Sample records for focusing cone model

  1. Transport of Helium Pickup Ions within the Focusing Cone: Reconciling STEREO Observations with IBEX

    NASA Astrophysics Data System (ADS)

    Quinn, P. R.; Schwadron, N. A.; Möbius, E.

    2016-06-01

    Recent observations of the pickup helium focusing cone by STEREO/Plasma and Suprathermal Ion Composition indicate an inflow longitude of the interstellar wind that differs from the observations of IBEX by 1\\buildrel{\\circ}\\over{.} 8+/- 2\\buildrel{\\circ}\\over{.} 4. It has been under debate whether the transport of helium pickup ions with an anisotropic velocity distribution is the cause of this difference. If so, the roughly field-aligned pickup ion streaming relative to the solar wind should create a shift in the pickup ion density relative to the focusing cone. A large pickup ion streaming depends on the size of the mean free path. Therefore, the observed longitudinal shift in the pickup ion density relative to the neutral focusing cone may carry fundamental information about the mean free path experienced by pickup ions inside 1 au. We test this hypothesis using the Energetic Particle Radiation Environment Module (EPREM) model by simulating the transport of helium pickup ions within the focusing cone finding a mean free path of {λ }\\parallel =0.19+0.29(-0.19) au. We calculate the average azimuthal velocity of pickup ions and find that the anisotropic distribution reaches ˜8% of the solar wind speed. Lastly, we isolate transport effects within EPREM, finding that pitch-angle scattering, adiabatic focusing, perpendicular diffusion, and particle drift contribute to shifting the focusing cone 20.00%, 69.43%, 10.56%, and \\lt 0.01 % , respectively. Thus we show with the EPREM model that the transport of pickup ions does indeed shift the peak of the focusing cone relative to the progenitor neutral atoms and this shift provides fundamental information on the scattering of pickup ions inside 1 au.

  2. Conical Refraction: new observations and a dual cone model.

    PubMed

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  3. Linear diffusion model dating of cinder cones in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    O'Sadnick, L. G.; Reid, M. R.; Cline, M. L.; Cosca, M. A.; Kuscu, G.

    2013-12-01

    The progressive decrease in slope angle, cone height and cone height/width ratio over time provides the basis for geomorphic dating of cinder cones using linear diffusion models. Previous research using diffusion models to date cinder cones has focused on the cone height/width ratio as the basis for dating cones of unknown age [1,2]. Here we apply linear diffusion models to dating cinder cones. A suite of 16 cinder cones from the Hasandağ volcano area of the Neogene-Quaternary Central Anatolian Volcanic Zone, for which samples are available, were selected for morphologic dating analysis. New 40Ar/39Ar dates for five of these cones range from 62 × 4 to 517 × 9 ka. Linear diffusion models were used to model the erosional degradation of each cone. Diffusion coefficients (κ) for the 5 cinder cones with known ages were constrained by comparing various modeled slope profiles to the current slope profile. The resulting κ is 7.5×0.5 m2kyr-1. Using this κ value, eruption ages were modeled for the remaining 11 cinder cones and range from 53×3 to 455×30 ka. These ages are within the range of ages previously reported for cinder cones in the Hasandağ region. The linear diffusion model-derived ages are being compared to additional new 40Ar/39Ar dates in order to further assess the applicability of morphological dating to constrain the ages of cinder cones. The relatively well-constrained κ value we obtained by applying the linear diffusion model to cinder cones that range in age by nearly 500 ka suggests that this model can be used to date cinder cones. This κ value is higher than the well-established value of κ =3.9 for a cinder cone in a similar climate [3]. Therefore our work confirms the importance of determining appropriate κ values from nearby cones with known ages. References 1. C.A. Wood, J. Volcanol. Geotherm. Res. 8, 137 (1980) 2. D.M. Wood, M.F. Sheridan, J. Volcanol. Geotherm. Res. 83, 241 (1998) 3. J.D. Pelletier, M.L. Cline, Geology 35, 1067 (2007)

  4. SWCX Emission from the Helium Focusing Cone - Model to Data Comparison

    NASA Technical Reports Server (NTRS)

    Koutroumpa, D.; Collier, M. R.; Kuntz, K. D.; Lallement, R.; Snowden, Steven L.

    2009-01-01

    A model for heliospheric solar wind charge exchange (SWCX) X-ray emission is applied to a series of XMM-Newton observations of the interplanetary focusing cone of interstellar helium. The X-ray data are from three coupled observations of the South Ecliptic Pole (SEP, to observe the cone) and the Hubble Deep Field-North (HDFN. to monitor global variations of the SWCX emission due to variations in the solar wind) from the period 24 November to 15 December 2003. There is good qualitative agreement between the model predictions and thc data with the maximum SWCX flux observed at an ecliptic longitude of approx. 72deg, consistent with the central longitude of the He cone. We observe a total excess of 2.1 +/- 1.3 LU in the O VII line and 2.0 +/- 0.9 LU in the 0 VIII line. However. the SWCX emission model, which was adjusted for solar wind conditions appropriate for late 2003, predicts an excess from the He cone of only 0.5 LU and 0.2 LU, respectively, in the O VII and O VIII lines. We discuss thc model to data comparison and provide possible explanations for the discrepancies. We also qualitatively reexamine our SWCX nocicl predictions in the 1/4 keV band with data from the ROSAT All-Sky Survey towards the North and South Ecliptic Poles, when the He cone was probably first detected in soft X-rays.

  5. Bifurcation analysis of a photoreceptor interaction model for Retinitis Pigmentosa

    NASA Astrophysics Data System (ADS)

    Camacho, Erika T.; Radulescu, Anca; Wirkus, Stephen

    2016-09-01

    Retinitis Pigmentosa (RP) is the term used to describe a diverse set of degenerative eye diseases affecting the photoreceptors (rods and cones) in the retina. This work builds on an existing mathematical model of RP that focused on the interaction of the rods and cones. We non-dimensionalize the model and examine the stability of the equilibria. We then numerically investigate other stable modes that are present in the system for various parameter values and relate these modes to the original problem. Our results show that stable modes exist for a wider range of parameter values than the stability of the equilibrium solutions alone, suggesting that additional approaches to preventing cone death may exist.

  6. The Effect of TIMP-1 on the Cone Mosaic in the Retina of the Rat Model of Retinitis Pigmentosa

    PubMed Central

    Ji, Yerina; Yu, Wan-Qing; Eom, Yun Sung; Bruce, Farouk; Craft, Cheryl Mae; Grzywacz, Norberto M.; Lee, Eun-Jin

    2015-01-01

    Purpose. The array of photoreceptors found in normal retinas provides uniform and regular sampling of the visual space. In contrast, cones in retinas of the S334ter-line-3 rat model for RP migrate to form a mosaic of rings, leaving large holes with few or no photoreceptors. Similar mosaics appear in human patients with other forms of retinal dystrophy. In the current study, we aimed to investigate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the mosaic of cones in S334ter-line-3 rat retinas. We focused on TIMP-1 because it is one of the regulators of the extracellular matrix important for cellular migration. Methods. Immunohistochemistry was performed to reveal M-opsin cone cells (M-cone) and the results were quantified to test statistically whether or not TIMP-1 restores the mosaics to normal. In particular, the tests focused on the Voronoi and nearest-neighbor distance analyses. Results. Our tests indicated that TIMP-1 led to significant disruption of the M-opsin cone rings in S334ter-line-3 rat retinas and resulted in almost complete homogeneous mosaics. In addition, TIMP-1 induced the M-cone spatial distribution to become closer to random with decreased regularity in S334ter-line-3 rat retinas. Conclusions. These findings confirm that TIMP-1 induced M-cone mosaics in S334ter-line-3 to gain homogeneity without reaching the degree of regularity seen in normal retinal mosaics. Even if TIMP-1 fails to promote regularity, the effects of this drug on homogeneity appear to be so dramatic that TIMP-1 may be a potential therapeutic agent. TIMP-1 improves sampling of the visual field simply by causing homogeneity. PMID:25515575

  7. Simulation of water-use conservation scenarios for the Mississippi Delta using an existing regional groundwater flow model

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Clark, Brian R.

    2011-01-01

    The Mississippi River alluvial plain in northwestern Mississippi (referred to as the Delta), once a floodplain to the Mississippi River covered with hardwoods and marshland, is now a highly productive agricultural region of large economic importance to Mississippi. Water for irrigation is supplied primarily by the Mississippi River Valley alluvial aquifer, and although the alluvial aquifer has a large reserve, there is evidence that the current rate of water use from the alluvial aquifer is not sustainable. Using an existing regional groundwater flow model, conservation scenarios were developed for the alluvial aquifer underlying the Delta region in northwestern Mississippi to assess where the implementation of water-use conservation efforts would have the greatest effect on future water availability-either uniformly throughout the Delta, or focused on a cone of depression in the alluvial aquifer underlying the central part of the Delta. Five scenarios were simulated with the Mississippi Embayment Regional Aquifer Study groundwater flow model: (1) a base scenario in which water use remained constant at 2007 rates throughout the entire simulation; (2) a 5-percent 'Delta-wide' conservation scenario in which water use across the Delta was decreased by 5 percent; (3) a 5-percent 'cone-equivalent' conservation scenario in which water use within the area of the cone of depression was decreased by 11 percent (a volume equivalent to the 5-percent Delta-wide conservation scenario); (4) a 25-percent Delta-wide conservation scenario in which water use across the Delta was decreased by 25 percent; and (5) a 25-percent cone-equivalent conservation scenario in which water use within the area of the cone of depression was decreased by 55 percent (a volume equivalent to the 25-percent Delta-wide conservation scenario). The Delta-wide scenarios result in greater average water-level improvements (relative to the base scenario) for the entire Delta area than the cone-equivalent scenarios; however, the cone-equivalent scenarios result in greater average water-level improvements within the area of the cone of depression because of focused conservation efforts within that area. Regardless of where conservation is located, the greatest average improvements in water level occur within the area of the cone of depression because of the corresponding large area of unsaturated aquifer material within the area of the cone of depression and the hydraulic gradient, which slopes from the periphery of the Delta towards the area of the cone of depression. Of the four conservation scenarios, the 25-percent cone-equivalent scenario resulted in the greatest increase in storage relative to the base scenario with a 32-percent improvement over the base scenario across the entire Delta and a 60-percent improvement within the area of the cone of depression. Overall, the results indicate that focusing conservation efforts within the area of the cone of depression, rather than distributing conservation efforts uniformly across the Delta, results in greater improvements in the amount of storage within the alluvial aquifer. Additionally, as the total amount of conservation increases (that is, from 5 to 25 percent), the difference in storage improvement between the Delta-wide and cone-equivalent scenarios also increases, resulting in greater gains in storage in the cone-equivalent scenario than in the Delta-wide scenario for the same amount of conservation.

  8. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast

    PubMed Central

    Rucker, F. J.; Osorio, D.

    2009-01-01

    Longitudinal chromatic aberration is a well-known imperfection of visual optics, but the consequences in natural conditions, and for the evolution of receptor spectral sensitivities are less well understood. This paper examines how chromatic aberration affects image quality in the middle-wavelength sensitive (M-) cones, viewing broad-band spectra, over a range of spatial frequencies and focal planes. We also model the effects on M-cone contrast of moving the M-cone fundamental relative to the long- and middle-wavelength (L- and M-cone) fundamentals, while the eye is accommodated at different focal planes or at a focal plane that maximizes luminance contrast. When the focal plane shifts towards longer (650 nm) or shorter wavelengths (420 nm) the effects on M-cone contrast are large: longitudinal chromatic aberration causes total loss of M-cone contrast above 10 to 20 c/d. In comparison, the shift of the M-cone fundamental causes smaller effects on M-cone contrast. At 10 c/d a shift in the peak of the M-cone spectrum from 560 nm to 460 nm decreases M-cone contrast by 30%, while a 10 nm blue-shift causes only a minor loss of contrast. However, a noticeable loss of contrast may be seen if the eye is focused at focal planes other than that which maximizes luminance contrast. The presence of separate long- and middle-wavelength sensitive cones therefore has a small, but not insignificant cost to the retinal image via longitudinal chromatic aberration. This aberration may therefore be a factor limiting evolution of visual pigments and trichromatic color vision. PMID:18639571

  9. On the dual-cone nature of the conical refraction phenomenon.

    PubMed

    Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J

    2015-04-15

    In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.

  10. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen-shuai; Cai, Hong-bo, E-mail: Cai-hongbo@iapcm.ac.cn; HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition.more » Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.« less

  11. Comparison of the CME-associated shock arrival times at the earth using the WSA-ENLIL model with three cone models

    NASA Astrophysics Data System (ADS)

    Jang, S.; Moon, Y.; Na, H.

    2012-12-01

    We have made a comparison of CME-associated shock arrival times at the earth based on the WSA-ENLIL model with three cone models using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters from Michalek et al. (2007) as well as their associated interplanetary (IP) shocks. For this study we consider three different cone models (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine CME cone parameters (radial velocity, angular width and source location), which are used for input parameters of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the elliptical cone model is 10 hours, which is about 2 hours smaller than those of the other models. However, this value is still larger than that (8.7 hours) of an empirical model by Kim et al. (2007). We are investigating several possibilities on relatively large errors of the WSA-ENLIL cone model, which may be caused by CME-CME interaction, background solar wind speed, and/or CME density enhancement.

  12. Determination of HCME 3-D parameters using a full ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae; Lee, Harim

    2016-05-01

    It is very essential to determine three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) for space weather forecast. Several cone models (e.g., an elliptical cone model, an ice-cream cone model, an asymmetric cone model) have been examined to estimate these parameters. In this study, we investigate which cone type is close to a halo CME morphology using 26 CMEs: halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From cone shape parameters of these CMEs such as their front curvature, we find that near full ice-cream cone type CMEs are much closer to observations than shallow ice-cream cone type CMEs. Thus we develop a new cone model in which a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3-D parameters from our method are similar to those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data. We are developing a general ice-cream cone model whose front shape is a free parameter determined by observations.

  13. The uniqueness of the solution of cone-like inversion models for halo CMEs

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.

    2006-12-01

    Most of elliptic halo CMEs are believed to be formed by the Thompson scattering of the photospheric light by the 3-D cone-like shell of the CME plasma. To obtain the real propagation direction and angular width of the halo CMEs, such cone-like inversion models as the circular cone, the elliptic cone and the ice-cream cone models have been suggested recently. Because the number of given parameters that are used to characterize 2-D elliptic halo CMEs observed by one spacecraft are less than the number of unknown parameters that are used to characterize the 3-D elliptic cone model, the solution of the elliptic cone model is not unique. Since it is difficult to determine whether or not an observed halo CME is formed by an circular cone or elliptic cone shell, the solution of circular cone model may often be not unique too. To fix the problem of the uniqueness of the solution of various 3-D cone-like inversion models, this work tries to develop the algorithm for using the data from multi-spacecraft, such as the STEREO A and B, and the Solar Sentinels.

  14. Comparison of interplanetary CME arrival times and solar wind parameters based on the WSA-ENLIL model with three cone types and observations

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.-J.; Lee, Jae-Ok; Na, Hyeonock

    2014-09-01

    We have made a comparison between coronal mass ejection (CME)-associated shock propagations based on the Wang-Sheeley-Arge (WSA)-ENLIL model using three cone types and in situ observations. For this we use 28 full-halo CMEs, whose cone parameters are determined and their corresponding interplanetary shocks were observed at the Earth, from 2001 to 2002. We consider three different cone types (an asymmetric cone model, an ice cream cone model, and an elliptical cone model) to determine 3-D CME cone parameters (radial velocity, angular width, and source location), which are the input values of the WSA-ENLIL model. The mean absolute error of the CME-associated shock travel times for the WSA-ENLIL model using the ice-cream cone model is 9.9 h, which is about 1 h smaller than those of the other models. We compare the peak values and profiles of solar wind parameters (speed and density) with in situ observations. We find that the root-mean-square errors of solar wind peak speed and density for the ice cream and asymmetric cone model are about 190 km/s and 24/cm3, respectively. We estimate the cross correlations between the models and observations within the time lag of ± 2 days from the shock travel time. The correlation coefficients between the solar wind speeds from the WSA-ENLIL model using three cone types and in situ observations are approximately 0.7, which is larger than those of solar wind density (cc ˜0.6). Our preliminary investigations show that the ice cream cone model seems to be better than the other cone models in terms of the input parameters of the WSA-ENLIL model.

  15. Comparison of the WSA-ENLIL model with three CME cone types

    NASA Astrophysics Data System (ADS)

    Jang, Soojeong; Moon, Y.; Na, H.

    2013-07-01

    We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.Abstract (2,250 Maximum Characters): We have made a comparison of the CME-associated shock propagation based on the WSA-ENLIL model with three cone types using 29 halo CMEs from 2001 to 2002. These halo CMEs have cone model parameters as well as their associated interplanetary (IP) shocks. For this study we consider three different cone types (an asymmetric cone model, an ice-cream cone model and an elliptical cone model) to determine 3-D CME parameters (radial velocity, angular width and source location), which are the input values of the WSA-ENLIL model. The mean absolute error (MAE) of the arrival times for the asymmetric cone model is 10.6 hours, which is about 1 hour smaller than those of the other models. Their ensemble average of MAE is 9.5 hours. However, this value is still larger than that (8.7 hours) of the empirical model of Kim et al. (2007). We will compare their IP shock velocities and densities with those from ACE in-situ measurements and discuss them in terms of the prediction of geomagnetic storms.

  16. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  17. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina

    PubMed Central

    Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm

    2014-01-01

    During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942

  18. Comparison of Asymmetric and Ice-cream Cone Models for Halo Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Na, H.; Moon, Y.

    2011-12-01

    Halo coronal mass ejections (HCMEs) are major cause of the geomagnetic storms. To minimize the projection effect by coronagraph observation, several cone models have been suggested: an ice-cream cone model, an asymmetric cone model etc. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle between sky plane and central axis of the cone. In this study, we compare these parameters obtained from different models using 48 well-observed HCMEs from 2001 to 2002. And we obtain the root mean square error (RMS error) between measured projection speeds and calculated projection speeds for both cone models. As a result, we find that the radial speeds obtained from the models are well correlated with each other (R = 0.86), and the correlation coefficient of angular width is 0.6. The correlation coefficient of the angle between sky plane and central axis of the cone is 0.31, which is much smaller than expected. The reason may be due to the fact that the source locations of the asymmetric cone model are distributed near the center, while those of the ice-cream cone model are located in a wide range. The average RMS error of the asymmetric cone model (85.6km/s) is slightly smaller than that of the ice-cream cone model (87.8km/s).

  19. Nitrogen soft and hard X-ray emissions using different shapes of anodes in a 4-kJ plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahtab, M., E-mail: m.mahtab.83@gmail.com; Habibi, M., E-mail: mortezahabibi@aut.ac.ir

    2013-12-15

    The effect of different anode tip geometries on the intensity of soft and hard X-rays emitted from a 4-kJ plasma focus device is investigated using five different anode tips. The shapes of the uppermost region of these anodes (tips) have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat, and cone-hollow. For time-resolved measurement of the emitted X-rays, several BPX-65 pin diodes covered by different filters and a fast plastic scintillator are used. Experimental results have shown that, the highest intensity of the both soft and hard X-ray is recorded in cone-flat, spherical-convex, and cone-hollow tips, respectively. The use of cone-flat anode tip hasmore » augmented the emitted X-ray three times.« less

  20. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration

    PubMed Central

    Ma, Hongwei; Thapa, Arjun; Morris, Lynsie; Redmond, T. Michael; Baehr, Wolfgang; Ding, Xi-Qin

    2014-01-01

    Cone phototransduction and survival of cones in the human macula is essential for color vision and for visual acuity. Progressive cone degeneration in age-related macular degeneration, Stargardt disease, and recessive cone dystrophies is a major cause of blindness. Thyroid hormone (TH) signaling, which regulates cell proliferation, differentiation, and apoptosis, plays a central role in cone opsin expression and patterning in the retina. Here, we investigated whether TH signaling affects cone viability in inherited retinal degeneration mouse models. Retinol isomerase RPE65-deficient mice [a model of Leber congenital amaurosis (LCA) with rapid cone loss] and cone photoreceptor function loss type 1 mice (severe recessive achromatopsia) were used to determine whether suppressing TH signaling with antithyroid treatment reduces cone death. Further, cone cyclic nucleotide-gated channel B subunit-deficient mice (moderate achromatopsia) and guanylate cyclase 2e-deficient mice (LCA with slower cone loss) were used to determine whether triiodothyronine (T3) treatment (stimulating TH signaling) causes deterioration of cones. We found that cone density in retinol isomerase RPE65-deficient and cone photoreceptor function loss type 1 mice increased about sixfold following antithyroid treatment. Cone density in cone cyclic nucleotide-gated channel B subunit-deficient and guanylate cyclase 2e-deficient mice decreased about 40% following T3 treatment. The effect of TH signaling on cone viability appears to be independent of its regulation on cone opsin expression. This work demonstrates that suppressing TH signaling in retina dystrophy mouse models is protective of cones, providing insights into cone preservation and therapeutic interventions. PMID:24550448

  1. Development of a full ice-cream cone model for halo CME structures

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2015-04-01

    The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 33 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs (28 events) are dominant over shallow ice-cream cone CMEs (5 events). So we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection points with the observed ones. We apply this model to several halo CMEs and compare the results with those from other methods such as a Graduated Cylindrical Shell model and a geometrical triangulation method.

  2. Neuronal growth cones respond to laser-induced axonal damage

    PubMed Central

    Wu, Tao; Mohanty, Samarendra; Gomez-Godinez, Veronica; Shi, Linda Z.; Liaw, Lih-Huei; Miotke, Jill; Meyer, Ronald L.; Berns, Michael W.

    2012-01-01

    Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness (‘thinning’) within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model. PMID:21831892

  3. Comparison of Cone Model Parameters for Halo Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Y.-J.; Jang, Soojeong; Lee, Kyoung-Sun; Kim, Hae-Yeon

    2013-11-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [ γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another ( R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from -0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km s-1, 169 km s-1, and 152 km s-1. We obtain the correlation coefficients between the location from the models and the flare location ( R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.

  4. Revisiting chemoaffinity theory: Chemotactic implementation of topographic axonal projection

    PubMed Central

    2017-01-01

    Neural circuits are wired by chemotactic migration of growth cones guided by extracellular guidance cue gradients. How growth cone chemotaxis builds the macroscopic structure of the neural circuit is a fundamental question in neuroscience. I addressed this issue in the case of the ordered axonal projections called topographic maps in the retinotectal system. In the retina and tectum, the erythropoietin-producing hepatocellular (Eph) receptors and their ligands, the ephrins, are expressed in gradients. According to Sperry’s chemoaffinity theory, gradients in both the source and target areas enable projecting axons to recognize their proper terminals, but how axons chemotactically decode their destinations is largely unknown. To identify the chemotactic mechanism of topographic mapping, I developed a mathematical model of intracellular signaling in the growth cone that focuses on the growth cone’s unique chemotactic property of being attracted or repelled by the same guidance cues in different biological situations. The model presented mechanism by which the retinal growth cone reaches the correct terminal zone in the tectum through alternating chemotactic response between attraction and repulsion around a preferred concentration. The model also provided a unified understanding of the contrasting relationships between receptor expression levels and preferred ligand concentrations in EphA/ephrinA- and EphB/ephrinB-encoded topographic mappings. Thus, this study redefines the chemoaffinity theory in chemotactic terms. PMID:28792499

  5. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima

    2016-08-01

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  6. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less

  7. Determining the Interstellar Wind Longitudinal Inflow Evolution Using Pickup Ions in the Helium Focusing Cone

    NASA Astrophysics Data System (ADS)

    Spitzer, S. A.; Gilbert, J. A.; Lepri, S. T.

    2017-12-01

    We propose to determine the longitudinal inflow direction of the local interstellar medium through the Heliosphere. This longitudinal inflow direction directly correlates to the longitudinal direction of the helium focusing cone with respect to the Sun. We can calculate this direction by finding the He+ pickup ion density peak as mass spectrometers such as ACE/SWICS, Wind/STICS, and Helios/Micrometeoroid Detector and Analyzer pass through the focusing cone. Mapping from the location of this density peak to the Sun, around which the helium is focused, will directly yield the desired longitudinal direction. We will find this direction for each year since the first measurements in the 1970s through the present and thereby analyze its evolution over time. This poster outlines our proposed method and initial results.

  8. Passively-coupled, low-coherence interferometric duct profiling with an astigmatism-corrected conical mirror.

    PubMed

    Ford, Helen D; Tatam, Ralph P

    2017-04-17

    Duct-profiling in test samples up to 25 mm in diameter has been demonstrated using a passive, low-coherence probe head with a depth resolution of 7.8 μm, incorporating an optical-fibre-linked conical mirror addressed by a custom-built array of single-mode fibres. Zemax modelling, and experimental assessment of instrument performance, show that degradation of focus, resulting from astigmatism introduced by the conical mirror, is mitigated by the introduction of a novel lens element. This enables a good beam focus to be achieved at distances of tens of millimetres from the cone axis, not achievable when the cone is used alone. Incorporation of the additional lens element is shown to provide a four-fold improvement in lateral imaging resolution, when compared with reflection from the conical mirror alone.

  9. Anisotropy of the neutron fluence from a plasma focus.

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Shomo, L. P.; Kim, K. H.

    1972-01-01

    The fluence of neutrons from a plasma focus was measured by gamma spectrometry of an activated silver target. This method results in a significant increase in accuracy over the beta-counting method. Multiple detectors were used in order to measure the anisotropy of the fluence of neutrons. The fluence was found to be concentrated in a cone with a half-angle of 30 deg about the axis, and to drop off rapidly outside of this cone; the anisotropy was found to depend upon the total yield of neutrons. This dependence was strongest on the axis. Neither the axial concentration of the fluence of neutrons nor its dependence on the total yield of neutrons is explained by any of the currently proposed models. Some other explanations, including the possibility of an axially distributed source, are considered.

  10. SWCX Emission from the Helium Focusing Cone - Preliminary Results

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Kuntz, K. D.; Collier, M. R.

    2008-01-01

    Preliminary results from an XMM-Newton campaign to study solar wind charge exchange (SWCX) emission from the heliospheric focusing cone of interstellar helium are presented. The detections of enhanced O VII and O VIII emission from the cone are at the 2(sigma) and 4(sigma) levels. The solar wind charge exchange (SWCX) emission in the heliosphere not associated with distinct objects (e.g., comets and planets including exospheric material in and near Earth s magnetosheath) is proportional to the flux of the solar wind and the space density of neutral material. The neutral material originates in the interstellar medium (ISM) and passes through the solar system due to the relative motion of the Sun and the ISM. The flow of the neutral material through the solar system is strongly perturbed by the Sun both by gravity and by radiation pressure. Because of the relative radiative scattering cross sections and the effect of solar gravitation the density of interstellar hydrogen near the Sun is reduced while interstellar helium is gravitationally focused. This creates a helium focusing cone downstream of the Sun [e.g., 1, and references therein].

  11. Comparison of three-dimensional parameters of Halo CMEs using three cone models

    NASA Astrophysics Data System (ADS)

    Na, H.; Moon, Y.; Jang, S.; Lee, K.

    2012-12-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.

  12. Bending, force recovery, and D-cones in origami inspired model geometries

    NASA Astrophysics Data System (ADS)

    Eldar, Theresa; Rozairo, Damith; Croll, Andrew B.

    The need for materials with advanced functionality has driven a considerable amount of modern materials science. One idea that has gained significant traction is combining of the ideas Origami and Kirigami with existing materials to build in advanced functionality. In most origami damage is induced in order to trap areas of high curvature in desirable locations in a material. However, the long term and dynamic consequences of local failure are largely unknown. In order to gauge the complex interplay of material properties, relaxation and failure in a set of model thin films, a series of bending and force recovery experiments were carried out. We focus on three materials; polydimethylsiloxane (PDMS), polycarbonate (PC), and polystyrene (PS) chosen for their varying responses to stress. We first measured the load bearing capacity of a single bend in each material, examining the force recovery of bends at various curvatures. Next we examined a doubly folded system in which a single developable cone was created in a similar manner. While the D-cone clearly has massive local consequences for each system, it plays an insignificant role in the system's overall behavior. Finally, we considered higher order combinations of d-cones, ridges and bends. AFOSR under the Young Investigator Program (FA9550-15-1-0168).

  13. AdS5×S(5) mirror model as a string sigma model.

    PubMed

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.

  14. A collimated detection system for assessing leakage dose from medical linear accelerators at the patient plane.

    PubMed

    Lonski, P; Taylor, M L; Franich, R D; Kron, T

    2014-03-01

    Leakage radiation from linear accelerators can make a significant contribution to healthy tissue dose in patients undergoing radiotherapy. In this work thermoluminescent dosimeters (LiF:Mg,Cu,P TLD chips) were used in a focused lead cone loaded with TLD chips for the purpose of evaluating leakage dose at the patient plane. By placing the TLDs at one end of a stereotactic cone, a focused measurement device is created; this was tested both in and out of the primary beam of a Varian 21-iX linac using 6 MV photons. Acrylic build up material of 1.2 cm thickness was used inside the cone and measurements made with either one or three TLD chips at a given distance from the target. Comparing the readings of three dosimeters in one plane inside the cone offered information regarding the orientation of the cone relative to a radiation source. Measurements in the patient plane with the linac gantry at various angles demonstrated that leakage dose was approximately 0.01% of the primary beam out of field when the cone was pointed directly towards the target and 0.0025% elsewhere (due to scatter within the gantry). No specific 'hot spots' (e.g., insufficient shielding or gaps at abutments) were observed. Focused cone measurements facilitate leakage dose measurements from the linac head directly at the patient plane and allow one to infer the fraction of leakage due to 'direct' photons (along the ray-path from the bremsstrahlung target) and that due to scattered photons.

  15. Review of blunt body wake flows at hypersonic low density conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. N.; Price, J. M.

    1996-01-01

    Recent results of experimental and computational studies concerning hypersonic flows about blunted cones including their near wake are reviewed. Attention is focused on conditions where rarefaction effects are present, particularly in the wake. The experiments have been performed for a common model configuration (70 deg spherically-blunted cone) in five hypersonic facilities that encompass a significant range of rarefaction and nonequilibrium effects. Computational studies using direct simulation Monte Carlo (DSMC) and Navier-Stokes solvers have been applied to selected experiments performed in each of the facilities. In addition, computations have been made for typical flight conditions in both Earth and Mars atmospheres, hence more energetic flows than produced in the ground-based tests. Also, comparisons of DSMC calculations and forebody measurements made for the Japanese Orbital Reentry Experiment (OREX) vehicle (a 50 deg spherically-blunted cone) are presented to bridge the spectrum of ground to flight conditions.

  16. Time-Frequency Analysis of Boundary-Layer Instabilites Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled disturbance is generated in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) by focusing a high-powered Nd:YAG laser to create a laser-induced breakdown plasma. The plasma then cools, creating a freestream thermal disturbance that can be used to study receptivity. The freestream disturbance convects down-stream in the Mach-6 wind tunnel to interact with a flared cone model. The adverse pressure gradient created by the flare of the model is capable of generating second-mode instability waves that grow large and become nonlinear before experiencing natural transition in quiet flow. The freestream laser perturbation generates a wave packet in the boundary layer at the same frequency as the natural second mode, complicating time-independent analyses of the effect of the laser perturbation. The data show that the laser perturbation creates an instability wave packet that is larger than the natural waves on the sharp flared cone. The wave packet is still difficult to distinguish from the natural instabilities on the blunt flared cone.

  17. Detonation onset following shock wave focusing

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  18. Electron microscope aperture system

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1976-01-01

    An electron microscope including an electron source, a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen, and an objective lens having an annular objective aperture, for focusing electrons passing through the specimen onto an image plane are described. The invention also entails a method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques.

  19. Method of forming aperture plate for electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1974-01-01

    An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.

  20. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys

    PubMed Central

    Hass, Charles A.; Angueyra, Juan M.; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D.

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity. PMID:26523737

  1. Chromatic detection from cone photoreceptors to V1 neurons to behavior in rhesus monkeys.

    PubMed

    Hass, Charles A; Angueyra, Juan M; Lindbloom-Brown, Zachary; Rieke, Fred; Horwitz, Gregory D

    2015-01-01

    Chromatic sensitivity cannot exceed limits set by noise in the cone photoreceptors. To determine how close neurophysiological and psychophysical chromatic sensitivity come to these limits, we developed a parameter-free model of stimulus encoding in the cone outer segments, and we compared the sensitivity of the model to the psychophysical sensitivity of monkeys performing a detection task and to the sensitivity of individual V1 neurons. Modeled cones had a temporal impulse response and a noise power spectrum that were derived from in vitro recordings of macaque cones, and V1 recordings were made during performance of the detection task. The sensitivity of the simulated cone mosaic, the V1 neurons, and the monkeys were tightly yoked for low-spatiotemporal-frequency isoluminant modulations, indicating high-fidelity signal transmission for this class of stimuli. Under the conditions of our experiments and the assumptions for our model, the signal-to-noise ratio for these stimuli dropped by a factor of ∼3 between the cones and perception. Populations of weakly correlated V1 neurons narrowly exceeded the monkeys' chromatic sensitivity but fell well short of the cones' chromatic sensitivity, suggesting that most of the behavior-limiting noise lies between the cone outer segments and the output of V1. The sensitivity gap between the cones and behavior for achromatic stimuli was larger than for chromatic stimuli, indicating greater postreceptoral noise. The cone mosaic model provides a means to compare visual sensitivity across disparate stimuli and to identify sources of noise that limit visual sensitivity.

  2. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  3. Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.

    1991-01-01

    Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.

  4. Hydrogeologic structure underlying a recharge pond delineated with shear-wave seismic reflection and cone penetrometer data

    USGS Publications Warehouse

    Haines, S.S.; Pidlisecky, Adam; Knight, R.

    2009-01-01

    With the goal of improving the understanding of the subsurface structure beneath the Harkins Slough recharge pond in Pajaro Valley, California, USA, we have undertaken a multimodal approach to develop a robust velocity model to yield an accurate seismic reflection section. Our shear-wave reflection section helps us identify and map an important and previously unknown flow barrier at depth; it also helps us map other relevant structure within the surficial aquifer. Development of an accurate velocity model is essential for depth conversion and interpretation of the reflection section. We incorporate information provided by shear-wave seismic methods along with cone penetrometer testing and seismic cone penetrometer testing measurements. One velocity model is based on reflected and refracted arrivals and provides reliable velocity estimates for the full depth range of interest when anchored on interface depths determined from cone data and borehole drillers' logs. A second velocity model is based on seismic cone penetrometer testing data that provide higher-resolution ID velocity columns with error estimates within the depth range of the cone penetrometer testing. Comparison of the reflection/refraction model with the seismic cone penetrometer testing model also suggests that the mass of the cone truck can influence velocity with the equivalent effect of approximately one metre of extra overburden stress. Together, these velocity models and the depth-converted reflection section result in a better constrained hydrologic model of the subsurface and illustrate the pivotal role that cone data can provide in the reflection processing workflow. ?? 2009 European Association of Geoscientists & Engineers.

  5. When Do Short-Wave Cones Signal Blue or Red? A Solution Introducing the Concept of Primary and Secondary Cone Outputs

    PubMed Central

    2016-01-01

    A recent paper by Oh and Sakata investigates the “incompletely solved mystery” of how the three cone responses map onto perceived hue, and particularly the S cone’s well-known problematic contribution to blueness and redness. Citing previous workers, they argue the twentieth century traditional multistage model does not satisfactorily account for color appearance. In their experiment, increasing S cone excitation with shortening wavelength from about 480–460 nm increased perceived blueness up to the unique Blue point at 470 nm, when (a) it began decreasing and (b) redness perception began increasing. The authors asked, What mechanism can be responsible for such functions? I demonstrate a solution. First, it is shown the problem does not lie in the traditional opponent color chromatic responses yellow-blue, red-green (y-b, r-g, which accurately predict the above functions), but in the traditional multistage model of mapping cone responses to chromatic response functions. Arguably, this is due to the S cone’s hypothetically signaling both blueness and redness by the same mechanism rather than by different, independent, mechanisms. Hence a new distinction or mechanism is proposed for a more accurate model, that introduces the new terms primary and secondary cone outputs. However, this distinction requires that the cones S, M, L each directly produce one of the three spectral chromatic responses b, g, y. Such a model was recently published, based on extremely high correlation of SML cone responsivities with the three spectral (bgy) chromatic responses. This model encodes the former directly onto the latter one-to-one as cone primary outputs, whilst S and L cones have a further or secondary function where each produces one of the two spectral lobes of r chromatic response. The proposed distinction between primary and secondary cone outputs is a new concept and useful tool in detailing cone outputs to chromatic channels, and provides a solution to the above “incompletely solved mystery.” Thus the S cone has a primary output producing the total b chromatic response and a secondary output that shares with the L cone the production of r chromatic response, thus aligning with Oh and Sokata’s results. The model similarly maps L cone to yellowness as primary output and to redness as secondary output. PMID:27110938

  6. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T. Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L.; Peterson, James J.; Boye, Shannon E.; Hauswirth, William W.; Chulay, Jeffrey D.

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia. PMID:26603570

  7. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.

    PubMed

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.

  8. Wind-tunnel investigation of the aerodynamic characteristics of the Standard Dynamics Model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A series of wind-tunnel tests have been conducted on the Standard Dynamics Model (a simplified generic fighter-aircraft shape) undergoing coning motion at Mach 0.6. Six-component force and moment data are presented for a range of angles of attack, sideslip and coning rates. At the relatively low nondimensional coning rates employed, the lateral aerodynamic charactersitics generally show a linear variation with coning rate.

  9. Gas-Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery.

    PubMed

    Mannaris, Christophoros; Teo, Boon M; Seth, Anjali; Bau, Luca; Coussios, Constantin; Stride, Eleanor

    2018-06-01

    The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Stability of hypersonic compression cones

    NASA Astrophysics Data System (ADS)

    Reed, Helen; Kuehl, Joseph; Perez, Eduardo; Kocian, Travis; Oliviero, Nicholas

    2012-11-01

    Our activities focus on the identification and understanding of the second-mode instability for representative configurations in hypersonic flight. These include the Langley 93-10 flared cone and the Purdue compression cone, both at 0 degrees angle of attack at Mach 6. Through application of nonlinear parabolized stability equations (NPSE) and linear parabolized stability equations (PSE) to both geometries, it is concluded that mean-flow distortion tends to amplify frequencies less than the peak frequency and stabilize those greater by modifying the boundary-layer thickness. As initial disturbance amplitude is increased and/or a broad spectrum disturbance is introduced, direct numerical simulations (DNS) or NPSE appear to be the proper choices to model the evolution, and relative evolution, because these computational tools include these nonlinear effects (mean-flow distortion). Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 is gratefully acknowledged. The authors also thank Pointwise, AeroSoft, and Texas Advanced Computing Center (TACC).

  11. Pilot vision.

    DOT National Transportation Integrated Search

    2002-08-01

    The sharpest distant focus is only within a one-degree cone. : Outside of a 10 cone, visual acuity drops 90%. : Scan the entire horizon, not just the sky in front of your aircraft. : You are 5 times more likely to have a midair collision with an ai...

  12. Optimized Orthovoltage Stereotactic Radiosurgery

    NASA Astrophysics Data System (ADS)

    Fagerstrom, Jessica M.

    Because of its ability to treat intracranial targets effectively and noninvasively, stereotactic radiosurgery (SRS) is a prevalent treatment modality in modern radiation therapy. This work focused on SRS delivering rectangular function dose distributions, which are desirable for some targets such as those with functional tissue included within the target volume. In order to achieve such distributions, this work used fluence modulation and energies lower than those utilized in conventional SRS. In this work, the relationship between prescription isodose and dose gradients was examined for standard, unmodulated orthovoltage SRS dose distributions. Monte Carlo-generated energy deposition kernels were used to calculate 4pi, isocentric dose distributions for a polyenergetic orthovoltage spectrum, as well as monoenergetic orthovoltage beams. The relationship between dose gradients and prescription isodose was found to be field size and energy dependent, and values were found for prescription isodose that optimize dose gradients. Next, a pencil-beam model was used with a Genetic Algorithm search heuristic to optimize the spatial distribution of added tungsten filtration within apertures of cone collimators in a moderately filtered 250 kVp beam. Four cone sizes at three depths were examined with a Monte Carlo model to determine the effects of the optimized modulation compared to open cones, and the simulations found that the optimized cones were able to achieve both improved penumbra and flatness statistics at depth compared to the open cones. Prototypes of the filter designs calculated using mathematical optimization techniques and Monte Carlo simulations were then manufactured and inserted into custom built orthovoltage SRS cone collimators. A positioning system built in-house was used to place the collimator and filter assemblies temporarily in the 250 kVp beam line. Measurements were performed in water using radiochromic film scanned with both a standard white light flatbed scanner as well as a prototype laser densitometry system. Measured beam profiles showed that the modulated beams could more closely approach rectangular function dose profiles compared to the open cones. A methodology has been described and implemented to achieve optimized SRS delivery, including the development of working prototypes. Future work may include the construction of a full treatment platform.

