs of non-English-speaking families. Given the stress experienced by families of children with traumatic brain injury, careful consideration of the model themes identified here may assist in improving overall quality of care to families of hospitalized children with traumatic brain injury.

  17. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    PubMed Central

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  18. Injury-Related Production of Cysteinyl Leukotrienes Contributes to Brain Damage following Experimental Traumatic Brain Injury

    PubMed Central

    Farias, Santiago; Frey, Lauren C.; Murphy, Robert C.

    2009-01-01

    Abstract The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. PMID:19886806

  19. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  20. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  1. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  2. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    PubMed

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported < 3 symptoms and 1 ≥ 3 symptoms, all exhibiting GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  3. [Quantitative evaluation of visual gnosis in children with focal brain lesions].

    PubMed

    Pencheva, S; Zaprianova, L

    1983-01-01

    Bearing in mind the opinion of many authors on a great plasticity and interchangeability of the brain cortical functional systems in children the authors have carried out an experiment with 40 children with focal damages of the brain hemispheres, in 20 of whom the right, and in the other 20 the left hemisphere was affected. Use was made of the method of visual gnosis quantitative assessment in the modification of Pencheva and Mavlov (1975). In the children with the focal damages, more or less marked disturbances of the visual gnosis were revealed, however, no statistically significant relationship between the disturbances and the brain side were disclosed. The agnostic disorders were equally frequent in the children of both groups.

  4. Changing the Odds A North Carolina family's search to help those with TBI

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury Changing the Odds A North Carolina family's search ... his. But the 1984 crash left him with traumatic brain injury (TBI)—and changed his family's life forever. "Back ...

  5. Cerebrovascular regulation, exercise, and mild traumatic brain injury

    PubMed Central

    Meehan, William P.; Iverson, Grant L.; Taylor, J. Andrew

    2014-01-01

    A substantial number of people who sustain a mild traumatic brain injury report persistent symptoms. Most common among these symptoms are headache, dizziness, and cognitive difficulties. One possible contributor to sustained symptoms may be compromised cerebrovascular regulation. In addition to injury-related cerebrovascular dysfunction, it is possible that prolonged rest after mild traumatic brain injury leads to deconditioning that may induce physiologic changes in cerebral blood flow control that contributes to persistent symptoms in some people. There is some evidence that exercise training may reduce symptoms perhaps because it engages an array of cerebrovascular regulatory mechanisms. Unfortunately, there is very little work on the degree of impairment in cerebrovascular control that may exist in patients with mild traumatic brain injury, and there are no published studies on the subacute phase of recovery from this injury. This review aims to integrate the current knowledge of cerebrovascular mechanisms that might underlie persistent symptoms and seeks to synthesize these data in the context of exploring aerobic exercise as a feasible intervention to treat the underlying pathophysiology. PMID:25274845

  6. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  7. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  8. Conversion of Clinical Data from the NABISH 1 and 2 into FITBIR

    DTIC Science & Technology

    2015-10-01

    Research (FITBIR) Informatics System. Data sets from the National Acute Brain Injury Study: Hypothermia (NABISH) projects will be reviewed, analyzed, and...Keywords and Acronyms: Common Data Elements (CDEs) FITBIR – the Federal Interagency Traumatic Brain Injury Research Informatics System Form...NOTES 14. ABSTRACT This project will prepare a related group of legacy data sets for addition to the Federal Interagency Traumatic Brain Injury

  9. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: A... Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-10-2-0171 5c. PROGRAM...combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when dosed one hour following closed cortical

  10. Does Speech-to-Text Assistive Technology Improve the Written Expression of Students with Traumatic Brain Injury?

    ERIC Educational Resources Information Center

    Noakes, Michaela Ann

    2017-01-01

    Traumatic Brain Injury outcomes vary by individual due to age at the onset of injury, the location of the injury, and the degree to which the deficits appear to be pronounced, among other factors. As an acquired injury to the brain, the neurophysiological consequences are not homogenous; they are as varied as the individuals who experience them.…

  11. Defining traumatic brain injury in children and youth using international classification of diseases version 10 codes: a systematic review protocol.

    PubMed

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2013-11-13

    Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This is an important first step in reaching an appropriate definition using International Classification of Diseases version 10 codes and can inform future work on reaching consensus on the codes to define traumatic brain injury for this vulnerable population.

  12. A functional magnetic resonance imaging investigation of episodic memory after traumatic brain injury.

    PubMed

    Russell, Kathryn C; Arenth, Patricia M; Scanlon, Joelle M; Kessler, Lauren J; Ricker, Joseph H

    2011-06-01

    Traumatic brain injury often negatively impacts episodic memory; however, studies of the neural substrates of this impairment have been limited. In this study, both encoding and recognition of visually presented stimuli were examined with functional magnetic resonance imaging. Twelve adults with chronic complicated mild, moderate, and severe injuries were compared with a matched group of 12 controls. Behavioral task performance did not differentiate the groups. During neuroimaging, however, the group of individuals with traumatic brain injury exhibited increased activation, as well as increased bilaterality and dispersion as compared to controls. Findings are discussed in terms of increased resource recruitment.

  13. Invited commentary on Quality of care indicators for the rehabilitation of children with traumatic brain injury, and Quality of care indicators for the structure and organization of inpatient rehabilitation care of children with traumatic brain injury.

    PubMed

    Whyte, John

    2012-03-01

    Measures of structure and process in health care have been shown to be associated with care outcomes in prior research. Two articles in this issue propose measures of structure and process that may be relevant to pediatric traumatic brain injury rehabilitation. This commentary considers how these potential measures may be related to the actual treatments and services that ultimately affect patient outcomes. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Update on the Epidemiology of Concussion/Mild Traumatic Brain Injury.

    PubMed

    Voss, Jameson D; Connolly, Joseph; Schwab, Karen A; Scher, Ann I

    2015-07-01

    Mild traumatic injuries to the brain (e.g., concussion) are common and have been recognized since antiquity, although definitions have varied historically. Nonetheless, studying the epidemiology of concussion helps clarify the overall importance, risk factors, and at-risk populations for this injury. The present review will focus on recent findings related to the epidemiology of concussion including definition controversies, incidence, and patterns in the population overall and in the military and athlete populations specifically. Finally, as this is an area of active research, we will discuss how future epidemiologic observations hold promise for gaining greater clarity about concussion and mild traumatic brain injury.

