Molecular dynamics and dynamic Monte-Carlo simulation of irradiation damage with focused ion beams
NASA Astrophysics Data System (ADS)
Ohya, Kaoru
2017-03-01
The focused ion beam (FIB) has become an important tool for micro- and nanostructuring of samples such as milling, deposition and imaging. However, this leads to damage of the surface on the nanometer scale from implanted projectile ions and recoiled material atoms. It is therefore important to investigate each kind of damage quantitatively. We present a dynamic Monte-Carlo (MC) simulation code to simulate the morphological and compositional changes of a multilayered sample under ion irradiation and a molecular dynamics (MD) simulation code to simulate dose-dependent changes in the backscattering-ion (BSI)/secondary-electron (SE) yields of a crystalline sample. Recent progress in the codes for research to simulate the surface morphology and Mo/Si layers intermixing in an EUV lithography mask irradiated with FIBs, and the crystalline orientation effect on BSI and SE yields relating to the channeling contrast in scanning ion microscopes, is also presented.
NASA Astrophysics Data System (ADS)
Bubolz, K.; Schenk, H.; Hirsch, T.
2016-05-01
Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.
NASA Astrophysics Data System (ADS)
Ngaojampa, C.; Nimmanpipug, P.; Yu, L. D.; Anuntalabhochai, S.; Lee, V. S.
2011-02-01
In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.
Modeling plastic deformation of post-irradiated copper micro-pillars
NASA Astrophysics Data System (ADS)
Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.
2014-12-01
We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.
Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi
2009-10-01
To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.
Atomistic simulations of focused ion beam machining of strained silicon
NASA Astrophysics Data System (ADS)
Guénolé, J.; Prakash, A.; Bitzek, E.
2017-09-01
The focused ion beam (FIB) technique has established itself as an indispensable tool in the material science community, both to analyze samples and to prepare specimens by FIB milling. In combination with digital image correlation (DIC), FIB milling can, furthermore, be used to evaluate intrinsic stresses by monitoring the strain release during milling. The irradiation damage introduced by such milling, however, results in a change in the stress/strain state and elastic properties of the material; changes in the strain state in turn affect the bonding strength, and are hence expected to implicitly influence irradiation damage formation and sputtering. To elucidate this complex interplay between strain, irradiation damage and sputtering, we perform TRIM calculations and molecular dynamics simulations on silicon irradiated by Ga+ ions, with slab and trench-like geometries, whilst simultaneously applying uniaxial tensile and compressive strains up to 4%. In addition we calculate the threshold displacement energy (TDE) and the surface binding energy (SBE) for various strain states. The sputter rate and amount of damage produced in the MD simulations show a clear influence of the strain state. The SBE shows no significant dependence on strain, but is strongly affected by surface reconstructions. The TDE shows a clear strain-dependence, which, however, cannot explain the influence of strain on the extent of the induced irradiation damage or the sputter rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, D. M., E-mail: d.burn@imperial.ac.uk; Atkinson, D.
2014-10-28
Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetizationmore » change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.« less
Verifying Safeguards Declarations with INDEPTH: A Sensitivity Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grogan, Brandon R; Richards, Scott
2017-01-01
A series of ORIGEN calculations were used to simulate the irradiation and decay of a number of spent fuel assemblies. These simulations focused on variations in the irradiation history that achieved the same terminal burnup through a different set of cycle histories. Simulated NDA measurements were generated for each test case from the ORIGEN data. These simulated measurement types included relative gammas, absolute gammas, absolute gammas plus neutrons, and concentrations of a set of six isotopes commonly measured by NDA. The INDEPTH code was used to reconstruct the initial enrichment, cooling time, and burnup for each irradiation using each simulatedmore » measurement type. The results were then compared to the initial ORIGEN inputs to quantify the size of the errors induced by the variations in cycle histories. Errors were compared based on the underlying changes to the cycle history, as well as the data types used for the reconstructions.« less
NASA Astrophysics Data System (ADS)
Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.
2017-11-01
In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.
The evaluation of 6 and 18 MeV electron beams for small animal irradiation
NASA Astrophysics Data System (ADS)
Chao, T. C.; Chen, A. M.; Tu, S. J.; Tung, C. J.; Hong, J. H.; Lee, C. C.
2009-10-01
A small animal irradiator is critical for providing optimal radiation dose distributions for pre-clinical animal studies. This paper focuses on the evaluation of using 6 or 18 MeV electron beams as small animal irradiators. Compared with all other prototypes which use photons to irradiate small animals, an electron irradiator has many advantages in its shallow dose distribution. Two major approaches including simulation and measurement were used to evaluate the feasibility of applying electron beams in animal irradiation. These simulations and measurements were taken in three different fields (a 6 cm × 6 cm square field, and 4 mm and 30 mm diameter circular fields) and with two different energies (6 MeV and 18 MeV). A PTW Semiflex chamber in a PTW-MP3 water tank, a PTW Markus chamber type 23343, a PTW diamond detector type 60003 and KODAK XV films were used to measure PDDs, lateral beam profiles and output factors for either optimizing parameters of Monte Carlo simulation or to verify Monte Carlo simulation in small fields. Results show good agreement for comparisons of percentage depth doses (<=2.5% for 6 MeV e; <=1.8% for 18 MeV e) and profiles (FWHM <= 0.5 mm) between simulations and measurements on the 6 cm field. Greater deviation can be observed in the 4 mm field, which is mainly caused by the partial volume effects of the detectors. The FWHM of the profiles for the 18 MeV electron beam is 32.6 mm in the 30 mm field, and 4.7 mm in the 4 mm field at d90. It will take 1-13 min to complete one irradiation of 5-10 Gy. In addition, two different digital phantoms were also constructed, including a homogeneous cylindrical water phantom and a CT-based heterogeneous mouse phantom, and were implemented into Monte Carlo to simulate dose distribution with different electron irradiations.
Numerical Study on Focusing of Ultrasounds in Microbubble-enhanced HIFU
NASA Astrophysics Data System (ADS)
Matsumoto, Yoichiro; Okita, Kohei; Takagi, Shu
2011-11-01
The injection of microbubbles into the target tissue enhances tissue heating in High-Intensity Focused Ultrasound therapy, via inertial cavitation. The control of the inertial cavitation is required to achieve the efficient tissue ablation. Microbubbles between a transducer and a target disturb the ultrasound propagation depending on the conditions. A method to clear such microbubbles has been proposed by Kajiyama et al. [Physics Procedia 3 (2010) 305-314]. In the method, the irradiation of intense ultrasounds with a burst waveform fragmentize microbubbles in the pathways before the irradiation of ultrasounds for tissue heating. The vitro experiment using a gel containing microbubbles has showed that the method enables to heat the target correctly by controlling the microbubble distribution. Following the experiment, we simulate the focusing of ultrasounds through a mixture containing microbubbles with considering the size and number density distributions in space. The numerical simulation shows that the movement of the heating region from the transducer side to the target by controlling the microbubble distributions. The numerical results elucidate well the experimental ones.
Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models
NASA Astrophysics Data System (ADS)
Petrova, Kremena S.; Stoykova, Elena V.
2006-09-01
Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.
Thermal conductivity of electron-irradiated graphene
NASA Astrophysics Data System (ADS)
Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios
2017-10-01
We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.
Solar Irradiance from GOES Albedo performance in a Hydrologic Model Simulation of Snowmelt Runoff
NASA Astrophysics Data System (ADS)
Sumargo, E.; Cayan, D. R.; McGurk, B. J.
2015-12-01
In many hydrologic modeling applications, solar radiation has been parameterized using commonly available measures, such as the daily temperature range, due to scarce in situ solar radiation measurement network. However, these parameterized estimates often produce significant biases. Here we test hourly solar irradiance derived from the Geostationary Operational Environmental Satellite (GOES) visible albedo product, using several established algorithms. Focusing on the Sierra Nevada and White Mountain in California, we compared the GOES irradiance and that from a traditional temperature-based algorithm with incoming irradiance from pyranometers at 19 stations. The GOES based estimates yielded 21-27% reduction in root-mean-squared error (average over 19 sites). The derived irradiance is then prescribed as an input to Precipitation-Runoff Modeling System (PRMS). We constrain our experiment to the Tuolumne River watershed and focus our attention on the winter and spring of 1996-2014. A root-mean-squared error reduction of 2-6% in daily inflow to Hetch Hetchy at the lower end of the Tuolumne catchment was achieved by incorporating the insolation estimates at only 8 out of 280 Hydrologic Response Units (HRUs) within the basin. Our ongoing work endeavors to apply satellite-derived irradiance at each individual HRU.
NASA Astrophysics Data System (ADS)
Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.
2011-10-01
Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. This work was supported by KAKENHI (22340170).
Laser-enhanced high-intensity focused ultrasound heating in an in vivo small animal model
NASA Astrophysics Data System (ADS)
Jo, Janggun; Yang, Xinmai
2016-11-01
The enhanced heating effect during the combination of high-intensity focused ultrasound (HIFU) and low-optical-fluence laser illumination was investigated by using an in vivo murine animal model. The thighs of murine animals were synergistically irradiated by HIFU and pulsed nano-second laser light. The temperature increases in the target region were measured by a thermocouple under different HIFU pressures, which were 6.2, 7.9, and 9.8 MPa, in combination with 20 mJ/cm2 laser exposures at 532 nm wavelength. In comparison with conventional laser therapies, the laser fluence used here is at least one order of magnitude lower. The results showed that laser illumination could enhance temperature during HIFU applications. Additionally, cavitation activity was enhanced when laser and HIFU irradiation were concurrently used. Further, a theoretical simulation showed that the inertial cavitation threshold was indeed decreased when laser and HIFU irradiation were utilized concurrently.
Laser etching of groove structures with micro-optical fiber-enhanced irradiation
2012-01-01
A microfiber is used as a laser-focusing unit to fabricate a groove structure on TiAlSiN surfaces. After one laser pulse etching, a groove with the minimum width of 265 nm is manufactured at the area. This technique of microfabricating the groove in microscale is studied. Based on the near-field intensity enhancement at the contact area between the fiber and the surface during the laser irradiation, simulation results are also presented, which agree well with the experimental results. PMID:22713521
An inverse method for estimation of the acoustic intensity in the focused ultrasound field
NASA Astrophysics Data System (ADS)
Yu, Ying; Shen, Guofeng; Chen, Yazhu
2017-03-01
Recently, a new method which based on infrared (IR) imaging was introduced. Authors (A. Shaw, et al and M. R. Myers, et al) have established the relationship between absorber surface temperature and incident intensity during the absorber was irradiated by the transducer. Theoretically, the shorter irradiating time makes estimation more in line with the actual results. But due to the influence of noise and performance constrains of the IR camera, it is hard to identify the difference in temperature with short heating time. An inverse technique is developed to reconstruct the incident intensity distribution using the surface temperature with shorter irradiating time. The algorithm is validated using surface temperature data generated numerically from three-layer model which was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the irradiation, and the consequent temperature elevation. To assess the effect of noisy data on the reconstructed intensity profile, in the simulations, the different noise levels with zero mean were superposed on the exact data. Simulation results demonstrate that the inversion technique can provide fairly reliable intensity estimation with satisfactory accuracy.
Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.
1992-07-16
We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Rousseaux, Cecile S.
2016-01-01
The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their relative abundances were generally unaffected because they only prosper in nutrient-rich regions, such as the high latitudes and upwelling regions, which showed the fewest effects from the changes in radiative simulations. The results showed that including directional and spectral irradiance when simulating the ocean light field can be important for ocean biology, but the magnitude varies with variables and regions. The quantitative results are intended to assist ocean modelers when considering improved irradiance representations relative to other processes or variables associated with the issues of interest.
Olson, R A; Parker, J H
1991-04-01
Measurements of the spatial, spectral, and temporal characteristics of the beam irradiance of a carbon arc solar simulator are reported. Pyroelectric radiometer measurements of total irradiance and spectroradiometer measurements of spectral irradiance are presented. The solar simulator spectral irradiance is compared with the ASTM standard AM 1.5 global solar spectral irradiance over a wavelength region of 300-2500 nm. The suitability of the solar simulator for laser receiver testing is discussed.
NASA Astrophysics Data System (ADS)
Wayand, N. E.; Hamlet, A. F.; Hughes, M. R.; Feld, S.; Lundquist, J. D.
2012-12-01
The data required to drive distributed hydrological models is significantly limited within mountainous terrain due to a scarcity of observations. This study evaluated three common configurations of forcing data: a) one low-elevation station, combined with empirical techniques, b) gridded output from the Weather Research and Forecasting (WRF) model, and c) a combination of the two. Each configuration was evaluated within the heavily-instrumented North Fork American River Basin in northern California, during October-June 2000-2010. Simulations of streamflow and snowpack using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted precipitation and radiation as variables whose sources resulted in significant differences. The best source of precipitation data varied between years. On average, the performance of WRF and the single station distributed using the Parameter Regression on Independent Slopes Model (PRISM), were not significantly different. The average percent biases in simulated streamflow were 3.4% and 0.9%, for configurations a) and b) respectively, even though precipitation compared directly with gauge measurements was biased high by 6% and 17%, suggesting that gauge undercatch may explain part of the bias. Simulations of snowpack using empirically-estimated long-wave irradiance resulted in melt rates lower than those observed at high-elevation sites, while at lower-elevations the same forcing caused significant mid-winter melt that was not observed (Figure 1). These results highlight the complexity of how forcing data sources impact hydrology over different areas (high vs. low elevation snow) and different time-periods. Overall, results support the use of output from the WRF model over empirical techniques in regions with limited station data. FIG. 1. (a,b) Simulated SWE from DHSVM compared to observations at the Sierra Snow Lab (2100m) and Blue Canyon (1609m) during 2008 - 2009. Modeled (c,d) internal pack temperature, (e,f) downward short-wave irradiance, (g,h) downward long-wave irradiance, and (i,k) net-irradiance. Note that the timeperiod of plots e,g,i focus on the melt season (March-May), and plots f,h,j focus on the erroneous mid-winter melt event during January - time-periods marked with vertical dashed lines in (a) and (b).
Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.
2017-01-01
Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.
Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.
Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing
2018-02-07
We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.
Ion acceleration in shell cylinders irradiated by a short intense laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, A.; ELI-ALPS, Szeged; Platonov, K.
The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.
Equivalence between solar irradiance and solar simulators in aging tests of sunglasses.
Masili, Mauro; Ventura, Liliane
2016-08-26
This work is part of a broader research that focuses on ocular health. Three outlines are the basis of the pyramid that comprehend the research as a whole: authors' previous work, which has provided the public to self-check their own sunglasses regarding the ultraviolet protection compatible to their category; Brazilian national survey in order to improve nationalization of sunglasses standards; and studies conducted on revisiting requirements of worldwide sunglasses standards, in which this work is inserted. It is still controversial on the literature the ultraviolet (UV) radiation effects on the ocular media, but the World Health Organization has established safe limits on the exposure of eyes to UV radiation based on the studies reported in literature. Sunglasses play an important role in providing safety, and their lenses should provide adequate UV filters. Regarding UV protection for ocular media, the resistance-to-irradiance test for sunglasses under many national standards requires irradiating lenses for 50 uninterrupted hours with a 450 W solar simulator. This artificial aging test may provide a corresponding evaluation of exposure to the sun. Calculating the direct and diffuse solar irradiance at a vertical surface and the corresponding radiant exposure for the entire year, we compare the latter with the 50-h radiant exposure of a 450 W xenon arc lamp from a solar simulator required by national standards. Our calculations indicate that this stress test is ineffective in its present form. We provide evidence of the need to re-evaluate the parameters of the tests to establish appropriate safe limits for UV irradiance. This work is potentially significant for scientists and legislators in the field of sunglasses standards to improve the requirements of sunglasses quality and safety.
Operational performance of a low cost, air mass 2 solar simulator
NASA Technical Reports Server (NTRS)
Yass, K.; Curtis, H. B.
1975-01-01
Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.
Ceccolini, E; Ferrari, P; Castelluccio, D M; Mostacci, D; Sumini, M
2013-10-01
The electron beam emitted backward by plasma focus devices is being considered as a radiation source for Intra-Operative Radiation Therapy (IORT) applications. Radiobiological investigations have been conducted to assess the potential of this new prototype of IORT device. A standard x-ray beam, ISO-H60, was used for comparison, irradiating cell cultures in a holder filled with an aqueous solution. The influence of scattering by the culture water and by the walls of the holder was investigated to determine their influence on the dose delivered to the cell culture. MCNPX simulations were run and experimental measurements conducted. The effect of scattering by the holder was found to be negligible; scattering by the culture water was determined to give an increase in dose of the order of 10%.
A low power ADS for transmutation studies in fast systems
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-12-01
In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
Simulation model for electron irradiated IGZO thin film transistors
NASA Astrophysics Data System (ADS)
Dayananda, G. K.; Shantharama Rai, C.; Jayarama, A.; Kim, Hyun Jae
2018-02-01
An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In-Ga-Zn-O (IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Dynamics of laser-driven proton beam focusing and transport into solid density matter
NASA Astrophysics Data System (ADS)
Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.
2016-10-01
Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.
Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C
2013-03-01
Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W.; Zhou, Y. Norman
2017-10-01
In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO2) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO2-x layer is formed between the Pt electrode and the TiO2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm-2, the Pt/TiO2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.
Xing, Songling; Lin, Luchan; Zou, Guisheng; Liu, Lei; Peng, Peng; Wu, Aiping; Duley, Walter W; Zhou, Y Norman
2017-10-06
In this paper, we show that tightly focused femtosecond laser irradiation is effective in improving nanojoining of an oxide nanowire (NW) (TiO 2 ) to a metal electrode (Pt), and how this process can be used to modify contact states. Enhanced chemical bondings are created due to localized plasmonically enhanced optical absorption at the Pt/TiO 2 interface as confirmed by finite element simulations of the localized field distribution during irradiation. Nano Auger electron spectroscopy shows that the resulting heterojunction is depleted in oxygen, suggesting that a TiO 2-x layer is formed between the Pt electrode and the TiO 2 NW. The presence of this redox layer at the metal/oxide interface plays an important role in decreasing the Schottky barrier height and in facilitating chemical bonding. After laser irradiation at the cathode for 10 s at a fluence of 5.02 mJ cm -2 , the Pt/TiO 2 NW/Pt structure displays different electrical properties under forward and reverse bias voltage, respectively. The creation of this asymmetric electrical characteristic shows the way in which modification of the electronic interface by laser engineering can replace the electroforming process in resistive switching devices and how it can be used to control contact states in a metal/oxide interface.
Horn, Kevin M [Albuquerque, NM
2006-03-28
A scanned, pulsed, focused laser irradiation apparatus can measure and image the photocurrent collection resulting from a dose-rate equivalent exposure to infrared laser light across an entire silicon die. Comparisons of dose-rate response images or time-delay images from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems allows precise identification of those specific age-affected circuit structures within a device that merit further quantitative analysis with targeted materials or electrical testing techniques. Another embodiment of the invention comprises a broad-beam, dose rate-equivalent exposure apparatus. The broad-beam laser irradiation apparatus can determine if aging has affected the device's overall functionality. This embodiment can be combined with the synchronized introduction of external electrical transients into a device under test to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure.
Study of the thermal effect on silicon surface induced by ion beam from plasma focus device
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Ahmad, M.; Al-Hawat, Sh.; Akel, M.
2017-04-01
Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.
Optical simulations of laser focusing for optimization of laser betatron
NASA Astrophysics Data System (ADS)
Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.
2017-05-01
This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.
Assessment of simulated high-dose partial-body irradiation by PCC-R assay.
Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe
2013-09-01
The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.
The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.
2015-12-07
Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform tomore » a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less
The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; ...
2015-12-07
Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a moremore » uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos
This Milestone report shows good progress in interfacing VPSC with the FE codes ABAQUS and MOOSE, to perform component-level simulations of irradiation-induced deformation in Zirconium alloys. In this preliminary application, we have performed an irradiation growth simulation in the quarter geometry of a cladding tube. We have benchmarked VPSC-ABAQUS and VPSC-MOOSE predictions with VPSC-SA predictions to verify the accuracy of the VPSCFE interface. Predictions from the FE simulations are in general agreement with VPSC-SA simulations and also with experimental trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, M.; Iwashita, Y.; Shirai, T.
MeV quasi-mono-energetic proton beam is produced by a combination of a synchronous radio frequency (rf) electric field and laser-plasma ion acceleration. The experiment was carried out at the Kansai Photon Science Institute, JAEA, using the Ti:Sapphire laser system called J-KAREN. The proton beam is emitted normal to the rear surface of the thin polyimide target of the thickness 7.5 {mu}m irradiated at peak intensity of 4x10{sup 18} W/cm{sup 2}. The energy spread is compressed from 100% to less than 11% at FWHM by the rf field. The focusing and defocusing effect of the transverse direction is also observed. These aremore » also studied by a Monte Carlo simulation. The relation between the transverse focusing and the energy spectrum of the phase-rotated beam is systematically shown by the simulation.« less
NASA Astrophysics Data System (ADS)
Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.
1995-01-01
Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.
Simulation of redistributive and erosive effects in a-Si under Ar+ irradiation
NASA Astrophysics Data System (ADS)
Lopez-Cazalilla, A.; Ilinov, A.; Bukonte, L.; Nordlund, K.; Djurabekova, F.; Norris, S.; Perkinson, J. C.
2018-01-01
Ion beams are frequently used in industry for composition control of semiconducting materials as well as for surface processing and thin films deposition. Under certain conditions, low- and medium energy ions at high fluences can produce nanoripples and quantum dots on the irradiated surfaces. In the present work, we focus our attention on the study of irradiation of amorphous silicon (a-Si) target with 250 eV and 1 keV Ar+ ions under different angles, taking into special consideration angles close to the grazing incidence. We use the molecular dynamics (MD) method to investigate how much the cumulative displacement of atoms due to the simulated ion bombardment contribute to the patterning effect. The MD results are subsequently analysed using a numerical module Pycraters that allows the prediction of the rippling effect. Ripple wavelengths estimated with Pycraters are then compared with the experimental observations, as well as with the results obtained by using the binary collisions approximation (BCA) method. The wavelength estimation based on the MD results demonstrates a better agreement with the experimental values. In the framework of the utilized analytical model, it can be mainly attributed to the fact that the BCA ignores low energy atomic interactions, which, however, provide an important contribution to the displacement of atoms following an ion impact.
Golabian, A; Hosseini, M A; Ahmadi, M; Soleimani, B; Rezvanifard, M
2018-01-01
Miniature neutron source reactors (MNSRs) are among the safest and economic research reactors with potentials to be used for neutron studies. This manuscript explores the feasibility of 177 Lu production in Isfahan MNSR reactor using direct production route. In this study, to assess the specific activity of the produced radioisotope, a simulation was carried out through the MCNPX2.6 code. The simulation was validated by irradiating a lutetium disc-like (99.98 chemical purity) at the thermal neutron flux of 5 × 10 11 ncm 2 s -1 and an irradiation time of 4min. After the spectrometry of the irradiated sample, the experimental results of 177 Lu production were compared with the simulation results. In addition, factor from the simulation was extracted by replacing it in the related equations in order to calculate specific activity through a multi-stage approach, and by using different irradiation techniques. The results showed that the simulation technique designed in this study is in agreement with the experimental approach (with a difference of approximately 3%). It was also found that the maximum 177 Lu production at the maximum flux and irradiation time allows access to 723.5mCi/g after 27 cycles. Furthermore, the comparison of irradiation techniques showed that increasing the irradiation time is more effective in 177 Lu production efficiency than increasing the number of irradiation cycles. In a way that increasing the irradiation time would postpone the saturation of the productions. On the other hand, it was shown that the choice of an appropriate irradiation technique for 177 Lu production can be economically important in term of the effective fuel consumption in the reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computation of diffuse sky irradiance from multidirectional radiance measurements
NASA Technical Reports Server (NTRS)
Ahmad, Suraiya P.; Middleton, Elizabeth M.; Deering, Donald W.
1987-01-01
Accurate determination of the diffuse solar spectral irradiance directly above the land surface is important in characterizing the reflectance properties of these surfaces, especially vegetation canopies. This determination is also needed to infer the net radiation budget of the earth-atmosphere system above these surfaces. An algorithm is developed here for the computation of hemispheric diffuse irradiance using the measurements from an instrument called PARABOLA, which rapidly measures upwelling and downwelling radiances in three selected wavelength bands. The validity of the algorithm is established from simulations. The standard reference data set of diffuse radiances of Dave (1978), obtained by solving the radiative transfer equation numerically for realistic atmospheric models, is used to simulate PARABOLA radiances. Hemispheric diffuse irradiance is estimated from a subset of simulated radiances by using the algorithm described. The algorithm is validated by comparing the estimated diffuse irradiance with the true diffuse irradiance of the standard data set. The validations include sensitivity studies for two wavelength bands (visible, 0.65-0.67 micron; near infrared, 0.81-0.84 micron), different atmospheric conditions, solar elevations, and surface reflectances. In most cases the hemispheric diffuse irradiance computed from simulated PARABOLA radiances and the true irradiance obtained from radiative transfer calculations agree within 1-2 percent. This technique can be applied to other sampling instruments designed to estimate hemispheric diffuse sky irradiance.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
Dynamic Shade and Irradiance Simulation of Aquatic Landscapes and Watersheds
Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulate...
NASA Astrophysics Data System (ADS)
Caruso, Angelo; Pais, Vicente A.
1998-07-01
We discuss two issues relevant for the feasibility of the scheme in which a heavy ion pulse is used to ignite a DT fuel spherically compressed, by laser induced ablation, along a low adiabat (no self-ignition). The discussed issues are (i) the degree of synchronism between the laser driven implosion and the trigger pulse; (ii) the requirements on focusing for the trigger beam. The numerical simulation have been made by using cylindrical heavy ion beams with gaussian radial distribution, truncated where the intensity is {1}/{e-4} of the maximum. The parameter ( dbeam), used to measure the focusing, is the diameter of the circle where the intensity is {1}/{e} of the maximum (energy content ≈ 64% of the total energy). Requirements on focusing have been first explored by simulating (2D) the irradiation of static DT cylinders at 200 g/cm 3 by coaxially impinging 15 GeV Bi ions. The ignition conditions have been studied for pulses having 10 ps or 50 ps duration. For both the cases, the ignition energy ( Emin) is constant for spot radii smaller than 50 μm. In the range 50-140 μm the ignition energy increases linearly (3 × Emin at 140 μm, with Emin = 40 kJ for 10 ps pulses, Emin = 100 kJ for 50 ps pulses). The study on synchronism has been performed by simulating (2D) the irradiation, by a heavy ion beam, of a laser imploded spherical DT shell (initial aspect ratio 10). The trigger beam was started at different times near the stagnation, and the initial fuel state (field of velocity, density, temperature, etc.) was that computed by a 1D simulation. It has been found that ignition, and almost constant thermonuclear energy release, can be obtained by triggering within a temporal window of the order of 1 ns, around the stagnation. The interplay between focusing and synchronization for the ignition of the spherical imploding fuel has also been studied. The heavy ion pulse duration was maintained constant at 50 ps (FWHM). Ignition conditions have been studied for trigger energies below 38% of the laser energy used to compress the target (1 MJ), for focusing spot diameters ranging from 30 to 150 μm (full beam diameter, 60 and 300 μm respectively). Useful timing ranges of 400-900 ps in which the overall gain (that is, thermonuclear energy /(laser energy + trigger energy) is greater than 200 have been found.
NASA Astrophysics Data System (ADS)
Radu, R.; Pintilie, I.; Nistor, L. C.; Fretwurst, E.; Lindstroem, G.; Makarenko, L. F.
2015-04-01
This work is focusing on generation, time evolution, and impact on the electrical performance of silicon diodes impaired by radiation induced active defects. n-type silicon diodes had been irradiated with electrons ranging from 1.5 MeV to 27 MeV. It is shown that the formation of small clusters starts already after irradiation with high fluence of 1.5 MeV electrons. An increase of the introduction rates of both point defects and small clusters with increasing energy is seen, showing saturation for electron energies above ˜15 MeV. The changes in the leakage current at low irradiation fluence-values proved to be determined by the change in the configuration of the tri-vacancy (V3). Similar to V3, other cluster related defects are showing bistability indicating that they might be associated with larger vacancy clusters. The change of the space charge density with irradiation and with annealing time after irradiation is fully described by accounting for the radiation induced trapping centers. High resolution electron microscopy investigations correlated with the annealing experiments revealed changes in the spatial structure of the defects. Furthermore, it is shown that while the generation of point defects is well described by the classical Non Ionizing Energy Loss (NIEL), the formation of small defect clusters is better described by the "effective NIEL" using results from molecular dynamics simulations.
Experiment and simulation study of laser dicing silicon with water-jet
NASA Astrophysics Data System (ADS)
Bao, Jiading; Long, Yuhong; Tong, Youqun; Yang, Xiaoqing; Zhang, Bin; Zhou, Zupeng
2016-11-01
Water-jet laser processing is an internationally advanced technique, which combines the advantages of laser processing with water jet cutting. In the study, the experiment of water-jet laser dicing are conducted with ns pulsed laser of 1064 nm irradiating, and Smooth Particle Hydrodynamic (SPH) technique by AUTODYN software was modeled to research the fluid dynamics of water and melt when water jet impacting molten material. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with nanosecond pulse laser of 1064 nm irradiating. Self-focusing phenomenon was found and its causes are analyzed. Smooth Particle Hydrodynamic (SPH) modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining.
Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom
Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.
2017-01-01
Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787
NASA Technical Reports Server (NTRS)
Xu, Jianzeng; Woodyward, James R.
2005-01-01
The operation of multi-junction solar cells used for production of space power is critically dependent on the spectral irradiance of the illuminating light source. Unlike single-junction cells where the spectral irradiance of the simulator and computational techniques may be used to optimized cell designs, optimization of multi-junction solar cell designs requires a solar simulator with a spectral irradiance that closely matches AM0.
European Scientific Notes. Volume 35, Number 7,
1981-07-31
simulated the entire processor down cores, semiconductor PROMs, etc. pack- to gate level on a PDP-11/45 computer, aged on FUROCARDS can be interfaced...approaching retirement were used to generate internal heat age , but DERMO will undoubtedly con- when irradiated. It was found that tinue to be France’s leading...import- parameters , such a doublet will focus ance. it plays an important role not a bundle of rays incident parallel only in mapping and defining the
NASA Astrophysics Data System (ADS)
Wu, Huaqin; Li, Zuoran; Liu, Lantian; Li, Zhifang; Wu, Shulian; Li, Hui
2017-06-01
We illustrated a novel imaging method to diagnose gastric neoplasms via photoacoustic tomography (PAT). Depending on the structural characteristics of gastric cavity, we used column diffusion fiber to irradiate the stomach tissue through the esophagus, and the externally placed telecentric focus ultrasonic transducer detected photoacoustic signals from the gastric tissue. We reconstructed the distribution of light energy deposition of the simulated gastric tumor, and obtained the location and size information of gastric tumor.
NASA Astrophysics Data System (ADS)
Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.
2017-10-01
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.
Research and development of an electron beam focusing system for a high-brightness X-ray generator.
Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; Ikeda, Mitsuo
2011-01-01
A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm(-2) (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm(-2) on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments.
NASA Technical Reports Server (NTRS)
Hiroi, T.; Moroz, L. V.; Shingareva, T. V.; Basilevsky, A. T.; Pieters, M.
2003-01-01
Goal of this study is to make a progress in understanding the optical effects of space weathering on small bodies believed to be similar in composition to carbonaceous chondrites: C, G, B, F, T, D, and P asteroids and possibly Martian satellites Phobos and Deimos. The companion work focuses on petrological and mineralogical aspects of this process. One of the main factors of space weathering is meteorite and micrometeorite bombardment leading, in particular, to impact melting of components of the regolith. Studies of lunar regolith and laboratory experiments simulating impact melting show that the melting products differ from the unmelted material in mineralogy and distribution of chemical components among different phases that results in spectral changes. We simulate impact melting of CM chondrite by pulse laser irradiation of an artificial analog of such a meteorite. The analog is a mixture of 46 wt.% non-magnetic fraction of L5 ordinary chondrite Tsarev, 47 wt.% serpentine, 5 wt.% kerite, and 2 wt.% calcite. It simulates rather well bulk chemistry, including volatiles such as H2O and CO2, and only approximately the CM chondrite mineralogy. Thus, we do not expect the mixture to be spectrally similar to CM chondrites, but expect the laser melting products to be similar to those formed by impact melting of natural CM chondrites.
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, Richard H.; Boley, Aaron C.; Pickett, Megan K.; Mejía, Annie C.