  13. Determination of CME 3D parameters based on a new full ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Yong-Jae

    2017-08-01

    In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.

  14. Numerical Modeling of Shatter Cones Development in Impact Craters

    NASA Technical Reports Server (NTRS)

    Baratoux, D.; Melosh, H. J.

    2003-01-01

    Shatter cones are the characteristic forms of rock fractures in impact structures. They have been used for decades as unequivocal fingerprints of meteoritic impacts on Earth. The abundant data about shapes, apical angles, sizes and distributions of shatter cones for many terrestrial impact structures should provide insights for the determination of impact conditions and characteristics of shock waves produced by high-velocity projectiles in geologic media. However, previously proposed models for the formation of shatter cones do not agree with observations. For example, the widely accepted Johnson-Talbot mechanism requires that the longitudinal stress drops to zero between the arrival of the elastic precursor and the main plastic wave. Unfortunately, observations do not support such a drop. A model has been also proposed to explain the striated features on the surface of shatter cones but can not invoked for their conical shape. The mechanism by which shatter cones form thus remains enigmatic to date. In this paper we present a new model for the formation of shatter cones. Our model has been tested by means of numerical simulations using the hydrocodes SALE 2D enhanced with the Grady-Kipp-Melosh fragmentation model.

  15. Testing the reliability of ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Pan, Zonghao; Shen, Chenglong; Wang, Chuanbing; Liu, Kai; Xue, Xianghui; Wang, Yuming; Wang, Shui

    2015-04-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but space-weather prediction. Several models (such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observed by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of all the FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle till July 2012, by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. Then we could discuss the reliability of the ice-cream cone model.

  16. Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.

  17. Static and dynamic pitching moment measurements on a family of elliptic cones at Mach number 11 in helium

    NASA Technical Reports Server (NTRS)

    Orlik-Rueckermann, K. J.; Laberge, J. G.

    1970-01-01

    Static and dynamic pitching moment measurements were made on a family of constant volume elliptic cones about two fixed axes of oscillation in the NAE helium hypersonic wind tunnel at a Mach number of 11 and at Reynolds numbers based on model length of up to 14 million. Viscous effects on the stability derivatives were investigated by varying the Reynolds number for certain models by a factor as large as 10. The models investigated comprised a 7.75 deg circular cone, elliptic cones of axis ratios 3 and 6, and an elliptic cone with conical protuberances.

  18. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Have We Achieved a Unified Model of Photoreceptor Cell Fate Specification in Vertebrates?

    PubMed Central

    Raymond, Pamela A.

    2008-01-01

    How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina. PMID:17466954

  20. Techniques for optimizing nanotips derived from frozen taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the lasermore » to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.« less

  1. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, J.W.

    1993-10-12

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

  2. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

  3. Successful gene therapy in the RPGRIP1-deficient dog: a large model of cone-rod dystrophy.

    PubMed

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-02-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.

  4. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim

    2017-04-01

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory (STEREO)/Sun-Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft (SOHO or one of STEREO A and B) and limb ones by the other spacecraft (One of STEREO A and B or SOHO). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (I.e., a triangulation method and a Graduated Cylindrical Shell model).

  5. Development of a Full Ice-cream Cone Model for Halo Coronal Mass Ejections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Hyeonock; Moon, Y.-J.; Lee, Harim, E-mail: nho0512@khu.ac.kr, E-mail: moonyj@khu.ac.kr

    It is essential to determine three-dimensional parameters (e.g., radial speed, angular width, and source location) of coronal mass ejections (CMEs) for the space weather forecast. In this study, we investigate which cone type represents a halo CME morphology using 29 CMEs (12 Solar and Heliospheric Observatory (SOHO) /Large Angle and Spectrometric Coronagraph (LASCO) halo CMEs and 17 Solar Terrestrial Relations Observatory ( STEREO )/Sun–Earth Connection Coronal and Heliospheric Investigation COR2 halo CMEs) from 2010 December to 2011 June. These CMEs are identified as halo CMEs by one spacecraft ( SOHO or one of STEREO A and B ) and limbmore » ones by the other spacecraft (One of STEREO A and B or SOHO ). From cone shape parameters of these CMEs, such as their front curvature, we find that the CME observational structures are much closer to a full ice-cream cone type than a shallow ice-cream cone type. Thus, we develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths to estimate the three-dimensional parameters of the halo CMEs. This model is constructed by carrying out the following steps: (1) construct a cone for a given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, and (4) minimize the difference between the estimated projection speeds with the observed ones. By applying this model to 12 SOHO /LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model).« less

  6. SU-E-T-252: Developing a Pencil Beam Dose Calculation Algorithm for CyberKnife System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B; Duke University Medical Center, Durham, NC; Liu, B

    2015-06-15

    Purpose: Currently there are two dose calculation algorithms available in the Cyberknife planning system: ray-tracing and Monte Carlo, which is either not accurate or time-consuming for irregular field shaped by the MLC that was recently introduced. The purpose of this study is to develop a fast and accurate pencil beam dose calculation algorithm which can handle irregular field. Methods: A pencil beam dose calculation algorithm widely used in Linac system is modified. The algorithm models both primary (short range) and scatter (long range) components with a single input parameter: TPR{sub 20}/{sub 10}. The TPR{sub 20}/{sub 20}/{sub 10} value was firstmore » estimated to derive an initial set of pencil beam model parameters (PBMP). The agreement between predicted and measured TPRs for all cones were evaluated using the root mean square of the difference (RMSTPR), which was then minimized by adjusting PBMPs. PBMPs are further tuned to minimize OCR RMS (RMSocr) by focusing at the outfield region. Finally, an arbitrary intensity profile is optimized by minimizing RMSocr difference at infield region. To test model validity, the PBMPs were obtained by fitting to only a subset of cones (4) and applied to all cones (12) for evaluation. Results: With RMS values normalized to the dmax and all cones combined, the average RMSTPR at build-up and descending region is 2.3% and 0.4%, respectively. The RMSocr at infield, penumbra and outfield region is 1.5%, 7.8% and 0.6%, respectively. Average DTA in penumbra region is 0.5mm. There is no trend found in TPR or OCR agreement among cones or depths. Conclusion: We have developed a pencil beam algorithm for Cyberknife system. The prediction agrees well with commissioning data. Only a subset of measurements is needed to derive the model. Further improvements are needed for TPR buildup region and OCR penumbra. Experimental validations on MLC shaped irregular field needs to be performed. This work was partially supported by the National Natural Science Foundation of China (61171005) and the China Scholarship Council (CSC)« less

  7. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    PubMed

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Idealized digital models for conical reed instruments, with focus on the internal pressure waveform.

    PubMed

    Kergomard, J; Guillemain, P; Silva, F; Karkar, S

    2016-02-01

    Two models for the generation of self-oscillations of reed conical woodwinds are presented. The models use the fewest parameters (of either the resonator or the exciter), whose influence can be quickly explored. The formulation extends iterated maps obtained for lossless cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristic impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics.

  9. Thermoelastic Damping in Cone Microcantilever Resonator

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with continuous or discontinuous variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators, such as tapered microbeam, torsion microbeam and stepped microbeam. Thermoelastic damping (TED), which is verified as a fundamental energy lost mechanism for microresonators, is calculated by the Zener’s model and Lifshits and Roukes’s (LR) model in general. However, for non-uniform microbeam resonators, these two classical models are not suitable in some cases. On the basis of Zener’s theory, a TED model for cone microcantilever with rectangular cross-section has been derived in this study. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the proposed model is able to predict TED value for cone microcantilever. In addition, TED in cone microcantilever is nearly same as TED in wedge microcantilever. The results show that quality factors (Q-factors) of cone microcantilever and wedge microcantilever are larger than Q-factor of uniform microbeam at low frequencies. The Debye peak value of a uniform microcantilever is equal to 0.5Δ E , while those of cone microcantilever and wedge microcantilever are about 0.438ΔE and 0.428ΔE, respectively.

  10. Development of the Noise-Resistant and Sound Focusing Accessory of Ultrasonic Leak Detector for Spacecraft on Orbit

    NASA Astrophysics Data System (ADS)

    Sun, W.; Yan, R. X.; Sun, L. C.; Shao, R. P.

    2017-12-01

    Ultrasonic signal produced by the gas leak is so week that it is difficult to detect, and easily interfered. So developing the noise-resistant and sound focusing accessory for the ultrasonic leak detector is very important for improving ultrasonic leak detector sensitivity and noise-resistant capability. Based on the theory analysis of the leak ultrasonic signal reverberation and anacampsis, the 5A06 aluminium alloy and nylon were selected as the material of noise-resistant and sound focusing accessory by calculation and compare. Then the circular cone trumpet structure was design as the accessory main structure, and the nylon expansion port, nylon shrinking port and aluminium alloy expansion port structures were manufactured. The different structure characters were shown by the contrasting experiment. The results indicate that the nylon expansion circular cone trumpet structure has better sound focusing performance and it can improve the testing sound pressure amplitude 10 bigger than the detector without the accessory. And the aluminium alloy expansion circular cone trumpet structure has better noise-resistant ability than others. These conclusions are very important for the spacecraft leak detection and it can provide some references for the design of the noise-resistant and sound focusing structure.

  11. Automatic Determination of the Conic Coronal Mass Ejection Model Parameters

    NASA Technical Reports Server (NTRS)

    Pulkkinen, A.; Oates, T.; Taktakishvili, A.

    2009-01-01

    Characterization of the three-dimensional structure of solar transients using incomplete plane of sky data is a difficult problem whose solutions have potential for societal benefit in terms of space weather applications. In this paper transients are characterized in three dimensions by means of conic coronal mass ejection (CME) approximation. A novel method for the automatic determination of cone model parameters from observed halo CMEs is introduced. The method uses both standard image processing techniques to extract the CME mass from white-light coronagraph images and a novel inversion routine providing the final cone parameters. A bootstrap technique is used to provide model parameter distributions. When combined with heliospheric modeling, the cone model parameter distributions will provide direct means for ensemble predictions of transient propagation in the heliosphere. An initial validation of the automatic method is carried by comparison to manually determined cone model parameters. It is shown using 14 halo CME events that there is reasonable agreement, especially between the heliocentric locations of the cones derived with the two methods. It is argued that both the heliocentric locations and the opening half-angles of the automatically determined cones may be more realistic than those obtained from the manual analysis

  12. Rayleigh matches in carriers of inherited color vision defects: the contribution from the third L/M photopigment.

    PubMed

    Sun, Yang; Shevell, Steven K

    2008-01-01

    The mother or daughter of a male with an X-chromosome-linked red/green color defect is an obligate carrier of the color deficient gene array. According to the Lyonization hypothesis, a female carrier's defective gene is expressed and thus carriers may have more than two types of pigments in the L/M photopigment range. An open question is how a carrier's third cone pigment in the L/M range affects the postreceptoral neural signals encoding color. Here, a model considered how the signal from the third pigment pools with signals from the normal's two pigments in the L/M range. Three alternative assumptions were considered for the signal from the third cone pigment: it pools with the signal from (1) L cones, (2) M cones, or (3) both types of cones. Spectral-sensitivity peak, optical density, and the relative number of each cone type were factors in the model. The model showed that differences in Rayleigh matches among carriers can be due to individual differences in the number of the third type of L/M cone, and the spectral sensitivity peak and optical density of the third L/M pigment; surprisingly, however, individual differences in the cone ratio of the other two cone types (one L and the other M) did not affect the match. The predicted matches were compared to Schmidt's (1934/1955) report of carriers' Rayleigh matches. For carriers of either protanomaly or deuteranomaly, these matches were not consistent with the signal from the third L/M pigment combining with only the signal from M cones. The matches could be accounted for by pooling the third-pigment's response with L-cone signals, either exclusively or randomly with M-cone responses as well.

  13. Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old rd12 Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis

    PubMed Central

    Li, Xia; Li, Wensheng; Dai, Xufeng; Kong, Fansheng; Zheng, Qinxiang; Zhou, Xiangtian; Lü, Fan; Chang, Bo; Rohrer, Bärbel; Hauswirth, William. W.; Qu, Jia; Pang, Ji-jing

    2011-01-01

    Purpose. RPE65 function is necessary in the retinal pigment epithelium (RPE) to generate chromophore for all opsins. Its absence results in vision loss and rapid cone degeneration. Recent Leber congenital amaurosis type 2 (LCA with RPE65 mutations) phase I clinical trials demonstrated restoration of vision on RPE65 gene transfer into RPE cells overlying cones. In the rd12 mouse, a naturally occurring model of RPE65-LCA early cone degeneration was observed; however, some peripheral M-cones remained. A prior study showed that AAV-mediated RPE65 expression can prevent early cone degeneration. The present study was conducted to test whether the remaining cones in older rd12 mice can be rescued. Methods. Subretinal treatment with the scAAV5-smCBA-hRPE65 vector was initiated at postnatal day (P)14 and P90. After 2 months, electroretinograms were recorded, and cone morphology was analyzed by using cone-specific peanut agglutinin and cone opsin–specific antibodies. Results. Cone degeneration started centrally and spread ventrally, with cells losing cone-opsin staining before that for the PNA-lectin–positive cone sheath. Gene therapy starting at P14 resulted in almost wild-type M- and S-cone function and morphology. Delaying gene-replacement rescued the remaining M-cones, and most important, more M-cone opsin–positive cells were identified than were present at the onset of gene therapy, suggesting that opsin expression could be reinitiated in cells with cone sheaths. Conclusions. The results support and extend those of the previous study that gene therapy can stop early cone degeneration, and, more important, they provide proof that delayed treatment can restore the function and morphology of the remaining cones. These results have important implications for the ongoing LCA2 clinical trials. PMID:21169527

  14. Chemical Chaperone TUDCA Preserves Cone Photoreceptors in a Mouse Model of Leber Congenital Amaurosis

    PubMed Central

    Zhang, Tao; Baehr, Wolfgang; Fu, Yingbin

    2012-01-01

    Purpose. Mutations in either retinoid isomerase (RPE65) or lecithin-retinol acyltransferase (LRAT) lead to Leber congenital amaurosis (LCA). By using the Lrat–/– mouse model, previous studies have shown that the rapid cone degeneration in LCA was caused by endoplasmic reticulum (ER) stress induced by S-opsin aggregation. The purpose of this study is to examine the efficacy of an ER chemical chaperone, tauroursodeoxycholic acid (TUDCA), in preserving cones in the Lrat–/– model. Methods. Lrat–/– mice were systemically administered with TUDCA and vehicle (0.15 M NaHCO3) every 3 days from P9 to P28. Cone cell survival was determined by counting cone cells on flat-mounted retinas. The expression and subcellular localization of cone-specific proteins were analyzed by western blotting and immunohistochemistry, respectively. Results. TUDCA treatment reduced ER stress and apoptosis in Lrat–/– retina. It significantly slowed down cone degeneration in Lrat–/– mice, resulting in a ∼3-fold increase in cone density in the ventral and central retina as compared with the vehicle-treated mice at P28. Furthermore, TUDCA promoted the degradation of cone membrane–associated proteins by enhancing the ER-associated protein degradation pathway. Conclusions. Systemic injection of TUDCA is effective in reducing ER stress, preventing apoptosis, and preserving cones in Lrat–/– mice. TUDCA has the potential to lead to the development of a new class of therapeutic drugs for treating LCA. PMID:22531707

  15. Morphological classification and spatial distribution of Philippine volcanoes

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Kervyn, M.; Grosse, P.

    2016-12-01

    The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of volcano collapse scars and erosional amphitheater valleys suggests that, during their development, volcano growth is affected by movement of underlying tectonic structures, weight and stability of the growing edifice, structure and composition of the substrata, and intense erosion associated with tropical rainfall.

  16. Laser range profile of cones

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhen; Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2016-10-01

    technology. Laser one-dimensional range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser about cone is given in this paper. This paper demonstrates the analytical model of laser one-dimensional range profile of cone based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cones are given. Laser one-dimensional range profiles of cone, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser one-dimensional range profiles of different pulse width of cone is given in this paper. The influences of surface material, pulse width, attitude on the one-dimensional range are analyzed. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. The two-dimensional range profile of roughness target can provide range resolved information. An analytical model of two-dimensional laser range profile of cone is proposed. The simulations of two-dimensional laser range profiles of some cones are given. Laser two-dimensional range profiles of cone, whose surface mater with diffuse lambertian reflectance, is given in this paper. Laser two-dimensional range profiles of cone, whose surface mater with diffuse materials whose retroreflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. The influence of pulse width, surface material on laser two-dimensional range profile is analyzed. Laser one-dimensional range profile and laser two-dimensional range profile are called as laser range profile (LRP).

  17. Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina.

    PubMed

    Young, S R; Martin, G R

    1984-01-01

    A wave optical model was used to analyse the scattering properties of avian retinal oil droplets. Computations for the near field region showed that oil droplets perform significant light collection in cone photoreceptors and so enhance outer segment photon capture rates. Scattering by the oil droplet of the principal cone of a double cone pair, combined with accessory cone dichroic absorption under conditions of transverse illumination, may mediate avian polarization sensitivity.

  18. Free-Flight Skin Temperature and Pressure Measurements on a Slightly Blunted 25 Deg Cone-Cylinder-Flare Configuration to a Mach Number of 9.89

    NASA Technical Reports Server (NTRS)

    Bond, Aleck C.; Rumsey, Charles B.

    1957-01-01

    Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.

  19. Analytic treatment of nuclear spin-lattice relaxation for diffusion in a cone model

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2011-12-01

    We consider nuclear spin-lattice relaxation rate resulted from a diffusion equation for rotational wobbling in a cone. We show that the widespread point of view that there are no analytical expressions for correlation functions for wobbling in a cone model is invalid and prove that nuclear spin-lattice relaxation in this model is exactly tractable and amenable to full analytical description. The mechanism of relaxation is assumed to be due to dipole-dipole interaction of nuclear spins and is treated within the framework of the standard Bloemberger, Purcell, Pound-Solomon scheme. We consider the general case of arbitrary orientation of the cone axis relative the magnetic field. The BPP-Solomon scheme is shown to remain valid for systems with the distribution of the cone axes depending only on the tilt relative the magnetic field but otherwise being isotropic. We consider the case of random isotropic orientation of cone axes relative the magnetic field taking place in powders. Also we consider the cases of their predominant orientation along or opposite the magnetic field and that of their predominant orientation transverse to the magnetic field which may be relevant for, e.g., liquid crystals. Besides we treat in details the model case of the cone axis directed along the magnetic field. The latter provides direct comparison of the limiting case of our formulas with the textbook formulas for free isotropic rotational diffusion. The dependence of the spin-lattice relaxation rate on the cone half-width yields results similar to those predicted by the model-free approach.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.

    In inertial confinement fusion, the implosion process is important in forming a high-density plasma core. In the case of a fast ignition scheme using a cone-guided target, the fuel target is imploded with a cone inserted. This scheme is advantageous for efficiently heating the imploded fuel core; however, asymmetric implosion is essentially inevitable. Moreover, the effect of cone position and opening angle on implosion also becomes critical. Focusing on these problems, the effect of the asymmetric implosion, the initial position, and the opening angle on the compression rate of the fuel is investigated using a three-dimensional pure hydrodynamic code.

  1. Ensemble Forecasting of Coronal Mass Ejections Using the WSA-ENLIL with CONED Model

    NASA Technical Reports Server (NTRS)

    Emmons, D.; Acebal, A.; Pulkkinen, A.; Taktakishvili, A.; MacNeice, P.; Odstricil, D.

    2013-01-01

    The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth's magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.

  2. Experimental investigation on a high head model Francis turbine during load rejection

    NASA Astrophysics Data System (ADS)

    Goyal, R.; Bergan, C.; Cervantes, M. J.; Gandhi, B. K.; Dahlhaug, O. G.

    2016-11-01

    Francis-99 is a set of workshop aiming to determine the state of the art of high head model Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as to promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) was concerned with steady state operation. The second workshop will focus on transient operations such as load variation and start-stop. In the present work, 2-D particle image velocimetry (PIV) with synchronized pressure measurements performed in the draft tube cone of the Francis-99 test case during load rejection is presented. Pressure sensors were mounted in the vaneless space and draft tube cone to estimate the instantaneous pressure fluctuations while operating the turbine from the best efficiency point (9.8°) to part load (6.7°) with the presence of a rotating vortex rope (RVR). The time-resolved velocity and pressure data are presented in this paper showing the transition in the turbine from one state to another.

  3. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    PubMed

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cone calorimeter evaluation of wood products

    Treesearch

    Robert H. White; Mark A. Dietenberger

    2004-01-01

    The Forest Products Laboratory uses the cone calorimeter for the initial evaluation of the flammability of untreated and fire retardant treated wood products. The results of various studies are reviewed using a model presented at the 12th Annual BBC Conference on Flame Retardancy. The model uses data from the cone calorimeter to provide measures of fire growth...

  5. Dale's Cone Revisited: Critically Examining the Misapplication of a Nebulous Theory to Guide Practice.

    ERIC Educational Resources Information Center

    Subramony, Deepak, Prem

    2003-01-01

    Edgar Dale's (1946) Cone of Experience model-and various adaptations-have been used by practitioners for decades. However, little has been accomplished by way of examining and refining the model (and its associated theories). This article suggests several philosophical perspectives by which gaps in the prevalent version of Dale's Cone could be…

  6. Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory

    PubMed Central

    Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.

    2014-01-01

    Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292

  7. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  8. A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.

  9. BROJA-2PID: A Robust Estimator for Bivariate Partial Information Decomposition

    NASA Astrophysics Data System (ADS)

    Makkeh, Abdullah; Theis, Dirk; Vicente, Raul

    2018-04-01

    Makkeh, Theis, and Vicente found in [8] that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decompostion (BROJA PID) measure [1]. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then describe in detail our software and how to use it.\

  10. Testing the reliability of ice-cream cone model

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Shen, C.; Wang, Y.; Liu, K.

    2013-12-01

    Coronal Mass Ejections (CME)'s properties are important to not only the physical scene itself but spaceweather prediction. Several models(such as cone model, GCS model, and so on) have been raised to get rid of the projection effects within the properties observated by spacecraft. According to SOHO/ LASCO observations, we obtain the 'real' 3D parameters of 33 FFHCMEs (front-side full halo Coronal Mass Ejections) within the 24th solar cycle by the ice-cream cone model. Considering that the method to obtain 3D parameters from the CME observations by multi-satellite and multi-angle has higher accuracy, we use the GCS model to obtain the real propagation parameters of these CMEs in 3D space and compare the results with which by ice-cream cone model. It was demonstrated that the correlation coefficient for the speeds by using these both methods is 0.97.

  11. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.

    PubMed

    Dawood, Sara; Sen, Tushar Kanti

    2012-04-15

    Pine cone a natural, low-cost agricultural by-product in Australia has been studied for its potential application as an adsorbent in its raw and hydrochloric acid modified form. Surface study of pine cone and treated pine cone was investigated using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The modification process leads to increases in the specific surface area and decreases mean particle sizes of acid-treated pine cone when compared to raw pine cone biomass. Batch adsorption experiments were performed to remove anionic dye Congo red from aqueous solution. It was found that the extent of Congo red adsorption by both raw pine cone biomass and acid-treated biomass increased with initial dye concentration, contact time, temperature but decreased with increasing solution pH and amount of adsorbent of the system. Overall, kinetic studies showed that the dye adsorption process followed pseudo-second-order kinetics based on pseudo-first-order and intra-particle diffusion models. The different kinetic parameters including rate constant, half-adsorption time, and diffusion coefficient were determined at different physico-chemical conditions. Equilibrium data were best represented by Freundlich isotherm model among Langmuir and Freundlich adsorption isotherm models. It was observed that the adsorption was pH dependent and the maximum adsorption of 32.65 mg/g occurred at pH of 3.55 for an initial dye concentration of 20 ppm by raw pine cone, whereas for acid-treated pine cone the maximum adsorption of 40.19 mg/g for the same experimental conditions. Freundlich constant 'n' also indicated favourable adsorption. Thermodynamic parameters such as ∆G(0), ∆H(0), and ∆S(0) were calculated. A single-stage batch absorber design for the Congo red adsorption onto pine cone biomass also presented based on the Freundlich isotherm model equation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots

    PubMed Central

    Brainard, David H.; Williams, David R.; Hofer, Heidi

    2009-01-01

    Observers use a wide range of color names, including white, to describe monochromatic flashes with a retinal size comparable to that of a single cone. We model such data as a consequence of information loss arising from trichromatic sampling. The model starts with the simulated responses of the individual L, M, and S cones actually present in the cone mosaic and uses these to reconstruct the L-, M-, and S-cone signals that were present at every image location. We incorporate the optics and the mosaic topography of individual observers, as well as the spatio-chromatic statistics of natural images. We simulated the experiment of H. Hofer, B. Singer, & D. R. Williams (2005) and predicted the color name on each simulated trial from the average chromaticity of the spot reconstructed by our model. Broad features of the data across observers emerged naturally as a consequence of the measured individual variation in the relative numbers of L, M, and S cones. The model’s output is also consistent with the appearance of larger spots and of sinusoidal contrast modulations. Finally, the model makes testable predictions for future experiments that study how color naming varies with the fine structure of the retinal mosaic. PMID:18842086

  13. Biochemical Characterization of Cone Cyclic Nucleotide-gated (CNG) Channel Using the Infrared Fluorescence Detection System

    PubMed Central

    Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki

    2012-01-01

    Cone vision mediated by photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Cone CNG channel is composed of two structurally related subunit types, CNGA3 and CNGB3. Naturally occurring mutations in cone CNG channel are associated with a variety of cone diseases including achromatopsia, progressive cone dystrophy, and some maculopathies. Nevertheless, our understanding of the structure of cone CNG channel is quite limited. This is, in part, due to the challenge of studying cones in a rod-dominant mammalian retina. We have demonstrated a robust expression of cone CNG channel and lack of rod CNG channel in the cone-dominant Nrl−/− retina and shown that the Nrl−/− mouse line is a valuable model to study cone CNG channel. This work examined the complex structure of cone CNG channel using infrared fluorescence Western detection combined with chemical cross-linking and blue native-PAGE. Our results suggest that the native cone CNG channel is a heterotetrameric complex likely at a stoichiometry of three CNGA3 and one CNGB3. PMID:22183405

  14. Modeling the role of mid-wavelength cones in circadian responses to light

    PubMed Central

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frédéric; Cooper, Howard M.

    2007-01-01

    Summary Non-visual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and towards the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modelling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light. PMID:17329208

  15. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber

    PubMed Central

    Burchardt, Steffi; Troll, Valentin R.; Mathieu, Lucie; Emeleus, Henry C.; Donaldson, Colin H.

    2013-01-01

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system. PMID:24100542

  16. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    PubMed

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  17. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  18. Conifer ovulate cones accumulate pollen principally by simple impaction.

    PubMed

    Cresswell, James E; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A; Young, Phillipe G; Tabor, Gavin R

    2007-11-13

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones.

  19. Conifer ovulate cones accumulate pollen principally by simple impaction

    PubMed Central

    Cresswell, James E.; Henning, Kevin; Pennel, Christophe; Lahoubi, Mohamed; Patrick, Michael A.; Young, Phillipe G.; Tabor, Gavin R.

    2007-01-01

    In many pine species (Family Pinaceae), ovulate cones structurally resemble a turbine, which has been widely interpreted as an adaptation for improving pollination by producing complex aerodynamic effects. We tested the turbine interpretation by quantifying patterns of pollen accumulation on ovulate cones in a wind tunnel and by using simulation models based on computational fluid dynamics. We used computer-aided design and computed tomography to create computational fluid dynamics model cones. We studied three species: Pinus radiata, Pinus sylvestris, and Cedrus libani. Irrespective of the approach or species studied, we found no evidence that turbine-like aerodynamics made a significant contribution to pollen accumulation, which instead occurred primarily by simple impaction. Consequently, we suggest alternative adaptive interpretations for the structure of ovulate cones. PMID:17986613

  20. The drag of magnetically suspended wind-tunnel models with nose-cones of various shapes

    NASA Technical Reports Server (NTRS)

    Dubois, G.

    1983-01-01

    This article concerns the experimental determination of optimum nose-cones (minimum drag) of a body of revolution at supersonic and hypersonic speeds by means of ONERA magnetic suspension. The study concerns two groups of models, specifically: a group whose nose-cone has a profile in the shape of X(n); the AGARD B group whose nose-cone is plotted in accordance with a given law. The results obtained for the first group are comparable to those calculated with the approximations of Cole and Newton and the experiments carried out by Kubota.

  1. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.

  2. Maintenance costs of serotiny in a variably serotinous pine: The role of water supply.

    PubMed

    Martín-Sanz, Ruth C; Callejas-Díaz, Marta; Tonnabel, Jeanne; Climent, José M

    2017-01-01

    Serotiny is an important adaptation for plants in fire-prone environments. However, different mechanisms also induce the opening of serotinous cones in the absence of fire in variably serotinous species. Xeriscence -cone opening driven by dry and hot conditions- is considered to be mediated only by the external environment, but endogenous factors could also play a significant role. Using the variably serotinous Pinus halepensis as our model species, we determined the effects of cone age and scales density in cone opening, and using in-situ and ex-situ manipulative experiments we investigated the role of water availability in the opening of serotinous cones. We hypothesized that loss of connection between the cones and the branch through the peduncles or the absence of water supply could induce a faster cone opening. Results showed that older cones lost more water and opened at lower temperatures, with no influence of scales density. Both field and chamber manipulative experiments (using paired cones of the same whorl) confirmed that water intake through the peduncles affected significantly the pace of cone opening, such that lack of water supply speeded up cone dehiscence. However, this was true for weakly serotinous provenances-more common in this species-, while highly serotinous provenances were indifferent to this effect in the field test. All our results support that cone serotiny in P. halepensis involves the allocation of water to the cones, which is highly consistent with the previously observed environmental effects. Importantly, the existence of maintenance costs of serotinous cones has strong implications on the effects of climate change in the resilience of natural populations, via modifications of the canopy seed banks and recruitment after stand-replacing fires. Moreover, evolutionary models for serotiny in P. halepensis must take into account the significant contribution of maintenance costs to the complex interaction between genotype and the environment.

  3. Improving the particle beam characteristics resulting from laser ion acceleration at ultra high intensity through target manipulation - Numerical modeling

    NASA Astrophysics Data System (ADS)

    Tatomirescu, Dragos; d'Humieres, Emmanuel; Vizman, Daniel

    2017-12-01

    The necessity to produce superior quality ion and electron beams has been a hot research field due to the advances in laser science in the past decade. This work focuses on the parametric study of different target density profiles in order to determine their effect on the spatial distribution of the accelerated particle beam, the particle maximum energy, and the electromagnetic field characteristics. For the scope of this study, the laser pulse parameters were kept constant, while varying the target parameters. The study continues the work published in [1] and focuses on further studying the effects of target curvature coupled with a cone laser focusing structure. The results show increased particle beam focusing and a significant enhancement in particle maximum energy.

  4. An ice-cream cone model for coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Xue, X. H.; Wang, C. B.; Dou, X. K.

    2005-08-01

    In this study, we use an ice-cream cone model to analyze the geometrical and kinematical properties of the coronal mass ejections (CMEs). Assuming that in the early phase CMEs propagate with near-constant speed and angular width, some useful properties of CMEs, namely the radial speed (v), the angular width (α), and the location at the heliosphere, can be obtained considering the geometrical shapes of a CME as an ice-cream cone. This model is improved by (1) using an ice-cream cone to show the near real configuration of a CME, (2) determining the radial speed via fitting the projected speeds calculated from the height-time relation in different azimuthal angles, (3) not only applying to halo CMEs but also applying to nonhalo CMEs.

  5. Patient-Specific Computational Modeling of Keratoconus Progression and Differential Responses to Collagen Cross-linking

    PubMed Central

    Sinha Roy, Abhijit

    2011-01-01

    Purpose. To model keratoconus (KC) progression and investigate the differential responses of central and eccentric cones to standard and alternative collagen cross-linking (CXL) patterns. Methods. Three-dimensional finite element models (FEMs) were generated with clinical tomography and IOP measurements. Graded reductions in regional corneal hyperelastic properties and thickness were imposed separately in the less affected eye of a KC patient. Topographic results, including maximum curvature and first-surface, higher-order aberrations (HOAs), were compared to those of the more affected contralateral eye. In two eyes with central and eccentric cones, a standard broad-beam CXL protocol was simulated with 200- and 300-μm treatment depths and compared to spatially graded broad-beam and cone-centered CXL simulations. Results. In a model of KC progression, maximum curvature and HOA increased as regional corneal hyperelastic properties were decreased. A topographic cone could be generated without a reduction in corneal thickness. Simulation of standard 9-mm-diameter CXL produced decreases in corneal curvature comparable to clinical reports and affected cone location. A 100-μm increase in CXL depth enhanced flattening by 24% to 34% and decreased HOA by 22% to 31%. Topographic effects were greatest with cone-centered CXL simulations. Conclusions. Progressive hyperelastic weakening of a cornea with subclinical KC produced topographic features of manifest KC. The clinical phenomenon of topographic flattening after CXL was replicated. The magnitude and higher-order optics of this response depended on IOP and the spatial distribution of stiffening relative to the cone location. Smaller diameter simulated treatments centered on the cone provided greater reductions in curvature and HOA than a standard broad-beam CXL pattern. PMID:22039252

  6. ACCRETION OF SUPERSONIC WINDS ONTO BLACK HOLES IN 3D: STABILITY OF THE SHOCK CONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia-Linares, M.; Guzmán, F. S.

    Using numerical simulations we present the accretion of supersonic winds onto a rotating black hole in three dimensions. We study five representative directions of the wind with respect to the axis of rotation of the black hole and focus on the evolution and stability of the high-density shock cone that is formed during the process. We explore both the regime in which the shock cone is expected to be stable in order to confirm previous results obtained with two-dimensional simulations, and the regime in which the shock cone is expected to show a flip–flop (FF) type of instability. The methodsmore » used to attempt a triggering of the instability were (i) the accumulation of numerical errors and (ii) the explicit application of a perturbation on the velocity field after the shock cone was formed. The result is negative, that is, we did not find the FF instability within the parameter space we explored, including cases that are expected to be unstable.« less

  7. Full utilization of semi-Dirac cones in photonics

    NASA Astrophysics Data System (ADS)

    Yasa, Utku G.; Turduev, Mirbek; Giden, Ibrahim H.; Kurt, Hamza

    2018-05-01

    In this study, realization and applications of anisotropic zero-refractive-index materials are proposed by exposing the unit cells of photonic crystals that exhibit Dirac-like cone dispersion to rotational symmetry reduction. Accidental degeneracy of two Bloch modes in the Brillouin zone center of two-dimensional C2-symmetric photonic crystals gives rise to the semi-Dirac cone dispersion. The proposed C2-symmetric photonic crystals behave as epsilon-and-mu-near-zero materials (ɛeff≈ 0 , μeff≈ 0 ) along one propagation direction, but behave as epsilon-near-zero material (ɛeff≈ 0 , μeff≠ 0 ) for the perpendicular direction at semi-Dirac frequency. By extracting the effective medium parameters of the proposed C4- and C2-symmetric periodic media that exhibit Dirac-like and semi-Dirac cone dispersions, intrinsic differences between isotropic and anisotropic materials are investigated. Furthermore, advantages of utilizing semi-Dirac cone materials instead of Dirac-like cone materials in photonic applications are demonstrated in both frequency and time domains. By using anisotropic transmission behavior of the semi-Dirac materials, photonic application concepts such as beam deflectors, beam splitters, and light focusing are proposed. Furthermore, to the best of our knowledge, semi-Dirac cone dispersion is also experimentally demonstrated for the first time by including negative, zero, and positive refraction states of the given material.

  8. Experimental and raytrace results for throat-to-throat compound parabolic concentrators

    NASA Technical Reports Server (NTRS)

    Leviton, D. B.; Leitch, J. W.

    1986-01-01

    Compound parabolic concentrators are nonimaging cone-shaped optics with useful angular transmission characteristics. Two cones used throat-to-throat accept radiant flux within one well-defined acceptance angle and redistribute it into another. If the entrance cone is fed with Lambertian flux, the exit cone produces a beam whose half-angle is the exit cone's acceptance angle and whose cross section shows uniform irradiance from near the exit mouth to infinity. (The pair is a beam angle transformer). The design of one pair of cones is discussed, also an experiment to map the irradiance of the emergent beam, and a raytracing program which models the cones fed by Lambertian flux. Experimental results compare favorably with raytrace results.

  9. Cone photopigment in older subjects: decreased optical density in early age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Elsner, Ann E.; Burns, Stephen A.; Weiter, John J.

    2002-01-01

    We measured changes to cone photoreceptors in patients with early age-related macular degeneration. The data of 53 patients were compared with normative data for color matching measurements of long- and middle-wavelength-sensitive cones in the central macula. A four-parameter model quantified cone photopigment optical density and kinetics. Cone photopigment optical density was on average less for the patients than for normal subjects and was uncorrelated with visual acuity. More light was needed to reduce the photopigment density by 50% in the steady state for patients. These results imply that cone photopigment optical density is reduced by factors other than slowed kinetics.

  10. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.

    PubMed

    Lind, O; Delhey, K

    2015-03-01

    Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  12. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

    PubMed

    Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin

    2018-06-18

    Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.

  13. Aerodynamic stability and drag characteristics of the MSFC pressure fed booster configurations at Mach numbers from 0.9 to5.0

    NASA Technical Reports Server (NTRS)

    Baker, J.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14 x 14 Inch Trisonic Wind Tunnel during January 1972 on 0.003366 and 0.00419 scale models of the MSFC space shuttle pressure fed booster configurations. The configurations tested were a 40 deg cone/cylinder/13 deg flare with and without fins, a 40 deg cone/cylinder/13 deg flare/9 deg flare with and without fins, a 35 deg cone/cylinder with and without fins, a 35 deg cone/cylinder/7 deg flare and a 35 deg cone/cylinder with straight extension. Six component aerodynamic force and moment data were recorded over a Mach number range of 0.9 to 5.0. Model angle of attack range was -10 to +10 deg and +20 to 80 at 0 deg sideslip. Model sideslip range was -10 to +10 deg at nominal angles of attack of 0, 30 and 51 deg

  14. A Hydraulically Operated Pine Cone Cutter

    Treesearch

    Carl W. Fatzinger; M.T. Proveaux

    1971-01-01

    Mature cones of slash pine (Pinus elliottii Engelm. var. elliottii) and longleaf pine (P. palustris Mill.) can be easily bisected along their longitudinal axes with the hydraulic pine cone cutter described. This cutter eliminates the two major problems of earlier models--undue operator fatigue and the...

  15. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.

    PubMed

    Clérin, Emmanuelle; Wicker, Nicolas; Mohand-Saïd, Saddek; Poch, Olivier; Sahel, José-Alain; Léveillard, Thierry

    2011-12-20

    Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research. An inverted fluorescent microscope, motorized and coupled to a CCD camera records images of cones labeled with fluorescent peanut agglutinin lectin on flat-mounted retinas. In an average of 300 fields per retina, nine Z-planes at magnification X40 are acquired after two-stage autofocus individually for each field. The projection of the stack of 9 images is subject to a threshold, filtered to exclude aberrant images based on preset variables. The cones are identified by treating the resulting image using 13 variables empirically determined. The cone density is calculated over the 300 fields. The method was validated by comparison to the conventional stereological counting. The decrease in cone density in rd1 mouse was found to be equivalent to the decrease determined by stereological counting. We also studied the spatiotemporal pattern of the degeneration of cones in the rd1 mouse and show that while the reduction in cone density starts in the central part of the retina, cone degeneration progresses at the same speed over the whole retinal surface. We finally show that for mice with an inactivation of the Nucleoredoxin-like genes Nxnl1 or Nxnl2 encoding RdCVFs, the loss of cones is more pronounced in the ventral retina. The automated platform ℮-conome used here for retinal disease is a tool that can broadly accelerate translational research for neurodegenerative diseases.

  16. The growth and erosion of cinder cones in Guatemala and El Salvador: Models and statistics

    NASA Astrophysics Data System (ADS)

    Bemis, Karen; Walker, Jim; Borgia, Andrea; Turrin, Brent; Neri, Marco; Swisher, Carl, III

    2011-04-01

    Morphologic data for 147 cinder cones in southern Guatemala and western El Salvador are compared with data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan-Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110 +/- 50 m, an average basal diameter of 660 +/- 230 m and an average top diameter of 180 +/- 150 m. The general morphology of these cones can be described by their average cone angle of slope (24 +/- 7), average height-to-radius ratio (0.33 +/- 0.09) and their flatness (0.24 +/- 0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan-Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/ 39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500-1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.