  15. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  16. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Portable MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection,more » chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.« less

  18. PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury

    DTIC Science & Technology

    2015-04-01

    Award Number: W81XWH-11-2-0129 TITLE: PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0129 PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic...health problems. PHIT for Duty integrates self-report and physiological sensor instruments to assess health status via brief weekly screening

  19. Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider in Deployed and Non-deployed Settings

    DTIC Science & Technology

    2014-01-01

    RPE and references are also included as part of the CST. DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute...Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider...days Symptoms are worsening 3 DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic

  20. Movement disorders secondary to craniocerebral trauma.

    PubMed

    Krauss, Joachim K

    2015-01-01

    Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant. © 2015 Elsevier B.V. All rights reserved.

  1. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats.

    PubMed

    Zlotnik, Alexander; Sinelnikov, Igor; Gruenbaum, Benjamin F; Gruenbaum, Shaun E; Dubilet, Michael; Dubilet, Elena; Leibowitz, Akiva; Ohayon, Sharon; Regev, Adi; Boyko, Matthew; Shapira, Yoram; Teichberg, Vivian I

    2012-01-01

    Decreasing blood glutamate concentrations after traumatic brain injury accelerates brain-to-blood glutamate efflux, leading to improved neurologic outcomes. The authors hypothesize that treatment with blood glutamate scavengers should reduce neuronal cell loss, whereas administration of glutamate should worsen outcomes. The authors performed histologic studies of neuronal survival in the rat hippocampus after traumatic brain injury and treatment with blood glutamate scavengers. Traumatic brain injury was induced on anesthetized male Sprague-Dawley rats by a standardized weight drop. Intravenous treatment groups included saline (control), oxaloacetate, pyruvate, and glutamate. Neurologic outcome was assessed using a Neurological Severity Score at 1 h, and 1, 2, 7, 14, 21, 28 days. Blood glutamate was determined at baseline and 90 min. Four weeks after traumatic brain injury, a histologic analysis of surviving neurons was performed. Oxaloacetate and pyruvate treatment groups demonstrated increased neuronal survival (oxaloacetate 2,200 ± 37, pyruvate 2,108 ± 137 vs. control 1,978 ± 46, P < 0.001, mean ± SD). Glutamate treatment revealed decreased neuronal survival (1,715 ± 48, P < 0.001). Treatment groups demonstrated favorable neurologic outcomes at 24 and 48 h (Neurological Severity Score at 24 and 48 h: 5.5 (1-8.25), 5 (1.75-7.25), P = 0.02 and 3(1-6.5), 4 (1.75-4.5), P = 0.027, median ± corresponding interquartile range). Blood glutamate concentrations were decreased in the oxaloacetate and pyruvate treatment groups. Administration of oxaloacetate and pyruvate was not shown to have any adverse effects. The authors demonstrate that the blood glutamate scavengers oxaloacetate and pyruvate provide neuroprotection after traumatic brain injury, expressed both by reduced neuronal loss in the hippocampus and improved neurologic outcomes. The findings of this study may bring about new therapeutic possibilities in a variety of clinical settings.

  3. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  4. Traumatic Brain Injury. An Overview Look at Effects and Strategies for Remediation.

    ERIC Educational Resources Information Center

    Brongiel, Andrea

    This paper provides an overview of traumatic brain injury (TBI), including incidence, definition, characteristics, assessment and identification, remediation, teacher responsibility, and parent involvement. It discusses the eligibility of students with TBI to receive appropriate and related services in school under the Individuals with…

  5. Draft evidence report : traumatic brain injury and commercial motor vehicle driver safety (comprehensive review).

    DOT National Transportation Integrated Search

    2009-03-30

    Purpose of this evidence report is to address several key questions posed by the Federal Motor Carrier Safety Administration : Key question 1: What is the impact of traumatic brain injury on crash risk/driving performance? Key question 2: What factor...

  6. 78 FR 27036 - Final Priority. National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... individuals with disabilities in conducting TBIMS research. Types of Priorities When inviting applications for... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program...

  7. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  8. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  9. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  10. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  11. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  12. Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury.

    PubMed

    Lewis, Philip M; Czosnyka, Marek; Carter, Bradley G; Rosenfeld, Jeffrey V; Paul, Eldho; Singhal, Nitesh; Butt, Warwick

    2015-10-01

    Traumatic brain injury is a significant cause of morbidity and mortality in children. Cerebral autoregulation disturbance after traumatic brain injury is associated with worse outcome. Pressure reactivity is a fundamental component of cerebral autoregulation that can be estimated using the pressure-reactivity index, a correlation between slow arterial blood pressure, and intracranial pressure fluctuations. Pressure-reactivity index has shown prognostic value in adult traumatic brain injury, with one study confirming this in children. Pressure-reactivity index can identify a cerebral perfusion pressure range within which pressure reactivity is optimal. An increasing difference between optimal cerebral perfusion pressure and cerebral perfusion pressure is associated with worse outcome in adult traumatic brain injury; however, this has not been investigated in children. Our objective was to study pressure-reactivity index and optimal cerebral perfusion pressure in pediatric traumatic brain injury, including associations with outcome, age, and cerebral perfusion pressure. Prospective observational study. ICU, Royal Children's Hospital, Melbourne, Australia. Patients with traumatic brain injury who are 6 months to 16 years old, are admitted to the ICU, and require arterial blood pressure and intracranial pressure monitoring. None. Arterial blood pressure, intracranial pressure, and end-tidal CO2 were recorded electronically until ICU discharge or monitoring cessation. Pressure-reactivity index and optimal cerebral perfusion pressure were computed according to previously published methods. Clinical data were collected from electronic medical records. Outcome was assessed 6 months post discharge using the modified Glasgow Outcome Score. Thirty-six patients were monitored, with 30 available for follow-up. Pressure-reactivity index correlated with modified Glasgow Outcome Score (Spearman ρ = 0.42; p = 0.023) and was higher in patients with unfavorable outcome (0.23 vs -0.09; p = 0.0009). A plot of pressure-reactivity index averaged within 5 mm Hg cerebral perfusion pressure bins showed a U-shape, reaffirming the concept of cerebral perfusion pressure optimization in children. Optimal cerebral perfusion pressure increased with age (ρ = 0.40; p = 0.02). Both the duration and magnitude of negative deviations in the difference between cerebral perfusion pressure and optimal cerebral perfusion pressure were associated with unfavorable outcome. In pediatric patients with traumatic brain injury, pressure-reactivity index has prognostic value and can identify cerebral perfusion pressure targets that may differ from treatment protocols. Our results suggest but do not confirm that cerebral perfusion pressure targeting using pressure-reactivity index as a guide may positively impact on outcome. This question should be addressed by a prospective clinical study.