2008-02-01
It is generally thought that protoplanetary disks embedded in envelopes are more massive and thus more susceptible to gravitational instabilities (GIs) than exposed disks. We present three-dimensional radiative hydrodynamic simulations of protoplanetary disks with the presence of envelope irradiation. For a disk with a radius of 40 AU and a mass of 0.07 M⊙ around a young star of 0.5 M⊙, envelope irradiation tends to weaken and even suppress GIs as the irradiating flux is increased. The global mass transport induced by GIs is dominated by lower order modes, and irradiation preferentially suppresses higher order modes. As a result, gravitational torques and mass inflow rates are actually increased by mild irradiation. None of the simulations produce dense clumps or rapid cooling by convection, arguing against direct formation of giant planets by disk instability, at least in irradiated disks. However, dense gas rings and radial mass concentrations are produced, and these might be conducive to accelerated planetary core formation. Preliminary results from a simulation of a massive embedded disk with physical characteristics similar to one of the disks in the embedded source L1551 IRS 5 indicate a long radiative cooling time and no fragmentation. The GIs in this disk are dominated by global two- and three-armed modes.
Understanding and simulating the material behavior during multi-particle irradiations
Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.
2016-01-01
A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040
The Effects of Stellar Irradiation on Gravitational Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Cai, Kai; Durisen, R. H.; Zhu, Z.
2009-01-01
It has been suggested that giant protoplanets form in protoplanetary disks when the disks undergo rapid cooling and fragment into dense Jupiter-mass clumps under the disks' own self-gravity. Previous three-dimensional simulations of protoplanetary disks investigated the effects of envelope irradiation on the development of gravitational instabilities (GIs) in such disks. We found that the irradiation tends to suppress the nonlinear amplitude of GIs and no dense clumps form, arguing against direct formation of giant planets by disk instability in irradiated disks (Cai et al. 2008). In this work, by utilizing an improved radiative cooling scheme in the optically thin regions, we present some preliminary results from simulations with a variable irradiation temperature that mimics the effects of stellar irradiation. Comparisons with results from an envelope-irradiated disk suggest that stellar irradiation may be more effective in suppressing GIs than envelope irradiation.
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Wirth, Brian; Motta, Athur
The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less
NASA Astrophysics Data System (ADS)
Muraro, S.; Battistoni, G.; Belcari, N.; Bisogni, M. G.; Camarlinghi, N.; Cristoforetti, L.; Del Guerra, A.; Ferrari, A.; Fracchiolla, F.; Morrocchi, M.; Righetto, R.; Sala, P.; Schwarz, M.; Sportelli, G.; Topi, A.; Rosso, V.
2017-12-01
Ion beam irradiations can deliver conformal dose distributions minimizing damage to healthy tissues thanks to their characteristic dose profiles. Nevertheless, the location of the Bragg peak can be affected by different sources of range uncertainties: a critical issue is the treatment verification. During the treatment delivery, nuclear interactions between the ions and the irradiated tissues generate β+ emitters: the detection of this activity signal can be used to perform the treatment monitoring if an expected activity distribution is available for comparison. Monte Carlo (MC) codes are widely used in the particle therapy community to evaluate the radiation transport and interaction with matter. In this work, FLUKA MC code was used to simulate the experimental conditions of irradiations performed at the Proton Therapy Center in Trento (IT). Several mono-energetic pencil beams were delivered on phantoms mimicking human tissues. The activity signals were acquired with a PET system (DoPET) based on two planar heads, and designed to be installed along the beam line to acquire data also during the irradiation. Different acquisitions are analyzed and compared with the MC predictions, with a special focus on validating the PET detectors response for activity range verification.
Booth, Corwin H.; Olive, Daniel Thomas
2016-10-26
This focused review provides an overview and a framework for understanding local structure in metallic plutonium (especially the metastable fcc δ-phase alloyed with Ga) as it relates to self-irradiation damage. Of particular concern is the challenge of understanding self-irradiation damage in plutonium-bearing materials where theoretical challenges of the unique involvement of the 5f electrons in bonding limit the efficacy of molecular dynamics simulations and experimental challenges of working with radioactive material have limited the ability to confirm the results of such simulations and to further push the field forward. The main concentration is on extended X-ray absorption fine-structure measurements ofmore » -phase Pu, but the scope is broadened to include certain studies on plutonium intermetallics and oxides insofar as they inform the physics of damage and healing processes in elemental Pu. Here, the studies reviewed here provide insight into lattice distortions and their production, damage annealing and defect migration, and the importance of understanding and controlling sample morphology when interpreting such experiments.« less
MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance
NASA Astrophysics Data System (ADS)
Nasir, Farah H. M.; Husaini, Yusnira
2018-03-01
The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, V. N.; Skupsky, S.; Boehly, T. R.
Irradiation nonuniformities in direct-drive (DD) inertial confinement fusion experiments generate, or ''imprint,'' surface modulations that degrade the symmetry of the implosion and reduce the target performance. To gain physical insight, an analytical model of imprint is developed. The model takes into account the hydrodynamic flow, the dynamics of the conduction zone, and the mass ablation. The important parameters are found to be the time scale for plasma atmosphere formation and the ablation velocity. The model is validated by comparisons to detailed two-dimensional (2D) hydrocode simulations. The results of the model and simulations are in good agreement with a series ofmore » planar-foil imprint experiments performed on the OMEGA laser system [T.R. Boehly, D.L. Brown, R.S. Craxton et al., Opt. Commun. 133, 495 (1997)]. Direct-drive National Ignition Facility's [J.A. Paisner, J.D. Boyes, S.A. Kumpan, W.H. Lowdermilk, and M.S. Sorem, Laser Focus World 30, 75 (1994)] cryogenic targets are shown to have gains larger than 10 when the rms laser-irradiation nonuniformity is reduced by 2D smoothing by spectral dispersion (SSD) used in the current DD target designs. (c)« less
The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations
NASA Technical Reports Server (NTRS)
Rind, David H.; Lean, Judith L.; Jonas, Jeffrey
2014-01-01
Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. D. Miller; J. Gan; J. Madden
2012-05-01
Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and focused ion beam (FIB) milling were performed on an irradiated U-10Mo monolithic fuel to understand its irradiation microstructure. This is the first reported TEM work of irradiated fuel sample prepared using a FIB. Advantages and disadvantages of using the FIB to create TEM samples from this irradiated fuel will be presented along with some results from the work. Sample preparation techniques used to create SEM and FIB samples from the brittle irradiated monolithic sample will also be discussed.
Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang
2016-01-07
Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.
NASA Astrophysics Data System (ADS)
Baumann, C.; Pukhov, A.
2016-12-01
The behavior of a thin plasma target irradiated by two counterpropagating laser pulses of ultrahigh intensity is studied in the framework of one- and two-dimensional particle-in-cell simulations. It is found that above an intensity threshold, radiative trapping can focus electrons in the peaks of the electromagnetic field. At even higher intensities, the trapping effect cannot be maintained according to the increasing influence of electron-positron pair production on the laser-plasma dynamics.
NASA Astrophysics Data System (ADS)
Chimi, Yasuhiro; Kasahara, Shigeki; Ise, Hideo; Kawaguchi, Yoshihiko; Nakano, Junichi; Nishiyama, Yutaka
The Japan Atomic Energy Agency (JAEA) has an in-pile irradiation test plan to evaluate in-situ effects of neutron/γ-ray irradiation on stress corrosion crack (SCC) growth of irradiated stainless steels using the Japan Materials Testing Reactor (JMTR). SCC growth rate and its dependence on electrochemical corrosion potential (ECP) are different between in-pile test and post irradiation examination (PIE). These differences are not fully understood because of a lack of in-pile data. This paper presents a systematic review on SCC growth data of irradiated stainless steels, an in-pile test plan for crack growth of irradiated SUS316L stainless steel under simulated BWR conditions in the JMTR, and the development of the in-pile test techniques.
NASA Astrophysics Data System (ADS)
Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian
2018-04-01
Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lin; Gigax, Jonathan; Chen, Di
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and in some cases introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb forcemore » drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Lin; Gigax, Jonathan; Chen, Di
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
Shao, Lin; Gigax, Jonathan; Chen, Di; ...
2017-06-12
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. In this paper, we briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beammore » by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. Finally, by applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.« less
Schmid, T E; Friedland, W; Greubel, C; Girst, S; Reindl, J; Siebenwirth, C; Ilicic, K; Schmid, E; Multhoff, G; Schmitt, E; Kundrát, P; Dollinger, G
2015-11-01
In conventional experiments on biological effects of radiation types of diverse quality, micrometer-scale double-strand break (DSB) clustering is inherently interlinked with clustering of energy deposition events on nanometer scale relevant for DSB induction. Due to this limitation, the role of the micrometer and nanometer scales in diverse biological endpoints cannot be fully separated. To address this issue, hybrid human-hamster AL cells have been irradiated with 45MeV (60keV/μm) lithium ions or 20MeV (2.6keV/μm) protons quasi-homogeneously distributed or focused to 0.5×1μm(2) spots on regular matrix patterns (point distances up to 10.6×10.6μm), with pre-defined particle numbers per spot to provide the same mean dose of 1.7Gy. The yields of dicentrics and their distribution among cells have been scored. In parallel, track-structure based simulations of DSB induction and chromosome aberration formation with PARTRAC have been performed. The results show that the sub-micrometer beam focusing does not enhance DSB yields, but significantly affects the DSB distribution within the nucleus and increases the chance to form DSB pairs in close proximity, which may lead to increased yields of chromosome aberrations. Indeed, the experiments show that focusing 20 lithium ions or 451 protons per spot on a 10.6μm grid induces two or three times more dicentrics, respectively, than a quasi-homogenous irradiation. The simulations reproduce the data in part, but in part suggest more complex behavior such as saturation or overkill not seen in the experiments. The direct experimental demonstration that sub-micrometer clustering of DSB plays a critical role in the induction of dicentrics improves the knowledge on the mechanisms by which these lethal lesions arise, and indicates how the assumptions of the biophysical model could be improved. It also provides a better understanding of the increased biological effectiveness of high-LET radiation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.
2017-10-01
Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.
Cost effective alternative to low irradiance measurements
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1988-01-01
Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels.
Evaluation of Glyceraldehyde Under Simulated Prebiotic Conditions
NASA Astrophysics Data System (ADS)
Aguilar-Ovando, E.; Buhse, T.; Negrón-Mendoza, A.
2017-07-01
The aim of this work is to compare the behavior under irradiation of solid and aqueous DL-glyceraldehyde simulating prebiotic conditions. The results show the formation of sugar-like products of prebiotic significance as function of irradiation dose.
TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions
NASA Astrophysics Data System (ADS)
Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.
2013-12-01
Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu
2013-07-01
A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.
NASA Astrophysics Data System (ADS)
Umezawa, Masumi; Fujimoto, Rintaro; Umekawa, Tooru; Fujii, Yuusuke; Takayanagi, Taisuke; Ebina, Futaro; Aoki, Takamichi; Nagamine, Yoshihiko; Matsuda, Koji; Hiramoto, Kazuo; Matsuura, Taeko; Miyamoto, Naoki; Nihongi, Hideaki; Umegaki, Kikuo; Shirato, Hiroki
2013-04-01
Hokkaido University and Hitachi Ltd. have started joint development of the Gated Spot Scanning Proton Therapy with Real-Time Tumor-Tracking System by integrating real-time tumor tracking technology (RTRT) and the proton therapy system dedicated to discrete spot scanning techniques under the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)". In this development, we have designed the synchrotron-based accelerator system by using the advantages of the spot scanning technique in order to realize a more compact and lower cost proton therapy system than the conventional system. In the gated irradiation, we have focused on the issues to maximize irradiation efficiency and minimize the dose errors caused by organ motion. In order to understand the interplay effect between scanning beam delivery and target motion, we conducted a simulation study. The newly designed system consists of the synchrotron, beam transport system, one compact rotating gantry treatment room with robotic couch, and one experimental room for future research. To improve the irradiation efficiency, the new control function which enables multiple gated irradiations per synchrotron cycle has been applied and its efficacy was confirmed by the irradiation time estimation. As for the interplay effect, we confirmed that the selection of a strict gating width and scan direction enables formation of the uniform dose distribution.
Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.
Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M
2002-10-01
The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.
Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment
NASA Technical Reports Server (NTRS)
Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu
2012-01-01
The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This poster presents PHITS data suggesting an increase in dose, up to roughly 10 cm depth, followed by a continual decrease as neutrons come to a stop in the target.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.
... blood clot to close the lesion or focused irradiation treatment that is designed to damage the blood ... blood clot to close the lesion or focused irradiation treatment that is designed to damage the blood ...
Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations
Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza
2014-01-01
Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829
Dynamics of nanoparticle morphology under low energy ion irradiation.
Holland-Moritz, Henry; Graupner, Julia; Möller, Wolfhard; Pacholski, Claudia; Ronning, Carsten
2018-08-03
If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of ∼50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.
Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser
NASA Astrophysics Data System (ADS)
Wang, Xi; Fang, Xiaodong
2015-10-01
The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2014-06-30
The objective of the work is to implement a first-passage time (FPT) approach to deal with very fast 1D diffusing SIA clusters in KSOME (kinetic simulations of microstructural evolution) [1] to achieve longer time-scales during irradiation damage simulations. The goal is to develop FPT-KSOME, which has the same flexibility as KSOME.
Von Hippel-Lindau Disease (VHL)
... tumors can be treated with focused high-dose irradiation. Individuals with VHL need careful monitoring by a ... tumors can be treated with focused high-dose irradiation. Individuals with VHL need careful monitoring by a ...
Hickling, Susannah; Leger, Pierre; El Naqa, Issam
2016-02-11
Irradiating an object with a megavoltage photon beam generated by a clinical radiotherapy linear accelerator (linac) induces acoustic waves through the photoacoustic effect. The detection and characterization of such acoustic waves has potential applications in radiation therapy dosimetry. The purpose of this work was to gain insight into the properties of such acoustic waves by simulating and experimentally detecting them in a well-defined system consisting of a metal block suspended in a water tank. A novel simulation workflow was developed by combining radiotherapy Monte Carlo and acoustic wave transport simulation techniques. Different set-up parameters such as photon beam energy, metal block depth, metal block width, and metal block material were varied, and the simulated and experimental acoustic waveforms showed the same relative amplitude trends and frequency variations for such setup changes. The simulation platform developed in this work can easily be extended to other irradiation situations, and will be an invaluable tool for developing a radiotherapy dosimetry system based on the detection of the acoustic waves induced following linear accelerator irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Miao, Yinbin; Xu, Ruqing
2016-04-01
Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less
Generation of warm dense matter using an argon based capillary discharge laser
NASA Astrophysics Data System (ADS)
Rossall, A. K.; Tallents, G. J.
2015-06-01
Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.
Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.
2017-10-01
The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.
NASA Technical Reports Server (NTRS)
Lord, Kenneth; Woodyard, James R.
2002-01-01
The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.
Yabe, Takuya; Sasano, Makoto; Hirano, Yoshiyuki; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Hayashi, Masateru; Azuma, Tetsushi; Sakamoto, Yusuku; Komori, Masataka; Yamamoto, Seiichi
2018-06-20
Although luminescence of water lower in energy than the Cerenkov-light threshold during proton and carbon-ion irradiation has been found, the phenomenon has not yet been implemented for Monte Carlo simulations. The results provided by the simulations lead to misunderstandings of the physical phenomenon in optical imaging of water during proton and carbon-ion irradiation. To solve the problems, as well as to clarify the light production of the luminescence of water, we modified a Monte Carlo simulation code to include the light production from the luminescence of water and compared them with the experimental results of luminescence imaging of water. We used GEANT4 for the simulation of emitted light from water during proton and carbon-ion irradiation. We used the light production from the luminescence of water using the scintillation process in GEANT4 while those of Cerenkov light from the secondary electrons and prompt gamma photons in water were also included in the simulation. The modified simulation results showed similar depth profiles to those of the measured data for both proton and carbon-ion. When the light production of 0.1 photons/MeV was used for the luminescence of water in the simulation, the simulated depth profiles showed the best match to those of the measured results for both the proton and carbon-ion compared with those used for smaller and larger numbers of photons/MeV. We could successively obtain the simulated depth profiles that were basically the same as the experimental data by using GEANT4 when we assumed the light production by the luminescence of water. Our results confirmed that the inclusion of the luminescence of water in Monte Carlo simulation is indispensable to calculate the precise light distribution in water during irradiation of proton and carbon-ion.
Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation
NASA Astrophysics Data System (ADS)
Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.
2017-08-01
Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.
NASA Astrophysics Data System (ADS)
Wu, Yanxue; Li, Xiongyao; Yao, Wenqing; Wang, Shijie
2017-10-01
Without the protection of the atmosphere, the soils on lunar surfaces undergo a series of optical, physical, and chemical changes during micrometeorite bombardment. To simulate the micrometeorite bombardment process and analyze the impact characteristics, four types of rocks, including terrestrial basalt and anorthosite supposed to represent lunar rock, an H-type chondrite (the Huaxi ordinary chondrite), and an iron meteorite (the Gebel Kamil iron meteorite) supposed to represent micrometeorite impactors, are irradiated by a nanosecond pulse laser in a high vacuum chamber. Based on laser irradiation experiments, the laser pits are found to be of different shapes and sizes which vary with the rock type. Many melt and vapor deposits are found on the mineral surfaces of all the samples, and nanophase iron (npFe) or Fe-Ni alloy particles are typically distributed on the surfaces of ilmenite, kamacite, or other minerals near kamacite. By analyzing the focused ion beam ultrathin slices of laser pits with a transmission electron microscope, the results show that the subsurface structures can be divided into three classes and that npFe can be easily found in Fe-bearing minerals. These differences in impact characteristics will help determine the source material of npFe and infer the type of micrometeorite impactors. During micrometeorite bombardment, in the mare regions, the npFe are probably produced simultaneously from lunar basalt and micrometeorites with iron-rich minerals, while the npFe in the highlands regions mainly come from micrometeorites.
The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1.
Szarka, Mate; Szilasi, Szabolcs; Donczo, Boglarka; Sarkozy, Daniel; Rajta, Istvan; Guttman, Andras
2018-05-18
On a roundtrip to Mars, astronauts are expectedly exposed to an approximate amount of radiation that exceeds the lifetime limits on Earth. This elevated radiation dose is mainly due to Galactic Cosmic Rays and Solar Particle Events. Specific patterns of the N-glycosylation of human Igs have already been associated with various ailments such as autoimmune diseases, malignant transformation, chronic inflammation, and ageing. The focus of our work was to investigate the effect of low-energy proton irradiation on the IgG N-glycosylation profile with the goal if disease associated changes could be detected during space travel and not altered by space radiation. Two ionization sources were used during the experiments, a Van de Graaff generator for the irradiation of solidified hIgG samples in vacuum, and a Tandetron accelerator to irradiate hIgG samples in aqueous solution form. Structural carbohydrate analysis was accomplished by CE with laser induced fluorescent detection to determine the effects of simulated space radiation on N-glycosylation of hIgG1 samples. Our results revealed that even several thousand times higher radiation doses that of astronauts can suffer during long duration missions beyond the shielding environment of Low Earth Orbit, no changes were observed in hIgG1 N-glycosylation. Consequently, changes in N-linked carbohydrate profile of IgG1 can be used as molecular diagnostic tools in space. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulsed-Laser Irradiation Space Weathering of a Carbonaceous Chondrite
NASA Astrophysics Data System (ADS)
Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.
2017-07-01
We used pulsed laser irradiation of the Murchison meteorite to simulate space weathering processes in the laboratory. We analyzed changes in the spectral, chemical, and microstructural characteristics of the material after irradiation.
Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser
NASA Astrophysics Data System (ADS)
Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu
2018-02-01
Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.
Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan
2016-10-20
To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Deline, Chris
This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacialmore » PV panels.« less
Evolution of irradiation-induced strain in an equiatomic NiFe alloy
Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...
2017-07-10
Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less
Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E
2015-01-01
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, K., E-mail: karol.malinowski@ncbj.gov.pl; Sadowski, M. J.; Szydlowski, A.
2015-01-15
The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.
Design and dosimetry of small animal radiation facilities
NASA Astrophysics Data System (ADS)
Rodriguez, Manuel R.
The aim of this work was to develop an irradiation system for radiobiology studies. We designed a novel image-guided micro-irradiator capable of partial-body zebrafish embryo irradiation. The radiation source is a 50 kV photon beam from a miniature x-ray source (Xoft Inc., CA). The source is inserted in a cylindrical brass collimator, 3 cm in diameter and 3 cm in length. The collimator has a 1 mm-diameter pinhole along the longitudinal axis, which provides a well-focused beam with a sharp penumbra. A photodiode is installed at one exit of the pinhole collimator to monitor the photon dose rate. The source with the collimator is attached under a movable table. A video camera, connected to the computer, is placed above the movable table to record position of the specimens in relation to the pinhole collimator. The captured images are analyzed, and the relative distances between the specimens and the pinhole are calculated. The coordinates are sent to the computer-controlled movable table to accurately position the specimens in the beam. Monte Carlo simulations were performed to characterize dosimetric properties of the system, to determine dosimetric sensitivity, and to help in the design. The image-guidance and high precision of the movable table enable very accurate specimen position. The beam monitoring system provides accurate, fast and easy dose determination. Portability and self-shielding make this system suitable for any radiobiology laboratory. This novel micro-irradiator is appropriate for partial irradiation of zebrafish embryos; however its potential use is much wider like irradiation of cell cultures or other small specimens.
NASA Astrophysics Data System (ADS)
Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur
2017-06-01
Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.
Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys
Zhang, S.; Nordlund, K.; Djurabekova, F.; ...
2017-04-12
We develop a new method using binary collision approximation simulating the Rutherford backscattering spectrometry in channeling conditions (RBS/C) from molecular dynamics atom coordinates of irradiated cells. The approach allows comparing experimental and simulated RBS/C signals as a function of depth without fitting parameters. The simulated RBS/C spectra of irradiated Ni and concentrated solid solution alloys (CSAs, NiFe and NiCoCr) show a good agreement with the experimental results. The good agreement indicates the damage evolution under damage overlap conditions in Ni and CSAs at room temperature is dominated by defect recombination and migration induced by irradiation rather than activated thermally.
Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Yacout, Abdellatif
As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U 3Si 2 as an AFT for LWRs. Considering the high cost,more » long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U 3Si 2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U 3Si 2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.« less
Accurate measurements of solar spectral irradiance between 4000-10000 cm-1
NASA Astrophysics Data System (ADS)
Elsey, J.; Coleman, M. D.; Gardiner, T.; Shine, K. P.
2017-12-01
The near-infrared solar spectral irradiance (SSI) is an important input into simulations of weather and climate; the distribution of energy throughout this region of the spectrum influences atmospheric heating rates and the global hydrological cycle through absorption and scattering by water vapour. Current measurements by a mixture of ground-based and space-based instruments show differences of around 10% in the 4000-7000 cm-1 region, with no resolution to this controversy in sight. This work presents observations of SSI taken using a ground-based Fourier Transform spectrometer between 4000-10000 cm-1 at a field site in Camborne, UK, with particular focus on a rigorously defined uncertainty budget. While there is good agreement between this work and the commonly-used ATLAS3 spectrum between 7000-10000 cm-1, the SSI is systematically lower by 10% than ATLAS3 between 4000-7000 cm-1, with no overlap within the k = 2 measurement uncertainties.
Simulation of an active underwater imaging through a wavy sea surface
NASA Astrophysics Data System (ADS)
Gholami, Ali; Saghafifar, Hossein
2018-06-01
A numerical simulation for underwater imaging through a wavy sea surface has been done. We have used a common approach to model the sea surface elevation and its slopes as an important source of image disturbance. The simulation algorithm is based on a combination of ray tracing and optical propagation, which has taken to different approaches for downwelling and upwelling beams. The nature of randomly focusing and defocusing property of surface waves causes a fluctuated irradiance distribution as an illuminating source of immersed object, while it gives rise to a great disturbance on the image through a coordinate change of image pixels. We have also used a modulation transfer function based on Well's small angle approximations to consider the underwater optical properties effect on the transferring of the image. As expected, the absorption effect reduces the light intensity and scattering decreases image contrast by blurring the image.
NASA Astrophysics Data System (ADS)
Bouzaki, Mohammed Moustafa; Chadel, Meriem; Benyoucef, Boumediene; Petit, Pierre; Aillerie, Michel
2016-07-01
This contribution analyzes the energy provided by a solar kit dedicated to autonomous usage and installed in Central Europa (Longitude 6.10°; Latitude 49.21° and Altitude 160 m) by using the simulation software PVSYST. We focused the analysis on the effect of temperature and solar irradiation on the I-V characteristic of a commercial PV panel. We also consider in this study the influence of charging and discharging the battery on the generator efficiency. Meteorological data are integrated into the simulation software. As expected, the solar kit provides an energy varying all along the year with a minimum in December. In the proposed approach, we consider this minimum as the lowest acceptable energy level to satisfy the use. Thus for the other months, a lost in the available renewable energy exists if no storage system is associated.
Understanding the Irradiation Behavior of Zirconium Carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motta, Arthur; Sridharan, Kumar; Morgan, Dane
2013-10-11
Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.« less
An LED solar simulator for student labs
NASA Astrophysics Data System (ADS)
González, Manuel I.
2017-05-01
Measuring voltage-current and voltage-power curves of a photovoltaic module is a nice experiment for high school and undergraduate students. In labs where real sunlight is not available this experiment requires a solar simulator. A prototype of a simulator using LED lamps has been manufactured and tested, and a comparison with classical halogen simulators has been performed. It is found that LED light offers lower levels of irradiance, but much better performance in terms of module output for a given irradiance.
Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.
Tran, Van Hung; Tran, Khac An
2010-06-01
By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rezaeian, P.; Ataenia, V.; Shafiei, S.
2017-12-01
In this paper, the flux of photons inside the irradiation cell of the Gammacell-220 is calculated using an analytical method based on multipole moment expansion. The flux of the photons inside the irradiation cell is introduced as the function of monopole, dipoles and quadruples in the Cartesian coordinate system. For the source distribution of the Gammacell-220, the values of the multipole moments are specified by direct integrating. To confirm the validation of the presented methods, the flux distribution inside the irradiation cell was determined utilizing MCNP simulations as well as experimental measurements. To measure the flux inside the irradiation cell, Amber dosimeters were employed. The calculated values of the flux were in agreement with the values obtained by simulations and measurements, especially in the central zones of the irradiation cell. In order to show that the present method is a good approximation to determine the flux in the irradiation cell, the values of the multipole moments were obtained by fitting the simulation and experimental data using Levenberg-Marquardt algorithm. The present method leads to reasonable results for the all source distribution even without any symmetry which makes it a powerful tool for the source load planning.
Tamang, Rajesh; Varghese, Binni; Mhaisalkar, Subodh G; Tok, Eng Soon; Sow, Chorng Haur
2011-03-18
Photoresponse of isolated Nb(2)O(5) nanowires (NW) padded with platinum (Pt) at both ends were studied with global irradiation by a laser beam and localized irradiation using a focused laser beam. Global laser irradiation on individual NW in ambient and vacuum conditions revealed photocurrent contributions with different time characteristics (rapid and slowly varying components) arising from defect level excitations, thermal heating effect, surface states and NW-Pt contacts. With a spot size of < 1 µm, localized irradiation highlighted the fact that the measured photocurrent in this single NW device (with and without applied bias) depended sensitively on the photoresponse at the NW-Pt contacts. At applied bias, unidirectional photocurrent was observed and higher photocurrent was achieved with localized laser irradiation at reverse-biased NW-Pt contacts. At zero bias, the opposite polarity of photocurrents was detected when the two NW-Pt contacts were subjected to focused laser beam irradiation. A reduced Schottky barrier/width resulting from an increase in charge carriers and thermoelectric effects arising from the localized thermal heating due to focused laser beam irradiation were proposed as the mechanisms dictating the photocurrent at the NW-Pt interface. Comparison of photocurrents generated upon global and localized laser irradiation showed that the main contribution to the photocurrent was largely due to the photoresponse of the NW-Pt contacts.
Modelling irradiation-induced softening in BCC iron by crystal plasticity approach
NASA Astrophysics Data System (ADS)
Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling
2015-11-01
Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhasish; Majumdar, Saurindranath
Irradiation creep plays a major role in the structural integrity of the graphite components in high temperature gas cooled reactors. Finite element procedures combined with a suitable irradiation creep model can be used to simulate the time-integrated structural integrity of complex shapes, such as the reactor core graphite reflector and fuel bricks. In the present work a comparative study was undertaken to understand the effect of linear and nonlinear irradiation creep on results of finite element based stress analysis. Numerical results were generated through finite element simulations of a typical graphite reflector.
NASA Astrophysics Data System (ADS)
Lin, Y.; Kessler, T. J.; Lawrence, G. N.
1996-10-01
High-performance phase plates are of vital concern for controlling the far-field irradiance of laser-fusion systems. Several designs for solving this difficult problem have been reported in Optics Letters [e. g., S. N. Dixit et al., Opt. Lett. 19, 417 (1994)]. We report a surface-based form of simulated annealing that significantly improves the irradiance control while eliminating the high-scatter problems that have plagued other methods.
NASA Astrophysics Data System (ADS)
Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.
2018-06-01
A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.
NASA Astrophysics Data System (ADS)
Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.
2015-06-01
Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for segmentation and rendering. We have also provided numerical simulation of the fast ion beam action. The paper contains results on the investigations of modifications of the elemental contents, structure and properties of the materials.
NASA Astrophysics Data System (ADS)
Koike, J.; Oshima, T.
We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 × 10 -8 torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel
2017-01-01
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199
Investigation of Oxygen Diffusion in Irradiated UO2 with MD Simulation
NASA Astrophysics Data System (ADS)
Günay, Seçkin D.
2016-11-01
In this study, irradiated UO2 is analyzed by atomistic simulation method to obtain diffusion coefficient of oxygen ions. For this purpose, a couple of molecular dynamics (MD) supercells containing Frenkel, Schottky, vacancy and interstitial types for both anion and cation defects is constructed individually. Each of their contribution is used to calculate the total oxygen diffusion for both intrinsic and extrinsic ranges. The results display that irradiation-induced defects contribute the most to the overall oxygen diffusion at temperatures below 800-1,200 K. This result is quite sensible because experimental data shows that, from room temperature to about 1,500 K, irradiation-induced swelling decreases and irradiated UO2 lattice parameter is gradually recovered because defects annihilate each other. Another point is that, concentration of defects enhances the irradiation-induced oxygen diffusion. Irradiation type also has the similar effect, namely oxygen diffusion in crystals irradiated with α-particles is more than the crystals irradiated with neutrons. Dynamic Frenkel defects dominate the oxygen diffusion data above 1,500—1,800 K. In all these temperature ranges, thermally induced Frenkel defects make no significant contribution to overall oxygen diffusion.
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less
NASA Astrophysics Data System (ADS)
Kolotova, L. N.; Starikov, S. V.
2017-11-01
In irradiation of swift heavy ions, the defects formation frequently takes place in crystals. High energy transfer into the electronic subsystem and relaxations processes lead to the formation of structural defects and cause specific effects, such as the track formation. There is a large interest to understanding of the mechanisms of defects/tracks formation due to the heating of the electron subsystem. In this work, the atomistic simulation of defects formation and structure transitions in U-Mo alloys in irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes in irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation in irradiation in the various conditions are calculated.
Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro
2017-03-01
To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Deuterium trapping in tungsten
NASA Astrophysics Data System (ADS)
Poon, Michael
Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.
Effects of proton irradiation on thin-film materials for optical filters
NASA Astrophysics Data System (ADS)
Scaglione, Salvatore; Piegari, Angela; Sytchkova, Anna; Jakšić, Milko
2017-11-01
The behaviour of interference optical filters for space applications has been investigated under low energy proton irradiation. In order to understand the behaviour of the interference coating subjected to proton irradiation, the interaction of protons with coating and substrate was simulated by the SRIM code. A beam of protons of 60 KeV with an integrated fluence of 1013 p+/cm2 was used. The spectral transmittances of fused silica, TiO2 and HfO2 single layers and interference coatings were measured before and after irradiation and, according to simulations, no significant effects were detected in the visible-near infrared spectrum, while some variations appeared at shorter wavelengths.