  17. SU-G-TeP1-08: LINAC Head Geometry Modeling for Cyber Knife System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B; Li, Y; Liu, B

    Purpose: Knowledge of the LINAC head information is critical for model based dose calculation algorithms. However, the geometries are difficult to measure precisely. The purpose of this study is to develop linac head models for Cyber Knife system (CKS). Methods: For CKS, the commissioning data were measured in water at 800mm SAD. The measured full width at half maximum (FWHM) for each cone was found greater than the nominal value, this was further confirmed by additional film measurement in air. Diameter correction, cone shift and source shift models (DCM, CSM and SSM) are proposed to account for the differences. Inmore » DCM, a cone-specific correction is applied. For CSM and SSM, a single shift is applied to the cone or source physical position. All three models were validated with an in-house developed pencil beam dose calculation algorithm, and further evaluated by the collimator scatter factor (Sc) correction. Results: The mean square error (MSE) between nominal diameter and the FWHM derived from commissioning data and in-air measurement are 0.54mm and 0.44mm, with the discrepancy increasing with cone size. Optimal shift for CSM and SSM is found to be 9mm upward and 18mm downward, respectively. The MSE in FWHM is reduced to 0.04mm and 0.14mm for DCM and CSM (SSM). Both DCM and CSM result in the same set of Sc values. Combining all cones at SAD 600–1000mm, the average deviation from 1 in Sc of DCM (CSM) and SSM is 2.6% and 2.2%, and reduced to 0.9% and 0.7% for the cones with diameter greater than 15mm. Conclusion: We developed three geometrical models for CKS. All models can handle the discrepancy between vendor specifications and commissioning data. And SSM has the best performance for Sc correction. The study also validated that a point source can be used in CKS dose calculation algorithms.« less

  18. Drosophila as a genetic and cellular model for studies on axonal growth

    PubMed Central

    Sánchez-Soriano, Natalia; Tear, Guy; Whitington, Paul; Prokop, Andreas

    2007-01-01

    One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth. PMID:17475018

  19. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  20. 3D modelling of the Tejeda Caldera cone-sheet swarm, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Samrock, Lisa K.; Jensen, Max J.; Burchardt, Steffi; Troll, Valentin R.; Mattsson, Tobias; Geiger, Harri

    2015-04-01

    Cone-sheet swarms provide vital information on the interior of volcanic systems and their plumbing systems (e.g. Burchardt et al. 2013). This information is important for the interpretation of processes and dynamics of modern and ancient volcanic systems, and is therefore vital for assessing volcanic hazards and to reduce risks to modern society. To more realistically model cone-sheet emplacement an approximation of their 3D shape needs to be known. Most cone-sheet swarms are not sufficiently exposed laterally and/or vertically, however, which makes it difficult to determine the geometry of a cone-sheet swarm at depth, especially since different shapes (e.g. convex, straight or concave continuations) would produce a similar trace at the surface (cf. Burchardt et al. 2011, and references therein). The Miocene Tejeda Caldera on Gran Canaria, Canary Islands, Spain, hosts a cone-sheet swarm that was emplaced into volcaniclastic caldera infill at about 12.3-7.3 Ma (Schirnick et al. 1999). The dyke swarm displays over 1000 m of vertical exposure and more than 15 km of horizontal exposure, making it a superb locality to study the evolution of cone-sheet swarms in detail and to determine its actual geometry in 3D space. We have used structural data of Schirnick (1996) to model the geometry of the Tejeda cone-sheet in 3D, using the software Move® by Midland Valley Ltd. Based on previous 2D projections, Schirnick et al. (1999) suggested that the cone-sheet swarm is formed by a stack of parallel intrusive sheets which have a truncated dome geometry and form a concentric structure around a central axis, assuming straight sheet-intrusions. Our 3D model gives insight into the symmetries of the sheets and the overall geometry of the cone-sheet swarm below the surface. This visualization now allows to grasp the complexity of the Tejeda cone-sheet swarm at depth, particularly in relation to different possible cone-sheet geometries suggested in the literature (cf. Burchardt et al. 2011, and references therein), and we discuss the implications of this architecture for the feeding system of the Tejeda volcano and the associated temporal variations of cone-sheet emplacement. References: Burchardt, S., Tanner, D.C., Troll, V.R., Krumbholz, M., Gustafsson, L.E. (2011) Three-dimensional geometry of concentric intrusive sheet swarms in the Geitafell and the Dyrfjöll volcanoes, eastern Iceland. Geochemistry, Geophysics, Geosystems 12(7): Q0AB09. Burchardt, S., Troll, V.R., Mathieu, L., Emeleus, H.C., Donaldson, C.H. (2013) Ardnamruchan 3D cone-sheet architecture explained by a single elongate magma chamber. Scientific Reports 3:2891. Schirnick, C. (1996) Formation of an intracaldera cone sheet dike swarm (Tejeda Caldera, Gran Canaria) (Dissertation). Christian-Albrechts-Universität, Kiel, Germany. Schirnick, C., van den Bogaard, P., Schmincke, H.-U. (1999) Cone-sheet formation and intrusive growth of an oceanic island - The Miocene Tejeda complex on Gran Canaria (Canary Islands). Geology, 27: 207-210.

  1. The nuclear high excitation outflow cone in NGC 1365

    NASA Astrophysics Data System (ADS)

    Per Lindblad, Olof; Hjelm, Maja; Jörsäter, Steven; Kristen, Helmuth

    The morphology and kinematics of the high excitation outflow cone in the nuclear region of the Seyfert 1.5 galaxy NGC 1365 is investigated. An empirical model based on ground-based [OIII] emission line data consists of a somewhat hollow double cone with its apex at the Seyfert nucleus. The cone axis is well aligned in space with the normal to the symmetry plane of the galaxy and the position angle of its projection on the sky coincides closely with that of a jet-like radio feature. The opening angle of the cone is 100° and the orientation such that the line of sight to the Seyfert 1.5 nucleus falls inside the cone. The outflow velocities within the cone are accelerated and fall off towards the edge.

  2. RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model

    PubMed Central

    Huang, Wei Chieh; Wright, Alan F.; Roman, Alejandro J.; Cideciyan, Artur V.; Manson, Forbes D.; Gewaily, Dina Y.; Schwartz, Sharon B.; Sadigh, Sam; Limberis, Maria P.; Bell, Peter; Wilson, James M.; Swaroop, Anand; Jacobson, Samuel G.

    2012-01-01

    Purpose. We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. Methods. XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. Results. Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. Conclusions. RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy. PMID:22807293

  3. Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones.

    PubMed

    Betterton, M D

    2001-05-01

    Penitentes and suncups are structures formed as snow melts, typically high in the mountains. When the snow is dirty, dirt cones and other structures can form instead. Building on previous field observations and experiments, this paper presents a theory of ablation morphologies, and the role of surface dirt in determining the structures formed. The glaciological literature indicates that sunlight, heating from air, and dirt all play a role in the formation of structure on an ablating snow surface. The present paper formulates a minimal model for the formation of ablation morphologies as a function of measurable parameters and considers the linear stability of this model. The dependence of ablation morphologies on weather conditions and initial dirt thickness is studied, focusing on the initial growth of perturbations away from a flat surface. We derive a single-parameter expression for the melting rate as a function of dirt thickness, which agrees well with a set of measurements by Driedger. An interesting result is the prediction of a dirt-induced traveling instability for a range of parameters.

  4. Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development

    PubMed Central

    Özel, Mehmet Neset; Langen, Marion; Hassan, Bassem A; Hiesinger, P Robin

    2015-01-01

    Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.10721.001 PMID:26512889

  5. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration.

    PubMed

    Yang, Fan; Ma, Hongwei; Belcher, Joshua; Butler, Michael R; Redmond, T Michael; Boye, Sanford L; Hauswirth, William W; Ding, Xi-Qin

    2016-12-01

    Recent studies have implicated thyroid hormone (TH) signaling in cone photoreceptor viability. Using mouse models of retinal degeneration, we found that antithyroid treatment preserves cones. This work investigates the significance of targeting intracellular TH components locally in the retina. The cellular TH level is mainly regulated by deiodinase iodothyronine (DIO)-2 and -3. DIO2 converts thyroxine (T4) to triiodothyronine (T3), which binds to the TH receptor, whereas DIO3 degrades T3 and T4. We examined cone survival after overexpression of DIO3 and inhibition of DIO2 and demonstrated the benefits of these manipulations. Subretinal delivery of AAV5-IRBP/GNAT2-DIO3, which directs expression of human DIO3 specifically in cones, increased cone density by 30-40% in a Rpe65 -/- mouse model of Lebers congenital amaurosis (LCA) and in a Cpfl1 mouse with Pde6c defect model of achromatopsia, compared with their respective untreated controls. Intravitreal and topical delivery of the DIO2 inhibitor iopanoic acid also significantly improved cone survival in the LCA model mice. Moreover, the expression levels of DIO2 and Slc16a2 were significantly higher in the diseased retinas, suggesting locally elevated TH signaling. We show that targeting DIOs protects cones, and intracellular inhibition of TH components locally in the retina may represent a novel strategy for retinal degeneration management.-Yang, F., Ma, H., Belcher, J., Butler, M. R., Redmond, T. M., Boye, S. L., Hauswirth, W. W., Ding, X.-Q. Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. © FASEB.

  6. Color signals through dorsal and ventral visual pathways

    PubMed Central

    Conway, Bevil R.

    2014-01-01

    Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417

  7. Color constancy of color-deficient observers under illuminations defined by individual color discrimination ellipsoids.

    PubMed

    Ma, Ruiqing; Kawamoto, Ken-Ichiro; Shinomori, Keizo

    2016-03-01

    We explored the color constancy mechanisms of color-deficient observers under red, green, blue, and yellow illuminations. The red and green illuminations were defined individually by the longer axis of the color discrimination ellipsoid measured by the Cambridge Colour Test. Four dichromats (3 protanopes and 1 deuteranope), two anomalous trichromats (2 deuteranomalous observers), and five color-normal observers were asked to complete the color constancy task by making a simultaneous paper match under asymmetrical illuminations in haploscopic view on a monitor. The von Kries adaptation model was applied to estimate the cone responses. The model fits showed that for all color-deficient observers under all illuminations, the adjustment of the S-cone response or blue-yellow chromatically opponent responses modeled with the simple assumption of cone deletion in a certain type (S-M, S-L or S-(L+M)) was consistent with the principle of the von Kries model. The degree of adaptation was similar to that of color-normal observers. The results indicate that the color constancy of color-deficient observers is mediated by the simplified blue-yellow color system with a von Kries-type adaptation effect, even in the case of brightness match, as well as by a possible cone-level adaptation to the S-cone when the illumination produces a strong S-cone stimulation, such as blue illumination.

  8. Simulated annealing in networks for computing possible arrangements for red and green cones

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1987-01-01

    Attention is given to network models in which each of the cones of the retina is given a provisional color at random, and then the cones are allowed to determine the colors of their neighbors through an iterative process. A symmetric-structure spin-glass model has allowed arrays to be generated from completely random arrangements of red and green to arrays with approximately as much disorder as the parafoveal cones. Simulated annealing has also been added to the process in an attempt to generate color arrangements with greater regularity and hence more revealing moirepatterns than than the arrangements yielded by quenched spin-glass processes. Attention is given to the perceptual implications of these results.

  9. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice

    PubMed Central

    Venkatesh, Aditya; Ma, Shan; Le, Yun Z.; Hall, Michael N.; Rüegg, Markus A.; Punzo, Claudio

    2015-01-01

    Retinitis pigmentosa (RP) is an inherited photoreceptor degenerative disorder that results in blindness. The disease is often caused by mutations in genes that are specific to rod photoreceptors; however, blindness results from the secondary loss of cones by a still unknown mechanism. Here, we demonstrated that the mammalian target of rapamycin complex 1 (mTORC1) is required to slow the progression of cone death during disease and that constitutive activation of mTORC1 in cones is sufficient to maintain cone function and promote long-term cone survival. Activation of mTORC1 in cones enhanced glucose uptake, retention, and utilization, leading to increased levels of the key metabolite NADPH. Moreover, cone death was delayed in the absence of the NADPH-sensitive cell death protease caspase 2, supporting the contribution of reduced NADPH in promoting cone death. Constitutive activation of mTORC1 preserved cones in 2 mouse models of RP, suggesting that the secondary loss of cones is caused mainly by metabolic deficits and is independent of a specific rod-associated mutation. Together, the results of this study address a longstanding question in the field and suggest that activating mTORC1 in cones has therapeutic potential to prolong vision in RP. PMID:25798619

  10. Discrete-vortex model for the symmetric-vortex flow on cones

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    1990-01-01

    A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.

  11. Development and Verification of Novel Porous Titanium Metaphyseal Cones for Revision Total Knee Arthroplasty.

    PubMed

    Faizan, Ahmad; Bhowmik-Stoker, Manoshi; Alipit, Vincent; Kirk, Amanda E; Krebs, Viktor E; Harwin, Steven F; Meneghini, R Michael

    2017-06-01

    Porous metaphyseal cones are widely used in revision knee arthroplasty. A new system of porous titanium metaphyseal cones has been designed based on the femoral and tibial morphology derived from a computed tomography-based anatomical database. The purpose of this study is to evaluate the initial mechanical stability of the new porous titanium revision cone system by measuring the micromotion under physiologic loading compared with a widely-used existing porous tantalum metaphyseal cone system. The new cones were designed to precisely fit the femoral and tibial anatomy, and 3D printing technology was used to manufacture these porous titanium cones. The stability of the new titanium cones and the widely-used tantalum cones were compared under physiologic loading conditions in bench top test model. The stability of the new titanium cones was either equivalent or better than the tantalum cones. The new titanium femoral cone construct had significantly less micromotion compared with the traditional femoral cone construct in 5 of the 12 directions measured (P < .05), whereas no statistical difference was found in 7 directions. The new porous titanium metaphyseal tibial cones demonstrated less micromotion in medial varus/valgus (P = .004) and posterior compressive micromotion (P = .002) compared with the traditional porous tantalum system. The findings of this biomechanical study demonstrate satisfactory mechanical stability of an anatomical-based porous titanium metaphyseal cone system for femoral and tibial bone loss as measured by micromotion under physiologic loading. The new cone design, in combination with instrumentation that facilitates surgical efficiency, is encouraging. Long-term clinical follow-up is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Rotational strain in Weyl semimetals: A continuum approach

    NASA Astrophysics Data System (ADS)

    Arjona, Vicente; Vozmediano, María A. H.

    2018-05-01

    We use a symmetry approach to derive the coupling of lattice deformations to electronic excitations in three-dimensional Dirac and Weyl semimetals in the continuum low-energy model. We focus on the effects of rotational strain and show that it can drive transitions from Dirac to Weyl semimetals, gives rise to elastic gauge fields, tilts the cones, and generates pseudo-Zeeman couplings. It also can generate a deformation potential in volume-preserving deformations. The associated pseudoelectric field contributes to the chiral anomaly.

  13. Optimization of Biosorptive Removal of Dye from Aqueous System by Cone Shell of Calabrian Pine

    PubMed Central

    Deniz, Fatih

    2014-01-01

    The biosorption performance of raw cone shell of Calabrian pine for C.I. Basic Red 46 as a model azo dye from aqueous system was optimized using Taguchi experimental design methodology. L9 (33) orthogonal array was used to optimize the dye biosorption by the pine cone shell. The selected factors and their levels were biosorbent particle size, dye concentration, and contact time. The predicted dye biosorption capacity for the pine cone shell from Taguchi design was obtained as 71.770 mg g−1 under optimized biosorption conditions. This experimental design provided reasonable predictive performance of dye biosorption by the biosorbent (R 2: 0.9961). Langmuir model fitted better to the biosorption equilibrium data than Freundlich model. This displayed the monolayer coverage of dye molecules on the biosorbent surface. Dubinin-Radushkevich model and the standard Gibbs free energy change proposed physical biosorption for predominant mechanism. The logistic function presented the best fit to the data of biosorption kinetics. The kinetic parameters reflecting biosorption performance were also evaluated. The optimization study revealed that the pine cone shell can be an effective and economically feasible biosorbent for the removal of dye. PMID:25405213

  14. 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test

    NASA Astrophysics Data System (ADS)

    Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.

    2014-12-01

    In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.

  15. Variability in human cone topography assessed by adaptive optics scanning laser ophthalmoscopy

    PubMed Central

    Zhang, Tianjiao; Godara, Pooja; Blanco, Ernesto R.; Griffin, Russell L; Wang, Xiaolin; Curcio, Christine A.; Zhang, Yuhua

    2015-01-01

    Purpose To assess between- and within-individual variability of macular cone topography in the eyes of young adults. Design Observational case series. Methods Cone photoreceptors in 40 eyes of 20 subjects aged 19–29 years with normal maculae were imaged using a research adaptive optics scanning laser ophthalmoscope. Refractive errors ranged from −3.0 D to 0.63 D and differed by <0.50 D in fellow eyes. Cone density was assessed on a two-dimensional sampling grid over the central 2.4 mm × 2.4 mm. Between-individual variability was evaluated by coefficient of variation (CV). Within-individual variability was quantified by maximum difference and root-mean-square (RMS). Cones were cumulated over increasing eccentricity. Results Peak densities of foveal cones are 168,162 ± 23,529 cones/mm2 (mean ± SD) (CV = 0.14). The number of cones within the cone-dominated foveola (0.8–0.9 mm diameter) is 38,311 ± 2,319 (CV = 0.06). The RMS cone density difference between fellow eyes is 6.78%, and the maximum difference is 23.6%. Mixed model statistical analysis found no difference in the association between eccentricity and cone density in the superior/nasal (p=0.8503), superior/temporal (p=0.1551), inferior/nasal (p=0.8609), and inferior/temporal (p=0.6662) quadrants of fellow eyes. Conclusions New instrumentation imaged the smallest foveal cones, thus allowing accurate assignment of foveal centers and assessment of variability in macular cone density in a large sample of eyes. Though cone densities vary significantly in the fovea, the total number of foveolar cones are very similar both between- and within-subjects. Thus, the total number of foveolar cones may be an important measure of cone degeneration and loss. PMID:25935100

  16. Variability and Reliabiltiy in Axon Growth Cone Navigation Decision Making

    NASA Astrophysics Data System (ADS)

    Garnelo, Marta; Ricoult, Sébastien G.; Juncker, David; Kennedy, Timothy E.; Faisal, Aldo A.

    2015-03-01

    The nervous system's wiring is a result of axon growth cones navigating through specific molecular environments during development. In order to reach their target, growth cones need to make decisions under uncertainty as they are faced with stochastic sensory information and probabilistic movements. The overall system therefore exhibits features of whole organisms (perception, decision making, action) in the subset of a single cell. We aim to characterise growth cone navigation in defined nano-dot guidance cue environments, by using the tools of computational neuroscience to conduct ``molecular psychophysics.'' We start with a generative model of growth cone behaviour and we 1. characterise sensory and internal sources of noise contributing to behavioural variables, by combining knowledge of the underlying stochastic dynamics in cue sensing and the growth of the cytoskeleton. This enables us to 2. produce bottom-up lower limit estimates of behavioural response reliability and visualise it as probability distributions over axon growth trajectories. Given this information we can match our in silico model's ``psychometric'' decision curves with empirical data. Finally we use a Monte-Carlo approach to predict response distributions of axon trajectories from our model.

  17. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  18. Cup-shaped Intrusions, Morphology and Emplacement Mechanism Investigate Through Analogue Modelling

    NASA Astrophysics Data System (ADS)

    Mathieu, L.; van Wyk de Vries, B.

    2007-12-01

    We investigate the morphology of large-scale shallow-depth magma intrusions and sub-volcanic complexes with analogue models. Intrusions of analogue magma are done in a granular material that can contain a ductile layer. The model surface is flat to model the formation of plutonic intrusions and it is overlain by a cone when modelling late sub-volcanic complexes. For flat-top models, we obtain cup-shaped intrusions fed by dykes. Cup-shaped intrusions are inverted-cone like bodies. They are different from saucer-shaped intrusions as they possess neither a well developed sill-base, nor an outer rim. However, like saucers, cups are shallow depth intrusions that dome the country rocks. They initiate from an advancing dyke and first develop an inverted-cone like morphology. Then, the central thickness increases and thrusts form at the edge of the domed country rocks. At this stage, the intrusions progressively involve toward a lopolith shape. By using analogue magma of various viscosities we have been able to constrain key relationships: higher intrusion viscosity causes deeper initiation and the deeper they initiate, the larger is the intrusion diameter. A natural example of such intrusion might by the circles of volcanoes like the Azufre-Lastaria (Peru) that might be overlain be a large-scale cup-shaped intrusion. When adding a cone at the surface of the model and, sometimes, a thin ductile layer in the substratum, the morphology of cup-shaped intrusions vary. Note that the ductile layer of our models is not thick enough to induce the gravitational spreading of the cone. Generally, cup-shaped intrusions are asymmetric in cross section and elliptical in plan view. Their formation creates extension structures in the cone (croissant-shaped rift, straight rift or normal fault) and thrusts in some sectors below the cone. Both types of structures are bordered by strike-slip faults. Cups and saucers share many similarities, but differ probably in the fact that saucers are partially sills that are guided by stratigraphic horizons. However, the basic formation mechanisms may be the same and saucers could be regarded as a special form of cup.

  19. Models for determining the geometrical properties of halo coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Liu, Y.

    2005-12-01

    To this day, the prediction of space weather effects near the Earth suffer from a fundamental problem: the necessary condition for determining whether or not and when a part of the huge interplanetary counterpart (ICME) of frontside halo coronal mass ejections (CMEs) is able to hit the Earth and generate goemagnetic storms, i.e., the real angular width, the propagation direction and speed of the CMEs, cannot be measured directly because of the unfavorable geometry. To inverse these geometrical and kinematical properties we have recently developed a few geometrical models, such as the cone model, the ice cream cone model, and the spherical cone model. The inversing solution of the cone model for the 12 may 1997 halo CME has been used as an input to the ENLIL model (a 3D MHD solar wind code) and successfully predicted the ICME near the Earth (Zhao, Plukett & Liu, 2002; Odstrcil, Riley & Zhao, 2004). After briefly describing the geometrical models this presentation will discuss: 1. What kind of halo CMEs can be inversed? 2. How to select the geometrical models given a specific halo CME? 3. Whether or not the inversing solution is unique?

  20. Universal Broadening of the Light Cone in Low-Temperature Transport

    NASA Astrophysics Data System (ADS)

    Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2018-04-01

    We consider the low-temperature transport properties of critical one-dimensional systems that can be described, at equilibrium, by a Luttinger liquid. We focus on the prototypical setting where two semi-infinite chains are prepared in two thermal states at small but different temperatures and suddenly joined together. At large distances x and times t , conformal field theory characterizes the energy transport in terms of a single light cone spreading at the sound velocity v . Energy density and current take different constant values inside the light cone, on its left, and on its right, resulting in a three-step form of the corresponding profiles as a function of ζ =x /t . Here, using a nonlinear Luttinger liquid description, we show that for generic observables this picture is spoiled as soon as a nonlinearity in the spectrum is present. In correspondence of the transition points x /t =±v , a novel universal region emerges at infinite times, whose width is proportional to the temperatures on the two sides. In this region, expectation values have a different temperature dependence and show smooth peaks as a function of ζ . We explicitly compute the universal function describing such peaks. In the specific case of interacting integrable models, our predictions are analytically recovered by the generalized hydrodynamic approach.

  1. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling

    PubMed Central

    Astakhova, Luba; Firsov, Michael

    2015-01-01

    Purpose To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. Methods Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. Results Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell’s volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for “best” Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. Conclusions The main cause of the differing sensitivity of rods and cones is cones’ ability to terminate their photoresponse faster. PMID:25866462

  2. Multi-Cone Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The multi-cone model is a computational model for estimating ionospheric delays of Global Positioning System (GPS) signals. It is a direct descendant of the conical-domain model. A primary motivation for the development of this model is the need to find alternatives for modeling slant delays at low latitudes, where ionospheric behavior poses an acute challenge for GPS signal-delay estimates based upon the thin-shell model of the ionosphere.

  3. Human Blue Cone Opsin Regeneration Involves Secondary Retinal Binding with Analog Specificity.

    PubMed

    Srinivasan, Sundaramoorthy; Fernández-Sampedro, Miguel A; Morillo, Margarita; Ramon, Eva; Jiménez-Rosés, Mireia; Cordomí, Arnau; Garriga, Pere

    2018-03-27

    Human color vision is mediated by the red, green, and blue cone visual pigments. Cone opsins are G-protein-coupled receptors consisting of an opsin apoprotein covalently linked to the 11-cis-retinal chromophore. All visual pigments share a common evolutionary origin, and red and green cone opsins exhibit a higher homology, whereas blue cone opsin shows more resemblance to the dim light receptor rhodopsin. Here we show that chromophore regeneration in photoactivated blue cone opsin exhibits intermediate transient conformations and a secondary retinoid binding event with slower binding kinetics. We also detected a fine-tuning of the conformational change in the photoactivated blue cone opsin binding site that alters the retinal isomer binding specificity. Furthermore, the molecular models of active and inactive blue cone opsins show specific molecular interactions in the retinal binding site that are not present in other opsins. These findings highlight the differential conformational versatility of human cone opsin pigments in the chromophore regeneration process, particularly compared to rhodopsin, and point to relevant functional, unexpected roles other than spectral tuning for the cone visual pigments. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Geomorphometric variability of "monogenetic" volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones

    NASA Astrophysics Data System (ADS)

    Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.

    2012-01-01

    Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.

  5. Subsurface architecture of Las Bombas volcano circular structure (Southern Mendoza, Argentina) from geophysical studies

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia; Risso, Corina; Orgeira, María Julia; Nullo, Francisco; Sigismondi, Mario E.; Margonari, Liliana

    2017-08-01

    The Plio-Pleistocene Llancanelo volcanic field is located in the south-eastern region of the province of Mendoza, Argentina. This wide back-arc lava plateau, with hundreds of monogenetic pyroclastic cones, covers a large area behind the active Andean volcanic arc. Here we focus on the northern Llancanelo volcanic field, particularly in Las Bombas volcano. Las Bombas volcano is an eroded, but still recognizable, scoria cone located in a circular depression surrounded by a basaltic lava flow, suggesting that Las Bombas volcano was there when the lava flow field formed and, therefore, the lava flow engulfed it completely. While this explanation seems reasonable, the common presence of similar landforms in this part of the field justifies the need to establish correctly the stratigraphic relationship between lava flow fields and these circular depressions. The main purpose of this research is to investigate Las Bombas volcano 3D subsurface architecture by means of geophysical methods. We carried out a paleomagnetic study and detailed topographic, magnetic and gravimetric land surveys. Magnetic anomalies of normal and reverse polarity and paleomagnetic results point to the occurrence of two different volcanic episodes. A circular low Bouguer anomaly was detected beneath Las Bombas scoria cone indicating the existence of a mass deficit. A 3D forward gravity model was constructed, which suggests that the mass deficit would be related to the presence of fracture zones below Las Bombas volcano cone, due to sudden degassing of younger magma beneath it, or to a single phreatomagmatic explosion. Our results provide new and detailed information about Las Bombas volcano subsurface architecture.

  6. Three-Dimensional Models of Topological Insulators: Engineering of Dirac Cones and Robustness of the Spin Texture

    NASA Astrophysics Data System (ADS)

    Soriano, David; Ortmann, Frank; Roche, Stephan

    2012-12-01

    We design three-dimensional models of topological insulator thin films, showing a tunability of the odd number of Dirac cones driven by the atomic-scale geometry at the boundaries. A single Dirac cone at the Γ-point can be obtained as well as full suppression of quantum tunneling between Dirac states at geometrically differentiated surfaces. The spin texture of surface states changes from a spin-momentum-locking symmetry to a surface spin randomization upon the introduction of bulk disorder. These findings illustrate the richness of the Dirac physics emerging in thin films of topological insulators and may prove utile for engineering Dirac cones and for quantifying bulk disorder in materials with ultraclean surfaces.

  7. Cone structure and focusing of VLF and LF electromagnetic waves at high altitudes in the ionosphere

    NASA Technical Reports Server (NTRS)

    Alpert, Ya. L.; Green, J. L.

    1994-01-01

    The frequency and angle dependencies of the electric field radiated by an electric dipole E = E(sub 0) cos omega(t) are studied through numerical calculations of absolute value of E in the VLF and LF frequency bands where F is less than or equal 0.02 to 0.05 f(sub b) in a model ionosphere over an altitude region of 800-6000 km where the wave frequency and electron gyrofrequency varies between F approximately 4-500 kHz and f(sub b) is approximately equal (1.1 to 0.2) MHz respectively. It is found that the amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth magnetic field line B(sub 0) (it is called the axis field E(sub 0), in the Storey E(sub St), reversed Storey E(sub RevSt), and resonance E(sub Res) cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are the most pronounced close to the lower hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, with the apex angles of the cones Delta-B is approximately (0.1-1) deg. The enhancement and focusing of the electric field increases with altitude starting at Z greater than 800 km. At Z greater than or equal to 1000 up to 6000 km, the relative value of absolute value of E, in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus the flux of VLF and LF electromagnetic waves generated at high altitudes in the Earth's ionosphere are trapped into very narrow conical beams similar to laser beams.

  8. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  9. The Double Cone: A Mechanical Paradox or a Geometrical Constraint?

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    In the framework of the Italian National Plan "Lauree Scientifiche" (PLS) in collaboration with secondary schools, we have investigated the mechanical paradox of the double cone. We have calculated the geometric condition for obtaining an upward movement. Based on this result, we have built a mechanical model with a double cone made of aluminum…

  10. Transition From Ideal To Viscous Mach Cones In A Partonic Transport Model

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.

    2013-09-01

    Using a partonic transport model we investigate the evolution of conical structures in ultrarelativistic matter. Using two different source terms and varying the transport properties of the matter we study the formation of Mach Cones. Furthermore, in an additional study we extract the two-particle correlations from the numerical calculations and compare them to an analytical approximation. The influence of the viscosity to the shape of Mach Cones and the corresponding two-particle correlations is studied by adjusting the cross section of the medium.

  11. Regulated release of serotonin from axonal growth cones isolated from the fetal rat brain.

    PubMed

    Mercado, R; Floran, B; Hernandez, J

    1998-01-01

    In the present work we propose an hypothetical model related to a molecular recognizing system for serotonin in isolated growth cone particles. This model is supported by previous results from our laboratory plus new ones which show that growth cones release serotonin tonically and such release can be stimulated by potassium in a calcium-dependent manner. The present results, together with other author's data, suggest a physiological basis for the putative role of serotonin as a trophic factor during nervous system development.

  12. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  13. Theoretical calculations and experimental verification for the pumping effect caused by the dynamic micro-tapered angle

    NASA Astrophysics Data System (ADS)

    Cai, Yufei; Zhang, Jianhui; Zhu, Chunling; Huang, Jun; Jiang, Feng

    2016-05-01

    The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.

  14. SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Chibani, O; Jin, L

    2016-06-15

    Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plansmore » were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.« less

  15. Analysis and control of the METC fluid-bed gasifier. Quarterly report, October 1994--January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farell, A.E.; Reddy, S.

    1995-03-01

    This document summarizes work performed for the period 10/1/94 to 2/1/95. The initial phase of the work focuses on developing a simple transfer function model of the Fluidized Bed Gasifier (FBG). This transfer function model will be developed based purely on the gasifier responses to step changes in gasifier inputs (including reactor air, convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model will represent a linear, dynamic model that is valid near the operating point at which the data was taken. In addition, a similar transfer function model will be developed using MGAS in order tomore » assess MGAS for use as a model of the FBG for control systems analysis.« less

  16. A geometrical upper bound on the inflaton range

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Ciupke, David; Mayrhofer, Christoph; Shukla, Pramod

    2018-05-01

    We argue that in type IIB LVS string models, after including the leading order moduli stabilisation effects, the moduli space for the remaining flat directions is compact due the Calabi-Yau Kähler cone conditions. In cosmological applications, this gives an inflaton field range which is bounded from above, in analogy with recent results from the weak gravity and swampland conjectures. We support our claim by explicitly showing that it holds for all LVS vacua with h 1,1 = 3 obtained from 4-dimensional reflexive polytopes. In particular, we first search for all Calabi-Yau threefolds from the Kreuzer-Skarke list with h 1,1 = 2, 3 and 4 which allow for LVS vacua, finding several new LVS geometries which were so far unknown. We then focus on the h 1,1 = 3 cases and show that the Kähler cones of all toric hypersurface threefolds force the effective 1-dimensional LVS moduli space to be compact. We find that the moduli space size can generically be trans-Planckian only for K3 fibred examples.

  17. Necrotic enlargement of cone photoreceptor cells and the release of high-mobility group box-1 in retinitis pigmentosa

    PubMed Central

    Murakami, Y; Ikeda, Y; Nakatake, S; Tachibana, T; Fujiwara, K; Yoshida, N; Notomi, S; Nakao, S; Hisatomi, T; Miller, J W; Vavvas, DG; Sonoda, KH; Ishibashi, T

    2015-01-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal degenerations resulting form rod and cone photoreceptor cell death. The rod cell death due to deleterious genetic mutations has been shown to occur mainly through apoptosis, whereas the mechanisms and features of the secondary cone cell death have not been fully elucidated. Our previous study showed that the cone cell death in rd10 mice, an animal model of RP, involves necrotic features and is partly mediated by the receptor interacting protein kinase. However, the relevancy of necrotic cone cell death in human RP patients remains unknown. In the present study, we showed that dying cone cells in rd10 mice exhibited cellular enlargement, along with necrotic changes such as cellular swelling and mitochondrial rupture. In human eyes, live imaging of cone cells by adaptive optics scanning laser ophthalmoscopy revealed significantly increased percentages of enlarged cone cells in the RP patients compared with the control subjects. The vitreous of the RP patients contained significantly higher levels of high-mobility group box-1, which is released extracellularly associated with necrotic cell death. These findings suggest that necrotic enlargement of cone cells is involved in the process of cone degeneration, and that necrosis may be a novel target to prevent or delay the loss of cone-mediated central vision in RP. PMID:27551484

  18. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  19. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  20. Robust BMPM training based on second-order cone programming and its application in medical diagnosis.

    PubMed

    Peng, Xiang; King, Irwin

    2008-01-01

    The Biased Minimax Probability Machine (BMPM) constructs a classifier which deals with the imbalanced learning tasks. It provides a worst-case bound on the probability of misclassification of future data points based on reliable estimates of means and covariance matrices of the classes from the training data samples, and achieves promising performance. In this paper, we develop a novel yet critical extension training algorithm for BMPM that is based on Second-Order Cone Programming (SOCP). Moreover, we apply the biased classification model to medical diagnosis problems to demonstrate its usefulness. By removing some crucial assumptions in the original solution to this model, we make the new method more accurate and robust. We outline the theoretical derivatives of the biased classification model, and reformulate it into an SOCP problem which could be efficiently solved with global optima guarantee. We evaluate our proposed SOCP-based BMPM (BMPMSOCP) scheme in comparison with traditional solutions on medical diagnosis tasks where the objectives are to focus on improving the sensitivity (the accuracy of the more important class, say "ill" samples) instead of the overall accuracy of the classification. Empirical results have shown that our method is more effective and robust to handle imbalanced classification problems than traditional classification approaches, and the original Fractional Programming-based BMPM (BMPMFP).

  1. Dirac cones in isogonal hexagonal metallic structures

    NASA Astrophysics Data System (ADS)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  2. Rapid Recovery of Visual Function Associated with Blue Cone Ablation in Zebrafish

    PubMed Central

    Hagerman, Gordon F.; Noel, Nicole C. L.; Cao, Sylvia Y.; DuVal, Michèle G.; Oel, A. Phillip; Allison, W. Ted

    2016-01-01

    Hurdles in the treatment of retinal degeneration include managing the functional rewiring of surviving photoreceptors and integration of any newly added cells into the remaining second-order retinal neurons. Zebrafish are the premier genetic model for such questions, and we present two new transgenic lines allowing us to contrast vision loss and recovery following conditional ablation of specific cone types: UV or blue cones. The ablation of each cone type proved to be thorough (killing 80% of cells in each intended cone class), specific, and cell-autonomous. We assessed the loss and recovery of vision in larvae via the optomotor behavioural response (OMR). This visually mediated behaviour decreased to about 5% or 20% of control levels following ablation of UV or blue cones, respectively (P<0.05). We further assessed ocular photoreception by measuring the effects of UV light on body pigmentation, and observed that photoreceptor deficits and recovery occurred (p<0.01) with a timeline coincident to the OMR results. This corroborated and extended previous conclusions that UV cones are required photoreceptors for modulating body pigmentation, addressing assumptions that were unavoidable in previous experiments. Functional vision recovery following UV cone ablation was robust, as measured by both assays, returning to control levels within four days. In contrast, robust functional recovery following blue cone ablation was unexpectedly rapid, returning to normal levels within 24 hours after ablation. Ablation of cones led to increased proliferation in the retina, though the rapid recovery of vision following blue cone ablation was demonstrated to not be mediated by blue cone regeneration. Thus rapid visual recovery occurs following ablation of some, but not all, cone subtypes, suggesting an opportunity to contrast and dissect the sources and mechanisms of outer retinal recovery during cone photoreceptor death and regeneration. PMID:27893779

  3. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition.

    PubMed

    Shero, Michelle R; Pearson, Linnea E; Costa, Daniel P; Burns, Jennifer M

    2014-01-01

    Mass and body composition are indices of overall animal health and energetic balance and are often used as indicators of resource availability in the environment. This study used morphometric models and isotopic dilution techniques, two commonly used methods in the marine mammal field, to assess body composition of Weddell seals (Leptonychotes weddellii, N = 111). Findings indicated that traditional morphometric models that use a series of circular, truncated cones to calculate marine mammal blubber volume and mass overestimated the animal's measured body mass by 26.9±1.5% SE. However, we developed a new morphometric model that uses elliptical truncated cones, and estimates mass with only -2.8±1.7% error (N = 10). Because this elliptical truncated cone model can estimate body mass without the need for additional correction factors, it has the potential to be a broadly applicable method in marine mammal species. While using elliptical truncated cones yielded significantly smaller blubber mass estimates than circular cones (10.2±0.8% difference; or 3.5±0.3% total body mass), both truncated cone models significantly underestimated total body lipid content as compared to isotopic dilution results, suggesting that animals have substantial internal lipid stores (N = 76). Multiple linear regressions were used to determine the minimum number of morphometric measurements needed to reliably estimate animal mass and body composition so that future animal handling times could be reduced. Reduced models estimated body mass and lipid mass with reasonable accuracy using fewer than five morphometric measurements (root-mean-square-error: 4.91% for body mass, 10.90% for lipid mass, and 10.43% for % lipid). This indicates that when test datasets are available to create calibration coefficients, regression models also offer a way to improve body mass and condition estimates in situations where animal handling times must be short and efficient.

  4. Magnetic flow control in growth and casting of photovoltaic silicon: Numerical and experimental results

    NASA Astrophysics Data System (ADS)

    Poklad, A.; Pal, J.; Galindo, V.; Grants, I.; Heinze, V.; Meier, D.; Pätzold, O.; Stelter, M.; Gerbeth, G.

    2017-07-01

    A novel, vertical Bridgman-type technique for growing multi-crystalline silicon ingots in an induction furnace is described. In contrast to conventional growth, a modified setup with a cone-shaped crucible and susceptor is used. A detailed numerical simulation of the setup is presented. It includes a global thermal simulation of the furnace and a local simulation of the melt, which aims at the influence of the melt flow on the temperature and concentration fields. Furthermore, seeded growth of cone-shaped Si ingots using either a monocrystalline seed or a seed layer formed by pieces of poly-Si is demonstrated and compared to growth without seeds. The influences of the seed material on the grain structure and the dislocation density of the ingots are discussed. The second part addresses model experiments for the Czochralski technique using the room temperature liquid metal GaInSn. The studies were focused on the influence of a rotating and a horizontally static magnetic field on the melt flow and the related heat transport in crucibles being heated from bottom and/or side, and cooled by a crystal model covering about 1/3 of the upper melt surface.

  5. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.

    PubMed

    Guerrero, Maria Eugenia; Jacobs, Reinhilde; Loubele, Miet; Schutyser, Filip; Suetens, Paul; van Steenberghe, Daniel

    2006-03-01

    Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging technology provides 3D and cross-sectional views of the jaws. It is obvious that this hardware is not in the same class as CT machines in cost, size, weight, complexity, and radiation dose. It is thus considered to be the examination of choice when making a risk-benefit assessment. The present review deals with imaging modalities available for preoperative planning purposes with a specific focus on the use of the cone beam CT and software for planning of oral implant surgery. It is apparent that cone beam CT is the medium of the future, thus, many changes will be performed to improve these. Any adaptation of the future systems should go hand in hand with a further dose optimalization.

  6. Quantifying, Analysing and Modeling Rockfall Activity in two Different Alpine Catchments using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, F.; Heckmann, T.; Wichmann, V.; Becht, M.

    2011-12-01

    Rockfall processes play a major role as a natural hazard, especially if the rock faces are located close to infrastructure. However these processes cause also the retreat of the steep rock faces by weathering and the growth of the corresponding talus cones by routing debris down the talus cones. That's why this process plays also an important role for the geomorphic system and the sediment budget of high mountain catchments. The presented investigation deals with the use of TLS for quantification and for analysis of rockfall activity in two study areas located in the Alps. The rockfaces of both catchments and the corresponding talus cones were scanned twice a year from different distances. Figure 1 shows an example for the spatial distribution of surface changes at a rockface in the Northern Dolomites between 2008 and 2010. The measured surface changes at this location yields to a mean rockwall retreat of 0.04 cm/a. But high resolution TLS data are not only applicable to quantify rockfall activity they can also be used to characterize the surface properties of the corresponding talus cones and the runout distances of bigger boulders and this can lead to a better process understanding. Therefore the surface roughness of talus cones in both catchments was characterized from the TLS point clouds by a GIS approach. The resulting detailed maps of the surface conditions on the talus cones were used to improve an existing process model which is able to model runout distances on the talus cones using distributed friction parameters. Beside this the investigations showed, that also the shape of the boulders has an influence on the runout distance. That's why the interrelationships between rock fragment morphology and runout distance of over 600 single boulders were analysed at the site of a large rockfall event. The submitted poster will show the results of the quantification of the rockfall activity and additionally it will show the results of the analyses of the talus cones and of the large rockfall event and applying these results to an existing rockfall model.