  13. PET and Single-Photon Emission Computed Tomography in Brain Concussion.

    PubMed

    Raji, Cyrus A; Henderson, Theodore A

    2018-02-01

    This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Post-traumatic seizure susceptibility is attenuated by hypothermia therapy

    PubMed Central

    Atkins, Coleen M.; Truettner, Jessie S.; Lotocki, George; Sanchez-Molano, Juliana; Kang, Yuan; Alonso, Ofelia F.; Sick, Thomas J.; Dietrich, W. Dalton; Bramlett, Helen M.

    2010-01-01

    Traumatic brain injury (TBI) is a major risk factor for the subsequent development of epilepsy. Currently, chronic seizures after brain injury are often poorly controlled by available anti-epileptic drugs. Hypothermia treatment, a modest reduction in brain temperature, reduces inflammation, activates pro-survival signaling pathways, and improves cognitive outcome after TBI. Given the well-known effect of therapeutic hypothermia to ameliorate pathological changes in the brain after TBI, we hypothesized that hypothermia therapy may attenuate the development of post-traumatic epilepsy and some of the pathomechanisms that underlie seizure formation. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury, and then were maintained at normothermic or moderate hypothermic temperatures for 4 hr. At 12 weeks after recovery, seizure susceptibility was assessed by challenging the animals with pentylenetetrazole (PTZ), a GABAA receptor antagonist. PTZ elicited a significant increase in seizure frequency in TBI normothermic animals as compared to sham surgery animals and this was significantly reduced in TBI hypothermic animals. Early hypothermia treatment did not rescue chronic dentate hilar neuronal loss, nor did it improve loss of doublecortin-labeled cells in the dentate gyrus post-seizure. However, mossy fiber sprouting was significantly attenuated by hypothermia therapy. These findings demonstrate that reductions in seizure susceptibility after TBI are improved with post-traumatic hypothermia and provide a new therapeutic avenue for the treatment of post-traumatic epilepsy. PMID:21044182

  15. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    PubMed

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  16. Mild traumatic brain injury: a Midwest survey of discharge teaching practices of emergency department nurses.

    PubMed

    Bay, Esther; Strong, Carrie

    2011-01-01

    Research indicates that the assessment and discharge teaching practices for persons with traumatic brain injury are more focused on ruling out severe brain injury and informing the person about "red flags" warranting a return visit to the medical provider. Our primary purpose was to determine the extent to which discharge practices were aligned with the Centers for Disease Control and Prevention guidelines contained within the Acute Concussion Evaluation care plan. Responses from 87 nurses (25.0% response rate) to a tailored survey were analyzed to determine emergency department nurses' discharge teaching practices for adults who experienced a mild traumatic brain injury (MTBI). Results indicated that nurses in general were focused on injury-specific information and less often provided information about MTBI, symptom management, or strategies for preventing future brain damage. System improvements are justified to provide injured persons with a clearly defined diagnosis and instructions for follow-up and symptom management.

  17. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  18. Central diabetes insipidus in pediatric severe traumatic brain injury.

    PubMed

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and <18 yr) with severe traumatic brain injury (presedation Glasgow Coma Scale ≤ 8 and head Maximum Abbreviated Injury Scale ≥ 4) that developed acute central diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p < 0.001), as were a lower presedation Glasgow Coma Scale (p = 0.03), a lower motor Glasgow Coma Scale (p = 0.01), an occurrence of fixed pupils (p = 0.04), and a prolonged partial thromboplastin time (p = 0.04). Cerebral edema on the initial computed tomography, obtained in the first 24 hrs after injury, was the only imaging finding associated with death (p = 0.002). Survivors of central diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a decompressive craniectomy for elevated intracranial pressure (p = 0.04). The incidence of central diabetes insipidus in pediatric patients with severe traumatic brain injury is 18%. Mortality was associated with early central diabetes insipidus onset and cerebral edema on head computed tomography. Central diabetes insipidus nonsurvivors were less likely to have received intracranial pressure monitoring, thiopental coma and decompressive craniectomy.

  19. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System

    PubMed Central

    Plog, Benjamin A.; Dashnaw, Matthew L.; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid

    2015-01-01

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  20. Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis

    DTIC Science & Technology

    2011-07-01

    focal and diffuse effects in brain (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and...to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and

  1. Neuropathology and brain weight in traumatic-crush asphyxia.

    PubMed

    Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B

    2017-11-01

    Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  3. Mechanism and Therapy for the Shared Susceptibility to Migraine and Epilepsy after Traumatic Brain Injury

    DTIC Science & Technology

    2012-10-01

    malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 31, 17–35. Leventhal, C., Rafii , S... Rafii , D., Shahar, A., Goldman, S.A., 1999. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma

  4. The Association between Mild Traumatic Brain Injury History and Cognitive Control

    ERIC Educational Resources Information Center

    Pontifex, Matthew B.; O'Connor, Phillip M.; Broglio, Steven P.; Hillman, Charles H.

    2009-01-01

    The influence of multiple mild traumatic brain injuries (mTBIs) on neuroelectric and task performance indices of the cognitive control of action monitoring was assessed in individuals with and without a history of concussion. Participants completed a standard clinical neurocognitive assessment and the error-related negativity of the…

  5. Educator Guidelines for Serving Students with Traumatic Brain Injuries. Revised Edition.

    ERIC Educational Resources Information Center

    Utah State Univ., Logan. Mountain Plains Regional Resource Center.

    These guidelines were developed for serving students with traumatic brain injury (TBI) in school settings. An introduction reviews the frequency of TBI, range of severity, and legal responsibility for special education services. Guidelines are offered for creating prevention and awareness programs and for implementing staff development. A section…

  6. Behavioral treatment of the traumatically brain-injured: a case study.

    PubMed

    Horton, A M; Howe, N R

    1981-10-01

    The present case illustrates the application of behavioral modification methodology with a traumatically brain-injured adult. Such a treatment regime utilizing a report-card system and a response-cost procedure was implemented to decrease behaviors of using foul language and biting staff members. Dramatic improvement was demonstrated.

  7. Educational Directions for Students with Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Center for Innovations in Special Education, Columbia, MO.

    This manual, developed to assist Missouri school personnel in the provision of educational opportunities for students with traumatic brain injury (TBI), answers commonly asked questions about the educational needs of these students, and gives practical applications of educational practices and programming. Three case studies are introduced to help…

  8. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    ERIC Educational Resources Information Center

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  9. Correlates of Depression in Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Lynch, Ruth Torkelson

    2006-01-01

    Using Pearlin's stress process model, this study examined correlates of depression in 170 adult siblings of persons with traumatic brain injury (TBI). Approximately 39% of adult sibling participants evinced "Center for Epidemiologic Studies-Depression" (CES-D; Radloff, 1977) scores indicating clinically significant depressive symptoms. Background…

  10. Predictors of Neuropsychological Test Performance After Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Donders, Jacobus; Nesbit-Greene, Kelly

    2004-01-01

    The influence of neurological and demographic variables on neuropsychological test performance was examined in 100 9- to 16-year-old children with traumatic brain injury (TBI). Regression analyses were conducted to determine the relative contributions of coma, neuroimaging findings, ethnicity, socioeconomic status, and gender to variance in…

  11. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  12. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  13. Traumatic Brain Injury: A Guidebook for Educators.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office for Special Education Services.