NASA Astrophysics Data System (ADS)
Ma, Wei-Ming
1997-06-01
An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and more important the water depth and value of the bottom reflectance. The results of this work indicates little change of subsurface or in-water reflectances, due to variations of wind speed and observation angle. Simulations of the wind effect on the total downwelling irradiance from the two- flow model indicates that the total downwelling irradiance just below a wind-roughened water surface increases to about 1% of the total downwelling irradiance on a calm water surface when the sun is near zenith and increases to about 3% when the sun is near the horizon. This analytically based model, solved or developed utilizing the unique boundary conditions, can be applied to remote sensing of oceanic upper mixed layer dynamics, plant canopies, primary production, and shallow water environments with different bottom type reflectances. Future applications may include determining effects of sediment resuspension of bottom sediments in the bottom boundary layer on remotely sensed data.
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.; ...
2017-11-21
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela
Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Nimore » nanowire arrays irradiated at an intensity of 4 x 10 19 W cm -2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 10 10 J cm -3, equivalent to a pressure of 0.35 Tbar.« less
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; ...
2017-01-11
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm –3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated atmore » an intensity of 4 × 10 19 W cm –2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. As a result, relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm –2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm –3, equivalent to a pressure of 0.35 Tbar.« less
Independent control of beam astigmatism and ellipticity using a SLM for fs-laser waveguide writing.
Ruiz de la Cruz, A; Ferrer, A; Gawelda, W; Puerto, D; Sosa, M Galván; Siegel, J; Solis, J
2009-11-09
We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J
2017-01-01
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10 8 J cm -3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10 19 W cm -2 , we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10 22 W cm -2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10 10 J cm -3 , equivalent to a pressure of 0.35 Tbar.
Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.
2017-01-01
Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.; Kessler, T.J.; Lawrence, G.N.
1996-10-01
High-performance phase plates are of vital concern for controlling the far-field irradiance of laser-fusion systems. Several designs for solving this difficult problem have been reported in {ital Optics} {ital Letters} [e.g., S. N. Dixit {ital et} {ital al}., Opt. Lett. {bold 19}, 417 (1994)]. We report a surface-based form of simulated annealing that significantly improves the irradiance control while eliminating the high-scatter problems that have plagued other methods. {copyright} {ital 1996 Optical Society of America.}
Kay, D; Stapleton, C M; Wyer, M D; McDonald, A T; Crowther, J; Paul, N; Jones, K; Francis, C; Watkins, J; Wilkinson, J; Humphrey, N; Lin, B; Yang, L; Falconer, R A; Gardner, S
2005-02-01
Intestinal enterococci are the principal 'health-evidence-based' parameter recommended by WHO for the assessment of marine recreational water compliance. Understanding the survival characteristics of these organisms in nearshore waters is central to public health protection using robust modelling to effect real-time prediction of water quality at recreation sites as recently suggested by WHO and the Commission of the European Communities Previous models have more often focused on the coliform parameters and assumed two static day-time and night-time T90 values to characterise the decay process. The principal driver for enterococci survival is the received dose of irradiance from sunlight. In the water column, transmission of irradiance is determined by turbidity produced by suspended material. This paper reports the results of irradiated microcosm experiments using simulated sunlight to investigate the decay of intestinal enterococci in relatively turbid estuarine and coastal waters collected from the Severn Estuary and Bristol Channel, UK. High-turbidity estuarine waters produced a T90 value of 39.5 h. Low-turbidity coastal waters produced a much shorter T90 value of 6.6 h. In experiments receiving no irradiation, high-turbidity estuarine waters also produced a longer T90 of 65.1 h compared with corresponding low-turbidity coastal waters, T90 24.8 h. Irradiated T90 values were correlated with salinity, turbidity and suspended solids (r>0.8, p<0.001). The results suggest that enterococci decay in irradiated experiments with turbidity >200 NTU is similar to decay observed under dark conditions. Most significantly, these results suggest that modelling turbidity and or suspended solids offers a potential means of predicting T90 values in 'real-time' for discrete cells of a hydrodynamic model.
NASA Astrophysics Data System (ADS)
Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.
2018-05-01
Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.
2010-08-15
In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less
NASA Astrophysics Data System (ADS)
Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.
2017-08-01
Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe- and Mg-rich samples in these experiments may indicate that space weathering trends of volatile-rich asteroids have a compositional dependency that could be used to determine the aqueous histories of asteroid parent bodies.
Quantum-dot based nanothermometry in optical plasmonic recording media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maestro, Laura Martinez; Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122; Zhang, Qiming
2014-11-03
We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.
A Horizontal Multi-Purpose Microbeam System.
Xu, Y; Randers-Pehrson, G; Marino, S A; Garty, G; Harken, A; Brenner, D J
2018-04-21
A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.
A horizontal multi-purpose microbeam system
NASA Astrophysics Data System (ADS)
Xu, Y.; Randers-Pehrson, G.; Marino, S. A.; Garty, G.; Harken, A.; Brenner, D. J.
2018-04-01
A horizontal multi-purpose microbeam system with a single electrostatic quadruplet focusing lens has been developed at the Columbia University Radiological Research Accelerator Facility (RARAF). It is coupled with the RARAF 5.5 MV Singleton accelerator (High Voltage Engineering Europa, the Netherlands) and provides micrometer-size beam for single cell irradiation experiments. It is also used as the primary beam for a neutron microbeam and microPIXE (particle induced x-ray emission) experiment because of its high particle fluence. The optimization of this microbeam has been investigated with ray tracing simulations and the beam spot size has been verified by different measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneja, S; Bartol, L; Culberson, W
2015-06-15
Purpose: The calibration of radiation protection instrumentation including ionization chambers, scintillators, and Geiger Mueller (GM) counters used as survey meters are often done using {sup 137}Cs irradiators. During calibration, irradiators use a combination of attenuators with various thicknesses to modulate the beam to a known air-kerma rate. The variations in energy spectra as a result of these attenuators are not accounted for and may play a role in the energy-dependent response of survey meters. This study uses an experimentally validated irradiator geometry modeled in the MCNP5 transport code to characterize the effects of attenuation on the energy spectrum. Methods: Amore » Hopewell Designs G-10 {sup 137}Cs irradiator with lead attenuators of thicknesses of 0.635, 1.22, 2.22, and 4.32 cm, was used in this study. The irradiator geometry was modeled in MCNP5 and validated by comparing measured and simulated percent depth dose (PDD) and cross-field profiles. Variations in MCNP5 simulated spectra with increasing amounts of attenuation were characterized using the relative intensity of the 662 keV peak and the average energy. Results: Simulated and measured PDDs and profiles agreed within the associated uncertainty. The relative intensity of the 662 keV peak for simulated spectra normalized to the intensity of the unattenuated spectra ranged from 0.16% to 100% based on attenuation thickness. The average energy for simulated spectra for attenuators ranged from 582 keV with no attenuation to 653 keV with 5.54 cm of attenuation. Statistical uncertainty for MCNP5 simulations ranged from 0.11% to 3.69%. Conclusion: This study successfully used MCNP5 to validate a {sup 137}Cs irradiator geometry and characterize variations in energy spectra between different amounts of attenuation. Variations in the average energy of up to 12% were determined through simulations, and future work will aim to determine the effects of these differences on survey meter response and calibration.« less
NASA Astrophysics Data System (ADS)
Popel, A. J.; Le Solliec, S.; Lampronti, G. I.; Day, J.; Petrov, P. K.; Farnan, I.
2017-02-01
This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO2 matrix in water, as a simulant for the UO2 matrix of spent nuclear fuel. For this purpose, thin films of CeO2 on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO2 samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO2 matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO2 films after the dissolution experiment.
Dynamic Shade and Irradiance Simulation of Aquatic ...
Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulates across landscapes and is the main energy driver for increasing aquatic and landscape temperatures at both local and holistic scales. Landscape disturbances such as landuse change, clear cutting, and fire can cause significant variations in the resulting irradiance reaching particular locations. Penumbra can simulate solar angles and irradiance at definable temporal grains as low as one minute while simulating landscape shadowing up to an entire year. Landscapes can be represented at sub-meter resolutions with appropriate spatial data inputs, such as field data or elevation and surface object heights derived from light detection and ranging (LiDAR) data. This work describes Penumbra’s framework and methodology, external model integration capability, and appropriate model application for a variety of watershed restoration project types. First, an overview of Penumbra’s framework reveals what this model adds to the existing ecological modeling domain. Second, Penumbra’s stand-alone and integration modes are explained and demonstrated. Stand-alone modeling results are showcased within the 3-D visualization tool VISTAS (VISualizing Terrestrial-Aquatic Systems), which fluently summariz
Design and application of process control charting methodologies to gamma irradiation practices
NASA Astrophysics Data System (ADS)
Saylor, M. C.; Connaghan, J. P.; Yeadon, S. C.; Herring, C. M.; Jordan, T. M.
2002-12-01
The relationship between the contract irradiation facility and the customer has historically been based upon a "PASS/FAIL" approach with little or no quality metrics used to gage the control of the irradiation process. Application of process control charts, designed in coordination with mathematical simulation of routine radiation processing, can provide a basis for understanding irradiation events. By using tools that simulate the physical rules associated with the irradiation process, end-users can explore process-related boundaries and the effects of process changes. Consequently, the relationship between contractor and customer can evolve based on the derived knowledge. The resulting level of mutual understanding of the irradiation process and its resultant control benefits both the customer and contract operation, and provides necessary assurances to regulators. In this article we examine the complementary nature of theoretical (point kernel) and experimental (dosimetric) process evaluation, and the resulting by-product of improved understanding, communication and control generated through the implementation of effective process control charting strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.
2016-05-15
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less
Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M
2016-05-01
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.
Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure
NASA Astrophysics Data System (ADS)
Hu, Changjun; Bai, He; He, Xinfu; Zhang, Boyao; Nie, Ningming; Wang, Xianmeng; Ren, Yingwen
2017-02-01
Material irradiation effect is one of the most important keys to use nuclear power. However, the lack of high-throughput irradiation facility and knowledge of evolution process, lead to little understanding of the addressed issues. With the help of high-performance computing, we could make a further understanding of micro-level-material. In this paper, a new data structure is proposed for the massively parallel simulation of the evolution of metal materials under irradiation environment. Based on the proposed data structure, we developed the new molecular dynamics software named Crystal MD. The simulation with Crystal MD achieved over 90% parallel efficiency in test cases, and it takes more than 25% less memory on multi-core clusters than LAMMPS and IMD, which are two popular molecular dynamics simulation software. Using Crystal MD, a two trillion particles simulation has been performed on Tianhe-2 cluster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelin, Timothy J; Ho, Clifford K.; Horstman, Luke
This paper presents a study of alternative heliostat standby aiming strategies and their impact on avian flux hazards and operational performance of a concentrating solar power plant. A mathematical model was developed that predicts the bird-feather temperature as a function of solar irradiance, thermal emittance, convection, and thermal properties of the feather. The irradiance distribution in the airspace above the Ivanpah Unit 2 heliostat field was simulated using a ray-trace model for two different times of the day, four days of the year, and nine different standby aiming strategies. The impact of the alternative aiming strategies on operational performance wasmore » assessed by comparing the heliostat slew times from standby position to the receiver for the different aiming strategies. Increased slew times increased a proxy start-up time that reduced the simulated annual energy production. Results showed that spreading the radial aim points around the receiver to a distance of ~150 m or greater reduced the hazardous exposure times that the feather temperature exceeded the hazard metric of 160 degrees C. The hazardous exposure times were reduced by ~23% and 90% at a radial spread of aim points extending to 150 m and 250 m, respectively, but the simulated annual energy production decreased as a result of increased slew times. Single point-focus aiming strategies were also evaluated, but these strategies increased the exposure hazard relative to other aiming strategies.« less
Monte Carlo simulations of backscattering process in dislocation-containing SrTiO3 single crystal
NASA Astrophysics Data System (ADS)
Jozwik, P.; Sathish, N.; Nowicki, L.; Jagielski, J.; Turos, A.; Kovarik, L.; Arey, B.
2014-05-01
Studies of defects formation in crystals are of obvious importance in electronics, nuclear engineering and other disciplines where materials are exposed to different forms of irradiation. Rutherford Backscattering/Channeling (RBS/C) and Monte Carlo (MC) simulations are the most convenient tool for this purpose, as they allow one to determine several features of lattice defects: their type, concentration and damage accumulation kinetic. On the other hand various irradiation conditions can be efficiently modeled by ion irradiation method without leading to the radioactivity of the sample. Combination of ion irradiation with channeling experiment and MC simulations appears thus as a most versatile method in studies of radiation damage in materials. The paper presents the results on such a study performed on SrTiO3 (STO) single crystals irradiated with 320 keV Ar ions. The samples were analyzed also by using HRTEM as a complementary method which enables the measurement of geometrical parameters of crystal lattice deformation in the vicinity of dislocations. Once the parameters and their variations within the distance of several lattice constants from the dislocation core are known, they may be used in MC simulations for the quantitative determination of dislocation depth distribution profiles. The final outcome of the deconvolution procedure are cross-sections values calculated for two types of defects observed (RDA and dislocations).
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; ...
2017-09-29
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation
Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...
2016-08-17
Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He + irradiation and monovacancy (MV) defects for all other ion irradiations.« less
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.
2017-08-01
Tensile response of irradiated symmetric grain boundaries to the externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its undertaken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trapping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc
NASA Astrophysics Data System (ADS)
Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.
2008-03-01
Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.
Online compensation for target motion with scanned particle beams: simulation environment.
Li, Qiang; Groezinger, Sven Oliver; Haberer, Thomas; Rietzel, Eike; Kraft, Gerhard
2004-07-21
Target motion is one of the major limitations of each high precision radiation therapy. Using advanced active beam delivery techniques, such as the magnetic raster scanning system for particle irradiation, the interplay between time-dependent beam and target position heavily distorts the applied dose distribution. This paper presents a simulation environment in which the time-dependent effect of target motion on heavy-ion irradiation can be calculated with dynamically scanned ion beams. In an extension of the existing treatment planning software for ion irradiation of static targets (TRiP) at GSI, the expected dose distribution is calculated as the sum of several sub-distributions for single target motion states. To investigate active compensation for target motion by adapting the position of the therapeutic beam during irradiation, the planned beam positions can be altered during the calculation. Applying realistic parameters to the planned motion-compensation methods at GSI, the effect of target motion on the expected dose uniformity can be simulated for different target configurations and motion conditions. For the dynamic dose calculation, experimentally measured profiles of the beam extraction in time were used. Initial simulations show the feasibility and consistency of an active motion compensation with the magnetic scanning system and reveal some strategies to improve the dose homogeneity inside the moving target. The simulation environment presented here provides an effective means for evaluating the dose distribution for a moving target volume with and without motion compensation. It contributes a substantial basis for the experimental research on the irradiation of moving target volumes with scanned ion beams at GSI which will be presented in upcoming papers.
Effect of gamma-ray irradiation on the unloaded animal model
NASA Astrophysics Data System (ADS)
Choi, Jong-Il; Yoon, Min-Chul; Sung, Nak-Yoon; Kim, Jae-Hun; Jong Lee, Yun; Lee, Ki-Soo; Choi, In-Ho; Nam, Gung Uk; Lee, Ju-Woon
During the space flight, human beings encountered the extreme conditions such as the cosmic ray irradiation and microgravity. There have been developed the animal models to simulate the microgravity condition in laboratory, but no study was carried out to investigate the combined effect of microgravity and exposure to irradiation. In this study, it was examined the effect of gamma irradiation on the suspension model. Rats were divided into four groups, Group I was loaded and not exposed to gamma irradiation, Group 2 was unloaded and not exposed, Group 3 was loaded and exposed to gamma irradiation at the dose of 50 mSV, and Group 4 was unloaded and exposed to gamma irradiation at the same dose. It was measured body, muscles and tissues weights and the biological analysis and the hematological response in blood samples were conducted. Anti-gravity tissue weight was only changed between loading and un-loading condition. However, there was no difference between irradiation exposed and not exposed unloaded groups. To know the difference of protein expression in anti-gravity tissues, 2 dimensional electrophoresis was performed. It has been found that the expression levels of several proteins were different by unloading condition and by irradiation exposed condition, respectively. These results provided the information on the combined effect of irradiation and microgravity to simulate space flight, and could be useful to search the candidate material for the countermeasure against space environment.
NASA Astrophysics Data System (ADS)
Lounis, Z.; Bouslama, M.; Hamaida, K.; Jardin, C.; Abdellaoui, A.; Ouerdane, A.; Ghaffour, M.; Berrouachedi, N.
2012-02-01
We give the great interest to characterise the InP and InPO4/InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In2O3. We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.
NASA Astrophysics Data System (ADS)
Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime
2018-02-01
Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.
Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin
2017-01-01
We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267
Konishi, Teruaki; Oikawa, Masakazu; Suya, Noriyoshi; Ishikawa, Takahiro; Maeda, Takeshi; Kobayashi, Alisa; Shiomi, Naoko; Kodama, Kumiko; Hamano, Tsuyoshi; Homma-Takeda, Shino; Isono, Mayu; Hieda, Kotaro; Uchihori, Yukio; Shirakawa, Yoshiyuki
2013-01-01
The Single Particle Irradiation system to Cell (SPICE) facility at the National Institute of Radiological Sciences (NIRS) is a focused vertical microbeam system designed to irradiate the nuclei of adhesive mammalian cells with a defined number of 3.4 MeV protons. The approximately 2-μm diameter proton beam is focused with a magnetic quadrupole triplet lens and traverses the cells contained in dishes from bottom to top. All procedures for irradiation, such as cell image capturing, cell recognition and position calculation, are automated. The most distinctive characteristic of the system is its stability and high throughput; i.e. 3000 cells in a 5 mm × 5 mm area in a single dish can be routinely irradiated by the 2-μm beam within 15 min (the maximum irradiation speed is 400 cells/min). The number of protons can be set as low as one, at a precision measured by CR-39 detectors to be 99.0%. A variety of targeting modes such as fractional population targeting mode, multi-position targeting mode for nucleus irradiation and cytoplasm targeting mode are available. As an example of multi-position targeting irradiation of mammalian cells, five fluorescent spots in a cell nucleus were demonstrated using the γ-H2AX immune-staining technique. The SPICE performance modes described in this paper are in routine use. SPICE is a joint-use research facility of NIRS and its beam times are distributed for collaborative research. PMID:23287773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouzaki, Mohammed Moustafa, E-mail: bouzaki-physique1@yahoo.fr; Chadel, Meriem; Université de Lorraine, LMOPS, EA 4423, 57070 Metz
This contribution analyzes the energy provided by a solar kit dedicated to autonomous usage and installed in Central Europe (Longitude 6.10°; Latitude 49.21° and Altitude 160 m) by using the simulation software PVSYST. We focused the analysis on the effect of temperature and solar irradiation on the I-V characteristic of a commercial PV panel. We also consider in this study the influence of charging and discharging the battery on the generator efficiency. Meteorological data are integrated into the simulation software. As expected, the solar kit provides an energy varying all along the year with a minimum in December. In themore » proposed approach, we consider this minimum as the lowest acceptable energy level to satisfy the use. Thus for the other months, a lost in the available renewable energy exists if no storage system is associated.« less
NASA Astrophysics Data System (ADS)
Moriyama, Eduardo H.; Zangaro, Renato A.; Lobo, Paulo D. d. C.; Villaverde, Antonio G. J. B.; Watanabe-Sei, Ii; Pacheco, Marcos T. T.; Otsuka, Daniel K.
2002-06-01
Thermal damage in dental pulp during Nd:YAG laser irradiation have been studied by several researchers; but due to dentin inhomogeneous structure, laser interaction with dentin in the hypersensitivity treatment are not fully understood. In this work, heat distribution profile on human dentine samples irradiated with Nd:YAG laser was simulated at surface and subjacent layers. Calculations were carried out using the Crank-Nicolson's finite difference method. Sixteen dentin samples with 1,5 mm of thickness were evenly distributed into four groups and irradiated with Nd:YAG laser pulses, according to the following scheme: (I) 1 pulse of 900 mJ, (II) 2 pulses of 450 mJ, (III) 3 pulses of 300 mJ, (IV) 6 pulses of 150 mJ; corresponding to a total laser energy of 900 mJ. The pulse interval was 300ms, the pulse duration of 900 ms and irradiated surface area of 0,005 mm2. Laser induced morphological changes in dentin were observed for all the irradiated samples. The heat distribution throughout the dentin layer, from the external dentin surface to the pulpal chamber wall, was calculated for each case, in order to obtain further information about the pulsed Nd:YAG laser-oral hard tissue interaction. The simulation showed significant differences in the final temperature at the pulpal chamber, depending on the exposition time and the energy contained in the laser pulse.
Simulation of the charge migration in DNA under irradiation with heavy ions.
Belov, Oleg V; Boyda, Denis L; Plante, Ianik; Shirmovsky, Sergey Eh
2015-01-01
A computer model to simulate the processes of charge injection and migration through DNA after irradiation by a heavy charged particle was developed. The most probable sites of charge injection were obtained by merging spatial models of short DNA sequence and a single 1 GeV/u iron particle track simulated by the code RITRACKS (Relativistic Ion Tracks). Charge migration was simulated by using a quantum-classical nonlinear model of the DNA-charge system. It was found that charge migration depends on the environmental conditions. The oxidative damage in DNA occurring during hole migration was simulated concurrently, which allowed the determination of probable locations of radiation-induced DNA lesions.
NASA Astrophysics Data System (ADS)
Yan, Qiang; Shao, Lin
2017-03-01
Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.
Analysis of retarding field energy analyzer transmission by simulation of ion trajectories
NASA Astrophysics Data System (ADS)
van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.
2018-04-01
Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. Y.; Gao, N.; Setyawan, W.
Tensile response of irradiated symmetric grain boundaries to externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its under- taken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trap- ping efficiencymore » to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.« less
Towards manipulating relativistic laser pulses with micro-tube plasma lenses
Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2016-01-01
Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially overdense flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities ≥1023 Wcm−2 could be achieved with current tabletop lasers coupled to micro-engineered plasma lenses. We show that these plasma optical elements act as a lens to focus laser light. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities. PMID:26979657
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Russo, Juan; Zhang, Deming; Gordon, Michael; Kostuk, Raymond
2012-10-01
In this work, a concentrating photovoltaic (CPV) design methodology is proposed which aims to maximize system efficiency for a given irradiance condition. In this technique, the acceptance angle of the system is radiometrically matched to the angular spread of the site's average irradiance conditions using a simple geometric ratio. The optical efficiency of CPV systems from flat-plate to high-concentration is plotted at all irradiance conditions. Concentrator systems are measured outdoors in various irradiance conditions to test the methodology. This modeling technique is valuable at the design stage to determine the ideal level of concentration for a CPV module. It requires only two inputs: the acceptance angle profile of the system and the site's average direct and diffuse irradiance fractions. Acceptance angle can be determined by raytracing or testing a fabricated prototype in the lab with a solar simulator. The average irradiance conditions can be found in the Typical Metrological Year (TMY3) database. Additionally, the information gained from this technique can be used to determine tracking tolerance, quantify power loss during an isolated weather event, and do more sophisticated analysis such as I-V curve simulation.
NASA Astrophysics Data System (ADS)
Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.
2016-07-01
Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.
Light-attenuating effect of dentin on the polymerization of light-activated restorative resins.
Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Takahashi, Hideo
2004-12-01
The light-attenuating effect of dentin on the mechanical properties of light-activated composite resins was evaluated using a simple experimental filter. The filter was designed to simulate the light transmittance and light diffusion characteristics of 1.0-mm thick dentin. The depth of cure, surface hardness, and flexural strength for 13 shades of three light-activated restorative resins were examined. These resins were cured either using direct irradiation with a light source, or indirect irradiation through the filter. The attenuation of light intensity by 1.0-mm thick dentin reached 85-90% in the 400-550 nm wavelength region. For all materials, the values of depth of cure, surface hardness on the top and bottom surfaces, and flexural strength of specimens irradiated indirectly through the simulated 1.0-mm thick dentin filter decreased by 37-60%, 16-55%, 50-83%, and 44-82% in comparison with those by direct irradiation, respectively. Recovery from mechanical properties' reduction was achieved when materials were irradiated 1.5-4 times longer than the standard irradiation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Eugene; Liu, Li
In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
NASA Astrophysics Data System (ADS)
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
Theoretical studies of structure-property relations in graphene-based carbon nanostructures
NASA Astrophysics Data System (ADS)
Maroudas, Dimitrios
2014-03-01
This presentation focuses on establishing relations between atomic structure, electronic structure, and properties in graphene-based carbon nanostructures through first-principles density functional theory calculations and molecular-dynamics simulations. We have analyzed carbon nanostructure formation from twisted bilayer graphene, upon creation of interlayer covalent C-C bonds due to patterned hydrogenation or fluorination. For small twist angles and twist angles near 30 degrees, interlayer covalent bonding generates superlattices of diamond-like nanocrystals and of fullerene-like configurations, respectively, embedded within the graphene layers. The electronic band gaps of these superlattices can be tuned through selective chemical functionalization and creation of interlayer bonds, and range from a few meV to over 1.2 eV. The mechanical properties of these superstructures also can be precisely tuned by controlling the extent of chemical functionalization. Importantly, the shear modulus is shown to increase monotonically with the fraction of sp3-hybridized C-C bonds. We have also studied collective interactions of multiple defects such as random distributions of vacancies in single-layer graphene (SLG). We find that a crystalline-to-amorphous structural transition occurs at vacancy concentrations of 5-10% over a broad temperature range. The structure of our defect-induced amorphized graphene is in excellent agreement with experimental observations of SLG exposed to a high electron irradiation dose. Simulations of tensile tests on these irradiated graphene sheets identify trends for the ultimate tensile strength, failure strain, and toughness as a function of vacancy concentration. The vacancy-induced amorphization transition is accompanied by a brittle-to-ductile transition in the failure response of irradiated graphene sheets and even heavily damaged samples exhibit tensile strengths near 30 GPa, in significant excess of those typical of engineering materials.
Monte-Carlo simulation of defect-cluster nucleation in metals during irradiation
NASA Astrophysics Data System (ADS)
Nakasuji, Toshiki; Morishita, Kazunori; Ruan, Xiaoyong
2017-02-01
A multiscale modeling approach was applied to investigate the nucleation process of CRPs (copper rich precipitates, i.e., copper-vacancy clusters) in α-Fe containing 1 at.% Cu during irradiation. Monte-Carlo simulations were performed to investigate the nucleation process, with the rate theory equation analysis to evaluate the concentration of displacement defects, along with the molecular dynamics technique to know CRP thermal stabilities in advance. Our MC simulations showed that there is long incubation period at first, followed by a rapid growth of CRPs. The incubation period depends on irradiation conditions such as the damage rate and temperature. CRP's composition during nucleation varies with time. The copper content of CRPs shows relatively rich at first, and then becomes poorer as the precipitate size increases. A widely-accepted model of CRP nucleation process is finally proposed.
Simulations of Foils Irradiated by Finite Laser Spots
NASA Astrophysics Data System (ADS)
Phillips, Lee
2006-10-01
Recent proposed designs (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities with lower laser energies combined with higher irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) that may lead, for example, to the generation of fast electrons. The proposed use of a 248 nm KrF laser is expected to minimize LPI, and this is being studied by experiments on NRL's NIKE laser. Here we report on simulations aimed at designing and interpreting these experiments. The 2d simulations employ a modification of the FAST code to ablate plasma from CH and DT foils using laser pulses with arbitrary spatial and temporal profiles. These include the customary hypergaussian NIKE profile, gaussian profiles, and combinations of these. The simulations model the structure of the ablating plasma and the absorption of the laser light, providing parameters for design of the experiment and indicating where the relevant LPI (two-plasmon, Raman) may be observed.
TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabler, E.
1964-02-01
Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less
NASA Astrophysics Data System (ADS)
Lang, Lin; Tian, Zean; Xiao, Shifang; Deng, Huiqiu; Ao, Bingyun; Chen, Piheng; Hu, Wangyu
2017-02-01
Molecular dynamics simulations have been performed to investigate the structural evolution of Cu64.5Zr35.5 metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, B.; Hofman, G. L.; Leenaers, A.
Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Sicoated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, is temperature and fission-rate dependent. In order to simulate the U-Mo/Al inter-diffusion layer (IL) growth behavior in full-size dispersion fuel plates, the existing IL growth correlation was modified with a temperaturedependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate themore » updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the intermixing rate in ion-irradiated bi-layer systems.« less
NASA Astrophysics Data System (ADS)
Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.
2016-10-01
Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy
2015-01-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507
Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy
2015-10-01
We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.
Absence of single critical dose for the amorphization of quartz under ion irradiation
NASA Astrophysics Data System (ADS)
Zhang, S.; Pakarinen, O. H.; Backholm, M.; Djurabekova, F.; Nordlund, K.; Keinonen, J.; Wang, T. S.
2018-01-01
In this work, we first simulated the amorphization of crystalline quartz under 50 keV 23 Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eVṡatom-1 . We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eVṡatom-1 . The continued evolution of the SiO2 structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.
Absence of single critical dose for the amorphization of quartz under ion irradiation.
Zhang, S; Pakarinen, O H; Backholm, M; Djurabekova, F; Nordlund, K; Keinonen, J; Wang, T S
2018-01-10
In this work, we first simulated the amorphization of crystalline quartz under 50 keV [Formula: see text]Na ion irradiation with classical molecular dynamics (MD). We then used binary collision approximation algorithms to simulate the Rutherford backscattering spectrometry in channeling conditions (RBS-C) from these irradiated MD cells, and compared the RBS-C spectra with experiments. The simulated RBS-C results show an agreement with experiments in the evolution of amorphization as a function of dose, showing what appears to be (by this measure) full amorphization at about 2.2 eV⋅[Formula: see text]. We also applied other analysis methods, such as angular structure factor, Wigner-Seitz, coordination analysis and topological analysis, to analyze the structural evolution of the irradiated MD cells. The results show that the atomic-level structure of the sample keeps evolving after the RBS signal has saturated, until the dose of about 5 eV⋅[Formula: see text]. The continued evolution of the [Formula: see text] structure makes the definition of what is, on the atomic level, an amorphized quartz ambiguous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.; Sims, Cianan
TIM is a real-time interactive concentrating solar field simulation. TIM models a concentrating tower (receiver), heliostat field, and potential reflected glare based on user-specified parameters such as field capacity, tower height and location. TIM provides a navigable 3D interface, allowing the user to “fly” around the field to determine the potential glare hazard from off-target heliostats. Various heliostat aiming strategies are available for specifying how heliostats behave when in standby mode. Strategies include annulus, point-per-group, up-aiming and single-point-focus. Additionally, TIM includes an avian path feature for approximating the irradiance and feather temperature of a bird flying through the field airspace.
NASA Technical Reports Server (NTRS)
Seaman, C. H.
1981-01-01
A general expression was derived to enable calculation of the calibration error. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.
Dunn, Aaron; Dingreville, Remi; Capolungo, Laurent
2015-11-27
A hierarchical methodology is introduced to predict the effects of radiation damage and irradiation conditions on the yield stress and internal stress heterogeneity developments in polycrystalline α-Fe. Simulations of defect accumulation under displacement cascade damage conditions are performed using spatially resolved stochastic cluster dynamics. The resulting void and dislocation loop concentrations and average sizes are then input into a crystal plasticity formulation that accounts for the change in critical resolved shear stress due to the presence of radiation induced defects. The simulated polycrystalline tensile tests show a good match to experimental hardening data over a wide range of irradiation doses.more » With this capability, stress heterogeneity development and the effect of dose rate on hardening is investigated. The model predicts increased hardening at higher dose rates for low total doses. By contrast, at doses above 10 –2 dpa when cascade overlap becomes significant, the model does not predict significantly different hardening for different dose rates. In conclusion, the development of such a model enables simulation of radiation damage accumulation and associated hardening without relying on experimental data as an input under a wide range of irradiation conditions such as dose, dose rate, and temperature.« less
Self-aligning concave relativistic plasma mirror with adjustable focus
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; Stark, David J.; Wang, Xiaoming; Zgadzaj, Rafal; Downer, M. C.
2017-01-01
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity ( 10 18 < I 0 < 10 19 W / cm 2 ) by near-normally incident ( 4 ° ), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective ( 0.6 - 0.8 ) and focus a significant fraction of reflected light to intensity as large as ˜ 10 I 0 at distance f as small as ˜ 25 μ m from the PM, provided that pre-pulses do not exceed 1014 W/cm2 prior to ˜ 20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusing results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲ L ≲ 3 μ m. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.
NASA Technical Reports Server (NTRS)
Lippincott, S. W.; Foelsche, T.; Montour, J. L.; Bender, R.; Wilson, I. J.