  7. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.

    PubMed

    Holcman, David; Korenbrot, Juan I

    2005-06-01

    Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca(2+) that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca(2+) buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is approximately 55 ms. In nonmammalian rods, in contrast, active PDE lifetime is approximately 555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.

  8. A novel in vivo model of focal light emitting diode-induced cone-photoreceptor phototoxicity: neuroprotection afforded by brimonidine, BDNF, PEDF or bFGF.

    PubMed

    Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.

  9. Effect of inlet cone pipe angle in catalytic converter

    NASA Astrophysics Data System (ADS)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  10. Mathematical Model of the Role of RdCVF in the Coexistence of Rods and Cones in a Healthy Eye.

    PubMed

    Camacho, Erika T; Léveillard, Thierry; Sahel, José-Alain; Wirkus, Stephen

    2016-07-01

    Understanding the essential components and processes for coexistence of rods and cones is at the forefront of retinal research. The recent discovery on RdCVF's mechanism and mode of action for enhancing cone survival brings us a step closer to unraveling key questions of coexistence and codependence of these neurons. In this work, we build from ecological and enzyme kinetic work on functional response kinetics and present a mathematical model that allows us to investigate the role of RdCVF and its contribution to glucose intake. Our model results and analysis predict a dual role of RdCVF for enhancing and repressing the healthy coexistence of the rods and cones. Our results show that maintaining RdCVF above a threshold value allows for coexistence. However, a significant increase above this value threatens the existence of rods as the cones become extremely efficient at uptaking glucose and begin to take most of it for themselves. We investigate the role of natural glucose intake and that due to RdCVF in both high and low nutrient levels. Our analysis reveals that under low nutrient levels coexistence is not possible regardless of the amount of RdCVF present. With high nutrient levels coexistence can be achieved with a relative small increase in glucose uptake. By understanding the contributions of rods to cones survival via RdCVF in a non-diseased retina, we hope to shed light on degenerative diseases such as retinitis pigmentosa.

  11. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor

    PubMed Central

    Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi

    2016-01-01

    The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363

  12. S-cone discrimination in the presence of two adapting fields: data and model

    PubMed Central

    Cao, Dingcai

    2014-01-01

    This study investigated S-cone discrimination using a test annulus surrounded by an inner and outer adapting field with systematic manipulation of the adapting l = L/(L + M) or s = S/(L + M) chromaticities. The results showed that different adapting l chromaticities altered S-cone discrimination for a high adapting s chromaticity due to parvocellular input to the koniocellular pathway. In addition, S-cone discrimination was determined by the combined spectral signals arising from both adapting fields. The “white” adapting field or an adapting field with a different l chromaticity from the other fields was more likely to have a stronger influence on discrimination thresholds. These results indicated that the two cardinal axes are not independent in S-cone discrimination, and the two adapting fields jointly contribute to S-cone discrimination through a cortical summation mechanism. PMID:24695204

  13. Mapping the Perceptual Grain of the Human Retina

    PubMed Central

    Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.

    2014-01-01

    In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision. PMID:24741057

  14. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  15. Quality Assurance Results for a Commercial Radiosurgery System: A Communication.

    PubMed

    Ruschin, Mark; Lightstone, Alexander; Beachey, David; Wronski, Matt; Babic, Steven; Yeboah, Collins; Lee, Young; Soliman, Hany; Sahgal, Arjun

    2015-10-01

    The purpose of this communication is to inform the radiosurgery community of quality assurance (QA) results requiring attention in a commercial FDA-approved linac-based cone stereo-tactic radiosurgery (SRS) system. Standard published QA guidelines as per the American Association of Physics in Medicine (AAPM) were followed during the SRS system's commissioning process including end-to-end testing, cone concentricity testing, image transfer verification, and documentation. Several software and hardware deficiencies that were deemed risky were uncovered during the process and QA processes were put in place to mitigate these risks during clinical practice. In particular, the present work focuses on daily cone concentricity testing and commissioning-related findings associated with the software. Cone concentricity/alignment is measured daily using both optical light field inspection, as well as quantitative radiation field tests with the electronic portal imager. In 10 out of 36 clini-cal treatments, adjustments to the cone position had to be made to align the cone with the collimator axis to less than 0.5 mm and on two occasions the pre-adjustment measured offset was 1.0 mm. Software-related errors discovered during commissioning included incorrect transfer of the isocentre in DICOM coordinates, improper handling of non-axial image sets, and complex handling of beam data, especially for multi-target treatments. QA processes were established to mitigate the occurrence of the software errors. With proper QA processes, the reported SRS system complies with tolerances set out in established guidelines. Discussions with the vendor are ongoing to address some of the hardware issues related to cone alignment. © The Author(s) 2014.

  16. A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny.

    PubMed

    Wang, Zi-Qiang

    2004-08-01

    The order Gnetales has been the central focus of controversy in seed plant phylogeny. Traditional treatment of morphology supports the anthophyte hypothesis with Gnetales sister to angiosperms but current molecular data reject this hypothesis. A new fossil gnetalean cone, Palaeognetaleana auspicia gen. et sp. nov., is reported from the Upper Permian in North China, and its phylogenic implications are considered. Samples of cones from the upper part of the Upper Permian redbeds of Baode section, northwestern Shanxi Province, China, were examined. The cone is characterized by its unusual nature of reproduction that combines features of post-Triassic gnetaleans and some of the Palaeozoic conifers. It is made up of a number of imbricate axillary units, each simply formed by an ovule and a subtending bract, which may be comparable with the axillary seed-scale complex of some of the Palaeozoic conifer cones. The cone exhibits at least a partially bisexual character that appears to have pollen sacs with monosulcate ribbed pollen grains and sessile, asymmetric, and radiospermic ovules. The ovule has an integument of three envelopes: an outer one of pointed scales; a middle sclerified one; and an inner cuticle that extends upward into a micropyle with an oblique tip. The new Permian cone has unequivocal affinity with the Gnetales. The fossil has considerably extended the divergence time of the Gnetales from 140 (210?) back to 270 myr ago and, therefore, provides the first significant fossil evidence to support the current conclusion based on molecular data of seed plants, i.e. monophyletic gymnosperms, comprising the Gnetales are closely related to conifers.

  17. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less

  18. Experimental Modeling of a Formula Student Carbon Composite Nose Cone

    PubMed Central

    Fellows, Neil A.

    2017-01-01

    A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982

  19. Bone marrow–derived stem cells preserve cone vision in retinitis pigmentosa

    PubMed Central

    Smith, Lois E.H.

    2004-01-01

    Retinitis pigmentosa is a heritable group of blinding diseases resulting from loss of photoreceptors, primarily rods and secondarily cones, that mediate central vision. Loss of retinal vasculature is a presumed metabolic consequence of photoreceptor degeneration. A new study shows that autologous bone marrow–derived lineage-negative hematopoietic stem cells, which incorporate into the degenerating blood vessels in two murine models of retinitis pigmentosa, rd1 and rd10, prevent cone loss. The use of autologous bone marrow might avoid problems with rejection while preserving central cone vision in a wide variety of genetically disparate retinal degenerative diseases. PMID:15372096

  20. Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Fulmes, Julia; Jäger, Regina; Bräuer, Annika; Schäfer, Christian; Jäger, Sebastian; Gollmer, Dominik A.; Horrer, Andreas; Nadler, Elke; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J.; Kern, Dieter P.; Fleischer, Monika

    2015-08-01

    Hybrid structures of few or single quantum dots (QDs) coupled to single optical antennas are of prime interest for nano-optical research. The photoluminescence (PL) signal from single nanoemitters, such as QDs, can be enhanced, and their emission characteristics modified, by coupling them to plasmonic nanostructures. Here, a self-aligned technique for placing nanoscale QDs with about 10 nm lateral accuracy and well-defined molecular distances to the tips of individual nanocones is reported. This way the QDs are positioned exactly in the high near-field region that can be created near the cone apex. The cones are excited in the focus of a radially polarized laser beam and the PL signal of few or single QDs on the cone tips is spectrally detected.

  1. Stratovolcano stability assessment methods and results from Citlaltepetl, Mexico

    USGS Publications Warehouse

    Zimbelman, D.R.; Watters, R.J.; Firth, I.R.; Breit, G.N.; Carrasco-Nunez, Gerardo

    2004-01-01

    Citlaltépetl volcano is the easternmost stratovolcano in the Trans-Mexican Volcanic Belt. Situated within 110 km of Veracruz, it has experienced two major collapse events and, subsequent to its last collapse, rebuilt a massive, symmetrical summit cone. To enhance hazard mitigation efforts we assess the stability of Citlaltépetl's summit cone, the area thought most likely to fail during a potential massive collapse event. Through geologic mapping, alteration mineralogy, geotechnical studies, and stability modeling we provide important constraints on the likelihood, location, and size of a potential collapse event. The volcano's summit cone is young, highly fractured, and hydrothermally altered. Fractures are most abundant within 5–20-m wide zones defined by multiple parallel to subparallel fractures. Alteration is most pervasive within the fracture systems and includes acid sulfate, advanced argillic, argillic, and silicification ranks. Fractured and altered rocks both have significantly reduced rock strengths, representing likely bounding surfaces for future collapse events. The fracture systems and altered rock masses occur non-uniformly, as an orthogonal set with N–S and E–W trends. Because these surfaces occur non-uniformly, hazards associated with collapse are unevenly distributed about the volcano. Depending on uncertainties in bounding surfaces, but constrained by detailed field studies, potential failure volumes are estimated to range between 0.04–0.5 km3. Stability modeling was used to assess potential edifice failure events. Modeled failure of the outer portion of the cone initially occurs as an "intact block" bounded by steeply dipping joints and outwardly dipping flow contacts. As collapse progresses, more of the inner cone fails and the outer "intact" block transforms into a collection of smaller blocks. Eventually, a steep face develops in the uppermost and central portion of the cone. This modeled failure morphology mimics collapse amphitheaters

  2. A spectral model for signal elements isolated from zebrafish photopic electroretinogram

    PubMed Central

    Nelson, Ralph; Singla, Nirmish

    2009-01-01

    The zebrafish photopic ERG sums isolatable elements. In each element red, blue, green and UV (r, g, b, u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white, rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX blocked ionotropic (AMPA/kainate) glutamate receptors; L-AP4 or CPPG blocked metabotropic (mGluR6) glutamate receptors; TBOA blocked glutamate transporters; and L-Aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the L-Aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive, composite b-wave element from ON bipolar cells; PIIm, an L-AP4/CPPG-sensitive, CNQX-insensitive metabotropic sub-element of PII; PIInm, an L-AP4/CPPG/CNQX-insensitive, non-metabotropic sub-element of PII; a1nm, a TBOA-sensitive, CNQX/L-AP4/CPPG-insensitive, non-metabotropic, post-photoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone color pathways. From this Vmax and half-saturation values (k) for the contributing r- g- b- and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm the Vmax order was Vr > Vg ≫ Vb ≈ Vu. For b1, PII, and PIIm the Vmax order was Vr ≈ Vb > Vg > Vu. In either pattern u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r-cone (kr570). The spectra of b1/PII/PIIm elements peaked near b-cone and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- towards r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain, prolific metabotropic circuitry for b- and u-cone bipolar cells. PMID:19723365

  3. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  4. Theoretical distribution of gutta-percha within root canals filled using cold lateral compaction based on numeric calculus.

    PubMed

    Min, Yi; Song, Ying; Gao, Yuan; Dummer, Paul M H

    2016-08-01

    This study aimed to present a new method based on numeric calculus to provide data on the theoretical volume ratio of voids when using the cold lateral compaction technique in canals with various diameters and tapers. Twenty-one simulated mathematical root canal models were created with different tapers and sizes of apical diameter, and were filled with defined sizes of standardized accessory gutta-percha cones. The areas of each master and accessory gutta-percha cone as well as the depth of their insertion into the canals were determined mathematically in Microsoft Excel. When the first accessory gutta-percha cone had been positioned, the residual area of void was measured. The areas of the residual voids were then measured repeatedly upon insertion of additional accessary cones until no more could be inserted in the canal. The volume ratio of voids was calculated through measurement of the volume of the root canal and mass of gutta-percha cones. The theoretical volume ratio of voids was influenced by the taper of canal, the size of apical preparation and the size of accessory gutta-percha cones. Greater apical preparation size and larger taper together with the use of smaller accessory cones reduced the volume ratio of voids in the apical third. The mathematical model provided a precise method to determine the theoretical volume ratio of voids in root-filled canals when using cold lateral compaction.

  5. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  6. Boundary Layer Instabilities Generated by Freestream Laser Perturbations

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.

    2015-01-01

    A controlled, laser-generated, freestream perturbation was created in the freestream of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT). The freestream perturbation convected downstream in the Mach-6 wind tunnel to interact with a flared cone model. The geometry of the flared cone is a body of revolution bounded by a circular arc with a 3-meter radius. Fourteen PCB 132A31 pressure transducers were used to measure a wave packet generated in the cone boundary layer by the freestream perturbation. This wave packet grew large and became nonlinear before experiencing natural transition in quiet flow. Breakdown of this wave packet occurred when the amplitude of the pressure fluctuations was approximately 10% of the surface pressure for a nominally sharp nosetip. The initial amplitude of the second mode instability on the blunt flared cone is estimated to be on the order of 10 -6 times the freestream static pressure. The freestream laser-generated perturbation was positioned upstream of the model in three different configurations: on the centerline, offset from the centerline by 1.5 mm, and offset from the centerline by 3.0 mm. When the perturbation was offset from the centerline of a blunt flared cone, a larger wave packet was generated on the side toward which the perturbation was offset. The offset perturbation did not show as much of an effect on the wave packet on a sharp flared cone as it did on a blunt flared cone.

  7. Multi-phasic bi-directional chemotactic responses of the growth cone

    PubMed Central

    Naoki, Honda; Nishiyama, Makoto; Togashi, Kazunobu; Igarashi, Yasunobu; Hong, Kyonsoo; Ishii, Shin

    2016-01-01

    The nerve growth cone is bi-directionally attracted and repelled by the same cue molecules depending on the situations, while other non-neural chemotactic cells usually show uni-directional attraction or repulsion toward their specific cue molecules. However, how the growth cone differs from other non-neural cells remains unclear. Toward this question, we developed a theory for describing chemotactic response based on a mathematical model of intracellular signaling of activator and inhibitor. Our theory was first able to clarify the conditions of attraction and repulsion, which are determined by balance between activator and inhibitor, and the conditions of uni- and bi-directional responses, which are determined by dose-response profiles of activator and inhibitor to the guidance cue. With biologically realistic sigmoidal dose-responses, our model predicted tri-phasic turning response depending on intracellular Ca2+ level, which was then experimentally confirmed by growth cone turning assays and Ca2+ imaging. Furthermore, we took a reverse-engineering analysis to identify balanced regulation between CaMKII (activator) and PP1 (inhibitor) and then the model performance was validated by reproducing turning assays with inhibitions of CaMKII and PP1. Thus, our study implies that the balance between activator and inhibitor underlies the multi-phasic bi-directional turning response of the growth cone. PMID:27808115

  8. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  9. Hole Feature on Conical Face Recognition for Turning Part Model

    NASA Astrophysics Data System (ADS)

    Zubair, A. F.; Abu Mansor, M. S.

    2018-03-01

    Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.

  10. Describing, using 'recognition cones'. [parallel-series model with English-like computer program

    NASA Technical Reports Server (NTRS)

    Uhr, L.

    1973-01-01

    A parallel-serial 'recognition cone' model is examined, taking into account the model's ability to describe scenes of objects. An actual program is presented in an English-like language. The concept of a 'description' is discussed together with possible types of descriptive information. Questions regarding the level and the variety of detail are considered along with approaches for improving the serial representations of parallel systems.

  11. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  12. An evaluation of the bedrock aquifer system in northeastern Wisconsin

    USGS Publications Warehouse

    Emmons, P.J.

    1987-01-01

    Model simulations indicate that, by 1914, ground-water withdrawals from the aquifer system had already impacted the study area. Pumping in the Green Bay metropolitan area had lowered the potentiometric heads in aquifer 1 by 69 feet and in aquifer 2 by 55 feet. Model simulations indicate that, by 1981, ground-water withdrawals have caused a cone of depression centered in the city of De Pere area. The influence of the cone affects almost the entire study area and has significantly altered the horizontal and vertical flow regimes in the aquifer system. In 1981, computed drawdowns below the prepumping potentiometric surface of aquifer 1 range from 0 feet on the western side of the study area to 330 feet in the center of the cone of depression. In aquifer 2, the computed drawdown ranges from 0 feet on the western side of the study area to 253 feet in the center of the cone.

  13. One-step production of multilayered microparticles by tri-axial electro-flow focusing

    NASA Astrophysics Data System (ADS)

    Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald

    2014-03-01

    Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.

  14. Roles of STEF/Tiam1, guanine nucleotide exchange factors for Rac1, in regulation of growth cone morphology.

    PubMed

    Matsuo, Naoki; Terao, Mami; Nabeshima, Yo-ichi; Hoshino, Mikio

    2003-09-01

    Rho family GTPases are suggested to be pivotal for growth cone behavior, but regulation of their activities in response to environmental cues remains elusive. Here, we describe roles of STEF and Tiam1, guanine nucleotide exchange factors for Rac1, in neurite growth and growth cone remodeling. We reveal that, in primary hippocampal neurons, STEF/Tiam1 are localized within growth cones and essential for formation of growth cone lamellipodia, eventually contributing to neurite growth. Furthermore, experiments using a dominant-negative form demonstrate that STEF/Tiam1 mediate extracellular laminin signals to activate Rac1, promoting neurite growth in N1E-115 neuroblastoma cells. STEF/Tiam1 are revealed to mediate Cdc42 signal to activate Rac1 during lamellipodial formation. We also show that RhoA inhibits the STEF/Tiam1-Rac1 pathway. These data are used to propose a model that extracellular and intracellular information is integrated by STEF/Tiam1 to modulate the balance of Rho GTPase activities in the growth cone and, consequently, to control growth cone behavior.

  15. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors.

    PubMed

    Gonzalez-Cordero, Anai; Kruczek, Kamil; Naeem, Arifa; Fernando, Milan; Kloc, Magdalena; Ribeiro, Joana; Goh, Debbie; Duran, Yanai; Blackford, Samuel J I; Abelleira-Hervas, Laura; Sampson, Robert D; Shum, Ian O; Branch, Matthew J; Gardner, Peter J; Sowden, Jane C; Bainbridge, James W B; Smith, Alexander J; West, Emma L; Pearson, Rachael A; Ali, Robin R

    2017-09-12

    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. A quantitative model for transforming reflectance spectra into the Munsell color space using cone sensitivity functions and opponent process weights.

    PubMed

    D'Andrade, Roy G; Romney, A Kimball

    2003-05-13

    This article presents a computational model of the process through which the human visual system transforms reflectance spectra into perceptions of color. Using physical reflectance spectra data and standard human cone sensitivity functions we describe the transformations necessary for predicting the location of colors in the Munsell color space. These transformations include quantitative estimates of the opponent process weights needed to transform cone activations into Munsell color space coordinates. Using these opponent process weights, the Munsell position of specific colors can be predicted from their physical spectra with a mean correlation of 0.989.

  17. CNGA3 deficiency affects cone synaptic terminal structure and function and leads to secondary rod dysfunction and degeneration.

    PubMed

    Xu, Jianhua; Morris, Lynsie M; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin

    2012-03-01

    To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3-/- mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3-/- mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3-/- retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%-40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3-/- retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised.

  18. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume

    PubMed Central

    Perrichon, Prescilla; Grosell, Martin; Burggren, Warren W.

    2017-01-01

    Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the “standard” prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30–50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function—especially if stroke volume is the focus of the study—should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output. PMID:28725199

  19. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health.

    PubMed

    Deming, Janise D; Pak, Joseph S; Brown, Bruce M; Kim, Moon K; Aung, Moe H; Eom, Yun Sung; Shin, Jung-A; Lee, Eun-Jin; Pardue, Machelle T; Craft, Cheryl Mae

    2015-08-01

    Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.

  20. Simulations of Fuel Assembly and Fast-Electron Transport in Integrated Fast-Ignition Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Theobald, W.; Anderson, K. S.; Shvydky, A.; Epstein, R.; Betti, R.; Myatt, J. F.; Stoeckl, C.; Jarrott, L. C.; McGuffey, C.; Qiao, B.; Beg, F. N.; Wei, M. S.; Stephens, R. B.

    2013-10-01

    Integrated fast-ignition experiments on OMEGA benefit from improved performance of the OMEGA EP laser, including higher contrast, higher energy, and a smaller focus. Recent 8-keV, Cu-Kα flash radiography of cone-in-shell implosions and cone-tip breakout measurements showed good agreement with the 2-D radiation-hydrodynamic simulations using the code DRACO. DRACO simulations show that the fuel assembly can be further improved by optimizing the compression laser pulse, evacuating air from the shell, and by adjusting the material of the cone tip. This is found to delay the cone-tip breakout by ~220 ps and increase the core areal density from ~80 mg/cm2 in the current experiments to ~500 mg/cm2 at the time of the OMEGA EP beam arrival before the cone-tip breakout. Simulations using the code LSP of fast-electron transport in the recent integrated OMEGA experiments with Cu-doped shells will be presented. Cu-doping is added to probe the transport of fast electrons via their induced Cu K-shell fluorescent emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration DE-NA0001944 and the Office of Science under DE-FC02-04ER54789.

  1. Calabi-Yau Volumes and Reflexive Polytopes

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Seong, Rak-Kyeong; Yau, Shing-Tung

    2018-04-01

    We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence.

  2. LOOKING ALONG A FUNNEL OF LIGHT FROM A HIDDEN BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In a single Hubble Space Telescope Imaging Spectrograph (STIS) CCD observation, astronomers have measured the velocities of hundreds of gas blobs caught up in a twin-cone beam of radiation emanating from a supermassive black hole at the core of galaxy NGC 4151. Further observations using STIS's Multi-Anode Microchannel Plate Array (MAMA) detectors reveal hot gas from deep within the throat of the beam, near the vicinity of the black hole, as well as unique details of absorbing clouds along our line of sight to it. Besides revealing fast-moving knots of gas in unprecedented detail, down to a resolution of four light-years (0.05 arc seconds), STIS also simultaneously measured the motions of all of blobs through the shift in the color of their light (Doppler effect) due to their motion toward or away from us. In the standard model for such an active galactic nucleus, a black hole devours gas and dust, and some of the material is converted into energy and radiated into space. The rotation of the 'central engine' also focuses radiation along two powerful and oppositely directed beams. The velocities measured by STIS show for the first time the details of its geometry and motions in the twin beam of particles and radiation coming from an active galactic nucleus: they also reveal some unexpected new puzzles at odds with the model. The inner region of compact bright knots fits the twin-cone model for the behavior of material around supermassive black holes. STIS shows that the material in the knots is moving away from the nucleus. The material lies on the inner surface of the cones rather than filling them. This means the beams illuminate the inside of the cone which has been cleared of material, perhaps by the high speed jets seen in ground-based radio pictures. Using STIS, astronomers can trace the shape and orientation of the cones, and find that the illuminated material is moving at several hundred thousand miles per hour. However, the velocities are reversed for more distant faint knots (beyond 1,000 light-years from the nucleus). This means they may have a different history, representing orbital motions of the undisturbed galaxy population, a previous epoch of different nuclear beam orientation, or some kind of backflow into the central cone regions. NGC 4151 is the brightest member of a class of galaxies called Seyferts, characterized by extraordinary energy sources in their centers. They are generally agreed to be similar to quasars, though not as bright. Because quasars are much more rare, there are none as close and as easy to study as NGC 4151. The generally accepted model for this nuclear activity is accretion by a massive black hole, hundreds of millions of times the mass of the Sun. Models predict a disk of trapped material spiraling into the hole, and jets are created along the axis of the disk, where some of the material is blasted out at high velocity rather than being captured by the black hole. The appearance of active nuclei depends how they lie with respect to our line of sight to them. If the beam is aimed at Earth astronomers can see the central 'black hole engine' directly. If the beam is sideways to the line of sight astronomers only see material illuminated by the beam. In the case of NGC 4151, Hubble is viewing along the edge of the beam.

  3. SU-E-T-72: Commissioning of a Standardized SRS Cone Set: Determination of the Bolus Gap Factors in a Passively Scattered Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R; Gordon, I; Ghebremedhin, A

    2014-06-01

    Purpose: To determine the proton output factors for an SRS cone set using standardized apertures and varied range compensators (bolus blanks); specifically, to determine the best method for modeling the bolus gap factor (BGF) and eliminate the need for patient specific calibrations. Methods: A Standard Imaging A-16 chamber was placed in a Plastic Water phantom to measure the change in dose/MU with different treatment combinations for a proton SRS cone, using standardized apertures and range compensators. Measurements were made with all apertures in the SRS cone set, with four different range compensator thicknesses and five different air gaps between themore » end of the SRS cone and the surface of the phantom. The chamber was located at iso-center and maintained at a constant depth at the center of modulation for all measurements. Each aperture was placed in the cone to measure the change in MU needed to maintain constant dose at the chamber, as the air gap was increased with different thicknesses of bolus. Results: The dose/MU varied significantly with decreasing aperture size, increasing bolus thickness, or increasing air gap. The measured data was fitted with the lowest order polynomials that accurately described the data, to create a model for determining the change in output for any potential combination of devices used to treat a patient. For a given standardized aperture, the BGF could be described by its constituent factors: the bolus thickness factor (BTF) and the nozzle extension factor (NEF). Conclusion: The methods used to model the dose at the calibration point could be used to accurately predict the change in output for SRS proton beams due to the BGF, eliminating the need for patient specific calibrations. This method for modeling SRS treatments could also be applied to model other treatments using passively scattered proton beams.« less

  4. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models

    NASA Astrophysics Data System (ADS)

    Jackson, Amiee; Ray, Lawrence A.; Dangi, Shusil; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2017-03-01

    With increasing resolution in image acquisition, the project explores capabilities of printing toward faithfully reflecting detail and features depicted in medical images. To improve safety and efficiency of orthopedic surgery and spatial conceptualization in training and education, this project focused on generating virtual models of orthopedic anatomy from clinical quality computed tomography (CT) image datasets and manufacturing life-size physical models of the anatomy using 3D printing tools. Beginning with raw micro CT data, several image segmentation techniques including thresholding, edge recognition, and region-growing algorithms available in packages such as ITK-SNAP, MITK, or Mimics, were utilized to separate bone from surrounding soft tissue. After converting the resulting data to a standard 3D printing format, stereolithography (STL), the STL file was edited using Meshlab, Netfabb, and Meshmixer. The editing process was necessary to ensure a fully connected surface (no loose elements), positive volume with manifold geometry (geometry possible in the 3D physical world), and a single, closed shell. The resulting surface was then imported into a "slicing" software to scale and orient for printing on a Flashforge Creator Pro. In printing, relationships between orientation, print bed volume, model quality, material use and cost, and print time were considered. We generated anatomical models of the hand, elbow, knee, ankle, and foot from both low-dose high-resolution cone-beam CT images acquired using the soon to be released scanner developed by Carestream, as well as scaled models of the skeletal anatomy of the arm and leg, together with life-size models of the hand and foot.

  5. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus

    NASA Astrophysics Data System (ADS)

    Reid, R. Clay; Shapley, Robert M.

    1992-04-01

    HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.

  6. Visual pigment coexpression in all cones of two rodents, the Siberian hamster, and the pouched mouse.

    PubMed

    Lukáts, Akos; Dkhissi-Benyahya, Ouria; Szepessy, Zsuzsanna; Röhlich, Pál; Vígh, Béla; Bennett, Nigel C; Cooper, Howard M; Szél, Agoston

    2002-07-01

    To decide whether the identical topography of short- and middle-wavelength cone photoreceptors in two species of rodents reflects the presence of both opsins in all cone cells. Double-label immunocytochemistry using antibodies directed against short-wavelength (S)-and middle- to long-wavelength (M/L)-sensitive opsin were used to determine the presence of visual pigments in cones of two species of rodents, the Siberian hamster (Phodopus sungorus) and the pouched mouse (Saccostomus campestris) from South Africa. Topographical distribution was determined from retinal whole-mounts, and the colocalization of visual pigments was examined using confocal laser scanning microscopy. Opsin colocalization was also confirmed in consecutive semithin tangential sections. The immunocytochemical results demonstrate that in both the Siberian hamster and the pouched mouse all retinal cones contain two visual pigments. No dorsoventral gradient in the differential expression of the two opsins is observed. The retina of the Siberian hamster and the pouched mouse is the first example to show a uniform coexpression of M and S cone opsins in all cones, without any topographical gradient in opsin expression. This finding makes these two species good models for the study of molecular control mechanisms in opsin coexpression in rodents, and renders them suitable as sources of dual cones for future investigations on the role and neural connections of this cone type.

  7. A Novel In Vivo Model of Focal Light Emitting Diode-Induced Cone-Photoreceptor Phototoxicity: Neuroprotection Afforded by Brimonidine, BDNF, PEDF or bFGF

    PubMed Central

    García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel

    2014-01-01

    We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model. PMID:25464513

  8. Pigment tests evaluated by a model of chromatic discrimination.

    PubMed

    Smith, V C; Pokorny, J; Yeh, T

    1993-08-01

    Clinical color-vision tests are evaluated within the framework of a model of chromatic discrimination in terms of cone excitation. The motivation for this study was to derive a method for evaluation of test design, test sensitivity, and observer performance. The discrimination model is based on the assumption that chromatic discrimination is mediated in two independent channels, one for short-wavelength cones and one for long- and middle-wavelength cones. Luminance-dependent templates are derived for each channel, and they describe chromatic-discrimination behavior of the young color-normal observer. The templates incorporate receptor- and opponent-level gain controls. We show how the chromaticities of clinical tests can be calculated in cone-excitation units and how discrimination behavior on the tests can be plotted on the templates. The tests include the Farnsworth-Munsell 100-hue, the Farnsworth Panel D-15, the Farnsworth Panel D-15 desaturated, the American Optical Hardy-Rand-Rittler, the Farnsworth F2 plate, the Standard Pseudoisochromatic Plates, Part II, the Ishihara, and the Minimalist tests. Clinical-test data collected on young color-normal observers at different illumination levels show the validity of the techniques.

  9. Evolution of band topology by competing band overlap and spin-orbit coupling: Twin Dirac cones in Ba3SnO as a prototype

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Ogata, Masao

    2017-11-01

    We theoretically demonstrate how competition between band inversion and spin-orbit coupling (SOC) results in nontrivial evolution of band topology, taking antiperovskite Ba3SnO as a prototype material. A key observation is that when the band inversion dominates over SOC, there appear "twin" Dirac cones in the band structure. Due to the twin Dirac cones, the band shows highly peculiar structure in which the upper cone of one of the twin continuously transforms to the lower cone of the other. Interestingly, the relative size of the band inversion and SOC is controlled in this series of antiperovskite A3E O by substitution of A (Ca, Sr, Ba) and/or E (Sn, Pb) atoms. Analysis of an effective model shows that the emergence of twin Dirac cones is general, which makes our argument a promising starting point for finding a singular band structure induced by the competing band inversion and SOC.

  10. Nonlinear Dirac cones

    NASA Astrophysics Data System (ADS)

    Bomantara, Raditya Weda; Zhao, Wenlei; Zhou, Longwen; Gong, Jiangbin

    2017-09-01

    Physics arising from two-dimensional (2D) Dirac cones has been a topic of great theoretical and experimental interest to studies of gapless topological phases and to simulations of relativistic systems. Such 2D Dirac cones are often characterized by a π Berry phase and are destroyed by a perturbative mass term. By considering mean-field nonlinearity in a minimal two-band Chern insulator model, we obtain a different type of Dirac cone that is robust to local perturbations without symmetry restrictions. Due to a different pseudospin texture, the Berry phase of the Dirac cone is no longer quantized in π , and can be continuously tuned as an order parameter. Furthermore, in an Aharonov-Bohm (AB) interference setup to detect such Dirac cones, the adiabatic AB phase is found to be π both theoretically and computationally, offering an observable topological invariant and a fascinating example where the Berry phase and AB phase are fundamentally different. We hence discover a nonlinearity-induced quantum phase transition from a known topological insulating phase to an unusual gapless topological phase.

  11. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    PubMed Central

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the cone output. PMID:22890705

  12. Numerical and experimental investigation on static electric charge model at stable cone-jet region

    NASA Astrophysics Data System (ADS)

    Hashemi, Ali Reza; Pishevar, Ahmad Reza; Valipouri, Afsaneh; Pǎrǎu, Emilian I.

    2018-03-01

    In a typical electro-spinning process, the steady stretching process of the jet beyond the Taylor cone has a significant effect on the dimensions of resulting nanofibers. Also, it sets up the conditions for the onset of the bending instability. The focus of this work is the modeling and simulation of the initial stable jet phase seen during the electro-spinning process. The perturbation method was applied to solve hydrodynamic equations, and the electrostatic equation was solved by a boundary integral method. These equations were coupled with the stress boundary conditions derived appropriate at the fluid-fluid interface. Perturbation equations were discretized by the second-order finite difference method, and the Newton method was implemented to solve the discretized nonlinear system. Also, the boundary element method was utilized to solve the electrostatic equation. In the theoretical study, the fluid is described as a leaky dielectric with charges only on the jet surface in dielectric air. In this study, electric charges were modeled as static. Comparison of numerical and experimental results shows that at low flow rates and high electric field, good agreement was achieved because of the superior importance of the charge transport by conduction rather than convection and charge concentration. In addition, the effect of unevenness of the electric field around the nozzle tip was experimentally studied through plate-plate geometry as well as point-plate geometry.

  13. CNGA3 Deficiency Affects Cone Synaptic Terminal Structure and Function and Leads to Secondary Rod Dysfunction and Degeneration

    PubMed Central

    Xu, Jianhua; Morris, Lynsie M.; Michalakis, Stylianos; Biel, Martin; Fliesler, Steven J.; Sherry, David M.

    2012-01-01

    Purpose. To investigate rod function and survival after cone dysfunction and degeneration in a mouse model of cone cyclic nucleotide-gated (CNG) channel deficiency. Methods. Rod function and survival in mice with cone CNG channel subunit CNGA3 deficiency (CNGA3−/− mice) were evaluated by electroretinographic (ERG), morphometric, and Western blot analyses. The arrangement, integrity, and ultrastructure of photoreceptor terminals were investigated by immunohistochemistry and electron microscopy. Results. The authors found loss of cone function and cone death accompanied by impairment of rods and rod-driven signaling in CNGA3−/− mice. Scotopic ERG b-wave amplitudes were reduced by 15% at 1 month, 30% at 6 months, and 40% at 9 months and older, while scotopic a-wave amplitudes were decreased by 20% at 9 months, compared with ERGs of age-matched wild-type mice. Outer nuclear layer thickness in CNGA3−/− retina was reduced by 15% at 12 months compared with age-matched wild-type controls. This was accompanied by a 30%–40% reduction in expression of rod-specific proteins, including rhodopsin, rod transducin α-subunit, and glutamic acid-rich protein (GARP). Cone terminals in the CNGA3−/− retina showed a progressive loss of neurochemical and ultrastructural integrity. Abnormalities were observed as early as 1 month. Disorganized rod terminal ultrastructure was noted by 12 months. Conclusions. These findings demonstrate secondary rod impairment and degeneration after cone degeneration in mice with cone CNG channel deficiency. Loss of cone phototransduction accompanies the compromised integrity of cone terminals. With time, rod synaptic structure, function, and viability also become compromised. PMID:22247469

  14. RHIC and LHC Phenomena with a Unified Parton Transport

    NASA Astrophysics Data System (ADS)

    Bouras, Ioannis; El, Andrej; Fochler, Oliver; Reining, Felix; Senzel, Florian; Uphoff, Jan; Wesp, Christian; Xu, Zhe; Greiner, Carsten

    We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.

  15. RHIC and LHC phenomena with an unified parton transport

    NASA Astrophysics Data System (ADS)

    Bouras, Ioannis; El, Andrej; Fochler, Oliver; Reining, Felix; Senzel, Florian; Uphoff, Jan; Wesp, Christian; Xu, Zhe; Greiner, Carsten

    2012-11-01

    We discuss recent applications of the partonic pQCD based cascade model BAMPS with focus on heavy-ion phenomeneology in hard and soft momentum range. The nuclear modification factor as well as elliptic flow are calculated in BAMPS for RHIC end LHC energies. These observables are also discussed within the same framework for charm and bottom quarks. Contributing to the recent jet-quenching investigations we present first preliminary results on application of jet reconstruction algorithms in BAMPS. Finally, collective effects induced by jets are investigated: we demonstrate the development of Mach cones in ideal matter as well in the highly viscous regime.

  16. Integrated microfluidic platforms for investigating neuronal networks

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA (multielectrode array) or nanowire electrode array to study electrophysiology in neuronal network. Also, "diode-like" microgrooves to control the number of neuronal processes is embedded in this platform. Chapter 6 concludes with a possible future direction of this work. Interfacing micro/nanotechnology with primary neuron culture would open many doors in fundamental neuroscience research and also biomedical innovation.

  17. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  18. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore

    NASA Astrophysics Data System (ADS)

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2016-09-01

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C , is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z , collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.

  19. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore.

    PubMed

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2016-09-23

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte.

  20. Molecular Dynamics Modeling of Ionic Liquids in Electrospray Propulsion

    DTIC Science & Technology

    2010-06-01

    surface equipotential and a correspondes to the model sphere radius. It can also see that the applied voltage is necessary to obtain the surface ...between the tip and extractor, the equipotential line whose angle relative to the x axis is approximately 49 degrees is selected as the Taylor cone surface ...model. Then the electric field on such equipotential line is found by equation 7.5 and used for the distribution along the cone surface . This

  1. Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health

    PubMed Central

    Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae

    2015-01-01

    Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544

  2. Vertical microbial community variability of carbonate-based cones may provide insight into ancient conical stromatolite formation

    NASA Astrophysics Data System (ADS)

    Bradley, James; Daille, Leslie; Trivedi, Christopher; Bojanowski, Caitlin; Nunn, Heather; Stamps, Blake; Johnson, Hope; Stevenson, Bradley; Berelson, Will; Corsetti, Frank; Spear, John

    2016-04-01

    Stromatolite morphogenesis is poorly understood, and the process by which microbial mats become mineralized is a primary question in microbialite formation. Ancient conical stromatolites are primarily carbonate-based whereas the few modern analogues in hot springs are either non-mineralized or mineralized by silica. A team from the 2015 International GeoBiology Course investigated carbonate-rich microbial cones from near Little Hot Creek (LHC), Long Valley Caldera, California, to investigate how conical stromatolites might form in a hot spring carbonate system. The cones rise up from a layered microbial mat on the east side of a 45° C pool with very low flow that is super-saturated with respect to CaCO3. Cone structures are 8-30 mm in height, are rigid and do not deform when removed from the pool. Morphological characterization through environmental scanning electronic microscopy revealed that the cone structure is maintained by a matrix of intertwining microbial filaments around carbonate grains. This matrix gives rise to cone-filaments that are arranged vertically or horizontally, and provides further stability to the cone. Preliminary 16S rRNA gene analysis indicated variability of community composition between different vertical levels of the cone. The cone tip had comparatively greater abundance of filamentous cyanobacteria including Leptolingbya, Phormidium and Isosphaera and fewer heterotrophs (e.g. Chloroflexi) compared to the cone bottom. This supports the hypothesis that cone formation may depend on the differential abundance of the microbial community and their potential functional roles. Metagenomic analyses of the cones revealed potential genes related to chemotaxis and motility. Specifically, a genomic bin identified as a member of the genus Isosphaera contained an hmp chemotaxis operon implicated in gliding motility in the cyanobacterium Nostoc punctiforme. Isosphaera is a Planctomycete shown to have phototactic capabilities, and may play a role in conjunction with cyanobacteria in the vertical formation of the cones. This analysis of actively growing cones indicates a complex interplay of geochemistry and microbiology that form structures which can serve as models for processes that occurred in the past and are preserved in the rock record.

  3. Adsorption and Gas Separation of Molecules by Carbon Nanohorns.

    PubMed

    Gatica, Silvina M; Nekhai, Anton; Scrivener, Adam

    2016-05-19

    In this paper, we report the results of Monte Carlo simulations of the adsorption of neon, argon, methane and carbon dioxide in carbon nanohorns. We model the nanohorns as an array of carbon cones and obtained adsorption isotherms and isosteric heats. The main sites of adsorption are inside the cones and in the interstices between three cones. We also calculated the selectivity of carbon dioxide/methane, finding that nanohorns are a suitable substrate for gas separation. Our simulations are compared to available experimental data.