    This guidebook is designed to help New York school staff better understand the specialized needs of students with traumatic brain injury (TBI) and appropriately apply educational interventions to improve special and general education services for these students. It provides information on the following areas: (1) the causes, incidence, and…

  14. 78 FR 13600 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... designs. The research must focus on outcomes in one or more of the following domains identified in NIDRR's... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project [CFDA Number... Services proposes a priority under the Disability and Rehabilitation Research Projects and Centers Program...

  15. Evaluation of a Health Education Programme about Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  16. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  17. Assisting Students with a Traumatic Brain Injury in School Interventions

    ERIC Educational Resources Information Center

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  18. Cognitive Task Demands and Discourse Performance after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Byom, Lindsey; Turkstra, Lyn S.

    2017-01-01

    Background: Social communication problems are common in adults with traumatic brain injury (TBI), particularly problems in spoken discourse. Social communication problems are thought to reflect underlying cognitive impairments. Aims: To measure the contribution of two cognitive processes, executive functioning (EF) and theory of mind (ToM), to the…

  19. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2012-03-01

    blast injury mechanisms in rat TBI - Roles of polyunsaturated fatty acids in traumatic brain injury vulnerabilities and resilience: evaluation of...salutary effects of DHA supplementation using neurolipidomics and functional outcome assessments - Diagnostic and Therapeutic Targeting of...immunohistochemical assessments reveal greater glial fibrillary acidic protein (GFAP) and IBa1 immunoreactivity in rats subjected to combined injuries than are

  20. The Relationship between Concussion Knowledge and the High School Athlete's Intention to Report Traumatic Brain Injury Symptoms: A Systematic Review of the Literature

    ERIC Educational Resources Information Center

    Taylor, Mary Ellen; Sanner, Jennifer E.

    2017-01-01

    Sports-related concussion or traumatic brain injury (TBI) is a frequent occurrence among high school athletes. Long-term and short-term effects of TBI on the athlete's developing brain can be minimized if the athlete reports and is effectively treated for TBI symptoms. Knowledge of concussion symptoms and a school culture of support are critical…

  1. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  2. Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator

    PubMed Central

    Xie, B-W; Park, D; Van Beek, E R; Blankevoort, V; Orabi, Y; Que, I; Kaijzel, E L; Chan, A; Hogg, P J; Löwik, C W G M

    2013-01-01

    Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions. PMID:23348587

  3. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat

    PubMed Central

    Hanlon, Lauren A.; Huh, Jimmy W.

    2016-01-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  4. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  5. Cocaine Abuse, Traumatic Brain Injury, and Preexisting Brain Lesions as Risk Factors for Bupropion-Associated Psychosis.

    PubMed

    Barman, Rajdip; Kumar, Sanjeev; Pagadala, Bhuvaneshwar; Detweiler, Mark B

    2017-08-01

    Bupropion is generally considered safe and is widely used both as a monotherapy and as an augmentation agent for the treatment of major depression. Concerns have been raised about bupropion's propensity to precipitate new psychosis and worsen existing psychotic symptoms, although the mechanism is poorly understood. Three cases are reported in which bupropion use was associated with psychosis. The aim of the study was to explore the risk factors and possible mechanisms of psychosis in each case. Case 1 describes the interaction of cocaine abuse sensitization in a patient who developed psychosis with a lower dosage of bupropion. Cases 2 and 3 discuss the role of traumatic brain injury and structural brain lesions in increasing the risk of psychosis when using bupropion. Cocaine abuse, traumatic brain injury, and preexisting brain lesions appear to be risk factors for developing psychosis in persons taking bupropion. In such cases, clinicians should carefully assess the risks and benefits and closely monitor patients for symptoms of psychosis.

  6. [Lightning strike and lesions outside the brain: Clinical cases and a review of the literature].

    PubMed

    Morin, A; Lesourd, A; Cabane, J

    2015-01-01

    Every year, 240,000 people are struck by lightning worldwide, causing injuries leading to significant handicaps. Most of the symptoms involve brain lesions; neuromuscular sequelae and myelopathy are less common. We describe five cases of patients struck by lightning with various clinical presentations. The first patient presented painful paresthesias in both upper limbs that disappeared 18 months later; the injury was a plexopathy. The second patient developed proximal weakness in the upper-left limb due to a myopathy. Two patients presented with various motor weaknesses in the lower limbs due to motor neuron disease and myelopathy. The last patient had a transient tetraplegy, which resolved in 5minutes; the diagnosis was keraunoparalysis. Lightning injuries can have many consequences depending on the different mechanisms involved. The clinical presentation is often due to a very focal lesion without any secondary extension. Motor neuron disease probably results from post-traumatic myelopathy. We discuss the ALS-electrocution association, frequently described in the literature. Various peripheral nerve and spinal cord lesions can be seen in lightning strike victims involving myelopathy, motor neuron, muscle and plexus. Clinical syndromes are often atypical but outcome is often favorable. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Combat veterans, mental health issues, and the death penalty: addressing the impact of post-traumatic stress disorder and traumatic brain injury.

    PubMed

    Giardino, Anthony E

    2009-05-01

    More than 1.5 million Americans have participated in combat operations in Iraq and Afghanistan over the past seven years. Some of these veterans have subsequently committed capital crimes and found themselves in our nation's criminal justice system. This Essay argues that combat veterans suffering from post-traumatic stress disorder or traumatic brain injury at the time of their offenses should not be subject to the death penalty.Offering mitigating evidence regarding military training, post-traumatic stress disorder, and traumatic brain injury presents one means that combat veterans may use to argue for their lives during the sentencing phase of their trials. Alternatively, Atkins v. Virginia and Roper v. Simmons offer a framework for establishing a legislatively or judicially created categorical exclusion for these offenders, exempting them from the death penalty as a matter of law. By understanding how combat service and service-related injuries affect the personal culpability of these offenders, the legal system can avoid the consequences of sentencing to death America's mentally wounded warriors, ensuring that only the worst offenders are subject to the ultimate punishment.