1972-01-01
The electron spectrum predicted for the synchronous orbit was simulated to determine the effects that might occur to astroscientists exposed to such irradiation while on a prolonged space station mission in that region. Miniature pigs were exposed to monoenergetic and spectral-fractionated irradiations with 0.5 to 2.1 MeV electrons. Clinical and pathological alterations observed in biopsies were correlated with depth-dose pattern and length of post irradiation period up to one year. With monoenergetic electrons, the lowest dose causing a recognizable lesion was 1450 rad and with increasing dose lesions appeared earlier and were more severe. At the highest dose given, 2650 rad, ulceration extending into the dermis was present by twenty one days and required about four months for complete healing. Spectral-fractionated irradiations, in which the total dose range was essentially comparable to that of the monoenergetic series, resulted in very minimal outer dermis edema at 1790 rad and at no dose employed did necrosis of epidermis or ulceration into dermis occur.
Temperature modeling of laser-irradiated azo-polymer thin films.
Yager, Kevin G; Barrett, Christopher J
2004-01-08
Azobenzene polymer thin films exhibit reversible surface mass transport when irradiated with a light intensity and/or polarization gradient, although the exact mechanism remains unknown. In order to address the role of thermal effects in the surface relief grating formation process peculiar to azo polymers, a cellular automaton simulation was developed to model heat flow in thin films undergoing laser irradiation. Typical irradiation intensities of 50 mW/cm2 resulted in film temperature rises on the order of 5 K, confirmed experimentally. The temperature gradient between the light maxima and minima was found, however, to stabilize at only 10(-4) K within 2 micros. These results indicate that thermal effects play a negligible role during inscription, for films of any thickness. Experiments monitoring surface relief grating formation on substrates of different thermal conductivity confirm that inscription is insensitive to film temperature. Further simulations suggest that high-intensity pulsed irradiation leads to destructive temperatures and sample ablation, not to reversible optical mass transport. (c) 2004 American Institute of Physics
NASA Astrophysics Data System (ADS)
Sundberg, R.; Moberg, A.; Hind, A.
2012-08-01
A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.
Annular mode changes in the CMIP5 simulations
NASA Astrophysics Data System (ADS)
Gillett, N. P.; Fyfe, J. C.
2013-03-01
We investigate simulated changes in the annular modes in historical and RCP 4.5 scenario simulations of 37 models from the fifth Coupled Model Intercomparison Project (CMIP5), a much larger ensemble of models than has previously been used to investigate annular mode trends, with improved resolution and forcings. The CMIP5 models on average simulate increases in the Northern Annular Mode (NAM) and Southern Annular Mode (SAM) in every season by 2100, and no CMIP5 model simulates a significant decrease in either the NAM or SAM in any season. No significant increase in the NAM or North Atlantic Oscillation (NAO) is simulated in response to volcanic aerosol, and no significant NAM or NAO response to solar irradiance variations is simulated. The CMIP5 models simulate a significant negative SAM response to volcanic aerosol in MAM and JJA, and a significant positive SAM response to solar irradiance variations in MAM, JJA and DJF.
Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions
NASA Astrophysics Data System (ADS)
Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin
2015-01-01
Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation damage is associated with swift electrons generated in the material via ionization by primary heavy ions.
Mobit, P
2002-01-01
The energy responses of LiF-TLDs irradiated in megavoltage electron and photon beams have been determined experimentally by many investigators over the past 35 years but the results vary considerably. General cavity theory has been used to model some of the experimental findings but the predictions of these cavity theories differ from each other and from measurements by more than 13%. Recently, two groups or investigators using Monte Carlo simulations and careful experimental techniques showed that the energy response of 1 mm or 2 mm thick LiF-TLD irradiated by megavoltage photon and electron beams is not more than 5% less than unity for low-Z phantom materials like water or Perspex. However, when the depth of irradiation is significantly different from dmax and the TLD size is more than 5 mm, then the energy response is up to 12% less than unity for incident electron beams. Monte Carlo simulations of some of the experiments reported in the literature showed that some of the contradictory experimental results are reproducible with Monte Carlo simulations. Monte Carlo simulations show that the energy response of LiF-TLDs depends on the size of detector used in electron beams, the depth of irradiation and the incident electron energy. Other differences can be attributed to absolute dose determination and precision of the TL technique. Monte Carlo simulations have also been used to evaluate some of the published general cavity theories. The results show that some of the parameters used to evaluate Burlin's general cavity theory are wrong by factor of 3. Despite this, the estimation of the energy response for most clinical situations using Burlin's cavity equation agrees with Monte Carlo simulations within 1%.
A compact in vivo neutron activation analysis system to quantify manganese in human hand bone
NASA Astrophysics Data System (ADS)
Liu, Yingzi
As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.
On the Potential of MAX phases for Nuclear Applications
NASA Astrophysics Data System (ADS)
Tallman, Darin Joseph
Materials within nuclear reactors experience some of the harshest environments currently known to man, including long term operation in extreme temperatures, corrosive media, and fast neutron fluences with up to 100 displacements per atom, dpa. In order to improve the efficiency and safety of current and future reactors, new materials are required to meet these harsh demands. The M n+1AXn phases, a growing family of ternary nano-layered ceramics, possess a desirable combination of metallic and ceramic properties. They are composed of an early transition metal (M), a group 13--16 element (A), and carbon and/or nitrogen (X). The MAX phases are being proposed for use in such extreme environments because of their unique combination of high fracture toughness values and thermal conductivities, machinability, oxidation resistance, and ion irradiation damage tolerance. Previous ion irradiation studies have shown that Ti3SiC2 and Ti3AlC2 resist irradiation damage, maintaining crystallinity up to 50 dpa. The aim of this work was to explore the effect of neutron irradiation, up to 9 dpa and at temperatures of 100 to 1000 °C, on select MAX phases for the first time. The MAX phases Ti3SiC2, Ti 3AlC2, Ti2AlC, and Ti2AlN were synthesized, and irradiated in test reactors that simulate in-pile conditions of nuclear reactors. X-ray diffraction, XRD, pattern refinements of samples revealed a distortion of the crystal lattice after low temperature irradiation, which was not observed after high temperature irradiations. Additionally, the XRD results indicated that Ti3AlC2 and Ti2AlN dissociated after relatively low neutron doses. This led us to focus on Ti 3SiC2 and Ti2AlC. For the first time, dislocation loops were observed in Ti3SiC 2 and Ti2AlC as a result of neutron irradiation. At 1 x 1023 loops/m3, the loop density in Ti2 AlC after irradiation to 0.1 dpa at 700°C was 1.5 orders of magnitude greater than that observed in Ti3SiC2, at 3 x 1021 loops/m3. The Ti2AlC composition appeared more prone to microcracking that Ti3SiC2. Additionally, exceptionally large denuded zones, up to 1 mum in width after 9 dpa irradiations at 500°C, were observed in Ti3SiC2, indicating that point defects readily diffuse to the grain boundaries. Denuded zones of this width, to our knowledge, have never been observed. In comparison, TiC impurity particles were highly damaged with various dislocation loops and defect clusters after irradiation. It is thus apparent that the A-layer, interleaved between MX blocks in the MAX phase nanolayered structure, readily accommodates and/or annihilates point defects, providing significant irradiation damage tolerance. Comparison of defect densities, post-irradiation microstructure, and electrical resistivity showed Ti3SiC2 to have the highest irradiation tolerance. Diffusion bonding of MAX phases to Zircaloy-4 was studied in the 1100 to 1300°C temperature range. The out diffusion of the A-group element into Zircaloy-4 formed Zr-intermetallic compounds that were roughly an order of magnitude thicker in Ti2AlC than Ti3SiC 2. Helium permeability results suggest that the MAX phases behave similarly to other sintered ceramics. Based on the totality of our results, Ti 3SiC2 remains a promising candidate for high temperature nuclear applications, and warrants future exploration. This work provides the foundation for understanding the response of the MAX phases to neutron irradiation, and can now be used to finely tune ion irradiation studies to accurately simulate reactor conditions.
[Research on cells ablation characters by laser plasma].
Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen
2012-08-01
The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.
System for the production of plasma
Bakken, George S.
1978-01-01
The present invention provides a system for the production of a plasma by concentrating and focusing a laser beam on the plasma-forming material with a lightfocusing member which comprises a parabolic axicon in conjunction with a coaxial conical mirror. The apex of the conical mirror faces away from the focus of the parabolic axicon such that the conical mirror serves to produce a virtual line source along the axis of the cone. Consequently, irradiation from a laser parallel to the axis toward the apex of the conical mirror will be concentrated at the focus of the parabolic axicon, impinging upon the plasma-forming material there introduced to produce a plasma. The system is adaptable to irradiation of a target pellet introduced at the focus of the parabolic axicon and offers an advantage in that the target pellet can be irradiated with a high degree of radial and spherical symmetry.
Code of Federal Regulations, 2013 CFR
2013-04-01
... equilibrate for 15 minutes in the dark before the pre-irradiation described in paragraph (c) of this section. (3) Sunscreen product pre-irradiation. To account for lack of photostability, apply the sunscreen... simulator described in section 352.70(b) of this chapter. The irradiation dose should be 4 MEDs which is...
Code of Federal Regulations, 2012 CFR
2012-04-01
... equilibrate for 15 minutes in the dark before the pre-irradiation described in paragraph (c) of this section. (3) Sunscreen product pre-irradiation. To account for lack of photostability, apply the sunscreen... simulator described in section 352.70(b) of this chapter. The irradiation dose should be 4 MEDs which is...
Code of Federal Regulations, 2014 CFR
2014-04-01
... equilibrate for 15 minutes in the dark before the pre-irradiation described in paragraph (c) of this section. (3) Sunscreen product pre-irradiation. To account for lack of photostability, apply the sunscreen... simulator described in section 352.70(b) of this chapter. The irradiation dose should be 4 MEDs which is...
Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions
NASA Astrophysics Data System (ADS)
O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.
2016-05-01
The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.
Microwave-specific heating of crystalline species in nuclear waste glass
Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.
2016-08-03
Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less
Redundancy Technology With A Focused Ion Beam
NASA Astrophysics Data System (ADS)
Komano, Haruki; Hashimoto, Kazuhiko; Takigawa, Tadahiro
1989-08-01
Fuse cutting with a focused ion beam to activate redundancy circuits is proposed. In order to verify its potential usefulness, experiments have been performed. Fuse-cutting time was evaluated using aluminum fuses with a thin passivation layer, which are difficult to cut by conventional laser-beam technology due to the material's high reflectivity. The fuse width and thickness were 2 and 0.8 μm, respectively. The fuse was cut in 5 seconds with a 30 keV focused ion beam of 0.3 A/cm2 current density. Since the fuses used in DRAMs will be smaller, their cutting time will become shorter by scanning an ion beam on narrower areas. Moreover, it can be shortened by increasing current density. Fuses for redundancy technology in 256 k CMOS SRAMs were cut with a focused ion beam. The operation of the memories was checked with a memory tester. It was confirmed that memories which had failure cells operated normally after focused-ion-beam fuse-cutting. Focused ion beam irradiation effects upon a device have been studied. When a 30 keV gallium focused ion beam was irradiated near the gate of MOSFETs, a threshold voltage shift was not observed at an ion dose of 0.3 C/cm2 which corresponded to the ion dose in cutting a fuse. However, when irradiated on the gate, a threshold voltage shift was observed at ion doses of more than 8 x 10-4 C/cm2. The voltage shift was caused by the charge of ions within the passivation layer. It is necessary at least not to irradiate a focused ion beam on a device in cutting fuses. It is concluded that the focused-ion-beam method will be advantageous for future redundancy technology application.
2006-01-01
Journal Article POSTPRINT 3. DATES COVERED (From - To) 2006 4. TITLE AND SUBTITLE X-ray irradiation effects in top contact, pentacene based field 5a...Preliminary studies of the effect of x-ray irradiation, typically used to simulate radiation effects in space, on top contract, pentacene based field effect...irradiation, radiation, radiation effects, pentacene 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF
Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation
Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri
2005-01-01
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797
Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.
Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri
2005-12-01
Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.
NASA Astrophysics Data System (ADS)
Wei, Lijun; Han, Fang; Yue, Lei; Zheng, Hongxia; Yu, Dan; Ma, Xiaohuan; Cheng, Huifang; Li, Yu
2012-11-01
The complex space environments can influence cell structure and function. The research results on space biology have shown that the major mutagenic factors in space are microgravity and ionizing radiation. In addition, possible synergistic effects of radiation and microgravity on human cells are not well understood. In this study, human immortal lymphoblastoid cells were established from human peripheral blood lymphocytes and the cells were treated with low dose (0.1, 0.15 and 0.2 Gy) cumulative 60Co γ-irradiation and simulated weightlessness [obtained by culturing cells in the Rotating Cell Culture System (RCCS)]. The commonly used indexes of cell damage such as micronucleus rate, cell cycle and mitotic index were studied. Previous work has proved that Gadd45 (growth arrest and DNA-damage-inducible protein 45) gene increases with a dose-effect relationship, and will possibly be a new biological dosimeter to show irradiation damage. So Gadd45 expression is also detected in this study. The micronucleus rate and the expression of Gadd45α gene increased with irradiation dose and were much higher after incubation in the rotating bioreactor than that in the static irradiation group, while the cell proliferation after incubation in the rotating bioreactor decreased at the same time. These results indicate synergetic effects of simulated weightlessness and low dose irradiation in human cells. The cell damage inflicted by γ-irradiation increased under simulated weightlessness. Our results suggest that during medium- and long-term flight, the human body can be damaged by cumulative low dose radiation, and the damage will even be increased by microgravity in space.
Vacuum aperture isolator for retroreflection from laser-irradiated target
Benjamin, Robert F.; Mitchell, Kenneth B.
1980-01-01
The disclosure is directed to a vacuum aperture isolator for retroreflection of a laser-irradiated target. Within a vacuum chamber are disposed a beam focusing element, a disc having an aperture and a recollimating element. The edge of the focused beam impinges on the edge of the aperture to produce a plasma which refracts any retroreflected light from the laser's target.
Meso-scale modeling of irradiated concrete in test reactor
Giorla, Alain B.; Vaitová, M.; Le Pape, Yann; ...
2015-10-18
In this paper, we detail a numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale. Irradiation experiments in test reactor (Elleuch et al.,1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damagemore » around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al.,2015). In conclusion, the proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.« less
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.
2000-04-01
The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.
NASA Astrophysics Data System (ADS)
Incerti, S.; Barberet, Ph.; Dévès, G.; Michelet, C.; Francis, Z.; Ivantchenko, V.; Mantero, A.; El Bitar, Z.; Bernal, M. A.; Tran, H. N.; Karamitros, M.; Seznec, H.
2015-09-01
The general purpose Geant4 Monte Carlo simulation toolkit is able to simulate radiative and non-radiative atomic de-excitation processes such as fluorescence and Auger electron emission, occurring after interaction of incident ionising radiation with target atomic electrons. In this paper, we evaluate the Geant4 modelling capability for the simulation of fluorescence spectra induced by 1.5 MeV proton irradiation of thin high-Z foils (Fe, GdF3, Pt, Au) with potential interest for nanotechnologies and life sciences. Simulation results are compared to measurements performed at the Centre d'Etudes Nucléaires de Bordeaux-Gradignan AIFIRA nanobeam line irradiation facility in France. Simulation and experimental conditions are described and the influence of Geant4 electromagnetic physics models is discussed.
NASA Astrophysics Data System (ADS)
Javadi, S.; Ouyang, B.; Zhang, Z.; Ghoranneviss, M.; Salar Elahi, A.; Rawat, R. S.
2018-06-01
Tungsten is the leading candidate for plasma facing component (PFC) material for thermonuclear fusion reactors and various efforts are ongoing to evaluate its performance or response to intense fusion relevant radiation, plasma and thermal loads. This paper investigates the effects of hot dense decaying pinch plasma, highly energetic deuterium ions and fusion neutrons generated in a low-energy (3.0 kJ) plasma focus device on the structure, morphology and hardness of the PLANSEE double forged tungsten (W) samples surfaces. The tungsten samples were provided by Forschungszentrum Juelich (FZJ), Germany via International Atomic Energy Agency, Vienna, Austria. Tungsten samples were irradiated using different number of plasma focus (PF) shots (1, 5 and 10) at a fixed axial distance of 5 cm from the anode top and also at various distances from the top of the anode (5, 7, 9 and 11 cm) using fixed number (5) of plasma focus shots. The virgin tungsten sample had bcc structure (α-W phase). After PF irradiation, the XRD analysis showed (i) the presence of low intensity new diffraction peak corresponding to β-W phase at (211) crystalline plane indicating the partial structural phase transition in some of the samples, (ii) partial amorphization, and (iii) vacancy defects formation and compressive stress in irradiated tungsten samples. Field emission scanning electron microscopy showed the distinctive changes to non-uniform surface with nanometer sized particles and particle agglomerates along with large surface cracks at higher number of irradiation shots. X-ray photoelectron spectroscopy analysis demonstrated the reduction in relative tungsten oxide content and the increase in metallic tungsten after irradiation. Hardness of irradiated samples initially increased for one shot exposure due to reduction in tungsten oxide phase, but then decreased with increasing number of shots due to increasing concentration of defects. It is demonstrated that the plasma focus device provides appropriate intense fusion relevant pulses for testing the structural, morphological and mechanical changes on irradiated tungsten samples.
Gao, Yipeng; Zhang, Yongfeng; Schwen, Daniel; Jiang, Chao; Sun, Cheng; Gan, Jian; Bai, Xian-Ming
2018-04-26
Nano-structured superlattices may have novel physical properties and irradiation is a powerful mean to drive their self-organization. However, the formation mechanism of superlattice under irradiation is still open for debate. Here we use atomic kinetic Monte Carlo simulations in conjunction with a theoretical analysis to understand and predict the self-organization of nano-void superlattices under irradiation, which have been observed in various types of materials for more than 40 years but yet to be well understood. The superlattice is found to be a result of spontaneous precipitation of voids from the matrix, a process similar to phase separation in regular solid solution, with the symmetry dictated by anisotropic materials properties such as one-dimensional interstitial atom diffusion. This discovery challenges the widely accepted empirical rule of the coherency between the superlattice and host matrix crystal lattice. The atomic scale perspective has enabled a new theoretical analysis to successfully predict the superlattice parameters, which are in good agreement with independent experiments. The theory developed in this work can provide guidelines for designing target experiments to tailor desired microstructure under irradiation. It may also be generalized for situations beyond irradiation, such as spontaneous phase separation with reaction.
Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility
Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.; ...
2015-09-17
Polar-direct-drive experiments conducted at the National Ignition Facility [E. I. Moses, Fusion Sci. Technol. 54, 361 (2008)] performed at laser irradiance between 1 and 2×10 15 W/cm 2 exhibit increased hard x-ray emission, decreased neutron yield, and reduced areal density as the irradiance is increased. Experimental x-ray images at the higher irradiances show x-ray emission at the equator, as well as degraded symmetry, that is not predicted in hydrodynamic simulations using flux-limited energy transport, but that appear when non-local electron transport together with a model to account for cross beam energy transfer (CBET) is utilized. The reduction in laser powermore » for equatorial beams required in the simulations to reproduce the effects of CBET on the observed symmetry also reproduces the yield degradation consistent with experimental data.« less
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Keller, L. P.; Baragiola, R. A.
2016-01-01
The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation.
NASA Astrophysics Data System (ADS)
Ardiyati, Tanti; Rozali, Bang; Kasmudin
2018-02-01
An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.
NASA Astrophysics Data System (ADS)
Moribayashi, Kengo
2018-05-01
Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.
NASA Astrophysics Data System (ADS)
Sarantopoulou, E.; Gomoiu, I.; Kollia, Z.; Cefalas, A. C.
2011-01-01
This work is a part of ESA/EU SURE project aiming to quantify the survival probability of fungal spores in space under solar irradiation in the vacuum ultraviolet (VUV) (110-180 nm) spectral region. The contribution and impact of VUV photons, vacuum, low temperature and their synergies on the survival probability of Aspergillus terreus spores is measured at simulated space conditions on Earth. To simulate the solar VUV irradiation, the spores are irradiated with a continuous discharge VUV hydrogen photon source and a molecular fluorine laser, at low and high photon intensities at 10 15 photon m -2 s -1 and 3.9×10 27 photons pulse -1 m -2 s -1, respectively. The survival probability of spores is independent from the intensity and the fluence of photons, within certain limits, in agreement with previous studies. The spores are shielded from a thin carbon layer, which is formed quickly on the external surface of the proteinaceous membrane at higher photon intensities at the start of the VUV irradiation. Extrapolating the results in space conditions, for an interplanetary direct transfer orbit from Mars to Earth, the spores will be irradiated with 3.3×10 21 solar VUV photons m -2. This photon fluence is equivalent to the irradiation of spores on Earth with 54 laser pulses with an experimental ˜92% survival probability, disregarding the contribution of space vacuum and low temperature, or to continuous solar VUV irradiation for 38 days in space near the Earth with an extrapolated ˜61% survival probability. The experimental results indicate that the damage of spores is mainly from the dehydration stress in vacuum. The high survival probability after 4 days in vacuum (˜34%) is due to the exudation of proteins on the external membrane, thus preventing further dehydration of spores. In addition, the survival probability is increasing to ˜54% at 10 K with 0.12 K/s cooling and heating rates.
Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.
1980-01-01
The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
2017-05-10
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Crystal plasticity modeling of irradiation growth in Zircaloy-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Use of ion beams to simulate reaction of reactor fuels with their cladding
NASA Astrophysics Data System (ADS)
Birtcher, R. C.; Baldo, P.
2006-01-01
Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,γ)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 °C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery.
A polycrystal plasticity model of strain localization in irradiated iron
NASA Astrophysics Data System (ADS)
Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime
2013-02-01
At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations.
Focusing elliptical laser beams
NASA Astrophysics Data System (ADS)
Marchant, A. B.
1984-03-01
The spot formed by focusing an elliptical laser beam through an ordinary objective lens can be optimized by properly filling the objective lens. Criteria are given for maximizing the central irradiance and the line-spread function. An optimized spot is much less elliptical than the incident laser beam. For beam ellipticities as high as 2:1, this spatial filtering reduces the central irradiance by less than 14 percent.
Radiation effects control: Eyes, skin. [space environment simulation
NASA Technical Reports Server (NTRS)
Hightower, D.; Smathers, J. B.
1974-01-01
Adverse effects on the lens of the eye and the skin due to exposure to proton radiation during manned space flight were evaluated. Actual proton irradiation which might be encountered in space was simulated. Irradiation regimes included single acute exposures, daily fractionated exposures, and weekly fractionated exposures. Animals were exposed and then maintained and examined periodically until data sufficient to meet the objective were obtained. No significant skin effects were noted and no serious sight impairment was exhibited.
Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.
Schumann, A; Petzoldt, J; Dendooven, P; Enghardt, W; Golnik, C; Hueso-González, F; Kormoll, T; Pausch, G; Roemer, K; Fiedler, F
2015-05-21
Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Tuan L.; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, CA 94550; Marian, Jaime, E-mail: jmarian@ucla.edu
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a proceduremore » for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe{sup 3+}, He{sup +} and H{sup +}) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tomé, Carlos N.
A physically-based crystal plasticity framework for modeling irradiation growth and creep is interfaced with the finite element code ABAQUS in order to study the contact forces and the gap evolution between the spacer grid and the cladding tube as a function of irradiation in a representative section of a fuel rod assembly. Deformation mechanisms governing the gap opening are identified and correlated to the texture-dependent material response. Thus, in the absence of coolant flow-induced vibrations, these simulations predict the contribution of irradiation growth and creep to the gap opening between the cladding tube and the springs and dimples on themore » spacer grid. The simulated contact forces on the springs and dimples are compared to available experimental and modeling data. Various combinations of external loads are applied on the springs and dimples to simulate fuel rods in the interior and at the periphery of the fuel rod assembly. Furthermore, we found that loading conditions representative (to a first order approximation) of fuel rods at the periphery show higher gap opening. This is in agreement with in-reactor data, where rod leakages due to the synergistic effects of gap opening and coolant flow-induced vibrations were generally found to occur at the periphery of the fuel rod assembly.« less
Patra, Anirban; Tomé, Carlos N.
2017-03-06
A physically-based crystal plasticity framework for modeling irradiation growth and creep is interfaced with the finite element code ABAQUS in order to study the contact forces and the gap evolution between the spacer grid and the cladding tube as a function of irradiation in a representative section of a fuel rod assembly. Deformation mechanisms governing the gap opening are identified and correlated to the texture-dependent material response. Thus, in the absence of coolant flow-induced vibrations, these simulations predict the contribution of irradiation growth and creep to the gap opening between the cladding tube and the springs and dimples on themore » spacer grid. The simulated contact forces on the springs and dimples are compared to available experimental and modeling data. Various combinations of external loads are applied on the springs and dimples to simulate fuel rods in the interior and at the periphery of the fuel rod assembly. Furthermore, we found that loading conditions representative (to a first order approximation) of fuel rods at the periphery show higher gap opening. This is in agreement with in-reactor data, where rod leakages due to the synergistic effects of gap opening and coolant flow-induced vibrations were generally found to occur at the periphery of the fuel rod assembly.« less
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Marian, Jaime; Bulatov, Vasily V.; Hosemann, Peter
2015-11-01
An improved version of a recently developed stochastic cluster dynamics (SCD) method (Marian and Bulatov, 2012) [6] is introduced as an alternative to rate theory (RT) methods for solving coupled ordinary differential equation (ODE) systems for irradiation damage simulations. SCD circumvents by design the curse of dimensionality of the variable space that renders traditional ODE-based RT approaches inefficient when handling complex defect population comprised of multiple (more than two) defect species. Several improvements introduced here enable efficient and accurate simulations of irradiated materials up to realistic (high) damage doses characteristic of next-generation nuclear systems. The first improvement is a procedure for efficiently updating the defect reaction-network and event selection in the context of a dynamically expanding reaction-network. Next is a novel implementation of the τ-leaping method that speeds up SCD simulations by advancing the state of the reaction network in large time increments when appropriate. Lastly, a volume rescaling procedure is introduced to control the computational complexity of the expanding reaction-network through occasional reductions of the defect population while maintaining accurate statistics. The enhanced SCD method is then applied to model defect cluster accumulation in iron thin films subjected to triple ion-beam (Fe3+, He+ and H+) irradiations, for which standard RT or spatially-resolved kinetic Monte Carlo simulations are prohibitively expensive.
Pulsed Laser System to Simulate Effects of Cosmic Rays in Semiconductor Devices
NASA Technical Reports Server (NTRS)
Aveline, David C.; Adell, Philippe C.; Allen, Gregory R.; Guertin, Steven M.; McClure, Steven S.
2011-01-01
Spaceflight system electronic devices must survive a wide range of radiation environments with various particle types including energetic protons, electrons, gamma rays, x-rays, and heavy ions. High-energy charged particles such as heavy ions can pass straight through a semiconductor material and interact with a charge-sensitive region, generating a significant amount of charge (electron-hole pairs) along their tracks. These excess charges can damage the device, and the response can range from temporary perturbations to permanent changes in the state or performance. These phenomena are called single event effects (SEE). Before application in flight systems, electronic parts need to be qualified and tested for performance and radiation sensitivity. Typically, their susceptibility to SEE is tested by exposure to an ion beam from a particle accelerator. At such facilities, the device under test (DUT) is irradiated with large beams so there is no fine resolution to investigate particular regions of sensitivity on the parts. While it is the most reliable approach for radiation qualification, these evaluations are time consuming and costly. There is always a need for new cost-efficient strategies to complement accelerator testing: pulsed lasers provide such a solution. Pulsed laser light can be utilized to simulate heavy ion effects with the advantage of being able to localize the sensitive region of an integrated circuit. Generally, a focused laser beam of approximately picosecond pulse duration is used to generate carrier density in the semiconductor device. During irradiation, the laser pulse is absorbed by the electronic medium with a wavelength selected accordingly by the user, and the laser energy can ionize and simulate SEE as would occur in space. With a tightly focused near infrared (NIR) laser beam, the beam waist of about a micrometer can be achieved, and additional scanning techniques are able to yield submicron resolution. This feature allows mapping of all of the sensitive regions of the studied device with fine resolution, unlike heavy ion experiments. The problematic regions can be precisely identified, and it provides a considerable amount of information about the circuit. In addition, the system allows flexibility for testing the device in different configurations in situ.
Optical spectroscopic characterizations of laser irradiated olivine grains
NASA Astrophysics Data System (ADS)
Yang, Yazhou; Zhang, Hao; Wang, Ziwei; Yuan, Ye; Li, Shaolin; Hsu, Weibiao; Liu, Chujian
2017-01-01
Context. Visible and near-infrared spectra of asteroids are known to be susceptible to nanophase irons produced by space weathering processes, thus making mineral identifications difficult. Mid-infrared spectroscopy may retain more mineral features owing to its lattice vibrational nature. Aims: We investigate the structure and reflectance spectral feature changes of olivine grains before and after simulated space weathering. Methods: We irradiate olivine grains by using pulsed laser to simulate varying degrees of micrometeorite bombardments. Reflectance measurements from 0.5 to 25 μm and radiative transfer calculations were carried out in order to compare them with each other. Results: Both the experimental simulations and modeling results indicate that the mid-infrared spectral features of olivine grains can survive the intense irradiations. Although the Christansen Feature is slightly shifted to longer wavelength, major vibrational bands remain essentially unchanged, because the lattice structure is quite immune to even the strongest irradiations, as revealed by both the X-ray diffraction and Raman scattering measurements. Conclusions: Mid-infrared spectroscopy is much more immune to productions of nanophase irons and amorphous materials and thus may be used more reliably in remote detections of minerals on asteroid surfaces.
Cellulose Acetate/N-TiO2 Biocomposite Flexible Films with Enhanced Solar Photochromic Properties
NASA Astrophysics Data System (ADS)
Radhika, T.; Anju, K. R.; Silpa, M. S.; Ramalingam, R. Jothi; Al-Lohedan, Hamad A.
2017-07-01
Flexible cellulose acetate/N-TiO2 nanocomposite films containing various concentrations of nanosized N-TiO2 and an intelligent methylene blue ink have been prepared by solution casting. The hydrothermally prepared nitrogen-doped titania (N-TiO2) and the films were characterized in detail. The photochromic properties of the prepared films were investigated under ultraviolet (UV), visible light, and simulated solar irradiation by UV-Vis spectrophotometry. Upon irradiation, the films exhibited rapid photochromic response that was reversible at room temperature. Films with higher content of nano N-TiO2 showed enhanced decoloration/recoloration under all irradiation conditions, with fast decoloration/recoloration under simulated solar irradiation. These results suggest that the amount of nano N-TiO2 in the composite, the concentration of methylene blue, and the solvent greatly influence the photochromic properties of the films. Such flexible and transparent cellulose acetate/N-TiO2 films with enhanced decoloration/recoloration properties under solar irradiation are promising smart materials for use in photoreversible printed electronics applications.
Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons
NASA Astrophysics Data System (ADS)
Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.
2018-04-01
Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO2, H2O, CH4, HCN, and NH3) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO2:CH4:NH3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO2:CH4:NH3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C—C or C—N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.
Glycine formation in CO2:CH4:NH3 ices induced by 0-70 eV electrons.
Esmaili, Sasan; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon; Huels, Michael A
2018-04-28
Glycine (Gly), the simplest amino-acid building-block of proteins, has been identified on icy dust grains in the interstellar medium, icy comets, and ice covered meteorites. These astrophysical ices contain simple molecules (e.g., CO 2 , H 2 O, CH 4 , HCN, and NH 3 ) and are exposed to complex radiation fields, e.g., UV, γ, or X-rays, stellar/solar wind particles, or cosmic rays. While much current effort is focused on understanding the radiochemistry induced in these ices by high energy radiation, the effects of the abundant secondary low energy electrons (LEEs) it produces have been mostly assumed rather than studied. Here we present the results for the exposure of multilayer CO 2 :CH 4 :NH 3 ice mixtures to 0-70 eV electrons under simulated astrophysical conditions. Mass selected temperature programmed desorption (TPD) of our electron irradiated films reveals multiple products, most notably intact glycine, which is supported by control measurements of both irradiated or un-irradiated binary mixture films, and un-irradiated CO 2 :CH 4 :NH 3 ices spiked with Gly. The threshold of Gly formation by LEEs is near 9 eV, while the TPD analysis of Gly film growth allows us to determine the "quantum" yield for 70 eV electrons to be about 0.004 Gly per incident electron. Our results show that simple amino acids can be formed directly from simple molecular ingredients, none of which possess preformed C-C or C-N bonds, by the copious secondary LEEs that are generated by ionizing radiation in astrophysical ices.
Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doraiswamy, N.; Kestel, B.; Alexander, D.E.
1997-04-01
The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment usingmore » the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.« less
Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams
NASA Astrophysics Data System (ADS)
Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie
2013-10-01
Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program
NASA Astrophysics Data System (ADS)
Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.
Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakan Ozaltun; Pavel Medvedev
The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate frommore » RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.« less
Diffusion-controlled reactions modeling in Geant4-DNA
NASA Astrophysics Data System (ADS)
Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k-d tree data structure for quickly locating, for a given molecule, its closest reactants. The performance advantage is presented in terms of complexity, and the accuracy of the new algorithm is demonstrated by simulating radiation chemistry in the context of the Geant4-DNA project. Application The time-dependent radiolytic yields of the main chemical species formed after irradiation are computed for incident protons at different energies (from 50 MeV to 500 keV). Both the time-evolution and energy dependency of the yields are discussed. The evolution, at one microsecond, of the yields of hydroxyls and solvated electrons with respect to the linear energy transfer is compared to theoretical and experimental data. According to our results, at high linear energy transfer, modeling radiation chemistry in the trading compartment representation might be adopted.
Atomic-scale mechanisms of helium bubble hardening in iron
Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less
Distribution uniformity of laser-accelerated proton beams
NASA Astrophysics Data System (ADS)
Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing
2017-09-01
Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)
Controlling and patterning the effective magnetization in Y3Fe5O12 thin films using ion irradiation
NASA Astrophysics Data System (ADS)
Ruane, W. T.; White, S. P.; Brangham, J. T.; Meng, K. Y.; Pelekhov, D. V.; Yang, F. Y.; Hammel, P. C.
2018-05-01
We report an approach to controlling the effective magnetization (Meff), a combination of the saturation magnetization and uniaxial anisotropy, of the ferrimagnet Y3Fe5O12 (YIG) using different species of ions: He+ and Ga+. The effective magnetization can be tuned as a function of the fluence, with He + providing the largest effect. We quantified the change in effective magnetization through an angular dependence of the ferromagnetic resonance before and after irradiation. Increases in 4πMeff were observed to be as much as 400 G with only a 15% increase in Gilbert damping, α (from 8.2e-4 to 9.4e-4). This result was combined with a method for accurate ion pattering, a focused ion beam, providing a mechanism for shaping the magnetic environment with submicron precision. We observe resonance modes localized by ion patterning of micron-sized dots, whose resonances match well with micromagnetic simulations. This technique offers a flexible tool for precision nanoscale control and characterization of the magnetic properties of YIG.
Ion beam modification of biological materials in nanoscale
NASA Astrophysics Data System (ADS)
Yu, L. D.; Anuntalabhochai, S.
2012-07-01
Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.
NASA Astrophysics Data System (ADS)
Tricot, S.; Semmar, N.; Lebbah, L.; Boulmer-Leborgne, C.
2010-02-01
This paper details the electro-thermal study of the sublimation phase on a zinc oxide surface. This thermodynamic process occurs when a ZnO target is bombarded by a pulsed electron beam source composed of polyenergetic electrons. The source delivers short pulses of 180 ns of electrons with energies up to 16 keV. The beam total current reaches 800 A and is focused onto a spot area 2 mm in diameter. The Monte Carlo CASINO program is used to study the first stage of the interaction and to define the heat source space distribution inside the ZnO target. Simulation of the second stage of interaction is developed in a COMSOL multiphysics project. The simulated thermal field induced by space and time heat conduction is presented. Typically for a pulsed electron beam 2 mm in diameter of electrons having energies up to 16 keV, the surface temperature reaches a maximum of 7000 K. The calculations are supported by SEM pictures of the target irradiated by various beam energies and numbers of pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berndt, B; Wuerl, M; Dedes, G
Purpose: To improve agreement of predicted and measured positron emitter yields in patients, after proton irradiation for PET-based treatment verification, using a novel dual energy CT (DECT) tissue segmentation approach, overcoming known deficiencies from single energy CT (SECT). Methods: DECT head scans of 5 trauma patients were segmented and compared to existing decomposition methods with a first focus on the brain. For validation purposes, three brain equivalent solutions [water, white matter (WM) and grey matter (GM) – equivalent with respect to their reference carbon and oxygen contents and CT numbers at 90kVp and 150kVp] were prepared from water, ethanol, sucrosemore » and salt. The activities of all brain solutions, measured during a PET scan after uniform proton irradiation, were compared to Monte Carlo simulations. Simulation inputs were various solution compositions obtained from different segmentation approaches from DECT, SECT scans, and known reference composition. Virtual GM solution salt concentration corrections were applied based on DECT measurements of solutions with varying salt concentration. Results: The novel tissue segmentation showed qualitative improvements in %C for patient brain scans (ground truth unavailable). The activity simulations based on reference solution compositions agree with the measurement within 3–5% (4–8Bq/ml). These reference simulations showed an absolute activity difference between WM (20%C) and GM (10%C) to H2O (0%C) of 43 Bq/ml and 22 Bq/ml, respectively. Activity differences between reference simulations and segmented ones varied from −6 to 1 Bq/ml for DECT and −79 to 8 Bq/ml for SECT. Conclusion: Compared to the conventionally used SECT segmentation, the DECT based segmentation indicates a qualitative and quantitative improvement. In controlled solutions, a MC input based on DECT segmentation leads to better agreement with the reference. Future work will address the anticipated improvement of quantification accuracy in patients, comparing different tissue decomposition methods with an MR brain segmentation. Acknowledgement: DFG-MAP and HIT-Heidelberg Deutsche Forschungsgemeinschaft (MAP); Bundesministerium fur Bildung und Forschung (01IB13001)« less
NASA Astrophysics Data System (ADS)
Spangehl, Thomas; Cubasch, Ulrich; Schimanke, Semjon
A fully coupled AO-GCM including representation of the middle atmosphere is used for tran-sient simulation of climate from 1630 to 2000 AD. For better representation of changes in the UV/visible part of the solar spectrum an improved short-wave radiation scheme is implemented. The model is driven by changes in GHG concentrations, solar activity and volcanic eruptions. Solar variability is introduced via changes in total/spectral solar irradiance (TSI/SSI) and pre-scribed changes in stratospheric ozone. The secular trend in TSI is in the range of 0.1 percent increase from Maunder Minimum to present-day. Volcanic eruptions are represented via abrupt reduction in TSI. With the applied forcings the model does not simulate a clear reduction of the annual Northern Hemisphere (NH) mean near surface temperature during Maunder Minimum. By contrast the Dalton Minimum is characterized by distinct cooling and there is a significant raise of NH mean near surface temperature until the end of the 20th century. Focusing on the North Atlantic/European region the winter mean near surface temperature change pat-tern from Late Maunder Minimum (1675-1715) to present-day (1960-1990) reveals maximum warming over north-eastern Europe and cooling over the western North Atlantic with maxi-mum cooling west of Greenland. These changes can partly be explained by a shift of the NAO towards a more positive phase. The simulated changes in tropospheric circulation are discussed with special emphasize on the role of the solar forcing. Besides the stratospheric solar forcing which may affect NAO variability via downward propagation of the solar signal from the strato-sphere to the troposphere the magnitude of the secular trend in TSI might play a role. For the period from Maunder Minimum to present-day the simulation shows less near surface temper-ature increase especially over arctic regions when compared to simulations performed with the same model including the standard radiation scheme but applying larger TSI variations. The associated changes in lower tropospheric baroclinicity are more favourable for synoptic scale wave activity over the North Atlantic and might thereby contribute to strengthening of the NAO.
NASA Astrophysics Data System (ADS)
Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan
2016-10-01
This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.
NASA Astrophysics Data System (ADS)
Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.
2010-01-01
Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.
Ion-irradiation-induced damage of steels characterized by means of nanoindentation
NASA Astrophysics Data System (ADS)
Heintze, C.; Recknagel, C.; Bergner, F.; Hernández-Mayoral, M.; Kolitsch, A.
2009-05-01
Self-ion irradiation was used to simulate the damage caused by fast neutrons in the austenitic stainless steel SS 304 SA, the ferritic/martensitic steel Eurofer'97 and a Fe-9 at.%Cr model alloy. The irradiation-induced hardness change in the damage layer was evaluated by means of nanoindentation. Three-step irradiations were performed at room temperature and 300 °C up to 1 and 10 dpa. An irradiation-induced hardness change was shown for all materials. No influence of irradiation temperature could be resolved. Irradiation-induced hardening exhibits different fluence dependencies in Eurofer'97 and Fe-9 at.%Cr. While the data indicate a saturation-like behaviour for Fe-9 at.%Cr, an increase of hardness with fluence up to 10 dpa was found for Eurofer'97.
NASA Astrophysics Data System (ADS)
Wright, Graham; Kesler, Leigh Ann; Whyte, Dennis
2013-10-01
The extrusion of nano-tendrils from high temperature (>1000 K) tungsten (W) targets exposed to helium (He) plasma ions remains a concern for future fusion reactors. Previous work on the Alcator C-Mod tokamak has demonstrated it is possible to form these structures in a tokamak environment. However, one area where Alcator C-Mod and a fusion reactor differ is total neutron flux at the wall and the displacement damage these neutrons produce in the plasma-facing materials. This dsiplacement damage may affect the size and number He bubbles precipitating in the W target, which is a key factor in the formation and growth of the nano-tendrils. The DIONISOS experiment directly measures the impact of the displacement damage by simultaneously bombarding high temperature W targets with MeV-range ions (to simulate the displacement damage caused by neutron flux) and high flux of He plasma ions. Different combinations of irradiating ion species and W target temperatures are used to vary the different processes and rates that are involved such as He trapping rate, vacancy production and annealing rates, and nano-tendril growth rate. The nano-tendril growth is characterized by SEM imaging and focused ion beam (FIB) cross-sectioning and compared to nano-tendril formation without the presence of the irradiating ion beam. This work is supported by US DOE award DE-SC00-02060.
Radiation therapy affects the mechanical behavior of human umbilical vein endothelial cells.
Mohammadkarim, Alireza; Tabatabaei, Mohammad; Parandakh, Azim; Mokhtari-Dizaji, Manijhe; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi
2018-06-06
Radiation therapy has been widely utilized as an effective method to eliminate malignant tumors and cancerous cells. However, subjection of healthy tissues and the related networks of blood vessels adjacent to the tumor area to irradiation is inevitable. The aim of this study was to investigate the consequent effects of fractionation radiotherapy on the mechanical characteristics of human umbilical vein endothelial cells (HUVECs) through alterations in cytoskeleton organization and cell and nucleus morphology. In order to simulate the clinical condition of radiotherapy, the HUVECs were exposed to the specific dose of 2 Gy for 1-4 times among four groups with incremental total dose from 2 Gy up to 8 Gy. Fluorescence staining was performed to label F-actin filaments and nuclei. Micropipette aspiration and standard linear solid model were employed to evaluate the elastic and viscoelastic characteristics of the HUVECs. Radiotherapy significantly increased cell elastic moduli. Due to irradiation, instantaneous and equilibrium Young's modulus were also increased. Radiotherapy diminished HUVECs viscoelastic behavior and shifted their creep compliance curves downward. Furthermore, gamma irradiation elevated the nuclei sizes and to a lesser extent the cells sizes resulting in the accumulation of F-actin filaments within the rest of cell body. Endothelial stiffening correlates with endothelial dysfunction, hence the results may be helpful when the consequent effects of radiotherapy are the focus of concern. Copyright © 2018. Published by Elsevier Ltd.
Quantification of irradiation defects in beta-silicon carbide using Raman spectroscopy
Koyanagi, T.; Lance, M. J.; Katoh, Y.
2016-08-11
Raman spectra from polycrystalline beta-silicon carbide (SiC) were collected following neutron irradiation at 380–1180 °C to 0.011–1.87 displacement per atom. The longitudinal optical (LO) peak shifted to a lower frequency and broadened as a result of the irradiation. The changes observed in the LO phonon line shape and position in neutron-irradiated SiC are explained by a combination of changes in the lattice constant and Young's modulus, and the phonon confinement effect. The phonon confinement model reasonably estimates the defect-defect distance in the irradiated SiC, which is consistent with results from previous experimental studies and simulations.
Changes in surface morphology of enamel after Er:YAG laser irradiation
NASA Astrophysics Data System (ADS)
Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas
1998-04-01
Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.
NASA Astrophysics Data System (ADS)
Román, Roberto; Bilbao, Julia; de Miguel, Argimiro; Pérez-Burgos, Ana
2014-05-01
The radiative transfer models can be used to obtain solar radiative quantities in the Earth surface as the erythemal ultraviolet (UVER) irradiance, which is the spectral irradiance weighted with the erythemal (sunburn) action spectrum, and the total shortwave irradiance (SW; 305-2,8000 nm). Aerosol and atmospheric properties are necessary as inputs in the model in order to calculate the UVER and SW irradiances under cloudless conditions, however the uncertainty in these inputs causes another uncertainty in the simulations. The objective of this work is to quantify the uncertainty in UVER and SW simulations generated by the aerosol optical depth (AOD) uncertainty. The data from different satellite retrievals were downloaded at nine Spanish places located in the Iberian Peninsula: Total ozone column from different databases, spectral surface albedo and water vapour column from MODIS instrument, AOD at 443 nm and Angström Exponent (between 443 nm and 670 nm) from MISR instrument onboard Terra satellite, single scattering albedo from OMI instrument onboard Aura satellite. The obtained AOD at 443 nm data from MISR were compared with AERONET measurements in six Spanish sites finding an uncertainty in the AOD from MISR of 0.074. In this work the radiative transfer model UVSPEC/Libradtran (1.7 version) was used to obtain the SW and UVER irradiance under cloudless conditions for each month and for different solar zenith angles (SZA) in the nine mentioned locations. The inputs used for these simulations were monthly climatology tables obtained with the available data in each location. Once obtained the UVER and SW simulations, they were repeated twice but changing the AOD monthly values by the same AOD plus/minus its uncertainty. The maximum difference between the irradiance run with AOD and the irradiance run with AOD plus/minus its uncertainty was calculated for each month, SZA, and location. This difference was considered as the uncertainty on the model caused by the AOD uncertainty. The uncertainty in the simulated global SW and UVER varies with the location, but the behaviour is similar: high uncertainty in specific months. The averages of the uncertainty at the nine locations were calculated. Uncertainty in the global SW is lower than 5% for SZA values lower than 70º, and the uncertainty in global UVER is between 2 and 6%. The uncertainty in the direct and diffuse components is higher than in the global case for both SW and UVER irradiances, but a balance between the changes with AOD in direct and diffuse components provide a lower uncertainty in global SW and UVER irradiance. References Bilbao, J., Román, R., de Miguel, A., Mateos, D.: Long-term solar erythemal UV irradiance data reconstruction in Spain using a semiempirical method, J. Geophys. Res., 116, D22211, 2011. Kylling, A., Stamnes, K., Tsay, S. C.: A reliable and efficient two-stream algorithm for spherical radiative transfer: Documentation of acciracy in realistic layered media, J. Atmos. Chem, 21, 115-150, 1995. Ricchiazzi, P., Yang, S., Gautier, C., Sowle, D.: SBDART: A research and Teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, Bulletin of the American Meteorological
NASA Astrophysics Data System (ADS)
Neale, Patrick J.; Thomas, Brian C.
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Wen, Wei; Martinez Saez, Enrique
This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stallmann, F.W.
1984-08-01
A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.
Experimental studies of irradiated and hydrogen implantation damaged reactor steels
NASA Astrophysics Data System (ADS)
Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav
2016-01-01
Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).
NASA Astrophysics Data System (ADS)
Pecko, Stanislav; Sojak, Stanislav; Slugeň, Vladimír
2014-09-01
Commercial German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was also in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40%) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed at a level of 2-3 vacancies in the irradiated specimens. The size and intensity of defects reached a similar level as in the specimens irradiated in nuclear reactor due to hydrogen ions implantation with energy of 100 keV (up to the depth <500 nm). This could confirm the ability to simulate neutron damage by ion implantation.
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
NASA Astrophysics Data System (ADS)
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Proton irradiation of simple gas mixtures: Influence of irradiation parameters
NASA Technical Reports Server (NTRS)
Sack, Norbert J.; Schuster, R.; Hofmann, A.
1990-01-01
In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-21
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β(+)-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β(+)-activity and dose is not feasible, a simulation of the expected β(+)-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β(+)-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β(+)-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
NASA Astrophysics Data System (ADS)
Rohling, Heide; Sihver, Lembit; Priegnitz, Marlen; Enghardt, Wolfgang; Fiedler, Fine
2013-09-01
For quality assurance in particle therapy, a non-invasive, in vivo range verification is highly desired. Particle therapy positron-emission-tomography (PT-PET) is the only clinically proven method up to now for this purpose. It makes use of the β+-activity produced during the irradiation by the nuclear fragmentation processes between the therapeutic beam and the irradiated tissue. Since a direct comparison of β+-activity and dose is not feasible, a simulation of the expected β+-activity distribution is required. For this reason it is essential to have a quantitatively reliable code for the simulation of the yields of the β+-emitting nuclei at every position of the beam path. In this paper results of the three-dimensional Monte-Carlo simulation codes PHITS, GEANT4, and the one-dimensional deterministic simulation code HIBRAC are compared to measurements of the yields of the most abundant β+-emitting nuclei for carbon, lithium, helium, and proton beams. In general, PHITS underestimates the yields of positron-emitters. With GEANT4 the overall most accurate results are obtained. HIBRAC and GEANT4 provide comparable results for carbon and proton beams. HIBRAC is considered as a good candidate for the implementation to clinical routine PT-PET.
Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07
NASA Astrophysics Data System (ADS)
Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He
2016-09-01
This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.
NASA Astrophysics Data System (ADS)
Vu, T. H. Y.; Ramjauny, Y.; Rizza, G.; Hayoun, M.
2016-01-01
We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4-100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 1016 cm-2. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45-100 nm) and exponential for small NPs (4-25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effects and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.
NASA Astrophysics Data System (ADS)
Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.
2002-11-01
The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.
Self-aligning concave relativistic plasma mirror with adjustable focus
Tsai, Hai-En; Arefiev, Alexey V.; Shaw, Joseph M.; ...
2017-01-04
We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity (10 180<10 19W/cm 2) by near-normally incident (4°), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective (0.6–0.8) and focus a significant fraction of reflected light to intensity as large as ~10I0 at distance f as small as ~25 μm from the PM, provided that pre-pulses do not exceed 10 14 W/cm 2 prior to ~20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusingmore » results from denting of the reflecting surface by light pressure combined with relativistic transparency and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 ≲L ≲ 3 μm. Pump-probe reflectivity measurements show that the PM's focusing properties evolve on a ps time scale.« less
Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki
2004-12-01
Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.
Discovering mechanisms relevant for radiation damage evolution
Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny; ...
2018-02-22
he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less
Discovering mechanisms relevant for radiation damage evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uberuaga, Blas Pedro; Martinez, Enrique Saez; Perez, Danny
he response of a material to irradiation is a consequence of the kinetic evolution of defects produced during energetic damage events. Thus, accurate predictions of radiation damage evolution require knowing the atomic scale mechanisms associated with those defects. Atomistic simulations are a key tool in providing insight into the types of mechanisms possible. Further, by extending the time scale beyond what is achievable with conventional molecular dynamics, even greater insight can be obtained. Here, we provide examples in which such simulations have revealed new kinetic mechanisms that were not obvious before performing the simulations. We also demonstrate, through the couplingmore » with higher level models, how those mechanisms impact experimental observables in irradiated materials. Lastly, we discuss the importance of these types of simulations in the context of predicting material behavior.« less
KEY RESULTS FROM IRRADIATION AND POST-IRRADIATION EXAMINATION OF AGR-1 UCO TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3×105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time average, volume average irradiation temperatures of the individual compacts ranged from 955 to 1136°C. This paper focuses on key resultsmore » from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior within the US program. The fuel exhibited a very low incidence of TRISO coating failure during irradiation and post-irradiation safety testing at temperatures up to 1800°C. Advanced PIE methods have allowed particles with SiC coating failure to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program is also discussed.« less
Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less
Key results from irradiation and post-irradiation examination of AGR-1 UCO TRISO fuel
Demkowicz, Paul A.; Hunn, John D.; Petti, David A.; ...
2017-09-10
The AGR-1 irradiation experiment was performed as the first test of tristructural isotropic (TRISO) fuel in the US Advanced Gas Reactor Fuel Development and Qualification Program. The experiment consisted of 72 right cylinder fuel compacts containing approximately 3 × 105 coated fuel particles with uranium oxide/uranium carbide (UCO) fuel kernels. The fuel was irradiated in the Advanced Test Reactor for a total of 620 effective full power days. Fuel burnup ranged from 11.3 to 19.6% fissions per initial metal atom and time-average, volume-average irradiation temperatures of the individual compacts ranged from 955 to 1136 °C. This paper focuses on keymore » results from the irradiation and post-irradiation examination, which revealed a robust fuel with excellent performance characteristics under the conditions tested and have significantly improved the understanding of UCO coated particle fuel irradiation behavior. The fuel exhibited zero TRISO coating failures (failure of all three dense coating layers) during irradiation and post-irradiation safety testing at temperatures up to 1700 °C. Advanced PIE methods have allowed particles with SiC coating failure that were discovered to be present in a very-low population to be isolated and meticulously examined, which has elucidated the specific causes of SiC failure in these specimens. The level of fission product release from the fuel during irradiation and post-irradiation safety testing has been studied in detail. Results indicated very low release of krypton and cesium through intact SiC and modest release of europium and strontium, while also confirming the potential for significant silver release through the coatings depending on irradiation conditions. Focused study of fission products within the coating layers of irradiated particles down to nanometer length scales has provided new insights into fission product transport through the coating layers and the role various fission products may have on coating integrity. The broader implications of these results and the application of lessons learned from AGR-1 to fuel fabrication and post-irradiation examination for subsequent fuel irradiation experiments as part of the US fuel program are also discussed.« less
NASA Astrophysics Data System (ADS)
Kano, Sho; Yang, Huilong; Shen, Jingjie; Zhao, Zishou; McGrady, John; Hamaguchi, Dai; Ando, Mamami; Tanigawa, Hiroyasu; Abe, Hiroaki
2018-04-01
In order to clarify the instability of M23C6 in F82H steel under irradiation, both electron irradiation using a high voltage electron microscope (HVEM) and ion irradiation using an ion accelerator were performed. For the electron irradiation, in-situ observation under 2 MV electron irradiation and ex-situ high resolution electron microscopic (HREM) analysis were utilized to evaluate the response of M23C6 against irradiation. The temperature dependence of the irradiation induced instability of the carbide was first confirmed: 293 K < T < 573 K, by observation of lowering in contrast at the periphery of carbides, 698 K < T < 773 K, fragmentation at the interface between carbides and matrix, and at 773 K, formation and coarsening of new particles near the periphery of M23C6. HREM analysis showed the loss of the lattice fringe contrast at the pre-existing M23C6 precipitates at temperatures ranging from 473 to 773 K, indicating severe loss of crystallinity due to dissolution of the constituent atoms though irradiation-enhanced diffusion under the vacancy diffusion by the focused electron beam irradiation. For the ion irradiation, 10.5 MeV-Fe3+ ion was applied to bombard the F82H steel at 673 K to achieve the displacement damage of ≈20 dpa at the depth of 1.0 μm from surface. Cross-section TEM specimens were prepared by a focused ion beam technique. The shrinkage of carbide particles was observed especially near the irradiation surface. Besides, the lattice fringes at the periphery of carbide were observed in the irradiated M23C6 by the HREM analysis, which is different from that observed in the electron irradiation. It was clarified that the instability of M23C6 is dependent on the irradiation conditions, indicating that the flow rate of vacancy type defects might be the key factor to cause the dissolution of constituent atoms of carbide particles into matrix under irradiation.
Generation of nano-voids inside polylactide using femtosecond laser radiation
NASA Astrophysics Data System (ADS)
Viertel, Tina; Pabst, Linda; Olbrich, Markus; Ebert, Robby; Horn, Alexander; Exner, Horst
2017-12-01
The arrangement of nanometer-sized voids, induced by focusing intense laser radiation within transparent material can allow the generation of transparent components with dimensions in the micrometer to nanometre range due to internal contour cut and thus satisfy the progressive miniaturization of products in micro-optics and medical technologies. For further improvements in the precision of those components, a deep understanding of the involved processes during the interaction of laser radiation within the material is necessary. In this work, voids inside bulk polylactide (PLA), a bioabsorbable polymer, were generated using a femtosecond laser ( λ = 1030 nm, τH = 180 fs) with single and multiple pulse irradiation. The dependence of the spot size was examined by the use of four microscope objectives with focus radii of 4.9, 3.3, 2 and 1.2 µm. For the experiments, the pulse energy and focusing depth into the material were varied. The dimensions of the voids were experimentally determined as function of the intensity. Differences in the lateral and axial extents of the voids were obtained for different focus radii and focusing depths at same intensities. Furthermore, the intensity distribution of the laser radiation inside the material for the different focus radii and focusing depths, and their dependence on the lateral and axial sizes of the voids was simulated and compared with the experimental results.
NASA Astrophysics Data System (ADS)
Whitlow, Harry J.; Guibert, Edouard; Jeanneret, Patrick; Homsy, Alexandra; Roth, Joy; Krause, Sven; Roux, Adrien; Eggermann, Emmanuel; Stoppini, Luc
2017-08-01
Irradiation with ∼3 MeV proton fluences of 106-109 protons cm-2 have been applied to study the effects on human brain tissue corresponding to single-cell irradiation doses and doses received by electronic components in low-Earth orbit. The low fluence irradiations were carried out using a proton microbeam with the post-focus expansion of the beam; a method developed by the group of Breese [1]. It was found from electrophysiological measurements that the mean neuronal frequency of human brain tissue decreased to zero as the dose increased to 0-1050 Gy. Enhancement-mode MOSFET transistors exhibited a 10% reduction in threshold voltage for 2.7 MeV proton doses of 10 Gy while a NPN bipolar transistor required ∼800 Gy to reduce the hfe by 10%, which is consistent the expected values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Jia; Lawrence Berkeley Laboratory, Berkeley, California 94720-8250; Li Youhong
Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni{sub 3}Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiationmore » flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications.« less
Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations
NASA Astrophysics Data System (ADS)
Sánchez-Mejorada, G.; Frias, D.
2006-09-01
A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.
Estimation of channel parameters and background irradiance for free-space optical link.
Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk
2013-05-10
Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.
Electron linear accelerator system for natural rubber vulcanization
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.
2017-09-01
Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.
Modeling thermospheric neutral density
NASA Astrophysics Data System (ADS)
Qian, Liying
Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the lifetime of satellites, but also it will increase the amount of space junk.
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
Simulation of Distributed PV Power Output in Oahu Hawaii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew Samuel
2016-08-01
Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presentedmore » by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.« less
Fundamental studies concerning planetary quarantine in space
NASA Astrophysics Data System (ADS)
Koike, J.; Hori, T.; Katahira, Y.; Koike, K. A.; Tanaka, K.; Kobayashi, K.; Kawasaki, Y.
If there is a possibility that the organisms carried from Earth to space can live for a significant period on planets, the contamination of planets should be prevented for the purpose of future life-detection experiments. In connection with quarantine for interplanetary missions, we have examined the survivabilities of terrestrial microorganisms under simulated space conditions /1-8/. In this study, examined the survivabilities of terrestrial organisms under simulated Mars conditions. The Mars conditions were simulated by ultraviolet (UV) and proton irradiation under low temperature, high vacuum, and simulated gaseous conditions. After exposure to the simulated Mars condition, the survivabilities of the organisms were examined. The spores of Bacillus subtilis andAspergillus niger , some anaerobic bacterias and algaes, showed considerably high survivabilities even after UV and proton irradiation corresponding to 200 years on Mars. This subject is not restricted to academic curiosity but concerns problems involving the contamination of Mars with terrestrial organisms carried by space-probes.
Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A
2012-09-01
Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.
Light-Irradiation Wavelength and Intensity Changes Influence Aflatoxin Synthesis in Fungi
Suzuki, Tadahiro
2018-01-01
Fungi respond to light irradiation by forming conidia and occasionally synthesizing mycotoxins. Several light wavelengths, such as blue and red, affect the latter. However, the relationship between light irradiation and mycotoxin synthesis varies depending on the fungal species or strain. This study focused on aflatoxin (AF), which is a mycotoxin, and the types of light irradiation that increase AF synthesis. Light-irradiation tests using the visible region indicated that blue wavelengths in the lower 500 nm region promoted AF synthesis. In contrast, red wavelengths of 660 nm resulted in limited significant changes compared with dark conditions. Irradiation tests with different intensity levels indicated that a low light intensity increased AF synthesis. For one fungal strain, light irradiation decreased the AF synthesis under all wavelength conditions. However, the decrease was mitigated by 525 nm low intensity irradiation. Thus, blue-green low intensity irradiation may increase AF synthesis in fungi. PMID:29304012
Sisson, William B.; Caldwell, Martyn M.
1976-01-01
Net photosynthesis, dark respiration, and growth of Rumex patientia L. exposed to a ultraviolet irradiance (288-315 nanometers) simulating a 0.18 atm·cm stratospheric ozone column were determined. The ultraviolet irradiance corresponding to this 38% ozone decrease from normal was shown to be an effective inhibitor of photosynthesis and leaf growth. The repressive action on photosynthesis accumulated through time whereas leaf growth was retarded only during the initial few days of exposure. Small increases in dark respiration rates occurred but did not continue to increase with longer exposure periods. A reduction in total plant dry weight and leaf area of approximately 50% occurred after 22 days of treatment, whereas chlorophyll concentrations remained unaltered. PMID:16659718
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
NASA Technical Reports Server (NTRS)
Yuy, R. I.
1975-01-01
During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.
Coluccelli, Nicola
2010-08-01
Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.
NASA Astrophysics Data System (ADS)
Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.
2018-02-01
Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Si- coated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, transited at a threshold temperature/fission rate. The existing inter-diffusion layer (IL) growth correlation, which does not describe the transition behavior of IL growth, was modified by applying a temperature-dependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the inter-mixing rate in ion-irradiated bi-layer systems.
Annual progress report on the NSRR experiments, (21)
NASA Astrophysics Data System (ADS)
1992-05-01
Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).
NASA Astrophysics Data System (ADS)
Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi
2015-12-01
The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.
Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death
NASA Astrophysics Data System (ADS)
Shimizu, Nobuyuki
2015-09-01
New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.
Proton irradiation effects on beryllium – A macroscopic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium - A macroscopic assessment
NASA Astrophysics Data System (ADS)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Aspheric surface testing by irradiance transport equation
NASA Astrophysics Data System (ADS)
Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir
2010-10-01
In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.
NASA Astrophysics Data System (ADS)
Fornaro, T.; Brucato, J. R.; ten Kate, I. L.; Siljeström, S.; Steele, A.; Cody, G. D.; Hazen, R. M.
2018-04-01
We present laboratory activities of preparation, characterization, and UV irradiation processing of Mars soil analogues, which are key to support both in situ exploration and sample return missions devoted to detection of molecular biomarkers on Mars.
NASA Astrophysics Data System (ADS)
Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris
Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.
NASA Astrophysics Data System (ADS)
Hansen, A.; Ripken, Tammo; Krueger, Ronald R.; Lubatschowski, Holger
2011-03-01
Focussed femtosecond laser pulses are applied in ophthalmic tissues to create an optical breakdown and therefore a tissue dissection through photodisruption. The threshold irradiance for the optical breakdown depends on the photon density in the focal volume which can be influenced by the pulse energy, the size of the irradiated area (focus), and the irradiation time. For an application in the posterior eye segment the aberrations of the anterior eye elements cause a distortion of the wavefront and therefore an increased focal volume which reduces the photon density and thus raises the required energy for surpassing the threshold irradiance. The influence of adaptive optics on lowering the pulse energy required for photodisruption by refining a distorted focus was investigated. A reduction of the threshold energy can be shown when using adaptive optics. The spatial confinement with adaptive optics furthermore raises the irradiance at constant pulse energy. The lowered threshold energy allows for tissue dissection with reduced peripheral damage. This offers the possibility for moving femtosecond laser surgery from corneal or lental applications in the anterior eye to vitreal or retinal applications in the posterior eye.
Laser induced white lighting of tungsten filament
NASA Astrophysics Data System (ADS)
Strek, W.; Tomala, R.; Lukaszewicz, M.
2018-04-01
The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.