  4. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    DTIC Science & Technology

    2009-08-01

    experiments. The third and fourth sections of the cone are designed to hold the instrumentation. The model can be run as a 0.102-m base-diameter cone...using the third section only, or 28 Figure 3.10. Glow-perturber section the fourth section can be added to increase the cone base diameter to 0.127 m...the second sensor. The third sensor shows an increase in frequency components above 15 kHz as well as a rise in lower frequencies. As transition

  5. Cone arrestin: deciphering the structure and functions of arrestin 4 in vision.

    PubMed

    Craft, Cheryl Mae; Deming, Janise D

    2014-01-01

    Cone arrestin (Arr4) was discovered 20 years ago as a human X-chromosomal gene that is highly expressed in pinealocytes and cone photoreceptors. Subsequently, specific antibodies were developed to identify Arr4 and to distinguish cone photoreceptor morphology in health and disease states. These reagents were used to demonstrate Arr4 translocation from cone inner segments in the dark to outer segments with light stimulation, similarly to Arrestin 1 (Arr1) translocation in rod photoreceptors. A decade later, the Arr4 crystal structure was solved, which provided more clues about Arr4's mechanisms of action. With the creation of genetically engineered visual arrestin knockout mice, one critical function of Arr4 was clarified. In single living cones, both visual arrestins bind to light-activated, G protein receptor kinase 1 (Grk1) phosphorylated cone opsins to desensitize them, and in their absence, mouse cone pigment shutoff is delayed. Still under investigation are additional functions; however, it is clear that Arr4 has non-opsin-binding partners and diverse synaptic roles, including cellular anchoring and trafficking. Recent studies reveal Arr4 is involved in high temporal resolution and contrast sensitivity, which opens up a new direction for research on this intriguing protein. Even more exciting is the potential for therapeutic use of the Arr4 promoter with an AAV-halorhodopsin that was shown to be effective in using the remaining cones in retinal degeneration mouse models to drive inner retinal circuitry for motion detection and light/dark discrimination.

  6. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.

    PubMed

    Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng

    2003-07-01

    Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.

  7. Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    PubMed Central

    Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla

    2013-01-01

    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

  8. Light-cone quantization of two dimensional field theory in the path integral approach

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.

    1999-05-01

    A quantization condition due to the boundary conditions and the compatification of the light cone space-time coordinate x- is identified at the level of the classical equations for the right-handed fermionic field in two dimensions. A detailed analysis of the implications of the implementation of this quantization condition at the quantum level is presented. In the case of the Thirring model one has selection rules on the excitations as a function of the coupling and in the case of the Schwinger model a double integer structure of the vacuum is derived in the light-cone frame. Two different quantized chiral Schwinger models are found, one of them without a θ-vacuum structure. A generalization of the quantization condition to theories with several fermionic fields and to higher dimensions is presented.

  9. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Record of complex scoria cone eruptive activity at Red Mountain, Arizona, USA, and implications for monogenetic mafic volcanoes

    NASA Astrophysics Data System (ADS)

    Riggs, N. R.; Duffield, W. A.

    2008-12-01

    Scoria cone eruptions are generally modeled as a simple succession from explosive eruption to form the cone to passive effusion of lava, generally from the base of the cone. Sector collapse of scoria cones, wherein parts of the cone are rafted on a lava flow, is increasingly recognized as common, but the reasons that a cone may not be rebuilt are poorly understood. Red Mountain volcano is a Pleistocene scoria cone in the San Francisco Volcanic Field of northern Arizona, USA. The cone lies along the trace of a major steeply dipping normal fault that originated during Proterozoic tectonism and was reactivated in Tertiary time. The earliest phase of eruption at Red Mountain was typical "Strombolian", forming a cone that was followed by or possibly synchronous with lava effusion, toward the west from the base of the cone. Rafting then ensued as the west side of the cone collapsed; approximately 15% of the cone is preserved in mounds as much as 30 m high. Rafting was extensive enough to remove most of the cone over the vent area, which effectively reduced the pressure cap on the magma conduit. Resultant low fountaining fed clastogenic lava flows and minor scoria fallback. Clastogenic flows traveled as far as 4 km and now form a cliff 30-40 m high at the edge of the lava platform. Although several possibilities explain the change in vent dynamics and eruptive style, we favor the interpretation that an increase in magma-rise rate caused collapse of the cone. The abrupt removal of 300 m of material over the vent removed a conduit "cork" and low fountaining began. Magma that had erupted effusively suddenly became explosive. This aspect of scoria cone rafting at Red Mountain is broadly similar to sector collapse followed by explosive eruption in larger systems. A steep-walled, 150-m-high amphitheatre on the northeast side of Red Mountain exposes weakly to strongly altered scoria cemented by calcite, iron, and zeolites. We suggest that vapor-phase alteration was responsible for sealing fine-grained ash beds in the cone, and a pressurized system developed. Residual heat from a dike that was emplaced as part of the magmatic activity provided heat that drove groundwater along the regional fault up into the cone. Eventually the overpressurized system exploded in a phreatic eruption that created the amphitheatre, which has subsequently been enlarged by water and wind erosion. The combined sequence of events at Red Mountain illustrates some of the complexities in monogenetic scoria cone eruptions that have received little attention to date.

  11. Optimum hot electron production with low-density foams for laser fusion by fast ignition.

    PubMed

    Lei, A L; Tanaka, K A; Kodama, R; Kumar, G R; Nagai, K; Norimatsu, T; Yabuuchi, T; Mima, K

    2006-06-30

    We propose a foam cone-in-shell target design aiming at optimum hot electron production for the fast ignition. A thin low-density foam is proposed to cover the inner tip of a gold cone inserted in a fuel shell. An intense laser is then focused on the foam to generate hot electrons for the fast ignition. Element experiments demonstrate increased laser energy coupling efficiency into hot electrons without increasing the electron temperature and beam divergence with foam coated targets in comparison with solid targets. This may enhance the laser energy deposition in the compressed fuel plasma.

  12. Embedding and partial resolution of complex cones over Fano threefolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Siddharth, E-mail: sdwivedi@iitk.ac.in

    2016-12-15

    This work deals with the study of embeddings of toric Calabi–Yau fourfolds which are complex cones over the smooth Fano threefolds. In particular, we focus on finding various embeddings of Fano threefolds inside other Fano threefolds and study the partial resolution of the latter in hope to find new toric dualities. We find many diagrams possible for many of these Fano threefolds, but unfortunately, none of them are consistent quiver theories. We also obtain a quiver Chern–Simons theory which matches a theory known to the literature, thus providing an alternate method of obtaining it.

  13. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Weixing; Zhao Binghui; Conover, David

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less

  14. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu; Norris, Jennifer L.; Cooper, Robert F.; Dubis, Adam M.; Williams, David R.; Carroll, Joseph

    2011-01-01

    The rod photoreceptors are implicated in a number of devastating retinal diseases. However, routine imaging of these cells has remained elusive, even with the advent of adaptive optics imaging. Here, we present the first in vivo images of the contiguous rod photoreceptor mosaic in nine healthy human subjects. The images were collected with three different confocal adaptive optics scanning ophthalmoscopes at two different institutions, using 680 and 775 nm superluminescent diodes for illumination. Estimates of photoreceptor density and rod:cone ratios in the 5°–15° retinal eccentricity range are consistent with histological findings, confirming our ability to resolve the rod mosaic by averaging multiple registered images, without the need for additional image processing. In one subject, we were able to identify the emergence of the first rods at approximately 190 μm from the foveal center, in agreement with previous histological studies. The rod and cone photoreceptor mosaics appear in focus at different retinal depths, with the rod mosaic best focus (i.e., brightest and sharpest) being at least 10 μm shallower than the cones at retinal eccentricities larger than 8°. This study represents an important step in bringing high-resolution imaging to bear on the study of rod disorders. PMID:21750765

  15. Validation of Real-time Modeling of Coronal Mass Ejections Using the WSA-ENLIL+Cone Heliospheric Model

    NASA Astrophysics Data System (ADS)

    Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.

    2013-12-01

    Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.

  16. Drosophila Growth Cones Advance by Forward Translocation of the Neuronal Cytoskeletal Meshwork In Vivo

    PubMed Central

    Roossien, Douglas H.; Lamoureux, Phillip; Van Vactor, David; Miller, Kyle E.

    2013-01-01

    In vitro studies conducted in Aplysia and chick sensory neurons indicate that in addition to microtubule assembly, long microtubules in the C-domain of the growth cone move forward as a coherent bundle during axonal elongation. Nonetheless, whether this mode of microtubule translocation contributes to growth cone motility in vivo is unknown. To address this question, we turned to the model system Drosophila. Using docked mitochondria as fiduciary markers for the translocation of long microtubules, we first examined motion along the axon to test if the pattern of axonal elongation is conserved between Drosophila and other species in vitro. When Drosophila neurons were cultured on Drosophila extracellular matrix proteins collected from the Drosophila Kc167 cell line, docked mitochondria moved in a pattern indicative of bulk microtubule translocation, similar to that observed in chick sensory neurons grown on laminin. To investigate whether the C-domain is stationary or advances in vivo, we tracked the movement of mitochondria during elongation of the aCC motor neuron in stage 16 Drosophila embryos. We found docked mitochondria moved forward along the axon shaft and in the growth cone C-domain. This work confirms that the physical mechanism of growth cone advance is similar between Drosophila and vertebrate neurons and suggests forward translocation of the microtubule meshwork in the axon underlies the advance of the growth cone C-domain in vivo. These results highlight the need for incorporating en masse microtubule translocation, in addition to assembly, into models of axonal elongation. PMID:24244629

  17. Numerical Investigation of Double-Cone Flows with High Enthalpy Effects

    NASA Astrophysics Data System (ADS)

    Nompelis, I.; Candler, G. V.

    2009-01-01

    A numerical study of shock/shock and shock/boundary layer interactions generated by a double-cone model that is placed in a hypersonic free-stream is presented. Computational results are compared with the experimental measurements made at the CUBRC LENS facility for nitrogen flows at high enthalpy conditions. The CFD predictions agree well with surface pressure and heat-flux measurements for all but one of the double-cone cases that have been studied by the authors. Unsteadiness is observed in computations of one of the LENS cases, however for this case the experimental measurements show that the flowfield is steady. To understand this discrepancy, several double-cone experiments performed in two different facilities with both air and nitrogen as the working gas are examined in the present study. Computational results agree well with measurements made in both the AEDC tunnel 9 and the CUBRC LENS facility for double-cone flows at low free-stream Reynolds numbers where the flow is steady. It is shown that at higher free- stream pressures the double-cone simulations develop instabilities that result in an unsteady separation.

  18. Neuronal Cell Cultures from Aplysia for High-Resolution Imaging of Growth Cones

    PubMed Central

    Lee, Aih Cheun; Decourt, Boris; Suter, Daniel

    2008-01-01

    Neuronal growth cones are the highly motile structures at the tip of axons that can detect guidance cues in the environment and transduce this information into directional movement towards the appropriate target cell. To fully understand how guidance information is transmitted from the cell surface to the underlying dynamic cytoskeletal networks, one needs a model system suitable for live cell imaging of protein dynamics at high temporal and spatial resolution. Typical vertebrate growth cones are too small to quantitatively analyze F-actin and microtubule dynamics. Neurons from the sea hare Aplysia californica are 5-10 times larger than vertebrate neurons, can easily be kept at room temperature and are very robust cells for micromanipulation and biophysical measurements. Their growth cones have very defined cytoplasmic regions and a well-described cytoskeletal system. The neuronal cell bodies can be microinjected with a variety of probes for studying growth cone motility and guidance. In the present protocol we demonstrate a procedure for dissection of the abdominal ganglion, culture of bag cell neurons and setting up an imaging chamber for live cell imaging of growth cones. PMID:19066568

  19. Noise masking of S-cone increments and decrements.

    PubMed

    Wang, Quanhong; Richters, David P; Eskew, Rhea T

    2014-11-12

    S-cone increment and decrement detection thresholds were measured in the presence of bipolar, dynamic noise masks. Noise chromaticities were the L-, M-, and S-cone directions, as well as L-M, L+M, and achromatic (L+M+S) directions. Noise contrast power was varied to measure threshold Energy versus Noise (EvN) functions. S+ and S- thresholds were similarly, and weakly, raised by achromatic noise. However, S+ thresholds were much more elevated by S, L+M, L-M, L- and M-cone noises than were S- thresholds, even though the noises consisted of two symmetric chromatic polarities of equal contrast power. A linear cone combination model accounts for the overall pattern of masking of a single test polarity well. L and M cones have opposite signs in their effects upon raising S+ and S- thresholds. The results strongly indicate that the psychophysical mechanisms responsible for S+ and S- detection, presumably based on S-ON and S-OFF pathways, are distinct, unipolar mechanisms, and that they have different spatiotemporal sampling characteristics, or contrast gains, or both. © 2014 ARVO.

  20. ERM proteins regulate growth cone responses to Sema3A.

    PubMed

    Mintz, C David; Carcea, Ioana; McNickle, Daniel G; Dickson, Tracey C; Ge, Yongchao; Salton, Stephen R J; Benson, Deanna L

    2008-10-01

    Axonal growth cones initiate and sustain directed growth in response to cues in their environment. A variety of events such as receptor internalization, kinase activation, and actin rearrangement can be stimulated by guidance cues and are essential for mediating targeted growth cone behavior. Surprisingly little is known about how such disparate actions are coordinated. Our data suggest that ezrin, radixin, and moesin (ERMs), a family of highly homologous, multifunctional proteins may be able to coordinate growth cone responses to the guidance cue Semaphorin 3A (Sema3A). We show that active ERMs concentrate asymmetrically in neocortical growth cones, are rapidly and transiently inactivated by Sema3A, and are required for Sema3A-mediated growth cone collapse and guidance. The FERM domain of active ERMs regulates internalization of the Sema3A receptor, Npn1, and its coreceptor, L1CAM, while the ERM C-terminal domain binds and caps F-actin. Our data support a model in which ERMs can coordinate membrane and actin dynamics in response to Sema3A.

  1. You'd better walk alone: Changes in forest composition affect pollination efficiency and pre-dispersal cone damage in Iberian Juniperus thurifera forests.

    PubMed

    Rodríguez-García, E; Mezquida, E T; Olano, J M

    2017-11-01

    Changes in land-use patterns are a major driver of global environmental change. Cessation of traditional land-use practices has led to forest expansion and shifts in forest composition. Consequently, former monospecific forests maintained by traditional management are progressing towards mixed forests. However, knowledge is scarce on how the presence of other tree species will affect reproduction of formerly dominant species. We explored this question in the wind-pollinated tree Juniperus thurifera. We hypothesised that the presence of heterospecific trees would have a negative effect on cone production and on the proportion of cones attacked by specialised predators. We assessed the relative importance of forest composition on cone production, seed development and pre-dispersal cone damage on nine paired pure and mixed J. thurifera forests in three regions across the Iberian Peninsula. The effects of forest composition on crop size, cone and seed characteristics, as well as damage by pre-dispersal arthropods were tested using mixed models. Cone production was lower and seed abortion higher in mixed forests, suggesting higher pollination failure. In contrast, cone damage by arthropods was higher in pure forests, supporting the hypothesis that presence of non-host plants reduces damage rates. However, the response of each arthropod to forest composition was species-specific and the relative rates of cone damage varied depending on individual tree crops. Larger crop sizes in pure forests compensated for the higher cone damage rates, leading to a higher net production of sound seeds compared to mixed forests. This study indicates that ongoing changes in forest composition after land abandonment may impact tree reproduction. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  2. Novel Animal Model of Crumbs-Dependent Progressive Retinal Degeneration That Targets Specific Cone Subtypes.

    PubMed

    Fu, Jinling; Nagashima, Mikiko; Guo, Chuanyu; Raymond, Pamela A; Wei, Xiangyun

    2018-01-01

    Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.

  3. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  4. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL

    PubMed Central

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-01-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091

  5. ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.

    PubMed

    Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui

    2013-06-01

    We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

  6. Reconfiguration of broad leaves into cones

    NASA Astrophysics Data System (ADS)

    Miller, Laura

    2013-11-01

    Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.

  7. Universal Scaling of Robust Thermal Hot Spot and Ionic Current Enhancement by Focused Ohmic Heating in a Conic Nanopore

    PubMed Central

    Pan, Zehao; Wang, Ceming; Li, Meng; Chang, Hsueh-Chia

    2017-01-01

    A stable nanoscale thermal hot spot, with temperature approaching 100 °C, is shown to be sustained by localized Ohmic heating of a focused electric field at the tip of a slender conic nanopore. The self-similar (length-independent) conic geometry allows us to match the singular heat source at the tip to the singular radial heat loss from the slender cone to obtain a self-similar steady temperature profile along the cone and the resulting ionic current conductance enhancement due to viscosity reduction. The universal scaling, which depends only on a single dimensionless parameter Z, collapses the measured conductance data and computed temperature profiles in ion-track conic nanopores and conic nanopipettes. The collapsed numerical data reveal universal values for the hot-spot location and temperature in an aqueous electrolyte. PMID:27715110

  8. CFD Validation Studies for Hypersonic Flow Prediction

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N2 flow over a hollow cylinder-flare with 30 degree flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 degrees and aft-cone angle of 55 degrees. Both sets of experiments involve 30 degree compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  9. CFD Validation Studies for Hypersonic Flow Prediction

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    A series of experiments to measure pressure and heating for code validation involving hypersonic, laminar, separated flows was conducted at the Calspan-University at Buffalo Research Center (CUBRC) in the Large Energy National Shock (LENS) tunnel. The experimental data serves as a focus for a code validation session but are not available to the authors until the conclusion of this session. The first set of experiments considered here involve Mach 9.5 and Mach 11.3 N, flow over a hollow cylinder-flare with 30 deg flare angle at several Reynolds numbers sustaining laminar, separated flow. Truncated and extended flare configurations are considered. The second set of experiments, at similar conditions, involves flow over a sharp, double cone with fore-cone angle of 25 deg and aft-cone angle of 55 deg. Both sets of experiments involve 30 deg compressions. Location of the separation point in the numerical simulation is extremely sensitive to the level of grid refinement in the numerical predictions. The numerical simulations also show a significant influence of Reynolds number on extent of separation. Flow unsteadiness was easily introduced into the double cone simulations using aggressive relaxation parameters that normally promote convergence.

  10. Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary

    NASA Astrophysics Data System (ADS)

    Lv, Chong; Xie, Bai-Song; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Hong, Xue-Ren; Liu, Shi-Bing

    2017-03-01

    A scheme with a gold cone-capillary is proposed to improve the protons acceleration, and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and result in a better beam quality with a dense density ≥ 10 n c , monoenergetic peak energy E k ˜ 1.51 GeV , spatial emittance ˜ 0.0088 mm mrad with divergence angle θ ˜ 1.0 ° and diameter ˜ 0.5 μ m . The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle nearby 1.0 ° in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be beneficial to many applications such as ion fast ignition in inertial fusion, proton therapy and so on.

  11. Computational models of human vision with applications

    NASA Technical Reports Server (NTRS)

    Wandell, B. A.

    1985-01-01

    Perceptual problems in aeronautics were studied. The mechanism by which color constancy is achieved in human vision was examined. A computable algorithm was developed to model the arrangement of retinal cones in spatial vision. The spatial frequency spectra are similar to the spectra of actual cone mosaics. The Hartley transform as a tool of image processing was evaluated and it is suggested that it could be used in signal processing applications, GR image processing.

  12. Influence of Wind Tunnel Noise on the Location of Boundary-Layer Transition on a Slender Cone at Mach Numbers from 0.2 to 5.5. Volume I. Experimental Methods and Summary of Results.

    DTIC Science & Technology

    1980-03-01

    UNCLASSIFIED UNCLASSIFIED 20. ABSTRACT (Continued) either a traversing pitot pressure probe in contact with the cone surface or the flush-mounted...CONCLUDING REMARKS 46 REFERENCES 46 ILLUSTRATIONS Figure 1. 2. 3. 4. 5. 6. 7. 8. ’.. 9. i ~.. AEDC 10-deg Transition Cone Model 6 Pitot Pressure Probe ...Installation Sketch 9 Details of Pitot Pressure Probe Assembly 10 Typical Pitot Pressure Probe Sensing Tube/Transducer Frequency Response

  13. Radiation-driven winds of hot stars. VI - Analytical solutions for wind models including the finite cone angle effect

    NASA Technical Reports Server (NTRS)

    Kudritzki, R. P.; Pauldrach, A.; Puls, J.; Abbott, D. C.

    1989-01-01

    Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.

  14. Mapping nonlinear receptive field structure in primate retina at single cone resolution

    PubMed Central

    Li, Peter H; Greschner, Martin; Gunning, Deborah E; Mathieson, Keith; Sher, Alexander; Litke, Alan M; Paninski, Liam

    2015-01-01

    The function of a neural circuit is shaped by the computations performed by its interneurons, which in many cases are not easily accessible to experimental investigation. Here, we elucidate the transformation of visual signals flowing from the input to the output of the primate retina, using a combination of large-scale multi-electrode recordings from an identified ganglion cell type, visual stimulation targeted at individual cone photoreceptors, and a hierarchical computational model. The results reveal nonlinear subunits in the circuity of OFF midget ganglion cells, which subserve high-resolution vision. The model explains light responses to a variety of stimuli more accurately than a linear model, including stimuli targeted to cones within and across subunits. The recovered model components are consistent with known anatomical organization of midget bipolar interneurons. These results reveal the spatial structure of linear and nonlinear encoding, at the resolution of single cells and at the scale of complete circuits. DOI: http://dx.doi.org/10.7554/eLife.05241.001 PMID:26517879

  15. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Benson, T. M.; Gregor, J.

    2006-09-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  16. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong, E-mail: scho@kaist.ac.kr

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in amore » circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the proposed scanning method and image reconstruction algorithm can effectively estimate the scatter in cone-beam projections and produce tomographic images of nearly scatter-free quality. The authors believe that the proposed method would provide a fast and efficient CBCT scanning option to various applications particularly including head-and-neck scan.« less

  17. Rod- and cone-driven responses in mice expressing human L-cone pigment

    PubMed Central

    Atorf, Jenny; Neitz, Maureen; Neitz, Jay

    2015-01-01

    The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lwLIAIS) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse. PMID:26245314

  18. Batchwise growth of silica cone patterns via self-assembly of aligned nanowires.

    PubMed

    Luo, Shudong; Zhou, Weiya; Chu, Weiguo; Shen, Jun; Zhang, Zengxing; Liu, Lifeng; Liu, Dongfang; Xiang, Yanjuan; Ma, Wenjun; Xie, Sishen

    2007-03-01

    Silica-cone patterns self-assembled from well-aligned nanowires are synthesized using gallium droplets as the catalyst and silicon wafers as the silicon source. The cones form a triangular pattern array radially on almost the whole surface of the molten Ga ball. Detailed field-emission scanning electron microscopy (SEM) analysis shows that the cone-pattern pieces frequently slide off and are detached from the molten Ga ball surface, which leads to the exposure of the catalyst surface and the growth of a new batch of silicon oxide nanowires as well as the cone patterns. The processes of growth and detachment alternate, giving rise to the formation of a volcano-like or a flower-like structure with bulk-quantity pieces of cone patterns piled up around the Ga ball. Consequently, the cone-patterned layer grows batch by batch until the reaction is terminated. Different to the conventional metal-catalyzed growth model, the batch-by-batch growth of the triangular cone patterns proceeds on the molten Ga balls via alternate growth on and detachment from the catalyst surface of the patterns; the Ga droplet can be used continuously and circularly as an effective catalyst for the growth of amorphous SiO(x) nanowires during the whole growth period. The intriguing batchwise growth phenomena may enrich our understanding of the vapour-liquid-solid (VLS) growth mechanism for the catalyst growth of nanowires or other nanostructures and may offer a different way of self-assembling novel silica nanostructures.

  19. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs.

    PubMed

    Mowat, F M; Breuwer, A R; Bartoe, J T; Annear, M J; Zhang, Z; Smith, A J; Bainbridge, J W B; Petersen-Jones, S M; Ali, R R

    2013-05-01

    Recent clinical trials of retinal pigment epithelium gene (RPE65) supplementation therapy in Leber congenital amaurosis type 2 patients have demonstrated improvements in rod and cone function, but it may be some years before the effects of therapy on photoreceptor survival become apparent. The Rpe65-deficient dog is a very useful pre-clinical model in which to test efficacy of therapies, because the dog has a retina with a high degree of similarity to that of humans. In this study, we evaluated the effect of RPE65 gene therapy on photoreceptor survival in order to predict the potential benefit and limitations of therapy in patients. We examined the retinas of Rpe65-deficient dogs after RPE65 gene therapy to evaluate the preservation of rods and cone photoreceptor subtypes. We found that gene therapy preserves both rods and cones. While the moderate loss of rods in the Rpe65-deficient dog retina is slowed by gene therapy, S-cones are lost extensively and gene therapy can prevent that loss, although only within the treated area. Although LM-cones are not lost extensively, cone opsin mislocalization indicates that they are stressed, and this can be partially reversed by gene therapy. Our results suggest that gene therapy may be able to slow cone degeneration in patients if intervention is sufficiently early and also that it is probably important to treat the macula in order to preserve central function.

  20. 3D modelling of mechanical peat properties in the Holocene coastal-deltaic sequence of the Netherlands

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans

    2016-04-01

    Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.

  1. Geomorphological features of rootless cones in Myvatn, Iceland in comparison with Martian candidates

    NASA Astrophysics Data System (ADS)

    Noguchi, R.; Kurita, K.

    2015-12-01

    Rootless cones (RC) have not been paid much attention so far because of their limited locations and their small size. They are formed by repeated phreatovolcanic explosions by lava-waterlogged sediments interactions. While the distribution is limited on the Earth, they have been pervasively recognized on Mars (e.g., Greeley and Fagents, 2001) and considered as a key marker in identifying lava flow. Although in-depth morphological comparisons are necessary, the terrestrial standard is not sufficient. Recent studies have clarified detailed characteristics of the distribution in the context of lava flow dynamics in Laki, Iceland (Hamilton et al., 2010a,b). However, we are still lacking of sufficient data of the morphology. To construct the terrestrial reference, we performed survey in Myvatn, Iceland.About 2300 years ago, lava flowed into old-Lake Myvatn, then formed RCs (Thorarinsson, 1953). There exists 3 morphological types; Single Cone (SC), a conical edifice with a summit crater, Double Cone (DC), composed of an inner cone with a summit crater within the summit crater of an outer cone, and multiple cone, similar to DC but with several inner cones. Through aerial photo survey, 1154 RCs (1056 are SC, 78 are DC and 20 are multiple one) are identified in this area. To know high-resolution topography of them, we apply kinematic GPS. Constituent materials of RCs are analyzed focusing on their bulk density, vesicularity, and grain size distribution.Geomorphological features of RCs are strongly correlated with its location and constituent materials. The crater diameter/bottom diameter ratio of cone, which is considered as an indicator of the explosivity, is larger around the lake and smaller far way from the lava source. This suggests an importance of available thermal energy as well as the water supply. The edifice morphology is grouped into 5 types; I: constant slopes that reach the repose angle; II: constant slopes lower than the repose angle; III: variable slopes with a step; IV: variable slopes that get steeper with higher altitude; and V: variable and small slope angles. We found these types correspond to their constituent materials and volumes. In this presentation, we show the relationship between RC morphology and other parameters, which can be useful as well as the planetary volcanology.

  2. Vertical Microbial Community Variability of Carbonate-based Cones may Provide Insight into Formation in the Rock Record

    NASA Astrophysics Data System (ADS)

    Trivedi, C.; Bojanowski, C.; Daille, L. K.; Bradley, J.; Johnson, H.; Stamps, B. W.; Stevenson, B. S.; Berelson, W.; Corsetti, F. A.; Spear, J. R.

    2015-12-01

    Stromatolite morphogenesis is poorly understood, and the process by which microbial mats become mineralized is a primary question in microbialite formation. Ancient conical stromatolites are primarily carbonate-based whereas the few modern analogues in hot springs are either non-mineralized or mineralized by silica. A team from the 2015 International GeoBiology Course investigated carbonate-rich microbial cones from near Little Hot Creek (LHC), Long Valley Caldera, California, to investigate how conical stromatolites might form in a hot spring carbonate system. The cones are up to 3 cm tall and are found in a calm, ~45° C pool near LHC that is 4 times super-saturated with respect to CaCO3. The cones rise from a flat, layered microbial mat at the edge of the pool. Scanning electron microscopy revealed filamentous bacteria associated with calcite crystals within the cone tips. Preliminary 16S rRNA gene analysis indicated variability of community composition between different vertical levels of the cone. The cone tip had comparatively greater abundance of filamentous cyanobacteria (Leptolyngbya and Phormidium) and fewer heterotrophs (e.g. Chloroflexi) compared to the cone bottom. This supports the hypothesis that cone formation may depend on the differential abundance of the microbial community and their potential functional roles. Metagenomic analyses of the cones revealed potential genes related to chemotaxis and motility. Specifically, a genomic bin identified as a member of the genus Isosphaera contained an hmp chemotaxis operon implicated in gliding motility in the cyanobacterium Nostoc punctiforme [1]. Isosphaera is a Planctomycete shown to have phototactic capabilities [2], and may play a role in conjunction with cyanobacteria in the vertical formation of the cones. This analysis of actively growing cones indicates a complex interplay of geochemistry and microbiology that form structures which can serve as models for processes that occurred in the past and are preserved in the rock record. References: [1] Risser, D.D. et al. (2013) Molecular Microbiology, 87(4), 884-893. [2] Giovannoni, S.J. et al. (1987) Archives of Microbiology, 147(3), 276-284.

  3. Quantification of Juniperus Ashei Pollen Production for the Development of Forecasting Models

    NASA Technical Reports Server (NTRS)

    Bunderson, L. D.; Levetin, E.

    2010-01-01

    Juniperus ashei pollen is considered one of the most allergenic species of Cupressaceae in North America. Juniperus ashei is distributed throughout central Texas, Northern Mexico, the Arbuckle Mountains of south central Oklahoma, and the Ozark Mountains of northern Arkansas and southwestern Missouri. The large amount of airborne pollen that J. ashei produces affects inhabitants of cities and towns adjacent to juniper woodland areas and because juniper pollen can be transported over long distances, it affects populations that are far away. In order to create a dynamic forecast system for allergy and asthma sufferers, pollen production must be estimated. Estimation of pollen production requires the estimation of male cone production. Two locations in the Arbuckle Mountains of Oklahoma and 4 locations in the Edwards Plateau region of Texas were chosen as sampling sites. Trees were measured to determine approximate size. Male to female ratio was determined and pollen cone production was estimated using a qualitative scale from 0 to 2. Cones were counted from harvested 1/8 sections of representative trees. The representative trees were measured and approximate surface area of the tree was calculated. Using the representative tree data, the number of cones per square meter was calculated for medium production (1) and high production (2) trees. These numbers were extrapolated to calculate cone production in other trees sampled. Calibration was achieved within each location's sub-plot by counting cones on 5 branches collected from 5 sides of both high production and medium production trees. The total area sampled in each location was 0.06 hectare and total cone production varied greatly from location to location. The highest production area produced 5.8 million cones while the lowest production area produced 72,000 cones. A single representative high production tree in the Arbuckle Mountains produced 1.38 million cones. The number of trees per location was relatively uniform, but the number of high cone production trees varied greatly. Although there is great diversity in the locations making it difficult to determine which factors are most important, cone production was well correlated with certain stand characteristics including trunk diameter.

  4. Flocking and invariance of velocity angles.

    PubMed

    Liu, Le; Huang, Lihong; Wu, Jianhong

    2016-04-01

    Motsch and Tadmor considered an extended Cucker-Smale model to investigate the flocking behavior of self-organized systems of interacting species. In this extended model, a cone of the vision was introduced so that outside the cone the influence of one agent on the other is lost and hence the corresponding influence function takes the value zero. This creates a problem to apply the Motsch-Tadmor and Cucker-Smale method to prove the flocking property of the system. Here, we examine the variation of the velocity angles between two arbitrary agents, and obtain a monotonicity property for the maximum cone of velocity angles. This monotonicity permits us to utilize existing arguments to show the flocking property of the system under consideration, when the initial velocity angles satisfy some minor technical constraints.

  5. Analytical study of mode degeneracy in non-Hermitian photonic crystals with TM-like polarization

    NASA Astrophysics Data System (ADS)

    Yin, Xuefan; Liang, Yong; Ni, Liangfu; Wang, Zhixin; Peng, Chao; Li, Zhengbin

    2017-08-01

    We present a study of the mode degeneracy in non-Hermitian photonic crystals (PC) with TM-like polarization and C4 v symmetry from the perspective of the coupled-wave theory (CWT). The CWT framework is extended to include TE-TM coupling terms which are critical for modeling the accidental triple degeneracy within non-Hermitian PC systems. We derive the analytical form of the wave function and the condition of Dirac-like-cone dispersion when radiation loss is relatively small. We find that, similar to a real Dirac cone, the Dirac-like cone in non-Hermitian PCs possesses good linearity and isotropy, even with a ring of exceptional points (EPs) inevitably existing in the vicinity of the second-order Γ point. However, the Berry phase remains zero at the Γ point, indicating the cone does not obey the Dirac equation and is only a Dirac-like cone. The topological modal interchange phenomenon and nonzero Berry phase of the EPs are also discussed.

  6. Optimization of Coronal Mass Ejection Ensemble Forecasting Using WSA-ENLIL with Coned Model

    DTIC Science & Technology

    2013-03-01

    previous versions by a large margin. The mean absolute forecast error of the median ensemble results was improved by over 43% over the original Coned...for reference for the six extra CMEs. .............................................................................................54 Figure 19...single-shot runs) with the flare location noted for reference for the six extra CMEs

  7. Initiation of Gaseous Detonation by Conical Projectiles

    NASA Astrophysics Data System (ADS)

    Verreault, Jimmy

    Initiation and stabilization of detonation by hypersonic conical projectiles launched into combustible gas mixtures is investigated. This phenomenon must be understood for the design and optimization of specific hypersonic propulsion devices, such as the oblique detonation wave engine and the ram accelerator. The criteria for detonation initiation by a projectile is also related to fundamental aspects of detonation research, such as the requirement for direct initiation of a detonation by a blast wave. Experimental results of this problem also offer useful references for validation of numerical and theoretical modeling. Projectiles with cone half angles varying from 15° to 60° were launched into stoichiometric mixtures of hydrogen/oxygen with 70% argon dilution at initial pressures between 10 and 200 kPa. The projectiles were launched from a combustion-driven gas gun at velocities up to 2.2 km/s (corresponding to 133% of the Chapman Jouguet velocity). Pictures of the flowfields generated by the projectiles were taken via Schlieren photography. Five combustion regimes were observed about the projectile ranging from prompt and delayed oblique detonation wave formation, combustion instabilities, a wave splitting, and an inert shock wave. Two types of transition from the prompt oblique detonation wave regime to the inert shock regime were observed. The first (the delayed oblique detonation wave regime) showed an inert shock attached to the tip of the projectile followed by a sharp kink at the onset of an oblique detonation wave; this regime occurred by decreasing the cone angle at high mixture pressures. The second (the combustion instabilities regime) exhibited large density gradients due to combustion ignition and quenching phenomena; this regime occurred by decreasing the mixture pressure at large cone angles. A number of theoretical models were considered to predict critical conditions for the initiation of oblique detonations. The Lee-Vasiljev model agreed qualitatively well with the experimental results for relatively blunt projectiles (cone half-angle larger than 35°) and low mixture pressures (lower than 100 kPa). The trend of the critical Damköhler number calculated along the projectile cone surface was similar to that of the experimental results for slender cones (cone half-angles lower 35°) and high mixture pressures (higher than 100 kPa). Steady 2D simulations of reacting flows over finite wedges using the method of characteristics with a one-step Arrhenius chemical reaction model reproduced the three regimes observed for direct initiation of a detonation: the subcritical, critical and supercritical regimes. It is shown that in order for a 2D wedge to be equivalent to the problem of blast initiation of a detonation (which is the essence of the Lee-Vasiljev model), the Mach number normal to the oblique shock needs to be greater than 50 and the wedge angle has to be smaller than 30°. Simulations of reacting flows over semi-infinite wedges and cones were validated with CFD results. Excellent agreement was reached between the angle of overdriven oblique detonations obtained from the simulations and those from a polar analysis. For wedge or cone angles equal or lower than the minimum angle for which an oblique detonation is attached (according to the polar analysis), a Chapman-Jouguet oblique detonation was initiated. In the conical configuration, the curvature around the cone axis allowed an oblique detonation to be self-sustained at an angle less than without the curvature effect. At larger activation energies, the initiation process of an oblique detonation wave at the tip of a semi-infinite wedge or cone was identified. Unsteady 2D computational simulations were also conducted and showed the cellular structure of an oblique detonation wave. Instabilities in the form of transverse shock waves along the oblique detonation front arise for large activation energies.

  8. Investigation of retinal microstructure in healthy eyes and dry age-related macular degeneration using a combined AO-OCT-SLO system

    NASA Astrophysics Data System (ADS)

    Wells-Gray, Elaine M.; Choi, Stacey S.; Ohr, Matthew; Cebulla, Colleen M.; Doble, Nathan

    2017-02-01

    Combined adaptive optics (AO) optical coherence tomography (OCT) scanning laser ophthalmoscopy (SLO) imaging allows simultaneous en face and cross sectional views of the retina. We describe improvements to our AO-OCT-SLO system and highlight its resolution capability and clinical utility by presenting results from 3 control and 4 dry agerelated macular degeneration (AMD) subjects. From a group of subjects with healthy eyes, OCT A-scans were grouped as originating from cones or rods and were averaged. The resulting reflectance profiles were then used to identify the location of cone and rod segments. Results for rods and cones were compared, with the focus on inner segment (IS) and outer segment (OS) structures and where these cells embed into the retinal pigment epithelium (RPE). In the AMD patients, cone IS and OS lengths were measured over and around drusen for two retinal regions (fovea-2° and 2°-4°), and those results were correlated to drusen height. For the fovea-2° region, the drusen height that caused statistically significant shortening of cone ISL and OSL compared to the unaffected adjacent area were 40 μm and 50 μm respectively (p = 0.009, and p < 0.001, respectively). For the 2°-4° region, the equivalent drusen heights that caused significant shortening of segment length were 60 μm for IS (p = 0.017) and 80 μm for OS (p < 0.001)

  9. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    PubMed

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.

  10. Single cell imaging of the chick retina with adaptive optics.

    PubMed

    Headington, Kenneth; Choi, Stacey S; Nickla, Debora; Doble, Nathan

    2011-10-01

    The chick eye is extensively used as a model in the study of myopia and its progression; however, analysis of the photoreceptor mosaic has required the use of excised retina due to the uncorrected optical aberrations in the lens and cornea. This study implemented high resolution adaptive optics (AO) retinal imaging to visualize the chick cone mosaic in vivo. The New England College of Optometry (NECO) AO fundus camera was modified to allow high resolution in vivo imaging on two 6-week-old White Leghorn chicks (Gallus gallus domesticus)-labeled chick A and chick B. Multiple, adjacent images, each with a 2.5(o) field of view, were taken and subsequently montaged together. This process was repeated at varying retinal locations measured from the tip of the pecten. Automated software was used to determine the cone spacing and density at each location. Voronoi analysis was applied to determine the packing arrangement of the cones. In both chicks, cone photoreceptors were clearly visible at all retinal locations imaged. Cone densities measured at 36(o) nasal-12(o) superior retina from the pecten tip for chick A and 40(o) nasal-12(o) superior retina for chick B were 21,714 ± 543 and 26,105 ± 653 cones/mm(2) respectively. For chick B, a further 11 locations immediately surrounding the pecten were imaged, with cone densities ranging from 20,980 ± 524 to 25,148 ± 629 cones/mm(2). In vivo analysis of the cone density and its packing characteristics are now possible in the chick eye through AO imaging, which has important implications for future studies of myopia and ocular disease research.

  11. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration

    PubMed Central

    Mustafi, Debarshi; Kevany, Brian M.; Genoud, Christel; Okano, Kiichiro; Cideciyan, Artur V.; Sumaroka, Alexander; Roman, Alejandro J.; Jacobson, Samuel G.; Engel, Andreas; Adams, Mark D.; Palczewski, Krzysztof

    2011-01-01

    Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl−/−) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl−/− mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl−/− retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl−/− retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl−/− mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.—Mustafi, D., Kevany, B. M., Genoud, C., Okano, K., Cideciyan, A. V., Sumaroka, A., Roman, A. J., Jacobson, S. G. Engel, A., Adams, M. D., Palczewski, K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. PMID:21659555

  12. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis.