  8. The Cost of Treating Post Traumatic Stress Disorder and Mild Traumatic Brain Injuries

    DTIC Science & Technology

    2010-03-01

    and may increase the risk for Alzheimer‟ s disease and Parkinson ‟ s disease as the person ages (Traumatic Brain Injury: Hope Through Research, 2002...not injured and can be sent back into battle , when there could be an undetected internal injury. Due to the overlap in symptoms, many soldiers are...the constant support and advice from Major Shay Capehart was fundamental in moving this research along. Lt Col Eric Unger‟ s guidance and wisdom was

  9. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers.

    PubMed

    Thelin, Eric Peter; Just, David; Frostell, Arvid; Häggmark-Månberg, Anna; Risling, Mårten; Svensson, Mikael; Nilsson, Peter; Bellander, Bo-Michael

    2018-03-15

    The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O 2 ) or hypoxic (11% O 2 ) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis

    DTIC Science & Technology

    2012-07-01

    sensitive to focal and diffuse changes in brain tissue (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based...sensitive to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and

  11. An ultra high performance liquid chromatography with tandem mass spectrometry method for plasma and cerebrospinal fluid pharmacokinetics of rhein in patients with traumatic brain injury after administration of rhubarb decoction.

    PubMed

    Wang, Yang; Fan, Rong; Luo, Jiekun; Tang, Tao; Xing, Zhihua; Xia, Zian; Peng, Weijun; Wang, Wenzhu; Lv, Huiying; Huang, Wei; Liang, Yizeng; Yi, Lunzhao; Lu, Hongmei; Huang, Xi

    2015-04-01

    Damage of blood-brain barrier is a common result of traumatic brain injury. This damage can open the blood-brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood-brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple-quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10-8000 ng/mL for the biofluids. The intra- and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid /AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood-brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Volume transmission-mediated encephalopathies: a possible new concept?

    PubMed

    Hartung, Hans-Peter; Dihné, Marcel

    2012-03-01

    There is strong evidence that the composition of cerebrospinal fluid (CSF) influences brain development, neurogenesis, and behavior. The bidirectional exchange of CSF and interstitial fluid (ISF) across the ependymal and pia-glial membranes is required for these phenomena to occur. Because ISF surrounds the parenchymal compartment, neuroactive substances in the CSF and ISF can influence neuronal activity. Functionally important neuroactive substances are distributed to distant sites of the central nervous system by the convection and diffusion of CSF and ISF, a process known as volume transmission. It has recently been shown that pathologically altered CSF from patients with acute traumatic brain injury suppresses in vitro neuronal network activity (ivNNA) recorded by multielectrode arrays measuring synchronously bursting neural populations. Functionally relevant substances in pathologically altered CSF have been biochemically identified, and ivNNA has been partially recovered by pharmacologic intervention. It remains unclear whether the in vivo parenchymal compartment remains unaffected by pathologically altered CSF that significantly impairs ivNNA. We hypothesize that pathologic CSF alterations are not just passive indicators of brain diseases but that they actively and directly evoke functional disturbances in global brain activity through the distribution of neuroactive substances, for instance, secondary to focal neurologic disease. For this mechanism, we propose the new term volume transmission-mediated encephalopathies (VTE). Recording ivNNA in the presence of pure human CSF could help to identify and monitor functionally relevant CSF alterations that directly result in VTEs, and the collected data might point to therapeutic ways to antagonize these alterations.

  13. Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder

    PubMed Central

    Van Boven, Robert W.; Harrington, Greg S.; Hackney, David B.; Ebel, Andreas; Gauger, Grant; Bremner, J. Douglas; D’Esposito, Mark; Detre, John A.; Haacke, E. Mark; Jack, Clifford R.; Jagust, William J.; Le Bihan, Denis; Mathis, Chester A.; Mueller, Susanne; Mukherjee, Pratik; Schuff, Norbert; Chen, Anthony; Weiner, Michael W.

    2011-01-01

    Improved diagnosis and treatment of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are needed for our military and veterans, their families, and society at large. Advances in brain imaging offer important biomarkers of structural, functional, and metabolic information concerning the brain. This article reviews the application of various imaging techniques to the clinical problems of TBI and PTSD. For TBI, we focus on findings and advances in neuroimaging that hold promise for better detection, characterization, and monitoring of objective brain changes in symptomatic patients with combat-related, closed-head brain injuries not readily apparent by standard computed tomography or conventional magnetic resonance imaging techniques. PMID:20104401

  14. 3 CFR 8969 - Proclamation 8969 of April 30, 2013. National Mental Health Awareness Month, 2013

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... veterans suffering from traumatic brain injury and post-traumatic stress disorder. And we have proposed new... of a mental health problem. They shoulder conditions like depression and anxiety, post-traumatic...

  15. Early Detection of Increased Intracranial Pressure Episodes in Traumatic Brain Injury: External Validation in an Adult and in a Pediatric Cohort.

    PubMed

    Güiza, Fabian; Depreitere, Bart; Piper, Ian; Citerio, Giuseppe; Jorens, Philippe G; Maas, Andrew; Schuhmann, Martin U; Lo, Tsz-Yan Milly; Donald, Rob; Jones, Patricia; Maier, Gottlieb; Van den Berghe, Greet; Meyfroidt, Geert

    2017-03-01

    A model for early detection of episodes of increased intracranial pressure in traumatic brain injury patients has been previously developed and validated based on retrospective adult patient data from the multicenter Brain-IT database. The purpose of the present study is to validate this early detection model in different cohorts of recently treated adult and pediatric traumatic brain injury patients. Prognostic modeling. Noninterventional, observational, retrospective study. The adult validation cohort comprised recent traumatic brain injury patients from San Gerardo Hospital in Monza (n = 50), Leuven University Hospital (n = 26), Antwerp University Hospital (n = 19), Tübingen University Hospital (n = 18), and Southern General Hospital in Glasgow (n = 8). The pediatric validation cohort comprised patients from neurosurgical and intensive care centers in Edinburgh and Newcastle (n = 79). None. The model's performance was evaluated with respect to discrimination, calibration, overall performance, and clinical usefulness. In the recent adult validation cohort, the model retained excellent performance as in the original study. In the pediatric validation cohort, the model retained good discrimination and a positive net benefit, albeit with a performance drop in the remaining criteria. The obtained external validation results confirm the robustness of the model to predict future increased intracranial pressure events 30 minutes in advance, in adult and pediatric traumatic brain injury patients. These results are a large step toward an early warning system for increased intracranial pressure that can be generally applied. Furthermore, the sparseness of this model that uses only two routinely monitored signals as inputs (intracranial pressure and mean arterial blood pressure) is an additional asset.