Horiguchi, Masatoshi; Miyata, Nariaki; Mizuno, Hiroshi
2017-04-01
In order to avoid epidermal heat damage, we developed a novel irradiation method termed "Focused multiple laser beams (FMLB)," which allows long-pulse neodymium:yttrium aluminum garnet (Nd:YAG) laser beams to be irradiated from several directions in a concentric fashion followed by focusing into the dermis without epidermal damage. This study aimed to assess whether FMLB achieves the desired dermal improvement without epidermal damage. The dorsal skin of New Zealand White rabbits was irradiated with FMLB. Macroscopic and histological analyses were performed after 1 hour and 1, 2, 3 and 4 weeks. Real-time PCR analysis of type I and III collagen expression was performed at two and four weeks. Control groups exhibited skin ulcers which were healed with scar formation whereas FMLB groups remained intact macroscopically. Histologically, FMLB group showed increase in dermal thickness at four weeks while the epidermis remained intact. Real-time PCR demonstrated that both type I and III collagen increased at two weeks but decreased at four weeks. FMLB can deliver the target laser energy to the dermis without significantly affecting the epidermis.
NASA Astrophysics Data System (ADS)
Belousov, A. V.; Morozov, V. N.; Krusanov, G. A.; Kolyvanova, M. A.; Chernyaev, A. P.; Shtil, A. A.
2018-03-01
The Monte Carlo method (computer simulation) is used to construct a physical model of secondary particles emission induced by the simulated irradiation of a gold nanoparticle with 60Co. It is demonstrated that the modification of the nanoparticle surface with polyethylene glycol affects the spectrum of secondary electrons produced in a nanoparticle and leaving it and its shell. The model takes into account the size and the chemical composition of the shell and provides an opportunity to design antitumor radiosensitizers based on gold nanoparticles.
Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study
NASA Astrophysics Data System (ADS)
Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad
2016-10-01
The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.
Mitigating IASCC of Reactor Core Internals by Post-Irradiation Annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary
This final report summarizes research performed during the period between September 2012 and December 2016, with the objective of establishing the effectiveness of post-irradiation annealing (PIA) as an advanced mitigation strategy for irradiation-assisted stress corrosion cracking (IASCC). This was completed by using irradiated 304SS control blade material to conduct crack initiation and crack growth rate (CGR) experiments in simulated BWR environment. The mechanism by which PIA affects IASCC susceptibility will also be verified. The success of this project will provide a foundation for the use of PIA as a mitigation strategy for core internal components in commercial reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, T.; Lance, M. J.; Katoh, Y.
Raman spectra from polycrystalline beta-silicon carbide (SiC) were collected following neutron irradiation at 380–1180 °C to 0.011–1.87 displacement per atom. The longitudinal optical (LO) peak shifted to a lower frequency and broadened as a result of the irradiation. The changes observed in the LO phonon line shape and position in neutron-irradiated SiC are explained by a combination of changes in the lattice constant and Young's modulus, and the phonon confinement effect. The phonon confinement model reasonably estimates the defect-defect distance in the irradiated SiC, which is consistent with results from previous experimental studies and simulations.
NASA Astrophysics Data System (ADS)
Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng
2018-05-01
In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (<λ/2) can be generated. The obtained period is as short as 157 nm in this work. Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.
NASA Astrophysics Data System (ADS)
Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.
2017-12-01
The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.
MARMOT simulations of Xe segregation to grain boundaries in UO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael; Casillas, Luis
2012-06-20
Diffusion of Xe and U in UO{sub 2} is controlled by vacancy mechanisms and under irradiation the formation of mobile vacancy clusters is important. We derive continuum thermodynamic and diffusion models for Xe and U in UO{sub 2} based on the vacancy and cluster diffusion mechanisms established from recent density functional theory (DFT) calculations. Segregation of defects to grain boundaries in UO{sub 2} is described by combining the diffusion model with models of the interaction between Xe atoms and vacancies with grain boundaries derived from separate atomistic calculations. The diffusion and segregation models are implemented in the MOOSE/MARMOT (MBM) finitemore » element (FEM) framework and we simulate Xe redistribution for a few simple microstructures. In this report we focus on segregation to grain boundaries. The U or vacancy diffusion model as well as the coupled diffusion of vacancies and Xe have also been implemented, but results are not included in this report.« less
Validation of gamma irradiator controls for quality and regulatory compliance
NASA Astrophysics Data System (ADS)
Harding, Rorry B.; Pinteric, Francis J. A.
1995-09-01
Since 1978 the U.S. Food and Drug Administration (FDA) has had both the legal authority and the Current Good Manufacturing Practice (CGMP) regulations in place to require irradiator owners who process medical devices to produce evidence of Irradiation Process Validation. One of the key components of Irradiation Process Validation is the validation of the irradiator controls. However, it is only recently that FDA audits have focused on this component of the process validation. What is Irradiator Control System Validation? What constitutes evidence of control? How do owners obtain evidence? What is the irradiator supplier's role in validation? How does the ISO 9000 Quality Standard relate to the FDA's CGMP requirement for evidence of Control System Validation? This paper presents answers to these questions based on the recent experiences of Nordion's engineering and product management staff who have worked with several US-based irradiator owners. This topic — Validation of Irradiator Controls — is a significant regulatory compliance and operations issue within the irradiator suppliers' and users' community.
Formation and evolution of ripples on ion-irradiated semiconductor surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, M.; Wu, J. H.; Ye, W.
We have examined the formation and evolution of ripples on focused-ion-beam (FIB) irradiated compound semiconductor surfaces. Using initially normal-incidence Ga{sup +} FIB irradiation of InSb, we tuned the local beam incidence angle (θ{sub eff}) by varying the pitch and/or dwell time. For single-pass FIB irradiation, increasing θ{sub eff} induces morphological evolution from pits and islands to ripples to featureless surfaces. Multiple-pass FIB irradiation of the rippled surfaces at a fixed θ{sub eff} leads to island formation on the ripple crests, followed by nanorod (NR) growth. This ripple-NR transition provides an alternative approach for achieving dense arrays of NRs.
Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri
2008-01-01
Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
NASA Astrophysics Data System (ADS)
Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed
2018-03-01
Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.
SU-E-T-457: Design and Characterization of An Economical 192Ir Hemi-Brain Small Animal Irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grams, M; Wilson, Z; Sio, T
Purpose: To describe the design and dosimetric characterization of a simple and economical small animal irradiator. Methods: A high dose rate 192Ir brachytherapy source from a commercially available afterloader was used with a 1.3 centimeter thick tungsten collimator to provide sharp beam penumbra suitable for hemi-brain irradiation of mice. The unit is equipped with continuous gas anesthesia to allow robust animal immobilization. Dosimetric characterization of the device was performed with Gafchromic film. The penumbra from the small animal irradiator was compared under similar collimating conditions to the penumbra from 6 MV photons, 6 MeV electrons, and 20 MeV electrons frommore » a linear accelerator as well as 300 kVp photons from an orthovoltage unit and Monte Carlo simulated 90 MeV protons. Results: The tungsten collimator provides a sharp penumbra suitable for hemi-brain irradiation, and dose rates on the order of 200 cGy/minute were achieved. The sharpness of the penumbra attainable with this device compares favorably to those measured experimentally for 6 MV photons, and 6 and 20 MeV electron beams from a linear accelerator. Additionally, the penumbra was comparable to those measured for a 300 kVp orthovoltage beam and a Monte Carlo simulated 90 MeV proton beam. Conclusions: The small animal irradiator described here can be built for under $1,000 and used in conjunction with any commercial brachytherapy afterloader to provide a convenient and cost-effective option for small animal irradiation experiments. The unit offers high dose rate delivery and sharp penumbra, which is ideal for hemi-brain irradiation of mice. With slight modifications to the design, irradiation of sites other than the brain could be accomplished easily. Due to its simplicity and low cost, the apparatus described is an attractive alternative for small animal irradiation experiments requiring a sharp penumbra.« less
Safi, E.; Valles, G.; Lasa, A.; ...
2017-03-27
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safi, E.; Valles, G.; Lasa, A.
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this paper, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First,more » we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300–800 K) and impact energy (10–200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. Finally, these findings correlate well with different experiments performed at JET and PISCES-B devices.« less
NASA Astrophysics Data System (ADS)
Safi, E.; Valles, G.; Lasa, A.; Nordlund, K.
2017-05-01
Beryllium (Be) has been chosen as the plasma-facing material for the main wall of ITER, the next generation fusion reactor. Identifying the key parameters that determine Be erosion under reactor relevant conditions is vital to predict the ITER plasma-facing component lifetime and viability. To date, a certain prediction of Be erosion, focusing on the effect of two such parameters, surface temperature and D surface content, has not been achieved. In this work, we develop the first multi-scale KMC-MD modeling approach for Be to provide a more accurate database for its erosion, as well as investigating parameters that affect erosion. First, we calculate the complex relationship between surface temperature and D concentration precisely by simulating the time evolution of the system using an object kinetic Monte Carlo (OKMC) technique. These simulations provide a D surface concentration profile for any surface temperature and incoming D energy. We then describe how this profile can be implemented as a starting configuration in molecular dynamics (MD) simulations. We finally use MD simulations to investigate the effect of temperature (300-800 K) and impact energy (10-200 eV) on the erosion of Be due to D plasma irradiations. The results reveal a strong dependency of the D surface content on temperature. Increasing the surface temperature leads to a lower D concentration at the surface, because of the tendency of D atoms to avoid being accommodated in a vacancy, and de-trapping from impurity sites diffuse fast toward bulk. At the next step, total and molecular Be erosion yields due to D irradiations are analyzed using MD simulations. The results show a strong dependency of erosion yields on surface temperature and incoming ion energy. The total Be erosion yield increases with temperature for impact energies up to 100 eV. However, increasing temperature and impact energy results in a lower fraction of Be atoms being sputtered as BeD molecules due to the lower D surface concentrations at higher temperatures. These findings correlate well with different experiments performed at JET and PISCES-B devices.
Distribution of temperature elevation caused by moving high-intensity focused ultrasound transducer
NASA Astrophysics Data System (ADS)
Kim, Jungsoon; Jung, Jihee; Kim, Moojoon; Ha, Kanglyeol; Lee, Eunghwa; Lee, Ilkwon
2015-07-01
Ultrasonic thermal treatment for dermatology has been developed using a small high-intensity focused ultrasound (HIFU) transducer. The transducer moves horizontally at a constant while it emits focused ultrasound because the treatment needs a high-temperature area in skin tissue over a wide range of depths. In this paper, a tissue-mimicking phantom made of carrageenan and a thermochromic film were adopted to examine the temperature distribution in the phantom noninvasively when the focused ultrasound was irradiated from the moving transducer. The dependence of the high-temperature area on the irradiated acoustic energy and on the movement interval of the HIFU was analyzed experimentally. The results will be useful in ensuring safety and estimating the remedial value of the treatment.
A note on the electromagnetic irradiation in a holed spatial region: A space-time approach
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2017-02-01
We study the role of the homological topological property of a space-time with holes (a multiple connected manifold) on the formal solution of the electromagnetic irradiation problem taking place on these “holed” space-times. In this paper, in addition to the main focus of study, we present as well important studies on this irradiation problem on other mathematical frameworks.
Pontoriero, Antonio; Amato, Ernesto; Iatí, Giuseppe; De Renzis, Costantino; Pergolizzi, Stefano
2015-01-01
Purpose of this work was to study the dose perturbation within the target volume of a external MV radiation therapy when using metal fiducials. We developed a Monte Carlo simulation in Geant4 of a cylindrical fiducial made either of gold or of steel and simulated the photon irradiation beam originating from a medical Linac operating at 6, 10 or 15 MV. For each energy, two different irradiation schemes were simulated: a single 5 × 5-cm square field in the -x direction, and five 5 × 5-cm fields at 0°, 80°, 165°, 195° and 280°. In a single beam irradiation scheme, we observed a dose reduction behind fiducials varying from -20% for gold at 6 MV to -5% for steel at 15 MV, and a dose increment in front of the fiducial ranging from +33% for gold at 15 MV to +10% for steel at 6 MV. When five beams were employed, a dose increment ranging from +28% to +46% has been found around gold. Around a steel fiducial, an average increment of +17% was found, irrespective of the photon energy. When using a single beam, the decrement of dose behind both steel and gold markers increases with the photon energy. This effect vanishes when a multifield treatment is delivered; in this instance there is a dose increment around fiducials, according to both fiducial material and photon energy, with lower values for steel and 6 MV. This energy represents the best choice when fiducial markers are present inside the irradiated volume.
Simulated Space Environmental Testing on Thin Films
NASA Technical Reports Server (NTRS)
Russell, Dennis A.; Fogdall, Larry B.; Bohnhoff-Hlavacek, Gail; Connell, John W. (Technical Monitor)
2000-01-01
An exploratory program has been conducted, to irradiate some mature commercial and some experimental polymer films with radiation simulating certain Earth orbits, and to obtain data about the response of each test film's reflective and tensile properties. Protocols to conduct optimized tests were considered and developed to a "prototype" level during this program. Fifteen polymer film specimens were arranged on a specially designed test fixture. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture featured controlled exposure areas, and protected the ends of the samples for later gripping in tensile tests. The fixture containing the films was installed in a clean vacuum chamber where protons, electrons and solar ultraviolet (UV) radiation could simultaneously irradiate the specimens. Near realtime UV rates were used, whereas proton and electron rates were accelerated appreciably to simulate 5 years in orbit during a two month test. Periodically, the spectral reflectance of each film was measured in situ. After the end of the irradiation, final reflectance measurements were made in situ, and solar absorptance values were derived for each specimen. These samples were then measured in air for thermal emittance and for tensile strength. Most specimens withstood the irradiation intact, but with reduced reflectance (increased solar absorptance). Thermal emittance changed slightly in several materials, as did their tensile strength and elongation at break. Conclusions are drawn about the performance of the films. Simulated testing to an expected 5 year dose of electrons and protons consistent with those expected at L2 and 0.98 AU orbits and 100 equivalent solar hours exposure.
Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.
Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu
2015-09-15
UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Acoustic-based proton range verification in heterogeneous tissue: simulation studies
NASA Astrophysics Data System (ADS)
Jones, Kevin C.; Nie, Wei; Chu, James C. H.; Turian, Julius V.; Kassaee, Alireza; Sehgal, Chandra M.; Avery, Stephen
2018-01-01
Acoustic-based proton range verification (protoacoustics) is a potential in vivo technique for determining the Bragg peak position. Previous measurements and simulations have been restricted to homogeneous water tanks. Here, a CT-based simulation method is proposed and applied to a liver and prostate case to model the effects of tissue heterogeneity on the protoacoustic amplitude and time-of-flight range verification accuracy. For the liver case, posterior irradiation with a single proton pencil beam was simulated for detectors placed on the skin. In the prostate case, a transrectal probe measured the protoacoustic pressure generated by irradiation with five separate anterior proton beams. After calculating the proton beam dose deposition, each CT voxel’s material properties were mapped based on Hounsfield Unit values, and thermoacoustically-generated acoustic wave propagation was simulated with the k-Wave MATLAB toolbox. By comparing the simulation results for the original liver CT to homogenized variants, the effects of heterogeneity were assessed. For the liver case, 1.4 cGy of dose at the Bragg peak generated 50 mPa of pressure (13 cm distal), a 2× lower amplitude than simulated in a homogeneous water tank. Protoacoustic triangulation of the Bragg peak based on multiple detector measurements resulted in 0.4 mm accuracy for a δ-function proton pulse irradiation of the liver. For the prostate case, higher amplitudes are simulated (92-1004 mPa) for closer detectors (<8 cm). For four of the prostate beams, the protoacoustic range triangulation was accurate to ⩽1.6 mm (δ-function proton pulse). Based on the results, application of protoacoustic range verification to heterogeneous tissue will result in decreased signal amplitudes relative to homogeneous water tank measurements, but accurate range verification is still expected to be possible.
NASA Astrophysics Data System (ADS)
Kalita, Parswajit; Ghosh, Santanu; Sattonnay, Gaël; Singh, Udai B.; Grover, Vinita; Shukla, Rakesh; Amirthapandian, S.; Meena, Ramcharan; Tyagi, A. K.; Avasthi, Devesh K.
2017-07-01
The search for materials that can withstand the harsh radiation environments of the nuclear industry has become an urgent challenge in the face of ever-increasing demands for nuclear energy. To this end, polycrystalline yttria stabilized zirconia (YSZ) pellets were irradiated with 80 MeV Ag6+ ions to investigate their radiation tolerance against fission fragments. To better simulate a nuclear reactor environment, the irradiations were carried out at the typical nuclear reactor temperature (850 °C). For comparison, irradiations were also performed at room temperature. Grazing incidence X-ray diffraction and Raman spectroscopy measurements reveal degradation in crystallinity for the room temperature irradiated samples. No bulk structural amorphization was however observed, whereas defect clusters were formed as indicated by transmission electron microscopy and supported by thermal spike simulation results. A significant reduction of the irradiation induced defects/damage, i.e., improvement in the radiation tolerance, was seen under irradiation at 850 °C. This is attributed to the fact that the rapid thermal quenching of the localized hot molten zones (arising from spike in the lattice temperature upon irradiation) is confined to 850 °C (i.e., attributed to the resistance inflicted on the rapid thermal quenching of the localized hot molten zones by the high temperature of the environment) thereby resulting in the reduction of the defects/damage produced. Our results present strong evidence for the applicability of YSZ as an inert matrix fuel in nuclear reactors, where competitive effects of radiation damage and dynamic thermal healing mechanisms may lead to a strong reduction in the damage production and thus sustain its physical integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varea, A.; Surinach, S.; Baro, M. D.
2011-05-01
Arrays of ferromagnetic circular dots (with diameters ranging from 225 to 420 nm) have been prepared at the surface of atomically ordered paramagnetic Fe{sub 60}Al{sub 40} (at. %) sheets by means of ion irradiation through prelithographed poly(methyl methacrylate) (PMMA) masks. The cumulative effects of consecutive ion irradiation (using Ar{sup +} ions at 1.2 x 10{sup 14} ions/cm{sup 2} with 10, 13, 16, 19 and 22 keV incident energies) on the properties of the patterned dots have been investigated. A progressive increase in the overall magneto-optical Kerr signal is observed for increasingly larger irradiation energies, an effect which is ascribed tomore » accumulation of atomic disorder. Conversely, the coercivity, H{sub C}, shows a maximum after irradiating at 16-19 keV and it decreases for larger irradiation energies. Such a decrease in H{sub C} is ascribed to the formation of vortex states during magnetization reversal, in agreement with results obtained from micromagnetic simulations. At the same time, the PMMA layer, with an initial thickness of 90 nm, becomes progressively thinned during the successive irradiation processes. After irradiation at 22 keV, the remaining PMMA layer is too thin to stop the incoming ions and, consequently, ferromagnetism starts to be generated underneath the nominally masked areas. These experimental results are in agreement with calculations using the Monte-Carlo simulation Stopping Range of Ions in Matter software, which show that for exceedingly thin PMMA layers Ar{sup +} ions can reach the Fe{sub 60}Al{sub 40} layer despite the presence of the mask.« less
Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.
Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A
2017-09-01
The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).
Crystal plasticity modeling of irradiation growth in Zircaloy-2
NASA Astrophysics Data System (ADS)
Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.
2017-08-01
A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.
USDA-ARS?s Scientific Manuscript database
This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy Laboratory at http://nsrdb.nrel.gov.« less
Water corrosion of F82H-modified in simulated irradiation conditions by heat treatment
NASA Astrophysics Data System (ADS)
Lapeña, J.; Blázquez, F.
2000-12-01
This paper presents results of testing carried out on F82H in water at 260°C with 2 ppm H 2 and the addition of 0.27 ppm Li in the form of LiOH. Uniform corrosion tests have been carried out on as-received material and on specimens from welded material [TIG and electron beam (EB)]. Stress corrosion cracking (SCC) tests have been carried out in as-received material and in material heat treated to simulate neutron irradiation hardening (1075°C/30' a.c. and 1040°C/30' + 625°C/1 h a.c.) with hardness values of 405 and 270 HV30, respectively. Results for uniform corrosion after 2573 h of testing have shown weight losses of about 60 mg/dm 2. Compact tension (CT) specimens from the as-received material tested under constant load have not experienced crack growth. However, in the simulated irradiation conditions for a stress intensity factor between 40 and 80 MPa√m, crack growth rates of about 7×10 -8 m/s have been measured.
NASA Astrophysics Data System (ADS)
Das, Pritam; Dhal, Satyanarayan; Ghosh, Susanta; Chatterjee, Sriparna; Rout, Chandra S.; Ramgir, Niranjan; Chatterjee, Shyamal
2017-12-01
Multi-walled carbon nanotubes (MWCNT) having diameter in the range of 5-30 nm were coated on silicon wafer using spray coating technique. The coated film was irradiated with 5 keV Na+ at a fluence of 1 × 1016 ions·cm-2. A large-scale welding is observed in the post-irradiated nanotube assembly under scanning electron microscope. We have studied dynamic wetting properties of the nanotubes. While the pristine MWCNT shows superhydrophobic nature, the irradiated MWCNT turns into hydrophilic. Our simulation based on iradina and experimental evidences show defect formation in MWCNT due to ion irradiation. We have invoked mechanism based on defect mediated adsorption of water, which plays major role for transition from superhydrophobic to hydrophilic.
NASA Astrophysics Data System (ADS)
Finten, G.; Garrido, J. I.; Agüero, M. V.; Jagus, R. J.
2017-01-01
This article aims to clarify and supply further information on food irradiation acceptance, with particular focus on Argentina and irradiated ready-to-eat (RTE) spinach leaves through an open web-online survey. Results showed that half of respondents did not know food irradiation, but the other half demonstrated uncertainty despite they declared they had knowledge about it; thus, confirming little awareness towards this technology. Respondents who believed in the misleading myth about food irradiation represented 39%, while roughly the same number was doubtful. On the other hand, after supplying informative material, respondents were positively influenced and an increase in acceptance by 90% was found. Finally, 42% of respondents were willing to consume/purchase irradiated RTE spinach leaves, and 35% remained doubtful. Respondents who did not exclude to accept irradiated spinach could be considered potential consumers if intensive campaigns about the benefits of food irradiation were carried out by reliable actors. If the Argentinean RTE market grew, following the world consumption trend towards these products, irradiated spinach leaves could be successfully introduced by making better efforts to inform consumers about food irradiation.
Investigation on the Maximum Power Point in Solar Panel Characteristics Due to Irradiance Changes
NASA Astrophysics Data System (ADS)
Abdullah, M. A.; Fauziah Toha, Siti; Ahmad, Salmiah
2017-03-01
One of the disadvantages of the photovoltaic module as compared to other renewable resources is the dynamic characteristics of solar irradiance due to inconsistency weather condition and surrounding temperature. Commonly, a photovoltaic power generation systems consist of an embedded control system to maximize the power generation due to the inconsistency in irradiance. In order to improve the simplicity of the power optimization control, this paper present the characteristic of Maximum Power Point with various irradiance levels for Maximum Power Point Tracking (MPPT). The technique requires a set of data from photovoltaic simulation model to be extrapolated as a standard relationship between irradiance and maximum power. The result shows that the relationship between irradiance and maximum power can be represented by a simplified quadratic equation. The first section in your paper
NASA Astrophysics Data System (ADS)
Zhiyong, Zhu; Jung, Peter; Klein, Horst
1993-07-01
A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.
NASA Astrophysics Data System (ADS)
Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.
2018-04-01
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.
Surface effects on the radiation response of nanoporous Au foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, E. G.; Caro, M.; Wang, Y. Q.
2012-11-05
We report on an experimental and simulation campaign aimed at exploring the radiation response of nanoporous Au (np-Au) foams. We find different defect accumulation behavior by varying radiation dose-rate in ion-irradiated np-Au foams. Stacking fault tetrahedra are formed when np-Au foams are irradiated at high dose-rate, but they do not seem to be formed in np-Au at low dose-rate irradiation. A model is proposed to explain the dose-rate dependent defect accumulation based on these results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com
Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.
Chemical state of fission products in irradiated uranium carbide fuel
NASA Astrophysics Data System (ADS)
Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko
1987-12-01
The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.
Simulation and optimization of faceted structure for illumination
NASA Astrophysics Data System (ADS)
Liu, Lihong; Engel, Thierry; Flury, Manuel
2016-04-01
The re-direction of incoherent light using a surface containing only facets with specific angular values is proposed. A new photometric approach is adopted since the size of each facet is large in comparison with the wavelength. A reflective configuration is employed to avoid the dispersion problems of materials. The irradiance distribution of the reflected beam is determined by the angular position of each facet. In order to obtain the specific irradiance distribution, the angular position of each facet is optimized using Zemax OpticStudio 15 software. A detector is placed in the direction which is perpendicular to the reflected beam. According to the incoherent irradiance distribution on the detector, a merit function needs to be defined to pilot the optimization process. The two dimensional angular position of each facet is defined as a variable which is optimized within a specified varying range. Because the merit function needs to be updated, a macro program is carried out to update this function within Zemax. In order to reduce the complexity of the manual operation, an automatic optimization approach is established. Zemax is in charge of performing the optimization task and sending back the irradiance data to Matlab for further analysis. Several simulation results are given for the verification of the optimization method. The simulation results are compared to those obtained with the LightTools software in order to verify our optimization method.
Jourdan, Eric; Emonet-Piccardi, Nathalie; Didier, Christine; Beani, Jean-Claude; Favier, Alain; Richard, Marie-Jeanne
2002-09-15
Zinc is an essential oligoelement for cell growth and cell survival and has been demonstrated to protect cells from oxidative stress induced by UVA or from genotoxic stress due to UVB. In a recent work we demonstrated that the antioxidant role of zinc could be related to its ability to induce metallothioneins (MTs). In this study we identified the mechanism of zinc protection against solar-simulated light (SSL) injury. Cultured human keratinocytes (HaCaT) were used to examine MTs expression and localization in response to solar-simulated radiation. We found translocation to the nucleus, with overexpression of MTs in irradiated cells, a novel observation. The genoprotective effect of zinc was dependent on time and protein synthesis. DNA damage was significantly decreased after 48 h of ZnCl(2) (100 microM) treatment and is inhibited by actinomycin D. ZnCl(2) treatment (100 microM) led to an intense induction, redistribution, and accumulation of MT in the nucleus of irradiated cells. MT expression correlated with the time period of ZnCl(2) treatment. CdCl(2), a potent MT inducer, did not show any genoprotection, although the MTs were expressed in the nucleus. Overall our findings demonstrate that MTs could be a good candidate for explaining the genoprotection mediated by zinc on irradiated cells.
Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang
2015-03-21
In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delincee, H.
1978-01-01
Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000.more » Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.« less
NASA Astrophysics Data System (ADS)
Berger, Thomas; Matthiä, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis A.; Reitz, Guenther
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are com-pounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself. Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrap-olation of skin dose to organ dose, which can lead to over-or under-estimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be pre-dicted to within about a +10In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The first focus of the pre-sented experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on the results of the passive dosimetry using the anthropomorphic phantoms represent the best tool to generate reliable to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations, based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study. The help and support of Adam Russek and Michael Sivertz of the NASA Space Radiation Laboratory (NSRL), Brookhaven, USA during the setup and the irradiation of the phantom are highly appreciated. The Voxel model describing the human phantom used for the GEANT4 simulations was kindly provided by Monika Puchalska (CHALMERS, Gothenburg, Sweden).
Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys
Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...
2016-03-05
We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.
NASA Technical Reports Server (NTRS)
Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.
2007-01-01
We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.
Hulshof, Maarten C C M; van Andel, George; Bel, Arjen; Gangel, Pieter; van de Kamer, Jeroen B
2007-07-01
A clip forceps was developed which can insert markers at the border of a bladder tumour through a rigid cystoscope. This technique proved to be simple and safe and is of help for delineation of the target volume during CT simulation for focal boost irradiation of bladder cancer.
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
NASA Astrophysics Data System (ADS)
Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve
2016-03-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.
Irradiation-driven Mass Transfer Cycles in Compact Binaries
NASA Astrophysics Data System (ADS)
Büning, A.; Ritter, H.
2005-08-01
We elaborate on the analytical model of Ritter, Zhang, & Kolb (2000) which describes the basic physics of irradiation-driven mass transfer cycles in semi-detached compact binary systems. In particular, we take into account a contribution to the thermal relaxation of the donor star which is unrelated to irradiation and which was neglected in previous studies. We present results of simulations of the evolution of compact binaries undergoing mass transfer cycles, in particular also of systems with a nuclear evolved donor star. These computations have been carried out with a stellar evolution code which computes mass transfer implicitly and models irradiation of the donor star in a point source approximation, thereby allowing for much more realistic simulations than were hitherto possible. We find that low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs) with orbital periods ⪉ 6hr can undergo mass transfer cycles only for low angular momentum loss rates. CVs containing a giant donor or one near the terminal age main sequence are more stable than previously thought, but can possibly also undergo mass transfer cycles.
MAGIC polymer gel for dosimetric verification in boron neutron capture therapy
Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli
2007-01-01
Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463
A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions.
Mäckel, V; Meissl, W; Ikeda, T; Clever, M; Meissl, E; Kobayashi, T; Kojima, T M; Imamoto, N; Ogiwara, K; Yamazaki, Y
2014-01-01
We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.
NASA Astrophysics Data System (ADS)
Shibata, A.; Nakano, J.; Ohmi, M.; Kawamata, K.; Nakagawa, T.; Tsukada, T.
2012-03-01
To simulate irradiation assisted stress corrosion cracking (IASCC) behavior by in-pile experiments, it is necessary to irradiate specimens up to a neutron fluence that is higher than the IASCC threshold fluence. Pre-irradiated specimens must be relocated from pre-irradiation capsules to in-pile capsules. Hence, a remote welding machine has been developed. And the integrity of capsule housing for a long term irradiation was evaluated by tensile tests in air and slow strain rate tests in water. Two type specimens were prepared. Specimens were obtained from the outer tubes of capsule irradiated to 1.0-3.9 × 1026 n/m2 (E > 1 MeV). And specimens were irradiated in a leaky capsule to 0.03-1.0 × 1026 n/m2. Elongation more than 15% in tensile test at 423 K was confirmed and no IGSCC fraction was shown in SSRT at 423 K which was estimated as temperature at the outer tubes of the capsule under irradiation.
Predicting neutron damage using TEM with in situ ion irradiation and computer modeling
NASA Astrophysics Data System (ADS)
Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.
2018-01-01
We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.
NASA Astrophysics Data System (ADS)
Zhakhovsky, Vasily; Demaske, Brian; Inogamov, Nail; Oleynik, Ivan
2010-03-01
Femtosecond laser irradiation of metals is an effective technique to create a high-pressure frontal layer of 100-200 nm thickness. The associated ablation and spallation phenomena can be studied in the laser pump-probe experiments. We present results of a large-scale MD simulation of ablation and spallation dynamics developing in 1,2,3μm thick Al and Au foils irradiated by a femtosecond laser pulse. Atomic-scale mechanisms of laser energy deposition, transition from pressure wave to shock, reflection of the shock from the rear-side of the foil, and the nucleation of cracks in the reflected tensile wave, having a very high strain rate, were all studied. To achieve a realistic description of the complex phenomena induced by strong compression and rarefaction waves, we developed new embedded atom potentials for Al and Au based on cold pressure curves. MD simulations revealed the complex interplay between spallation and ablation processes: dynamics of spallation depends on the pressure profile formed in the ablated zone at the early stage of laser energy absorption. It is shown that the essential information such as material properties at high strain rate and spall strength can be extracted from the simulated rear-side surface velocity as a function of time.
Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Ioritani, Naomasa
2016-01-01
Background and Aims: Laser vaporization of the prostate is expected as a less invasive treatment for benign prostatic hyperplasia (BPH), via the photothermal effect. In order to develop safer and more effective laser vaporization of the prostate, it is essential to set optimal irradiation parameters based on quantitative evaluation of temperature distribution and thermally denatured depth in prostate tissue. Method: A simulation model was therefore devised with light propagation and heat transfer calculation, and the vaporized and thermally denatured depths were estimated by the simulation model. Results: The results of the simulation were compared with those of an ex vivo experiment and clinical trial. Based on the accumulated data, the vaporized depth strongly depended on the distance between the optical fiber and the prostate tissue, and it was suggested that contact laser irradiation could vaporize the prostate tissue most effectively. Additionally, it was suggested by analyzing thermally denatured depth comprehensively that laser irradiation at the distance of 3 mm between the optical fiber and the prostate tissue was useful for hemostasis. Conclusions: This study enabled quantitative and reproducible analysis of laser vaporization for BPH and will play a role in clarification of the safety and efficacy of this treatment. PMID:28765672
Diffusion-controlled reactions modeling in Geant4-DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamitros, M., E-mail: matkara@gmail.com; CNRS, INCIA, UMR 5287, F-33400 Talence; Luan, S.