    PubMed

    Malkoc, Emine

    2006-09-21

    The biomass of terrestrial-plant materials has high removal capacities for a number of heavy metal ions. The Ni(II) biosorption capacity of the cone biomass of Thuja orientalis was studied in the batch mode. The biosorption equilibrium level was determined as a function of contact time, pH, temperature, agitation speed at several initial metal ion and adsorbent concentrations. The removal of Ni(II) from aqueous solutions increased with adsorbent concentration, temperature and agitation speed of the solution were increased. The biosorption process was very fast; 90% of biosorption occurred within 3 min and equilibrium was reached at around 7 min. It is found that the biosorption of Ni(II) on the cone biomass was correlated well (R2 > 0.99) with the Langmuir equation as compared to Freundlich, BET Temkin and D-R isotherm equation under the concentration range studied. According to Langmuir isotherm, the monolayer saturation capacity (Q(o)) is 12.42 mg g(-1). The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to test the experimental data for initial Ni(II) and cone biomass concentrations. The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The activation energy of biosorption (E(a)) was determined as 36.85 kJ mol(-1) using the Arrhenius equation. This study indicated that the cone biomass of T. orientalis can be used as an effective and environmentally friendly adsorbent for the treatment of Ni(II) containing aqueous solutions.

  13. Interactions between multiple supermassive black holes in galactic nuclei: a solution to the final parsec problem

    NASA Astrophysics Data System (ADS)

    Ryu, Taeho; Perna, Rosalba; Haiman, Zoltán; Ostriker, Jeremiah P.; Stone, Nicholas C.

    2018-01-01

    Using few-body simulations, we investigate the evolution of supermassive black holes (SMBHs) in galaxies (M* = 1010-1012 M⊙ at z = 0) at 0 < z < 4. Following galaxy merger trees from the Millennium simulation, we model BH mergers with two extreme binary decay scenarios for the 'hard binary' stage: a full or an empty loss cone. These two models should bracket the true evolution, and allow us to separately explore the role of dynamical friction and that of multibody BH interactions on BH mergers. Using the computed merger rates, we infer the stochastic gravitational wave background (GWB). Our dynamical approach is a first attempt to study the dynamical evolution of multiple SMBHs in the host galaxies undergoing mergers with various mass ratios (10-4 < q* < 1). Our main result demonstrates that SMBH binaries are able to merge in both scenarios. In the empty loss cone case, we find that BHs merge via multibody interactions, avoiding the 'final parsec' problem, and entering the pulsar timing arrays band with substantial orbital eccentricity. Our full loss cone treatment, albeit more approximate, suggests that the eccentricity becomes even higher when GWs become dominant, leading to rapid coalescences (binary lifetime ≲1 Gyr). Despite the lower merger rates in the empty loss cone case, due to their higher mass ratios and lower redshifts, the GWB in the full/empty loss cone models are comparable (0.70 × 10-15 and 0.53 × 10-15 at a frequency of 1 yr-1, respectively). Finally, we compute the effects of high eccentricities on the GWB spectrum.

  14. Tracer adsorption in sand-tank experiments of saltwater up-coning

    NASA Astrophysics Data System (ADS)

    Jakovovic, Danica; Post, Vincent E. A.; Werner, Adrian D.; Männicke, Oliver; Hutson, John L.; Simmons, Craig T.

    2012-01-01

    SummaryThis study aims to substantiate otherwise unresolved double-peaked plumes produced in recent saltwater up-coning experiments (see Jakovovic et al. (2011), Numerical modelling of saltwater up-coning: Comparison with experimental laboratory observations, Journal of Hydrology 402, 261-273) through additional laboratory testing and numerical modelling. Laboratory experimentation successfully reproduced the double-peaked plume demonstrating that this phenomenon was not an experimental nuance in previous experiments. Numerical modelling by Jakovovic et al. (2011) was extended by considering adsorption effects, which were needed to explain the observed up-coning double peaks of both previous and current laboratory experiments. A linear adsorption isotherm was applied in predicting dye tracer (Rhodamine WT) behaviour in the sand-tank experiments using adsorption parameters obtained experimentally. The same adsorption parameters were tested on all laboratory experiments and it was found that adsorption had insignificant effect on experiments with high pumping rates. However, low pumping rates produced pronounced spatial velocity variations within the dense salt plume beneath the pumping well, with velocities within the plume increasing from the centre of the plume towards the interface. The dye tracer was retarded relative to the salt and was transported preferentially along the higher-velocity paths (i.e. along the edges of the salt plume) towards the well forming double-peaked up-coning patterns. This illustrates the sensitive adsorptive nature of Rhodamine WT and that care should be taken when it is used in similar sand-tank experiments. Observations from this study offer insight into the separation of chemicals in natural systems due to different adsorption characteristics and under conditions of density-dependent flow.

  15. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    NASA Astrophysics Data System (ADS)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.

  16. Intraprocedural C-Arm Dual-Phase Cone-Beam CT: Can It Be Used to Predict Short-term Response to TACE with Drug-eluting Beads in Patients with Hepatocellular Carcinoma?

    PubMed Central

    Loffroy, Romaric; Lin, MingDe; Yenokyan, Gayane; Rao, Pramod P.; Bhagat, Nikhil; Noordhoek, Niels; Radaelli, Alessandro; Blijd, Järl; Liapi, Eleni

    2013-01-01

    Purpose: To investigate whether C-arm dual-phase cone-beam computed tomography (CT) performed during transcatheter arterial chemoembolization (TACE) with doxorubicin-eluting beads can help predict tumor response at 1-month follow-up in patients with hepatocellular carcinoma (HCC). Materials and Methods: This prospective study was compliant with HIPAA and approved by the institutional review board and animal care and use committee. Analysis was performed retrospectively on 50 targeted HCC lesions in 29 patients (16 men, 13 women; mean age, 61.9 years ± 10.7) treated with TACE with drug-eluting beads. Magnetic resonance (MR) imaging was performed at baseline and 1 month after TACE. Dual-phase cone-beam CT was performed before and after TACE. Tumor enhancement at dual-phase cone-beam CT in early arterial and delayed venous phases was assessed retrospectively with blinding to MR findings. Tumor response at MR imaging was assessed according to European Association for the Study of the Liver (EASL) guidelines. Two patients were excluded from analysis because dual-phase cone-beam CT scans were not interpretable. Logistic regression models for correlated data were used to compare changes in tumor enhancement between modalities. The radiation dose with dual-phase cone-beam CT was measured in one pig. Results: At 1-month MR imaging follow-up, complete and/or partial tumor response was seen in 74% and 76% of lesions in the arterial and venous phases, respectively. Paired t tests used to compare images obtained before and after TACE showed a significant reduction in tumor enhancement with both modalities (P < .0001). The decrease in tumor enhancement seen with dual-phase cone-beam CT after TACE showed a linear correlation with MR findings. Estimated correlation coefficients were excellent for first (R = 0.89) and second (R = 0.82) phases. A significant relationship between tumor enhancement at cone-beam CT after TACE and complete and/or partial tumor response at MR imaging was found for arterial (odds ratio, 0.95; 95% confidence interval [CI]: 0.91, 0.99; P = .023) and venous (odds ratio, 0.96; 95% CI: 0.93, 0.99; P = .035) phases with the multivariate logistic regression model. Radiation dose for two dual-phase cone-beam CT scans was 3.08 mSv. Conclusion: Intraprocedural C-arm dual-phase cone-beam CT can be used immediately after TACE with doxorubicin-eluting beads to predict HCC tumor response at 1-month MR imaging follow-up. © RSNA, 2012 PMID:23143027

  17. Understanding the Function of Genes Involved in Inherited Retinal Degeneration-Insights into the Pathogenesis and Function of C8ORF37

    NASA Astrophysics Data System (ADS)

    Sharif, Ali Sakawa

    Inherited retinal degenerative diseases (IRD) are a group of disorders that lead to progressive deterioration of mainly the photoreceptors. Retinitis pigmentosa (RP) and cone-rod dystrophy (CRD) are two forms of IRDs. RP is the most common form of IRD and is due to rod photoreceptor degeneration followed by cone photoreceptor loss. CRD, on the other hand, is characterized by the loss of cones or the concurrent degeneration of both cones and rods. Both RP and CRD are presently incurable. More than 200 genes have been identified to cause IRDs and the functions of many of these genes remain unclear. Mutations in a novel gene, C8ORF37, were identified to cause recessive, severe, and early-onset RP and CRD. I, therefore, pioneered in characterizing the role of C8ORF37 in the retina. This dissertation is comprised of four chapters that is organized as follows: (1) summary of an ocular disorder (2) a genetic model of a retinal disorder (3) biochemical/proteomic analysis of C8ORF37 (4) potential clinical applications. A summary of ocular disorders is discussed in Chapter 1, with an emphasis on CRD. Chapter 2 focuses on the generation and characterization of C8orf37 mutant mouse models that recapitulate the retinal pathologies observed in human patients. In C8orf37 knockout retinas, the outer segment (OS) was nonuniform, swollen, and wider in width when compared to the controls. Moreover, many OS membrane proteins were reduced in the retina of C8orf37 knockout, including CNGB1 and RDS, proteins essential for OS disc morphogenesis and alignment. Our findings shed new light on the pathogenesis underlying retinal dysfunction and degeneration in C8ORF37-deficient patients. To determine the function of a novel protein, a powerful approach is by identifying its binding partners. In Chapter 3, I discuss GST pull-down using bovine retinal lysates, yeast-two-hybrid, and immunoprecipitation with mouse retinal lysate in order to identify C8ORF37-interacting proteins. Our pull-downs identified KTN1, RAB28, UCHL1, and PSMD14 suggesting that C8ORF37 may have a role in protein homeostasis. Chapter 4 concludes and discusses the impact of generating and characterizing C8orf37 animal models for future studies in understanding photoreceptor function and in the development of therapeutics against retinal degeneration.

  18. Sealing ability of lateral compaction and tapered single cone gutta-percha techniques in root canals prepared with stainless steel and rotary nickel titanium instruments.

    PubMed

    Koçak, Mustafa M; Darendeliler-Yaman, Sis

    2012-07-01

    The aim of this study was to evaluate the sealing ability of lateral compaction and tapered single cone gutta-percha techniques in root canals prepared with stainless steel and rotary nickel titanium root canal instruments by fluid filtration method. The root canals were prepared with stainless steel (SS) and nickel titanium (NiTi) instruments. The canals prepared with SS were obturated with lateral compaction technique using .02 tapered cones and the canals prepared with NiTi instruments were obturated with lateral compaction technique using .02 tapered cones or 06 tapered single cones. The amount of leakage was evaluated by fluid filtration model. The results were statistically analyzed with one-way ANOVA. The group prepared with NiTi instruments and filled with lateral compaction technique showed significantly less coronal leakage than the group prepared with SS instruments and filled with lateral compaction technique (p<0.05). There was no statistically difference between apical leakages of groups (p>0.05). Obturation with lateral compaction of gutta-percha provides a superior coronal seal whilst canal instrumentation with engine-driven NiTi files reduces the extent of microleakage in root canals when compared with stainless steel hand instruments. Tapered single cone technique was comparable with lateral compaction technique because of easier application. Key words:Apical leakage, coronal leakage, lateral compaction technique, single cone technique.

  19. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults.

    PubMed

    Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M

    2016-01-01

    Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

  20. Mach Cones in Viscous Matter

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Lauciello, F.; Reining, F.; Uphoff, J.; Wesp, C.; Molnar, E.; Niemi, H.; Xu, Z.; Greiner, C.

    2011-01-01

    Employing a microscopic transport model we investigate the evolution of high energetic jets moving through a viscous medium. For the scenario of an unstoppable jet we observe a clearly strong collective behavior for a low dissipative system η/s approx 0.005, leading to the observation of cone-like structures. Increasing the dissipation of the system to η/s approx 0.32 the Mach Cone structure vanishes. Furthermore, we investigate jet-associated particle correlations. A double-peak structure, as observed in experimental data, is even for low-dissipative systems not supported, because of the large influence of the head shock.

  1. Light-cone velocities after a global quench in a noninteracting model

    NASA Astrophysics Data System (ADS)

    Najafi, K.; Rajabpour, M. A.; Viti, J.

    2018-05-01

    We study the light-cone velocity for global quenches in the noninteracting XY chain starting from a class of initial states that are eigenstates of the local z component of the spin. We point out how translation invariance of the initial state can affect the maximal speed at which correlations spread. As a consequence the light-cone velocity can be state dependent also for noninteracting systems: a new effect of which we provide clear numerical evidence and analytic predictions. Analogous considerations, based on numerical results, are drawn for the evolution of the entanglement entropy.

  2. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis

    PubMed Central

    Li, Songhua; Samardzija, Marijana; Yang, Zhihui; Grimm, Christian

    2016-01-01

    RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations. PMID:27225770

  3. Stability Investigation of a Blunted Cone and a Blunted Ogive with a Flared Cylinder Afterbody at Mach Numbers from 0.30 to 2.85

    NASA Technical Reports Server (NTRS)

    Coltrane, Lucille C.

    1959-01-01

    A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.

  4. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.

    PubMed

    Vinberg, Frans; Peshenko, Igor V; Chen, Jeannie; Dizhoor, Alexander M; Kefalov, Vladimir J

    2018-05-11

    Light adaptation of photoreceptor cells is mediated by Ca 2+ -dependent mechanisms. In darkness, Ca 2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca 2+ extrusion via Na + /Ca 2+ , K + exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca 2+ levels in photoreceptor outer segment because of continuing Ca 2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca 2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca 2+ -feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca 2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca 2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Verwoerd, W. J.; Chevallier, L.

    1987-02-01

    Ten surtseyan tuff cones on Marion island (46° 54' S, 37° 46' E) and seven on Prince Edward island (46° 38' S, 37° 57' E) were erupted on shallow submerged coastal plains related to normal faulting. They range from Pleistocene to Holocene in age and exhibit a variable degree of erosion by the sea. Fundamental differences, irrespective of age, exist between two types: Type I cones have diameters of 1 1.5 km, rim heights of about 200 m and steep (27°) outer slopes. Deposits are plastered against nearby cliffs. Beds are thin, including layers of accretionary lapilli and less than 10 % lithic clasts. Numerous bomb sags, soft sediment deformation structures and gravity slides occur. On one of these cones mudflows formed small tunnels which resemble lava tubes, associated with channels sometimes having oversteepened walls. These cones reflect comparatively low energy conditions and probably resulted from extremely wet surges interspersed with mudflows and ballistic falls. Type II cones have smaller diameters (˜0.5 km) but widespread fallout/surge aprons. Rim heights are about 100 m and average slope angles are 18°. Bedding is massive with variable lapilli/matrix ratio and more than 10 % lithic clasts without bomb sags. These cones formed under drier, perhaps hotter and more violently explosive conditions than Type I, though not as energetic as the phreatomagmatic eruptions of terrestrial tuff rings. The two types of surtseyan eruptions are explained by invoking not only different water/magma ratios in the conduit but also different mechanisms of water/magma interaction. The slurry model of Kokelaar is favoured for Type I and a fuel-coolant model for Type II. The decisive factor is considered to be rate of effusion, with rim closure and exclusion of sea water playing a secondary role.

  6. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  7. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE PAGES

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrott, L. C.; McGuffey, C.; Beg, F. N.

    Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated plastic shells with a geometrically reentrant gold cone. Experiments were carried out at the Laboratory for Laser Energetics on the OMEGA/OMEGA-EP Laser where the plastic shells were imploded using 54 of the 60 OMEGA60 beams (3ω, 20 kJ), while the high intensity OMEGA-EP (BL2) beam (1 ω, 10 ps, 500 J, I peak > 10 19 W/cm 2) was focused onto the inner cone tip. Here, a retrograde analysis usingmore » the hybrid-PIC electron transport code, ZUMA, is performed to examine the sensitivity of the copper Kα spatial profile on the laser-produced fast electrons, facilitating the optimization of new target point designs and laser configurations to improve the compressed core areal density by a factor of 4 and the fast electron energy coupling by a factor of 3.5.« less

  9. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  10. Ratios of Vector and Pseudoscalar B Meson Decay Constants in the Light-Cone Quark Model

    NASA Astrophysics Data System (ADS)

    Dhiman, Nisha; Dahiya, Harleen

    2018-05-01

    We study the decay constants of pseudoscalar and vector B meson in the framework of light-cone quark model. We apply the variational method to the relativistic Hamiltonian with the Gaussian-type trial wave function to obtain the values of β (scale parameter). Then with the help of known values of constituent quark masses, we obtain the numerical results for the decay constants f_P and f_V, respectively. We compare our numerical results with the existing experimental data.

  11. Traveling Crossow Instability for HIFiRE-5 in a Quiet Hypersonic Wind Tunnel (Postprint)

    DTIC Science & Technology

    2013-06-01

    scale model of the 2:1 elliptic cone HIFiRE-5 flight vehicle was used to investigate the traveling crossflow instability at Mach 6 in Purdue...Force Research Laboratory, Air Vehicles Directorate 2130 8th St., WPAFB, OH 45433-7542, USA Abstract A scale model of the 2:1 elliptic cone HIFiRE-5...flight vehicle was used to investigate the traveling crossflow instability at Mach 6 in Purdue University’s Mach-6 quiet wind tunnel. Traveling crossflow

  12. Martian Rootless Cones as Indicators of Recent Deposits of Shallow Equatorial Ground Ice

    NASA Astrophysics Data System (ADS)

    Lanagan, P. D.; McEwen, A. S.; Keszthelyi, L. P.; Thordarson, T.

    2001-05-01

    Small, cratered cones have been identified in high-resolution Mars Orbiter Camera images of the Cerberus Plains and Amazonis Planitia, Mars [1].These cones occur in small clusters independent of obvious fissures, are superimposed on fresh lava flows, and do not appear to issue lavas themselves. Observed cones have basal diameters <250m and large summit craters. The structures are similar in both morphology and dimensions to the larger of Icelandic rootless cones,or pseudocraters [2], which form due to phreatomagmatic explosions caused by mechanical mixtures of tube-fed lavas with near-surface water-saturated substrates[3]. If the martian cones form in a similar manner as terrestrial rootless cones,then they may provide constraints on the spatial and temporal distribution of martian ground ice. Lavas associated with the western Amazonis cone fields(24N, 171W) show well-preserved surface morphologies and few superimposed impact craters. Impact crater statistics indicate that these lavas and superimposed cones may have been emplaced less than 10 Ma, indicating near-surface ice must have been present at the time. The presence of young rootless cones helps constrain the origins of ground ice. Relic ground ice is unlikely to be a volatile source for rootless eruptions as regolith in equatorial regions is likely to be desiccated to a depth of 200-m [4]. Vapor exchange between the regolith and atmosphere due to obliquity variations [5] may input enough water into the subsurface to reproduce martian cones of observed diameters calculated by explosion models[6]. However, surficial waters released in outflow events may be required to recharge requisite quantities of ground ice. Most proposed rootless cone fields appear in or close to fluvial features of the Cerberus Plains and Marte Valles[7]. Nested summit craters of some cones indicate a multi-stage constructional process, which would require recharge of aquifers beneath the erupting cones. Such a process would require the substrate to be permeable and contain enough ground ice to allow water to flow to the explosion point. [1]Lanagan, P. D. et al.(2001)Geophys Res Let, submitted. [2]Thorarinsson, S.(1953)Bull Vol, 14, 3-44. [3]Thordarson, T.(2000)Volcano-Ice Interactions on Earth and Mars, 36. [4]Clifford, S. M., and Hillel, D.(1983)J Geophys Res, 88, 2456-2474. [5]Mellon, M. T., and B. M. Jakosky.(1995)J Geophys Res, 100, 11781-11799. [6]Fagents, S. A. and R. Greeley.(2000)Volcano-Ice Interactions on Earth and Mars, 13. [7]Burr, D. M. et al.(2001)Geophys Res Abs.

  13. Early Cone Setting in Picea abies acrocona Is Associated with Increased Transcriptional Activity of a MADS Box Transcription Factor1[W][OA

    PubMed Central

    Uddenberg, Daniel; Reimegård, Johan; Clapham, David; Almqvist, Curt; von Arnold, Sara; Emanuelsson, Olof; Sundström, Jens F.

    2013-01-01

    Conifers normally go through a long juvenile period, for Norway spruce (Picea abies) around 20 to 25 years, before developing male and female cones. We have grown plants from inbred crosses of a naturally occurring spruce mutant (acrocona). One-fourth of the segregating acrocona plants initiate cones already in their second growth cycle, suggesting control by a single locus. The early cone-setting properties of the acrocona mutant were utilized to identify candidate genes involved in vegetative-to-reproductive phase change in Norway spruce. Poly(A+) RNA samples from apical and basal shoots of cone-setting and non-cone-setting plants were subjected to high-throughput sequencing (RNA-seq). We assembled and investigated 33,383 expressed putative protein-coding acrocona transcripts. Eight transcripts were differentially expressed between selected sample pairs. One of these (Acr42124_1) was significantly up-regulated in apical shoot samples from cone-setting acrocona plants, and the encoded protein belongs to the MADS box gene family of transcription factors. Using quantitative real-time polymerase chain reaction with independently derived plant material, we confirmed that the MADS box gene is up-regulated in both needles and buds of cone-inducing shoots when reproductive identity is determined. Our results constitute important steps for the development of a rapid cycling model system that can be used to study gene function in conifers. In addition, our data suggest the involvement of a MADS box transcription factor in the vegetative-to-reproductive phase change in Norway spruce. PMID:23221834

  14. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  15. Calculation of symmetric and asymmetric vortex seperation on cones and tangent ogives based on discrete vortex models

    NASA Technical Reports Server (NTRS)

    Chin, S.; Lan, C. Edward

    1988-01-01

    An inviscid discrete vortex model, with newly derived expressions for the tangential velocity imposed at the separation points, is used to investigate the symmetric and asymmetric vortex separation on cones and tangent ogives. The circumferential locations of separation are taken from experimental data. Based on a slender body theory, the resulting simultaneous nonlinear algebraic equations in a cross-flow plane are solved with Broyden's modified Newton-Raphson method. Total force coefficients are obtained through momentum principle with new expressions for nonconical flow. It is shown through the method of function deflation that multiple solutions exist at large enough angles of attack, even with symmetric separation points. These additional solutions are asymmetric in vortex separation and produce side force coefficients which agree well with data for cones and tangent ogives.

  16. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  17. Mars Global Surveyor Data Analysis Program. Origins of Small Volcanic Cones: Eruption Mechanisms and Implications for Water on Mars

    NASA Technical Reports Server (NTRS)

    Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur

    2002-01-01

    The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.

  18. A new neural network model for solving random interval linear programming problems.

    PubMed

    Arjmandzadeh, Ziba; Safi, Mohammadreza; Nazemi, Alireza

    2017-05-01

    This paper presents a neural network model for solving random interval linear programming problems. The original problem involving random interval variable coefficients is first transformed into an equivalent convex second order cone programming problem. A neural network model is then constructed for solving the obtained convex second order cone problem. Employing Lyapunov function approach, it is also shown that the proposed neural network model is stable in the sense of Lyapunov and it is globally convergent to an exact satisfactory solution of the original problem. Several illustrative examples are solved in support of this technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Deciphering Deposits: Using Ground Penetrating Radar and Numerical Modeling to Characterize the Emplacement Mechanisms and Associated Energetics of Scoria Cone Eruption and Construction

    NASA Astrophysics Data System (ADS)

    Courtland, Leah M.

    Our understanding of tephra depositional processes is significantly improved by high-resolution ground-penetrating radar (GPR) data collected at Cerro Negro volcano, Nicaragua. The data reveal three depositional regimes: (1) a near-vent region on the cone itself, where 10 GPR radargrams collected on the western flank show quantifiable differences between facies formed from low energy normal Strombolian and higher energy violent Strombolian processes, indicating imaging of scoria cone deposits may be useful in distinguishing eruptive style in older cones where the proximal to distal tephra blanket has eroded away; (2) a proximal zone in which horizons identified in crosswind profiles collected at distances of 700 and 1,000 m from the vent exhibit Gaussian distributions with a high degree of statistical confidence, with tephra thickness decreasing exponentially downwind from the cone base (350 m) to ~ 1,200 m from the vent, and where particles fall from a height of less than ~2 km; and (3) a medial zone, in which particles fall from ~4 to 7 km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit, indicating a transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud. Horizons identified in a crosswind profile at 1600 m from vent exhibit Gaussian distributions, again with high degrees of statistical confidence. True diffusion coefficients are calculated from Gaussian fits of crosswind profiles and do not show any statistical variation between zones (2) and (3). Data display thinning trends that agree with the morphology predicted by the advection-diffusion equation to a high degree of statistical confidence, validating the use of this class of models in tephra forecasting. One such model, the Tephra2 model, is reformulated for student use. A strategy is presented for utilizing this research-caliber model to introduce university undergraduates to key concepts in model literacy, encouraging students to develop a deeper understanding of the applicability and limitations of hazard models generally. For this purpose, the Tephra2 numerical model is implemented on the VHub.org website, a venture in cyberinfrastructure that brings together volcanological models and educational materials, and provides students with the ability to explore and execute sophisticated numerical models like Tephra2.

  20. Why are the seed cones of conifers so diverse at pollination?

    PubMed

    Losada, Juan M; Leslie, Andrew B

    2018-06-08

    Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.

  1. The role of ecological factors in shaping bat cone opsin evolution.

    PubMed

    Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W

    2018-04-11

    Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).

  2. Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish

    PubMed Central

    Weber, Anke; Hochmann, Sarah; Cimalla, Peter; Gärtner, Maria; Kuscha, Veronika; Hans, Stefan; Geffarth, Michaela; Kaslin, Jan; Koch, Edmund; Brand, Michael

    2013-01-01

    Light-induced lesions are a powerful tool to study the amazing ability of photoreceptors to regenerate in the adult zebrafish retina. However, the specificity of the lesion towards photoreceptors or regional differences within the retina are still incompletely understood. We therefore characterized the process of degeneration and regeneration in an established paradigm, using intense white light from a fluorescence lamp on swimming fish (diffuse light lesion). We also designed a new light lesion paradigm where light is focused through a microscope onto the retina of an immobilized fish (focused light lesion). Focused light lesion has the advantage of creating a locally restricted area of damage, with the additional benefit of an untreated control eye in the same animal. In both paradigms, cell death is observed as an immediate early response, and proliferation is initiated around 2 days post lesion (dpl), peaking at 3 dpl. We furthermore find that two photoreceptor subtypes (UV and blue sensitive cones) are more susceptible towards intense white light than red/green double cones and rods. We also observed specific differences within light lesioned areas with respect to the process of photoreceptor degeneration: UV cone debris is removed later than any other type of photoreceptor in light lesions. Unspecific damage to retinal neurons occurs at the center of a focused light lesion territory, but not in the diffuse light lesion areas. We simulated the fish eye optical properties using software simulation, and show that the optical properties may explain the light lesion patterns that we observe. Furthermore, as a new tool to study retinal degeneration and regeneration in individual fish in vivo, we use spectral domain optical coherence tomography. Collectively, the light lesion and imaging assays described here represent powerful tools for studying degeneration and regeneration processes in the adult zebrafish retina. PMID:24303018

  3. Lensing in the geodesic light-cone coordinates and its (exact) illustration to an off-center observer in Lemaȋtre-Tolman-Bondi models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanizza, G.; Nugier, F., E-mail: giuseppe.fanizza@ba.infn.it, E-mail: fabienjean.nugier@unibo.it

    We present in this paper a new application of the geodesic light-cone (GLC) gauge for weak lensing calculations. Using interesting properties of this gauge, we derive an exact expression of the amplification matrix—involving convergence, magnification and shear—and of the deformation matrix—involving the optical scalars. These expressions are simple and non-perturbative as long as no caustics are created on the past light-cone and are, by construction, free from the thin lens approximation. We apply these general expressions on the example of an Lemaȋtre-Tolman-Bondi (LTB) model with an off-center observer and obtain explicit forms for the lensing quantities as a direct consequencemore » of the non-perturbative transformation between GLC and LTB coordinates. We show their evolution in redshift after a numerical integration, for underdense and overdense LTB models, and interpret their respective variations in the simple non-curvature case.« less

  4. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae.

    PubMed

    El-Mashad, Hamed M

    2013-03-01

    Anaerobic batch digestion of four feedstocks was conducted at 35 and 50 °C: switchgrass; Spirulina platensis algae; and two mixtures of both switchgrass and S. platensis. Mixture 1 was composed of 87% switchgrass (based on volatile solids) and 13% S. platensis. Mixture 2 was composed of 67% switchgrass and 33% S. platensis. The kinetics of methane production from these feedstocks was studied using four first order models: exponential, Gompertz, Fitzhugh, and Cone. The methane yields after 40days of digestion at 35 °C were 355, 127, 143 and 198 ml/g VS, respectively for S. platensis, switchgrass, and Mixtures 1 and 2, while the yields at 50 °C were 358, 167, 198, and 236 ml/g VS, respectively. Based on Akaike's information criterion, the Cone model best described the experimental data. The Cone model was validated with experimental data collected from the digestion of a third mixture that was composed of 83% switchgrass and 17% S. platensis. Published by Elsevier Ltd.

  5. Hypervelocity Heat-Transfer Measurements in an Expansion Tube

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Perkins, John N.

    1996-01-01

    A series of experiments has been conducted in the NASA HYPULSE Expansion Tube, in both CO2 and air test gases, in order to obtain data for comparison with computational results and to assess the capability for performing hypervelocity heat-transfer studies in this facility. Heat-transfer measurements were made in both test gases on 70 deg sphere-cone models and on hemisphere models of various radii. HYPULSE freestream flow conditions in these test gases were found to be repeatable to within 3-10%, and aerothermodynamic test times of 150 microsec in CO2 and 125 microsec in air were identified. Heat-transfer measurement uncertainty was estimated to be 10-15%. Comparisons were made with computational results from the non-equilibrium Navier-Stokes solver NEQ2D. Measured and computed heat-transfer rates agreed to within 10% on the hemispheres and on the sphere-cone forebodies, and to within 10% in CO2 and 25% in air on the afterbodies and stings of the sphere-cone models.

  6. Genesis Hypotheses Concerning Putative Rootless Cone Groups in Isidis Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Pithawala, T. M.; Ghent, R. R.

    2008-09-01

    ABSTRACT Introduction Isidis Planitia is one of the many areas on Mars containing thumbprint terrain (TPT), a term coined to reflect the resemblance in Viking images to fingerprints. Other instances occur in Argyre, Hellas, Arcadia Planitia, and Utopia Planitia. The terrain is found where Greeley and Guest (1987) have defined the Hesperian Ridged Plains (Hvr) unit. However, landforms comprising the TPT in Isidis are markedly different in morphology from those in the northern plains. The purpose of this study is to conduct a systematic examination of the TPT in Isidis Planitia using high-resolution imagery, and to propose a hypothesis for its genesis. Northern Plains TPT Morphology: TPT landforms include branching troughs and medial ridges forming whorled lobes and mounds, most with basal scarps or terraces. TPT has been described as consisting of parallel, en echelon, or nested sets of regularly spaced curvilinear ridges or aligned hills [1]. The ridges were estimated to be 0.5-2.5 km wide and 1-40 km long, with a characteristic spacing of 2-6 km. Whorled lobes of TPT are 75-150 km wide, with heights ranging from 10-200 m. Previous work identified 22 areas of TPT, covering 3000- 420,000 km2 in the Northern Plains at elevations between 0 and -2 km. In Utopia, TPT includes branching troughs and medial ridges [5], and TPT is closely associated with troughs in at least 9 other Northern Plains areas [1]. Northern Plains TPT Origin: MOLA topography supports the hypothesis that TPT and associated trough systems in Utopia and Arcadia Planitae are glacial features [1,2,3]. Possible mechanisms include formation of ridges as moraines and troughs as eskers formed by wet-based continental glaciers. The absence of drumlin fields suggests that the glaciers responsible for forming the topography may have been cold-based and thus did not deform the substrate so as to form drumlins [4]. A puzzling characteristic of Mars alleged glacial landscapes is that they are morphologically pristine, though they must be at least hundreds of millions of years old [1]. Isidis TPT The physical appearance of the Isidis features differs from that of the Northern Plains TPT. Isisdis TPT includes wrinkle ridges and curvilinear ridges. Wrinkle ridges are oriented radially and concentric to the basin structure, form cells of 180 km in diameter, and occur throughout the basin over a range of elevations. They are on the order of 75-150 m high and less than 70 km wide [6]. In this study, we focus on the curvilinear ridges and associated features, using THEMIS daytime IR data. Curvilinear ridges are ˜10-50 m high, and <5 km wide, with a large number 1km wide. Ridges consist of connected cones with central depressions (30-50 % of basal diameter). Cones are often connected to each other midway through their height but sometimes share portions of their rims as well. Basal diameters of the cones vary from 600-1000 m (nearly twice the size of cones seen in northern plains TPT) [6]. Spatial Patterns Closely spaced ridges are sub-parallel to parallel. Mapping of TPT features in Isidis Planitia shows four domains of distinct morphology (Figure 1). Domain 1 consists of chain-like ridges of cones concentrated to the southern and western regions of the basin. Domain 2 consists of isolated cones localized in the basin center. Domain 3 is the Syrtis Major Isidis Planitia transition zone and consists of clusters of knobs, mesas, and large single scarps [7]. Domain 4 (west of the transition zone and along the outer regions of the basin) consists of smooth terrain lacking a significant number of cones, or knobs and mesas. The most detailed mapping in this study has been completed for Domains 1 and 2. In Domain 1, an apparent pattern emerges along a boundary trending E-W at 12 N. Cone-chains located north of this boundary show a preferential N-S alignment, convex toward the east. Cone-chains located south of the boundary show a preferential E-W alignment, convex toward the south. Cone-chains occupy the region previously mapped as Hvr [8]. Origin of the Isidis TPT features Glacial formation mechanisms are generally accepted for formation of TPT in Argyre, Hellas, Arcadia, and Utopia. The TPT of Isidis Planitia is markedly different in morphology, and so deserves a fresh examination. We look to terrestrial analogues of rootless cones. The underlying mechanism is the interaction between magma (or lava) with a volatile (possibly water) rich substrate. Top-heating A top-heating model would involve lava flows and Vastitas Borealis Formation (VBF) materials known to cover the floor of Isidis [7]. In this model, Syrtis Major eruptions would produce tube-fed lava flows overlying volatile-rich materials derived from the Northern Plains, heating the wet substrate from above; interaction between the hot lava tubes and the substrate would produce chains of rootless cones. This model is expected to play a role in the formation of the TPT features, though it is doubtful if it can act solely to form the features, because the model is topography dependent and cannot readily account for both large- and smallscale patterns. Bottom-Heating The spatial patterns seen in planview of TPT in Isidis Planitia show a strong similarity to surface and seismic expressions of sills the Karoo basin in South Africa and the North Rockall Trough in the NE Atlantic on Earth. This leads to the idea that a sill or cone sheet complex beneath the Isidis basin, possibly linked to Syrtis Major, could drive bottom heating of a volatile rich substrate, leading to the formation of aligned rootless cones comprising the thumbprint terrain of Isidis Planitia. Though similar to the top-heating model, a system of intrusive structures heating from below would be independent of the current local topography of the basin, and is thus favorable. Such a mechanism could further explain the small-scale deviations in spatial alignment from the regional trend. The branch-like evolution of a sill complex can result in the non-uniform development of sills [11], such that daughter bodies of a parent sill can vary in size and vertical and horizontal distribution, and thus result in different abutment relationships, causing varying surface manifestations of the hybrid sill tips. A combination of both models is also a likely candidate for the genesis of TPT in Isidis. We are continuing to investigate the details of the two models by analyzing additional datasets and terrestrial analogues. References [1] Kargel et al. (1995) JGR-E, 100, 5351-5368. [2] Pomerantz, W.J and Head III, J.W (2003) LPSC XXXXIII, Abstract 1277. [3] Chapman M. (1994) Icarus, 109(2), 393-406. [4] Head III, J.W and Marchant (2003) LPSC XXXXIII, Abstract 1247. [5] Scott and Underwood (1991) Proceedings of Lunar Planet. Sci, 21, 627-634. [6] Hiesinger, H. and Head III, J.W (2003) 6th Intl Conf. on Mars, Abstract 3061. [7] Ivanov, M.A and Head III, J.W (2003) JGR-E, 108, E6. [8] Greeley, R. and Guest, J.E (1987), US Geol. Surv. Misc. Invest. Ser., Map I-1802-B. [9] Cartwright, J. and Hansen, D.M (2006) Geology 34(11), 929-932. [10] Hansen, D.M and Cartwright, J. (2006) Journal Geol. Soc. London 163 (3), 509-523. [11] Thomson, K., and Hutton, D. (2004) Bull Volcanology, 66, 364-375.

  7. A bayesian approach for determining velocity and uncertainty estimates from seismic cone penetrometer testing or vertical seismic profiling data

    USGS Publications Warehouse

    Pidlisecky, Adam; Haines, S.S.

    2011-01-01

    Conventional processing methods for seismic cone penetrometer data present several shortcomings, most notably the absence of a robust velocity model uncertainty estimate. We propose a new seismic cone penetrometer testing (SCPT) data-processing approach that employs Bayesian methods to map measured data errors into quantitative estimates of model uncertainty. We first calculate travel-time differences for all permutations of seismic trace pairs. That is, we cross-correlate each trace at each measurement location with every trace at every other measurement location to determine travel-time differences that are not biased by the choice of any particular reference trace and to thoroughly characterize data error. We calculate a forward operator that accounts for the different ray paths for each measurement location, including refraction at layer boundaries. We then use a Bayesian inversion scheme to obtain the most likely slowness (the reciprocal of velocity) and a distribution of probable slowness values for each model layer. The result is a velocity model that is based on correct ray paths, with uncertainty bounds that are based on the data error. ?? NRC Research Press 2011.

  8. The impact of manual threshold selection in medical additive manufacturing.

    PubMed

    van Eijnatten, Maureen; Koivisto, Juha; Karhu, Kalle; Forouzanfar, Tymour; Wolff, Jan

    2017-04-01

    Medical additive manufacturing requires standard tessellation language (STL) models. Such models are commonly derived from computed tomography (CT) images using thresholding. Threshold selection can be performed manually or automatically. The aim of this study was to assess the impact of manual and default threshold selection on the reliability and accuracy of skull STL models using different CT technologies. One female and one male human cadaver head were imaged using multi-detector row CT, dual-energy CT, and two cone-beam CT scanners. Four medical engineers manually thresholded the bony structures on all CT images. The lowest and highest selected mean threshold values and the default threshold value were used to generate skull STL models. Geometric variations between all manually thresholded STL models were calculated. Furthermore, in order to calculate the accuracy of the manually and default thresholded STL models, all STL models were superimposed on an optical scan of the dry female and male skulls ("gold standard"). The intra- and inter-observer variability of the manual threshold selection was good (intra-class correlation coefficients >0.9). All engineers selected grey values closer to soft tissue to compensate for bone voids. Geometric variations between the manually thresholded STL models were 0.13 mm (multi-detector row CT), 0.59 mm (dual-energy CT), and 0.55 mm (cone-beam CT). All STL models demonstrated inaccuracies ranging from -0.8 to +1.1 mm (multi-detector row CT), -0.7 to +2.0 mm (dual-energy CT), and -2.3 to +4.8 mm (cone-beam CT). This study demonstrates that manual threshold selection results in better STL models than default thresholding. The use of dual-energy CT and cone-beam CT technology in its present form does not deliver reliable or accurate STL models for medical additive manufacturing. New approaches are required that are based on pattern recognition and machine learning algorithms.

  9. [The reliability of dento-maxillary models created by cone-beam CT and rapid prototyping:a comparative study].

    PubMed

    Lv, Yan; Yan, Bin; Wang, Lin; Lou, Dong-hua

    2012-04-01

    To analyze the reliability of the dento-maxillary models created by cone-beam CT and rapid prototyping (RP). Plaster models were obtained from 20 orthodontic patients who had been scanned by cone-beam CT and 3-D models were formed after the calculation and reconstruction of software. Then, computerized composite models (RP models) were produced by rapid prototyping technique. The crown widths, dental arch widths and dental arch lengths on each plaster model, 3-D model and RP model were measured, followed by statistical analysis with SPSS17.0 software package. For crown widths, dental arch lengths and crowding, there were significant differences(P<0.05) among the 3 models, but the dental arch widths were on the contrary. Measurements on 3-D models were significantly smaller than those on other two models(P<0.05). Compared with 3-D models, RP models had more numbers which were not significantly different from those on plaster models(P>0.05). The regression coefficient among three models were significantly different(P<0.01), ranging from 0.8 to 0.9. But between RP and plaster models was bigger than that between 3-D and plaster models. There is high consistency within 3 models, while some differences were accepted in clinic. Therefore, it is possible to substitute 3-D and RP models for plaster models in order to save storage space and improve efficiency.

  10. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1987-01-01

    The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.