  16. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model

    PubMed Central

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.

    2018-01-01

    Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980

  17. [Traumatic brain injuries--forensic and expertise aspects].

    PubMed

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  18. Mass-related traumatic tissue displacement and behavior: a screen for treatments that reduce [corrected] harm to bystander cells and recovery of function.

    PubMed

    Yang, Hongyan; Preston, Marnie; Chopp, Michael; Jiang, Feng; Zhang, Xuepeng; Schallert, Timothy

    2006-05-01

    In this study, we focused on a preclinical model of brain compression injury that has relevance to pathological conditions such as tumor, hematoma, blood clot, and intracerebral bony fragment. We investigated behavioral impairment as a result of rapid-onset small mass, and the factors involved in lesion formation and neuroplasticity. An epidural bead implantation method was adopted. Two sizes (1.5 mm and 2.0 mm thick) of hemisphere-shaped beads were used. The beads were implanted into various locations over the sensorimotor cortex (SMC--anterior, middle and posterior). The effects of early versus delayed bead removal were examined to model clinical neurosurgical or other treatment procedures. Forelimb and hind-limb behavioral deficits and recovery were observed, and histological changes were quantified to determine brain reaction to focal compression. Our results showed that the behavioral deficits of compression were influenced by the location, timing of compression release, and magnitude of compression. Even persistent compression by the thicker bead (2.0 mm) caused only minor behavioral deficits, followed by fast recovery within a week in most animals, suggesting a mild lesion pattern for this model. Brain tissue was compressed into a deformed shape under pressure with slight tissue damage, evidenced by pathological evaluation on hematoxylin and eosin (H&E)- and TUNEL-stained sections. Detectable but not severe behavioral dysfunction exhibited by this model makes it particularly suitable for direct assessment of adverse effects of interventions on neuroplasticity after brain compression injury. This model may permit development of treatment strategies to alleviate brain mass effects, without disrupting neuroplasticity.

  19. Neuroimaging in Posttraumatic Stress Disorder and Other Stress-related Disorders

    PubMed Central

    Bremner, J. Douglas

    2009-01-01

    Synopsis Traumatic stress has a broad range of effects on the brain. Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Studies in patients with posttraumatic stress disorder (PTSD) and other psychiatric disorders related to stress have replicated findings in animal studies by finding alterations in these brain areas. Brain regions implicated in PTSD also play an important role in memory function, highlighting the important interplay between memory and the traumatic stress response. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. PMID:17983968

  20. Does intracranial pressure management hurt more than it helps in traumatic brain injury?

    PubMed Central

    Adams, Charles A; Stein, Deborah M; Scalea, Thomas M

    2018-01-01

    Traumatic brain injury (TBI) is the leading cause of death after traumatic injury. Raised intracranial pressure (ICP) is particularly associated with poor TBI outcomes, prompting clinicians to monitor this parameter, using it to guide therapies aimed at reducing pressures. Despite this approach being recommended by several bodies such as the Brain Trauma Foundation and the American College of Surgeons, the evidence demonstrating that ICP-guided therapy improves outcome is limited. The topic was debated at the 36th Annual Point/Counterpoint Acute Care Surgery Conference and the following article summarizes the discussants points of view along with a summary of the evidence. Level of evidence Level III. PMID:29766131

  1. Traumatic Brain Injury: Unmet Support Needs of Caregivers and Families in Florida

    PubMed Central

    Dillahunt-Aspillaga, Christina; Jorgensen-Smith, Tammy; Ehlke, Sarah; Sosinski, Melanie; Monroe, Douglas; Thor, Jennifer

    2013-01-01

    Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented. PMID:24358236

  2. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau...Special Reporting Requirements……………………………………10 9. Appendices……………………………………………………………10 1. INTRODUCTION Traumatic Brain Injury (TBI) is a risk factor for... risk factor for Alzheimer’s disease, Neurosci. Biobehav. Rev. 36(5), 1376-81. Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The Design of Leadlike

  3. Predictors of Major Depression and Posttraumatic Stress Disorder Following Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    PubMed

    Cnossen, Maryse C; Scholten, Annemieke C; Lingsma, Hester F; Synnot, Anneliese; Haagsma, Juanita; Steyerberg, Prof Ewout W; Polinder, Suzanne

    2017-01-01

    Although major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are prevalent after traumatic brain injury (TBI), little is known about which patients are at risk for developing them. The authors systematically reviewed the literature on predictors and multivariable models for MDD and PTSD after TBI. The authors included 26 observational studies. MDD was associated with female gender, preinjury depression, postinjury unemployment, and lower brain volume, whereas PTSD was related to shorter posttraumatic amnesia, memory of the traumatic event, and early posttraumatic symptoms. Risk of bias ratings for most studies were acceptable, although studies that developed a multivariable model suffered from methodological shortcomings.

  4. Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury, Annual Report 2009

    DTIC Science & Technology

    2009-01-01

    applications for recovering from disaster and trauma Defense and Veterans Brain Injury Center Develops and delivers advanced TBI-specifi c treatment...specifically aimed at developing cognitive and motor therapy tools using videogame technology, game-based PH outreach tools and support tools for children of...Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury Annual Report 2009 Report Documentation Page Form ApprovedOMB No

  5. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2017-11-01

    Psychological medicine 1973;3:270-303. 3. Jordan BD. Chronic traumatic brain injury associated with boxing. Seminars in neurology 2000;20:179- 185...astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as one...sections, we used power coherence as a measure of white matter integrity as previously described.32 Briefly, each ROI was subdivided into square

  6. Clinical Phase IIB Trial of Oxycyte Perflurocarbon in Severe Human Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    TERMS Penetrating ballistic brain injury, ischemia, hypoxia, perfluorocarbon , cell death, perfusion. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...SUBTITLE The Role of Perfluorocarbons in Mitigating Traumatic Brain Injury 5a. CONTRACT NUMBER W81XWH-08-1-0419 5b. GRANT NUMBER 5c. PROGRAM...damage seems to be mediated by mechanisms that follow the initial injury (secondary mechanisms). Perfluorocarbons (PFCs) are one of the methods by which

  7. Using external lumbar CSF drainage to treat communicating external hydrocephalus in adult patients after acute traumatic or non-traumatic brain injury.