2014-10-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing allmore » the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The performance advantage is presented in terms of complexity, and the accuracy of the new algorithm is demonstrated by simulating radiation chemistry in the context of the Geant4-DNA project. Application The time-dependent radiolytic yields of the main chemical species formed after irradiation are computed for incident protons at different energies (from 50 MeV to 500 keV). Both the time-evolution and energy dependency of the yields are discussed. The evolution, at one microsecond, of the yields of hydroxyls and solvated electrons with respect to the linear energy transfer is compared to theoretical and experimental data. According to our results, at high linear energy transfer, modeling radiation chemistry in the trading compartment representation might be adopted.« less
NASA Astrophysics Data System (ADS)
Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko
2015-10-01
Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.
Dorsey, Emerson L.; Berendt, Richard F.; Neff, Everett L.
1970-01-01
Irradiation of aerosols of either Escherichia coli or Serratia marcescens with simulated solar (xenon) radiation caused a significant decrease in viability. When sodium fluorescein was employed to determine the physical loss of organisms from the aerosol, an additional adverse effect upon survival was noted. The decay curves indicated that at least two mechanisms of inactivation were operative, one due to aerosolization, the other to irradiation. After collection from aerosols, both species of microorganisms grew better on blood agar base than on Casitone agar, but this finding did not appear to be related to the effect of irradiation. PMID:4922085
Schenk-Meuser, K; Pawlowsky, K; Kiefer, J
1992-07-15
The effectiveness of polychromatic light irradiation was investigated for haploid yeast cells. Inactivation and mutation induction were measured in both a RAD-wildtype strain and an excision-repair defective strain. The behaviour of vegetative "wet" cells was compared to that of dehydrated cells. The aim of the study was to assess the interaction of UVC with other wavelengths in cells of different states of humidity. The irradiation procedure was therefore carried out using a solar simulator either with full spectrum or with a UVC-blocking filter (modified sunlight) added. The results were analysed on the basis of separately determined action spectra. The summation of the efficiency of individual wavelengths was compared to the values obtained from polychromatic irradiation. It is shown that the effects caused by the whole-spectrum irradiation in wet cells can be predicted sufficiently from the calculation, while dried wildtype cells exhibit higher mutation rates. Thus it can be assumed that drying-specific damage leads to lethal and mutagenic lesions which are processed in different ways, causing a synergistic behaviour in mutation induction. Irradiation of vegetative cells with modified sunlight (UVC-) results in less inactivation and lower mutation rates than were calculated. From these results it can be concluded that this antagonistic behaviour is caused by the interaction of near-UV photoproducts.
Optical nanoscopy of high T c cuprate nanoconstriction devices patterned by helium ion beams
Gozar, Adrian; Litombe, N. E.; Hoffman, Jennifer E.; ...
2017-02-06
Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency,more » we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ~500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Lastly, our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.« less
Anisotropic thermal transport property of defect-free GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Wenjing; Zhou, Zhongyuan, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn; Wei, Zhiyong, E-mail: zyzhou@seu.edu.cn, E-mail: zywei@seu.edu.cn
2016-06-15
Non-equilibrium molecular dynamics (MD) simulation is performed to calculate the thermal conductivity of defect-free GaN along three high-symmetry directions. It is found that the thermal conductivity along [001] direction is about 25% higher than that along [100] or [120] direction. The calculated phonon dispersion relation and iso-energy surface from lattice dynamics show that the difference of the sound speeds among the three high-symmetry directions is quite small for the same mode. However, the variation of phonon irradiation with direction is qualitatively consistent with that of the calculated thermal conductivity. Our results indicate that the anisotropic thermal conductivity may partly resultmore » from the phonons in the low-symmetry region of the first Brillouin zone due to phonon focus effects, even though the elastic properties along the three high-symmetry directions are nearly isotropic. Thus, the phonon irradiation is able to better describe the property of thermal conductivity as compared to the commonly used phonon dispersion relation. The present investigations uncover the physical origin of the anisotropic thermal conductivity in defect-free GaN, which would provide an important guide for optimizing the thermal management of GaN-based device.« less
Solid State Pathways towards Molecular Complexity in Space
NASA Astrophysics Data System (ADS)
Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng
2011-12-01
It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian-Xun; College of Electronic Engineering, Wuhan 430019; Ma, Yan-Yun, E-mail: yanyunma@126.com
By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positronmore » beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.« less
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
FY 2016 Status Report on the Modeling of the M8 Calibration Series using MAMMOTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Benjamin Allen; Ortensi, Javier; DeHart, Mark David
2016-09-01
This report provides a summary of the progress made towards validating the multi-physics reactor analysis application MAMMOTH using data from measurements performed at the Transient Reactor Test facility, TREAT. The work completed consists of a series of comparisons of TREAT element types (standard and control rod assemblies) in small geometries as well as slotted mini-cores to reference Monte Carlo simulations to ascertain the accuracy of cross section preparation techniques. After the successful completion of these smaller problems, a full core model of the half slotted core used in the M8 Calibration series was assembled. Full core MAMMOTH simulations were comparedmore » to Serpent reference calculations to assess the cross section preparation process for this larger configuration. As part of the validation process the M8 Calibration series included a steady state wire irradiation experiment and coupling factors for the experiment region. The shape of the power distribution obtained from the MAMMOTH simulation shows excellent agreement with the experiment. Larger differences were encountered in the calculation of the coupling factors, but there is also great uncertainty on how the experimental values were obtained. Future work will focus on resolving some of these differences.« less
Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films
NASA Astrophysics Data System (ADS)
Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.
2015-08-01
Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.
Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite
NASA Astrophysics Data System (ADS)
Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott
The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.
Computer simulation of radiation damage in gallium arsenide
NASA Technical Reports Server (NTRS)
Stith, John J.; Davenport, James C.; Copeland, Randolph L.
1989-01-01
A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, T. H. Y., E-mail: thi-hai-yen.vu@polytechnique.edu; Ramjauny, Y.; Rizza, G.
2016-01-21
We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4–100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 10{sup 16 }cm{sup −2}. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45–100 nm) and exponential for small NPs (4–25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effectsmore » and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.« less
Analytical dose modeling for preclinical proton irradiation of millimetric targets.
Vanstalle, Marie; Constanzo, Julie; Karakaya, Yusuf; Finck, Christian; Rousseau, Marc; Brasse, David
2018-01-01
Due to the considerable development of proton radiotherapy, several proton platforms have emerged to irradiate small animals in order to study the biological effectiveness of proton radiation. A dedicated analytical treatment planning tool was developed in this study to accurately calculate the delivered dose given the specific constraints imposed by the small dimensions of the irradiated areas. The treatment planning system (TPS) developed in this study is based on an analytical formulation of the Bragg peak and uses experimental range values of protons. The method was validated after comparison with experimental data from the literature and then compared to Monte Carlo simulations conducted using Geant4. Three examples of treatment planning, performed with phantoms made of water targets and bone-slab insert, were generated with the analytical formulation and Geant4. Each treatment planning was evaluated using dose-volume histograms and gamma index maps. We demonstrate the value of the analytical function for mouse irradiation, which requires a targeting accuracy of 0.1 mm. Using the appropriate database, the analytical modeling limits the errors caused by misestimating the stopping power. For example, 99% of a 1-mm tumor irradiated with a 24-MeV beam receives the prescribed dose. The analytical dose deviations from the prescribed dose remain within the dose tolerances stated by report 62 of the International Commission on Radiation Units and Measurements for all tested configurations. In addition, the gamma index maps show that the highly constrained targeting accuracy of 0.1 mm for mouse irradiation leads to a significant disagreement between Geant4 and the reference. This simulated treatment planning is nevertheless compatible with a targeting accuracy exceeding 0.2 mm, corresponding to rat and rabbit irradiations. Good dose accuracy for millimetric tumors is achieved with the analytical calculation used in this work. These volume sizes are typical in mouse models for radiation studies. Our results demonstrate that the choice of analytical rather than simulated treatment planning depends on the animal model under consideration. © 2017 American Association of Physicists in Medicine.
Advanced Numerical Model for Irradiated Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorla, Alain B.
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be appliedmore » to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some are unknown, a sensitivity analysis must be carried out to provide lower and upper bounds of the material behaviour. Finally, the model can be used as a basis to formulate a macroscopic material model for concrete subject to irradiation, which later can be used in structural analyses to estimate the structural impact of irradiation on nuclear power plants.« less
BISON Fuel Performance Analysis of FeCrAl cladding with updated properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.
2016-08-30
In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and operating conditions used are based off the Peach Bottom BWR and design consideration was given to minimize the neutronic penalty of the FeCrAl cladding by changing fuel enrichment and cladding thickness. As this study progressed, systematic parametric analysis of the fuel and cladding creep responses were also performed.« less
NASA Astrophysics Data System (ADS)
Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong
2017-09-01
Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (Tg) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.
SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, J; The University of Sydney, Sydney, NSW; The University of Newcastle, Newcastle, NSW
Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple,more » open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.« less
NASA Astrophysics Data System (ADS)
Stock, Karl; Graser, Rainer; Udart, Martin; Kienle, Alwin; Hibst, Raimund
2011-03-01
Diode lasers are used in dentistry mainly for oral surgery and disinfection of root canals in endodontic treatment. The purpose of this study was to investigate and to improve the laser induced bacteria inactivation in endodontic treatment. An essential prerequisite of the optimization of the irradiation process and device is the knowledge about the determinative factors of bacteria killing: light intensity? light dosis? temperature? In order to find out whether high power NIR laser bacterial killing is caused by a photochemical or a photothermal process we heated bacteria suspensions of E. coli K12 by a water bath and by a diode laser (940 nm) with the same temporal temperature course. Furthermore, bacteria suspensions were irradiated while the temperature was fixed by ice water. Killing of bacteria was measured via fluorescence labeling. In order to optimize the irradiation of the root canal, we designed special fiber tips with radial light emission characteristic by optical ray tracing simulations. Also, we calculated the resulting light distribution in dentin by voxelbased Monte Carlo simulations. Furthermore, we irradiated root canals of extracted human teeth using different fiber tip geometries and measured the resulting light and heat distribution by CCD-camera and thermography. Comparison of killing rates between laser and water based heating shows no significant differences, and irradiation of ice cooled suspensions has no substantial killing effect. Thus, the most important parameter for bacterial killing is the maximum temperature. Irradiation of root canals using fiber tips with radial light emission results in a more defined irradiated area with minor irradiation of the apex and higher intensity and therefore higher temperature increase on root canal surface. In conclusion, our experiments show that at least for E. coli bacteria inactivation by NIR laser irradiation is solely based on a thermal process and that heat distribution in root canal can be significantly improved by specially designed fiber tips.
Numerical investigation of multichannel laser beam phase locking in turbulent atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V A; Volkov, M V; Garanin, S G
2015-12-31
The efficiency of coherent multichannel beam combining under focusing through a turbulent medium on a target in the cases of phase conjugation and target irradiation in the feedback loop is investigated numerically in various approximations. The conditions of efficient focusing of multichannel radiation on the target are found. It is shown that the coherent beam combining with target irradiation in the feedback loop, which does not require a reference beam and wavefront measurements, is as good as the phase conjugation approach in the efficiency of focusing. It is found that the main effect of focusing is provided by properly chosenmore » phase shifts in the channels, whereas taking into account local wavefront tip tilts weakly affects the result. (control of laser radiation parameters)« less
Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review
Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang
2016-01-01
Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902
Comparison of High-Frequency Solar Irradiance: Ground Measured vs. Satellite-Derived
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew; Weekley, Andrew
2016-11-21
High-frequency solar variability is an important to grid integration studies, but ground measurements are scarce. The high resolution irradiance algorithm (HRIA) has the ability to produce 4-sceond resolution global horizontal irradiance (GHI) samples, at locations across North America. However, the HRIA has not been extensively validated. In this work, we evaluate the HRIA against a database of 10 high-frequency ground-based measurements of irradiance. The evaluation focuses on variability-based metrics. This results in a greater understanding of the errors in the HRIA as well as suggestions for improvement to the HRIA.
SU-F-T-672: A Novel Kernel-Based Dose Engine for KeV Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, M; Fast, M F; Nill, S
2016-06-15
Purpose: Mimicking state-of-the-art patient radiotherapy with high precision irradiators for small animals allows advanced dose-effect studies and radiobiological investigations. One example is the implementation of pre-clinical IMRT-like irradiations, which requires the development of inverse planning for keV photon beams. As a first step, we present a novel kernel-based dose calculation engine for keV x-rays with explicit consideration of energy and material dependencies. Methods: We follow a superposition-convolution approach adapted to keV x-rays, based on previously published work on micro-beam therapy. In small animal radiotherapy, we assume local energy deposition at the photon interaction point, since the electron ranges in tissuemore » are of the same order of magnitude as the voxel size. This allows us to use photon-only kernel sets generated by MC simulations, which are pre-calculated for six energy windows and ten base materials. We validate our stand-alone dose engine against Geant4 MC simulations for various beam configurations in water, slab phantoms with bone and lung inserts, and on a mouse CT with (0.275mm)3 voxels. Results: We observe good agreement for all cases. For field sizes of 1mm{sup 2} to 1cm{sup 2} in water, the depth dose curves agree within 1% (mean), with the largest deviations in the first voxel (4%) and at depths>5cm (<2.5%). The out-of-field doses at 1cm depth agree within 8% (mean) for all but the smallest field size. In slab geometries, the mean agreement was within 3%, with maximum deviations of 8% at water-bone interfaces. The γ-index (1mm/1%) passing rate for a single-field mouse irradiation is 71%. Conclusion: The presented dose engine yields an accurate representation of keV-photon doses suitable for inverse treatment planning for IMRT. It has the potential to become a significantly faster yet sufficiently accurate alternative to full MC simulations. Further investigations will focus on energy sampling as well as calculation times. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by Cancer Research UK under Programme C33589/A19908.« less
Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation
NASA Astrophysics Data System (ADS)
Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.
2017-11-01
This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.
MD simulation of plastic deformation nucleation in stressed crystallites under irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korchuganov, A. V., E-mail: avkor@ispms.tsc.ru; Zolnikov, K. P., E-mail: kost@ispms.tsc.ru; Kryzhevich, D. S., E-mail: kryzhev@ispms.tsc.ru
2016-12-15
The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformationsmore » in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).« less
Cai, Yaomin; Guo, Zhixiong
2018-04-20
The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.
NASA Astrophysics Data System (ADS)
Champlain, A.; Matéo-Vélez, J.-C.; Roussel, J.-F.; Hess, S.; Sarrailh, P.; Murat, G.; Chardon, J.-P.; Gajan, A.
2016-01-01
Recent high-altitude observations, made by the Lunar Dust Experiment (LDEX) experiment on board LADEE orbiting the Moon, indicate that high-altitude (>10 km) dust particle densities are well correlated with interplanetary dust impacts. They show no evidence of high dust density suggested by Apollo 15 and 17 observations and possibly explained by electrostatic forces imposed by the plasma environment and photon irradiation. This paper deals with near-surface conditions below the domain of observation of LDEX where electrostatic forces could clearly be at play. The upper and lower limits of the cohesive force between dusts are obtained by comparing experiments and numerical simulations of dust charging under ultraviolet irradiation in the presence of an electric field and mechanical vibrations. It is suggested that dust ejection by electrostatic forces is made possible by microscopic-scale amplifications due to soil irregularities. At low altitude, this process may be complementary to interplanetary dust impacts.
NASA Astrophysics Data System (ADS)
Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing
2018-02-01
The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.
A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-03-20
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against themore » computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.« less
Anazawa, Takashi; Yokoi, Takahide; Uchiho, Yuichi
2015-09-01
A simple and highly sensitive technique for laser-induced fluorescence detection on multiple channels in a plastic microchip was developed, and its effectiveness was demonstrated by laser-beam ray-trace simulations and experiments. In the microchip, with refractive index nC, A channels and B channels are arrayed alternately and respectively filled with materials with refractive indexes nA for electrophoresis analysis and nB for laser-beam control. It was shown that a laser beam entering from the side of the channel array traveled straight and irradiated all A channels simultaneously and effectively because the refractive actions by the A and B channels were counterbalanced according to the condition nA < nC < nB. This technique is thus called "side-entry laser-beam zigzag irradiation". As a demonstration of the technique, when nC = 1.53, nA = 1.41, nB = 1.66, and the cross sections of both eight A channels and seven B channels were the same isosceles trapezoids with 97° base angle, laser-beam irradiation efficiency on the eight A channels by the simulations was 89% on average and coefficient of variation was 4.4%. These results are far superior to those achieved by other conventional methods such as laser-beam expansion and scanning. Furthermore, fluorescence intensity on the eight A channels determined by the experiments agreed well with that determined by the simulations. Therefore, highly sensitive and uniform fluorescence detection on eight A channels was achieved. It is also possible to fabricate the microchips at low cost by plastic-injection molding and to make a simple and compact detection system, thereby promoting actual use of the proposed side-entry laser-beam zigzag irradiation in various fields.
Kai, Takeshi; Higuchi, Mariko; Fujii, Kentaro; Watanabe, Ritsuko; Yokoya, Akinari
2012-12-01
To develop a method for simulating the dynamics of the photoelectrons and Auger electrons ejected from DNA molecules irradiated with pulsed monochromatic X-rays. A 30-base-pair (bp) DNA molecule was used as the target model, and the X-rays were assumed to have a Gaussian-shaped time distribution. Photoionization and Auger decay were considered as the atomic processes. The atoms from which the photoelectrons or Auger electrons were emitted were specified in the DNA molecule (or DNA ion) using the Monte Carlo method, and the trajectory of each electron in the electric field formed around the positively charged DNA molecule was calculated with a Newtonian equation. The kinetics of the electrons produced by irradiation with X-rays at an intensity ranging from 1 × 10(12) to 1 × 10(16) photons/mm(2) and energies of 380 eV (below the carbon K-edge), 435 eV (above the nitrogen K-edge), and 560 eV (above the oxygen K-edge) were evaluated. It was found that at an X-ray intensity of 1 × 10(14) photons/mm(2) or less, all the produced electrons escaped from the target. However, above an X-ray intensity of 1 × 10(15) photons/mm(2) and an energy of 560 eV, some photoelectrons that were ejected from the oxygen atoms were trapped near the target DNA. A simulation method for studying the trajectories of electrons ejected from a 30-bp DNA molecule irradiated with pulsed monochromatic X-rays has been developed. The present results show that electron dynamics are strongly dependent on the charged density induced in DNA by pulsed X-ray irradiation.
Fluence inhomogeneities due to a ripple filter induced Moiré effect.
Ringbæk, Toke Printz; Brons, Stephan; Naumann, Jakob; Ackermann, Benjamin; Horn, Julian; Latzel, Harald; Scheloske, Stefan; Galonska, Michael; Bassler, Niels; Zink, Klemens; Weber, Uli
2015-02-07
At particle therapy facilities with pencil beam scanning, the implementation of a ripple filter (RiFi) broadens the Bragg peak, so fewer energy steps from the accelerator are required for a homogeneous dose coverage of the planning target volume (PTV). However, sharply focusing the scanned pencil beams at the RiFi plane by ion optical settings can lead to a Moiré effect, causing fluence inhomogeneities at the isocenter. This has been experimentally proven at the Heidelberg Ionenstrahl-Therapiezentrum (HIT), Universitätsklinikum Heidelberg, Germany. 150 MeV u(-1) carbon-12 ions are used for irradiation with a 3 mm thick RiFi. The beam is focused in front of and as close to the RiFi plane as possible. The pencil beam width is estimated to be 0.78 mm at a 93 mm distance from the RiFi. Radiographic films are used to obtain the fluence profile 30 mm in front of the isocenter, 930 mm from the RiFi. The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi-induced inhomogeneities in the fluence distribution at the isocenter for a similar setup, pencil beam widths at the RiFi plane ranging from σχ(RiFi to 1.2 mm and for scanning step sizes ranging from 1.5 to 3.7 mm. The beam application and monitoring system (BAMS) used at HIT is modelled and simulated. When the width of the pencil beams at the RiFi plane is much smaller than the scanning step size, the resulting inhomogeneous fluence distribution at the RiFi plane interfers with the inhomogeneous RiFi mass distribution and fluence inhomogeneity can be observed at the isocenter as large as an 8% deviation from the mean fluence. The inverse of the fluence ripple period at the isocenter is found to be the difference between the inverse of the RiFi period and the inverse of the scanning step size. We have been able to use MC simulations to reproduce the spacing of the ripple stripes seen in films irradiated at HIT. Our findings clearly indicate that pencil beams sharply focused near the RiFi plane result in fluence inhomogeneity at the isocenter. In the normal clinical application, such a setting should generally be avoided.
Post-irradiation examinations of THERMHET composite fuels for transmutation
NASA Astrophysics Data System (ADS)
Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.
2003-07-01
The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.
Irradiance measurement errors due to the assumption of a Lambertian reference panel
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Kirchner, J. A.
1982-01-01
A technique is presented for determining the error in diurnal irradiance measurements that results from the non-Lambertian behavior of a reference panel under various irradiance conditions. Spectral biconical reflectance factors of a spray-painted barium sulfate panel, along with simulated sky radiance data for clear and hazy skies at six solar zenith angles, were used to calculate the estimated panel irradiances and true irradiances for a nadir-looking sensor in two wavelength bands. The inherent errors in total spectral irradiance (0.68 microns) for a clear sky were 0.60, 6.0, 13.0, and 27.0% for solar zenith angles of 0, 45, 60, and 75 deg, respectively. The technique can be used to characterize the error of a specific panel used in field measurements, and thus eliminate any ambiguity of the effects of the type, preparation, and aging of the paint.
Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst
Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.
2014-11-10
In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less
Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems.
Pinna, Maria Vittoria; Pusino, Alba
2012-02-01
The photodegradation of two quinolinecarboxylic herbicides, 7-chloro-3-methylquinoline-8-carboxylic acid (QMe) and 3,7-dichloroquinoline-8-carboxylic acid (QCl), was studied in aqueous solution at different irradiation wavelengths. The effect of sunlight irradiation was investigated also in the presence of titanium dioxide (TiO(2)). UV irradiation degraded rapidly QMe affording 7-chloro-3-methylquinoline (MeQ) through a decarboxylation reaction. The reaction rate was lower in the presence of dissolved organic carbon (DOC) because of the adsorption of the herbicide on the organic components. Instead, QCl was stable under both UV light and sunlight irradiation. The irradiation of QMe or QCl solutions with simulated sunlight in the presence of TiO(2) produced the complete mineralization of the two herbicides. Copyright © 2011 Elsevier Ltd. All rights reserved.
Energy determination in industrial X-ray processing facilities
NASA Astrophysics Data System (ADS)
Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.
2005-12-01
In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.
IMRT treatment of anal cancer with a scrotal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Rodney C., E-mail: Rodney.Hood@duke.edu; Wu, Q. Jackie; McMahon, Ryan
The risk of sterility in males undergoing radiotherapy in the pelvic region indicates the use of a shielding device, which offers protection to the testes for patients wishing to maintain fertility. The use of such devices in the realm of intensity-modulated radiotherapy (IMRT) in the pelvic region can pose many obstacles during simulation, treatment planning, and delivery of radiotherapy. This work focuses on the development and execution of an IMRT plan for the treatment of anal cancer using a scrotal shielding device on a clinical patient. An IMRT plan was developed using Eclipse treatment planning system (Varian Medical Systems, Palomore » Alto, CA), using a wide array of gantry angles as well as fixed jaw and fluence editing techniques. When possible, the entire target volume was encompassed by the treatment field. When the beam was incident on the scrotal shield, the jaw was fixed to avoid the device and the collimator rotation optimized to irradiate as much of the target as possible. This technique maximizes genital sparing and allows minimal irradiation of the gonads. When this fixed-jaw technique was found to compromise adequate coverage of the target, manual fluence editing techniques were used to avoid the shielding device. Special procedures for simulation, imaging, and treatment verification were also developed. In vivo dosimetry was used to verify and ensure acceptable dose to the gonads. The combination of these techniques resulted in a highly conformal plan that spares organs and risk and avoids the genitals as well as entrance of primary radiation onto the shielding device.« less
Phosphorus out-diffusion in laser molten silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köhler, J. R.; Eisele, S. J.
2015-04-14
Laser doping via liquid phase diffusion enables the formation of defect free pn junctions and a tailoring of diffusion profiles by varying the laser pulse energy density and the overlap of laser pulses. We irradiate phosphorus diffused 100 oriented p-type float zone silicon wafers with a 5 μm wide line focused 6.5 ns pulsed frequency doubled Nd:YVO{sub 4} laser beam, using a pulse to pulse overlap of 40%. By varying the number of laser scans N{sub s} = 1, 2, 5, 10, 20, 40 at constant pulse energy density H = 1.3 J/cm{sup 2} and H = 0.79 J/cm{sup 2} we examine the out-diffusion of phosphorus atoms performing secondary ionmore » mass spectroscopy concentration measurements. Phosphorus doping profiles are calculated by using a numerical simulation tool. The tool models laser induced melting and re-solidification of silicon as well as the out-diffusion of phosphorus atoms in liquid silicon during laser irradiation. We investigate the observed out-diffusion process by comparing simulations with experimental concentration measurements. The result is a pulse energy density independent phosphorus out-diffusion velocity v{sub out} = 9 ± 1 cm/s in liquid silicon, a partition coefficient of phosphorus 1 < k{sub p} < 1.1 and a diffusion coefficient D = 1.4(±0.2)cm{sup 2}/s × 10{sup −3 }× exp[−183 meV/(k{sub B}T)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darafsheh, A; Kassaee, A; Finlay, J
Purpose: The nature of the background visible light observed during fiber optic dosimetry of proton beams, whether it is due to Cherenkov radiation or not, has been debated in the literature recently. In this work, experimentally and by means of Monte Carlo simulations, we shed light on this problem and investigated the nature of the background visible light observed in fiber optics irradiated with proton beams. Methods: A bare silica fiber optics was embedded in tissue-mimicking phantoms and irradiated with clinical proton beams with energies of 100–225 MeV at Roberts Proton Therapy Center. Luminescence spectroscopy was performed by a CCD-coupledmore » spectrograph to analyze in detail the emission spectrum of the fiber tip across the visible range of 400–700 nm. Monte Carlo simulation was performed by using FLUKA Monte Carlo code to simulate Cherenkov light and ionizing radiation dose deposition in the fiber. Results: The experimental spectra of the irradiated silica fiber shows two distinct peaks at 450 and 650 nm, whose spectral shape is different from that of Cherenkov radiation. We believe that the nature of these peaks are connected to the point defects of silica including oxygen-deficiency center (ODC) and non-bridging oxygen hole center (NBOHC). Monte Carlo simulations confirmed the experimental observations that Cherenkov radiation cannot be solely responsible for such a signal. Conclusion: We showed that Cherenkov radiation is not the dominant visible signal observed in bare fiber optics irradiated with proton beams. We observed two distinct peaks at 450 and 650 nm whose nature is connected with the point defects of silica fiber including oxygen-deficiency center and non-bridging oxygen hole center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaltun, Hakan; Medvedev, Pavel G
2015-06-01
Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance havemore » been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.« less
Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N
2018-06-01
The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50 > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50 < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Kerney, Krystal R; Schuerger, Andrew C
2011-06-01
Endospores of Bacillus subtilis HA101 were applied to a simulated Mars Exploration Rover (MER) wheel and exposed to Mars-normal UV irradiation for 1, 3, or 6 h. The experiment was designed to simulate a contaminated rover wheel sitting on its landing platform before rolling off onto the martian terrain, as was encountered during the Spirit and Opportunity missions. When exposed to 1 h of Mars UV, a reduction of 81% of viable endospores was observed compared to the non-UV irradiated controls. When exposed for 3 or 6 h, reductions of 94.6% and 96.6%, respectively, were observed compared to controls. In a second experiment, the contaminated rover wheel was rolled over a bed of heat-sterilized Mars analog soil; then the analog soil was exposed to full martian conditions of UV irradiation, low pressure (6.9 mbar), low temperature (-10°C), and an anaerobic CO(2) martian atmosphere for 24 h to determine whether endospores of B. subtilis on the contaminated rover wheel could be transferred to the surface of the analog soil and survive martian conditions. The experiment simulated conditions in which a rover wheel might come into contact with martian regolith immediately after landing, such as is designed for the upcoming Mars Science Laboratory (MSL) rover. The contaminated rover wheel transferred viable endospores of B. subtilis to the Mars analog soil, as demonstrated by 31.7% of samples showing positive growth. However, when contaminated soil samples were exposed to full martian conditions for 24 h, only 16.7% of samples exhibited positive growth-a 50% reduction in the number of soil samples positive for the transferred viable endospores.
Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation
NASA Astrophysics Data System (ADS)
Tomizawa, H.; Suzuki, K.; Yamaguchi, T.; Akita, S.; Ishibashi, K.
2017-04-01
We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.
Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere
NASA Astrophysics Data System (ADS)
Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.
Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and
The Geometrical Optics PSF with Third Order Aberrations
NASA Astrophysics Data System (ADS)
Díaz-Uribe, Rufino; Campos-García, Manuel
2008-04-01
In this paper the calculation of the GPSF from the Geometrical Optics Irradiance Law (GOIL) is recalled, including some details not found in other references. Also it is explored an alternative solution based on the Irradiance Transport Equation (ITE). Some simulations of images of an extended object produced by an image forming instrument affected by spherical aberration are shown.
NASA Astrophysics Data System (ADS)
Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun
2018-04-01
As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.
Brodin, N. Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A.
2015-01-01
Shielded 137Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A 137Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ±5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed, that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed, using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ±5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose. PMID:26710162
Structural responses of metallic glasses under neutron irradiation.
Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y
2017-12-01
Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.
Near-Infrared Irradiation Increases Length of Axial Pattern Flap Survival in Rats.
Yasunaga, Yoshichika; Matsuo, Kiyoshi; Tanaka, Yohei; Yuzuriha, Shunsuke
2017-01-01
Objective: We previously reported that near-infrared irradiation nonthermally induces long-lasting vasodilation of the subdermal plexus by causing apoptosis of vascular smooth muscle cells. To clarify the possible application of near-infrared irradiation to prevent skin flap necrosis, we evaluated the length of axial pattern flap survival in rats by near-infrared irradiation. Methods: A bilaterally symmetric island skin flap was elevated under the panniculus carnosus on the rat dorsum. Half of the flap was subjected to near-infrared irradiation just before flap elevation with a device that simulates solar radiation, which has a specialized contact cooling apparatus to avoid thermal effects. The length of flap survival of the near-infrared irradiated side was measured 7 days after flap elevation and compared with the nonirradiated side. Results: The irradiated side showed elongation of flap survival compared with the nonirradiated side (73.3 ± 11.7 mm vs 67.3 ± 14.9 mm, respectively, P = .03). Conclusions: Near-infrared irradiation increases the survival length of axial pattern flaps in rats.
Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my
2014-07-01
The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less
Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments
NASA Astrophysics Data System (ADS)
Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.
2017-03-01
The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.
Luminance uniformity compensation for OLED panels based on FPGA
NASA Astrophysics Data System (ADS)
Ou, Peng; Yang, Gang; Jiang, Quan; Yu, Jun-Sheng; Wu, Qi-Peng; Shang, Fu-Hai; Yin, Wei; Wang, Jun; Zhong, Jian; Luo, Kai-Jun
2009-09-01
Aiming at the problem of luminance uniformity for organic lighting-emitting diode (OLED) panels, a new brightness calculating method based on bilinear interpolation is proposed. The irradiance time of each pixel reaching the same luminance is figured out by Matlab. Adopting the 64×32-pixel, single color and passive matrix OLED panel as adjusting luminance uniformity panel, a new circuit compensating scheme based on FPGA is designed. VHDL is used to make each pixel’s irradiance time in one frame period written in program. The irradiance brightness is controlled by changing its irradiance time, and finally, luminance compensation of the panel is realized. The simulation result indicates that the design is reasonable.
Neutron Spectrum Measurements from Irradiations at NCERC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen
2015-04-15
Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.
Effects of low and high energy ion bombardment on ETFE polymer
NASA Astrophysics Data System (ADS)
Minamisawa, R. A.; De Almeida, A.; Abidzina, V.; Parada, M. A.; Muntele, I.; Ila, D.