  11. Modeling and measurement of vesicle pools at the cone ribbon synapse: changes in release probability are solely responsible for voltage-dependent changes in release

    PubMed Central

    Thoreson, Wallace B.; Van Hook, Matthew J.; Parmelee, Caitlyn; Curto, Carina

    2015-01-01

    Post-synaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca2+ entry alter post-synaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically-determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial post-synaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca2+ spread by lowering Ca2+ buffering or applying BayK8644 did not increase PSCs evoked with strong test steps showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100

  12. Vestibular schwannomas: Accuracy of tumor volume estimated by ice cream cone formula using thin-sliced MR images.

    PubMed

    Ho, Hsing-Hao; Li, Ya-Hui; Lee, Jih-Chin; Wang, Chih-Wei; Yu, Yi-Lin; Hueng, Dueng-Yuan; Ma, Hsin-I; Hsu, Hsian-He; Juan, Chun-Jung

    2018-01-01

    We estimated the volume of vestibular schwannomas by an ice cream cone formula using thin-sliced magnetic resonance images (MRI) and compared the estimation accuracy among different estimating formulas and between different models. The study was approved by a local institutional review board. A total of 100 patients with vestibular schwannomas examined by MRI between January 2011 and November 2015 were enrolled retrospectively. Informed consent was waived. Volumes of vestibular schwannomas were estimated by cuboidal, ellipsoidal, and spherical formulas based on a one-component model, and cuboidal, ellipsoidal, Linskey's, and ice cream cone formulas based on a two-component model. The estimated volumes were compared to the volumes measured by planimetry. Intraobserver reproducibility and interobserver agreement was tested. Estimation error, including absolute percentage error (APE) and percentage error (PE), was calculated. Statistical analysis included intraclass correlation coefficient (ICC), linear regression analysis, one-way analysis of variance, and paired t-tests with P < 0.05 considered statistically significant. Overall tumor size was 4.80 ± 6.8 mL (mean ±standard deviation). All ICCs were no less than 0.992, suggestive of high intraobserver reproducibility and high interobserver agreement. Cuboidal formulas significantly overestimated the tumor volume by a factor of 1.9 to 2.4 (P ≤ 0.001). The one-component ellipsoidal and spherical formulas overestimated the tumor volume with an APE of 20.3% and 29.2%, respectively. The two-component ice cream cone method, and ellipsoidal and Linskey's formulas significantly reduced the APE to 11.0%, 10.1%, and 12.5%, respectively (all P < 0.001). The ice cream cone method and other two-component formulas including the ellipsoidal and Linskey's formulas allow for estimation of vestibular schwannoma volume more accurately than all one-component formulas.

  13. The absolute threshold of cone vision

    PubMed Central

    Koeing, Darran; Hofer, Heidi

    2013-01-01

    We report measurements of the absolute threshold of cone vision, which has been previously underestimated due to sub-optimal conditions or overly strict subjective response criteria. We avoided these limitations by using optimized stimuli and experimental conditions while having subjects respond within a rating scale framework. Small (1′ fwhm), brief (34 msec), monochromatic (550 nm) stimuli were foveally presented at multiple intensities in dark-adapted retina for 5 subjects. For comparison, 4 subjects underwent similar testing with rod-optimized stimuli. Cone absolute threshold, that is, the minimum light energy for which subjects were just able to detect a visual stimulus with any response criterion, was 203 ± 38 photons at the cornea, ∼0.47 log units lower than previously reported. Two-alternative forced-choice measurements in a subset of subjects yielded consistent results. Cone thresholds were less responsive to criterion changes than rod thresholds, suggesting a limit to the stimulus information recoverable from the cone mosaic in addition to the limit imposed by Poisson noise. Results were consistent with expectations for detection in the face of stimulus uncertainty. We discuss implications of these findings for modeling the first stages of human cone vision and interpreting psychophysical data acquired with adaptive optics at the spatial scale of the receptor mosaic. PMID:21270115

  14. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  15. Lipoprotein Uptake by Neuronal Growth Cones in Vitro

    NASA Astrophysics Data System (ADS)

    Ignatius, Michael J.; Shooter, Eric M.; Pitas, Robert E.; Mahley, Robert W.

    1987-05-01

    Macrophages that rapidly enter injured peripheral nerve synthesize and secrete large quantities of apolipoprotein E. This protein may be involved in the redistribution of lipid, including cholesterol released during degeneration, to the regenerating axons. To test this postulate, apolipoprotein E-associated lipid particles released from segments of injured rat sciatic nerve and apolipoprotein E-containing lipoproteins from plasma were used to determine whether sprouting neurites, specifically their growth cones, possessed lipoprotein receptors. Pheochromocytoma (PC12) cells, which can be stimulated to produce neurites in vitro, were used as a model system. Apolipoprotein E-containing lipid particles and lipoproteins, which had been labeled with fluorescent dye, were internalized by the neurites and their growth cones; the unmetabolized dye appeared to be localized to the lysosomes. The rapid rate of accumulation in the growth cones precludes the possibility of orthograde transport of the fluorescent particles from the PC12 cell bodies. Thus, receptor-mediated lipoprotein uptake is performed by the apolipoprotein B,E(LDL) (low density lipoprotein) receptors, and in the regenerating peripheral nerve apolipoprotein E may deliver lipids to the neurites and their growth cones for membrane biosynthesis.

  16. DSMC simulations of Mach 20 nitrogen flows about a 70 degree blunted cone and its wake

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Dogra, Virendra K.; Wilmoth, Richard G.

    1993-01-01

    Numerical results obtained with the direct simulation Monte Carlo (DSMC) method are presented for Mach 20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are simulated with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is to characterize the wake flow under rarefied conditions. This is accomplished by calculating the influence of rarefaction on wake structure along with the impact that an afterbody has on flow features. This data report presents extensive information concerning flowfield features and surface quantities.

  17. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians place protective material around the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  18. Hypersonic Shock Interactions About a 25 deg/65 deg Sharp Double Cone

    NASA Technical Reports Server (NTRS)

    Moss, James N.; LeBeau, Gerald J.; Glass, Christopher E.

    2002-01-01

    This paper presents the results of a numerical study of shock interactions resulting from Mach 10 air flow about a sharp double cone. Computations are made with the direct simulation Monte Carlo (DSMC) method by using two different codes: the G2 code of Bird and the DAC (DSMC Analysis Code) code of LeBeau. The flow conditions are the pretest nominal free-stream conditions specified for the ONERA R5Ch low-density wind tunnel. The focus is on the sensitivity of the interactions to grid resolution while providing information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  19. Kinematics of Cone-In-Cone Growth, with Implications for Timing and Formation Mechanism

    NASA Astrophysics Data System (ADS)

    Hooker, J. N.; Cartwright, J. A.

    2015-12-01

    Cone-in-cone is an enigmatic structure. Similar to many fibrous calcite veins, cone-in-cone is generally formed of calcite and present in bedding-parallel vein-like accumulations within fine-grained rocks. Unlike most fibrous veins, cone-in-cone contains conical inclusions of host-rock material, creating nested, parallel cones throughout. A long-debated aspect of cone-in-cone structures is whether the calcite precipitated with its conical form (primary cone-in-cone), or whether the cones formed afterwards (secondary cone-in-cone). Trace dolomite within a calcite cone-in-cone structure from the Cretaceous of Jordan supports the primary hypothesis. The host sediment is a siliceous mud containing abundant rhombohedral dolomite grains. Dolomite rhombohedra are also distributed throughout the cone-in-cone. The rhombohedra within the cones are randomly oriented yet locally have dolomite overgrowths having boundaries that are aligned with calcite fibers. Evidence that dolomite co-precipitated with calcite, and did not replace calcite, includes (i) preferential downward extension of dolomite overgrowths, in the presumed growth-direction of the cone-in-cone, and (ii) planar, vertical borders between dolomite crystals and calcite fibers. Because dolomite overgrows host-sediment rhombohedra and forms fibers within the cones, it follows that the host-sediment was included within the growing cone-in-cone as the calcite precipitated, and not afterward. The host-sediment was not injected into the cone-in-cone along fractures, as the secondary-origin hypothesis suggests. This finding implies that cone-in-cone in general does not form over multiple stages, and thus has greater potential to preserve the chemical signature of its original precipitation. Because cone-in-cone likely forms before complete lithification of the host, and because the calcite displaces the host material against gravity, this chemical signature can preserve information about early overpressures in fine-grained sediments.

  20. Evolution, Development and Function of Vertebrate Cone Oil Droplets

    PubMed Central

    Toomey, Matthew B.; Corbo, Joseph C.

    2017-01-01

    To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle. PMID:29276475

  1. Rootless Cones on Mars: A Consequence of Lava-Ground Ice Interaction

    NASA Technical Reports Server (NTRS)

    Fagents, S. A.; Greeley, R.; Lanagan, P.

    2002-01-01

    Fields of small cratered cones on Mars are interpreted to have formed by rootless eruptions due to explosive interaction of lava with ground ice contained within the regolith beneath the flow. Melting and vaporization of the ice, and subsequent explosive expansion of the vapour, act to excavate the lava and construct a rootless cone around the explosion site. Similar features are found in Iceland, where flowing lava encountered water-saturated substrates. The martian cones have basal diameters of c. 30-1000 m and are located predominantly in the northern volcanic plains. High-resolution Mars Orbiter Camera images offer significant improvements over Viking data for interpretation of cone origins. A new model of the dynamics of cone formation indicates that very modest amounts of water ice are required to initiate and sustain the explosive interactions that produced the observed features. This is consistent with the likely low availability of water ice in the martian regolith. The scarcity of impact craters on many of the host lava flows indicates very young ages, suggesting that ground ice was present as recently as less than 10 - l00 Ma, and may persist today. Rootless cones therefore act as a spatial and temporal probe of the distribution of ground ice on Mars, which is of key significance in understanding the evolution of the martian climate. The location of water in liquid or solid form is of great importance to future robotic and human exploration strategies, and to the search for extraterrestrial life.

  2. Cone-Probe Rake Design and Calibration for Supersonic Wind Tunnel Models

    NASA Technical Reports Server (NTRS)

    Won, Mark J.

    1999-01-01

    A series of experimental investigations were conducted at the NASA Langley Unitary Plan Wind Tunnel (UPWT) to calibrate cone-probe rakes designed to measure the flow field on 1-2% scale, high-speed wind tunnel models from Mach 2.15 to 2.4. The rakes were developed from a previous design that exhibited unfavorable measurement characteristics caused by a high probe spatial density and flow blockage from the rake body. Calibration parameters included Mach number, total pressure recovery, and flow angularity. Reference conditions were determined from a localized UPWT test section flow survey using a 10deg supersonic wedge probe. Test section Mach number and total pressure were determined using a novel iterative technique that accounted for boundary layer effects on the wedge surface. Cone-probe measurements were correlated to the surveyed flow conditions using analytical functions and recursive algorithms that resolved Mach number, pressure recovery, and flow angle to within +/-0.01, +/-1% and +/-0.1deg , respectively, for angles of attack and sideslip between +/-8deg. Uncertainty estimates indicated the overall cone-probe calibration accuracy was strongly influenced by the propagation of measurement error into the calculated results.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Bin; Li, Yongbao; Liu, Bo

    Purpose: CyberKnife system is initially equipped with fixed circular cones for stereotactic radiosurgery. Two dose calculation algorithms, Ray-Tracing and Monte Carlo, are available in the supplied treatment planning system. A multileaf collimator system was recently introduced in the latest generation of system, capable of arbitrarily shaped treatment field. The purpose of this study is to develop a model based dose calculation algorithm to better handle the lateral scatter in an irregularly shaped small field for the CyberKnife system. Methods: A pencil beam dose calculation algorithm widely used in linac based treatment planning system was modified. The kernel parameters and intensitymore » profile were systematically determined by fitting to the commissioning data. The model was tuned using only a subset of measured data (4 out of 12 cones) and applied to all fixed circular cones for evaluation. The root mean square (RMS) of the difference between the measured and calculated tissue-phantom-ratios (TPRs) and off-center-ratio (OCR) was compared. Three cone size correction techniques were developed to better fit the OCRs at the penumbra region, which are further evaluated by the output factors (OFs). The pencil beam model was further validated against measurement data on the variable dodecagon-shaped Iris collimators and a half-beam blocked field. Comparison with Ray-Tracing and Monte Carlo methods was also performed on a lung SBRT case. Results: The RMS between the measured and calculated TPRs is 0.7% averaged for all cones, with the descending region at 0.5%. The RMSs of OCR at infield and outfield regions are both at 0.5%. The distance to agreement (DTA) at the OCR penumbra region is 0.2 mm. All three cone size correction models achieve the same improvement in OCR agreement, with the effective source shift model (SSM) preferred, due to their ability to predict more accurately the OF variations with the source to axis distance (SAD). In noncircular field validation, the pencil beam calculated results agreed well with the film measurement of both Iris collimators and the half-beam blocked field, fared much better than the Ray-Tracing calculation. Conclusions: The authors have developed a pencil beam dose calculation model for the CyberKnife system. The dose calculation accuracy is better than the standard linac based system because the model parameters were specifically tuned to the CyberKnife system and geometry correction factors. The model handles better the lateral scatter and has the potential to be used for the irregularly shaped fields. Comprehensive validations on MLC equipped system are necessary for its clinical implementation. It is reasonably fast enough to be used during plan optimization.« less

  4. DFT study of gases adsorption on sharp tip nano-catalysts surface for green fertilizer synthesis

    NASA Astrophysics Data System (ADS)

    Yahya, Noorhana; Irfan, Muhammad; Shafie, Afza; Soleimani, Hassan; Alqasem, Bilal; Rehman, Zia Ur; Qureshi, Saima

    2016-11-01

    The energy minimization and spin modifications of sorbates with sorbents in magnetic induction method (MIM) play a vital role in yield of fertilizer. Hence, in this article the focus of study is the interaction of sorbates/reactants (H2, N2 and CO2) in term of average total adsorption energies, average isosteric heats of adsorption energies, magnetic moments, band gaps energies and spin modifications over identical cone tips nanocatalyst (sorbents) of Fe2O3, Fe3O4 (magnetic), CuO and Al2O3 (non-magnetic) for green nano-fertilizer synthesis. Study of adsorption energy, band structures and density of states of reactants with sorbents are purely classical and quantum mechanical based concepts that are vividly illustrated and supported by ADSORPTION LOCATOR and Cambridge Seriel Total Energy Package (CASTEP) modules following classical and first principle DFT simulation study respectively. Maximum values of total average energies, total average adsorption energies and average adsorption energies of H2, N2 and CO2 molecules are reported as -14.688 kcal/mol, -13.444 kcal/mol, -3.130 kcal/mol, - kcal/mol and -6.348 kcal/mol over Al2O3 cone tips respectively and minimum over magnetic cone tips. Whereas, the maximum and average minimum values of average isosteric heats of adsorption energies of H2, N2 and CO2 molecules are figured out to be 3.081 kcal/mol, 4.842 kcal/mol and 6.848 kcal/mol, 0.988 kcal/mol, 1.554 kcal/mol and 2.236 kcal/mol over aluminum oxide and Fe3O4 cone tips respectively. In addition to the adsorption of reactants over identical cone sorbents the maximum and minimum values of net spin, electrons and number of bands for magnetite and aluminum oxide cone structures are attributed to 82 and zero, 260 and 196, 206 and 118 for Fe3O4 and Al2O3 cones respectively. Maximum and least observed values of band gap energies are figured out to be 0.188 eV and 0.018 eV with Al2O3 and Fe3O4 cone structures respectively. Ultimately, with the adsorption of reactants an identical increment of 14 electrons each in up and down spins is resulted.

  5. A model for neurite growth and neuronal morphogenesis.

    PubMed

    Li, G H; Qin, C D

    1996-02-01

    A model is presented for tensile regulation of neuritic growth. It is proposed that the neurite tension can be determined by Hooke's law and determines the growth rate of neurites. The growth of a neurite is defined as the change in its unstretched length. Neuritic growth rate is assumed to increase in proportion to tension magnitude over a certain threshold [Dennerll et al., J. Cell Biol. 107: 665-674 (1988)]. The movement of branch nodes also contributes to the neuronal morphogenesis. It is supposed that the rate of a branch-node displacement is in proportion to the resultant neuritic tension exerted on this node. To deal with the growth-cone movement, it is further supposed that the environment exerts a traction force on the growth cone and the rate of growth-cone displacement is determined by the vector sum of the neuritic tension and the traction force. A group of differential equations are used to describe the model. The key point of the model is that the traction force and the neuritic tension are in opposition to generate a temporal contrast-enhancing mechanism. Results of a simulation study suggest that the model can explain some phenomena related to neuronal morphogenesis.

  6. Cone Photoreceptor Abnormalities Correlate with Vision Loss in Patients with Stargardt Disease

    PubMed Central

    Chen, Yingming; Ratnam, Kavitha; Sundquist, Sanna M.; Lujan, Brandon; Ayyagari, Radha; Gudiseva, V. Harini; Roorda, Austin

    2011-01-01

    Purpose. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). Methods. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. Results. Patients were 15 to 55 years old, and visual acuity ranged from 20/25–20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. Conclusions. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death. (ClinicalTrials.gov number, NCT00254605.) PMID:21296825

  7. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca2+ channels

    PubMed Central

    Bartoletti, Theodore M.; Jackman, Skyler L.; Babai, Norbert; Mercer, Aaron J.; Kramer, Richard H.

    2011-01-01

    Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca2+ channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca2+ channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca2+ currents (ICa) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca2+ channel number and single-channel current amplitude were calculated by mean-variance analysis of ICa. Two different comparisons—one comparing average numbers of release events to average ICa amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone ICa—suggested that fewer than three Ca2+ channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca2+ channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca2+ dependence of release, Ca2+ channel number, and Ca2+ channel properties. The model replicated observations when a barrier was added to slow Ca2+ diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca2+ buffers did not affect release efficiency. The tight clustering of Ca2+ channels, along with a high-Ca2+ affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca2+ influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light. PMID:21880934

  8. Release from the cone ribbon synapse under bright light conditions can be controlled by the opening of only a few Ca(2+) channels.

    PubMed

    Bartoletti, Theodore M; Jackman, Skyler L; Babai, Norbert; Mercer, Aaron J; Kramer, Richard H; Thoreson, Wallace B

    2011-12-01

    Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca(2+) channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca(2+) channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca(2+) currents (I(Ca)) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca(2+) channel number and single-channel current amplitude were calculated by mean-variance analysis of I(Ca). Two different comparisons-one comparing average numbers of release events to average I(Ca) amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone I(Ca)-suggested that fewer than three Ca(2+) channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca(2+) channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca(2+) dependence of release, Ca(2+) channel number, and Ca(2+) channel properties. The model replicated observations when a barrier was added to slow Ca(2+) diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca(2+) buffers did not affect release efficiency. The tight clustering of Ca(2+) channels, along with a high-Ca(2+) affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca(2+) influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light.

  9. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  10. Initial '80s Development of Inflated Antennas

    NASA Technical Reports Server (NTRS)

    Friese, G. J.; Bilyeu, G. D.; Thomas, M.

    1983-01-01

    State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.

  11. Hygroscopic motions of fossil conifer cones

    NASA Astrophysics Data System (ADS)

    Poppinga, Simon; Nestle, Nikolaus; Šandor, Andrea; Reible, Bruno; Masselter, Tom; Bruchmann, Bernd; Speck, Thomas

    2017-01-01

    Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000-113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).

  12. Qualitative Assessment of the Acoustic Disturbance Environment in the NASA LaRC 20-Inch MACH 6 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Hamilton, H. Harris

    2001-01-01

    An experimental investigation was conducted on a 5-degree-half-angle cone with a flare in a conventional Mach 6 wind tunnel to examine the effect of facility noise on boundary layer transition. The effect of tunnel noise was inferred by comparing transition onset locations determined from the present test to that previously obtained in a Mach 6 quiet tunnel. Together, the two sets of experiments are believed to represent the first direct comparison of transition onset between a conventional and a quiet hypersonic wind tunnel using a common test model. In the present conventional hypersonic tunnel experiment, adiabatic wall temperatures were measured and heat transfer distributions were inferred on the cone flare model at zero degree angle of attack over a range of length Reynolds numbers (2 x 10(exp 6) to 10 x 10(exp 6)) which resulted in laminar and turbulent flow. Wall-to-total temperature ratio for the transient heating measurements and the adiabatic wall temperature measurements were 0.69 and 0.86, respectively. The cone flare nosetip radius was varied from 0.0001 to 0.125-inch to examine the effects of bluntness on transition onset. At comparable freestream conditions the transition onset Reynolds number obtained on the cone flare model in the conventional "noisy" tunnel was approximately 25% lower than that measured in the low disturbance tunnel.

  13. Exact finite volume expectation values of \\overline{Ψ}Ψ in the massive Thirring model from light-cone lattice correlators

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2018-03-01

    In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.

  14. Dynamic Force Measurements and Boundary-Layer Transition Mapping on a Spinning 9-Deg Cone with and without Mass Addition at Mach Numbers 5 and 8

    DTIC Science & Technology

    1978-08-01

    91 40. Aerodynamic Coefficients for Sharp Cone at Angle of Attack 93 41. Posttest Photograph of Ablated Camphor Nose Tip, rn/rb = 0.042...94 AEDC-TR-78-40 Figure Page 42. Aerodynamic Coefficients on Spinning Model with Camphor Nose Tip with Imbedded Metal Shaving 95 43. 3...shell could be replaced with camphor (in the case of the larger spin model only, Fig. 5a), asymmetric aluminum (Fig. 5b), or carbon phenolic frustums

  15. Comparing Dimensional Accuracy Between a Polyvinyl Chloride Skull and Its Virtually Constructed Counterpart

    DTIC Science & Technology

    2015-06-01

    exposure settings…………………...26 Table 4. Kodak 9500 Cone Beam 3D System exposure settings…………..….27 Table 5. Average and statistical analysis results...42 Figure 6 Image of Mounted PVC Skull Model on the Kodak 9500……….…......43 Figure 7 Screen image of Reconstructed CBCT Digital...replica was taken with the Kodak 9500 Cone Beam 3D System. To create the digital dental models fifteen type IV maxillary dental casts were made on the

  16. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  17. Observing the Magnetosphere in Soft X-Rays: The Lunar X-Ray Observatory (LXO)

    NASA Astrophysics Data System (ADS)

    Sibeck, D. G.; Collier, M. R.; Porter, F. S.

    2018-02-01

    Wide field-of-view soft X-ray imagers in lunar orbit or on the lunar surface can be used to address many heliophysics objectives, including the nature of the solar wind magnetosphere-interaction, the lunar exosphere, and the helium focusing cone.

  18. Scoria Cone and Tuff Ring Stratigraphy Interpreted from Ground Penetrating Radar, Rattlesnake Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.

    2013-12-01

    Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope diminishment at the base of the scoria cone, where the dip of GPR reflectors changes from radially out from the cone to horizontal or radially inward toward the cone. These changes suggest that grain avalanche packages thin at the base of the slope or that cone strata terminate against the pre-existing surface. We do not identify continuous tephra fall deposits extending from the base of the cone, which would be indicative of violent strombolian activity. On one profile strong diffractors at the base of the cone suggest the presence of now-buried ballistics that rolled to the bottom of the slope. A major question to be addressed with the GPR data is whether the scoria cone erosion by downslope granular flow can be modeled using the diffusion-advection equation with constant diffusivity and advection terms, and in contrast, how much of the profile is explained by downslope movement at the time of the eruption. GPR reflecting horizons on the maar rim are smoother in appearance than those on the scoria cone, perhaps indicating finer-grained material and the absence of diffracting blocks. On the west rim layers suggest indicated a paleo-rim with a flat top ~50 meters wide, surrounded on both sides by strata dipping more steeply than the current surface. Radar stratgraphy outside the northeastern maar rim is much more complex.

  19. TOWARD AN EMPIRICAL THEORY OF PULSAR EMISSION. IX. ON THE PECULIAR PROPERTIES AND GEOMETRIC REGULARITY OF LYNE AND MANCHESTER'S 'PARTIAL CONE' PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Dipanjan; Rankin, Joanna M., E-mail: dmitra@ncra.tifr.res.in, E-mail: Joanna.Rankin@uvm.edu

    2011-02-01

    Lyne and Manchester identified a group of some 50 pulsars they called 'partial cones' which they found difficult to classify and interpret. They were notable for their asymmetric average profiles and asymmetric polarization position angle (PPA) traverses, wherein the steepest gradient (SG) point fell toward one edge of the total intensity profile. Over the last two decades, this population of pulsars has raised cautions regarding the core/cone model of the radio pulsar emission beam which implies a high degree of order, symmetry, and geometric regularity. In this paper, we reinvestigate this population 'partial cone' pulsars on the basis of newmore » single pulse polarimetric observations of 39 of them, observed with the Giant Meterwave Radio Telescope in India and the Arecibo Observatory in Puerto Rico. These highly sensitive observations help us to establish that most of these 'partial cones' exhibit a core/cone structure just as did the 'normal' pulsars studied in the earlier papers of this series. In short, we find that many of these 'partial cones' are partial in the sense that the emission above different areas of their polar caps can be (highly) asymmetric. However, when studied closely we find that their emission geometries are overall identical to a core/double cone structure encountered earlier-that is, with specific conal dimensions scaling as the polar cap size. Further, the 'partial cone' population includes a number of stars with conal single profiles that are asymmetric at meter wavelengths for unknown reasons (e.g., like those of B0809+74 or B0943+10). We find that aberration-retardation appears to play a role in distorting the core/cone emission-beam structure in rapidly rotating pulsars. We also find several additional examples of highly polarized pre- and postcursor features that do not appear to be generated at low altitude but rather at high altitude, far from the usual polar flux tube emission sites of the core and conal radiation.« less

  20. Dynamic cone penetration tests in granular media: Determination of the tip's dynamic load-penetration curve

    NASA Astrophysics Data System (ADS)

    Escobar, E.; Benz, M.; Gourvès, R.; Breul, P.

    2013-06-01

    In this article a two-dimensional discrete numerical model, realized in PFC2D, is presented. This model is used in the dynamic penetration tests in a granular medium. Its objective being the validation of the measurement technique offered by Panda 3® (Benz et al. 2011) which is designed to calculate the tip's load-penetration curve for each impact in the soil where different parameters are used. To do so, we have compared the results obtained by calculation during the impacts to those measured directly in the model of a penetrometer through the installation of the gauges at the cone.

  1. Functional significance of the taper of vertebrate cone photoreceptors

    PubMed Central

    Hárosi, Ferenc I.

    2012-01-01

    Vertebrate photoreceptors are commonly distinguished based on the shape of their outer segments: those of cones taper, whereas the ones from rods do not. The functional advantages of cone taper, a common occurrence in vertebrate retinas, remain elusive. In this study, we investigate this topic using theoretical analyses aimed at revealing structure–function relationships in photoreceptors. Geometrical optics combined with spectrophotometric and morphological data are used to support the analyses and to test predictions. Three functions are considered for correlations between taper and functionality. The first function proposes that outer segment taper serves to compensate for self-screening of the visual pigment contained within. The second function links outer segment taper to compensation for a signal-to-noise ratio decline along the longitudinal dimension. Both functions are supported by the data: real cones taper more than required for these compensatory roles. The third function relates outer segment taper to the optical properties of the inner compartment whereby the primary determinant is the inner segment’s ability to concentrate light via its ellipsoid. In support of this idea, the rod/cone ratios of primarily diurnal animals are predicted based on a principle of equal light flux gathering between photoreceptors. In addition, ellipsoid concentration factor, a measure of ellipsoid ability to concentrate light onto the outer segment, correlates positively with outer segment taper expressed as a ratio of characteristic lengths, where critical taper is the yardstick. Depending on a light-funneling property and the presence of focusing organelles such as oil droplets, cone outer segments can be reduced in size to various degrees. We conclude that outer segment taper is but one component of a miniaturization process that reduces metabolic costs while improving signal detection. Compromise solutions in the various retinas and retinal regions occur between ellipsoid size and acuity, on the one hand, and faster response time and reduced light sensitivity, on the other. PMID:22250013

  2. Late-onset cone photoreceptor degeneration induced by R172W mutation in Rds and partial rescue by gene supplementation.

    PubMed

    Conley, Shannon; Nour, May; Fliesler, Steven J; Naash, Muna I

    2007-12-01

    R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy. Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype. In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds(+/-) background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds(+/-) background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals. The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haploinsufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation.

  3. Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.

    1990-01-01

    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.

  4. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  5. Physical processes in directed ion beam sputtering. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1979-01-01

    The general operation of a discharge chamber for the production of ions is described. A model is presented for the magnetic containment of both primary and secondary or Maxwellian electrons in the discharge plasma. Cross sections were calculated for energy and momentum transfer in binary collisions between like pairs of Ar, Kr, and Xe atoms in the energy range from about 1 eV to 1000 eV. These calculations were made from available pair interaction potentials using a classical model. Experimental data from the literature were fit to a theoretical expression for the Ar resonance charge exchange cross section over the same energy range. A model was developed that describes the processes of conical texturing of a surface due to simultaneous directed ion beam etching and sputter deposition of an impurity material. This model accurately predicts both a minimum temperature for texturing to take place and the variation of cone density with temperature. It also provides the correct order of magnitude of cone separation. It was predicted from the model, and subsequently verified experimentally, that a high sputter yield material could serve as a seed for coning of a lower sputter yield substrate. Seeding geometries and seed deposition rates were studied to obtain an important input to the theoretical texturing model.

  6. SU-C-209-02: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Clinical Patient Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Cai, W; Hurwitz, M

    Purpose: We develop a method to generate time varying volumetric images (3D fluoroscopic images) using patient-specific motion models derived from four-dimensional cone-beam CT (4DCBCT). Methods: Motion models are derived by selecting one 4DCBCT phase as a reference image, and registering the remaining images to it. Principal component analysis (PCA) is performed on the resultant displacement vector fields (DVFs) to create a reduced set of PCA eigenvectors that capture the majority of respiratory motion. 3D fluoroscopic images are generated by optimizing the weights of the PCA eigenvectors iteratively through comparison of measured cone-beam projections and simulated projections generated from the motionmore » model. This method was applied to images from five lung-cancer patients. The spatial accuracy of this method is evaluated by comparing landmark positions in the 3D fluoroscopic images to manually defined ground truth positions in the patient cone-beam projections. Results: 4DCBCT motion models were shown to accurately generate 3D fluoroscopic images when the patient cone-beam projections contained clearly visible structures moving with respiration (e.g., the diaphragm). When no moving anatomical structure was clearly visible in the projections, the 3D fluoroscopic images generated did not capture breathing deformations, and reverted to the reference image. For the subset of 3D fluoroscopic images generated from projections with visibly moving anatomy, the average tumor localization error and the 95th percentile were 1.6 mm and 3.1 mm respectively. Conclusion: This study showed that 4DCBCT-based 3D fluoroscopic images can accurately capture respiratory deformations in a patient dataset, so long as the cone-beam projections used contain visible structures that move with respiration. For clinical implementation of 3D fluoroscopic imaging for treatment verification, an imaging field of view (FOV) that contains visible structures moving with respiration should be selected. If no other appropriate structures are visible, the images should include the diaphragm. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less

  7. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC/SWRC from 2010-2016

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P. J.; Jian, L. K.

    2017-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements near Earth, STEREO-A and STEREO-B for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B and we observed an arrival (hit), the mean absolute arrival-time prediction error was 10.4 ± 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  8. DSMC Simulation and Experimental Validation of Shock Interaction in Hypersonic Low Density Flow

    PubMed Central

    2014-01-01

    Direct simulation Monte Carlo (DSMC) of shock interaction in hypersonic low density flow is developed. Three collision molecular models, including hard sphere (HS), variable hard sphere (VHS), and variable soft sphere (VSS), are employed in the DSMC study. The simulations of double-cone and Edney's type IV hypersonic shock interactions in low density flow are performed. Comparisons between DSMC and experimental data are conducted. Investigation of the double-cone hypersonic flow shows that three collision molecular models can predict the trend of pressure coefficient and the Stanton number. HS model shows the best agreement between DSMC simulation and experiment among three collision molecular models. Also, it shows that the agreement between DSMC and experiment is generally good for HS and VHS models in Edney's type IV shock interaction. However, it fails in the VSS model. Both double-cone and Edney's type IV shock interaction simulations show that the DSMC errors depend on the Knudsen number and the models employed for intermolecular interaction. With the increase in the Knudsen number, the DSMC error is decreased. The error is the smallest in HS compared with those in the VHS and VSS models. When the Knudsen number is in the level of 10−4, the DSMC errors, for pressure coefficient, the Stanton number, and the scale of interaction region, are controlled within 10%. PMID:24672360

  9. Heating in short-pulse laser-driven cone-capped wire targets

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Wei, M.; King, J.; Beg, F.; Stephens, R. B.

    2007-11-01

    The 2-D implicit hybrid simulation code e-PLAS has been used to study heating in cone-capped copper wire targets. The code e-PLAS tracks collisional particle-in-cell (PIC) electrons traversing background plasma of collisional Eulerian cold electron and ion fluids. It computes E- and B-fields by the Implicit Moment Method [1,2]. In recent experiments [3] at the Vulcan laser facility, sub- picosecond laser pulses at 1.06 μm, and 4.0 x 10^20 W/cm^2 intensity were focused into thin-walled (˜10 μm) cones attached to copper wires. The wire diameter was varied from 10-40 μm with a typical length of 1 mm. We characterize heating of the wires as a function of their diameters and length, and relate modifications of this heating to changes in the assumed laser-generated hot electron spectrum and directivity. As in recent nail experiments [4], the cones can serve as reservoirs for hot electrons, diverting them from passage down the wires. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] J. King et al., to be submitted to Phys. Rev. Lett.. [4] R. J. Mason, M. Wei, F. Beg, R. Stephens, and C. Snell, in Proc. of ICOPS07, Albuquerque, NM, June 17-22, 2007, Talk 7D4.

  10. Computational Study of Hypersonic Boundary Layer Stability on Cones

    NASA Astrophysics Data System (ADS)

    Gronvall, Joel Edwin

    Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated in this work. One standard mean flow solution and two direct numerical simulations of a slender cone at an angle of attack were computed. The direct numerical simulations included a digitally-filtered, randomly distributed surface roughness and were performed using a high-order, low-dissipation numerical scheme on appropriately resolved grids. Comparisons with experimental observations showed excellent qualitative agreement. Comparisons with similar previous computational work were also made and showed agreement in the wavenumber range of the most unstable crossflow modes.

  11. Analysis of disturbances in a hypersonic boundary layer on a cone with heating/cooling of the nose tip

    NASA Astrophysics Data System (ADS)

    Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury

    2018-05-01

    Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.

  12. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  13. Development of computer models for correlating data of film cooling of nose cone under hypersonic flow

    NASA Technical Reports Server (NTRS)

    Sharpe, L., Jr.

    1987-01-01

    A 12.5 degree half cone with tangential slot injection at Mach 6.95 was studied to determine the heating rates to the surface of the body near and far downstream of the slot. The cone had a zero degree angle of attack. The heating rates were obtained using a computer program that was developed at NASA-Langley Research Center. The concentration of nitrogen from the slot into the boundary layer was also determined. The ratio of slot to freestream was varied to determine its effect on heating. The numerical heating rates were compared to other correlations obtained from experimental studies as well as theoretical laminar and turbulent results.

  14. Comparison of Experimental and Computational Aerothermodynamics of a 70-deg Sphere-Cone

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Perkins, John N.

    1996-01-01

    Numerical solutions for hypersonic flows of carbon-dioxide and air around a 70-deg sphere-cone have been computed using an axisymmetric non-equilibrium Navier-Stokes solver. Freestream flow conditions for these computations were equivalent to those obtained in an experimental blunt-body heat-transfer study conducted in a high-enthalpy, hypervelocity expansion tube. Comparisons have been made between the computed and measured surface heat-transfer rates on the forebody and afterbody of the sphere-cone and on the sting which supported the test model. Computed forebody heating rates were within the estimated experimental uncertainties of 10% on the forebody and 15% in the wake except for within the recirculating flow region of the wake.

  15. Monochromator Configurations for Wavelength Division Multiplexing

    DTIC Science & Technology

    1989-10-01

    CLASSIFICATION M UNCLASSIFIED/UNLIMITED 3 SAME AS RPT. Q DTIC USERS UNCLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL 2Zb. TELEPHONE (Incude Area Code) 22c...one along focus and one perpendicular to the direction of focus, allowed precise positioning of the fiber. 2.1.6 Photodetector The output end of the...designed to measure the output power of an optical source by coupling the output end of a fiber to the appropriate sensor head. In our case, the sensor

  16. Self-organized criticality and color vision: A guide to water-protein landscape evolution

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2013-02-01

    We focus here on the scaling properties of small interspecies differences between red cone opsin transmembrane proteins, using a hydropathic elastic roughening tool previously applied to the rhodopsin rod transmembrane proteins. This tool is based on a non-Euclidean hydropathic metric realistically rooted in the atomic coordinates of 5526 protein segments, which thereby encapsulates universal non-Euclidean long-range differential geometrical features of water films enveloping globular proteins in the Protein Data Bank. Whereas the rhodopsin blue rod water films are smoothest in humans, the red cone opsins’ water films are optimized for smoothness in cats and elephants, consistent with protein species landscapes that evolve differently in different contexts. We also analyze red cone opsins in the chromatophore-containing family of chameleons, snakes, zebrafish and goldfish, where short- and long-range (BLAST and hydropathic) amino acid (aa) correlations are found with values as large as 97%-99%. We use hydropathic aa optimization to estimate the maximum number Nmax of color shades that the human eye can discriminate, and obtain 106

  17. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance

    PubMed Central

    Bearce, Elizabeth A.; Erdogan, Burcu; Lowery, Laura Anne

    2015-01-01

    The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events. PMID:26175669

  18. Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas

    DOE PAGES

    Jarrott, L. C.; McGuffey, C.; Beg, F. N.; ...

    2017-10-24

    Fast electron transport and spatial energy deposition are investigated in integrated cone-guided Fast Ignition experiments by measuring fast electron induced copper K-shell emission using a copper tracer added to deuterated plastic shells with a geometrically reentrant gold cone. Experiments were carried out at the Laboratory for Laser Energetics on the OMEGA/OMEGA-EP Laser where the plastic shells were imploded using 54 of the 60 OMEGA60 beams (3ω, 20 kJ), while the high intensity OMEGA-EP (BL2) beam (1 ω, 10 ps, 500 J, I peak > 10 19 W/cm 2) was focused onto the inner cone tip. Here, a retrograde analysis usingmore » the hybrid-PIC electron transport code, ZUMA, is performed to examine the sensitivity of the copper Kα spatial profile on the laser-produced fast electrons, facilitating the optimization of new target point designs and laser configurations to improve the compressed core areal density by a factor of 4 and the fast electron energy coupling by a factor of 3.5.« less

  19. Scattering by tilted plastic cylinders having curved ends and truncated plastic cones

    NASA Astrophysics Data System (ADS)

    Espana, Aubrey; Baik, Kyungmin; Marston, Philip L.

    2005-04-01

    In prior research an acoustic backscattering enhancement was demonstrated for a bluntly truncated plastic cylinder caused by a merged caustic [F. J. Blonigen and P. L. Marston, J. Acoust. Soc. Am. 107, 689-698 (2000)]. This was confirmed with analogous light scattering experiments [P. L. Marston, Y. B. Zhang, and D. B. Thiessen, Appl. Opt. 42, 412-417 (2003)]. In recent work a different backscattering enhancement associated with a caustic was identified for tilted plastic cylinders having curved ends. When the cylinder is tilted so as to focus a shear wave at the point of internal specular reflection, the curvature of the outgoing acoustic wavefront vanishes orthogonal to the meridional plane. This was verified with analogous light scattering experiments. The flatness of the outgoing wavefront enhances the scattering. Backscattering by truncated plastic cones as a function of tilt also shows enhancements associated with the composition of the target. The time dependence of the backscattering envelope as a function of tilt reveals different features depending on whether the top or bottom of the cone is illuminated by tone bursts. [Work supported by the Office of Naval Research.

  20. Thermalization and light cones in a model with weak integrability breaking

    DOE PAGES

    Bertini, Bruno; Essler, Fabian H. L.; Groha, Stefan; ...

    2016-12-09

    Here, we employ equation-of-motion techniques to study the nonequilibrium dynamics in a lattice model of weakly interacting spinless fermions. Our model provides a simple setting for analyzing the effects of weak integrability-breaking perturbations on the time evolution after a quantum quench. We establish the accuracy of the method by comparing results at short and intermediate times to time-dependent density matrix renormalization group computations. For sufficiently weak integrability-breaking interactions we always observe prethermalization plateaus, where local observables relax to nonthermal values at intermediate time scales. At later times a crossover towards thermal behavior sets in. We determine the associated time scale,more » which depends on the initial state, the band structure of the noninteracting theory, and the strength of the integrability-breaking perturbation. Our method allows us to analyze in some detail the spreading of correlations and in particular the structure of the associated light cones in our model. We find that the interior and exterior of the light cone are separated by an intermediate region, the temporal width of which appears to scale with a universal power law t 1/3.« less

  1. A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Hackett, W. R.; Houghton, B. F.

    1989-01-01

    Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.

  2. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around the base of the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  3. Repairing the damage to Atlantis' External Tank

    NASA Image and Video Library

    2007-03-07

    On an upper level of high bay 1 of the Vehicle Assembly Building, technicians move protective material toward the nose cone (foreground) of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.

  4. Antenna radiation patterns in the whistler wave regime measured in a large laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.