    PubMed

    Manet, Romain; Payen, Jean-François; Guerin, Romain; Martinez, Orianne; Hautefeuille, Serge; Francony, Gilles; Gergelé, Laurent

    2017-10-01

    Despite various treatments to control intracranial pressure (ICP) after brain injury, patients may present a late onset of high ICP or a poor response to medications. External lumbar drainage (ELD) can be considered a therapeutic option if high ICP is due to communicating external hydrocephalus. We aimed at describing the efficacy and safety of ELD used in a cohort of traumatic or non-traumatic brain-injured patients. In this multicentre retrospective analysis, patients had a delayed onset of high ICP after the initial injury and/or a poor response to ICP treatments. ELD was considered in the presence of radiological signs of communicating external hydrocephalus. Changes in ICP values and side effects following the ELD procedure were reported. Thirty-three patients with a median age of 51 years (25-75th percentile: 34-61 years) were admitted after traumatic (n = 22) or non-traumatic (n = 11) brain injuries. Their initial Glasgow Coma Scale score was 8 (4-11). Eight patients underwent external ventricular drainage prior to ELD. Median time to ELD insertion was 5 days (4-8) after brain insult. In all patients, ELD was dramatically effective in lowering ICP: 25 mmHg (20-31) before versus 7 mmHg (3-10) after (p < 0.001). None of the patients showed adverse effects such as pupil changes or intracranial bleeding after the procedure. One patient developed an ELD-related infection. These findings indicate that ELD may be considered potentially effective in controlling ICP, remaining safe if a firm diagnosis of communicating external hydrocephalus has been made.

  8. Liberal Bias Mediates Emotion Recognition Deficits in Frontal Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Callahan, Brandy L.; Ueda, Keita; Sakata, Daisuke; Plamondon, Andre; Murai, Toshiya

    2011-01-01

    It is well-known that patients having sustained frontal-lobe traumatic brain injury (TBI) are severely impaired on tests of emotion recognition. Indeed, these patients have significant difficulty recognizing facial expressions of emotion, and such deficits are often associated with decreased social functioning and poor quality of life. As of yet,…

  9. Motor Deficits Following Pediatric Mild Traumatic Brain Injury: Implications for School Psychologists

    ERIC Educational Resources Information Center

    Davis, Andrew S.; Moore, Brittney; Rice, Valerie; Decker, Scott

    2015-01-01

    Mild traumatic brain injury (mTBI), sometimes referred to as concussion, is one of the most common acquired neurological problems of childhood. When children return to school following mTBI, school psychologists should be actively involved in the determination of neurocognitive and functional deficits for the purpose of designing strength-based…

  10. Defense.gov - Special Report: Defense Centers of Excellence

    Science.gov Websites

    Excellence for Psychological Health and Traumatic Brain Injury (DCoE) assesses, validates, oversees and programs for psychological health and traumatic brain injury to ensure the Defense Department meets the audience of more than 1,000 military and other government agency health-care workers and officials gathered

  11. Return to Work Following Traumatic Brain Injury. Special Issue, Volume 5, Number 1.

    ERIC Educational Resources Information Center

    Goodall, Patricia, Ed.

    The report examines employment service issues related to assisting persons who have suffered traumatic brain injury to re-enter the labor force and maintain their employment. An interdisciplinary team treatment approach is recommended and the roles of each of the following professionals are summarized: employment specialist, neuropsychologist,…

  12. Behavior Problems in School and Their Educational Correlates among Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Yeates, Keith Owen; Taylor, H. Gerry

    2006-01-01

    This study examined the emotional and behavioral adjustment of children with traumatic brain injury (TBI) in school and its relationship to post-injury academic performance and educational interventions. Teachers' ratings of child behavior and academic performance were collected during a prospective, longitudinal study of 53 children with severe…

  13. Interventions for Students with Traumatic Brain Injury: Managing Behavioral Disturbances.

    ERIC Educational Resources Information Center

    Kehle, Thomas J.; And Others

    1996-01-01

    This article discusses behavioral sequelae common in children and adolescents following a traumatic brain injury (TBI) and the design of intervention strategies. Emphasis is on the unique needs of these students and the cognitive sequelae of TBI (such as impaired attention, reasoning, learning, and memory) that can cause further behavioral…

  14. Biologic and plastic effects of experimental traumatic brain injury treatment paradigms and their relevance to clinical rehabilitation

    PubMed Central

    Garcia, Alexandra N.; Shah, Mansi A.; Dixon, C. Edward; Wagner, Amy K.; Kline, Anthony E.

    2011-01-01

    Neuroplastic changes, whether induced by traumatic brain injury (TBI) or therapeutic interventions, alter neurobehavioral outcome. Here we present several treatment strategies that have been evaluated using experimental TBI models and discuss potential mechanisms of action (i.e., plasticity) and how such changes affect function. PMID:21703575

  15. Text-to-Speech and Reading While Listening: Reading Support for Individuals with Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Harvey, Judy

    2013-01-01

    Individuals with severe traumatic brain injury (TBI) often have reading challenges. They maintain or reestablish basic decoding and word recognition skills following injury, but problems with reading comprehension often persist. Practitioners have the potential to accommodate struggling readers by changing the presentational mode of text in a…

  16. Barriers to Meeting the Needs of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Canto, Angela I.; Chesire, David J.; Buckley, Valerie A.; Andrews, Terrie W.; Roehrig, Alysia D.

    2014-01-01

    Many students with traumatic brain injury (TBI) are identified by the medical community each year and many more experience head injuries that are not examined by medical personnel. School psychologists and allied consultants have important liaison roles to identify and assist these students post-injury. In this study, 75 school psychologists (the…

  17. Traumatic Brain Injury and Grief: Considerations and Practical Strategies for School Psychologists

    ERIC Educational Resources Information Center

    Jantz, Paul B.; Comerchero, Victoria A.; Canto, Angela I.; Pierson, Eric

    2015-01-01

    Traumatic brain injury (TBI) can result in a range of social, emotional, neurological, cognitive, and behavioral outcomes. If these outcomes are significant, family members and the individual who has sustained the TBI may struggle with accepting the effects of these deficits. They may grieve over disrupted family relationships, roles, and routines…

  18. Predicting Story Goodness Performance from Cognitive Measures Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Le, Karen; Coelho, Carl; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Purpose: This study examined the prediction of performance on measures of the Story Goodness Index (SGI; Le, Coelho, Mozeiko, & Grafman, 2011) from executive function (EF) and memory measures following traumatic brain injury (TBI). It was hypothesized that EF and memory measures would significantly predict SGI outcomes. Method: One hundred…

  19. Physicians' Initial Forensic Impressions of Hypothetical Cases of Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Laskey, Antoinette L.; Sheridan, Michael J.; Hymel, Kent P.

    2007-01-01

    Objective: To describe physicians' initial forensic impressions of hypothetical cases of pediatric traumatic brain injury (TBI) and to compare the responses of pathologists and pediatricians. Method: A survey was administered to physicians who attended workshops on pediatric TBI; were members of two national internet list serves; and were members…

  20. Relation of Executive Functioning to Pragmatic Outcome following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.