2007-04-01
The polymer ethylenetetrafluoroethylene (ETFE) is used as anti-adherent coatings for food packages and radiation dosimeters. In this work, we compare the damage induced in ETFE bombarded with 100 keV Si ions with that induced by 1 MeV proton bombardment. The damage depends on the type, energy and intensity of the irradiation. Irradiated films were analyzed with optical absorption photospectrometry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy to determine the chemical nature of the structural changes caused by ion irradiation. Computer simulations were performed to evaluate the radiation damage.
NASA Astrophysics Data System (ADS)
Stock, Karl; Diebolder, Rolf; Hausladen, Florian; Hibst, Raimund
2014-03-01
It is well known that flashlamp pumped Er:YAG lasers allow efficient bone ablation due to strong absorption at 3μm by water. Preliminary experiments revealed also a newly developed diode pumped Er:YAG laser system (Pantec Engineering AG) to be an efficient tool for use for bone surgery. The aim of the present in vitro study is the investigation of a new power increased version of the laser system with higher pulse energy and optimization of the treatment set-up to get high cutting quality, efficiency, and ablation depth. Optical simulations were performed to achieve various focus diameters and homogeneous beam profile. An appropriate experimental set-up with two different focusing units, a computer controlled linear stage with sample holder, and a shutter unit was realized. By this we are able to move the sample (slices of pig bone) with a defined velocity during the irradiation. Cutting was performed under appropriate water spray by moving the sample back and forth. After each path the ablation depth was measured and the focal plane was tracked to the actual bottom of the groove. Finally, the cuts were analyzed by light microcopy regarding the ablation quality and geometry, and thermal effects. In summary, the results show that with carefully adapted irradiation parameters narrow and deep cuts (ablation depth > 6mm, aspect ratio approx. 20) are possible without carbonization. In conclusion, these in vitro investigations demonstrate that high efficient bone cutting is possible with the diode pumped Er:YAG laser system using appropriate treatment set-up and parameters.
Preliminary study for small animal preclinical hadrontherapy facility
NASA Astrophysics Data System (ADS)
Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.
2017-02-01
Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and gamma index test. This work represents the first step towards the realization of a preclinical hadrontherapy facility at INFN-LNS in Catania for the future in vivo studies.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warshawsky, A.S.; Uzelac, M.J.; Pimper, J.E.
The Crew III algorithm for assessing time and dose dependent combat crew performance subsequent to nuclear irradiation was incorporated into the Janus combat simulation system. Battle outcomes using this algorithm were compared to outcomes based on the currently used time-independent cookie-cutter'' assessment methodology. The results illustrate quantifiable differences in battle outcome between the two assessment techniques. Results suggest that tactical nuclear weapons are more effective than currently assumed if performance degradation attributed to radiation doses between 150 to 3000 rad are taken into account. 6 refs., 9 figs.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-06-10
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.
Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa
2009-01-01
UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).
Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian
2012-01-01
We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582
Phase-field modeling of void anisotropic growth behavior in irradiated zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, G. M.; Wang, H.; Lin, De-Ye
2017-06-01
A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
Mechanism of light-induced domain nucleation in LiNbO 3 crystals
NASA Astrophysics Data System (ADS)
Liu, De'an; Zhi, Ya'nan; Luan, Zhu; Yan, Aimin; Liu, Liren
2007-09-01
In this paper, within the spectrum range from 351 nm to 799 nm, the different reductions of nucleation field induced by the focused continuous irradiation with different light intensity are achieved in congruent LiNbO 3 crystals. The reduction proportion increases exponentially with decreasing the irradiation wavelength, and decreases exponentially with increasing the irradiation wavelength. Basing on photo-excited effect, we propose a proper model to explain the mechanism of light-induced domain nucleation in congruent LiNbO 3 crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Gamma radiation-induced thermoluminescence emission of minerals adhered to Mexican sesame seeds
NASA Astrophysics Data System (ADS)
Rodríguez-Lazcano, Y.; Correcher, V.; Garcia-Guinea, J.; Cruz-Zaragoza, E.
2013-02-01
The thermoluminescence (TL) emission of minerals isolated from Mexican sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) data, the adhered dust in both samples is mainly composed of different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good TL intensity, (ii) high stability of the TL signal during the storage of the material, i.e. low fading, and (iii) are thermally and chemically stable. Blind tests were performed under laboratory conditions, but simulating industrial preservation processes, allow us to distinguish between 1 kGy gamma-irradiated and non-irradiated samples even 15 months after irradiation processing followed the EN 1788 European Standard protocol in sesame samples.
Determination of neutron spectra within the energy of 1 keV to 1 MeV by means of reactor dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeyeva, Victoria; Destouches, Christophe; Lyoussi, Abdallah
2015-07-01
The standard procedure for neutron reactor dosimetry is based on neutron irradiation of a target and its post-irradiation analysis by Gamma and/or X-ray spectrometry. Nowadays, the neutron spectra can be easily characterized for thermal and fast energies (respectively 0.025 eV and >1 MeV). In this work we propose a new target and an innovating post-irradiation technique of analysis in order to detect the neutron spectra within the energy of 1 keV to 1 MeV. This article will present the calculations performed for the selection of a suitable nuclear reaction and isotope, the results predicted by simulations, the irradiation campaign thatmore » is proposed and the post-irradiation technique of analysis. (authors)« less
Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isabella J van Rooyen
2012-09-01
The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less
USDA-ARS?s Scientific Manuscript database
‘Seedless Kishu’ mandarins (Citrus kinokuni mukakukishu) were treated with gamma irradiation at 150, 400, or 1000 Gy and stored for three weeks at 6°C and then for one week at 20°C to simulate commercial handling and marketing. The quality of the fruit was then evaluated following storage using non-...
Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates
Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.
2015-09-03
Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
Neale, Patrick J; Thomas, Brian C
2016-04-01
Two atmospheric responses to simulated astrophysical ionizing radiation events significant to life on Earth are production of odd-nitrogen species, especially NO2, and subsequent depletion of stratospheric ozone. Ozone depletion increases incident short-wavelength ultraviolet radiation (UVB, 280-315 nm) and longer (>600 nm) wavelengths of photosynthetically available radiation (PAR, 400-700 nm). On the other hand, the NO2 haze decreases atmospheric transmission in the long-wavelength UVA (315-400 nm) and short-wavelength PAR. Here, we use the results of previous simulations of incident spectral irradiance following an ionizing radiation event to predict changes in terran productivity focusing on photosynthesis of marine phytoplankton. The prediction is based on a spectral model of photosynthetic response, which was developed for the dominant genera in central regions of the ocean (Synechococcus and Prochlorococcus), and on remote-sensing-based observations of spectral water transparency, temperature, wind speed, and mixed layer depth. Predicted productivity declined after a simulated ionizing event, but the effect integrated over the water column was small. For integrations taking into account the full depth range of PAR transmission (down to 0.1% of utilizable PAR), the decrease was at most 2-3% (depending on strain), with larger effects (5-7%) for integrations just to the depth of the surface mixed layer. The deeper integrations were most affected by the decreased utilizable PAR at depth due to the NO2 haze, whereas shallower integrations were most affected by the increased surface UV. Several factors tended to dampen the magnitude of productivity responses relative to increases in surface-damaging radiation, for example, most inhibition in the modeled strains is caused by UVA and PAR, and the greatest relative increase in damaging exposure is predicted to occur in the winter when UV and productivity are low.
Irradiation for quality improvement, microbial safety and phytosanitation of fresh produce
USDA-ARS?s Scientific Manuscript database
In this book we pull together research, technological advances and current trends from many disciplines to provide a single comprehensive source of information on the many uses of irradiation to improve the safety and supply of fruits and vegetables. Part 1 of the book focuses on the potential of io...
SU-G-TeP3-02: Determination of Geometry-Specific Backscatter Factors for Radiobiology Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viscariello, N; Culberson, W; Lawless, M
2016-06-15
Purpose: Radiation biology research relies on an accurate radiation dose delivered to the biological target. Large field irradiations in a cabinet irradiator may use the AAPM TG-61 protocol. This relies on an air-kerma measurement and conversion to absorbed dose to water (Dw) on the surface of a water phantom using provided backscatter factors. Cell or small animal studies differ significantly from this reference geometry. This study aims to determine the impact of the lack of full scatter conditions in four representative geometries that may be used in radiobiology studies. Methods: MCNP6 was used to model the Dw on the surfacemore » of a full scatter phantom in a validated orthovoltage x-ray reference beam. Dw in a cylindrical mouse, 100 mm Petri dish, 6-well and 96-well cell culture dishes was simulated and compared to this full scatter geometry. A reference dose rate was measured using the TG-61 protocol in a cabinet irradiator. This nominal dose rate was used to irradiate TLDs in each phantom to a given dose. Doses were obtained based on TLDs calibrated in a NIST-traceable beam. Results: Compared to the full scattering conditions, the simulated dose to water in the representative geometries were found to be underestimated by 12-26%. The discrepancy was smallest with the cylindrical mouse geometry, which most closely approximates adequate lateral- and backscatter. TLDs irradiated in the mouse and petri dish phantoms using the TG-61 determined dose rate showed similarly lower values of Dw. When corrected for this discrepancy, they agreed with the predicted Dw within 5%. Conclusion: Using the TG-61 in-air protocol and given backscatter factors to determine a reference dose rate in a biological irradiator may not be appropriate given the difference in scattering conditions between irradiation and calibration. Without accounting for this, the dose rate is overestimated and is dependent on irradiation geometry.« less
Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa
2013-10-14
Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachmentmore » properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosova, V.F.
The importance of the mode of intreduction, the number of administrations and the dose of the antibiotic (penicillin and streptomycin) in the treatment of infectious inflammation in irradiated rabbits (800 r) was studied. In the treatment of skin inflammatory foci, caused by the infection with B. coli, intramuscular administration of streptomycin was ineffective. The introduction of the antibiotic into the focus of inflammation reduced the number of microbes, the effect depending upon the quantity of bacteria in the tissus of the focus and on the dose of the antibiotic. In a number of instances upon introduction of streptomycin into themore » focus there developed very rapidly (in 24 hours) resistant forms of bacteria. (auth)« less
Void growth and coalescence in irradiated copper under deformation
NASA Astrophysics Data System (ADS)
Barrioz, P. O.; Hure, J.; Tanguy, B.
2018-04-01
A decrease of fracture toughness of irradiated materials is usually observed, as reported for austenitic stainless steels in Light Water Reactors (LWRs) or copper alloys for fusion applications. For a wide range of applications (e.g. structural steels irradiated at low homologous temperature), void growth and coalescence fracture mechanism has been shown to be still predominant. As a consequence, a comprehensive study of the effects of irradiation-induced hardening mechanisms on void growth and coalescence in irradiated materials is required. The effects of irradiation on ductile fracture mechanisms - void growth to coalescence - are assessed in this study based on model experiments. Pure copper thin tensile samples have been irradiated with protons up to 0.01 dpa. Micron-scale holes drilled through the thickness of these samples subjected to uniaxial loading conditions allow a detailed description of void growth and coalescence. In this study, experimental data show that physical mechanisms of micron-scale void growth and coalescence are similar between the unirradiated and irradiated copper. However, an acceleration of void growth is observed in the later case, resulting in earlier coalescence, which is consistent with the decrease of fracture toughness reported in irradiated materials. These results are qualitatively reproduced with numerical simulations accounting for irradiation macroscopic hardening and decrease of strain-hardening capability.
Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G
2005-02-04
Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.
Total solar irradiance reconstruction since 1700 using a flux transport model
NASA Astrophysics Data System (ADS)
Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie
Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on sunspot group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic sunspot record. The semi-synthetic record was obtained using statistical relationships between sunspot group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the sunspot group number (Rg) on the other. These relationships were employed to produce daily records of sunspot group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.
Sakashita, Tetsuya; Hamada, Nobuyuki; Kawaguchi, Isao; Hara, Takamitsu; Kobayashi, Yasuhiko; Saito, Kimiaki
2014-05-01
A single cell can form a colony, and ionizing irradiation has long been known to reduce such a cellular clonogenic potential. Analysis of abortive colonies unable to continue to grow should provide important information on the reproductive cell death (RCD) following irradiation. Our previous analysis with a branching process model showed that the RCD in normal human fibroblasts can persist over 16 generations following irradiation with low linear energy transfer (LET) γ-rays. Here we further set out to evaluate the RCD persistency in abortive colonies arising from normal human fibroblasts exposed to high-LET carbon ions (18.3 MeV/u, 108 keV/µm). We found that the abortive colony size distribution determined by biological experiments follows a linear relationship on the log-log plot, and that the Monte Carlo simulation using the RCD probability estimated from such a linear relationship well simulates the experimentally determined surviving fraction and the relative biological effectiveness (RBE). We identified the short-term phase and long-term phase for the persistent RCD following carbon-ion irradiation, which were similar to those previously identified following γ-irradiation. Taken together, our results suggest that subsequent secondary or tertiary colony formation would be invaluable for understanding the long-lasting RCD. All together, our framework for analysis with a branching process model and a colony formation assay is applicable to determination of cellular responses to low- and high-LET radiation, and suggests that the long-lasting RCD is a pivotal determinant of the surviving fraction and the RBE.
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
Morphological degradation of human hair cuticle due to simulated sunlight irradiation and washing.
Richena, M; Rezende, C A
2016-08-01
Morphological changes in hair surface are undesirable, since they cause shine loss, roughness increase and split ends. These effects occur more frequently in the cuticle, which is the outermost layer of the hair strand, and thus the most exposed to the environmental damages. Sunlight irradiation contributes significantly to these morphological alterations, which motivates the investigation of this effect on hair degradation. In this work, the influence of irradiation and hand-washing steps on the morphology of pigmented and non-pigmented hair cuticle was investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). To simulate daily conditions, where hair is hand-washed and light exposed, samples of dark brown and gray hair underwent three different conditions: 1) irradiation with a mercury lamp for up to 600h; 2) irradiation with the mercury lamp combined with washes with a sodium lauryl sulphate solution; and 3) only washing. A new preparation procedure was applied for TEM samples to minimize natural variations among different hair strands: a single hair strand was cut into two neighbouring halves and only one of them underwent irradiation and washing. The non-exposed half was used as a control, so that the real effects caused by the controlled irradiation and washing procedures could be highlighted in samples that had very similar morphologies initially. More than 25images/sample were analysed using FESEM (total of 300 images) and ca. 150images/sample were obtained with TEM (total of 900 images). The results presented herein show that the endocuticle and the cell membrane complex (CMC) are the cuticle structures more degraded by irradiation. Photodegradation alone results in fracturing, cavities (Ø≈20-200nm) and cuticle cell lifting, while the washing steps were able to remove cuticle cells (≈1-2 cells removed after 60 washes). Finally, the combined action of irradiation and washing caused the most severe damages, resulting in a more pronounced cuticle extraction (≈1-4 cuticle cells after a 600h irradiation and a 60 times washing). This irradiation dose corresponds to ca. 2months of sunlight exposure (considering 5h/day) in Campinas-SP, Brazil, during the day period of maximum irradiation intensity. The combined action of irradiation and washing can be explained by the creation of fragile photodegraded spots in the endocuticle and in the CMC, where the mechanical stress associated to the washing steps are more prone to induce rupture. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
NASA Astrophysics Data System (ADS)
Villagrasa, Carmen; Meylan, Sylvain; Gonon, Geraldine; Gruel, Gaëtan; Giesen, Ulrich; Bueno, Marta; Rabus, Hans
2017-09-01
In this work we present results obtained in the frame of the BioQuaRT project. The objective of the study was the correlation between the number of radiation-induced double strand breaks (DSB) of the DNA molecule and the probability of detecting nuclear foci after targeted microbeam irradiation of cells with protons and alpha particles of different LET. The former were obtained by simulation with new methods integrated into Geant4-DNA that permit calculating the number of DSB in a DNA target model induced by direct and indirect radiation effects. A particular focus was laid in this work on evaluating the influence of different criteria applied to the simulated results for predicting the formation of a direct SSB. Indeed, these criteria have an important impact on the predicted number of DSB per particle track and its dependence with LET. Among the criteria tested in this work, the case that a direct radiation interaction leads to a strand break if the cumulative energy deposited in the backbone part of one nucleotide exceeds a threshold of 17.5 eV leads to the best agreement with the relative LET dependence of number of radiation induced foci. Further calculations and experimental data are nevertheless needed in order to fix the simulation parameters and to help interpreting the biological experimental data observed by immunofluorescence in terms of the DSB complexity.
Intense beams from gases generated by a permanent magnet ECR ion source at PKU.
Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E
2012-02-01
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.
Lyke, Stephen D; Voelz, David G; Roggemann, Michael C
2009-11-20
The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.
Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation
NASA Astrophysics Data System (ADS)
Dutta, N. J.; Mohanty, S. R.; Buzarbaruah, N.; Ranjan, M.; Rawat, R. S.
2018-06-01
The effects of helium ion irradiation on the graphite surface are studied by employing a plasma focus device. The device emits helium ion pulse having energies in the range of a few keV to a few MeV and flux on the order of 1025 m-2 s-1 at 60 mm axial position from the anode tip. The field emission scanning electron microscopy confirms the formation of multi-modal spherical and elongated agglomerated structures on irradiated samples surface with increase in agglomerate size with increasing number of irradiation shots. The transient annealing in each irradiation was not enough to cause the Oswald ripening or sintering of particles into bigger particle or crystal size but only resulted in clustering. The atomic force micrographs reveal an increase in average surface roughness with increasing ion irradiation. The Raman study demonstrates increase in disordered D peak along with reduced crystallite size (La) with increasing number of irradiation shots.
Effect of gamma irradiation on the conversion of ginsenoside Rb1 to Rg3
NASA Astrophysics Data System (ADS)
Kim, Jae-Hun; Kwon, Sun-Kyu; Sung, Nak-Yun; Jung, Pil-Mun; Choi, Jong-il; Kim, Jae-Kyung; Sharma, Arun K.; Lee, Ju-Woon
2012-08-01
Ginsenosides, the most important secondary metabolites in ginseng, have various biological activities. Many studies have focused on the conversion of one of the major ginsenosides, Rb1, to the more active minor ginsenoside, Rg3. This study was carried out to investigate the effect of gamma irradiation on the conversion of Rb1 to Rg3. Rb1 solutions were gamma-irradiated at doses of 10 and 30 kGy and analyzed by high performance liquid chromatography (HPLC). HPLC chromatograms showed a decreased content of Rb1 with increasing irradiation dose, but the content of Rg3 was increased. The highest content of Rg3 was present in the 30 kGy-irradiated Rb1 sample. The cytotoxic effects tested in cancer cell lines were increased in the gamma-irradiated group. Therefore, these results suggest that gamma irradiation can be an effective method for the conversion of the ginsenoside Rb1 to Rg3.
Laser cutting with chemical reaction assist
Gettemy, Donald J.
1992-01-01
A method for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation.
Laser cutting with chemical reaction assist
Gettemy, D.J.
1992-11-17
A method is described for cutting with a laser beam where an oxygen-hydrocarbon reaction is used to provide auxiliary energy to a metal workpiece to supplement the energy supplied by the laser. Oxygen is supplied to the laser focus point on the workpiece by a nozzle through which the laser beam also passes. A liquid hydrocarbon is supplied by coating the workpiece along the cutting path with the hydrocarbon prior to laser irradiation or by spraying a stream of hydrocarbon through a nozzle aimed at a point on the cutting path which is just ahead of the focus point during irradiation. 1 figure.
US-RERTR Advanced Fuel Development Plans : 1999.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M. K.
1998-10-22
Twelve fuel alloys were included in the very-high-density RERTR-1 and RERTR-2 microplate irradiation experiments. Experience gained during fabrication and results from the post-irradiation examination of these fuels has allowed us to narrow the focus of our fuel development efforts in preparation for the next set of irradiation experiments. Specific technical problems in both the areas of fuel fabrication and irradiation performance remain to be addressed. Examples of these are powder fabrication, fuel phase gamma stability versus density, and fuel-matrix interaction. In order to more efficiently address metal alloy fuel performance issues, work will continue on establishing a theoretical basis formore » alloy stability and metal alloy dispersion fuel irradiation performance. Plans to address these fuel development issues in the coming year will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linton, Kory D.; Parish, Chad M.; Smith, Quinlan B.
2017-09-01
This document outlines the results obtained by Oak Ridge National Laboratory (ORNL) in collaboration with the University of Michigan-led Consolidated Innovative Nuclear Research project, “Feasibility of combined ion-neutron irradiation for accessing high dose levels.” In this reporting period, neutron irradiated were prepared and shipped to the University of Michigan for subsequent ion irradiation. The specimens were returned to ORNL’s Low Activation Materials Development and Analysis facility, prepared via focused ion beam for examination using scanning/transmission electron microscopy (S/TEM), and then examined using S/TEM to measure the as-irradiated microstructure. This report briefly summarizes the S/TEM results obtained at ORNL’s Low Activationmore » Materials Development and Analysis facility.« less
Batchu, Sudha Rani; Panditi, Venkata R; O'Shea, Kevin E; Gardinali, Piero R
2014-02-01
Roxithromycin, erythromycin, ciprofloxacin and sulfamethoxazole are frequently detected antibiotics in environmental waters. Direct and indirect photolysis of these problematic antibiotics were investigated in pure and natural waters (fresh and salt water) under irradiation of different light sources. Fundamental photolysis parameters such as molar absorption coefficient, quantum yield and first order rate constants are reported and discussed. The antibiotics are degraded fastest under ultraviolet 254 nm, followed by 350 nm and simulated solar radiation. The composition of the matrix (pH, dissolved organic content, chloride ion concentration) played a significant role in the observed photodegradation. Under simulated solar radiation, ciprofloxacin and sulfamethoxazole degrade relatively quickly with half-lives of 0.5 and 1.5h, respectively. However, roxithromycin and erythromycin, macrolides are persistent (half-life: 2.4-10 days) under solar simulation. The transformation products (15) of the targeted antibiotics produced under irradiation experiments were identified using high resolution mass spectrometry and degradation pathways were proposed. © 2013.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Modelling and Simulation of Grid Connected SPV System with Active Power Filtering Features
NASA Astrophysics Data System (ADS)
Saroha, Jaipal; Pandove, Gitanjali; Singh, Mukhtiar
2017-09-01
In this paper, the detailed simulation studies for a grid connected solar photovoltaic system (SPV) have been presented. The power electronics devices like DC-DC boost converter and grid interfacing inverter are most important components of proposed system. Here, the DC-DC boost converter is controlled to extract maximum power out of SPV under different irradiation levels, while the grid interfacing inverter is utilized to evacuate the active power and feed it into grid at synchronized voltage and frequency. Moreover, the grid interfacing inverter is also controlled to sort out the issues related to power quality by compensating the reactive power and harmonics current component of nearby load at point of common coupling. Besides, detailed modeling of various component utilized in proposed system is also presented. Finally, extensive simulations have been performed under different irradiation levels with various kinds of load to validate the aforementioned claims. The overall system design and simulation have been performed by using Sim Power System toolbox available in the library of MATLAB.
Reda, Ibrahim
2013-10-29
Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.
NASA Astrophysics Data System (ADS)
Li, Xiaoliang; Luo, Lei; Li, Pengwei; Yu, Qingkui
2018-03-01
The image sensor in satellite optical communication system may generate noise due to space irradiation damage, leading to deviation for the determination of the light spot centroid. Based on the irradiation test data of CMOS devices, simulated defect spots in different sizes have been used for calculating the centroid deviation value by grey-level centroid algorithm. The impact on tracking & pointing accuracy of the system has been analyzed. The results show that both the amount and the position of irradiation-induced defect pixels contribute to spot centroid deviation. And the larger spot has less deviation. At last, considering the space radiation damage, suggestions are made for the constraints of spot size selection.
Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy.
Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter
2015-02-22
Neutron capture therapy for glioblastoma has focused mainly on the use of (10)B as neutron capture isotope. However, (157)Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with (157)Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the Auger and conversion electrons produced in (157)Gd capture, the proximity of Gd-atoms to cellular DNA is a crucial factor for infliction of lethal damage. Furthermore, Gd-containing liposomes may be used as MRI contrast agents for diagnostic purposes and surveillance of tumor targeting, thus enabling a theranostic approach for tumor therapy.
NASA Technical Reports Server (NTRS)
Reed, Susan M.; Herakovich, Carl T.; Sykes, George F., Jr.
1987-01-01
The effects of electron radiation and elevated temperature on the matrix-dominated cyclic response of standard T300/934 and a chemically modified T300/934 graphite-epoxy are characterized. Both materials were subjected to 1.0 x 10 to the 10th rads of 1.0 MeV electron irradiation, under vacuum, to simulate 30 years in geosynchronous orbit. Cyclic tests were performed at room temperature and elevated temperature (121 C) on 4-ply unidirectional laminates to characterize the effects associated with irradiation and elevated temperature. Both materials exhibited energy dissipation in their response at elevated temperature. The irradiated modified material also exhibited energy dissipation at room temperature. The combination of elevated temperature and irradiation resulted in the most severe effects in the form of lower proportional limits, and greater energy dissipation. Dynamic-mechanical analysis demonstrated that the glass transition temperature, T(g), of the standard material was lowered 39 C by irradiation, wereas the T(g) of the modified material was lowered 28 C by irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated materials.
Nonlinear absorption in biological tissue for high intensity focused ultrasound.
Liu, Xiaozhou; Li, Junlun; Gong, Xiufen; Zhang, Dong
2006-12-22
In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.
Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation
NASA Astrophysics Data System (ADS)
Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.
2014-12-01
Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the aerosol particle density due to the ion density increase was confirmed. From this result, the ion-induced nucleation due to heavy ion irradiation could be verified. From the results of this study, ion-induced nucleation due to β-rays and heavy ion irradiation was confirmed.
Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.
Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki
2007-03-01
A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.
Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T
2014-11-17
The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.
Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser
NASA Astrophysics Data System (ADS)
Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor
2014-02-01
Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.
NASA Astrophysics Data System (ADS)
Muggiolu, Giovanna; Pomorski, Michal; Claverie, Gérard; Berthet, Guillaume; Mer-Calfati, Christine; Saada, Samuel; Devès, Guillaume; Simon, Marina; Seznec, Hervé; Barberet, Philippe
2017-01-01
As well as being a significant source of environmental radiation exposure, α-particles are increasingly considered for use in targeted radiation therapy. A better understanding of α-particle induced damage at the DNA scale can be achieved by following their tracks in real-time in targeted living cells. Focused α-particle microbeams can facilitate this but, due to their low energy (up to a few MeV) and limited range, α-particles detection, delivery, and follow-up observations of radiation-induced damage remain difficult. In this study, we developed a thin Boron-doped Nano-Crystalline Diamond membrane that allows reliable single α-particles detection and single cell irradiation with negligible beam scattering. The radiation-induced responses of single 3 MeV α-particles delivered with focused microbeam are visualized in situ over thirty minutes after irradiation by the accumulation of the GFP-tagged RNF8 protein at DNA damaged sites.
NASA Astrophysics Data System (ADS)
Stephenson, Kale J.; Was, Gary S.
2015-01-01
The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.
Monte Carlo evaluation of magnetically focused proton beams for radiosurgery
NASA Astrophysics Data System (ADS)
McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.
2018-03-01
The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.
Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.
Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert
2018-03-01
Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrocky, Tomas, E-mail: tomas.dobrocky@insel.ch; Fuerstner, Markus, E-mail: markus.fuerstner@insel.ch; Klaeser, Bernd, E-mail: bernd.klaeser@insel.ch
2015-08-15
We herein present a patient undergoing selective internal radiation therapy with an almost normal lung shunt fraction of 11.5 %, developing histologically proven radiation pneumonitis. Due to a predominance of pulmonary consolidations in the right lower lung and its proximity to a large liver metastases located in the dome of the right liver lobe a Monte Carlo simulation was performed to estimate the effect of direct irradiation of the lung parenchyma. According to our calculations direct irradiation seems negligible and RP is almost exclusively due to ectopic draining of radioactive spheres.
NASA Astrophysics Data System (ADS)
Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He
2012-11-01
In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.
Joining of graphene flakes by low energy N ion beam irradiation
NASA Astrophysics Data System (ADS)
Wu, Xin; Zhao, Haiyan; Pei, Jiayun; Yan, Dong
2017-03-01
An approach utilizing low energy N ion beam irradiation is applied in joining two monolayer graphene flakes. Raman spectrometry and atomic force microscopy show the joining signal under 40 eV and 1 × 1014 cm-2 N ion irradiation. Molecular dynamics simulations demonstrate that the joining phenomenon is attributed to the punch-down effect and the subsequent chemical bond generation between the two sheets. The generated chemical bonds are made up of inserted ions (embedded joining) and knocked-out carbon atoms (saturation joining). The electronic transport properties of the joint are also calculated for its applications.
Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions
NASA Astrophysics Data System (ADS)
Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.
2016-04-01
This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.
Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms
NASA Astrophysics Data System (ADS)
Dasi-Espuig, M.; Jiang, J.; Krivova, N. A.; Solanki, S. K.; Unruh, Y. C.; Yeo, K. L.
2016-05-01
Aims: We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. Methods: The record of sunspot group areas and positions from the Royal Greenwich Observatory (RGO) is only available since 1874. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semi-synthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance (TSI) between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. Results: We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the TSI on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2+0.2-0.3 Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-α composite. The complete total and spectral (115 nm-160 μm) irradiance reconstructions since 1700 will be available from http://www2.mps.mpg.de/projects/sun-climate/data.html
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...
2017-02-20
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
High energy irradiations simulating cosmic-ray-induced planetary gamma ray production. I - Fe target
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Yellin, J.
1986-01-01
Two thick Fe targets were bombarded by a series of 6 GeV proton irradiations for the purpose of simulating the cosmic ray bombardment of planetary objects in space. Gamma ray energy spectra were obtained with a germanium solid state detector during the bombardment, and 46 of the gamma ray lines were ascribed to the Fe targets. A comparison between observed and predicted values showed good agreement for Fe lines from neutron inelastic scattering and spallation reactions, and less satisfactory agreement for neutron capture reactions, the latter attributed to the difference in composition between the Fe target and the mean lunar abundance used in the modeling. Through an analysis of the irradiation results together with continuum data obtained in lunar orbit, it was found that 100 hours of measurement with a current instrument should generate a spectrum containing approximately 20 lines due to Fe alone, with a 2-sigma sensitivity for detection of about 0.2 percent.
Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas
2012-12-01
The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.
Self-Channelling of a Short Laser Pulse at Relativistic Intensity in Near Critical Underdense Plasma
NASA Astrophysics Data System (ADS)
Willi, O.; Borghesi, M.; MacKinnon, A. J.; Barringer, L.; Gaillard, R.; Meyer, C.; Gizzi, L.; Pukhov, A.; Meyer-Ter-Vehn, J.
1996-11-01
Self channelling of a picosecond pulse at relativistic intensities has been observed in near critical underdense plasmas. The plasma was preformed by laser heating of a thin film. The interaction pulse (1-3 ps duration, 1.054 μm) was focused onto the plasma at irradiances above 5 × 10^18 W/cm^2. Self-channelling of the pulse was detected via second harmonic and optical probe measurements. Intense, localised 2ω emission suggests the formation of channel structures of less than 5 μm in diameter, extending for several Rayleigh lengths. The temporal evolution of the electron density profile across the channel was measured via interferometry with picosecond temporal resolution. PIC code simulations, performed for the conditions of the experiment, predict the formation of similar channel structures. In this model, in addition to relativistic and ponderomotive self-focusing mechanisms, pinching by large self-generated magnetic fields also contributes to the single channel formation. Measurements of magnetic fields were also performed that seem to be consistent with the computational model.
NASA Astrophysics Data System (ADS)
Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong
2017-04-01
In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.
Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation
NASA Astrophysics Data System (ADS)
Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin
2017-12-01
Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.
NASA Technical Reports Server (NTRS)
Rohal, R. G.; Tambling, T. N.
1973-01-01
Six fuel pins were assembled, encapsulated, and irradiated in the Plum Brook Reactor. The fuel pins employed uranium mononitride (UN) in a stainless steel (type 304L) clad. The pins were irradiated for approximately 4000 hours to burnups of about 2.0 atom percent uranium. The average clad surface temperature during irradiation was about 1100 K (1980 deg R). Since stainless steel has a very low creep strength relative to that of UN at this temperature, these tests simulated unrestrained swelling of UN. The tests indicated that at 1 percent uranium atom burnup the unrestrained diametrical swelling of UN is about 0.5, 0.8, and 1.0 percent at 1223, 1264, and 1306 K (2200, deg 2273 deg, and 2350 deg R), respectively. The tests also indicated that the irradiation induced swelling of unrestrained UN fuel pellets appears to be isotropic.
Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto
2016-01-01
Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759