    2010-01-01

    Purpose: This study was designed to explore the behavioral nature of pragmatic impairment following severe traumatic brain injury (TBI) and to evaluate the contribution of executive skills to the experience of pragmatic difficulties after TBI. Method: Participants were grouped into 43 TBI dyads (TBI adults and close relatives) and 43 control…

  1. Topic Repetitiveness after Traumatic Brain Injury: An Emergent, Jointly Managed Behaviour

    ERIC Educational Resources Information Center

    Body, Richard; Parker, Mark

    2005-01-01

    Topic repetitiveness is a common component of pragmatic impairment and a powerful contributor to social exclusion. Despite this, description, characterization and intervention remain underdeveloped. This article explores the nature of repetitiveness in traumatic brain injury (TBI). A case study of one individual after TBI provides the basis for a…

  2. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  3. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  4. Reduced N400 Semantic Priming Effects in Adult Survivors of Paediatric and Adolescent Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Knuepffer, C.; Murdoch, B. E.; Lloyd, D.; Lewis, F. M.; Hinchliffe, F. J.

    2012-01-01

    The immediate and long-term neural correlates of linguistic processing deficits reported following paediatric and adolescent traumatic brain injury (TBI) are poorly understood. Therefore, the current research investigated event-related potentials (ERPs) elicited during a semantic picture-word priming experiment in two groups of highly functioning…

  5. Traumatic Brain Injury: Exploring the Role of Cooperative Extension in Kansas Communities

    ERIC Educational Resources Information Center

    Sellers, Debra M.; Garcia, Jane Mertz

    2012-01-01

    TBI"options" helps survivors of traumatic brain injury and their families identify, locate, and contact helpful organizations in their local communities to promote successful living. This article discusses the role of county agents in the program and the support offered by community partners. Results of pre- and post-surveys for both…

  6. Explaining Pragmatic Performance in Traumatic Brain Injury: A Process Perspective on Communicative Errors

    ERIC Educational Resources Information Center

    Bosco, Francesca M.; Angeleri, Romina; Sacco, Katiuscia; Bara, Bruno G.

    2015-01-01

    Background: The purpose of this study is to investigate the pragmatic abilities of individuals with traumatic brain injury (TBI). Several studies in the literature have previously reported communicative deficits in individuals with TBI, however such research has focused principally on communicative deficits in general, without providing an…

  7. Humor, Rapport, and Uncomfortable Moments in Interactions with Adults with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kovarsky, Dana; Schiemer, Christine; Murray, Allison

    2011-01-01

    We examined uncomfortable moments that damaged rapport during group interactions between college students in training to become speech-language pathologists and adults with traumatic brain injury. The students worked as staff in a community-based program affiliated with a university training program that functioned as a recreational gathering…

  8. Traumatic Brain Injury and the Transition to Postsecondary Education: Recommendations for Student Success

    ERIC Educational Resources Information Center

    Davies, Susan C.; Trunk, Daniel J.; Kramer, Michaela M.

    2014-01-01

    For many students with traumatic brain injuries (TBIs), postsecondary education presents a new set of cognitive, academic, social, and emotional challenges. Students with TBI warranted services and accommodations through an Individualized Education Program or 504 plan may find supports and services not readily accessible at the postsecondary…

  9. The Cognitive Basis for Sentence Planning Difficulties in Discourse after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Peach, Richard K.

    2013-01-01

    Purpose: Analyses of language production of individuals with traumatic brain injury (TBI) place increasing emphasis on microlinguistic (i.e., within-sentence) patterns. It is unknown whether the observed problems involve implementation of well-formed sentence frames or represent a fundamental linguistic disturbance in computing sentence structure.…

  10. Return to Work and Social Communication Ability Following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.; Bracy, Christine A.; Snow, Pamela C.

    2016-01-01

    Purpose: Return to competitive employment presents a major challenge to adults who survive traumatic brain injury (TBI). This study was undertaken to better understand factors that shape employment outcome by comparing the communication profiles and self-awareness of communication deficits of adults who return to and maintain employment with those…

  11. Academic and Language Outcomes in Children after Traumatic Brain Injury: A Meta-Analysis

    ERIC Educational Resources Information Center

    Vu, Jennifer A.; Babikian, Talin; Asarnow, Robert F .

    2011-01-01

    Expanding on Babikian and Asarnow's (2009) meta-analytic study examining neurocognitive domains, this current meta-analysis examined academic and language outcomes at different time points post-traumatic brain injury (TBI) in children and adolescents. Although children with mild TBI exhibited no significant deficits, studies indicate that children…

  12. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  13. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    ERIC Educational Resources Information Center

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  14. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  15. Misconceptions about Traumatic Brain Injury among Students Preparing to Be Special Education Professionals

    ERIC Educational Resources Information Center

    Hux, Karen; Bush, Erin; Evans, Kelli; Simanek, Gina

    2013-01-01

    The researchers performed a survey study to determine the effectiveness of collegiate programmes in dispelling common misconceptions about traumatic brain injury (TBI) while preparing undergraduate and graduate students for special education (SpEd) careers. Respondents included 136 undergraduate and 147 graduate SpEd students in their final…

  16. Sentence Processing in Traumatic Brain Injury: Evidence from the P600

    ERIC Educational Resources Information Center

    Key-DeLyria, Sarah E.

    2016-01-01

    Purpose: Sentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history. Method: Four young adults with a history of closed head injury participated. Two had severe…

  17. TBI-ROC Part Nine: Diagnosing TBI and Psychiatric Disorders

    ERIC Educational Resources Information Center

    Elias, Eileen; Weider, Katie; Mustafa, Ruman

    2011-01-01

    This article is the ninth of a multi-part series on traumatic brain injury (TBI). It focuses on the process of diagnosing TBI and psychiatric disorders. Diagnosing traumatic brain injury can be challenging. It can be difficult differentiating TBI and psychiatric symptoms, as both have similar symptoms (e.g., memory problems, emotional outbursts,…

  18. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  19. Hemispheric Visual Attentional Imbalance in Patients with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pavlovskaya, Marina; Groswasser, Zeev; Keren, Ofer; Mordvinov, Eugene; Hochstein, Shaul

    2007-01-01

    We find a spatially asymmetric allocation of attention in patients with traumatic brain injury (TBI) despite the lack of obvious asymmetry in neurological indicators. Identification performance was measured for simple spatial patterns presented briefly to a locus 5 degrees into the left or right hemifield, after precuing attention to the same…

  20. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    PubMed

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

Top