    1976-01-01

    Antenna radiation patterns of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative wave amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler wave regime. The boundary effects are assumed to be negligible even for many farfield patterns. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna patterns along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation pattern.

  5. Direct determination of geometric alignment parameters for cone-beam scanners

    PubMed Central

    Mennessier, C; Clackdoyle, R; Noo, F

    2009-01-01

    This paper describes a comprehensive method for determining the geometric alignment parameters for cone-beam scanners (often called calibrating the scanners or performing geometric calibration). The method is applicable to x-ray scanners using area detectors, or to SPECT systems using pinholes or cone-beam converging collimators. Images of an alignment test object (calibration phantom) fixed in the field of view of the scanner are processed to determine the nine geometric parameters for each view. The parameter values are found directly using formulae applied to the projected positions of the test object marker points onto the detector. Each view is treated independently, and no restrictions are made on the position of the cone vertex, or on the position or orientation of the detector. The proposed test object consists of 14 small point-like objects arranged with four points on each of three orthogonal lines, and two points on a diagonal line. This test object is shown to provide unique solutions for all possible scanner geometries, even when partial measurement information is lost by points superimposing in the calibration scan. For the many situations where the cone vertex stays reasonably close to a central plane (for circular, planar, or near-planar trajectories), a simpler version of the test object is appropriate. The simpler object consists of six points, two per orthogonal line, but with some restrictions on the positioning of the test object. This paper focuses on the principles and mathematical justifications for the method. Numerical simulations of the calibration process and reconstructions using estimated parameters are also presented to validate the method and to provide evidence of the robustness of the technique. PMID:19242049

  6. Vaginal cones or balls to improve pelvic floor muscle performance and urinary continence in women post partum: A quantitative systematic review.

    PubMed

    Oblasser, Claudia; Christie, Janice; McCourt, Christine

    2015-11-01

    the vaginal use of cones or balls aims to increase muscle performance and thereby prevent or treat urinary incontinence. To date, no systematic review has focused on the effectiveness of these devices specifically during the postpartum period. The objectives of this review were: to compare the effectiveness of vaginal cones or balls for improvement of pelvic floor muscle performance and urinary continence in the postpartum period to no treatment, placebo, sham treatment or active controls; to gather information on effect on perineal descent or pelvic organ prolapse, adverse effects and economical aspects. quantitative systematic review. 14 scientific databases (including PubMed and CINAHL) and the world-wide web; experts were contacted for published and unpublished data. studies had to be randomised/quasi-randomised trials and have female participants up to one year after childbirth. The intervention is compared to no treatment, placebo, sham treatment or active controls. Outcome measures relate to pelvic floor muscle performance or urinary incontinence. Studies were selected, 'risk of bias' assessed, and data extracted by two reviewers independently with inter-reviewer agreement. one study met the inclusion criteria; its original data were re-analysed. In an intention-to-treat analysis, compared with the control group, the cone group showed a statistically significant lower rate of urinary incontinence; compared with the exercise group, the prevalence was similar. However, the validity of the analysis is limited. the evidence gained from this systematic review is very limited. The use of cones may be helpful for urinary incontinence after childbirth, but further research is needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [ERG diagnosis and differential diagnosis: results of examination over 6 years].

    PubMed

    Stemeyer, G; Stähli, P

    1996-05-01

    This study reviews the patient material first from the point of view of referral diagnosis. Secondly, we focus on difficulties in selective differential diagnoses. 1501 patients underwent electroretinographic (ERG) testing from 1989 to 1994, amounting to 1815 ERG recordings, including follow-up examinations. The technique applied is full-field, single flash ERG with selective stimulation of the rod- and of the cone-systems. In 3.8% (57 cases) the ERG was performed under general anesthesia in outpatients. Tapetoretinal degenerations, toxic retinal side effects, inflammatory disease and ocular trauma represented, in this order, the major groups of referral diagnoses aside from unclear visual loss. The documentation or the exclusion of tapetoretinal degeneration represented the largest share (57%) of the application of the diagnostic procedure. 171 cases of isolated retinitis pigmentosa (RP) and 33 cases of syndromic RP were identified. Frequent and rare diagnostic entities and their differential diagnoses within this group are discussed. Inevitably, a number of diagnostic decisions remain problematic, in particular at the first examination. These diagnostic difficulties are addressed also and include the differentiation between RP sine pigmento and congenital amaurosis Leber in infants, RP with macular involvement vs. cone-rod degeneration, unilateral RP vs. postinflammatory conditions, and progressive cone dystrophy vs. achromatopsia, cone-rod degeneration or Stargardt's disease. Frequent and meaningful indications for ERG recording and difficult diagnostic decisions arise from this review of a relatively large group of patients. A number of diagnoses can hardly, if not at all be established without ERG testing. These include retinal cause of visual loss in infants, congenital amaurosis Leber, RP sine pigmento, early stages of RP, carrier status in XL RP and in choroideremia, progressive cone dystrophy, toxic retinopathy without fundus changes, retinal involvement in uveitis with opaque media, and incomplete CSNB.

  8. A unified classification model for modeling of seismic liquefaction potential of soil based on CPT

    PubMed Central

    Samui, Pijush; Hariharan, R.

    2014-01-01

    The evaluation of liquefaction potential of soil due to an earthquake is an important step in geosciences. This article examines the capability of Minimax Probability Machine (MPM) for the prediction of seismic liquefaction potential of soil based on the Cone Penetration Test (CPT) data. The dataset has been taken from Chi–Chi earthquake. MPM is developed based on the use of hyperplanes. It has been adopted as a classification tool. This article uses two models (MODEL I and MODEL II). MODEL I employs Cone Resistance (qc) and Cyclic Stress Ratio (CSR) as input variables. qc and Peak Ground Acceleration (PGA) have been taken as inputs for MODEL II. The developed MPM gives 100% accuracy. The results show that the developed MPM can predict liquefaction potential of soil based on qc and PGA. PMID:26199749

  9. A unified classification model for modeling of seismic liquefaction potential of soil based on CPT.

    PubMed

    Samui, Pijush; Hariharan, R

    2015-07-01

    The evaluation of liquefaction potential of soil due to an earthquake is an important step in geosciences. This article examines the capability of Minimax Probability Machine (MPM) for the prediction of seismic liquefaction potential of soil based on the Cone Penetration Test (CPT) data. The dataset has been taken from Chi-Chi earthquake. MPM is developed based on the use of hyperplanes. It has been adopted as a classification tool. This article uses two models (MODEL I and MODEL II). MODEL I employs Cone Resistance (q c) and Cyclic Stress Ratio (CSR) as input variables. q c and Peak Ground Acceleration (PGA) have been taken as inputs for MODEL II. The developed MPM gives 100% accuracy. The results show that the developed MPM can predict liquefaction potential of soil based on q c and PGA.

  10. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Treesearch

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  11. Anatomic Customization of Root-Analog Dental Implants With Cone-Beam CT and CAD/CAM Fabrication: A Cadaver-Based Pilot Evaluation.

    PubMed

    Evans, Zachary P; Renne, Walter G; Bacro, Thierry R; Mennito, Anthony S; Ludlow, Mark E; Lecholop, Michael K

    2018-02-01

    Existing root-analog dental implant systems have no standardized protocols regarding retentive design, surface manipulation, or prosthetic attachment design relative to the site's unique anatomy. Historically, existing systems made those design choices arbitrarily. For this report, strategies were developed that deliberately reference the adjacent anatomy, implant and restorable path of draw, and bone density for implant and retentive design. For proof of concept, dentate arches from human cadavers were scanned using cone-beam computed tomography and then digitally modeled. Teeth of interest were virtually extracted and manipulated via computer-aided design to generate root-analog implants from zirconium. We created a stepwise protocol for analyzing and developing the implant sites, implant design and retention, and prosthetic emergence and connection all from the pre-op cone-beam data. Root-analog implants were placed at the time of extraction and examined radiographically and mechanically concerning ideal fit and stability. This study provides proof of concept that retentive root-analog implants can be produced from cone-beam data while improving fit, retention, safety, esthetics, and restorability when compared to the existing protocols. These advancements may provide the critical steps necessary for clinical relevance and success of immediately placed root-analog implants. Additional studies are necessary to validate the model prior to clinical trial.

  12. Noise Reduction Design of the Volute for a Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Song, Zhen; Wen, Huabing; Hong, Liangxing; Jin, Yudong

    2017-08-01

    In order to effectively control the aerodynamic noise of a compressor, this paper takes into consideration a marine exhaust turbocharger compressor as a research object. According to the different design concept of volute section, tongue and exit cone, six different volute models were established. The finite volume method is used to calculate the flow field, whiles the finite element method is used for the acoustic calculation. Comparison and analysis of different structure designs from three aspects: noise level, isentropic efficiency and Static pressure recovery coefficient. The results showed that under the concept of volute section model 1 yielded the best result, under the concept of tongue analysis model 3 yielded the best result and finally under exit cone analysis model 6 yielded the best results.

  13. Laser backscattering analytical model of Doppler power spectra about rotating convex quadric bodies of revolution

    NASA Astrophysics Data System (ADS)

    Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua

    2010-01-01

    We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.

  14. Flow interference in a variable porosity trisonic wind tunnel.

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Graham, R. F.

    1972-01-01

    Pressure data from a 20-degree cone-cylinder in a variable porosity wind tunnel for the Mach range 0.2 to 5.0 are compared to an interference free standard in order to determine wall interference effects. Four 20-degree cone-cylinder models representing an approximate range of percent blockage from one to six were compared to curve-fits of the interference free standard at each Mach number and errors determined at each pressure tap location. The average of the absolute values of the percent error over the length of the model was determined and used as the criterion for evaluating model blockage interference effects. The results are presented in the form of the percent error as a function of model blockage and Mach number.

  15. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  16. Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors

    PubMed Central

    Bruce, Kady S.; Harmening, Wolf M.; Langston, Bradley R.; Tuten, William S.; Roorda, Austin; Sincich, Lawrence C.

    2015-01-01

    Purpose To determine the light sensitivity of poorly reflective cones observed in retinas of normal subjects, and to establish a relationship between cone reflectivity and perceptual threshold. Methods Five subjects (four male, one female) with normal vision were imaged longitudinally (7–26 imaging sessions, representing 82–896 days) using adaptive optics scanning laser ophthalmoscopy (AOSLO) to monitor cone reflectance. Ten cones with unusually low reflectivity, as well as 10 normally reflective cones serving as controls, were targeted for perceptual testing. Cone-sized stimuli were delivered to the targeted cones and luminance increment thresholds were quantified. Thresholds were measured three to five times per session for each cone in the 10 pairs, all located 2.2 to 3.3° from the center of gaze. Results Compared with other cones in the same retinal area, three of 10 monitored dark cones were persistently poorly reflective, while seven occasionally manifested normal reflectance. Tested psychophysically, all 10 dark cones had thresholds comparable with those from normally reflecting cones measured concurrently (P = 0.49). The variation observed in dark cone thresholds also matched the wide variation seen in a large population (n = 56 cone pairs, six subjects) of normal cones; in the latter, no correlation was found between cone reflectivity and threshold (P = 0.0502). Conclusions Low cone reflectance cannot be used as a reliable indicator of cone sensitivity to light in normal retinas. To improve assessment of early retinal pathology, other diagnostic criteria should be employed along with imaging and cone-based microperimetry. PMID:26193919

  17. Spinning Rocket Simulator Turntable Design

    NASA Technical Reports Server (NTRS)

    Miles, Robert W.

    2001-01-01

    Contained herein is the research and data acquired from the Turntable Design portion of the Spinning Rocket Simulator (SRS) project. The SRS Project studies and eliminates the effect of coning on thrust-propelled spacecraft. This design and construction of the turntable adds a structural support for the SRS model and two degrees of freedom. The two degrees of freedom, radial and circumferential, will help develop a simulated thrust force perpendicular to the plane of the spacecraft model while undergoing an unstable coning motion. The Turntable consists of a ten-foot linear track mounted to a sprocket and press-fit to a thrust bearing. A two-inch high column grounded by a Triangular Baseplate supports this bearing and houses the slip rings and pressurized, air-line swivel. The thrust bearing allows the entire system to rotate under the moment applied through the chain-driven sprocket producing a circumferential degree of freedom. The radial degree of freedom is given to the model through the helically threaded linear track. This track allows the Model Support and Counter Balance to simultaneously reposition according to the coning motion of the Model. Two design factors that hinder the linear track are bending and twist due to torsion. A Standard Aluminum "C" channel significantly reduces these two deflections. Safety considerations dictate the design of all the components involved in this project.

  18. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matenine, Dmitri, E-mail: dmitri.matenine.1@ulaval.ca; Mascolo-Fortin, Julia, E-mail: julia.mascolo-fortin.1@ulaval.ca; Goussard, Yves, E-mail: yves.goussard@polymtl.ca

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numericalmore » simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.« less

  19. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of spatial features and reduce cone-beam optical CT artifacts.

  20. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  1. Boundary Layer Measurements on Slender Blunt Cones at Free-Stream Mach Number 8

    DTIC Science & Technology

    1979-12-01

    34 Angle of a t t a c k , deg Model c o n f i g u r a t i o n d e s i g n a t i o n Center of rotation~ tunnel centerline axial station about...ft/sec X Axial location located from virtual apex of 7-deg cone model, in. ZA ZP ZT ~ . . = ° Anemometer-probe height, distance to probe...300 psla at Math number 6, and 50 to 900 psia at Math number 8, with air supplied by the VKF main compressor plant. Stagnation temperatures sufficient

  2. Accounting for disagreements on average cone loss rates in retinitis pigmentosa with a new kinetic model: Its relevance for clinical trials.

    PubMed

    Baumgartner, W A; Baumgartner, A M

    2016-04-01

    Since 1985, at least nine studies of the average rate of cone loss in retinitis pigmentosa (RP) populations have yielded conflicting average rate constant values (-k), differing by 90-160%. This is surprising, since, except for the first two investigations, the Harvard or Johns Hopkins' protocols used in these studies were identical with respect to: use of the same exponential decline model, calculation of average -k from individual patient k values, monitoring patients over similarly large time frames, and excluding data exhibiting floor and ceiling effects. A detailed analysis of Harvard's and Hopkins' protocols and data revealed two subtle differences: (i) Hopkins' use of half-life t0.5 (or t(1/e)) for expressing patient cone-loss rates rather than k as used by Harvard; (ii) Harvard obtaining substantially more +k from improving fields due to dormant-cone recovery effects and "small -k" values than Hopkins' ("small -k" is defined as less than -0.040 year(-1)), e.g., 16% +k, 31% small -k, vs. Hopkins' 3% and 6% respectively. Since t0.5=0.693/k, it follows that when k=0, or is very small, t0.5 (or t(1/e)) is respectively infinity or a very large number. This unfortunate mathematical property (which also prevents t0.5 (t(1/e)) histogram construction corresponding to -k to +k) caused Hopkins' to delete all "small -k" and all +k due to "strong leverage". Naturally this contributed to Hopkins' larger average -k. Difference (ii) led us to re-evaluate the Harvard/Hopkins' exponential unchanging -k model. In its place we propose a model of increasing biochemical stresses from dying rods on cones during RP progression: increasing oxidative stresses and trophic factor deficiencies (e.g., RdCVF), and RPE malfunction. Our kinetic analysis showed rod loss to follow exponential kinetics with unchanging -k due to constant genetic stresses, thereby providing a theoretical basis for Clarke et al.'s empirical observation of such kinetics with eleven animal models of RP. In contrast to this, we show that cone loss occurs in patients with increasing -k values during RP progression. And as the Hopkins' protocol selects more advanced RP cases than Harvard's to assure avoidance of ceiling effects (Harvard does this by kinetic monitoring), we show increasing -k kinetics to be the reason Harvard obtains more +k and small -k values. Thus the combined effects of (i) and (ii) produce Harvard's smaller average -k value. The relevance of the increasing biochemical stress model for optimizing clinical trials is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling of the solar cycle modulated interstellar He, Ne, and O pick-up ion flux along the Earth orbit

    NASA Astrophysics Data System (ADS)

    Bzowski, M.; Sokol, J. M.; Kubiak, M. A.; Moebius, E.

    2015-12-01

    Interstellar pick-up ions (PUIs) are used to study in-situ the interstellar flow through the heliosphere. The locations of the peaks of the downwind focusing cone and the upwind crescent as observed in the PUI flux have been used as signatures for the flow direction of neutral interstellar (ISN) gas into the heliosphere. We study the modulation of interstellar He, Ne, and O PUI along the Earth orbit over almost the entire solar activity cycle from 2002 to 2013. We present the expected density of ISN atoms and the resulting PUI fluxes with their modulation due to varying ionization over the solar cycle. Considering the important role of the finite injection speed of ISN atoms and of adiabatic PUI cooling, we show that Ne and O always form an upwind crescent in the PUI flux, but that the crescent formation for He PUIs strongly depends on the integration boundaries for the PUI distribution. Because the crescent has been observed for all three species, we find that the classical model of PUI evolution by Vasyliunas & Siscoe (1976) may not be sufficient to reproduce the upwind structure of He PUIs. We also find that ecliptic longitude of the PUI peak in the focusing cone is a good proxy for the inflow direction of ISN He and Ne during solar minimum, but not for ISN O, which exhibits a systematic shift in the model. On the other hand, the peak location derived from the crescent may not be a good proxy to determine the inflow longitude because it is highly modulated by short-time (few months) variations in the ionization losses. These lead to a corrugated crescent structure and may shift the fitted position of the crescent peak used to determine the inflow direction by up to 10°, with the strongest effects for the species that are heavily affected by ionization, i.e., O and Ne. These findings are in a qualitative agreement with results of in-situ PUI measurements, which showed that the location of PUI maximum varies.

  4. A study of direct moxibustion using mathematical methods.

    PubMed

    Liu, Miao; Kauh, Sang Ken; Lim, Sabina

    2012-01-01

    Direct moxibustion is an important and widely used treatment method in traditional medical science. The use of a mathematical method to analyse direct moxibustion treatment is necessary and helpful in exploring the new direct moxibustion instruments and their standardisation. Thus, this paper aims to use a mathematical method to study direct moxibustion in skin to demonstrate a direct relationship between direct moxibustion and skin stimuli. In this paper, the transient thermal response of skin layers is analysed to study direct moxibustion using the data got from standardised method to measure the temperature of a burning moxa cone. Numerical simulations based on an appropriate finite element model are developed to predict the heat transfer, thermal damage and thermal stress distribution of barley moxa cones and jujube moxa cones in the skin tissue. The results are verified by the ancient literatures of traditional Chinese medicine and clinical application, and showed that mathematical method can be a good interface between moxa cone and skin tissue providing the numerical value basis for moxibustion.

  5. Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa.

    PubMed

    Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio

    2018-05-29

    Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  7. On Heatshield Shapes for Mars Entry Capsules

    NASA Technical Reports Server (NTRS)

    Prabhu, DInesh K.; Saunders, David A.

    2012-01-01

    The 70deg sphere-cone - the standard geometry for all US Mars entry missions - is thoroughly examined via flow field simulations at a select few peak heating points along candidate flight trajectories. Emphasis is placed on turbulent heating based on the Baldwin- Lomax turbulence model. It is shown that increased leeward turbulent heating for a 70 sphere-cone flying at angle of attack is primarily due to the discontinuity in curvature between the spherical nose cap and the conical frustum - the attachment of the sonic line at this sphere-cone junction leads to a supersonic edge Mach number over the leeward acreage. In an attempt to mitigate this problem of elevated turbulent heating, alternate geometries, without any curvature discontinuities in the acreage, are developed. Two approaches, one based on nonlinear optimization with constraints, and one based on the use of non-uniform rational B-splines, are considered. All configurations examined remain axisymmetric. The aerothermal performance of alternate geometries is shown to be superior to that of the 70 sphere-cone.

  8. Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision

    NASA Astrophysics Data System (ADS)

    Labin, Amichai M.; Safuri, Shadi K.; Ribak, Erez N.; Perlman, Ido

    2014-07-01

    Vision starts with the absorption of light by the retinal photoreceptors—cones and rods. However, due to the ‘inverted’ structure of the retina, the incident light must propagate through reflecting and scattering cellular layers before reaching the photoreceptors. It has been recently suggested that Müller cells function as optical fibres in the retina, transferring light illuminating the retinal surface onto the cone photoreceptors. Here we show that Müller cells are wavelength-dependent wave-guides, concentrating the green-red part of the visible spectrum onto cones and allowing the blue-purple part to leak onto nearby rods. This phenomenon is observed in the isolated retina and explained by a computational model, for the guinea pig and the human parafoveal retina. Therefore, light propagation by Müller cells through the retina can be considered as an integral part of the first step in the visual process, increasing photon absorption by cones while minimally affecting rod-mediated vision.

  9. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds.

    PubMed

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-07-12

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

  10. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  11. What has driven the evolution of multiple cone classes in visual systems: object contrast enhancement or light flicker elimination?

    PubMed

    Sabbah, Shai; Hawryshyn, Craig W

    2013-07-04

    Two competing theories have been advanced to explain the evolution of multiple cone classes in vertebrate eyes. These two theories have important, but different, implications for our understanding of the design and tuning of vertebrate visual systems. The 'contrast theory' proposes that multiple cone classes evolved in shallow-water fish to maximize the visual contrast of objects against diverse backgrounds. The competing 'flicker theory' states that multiple cone classes evolved to eliminate the light flicker inherent in shallow-water environments through antagonistic neural interactions, thereby enhancing object detection. However, the selective pressures that have driven the evolution of multiple cone classes remain largely obscure. We show that two critical assumptions of the flicker theory are violated. We found that the amplitude and temporal frequency of flicker vary over the visible spectrum, precluding its cancellation by simple antagonistic interactions between the output signals of cones. Moreover, we found that the temporal frequency of flicker matches the frequency where sensitivity is maximal in a wide range of fish taxa, suggesting that the flicker may actually enhance the detection of objects. Finally, using modeling of the chromatic contrast between fish pattern and background under flickering illumination, we found that the spectral sensitivity of cones in a cichlid focal species is optimally tuned to maximize the visual contrast between fish pattern and background, instead of to produce a flicker-free visual signal. The violation of its two critical assumptions substantially undermines support for the flicker theory as originally formulated. While this alone does not support the contrast theory, comparison of the contrast and flicker theories revealed that the visual system of our focal species was tuned as predicted by the contrast theory rather than by the flicker theory (or by some combination of the two). Thus, these findings challenge key assumptions of the flicker theory, leaving the contrast theory as the most parsimonious and tenable account of the evolution of multiple cone classes.

  12. Shape of scoria cones on Mars: Insights from numerical modeling of ballistic pathways

    NASA Astrophysics Data System (ADS)

    Brož, Petr; Čadek, Ondřej; Hauber, Ernst; Rossi, Angelo Pio

    2014-11-01

    Morphological observations of scoria cones on Mars show that their cross-sectional shapes are different from those on Earth. Due to lower gravity and atmospheric pressure on Mars, particles are spread over a larger area than on Earth. Hence, erupted volumes are typically not large enough for the flank slopes to attain the angle of repose, in contrast to Earth where this is common. The distribution of ejected material forming scoria cones on Mars, therefore, is ruled mainly by ballistic distribution and not by redistribution of flank material by avalanching after the static angle of repose is reached. As a consequence, the flank slopes of the Martian scoria cones do not reach the critical angle of repose in spite of a large volume of ejected material. Therefore, the topography of scoria cones on Mars is governed mainly by ballistic distribution of ejected particles and is not influenced by redistribution of flank material by avalanching. The growth of a scoria cone can be studied numerically by tracking the ballistic trajectories and tracing the cumulative deposition of repeatedly ejected particles. We apply this approach to a specific volcanic field, Ulysses Colles on Mars, and compare our numerical results with observations. The scoria cones in this region are not significantly affected by erosion and their morphological shape still preserves a record of physical conditions at the time of eruption. We demonstrate that the topography of these scoria cones can be rather well (with accuracy of ∼10 m) reproduced provided that the ejection velocities are a factor of ∼2 larger and the ejected particles are about ten times finer than typical on Earth, corresponding to a mean particle velocity of ∼92 m/s and a real particle size of about 4 mm. This finding is in agreement with previous theoretical works that argued for larger magma fragmentation and higher ejection velocities on Mars than on Earth due to lower gravity and different environmental conditions.

  13. High-Resolution Imaging of Parafoveal Cones in Different Stages of Diabetic Retinopathy Using Adaptive Optics Fundus Camera.

    PubMed

    Soliman, Mohamed Kamel; Sadiq, Mohammad Ali; Agarwal, Aniruddha; Sarwar, Salman; Hassan, Muhammad; Hanout, Mostafa; Graf, Frank; High, Robin; Do, Diana V; Nguyen, Quan Dong; Sepah, Yasir J

    2016-01-01

    To assess cone density as a marker of early signs of retinopathy in patients with type II diabetes mellitus. An adaptive optics (AO) retinal camera (rtx1™; Imagine Eyes, Orsay, France) was used to acquire images of parafoveal cones from patients with type II diabetes mellitus with or without retinopathy and from healthy controls with no known systemic or ocular disease. Cone mosaic was captured at 0° and 2°eccentricities along the horizontal and vertical meridians. The density of the parafoveal cones was calculated within 100×100-μm squares located at 500-μm from the foveal center along the orthogonal meridians. Manual corrections of the automated counting were then performed by 2 masked graders. Cone density measurements were evaluated with ANOVA that consisted of one between-subjects factor, stage of retinopathy and the within-subject factors. The ANOVA model included a complex covariance structure to account for correlations between the levels of the within-subject factors. Ten healthy participants (20 eyes) and 25 patients (29 eyes) with type II diabetes mellitus were recruited in the study. The mean (± standard deviation [SD]) age of the healthy participants (Control group), patients with diabetes without retinopathy (No DR group), and patients with diabetic retinopathy (DR group) was 55 ± 8, 53 ± 8, and 52 ± 9 years, respectively. The cone density was significantly lower in the moderate nonproliferative diabetic retinopathy (NPDR) and severe NPDR/proliferative DR groups compared to the Control, No DR, and mild NPDR groups (P < 0.05). No correlation was found between cone density and the level of hemoglobin A1c (HbA1c) or the duration of diabetes. The extent of photoreceptor loss on AO imaging may correlate positively with severity of DR in patients with type II diabetes mellitus. Photoreceptor loss may be more pronounced among patients with advanced stages of DR due to higher risk of macular edema and its sequelae.

  14. Spatio-temporal evolution of the Tuxtla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Kobs Nawotniak, S. E.; Espindola, J.; Godinez, L.

    2010-12-01

    Mapping of the Tuxtla Volcanic Field (TVF), located in Veracruz, Mexico, through the use of digital elevation models, aerial photography, and field confirmation has found 353 distinct cones, 4 large composite volcanoes, and 42 maars. Eruptive activity in the TVF began in the late Miocene, underwent a quiescent period approximately 2.6-0.8 Ma, and continues into historic times with the most recent eruption occurring at San Martín Tuxtla volcano in 1793. The covariance of the minimum cone separation in the TVF indicates that, despite the influence of clear vent alignments following regional faulting trends, the field as a whole is anticlustered. Dividing the cones by morphometric age shows that while the older cones have an anti-clustered distribution, the younger cones (<50 Ka) are clustered. The younger cones display a stronger spatial association with the Anegada fault than their predecessors, are more likely to form in aligned groups of similarly-sized cones, and are clustered in two areas: the area immediately surrounding San Martín Tuxtla and an area approximately 3 km east of Laguna Catemaco. These areas of concentrated volcanism roughly correspond to the locations of two gravity anomalies previously identified in the area. While the average height/width ratio is equal between the two clusters, the cones in the eastern group are significantly smaller than their counterparts in the western group. The maars of the TVF are mostly located within the younger volcanic series, west of Laguna Catemaco, and have an anticlustered distribution; many of the maars are evenly spaced along curved lines, where they are weakly grouped according to crater diameter. Results indicate volcanism TVF has undergone continued spatial restriction over time, concentrating in the western half of the TVF with the onset of the eruption of the younger volcanic series 0.8 Ma and further contracting along the principle fault system within the last 50 Ka.

  15. Spectra of laser generated relativistic electrons using cone-wire targets

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi

    2012-10-01

    We report on the characterization of the in situ energy spectrum of fast electrons generated by ultra-intense (I˜10^19 W cm-2) short pulse (τ˜0.7 and 10 ps) laser-plasma interactions using the TITAN and OMEGA EP lasers. That in situ spectrum is a key component of ignition efficiency for the Fast Ignition (FI) Inertial Confinement Fusion (ICF) concept. It is challenging to model and, until now, has resisted direct experimental characterization; other techniques have very large error bars or measure the modified spectrum of escaped electrons. This technique also gives an indication of the forward coupling efficiency of the laser to fast electrons. This information is derived from the measurement of Cu Kα x-rays emitted from a 1.5 mm long Cu wire attached to the tip of Au or Al cone targets. Fast electrons, generated in the cone, transport through the cone tip with a fraction of coupling to the wire. Electrons in the wire excite fluorescence measured by a monochromatic imager and an absolutely calibrated HOPG spectrometer. An implicit hybrid-PIC code, LSP, is applied to deduce electron parameters from the Kα measurements. Experiments on the TITAN laser with Au cones attached to wires show an increase in pre-pulse energy from 17 to 1000 mJ, decreases the fast electron fraction entering the wire from 8.4% to 2.5%. On OMEGA EP with Al cones attached to wires, total Kα yield, normalized to laser energy, drops ˜30% for laser pulse length increasing from 1 to 10 ps, indicative of a saturation mechanism. For Au cones, Kα yields were 50% of that measured for Al cones indicating a strong material dependence. In all cases, the spatial distribution can only be fit with a two-temperature electron energy distribution, the relative fractions depending on prepulse level. These results are being used to develop an optimum cone design for integrated FI experiments. This work was performed under the auspices of the USDOE by LLNL under Contract DE-AC52-07NA27344 and DE-FG-02-05ER54834.

  16. Vestibular schwannomas: Accuracy of tumor volume estimated by ice cream cone formula using thin-sliced MR images

    PubMed Central

    Ho, Hsing-Hao; Li, Ya-Hui; Lee, Jih-Chin; Wang, Chih-Wei; Yu, Yi-Lin; Hueng, Dueng-Yuan; Hsu, Hsian-He

    2018-01-01

    Purpose We estimated the volume of vestibular schwannomas by an ice cream cone formula using thin-sliced magnetic resonance images (MRI) and compared the estimation accuracy among different estimating formulas and between different models. Methods The study was approved by a local institutional review board. A total of 100 patients with vestibular schwannomas examined by MRI between January 2011 and November 2015 were enrolled retrospectively. Informed consent was waived. Volumes of vestibular schwannomas were estimated by cuboidal, ellipsoidal, and spherical formulas based on a one-component model, and cuboidal, ellipsoidal, Linskey’s, and ice cream cone formulas based on a two-component model. The estimated volumes were compared to the volumes measured by planimetry. Intraobserver reproducibility and interobserver agreement was tested. Estimation error, including absolute percentage error (APE) and percentage error (PE), was calculated. Statistical analysis included intraclass correlation coefficient (ICC), linear regression analysis, one-way analysis of variance, and paired t-tests with P < 0.05 considered statistically significant. Results Overall tumor size was 4.80 ± 6.8 mL (mean ±standard deviation). All ICCs were no less than 0.992, suggestive of high intraobserver reproducibility and high interobserver agreement. Cuboidal formulas significantly overestimated the tumor volume by a factor of 1.9 to 2.4 (P ≤ 0.001). The one-component ellipsoidal and spherical formulas overestimated the tumor volume with an APE of 20.3% and 29.2%, respectively. The two-component ice cream cone method, and ellipsoidal and Linskey’s formulas significantly reduced the APE to 11.0%, 10.1%, and 12.5%, respectively (all P < 0.001). Conclusion The ice cream cone method and other two-component formulas including the ellipsoidal and Linskey’s formulas allow for estimation of vestibular schwannoma volume more accurately than all one-component formulas. PMID:29438424

  17. High-Resolution Adaptive Optics Retinal Imaging of Cellular Structure in Choroideremia

    PubMed Central

    Morgan, Jessica I. W.; Han, Grace; Klinman, Eva; Maguire, William M.; Chung, Daniel C.; Maguire, Albert M.; Bennett, Jean

    2014-01-01

    Purpose. We characterized retinal structure in patients and carriers of choroideremia using adaptive optics and other high resolution modalities. Methods. A total of 57 patients and 18 carriers of choroideremia were imaged using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), autofluorescence (AF), and scanning light ophthalmoscopy (SLO). Cone density was measured in 59 eyes of 34 patients where the full cone mosaic was observed. Results. The SLO imaging revealed scalloped edges of RPE atrophy and large choroidal vessels. The AF imaging showed hypo-AF in areas of degeneration, while central AF remained present. OCT images showed outer retinal tubulations and thinned RPE/interdigitation layers. The AOSLO imaging revealed the cone mosaic in central relatively intact retina, and cone density was either reduced or normal at 0.5 mm eccentricity. The border of RPE atrophy showed abrupt loss of the cone mosaic at the same location. The AF imaging in comparison with AOSLO showed RPE health may be compromised before cone degeneration. Other disease features, including visualization of choroidal vessels, hyper-reflective clumps of cones, and unique retinal findings, were tabulated to show the frequency of occurrence and model disease progression. Conclusions. The data support the RPE being one primary site of degeneration in patients with choroideremia. Photoreceptors also may degenerate independently. High resolution imaging, particularly AOSLO in combination with OCT, allows single cell analysis of disease in choroideremia. These modalities promise to be useful in monitoring disease progression, and in documenting the efficacy of gene and cell-based therapies for choroideremia and other diseases as these therapies emerge. (ClinicalTrials.gov number, NCT01866371.) PMID:25190651

  18. Longitudinal assessment of retinal structure and function reveals a rod-cone degeneration in a guinea pig model initially presented as night blind.

    PubMed

    Racine, Julie; Joly, Sandrine; Lachapelle, Pierre

    2011-08-01

    We have previously reported a naturally occurring retinopathy in a population of guinea pigs, where the affected animals presented a defect of the rod-mediated vision. The purpose of this study was to investigate if the mutants were affected with a stationary or degenerative retinopathy and to identify the cellular origin of this unique disorder. Electroretinogram (ERG) [postnatal day 1 (P1) to P450], light (LM) and electron microscopy (EM) [P5, P150, P450], and immunohistochemistry [P30, P150, P450] were evaluated from normal and mutant animals. Irrespective of age, the scotopic ERGs of mutants could only be evoked by bright flashes, and the resulting ERGs were of photopic waveform. Interestingly, the amplitude of the cone and the rod/cone a-waves was always of smaller amplitude in mutants, but this difference tended to decrease with age. In contrast, the b-waves were of larger amplitude than normal in photopic ERGs obtained prior to age 25 (days) and prior to age 10 for rod/cone ERGs. LM revealed, in mutants, an absence of the outer segment layer (OSL) with a reduction in the outer nuclear layer (ONL) thickness. EM disclosed the presence of cone outer segment (OS) while no rod OS could be evidenced. Immunohistochemistry revealed the presence of rhodopsin, both cone opsins as well as normal synaptophysin immunoreactivity. Finally, neither the retinal structure nor the function in the mutants achieved normal development. Results suggest that mutant animals are suffering from a degenerative retinal disorder that affects the structure and function of rods and cones.

  19. High-resolution adaptive optics retinal imaging of cellular structure in choroideremia.

    PubMed

    Morgan, Jessica I W; Han, Grace; Klinman, Eva; Maguire, William M; Chung, Daniel C; Maguire, Albert M; Bennett, Jean

    2014-09-04

    We characterized retinal structure in patients and carriers of choroideremia using adaptive optics and other high resolution modalities. A total of 57 patients and 18 carriers of choroideremia were imaged using adaptive optics scanning light ophthalmoscopy (AOSLO), optical coherence tomography (OCT), autofluorescence (AF), and scanning light ophthalmoscopy (SLO). Cone density was measured in 59 eyes of 34 patients where the full cone mosaic was observed. The SLO imaging revealed scalloped edges of RPE atrophy and large choroidal vessels. The AF imaging showed hypo-AF in areas of degeneration, while central AF remained present. OCT images showed outer retinal tubulations and thinned RPE/interdigitation layers. The AOSLO imaging revealed the cone mosaic in central relatively intact retina, and cone density was either reduced or normal at 0.5 mm eccentricity. The border of RPE atrophy showed abrupt loss of the cone mosaic at the same location. The AF imaging in comparison with AOSLO showed RPE health may be compromised before cone degeneration. Other disease features, including visualization of choroidal vessels, hyper-reflective clumps of cones, and unique retinal findings, were tabulated to show the frequency of occurrence and model disease progression. The data support the RPE being one primary site of degeneration in patients with choroideremia. Photoreceptors also may degenerate independently. High resolution imaging, particularly AOSLO in combination with OCT, allows single cell analysis of disease in choroideremia. These modalities promise to be useful in monitoring disease progression, and in documenting the efficacy of gene and cell-based therapies for choroideremia and other diseases as these therapies emerge. (ClinicalTrials.gov number, NCT01866371.). Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. A numerical study of automotive turbocharger mixed flow turbine inlet geometry for off design performance

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Spence, S.; Early, J.; Filsinger, D.

    2013-12-01

    Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle - the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters. Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model. Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle. The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.

  1. Removal of Heavy Metals by Adsorption onto Activated Carbon Derived from Pine Cones of Pinus roxburghii.

    PubMed

    Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid

    2015-04-01

    Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.

  2. Cone biopsy

    MedlinePlus

    ... grade cone biopsy; High-grade cone biopsy; Carcinoma in situ-cone biopsy; CIS - cone biopsy; ASCUS - cone biopsy; ... marked dysplasia CIN III -- severe dysplasia to carcinoma in situ Abnormal results may also be due to cervical ...

  3. Intra-cone plumbing system and eruptive dynamics of small-volume basaltic volcanoes: A case study in the Calatrava Volcanic Field

    NASA Astrophysics Data System (ADS)

    Carracedo-Sánchez, M.; Sarrionandia, F.; Ábalos, B.; Errandonea-Martin, J.; Gil Ibarguchi, J. I.

    2017-12-01

    The Manoteras volcano (Tortonian to Pleistocene, Calatrava Volcanic Field, Spain) is composed of a scoria and spatter cone surrounded by a field of pahoehoe lava. The volcanic cone is made essentially of vitreous lapilli-tuffs with intercalations of vitreous tuffs and spatter deposits, without any intercalations of lava flows. Erosion has uncovered an intra-cone plumbing system formed by coherent dykes and pyroclastic dykes (mixed-type dykes). This dyke swarm reflects processes of intrusion at the end of the eruption or even post-eruption. All the volcanic products are nephelinitic in composition. The main dyke is up to 3.4 m thick and has an exposed length of 1000 m. It is composed mostly of coherent nephelinite with some pyroclastic sections at its northern extremity. This dyke is regarded as a feeder dyke of the volcano, although the upper parts of the dike have been eroded, which prevents the observation of the characteristics and nature of the possible overlying vent(s). Mixed-type dykes could also have acted as small linear vents and indicate that the magma fragmentation level during final waning stages of the eruption was located inside the volcanic cone. The pyroclastic deposits that make up the volcanic cone at the current exposure level were probably developed during a major phase of violent Strombolian style that formed the scoria cone, followed by a Hawaiian phase that formed the summital intracrater spatter deposit. Three central-type vents have been identified: one at the highest point of the remnant volcanic cone (summital vent), from where the earlier explosive eruptions took place, and the other two at the fringe of the cone base, from where emissions were only effusive. The lava flows were emitted from these boccas through the scoria cone feeding the lava field. The results obtained, based on careful field observations, add substantial complexity to the proposed eruptive models for small-volume basaltic volcanoes as it appears evident that there may exist and evolution through time from central conduit settings to fissure eruptions. Moreover, it is shown that intracone plumbing systems can integrate coherent and clastic dykes of variable thicknesses, which, in some cases could represent feeder dykes. Table 2. Petrographic characteristics of the coherent rocks (dykes and lava flows) from the Manoteras volcano. See Fig. 2 supplementary.

  4. Spectral characteristics of light sources for S-cone stimulation.

    PubMed

    Schlegelmilch, F; Nolte, R; Schellhorn, K; Husar, P; Henning, G; Tornow, R P

    2002-11-01

    Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation approximately 95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation approximately 87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (< or = 74%). Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L-and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

  5. Hot-Air Jets/Ceramic Heat Exchangers/ Materials for Nose Cones and Reentry Vehicles

    NASA Image and Video Library

    1957-09-07

    L57-5383 Hot-air jets employing ceramic heat exchangers played an important role at Langley in the study of materials for ballistic missile nose cones and re-entry vehicles. Here a model is being tested in one of theses jets at 4000 degrees Fahrenheit in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 477.

  6. Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone–Rod Dystrophy

    PubMed Central

    Lhériteau, Elsa; Petit, Lolita; Weber, Michel; Le Meur, Guylène; Deschamps, Jack-Yves; Libeau, Lyse; Mendes-Madeira, Alexandra; Guihal, Caroline; François, Achille; Guyon, Richard; Provost, Nathalie; Lemoine, Françoise; Papal, Samantha; El-Amraoui, Aziz; Colle, Marie-Anne; Moullier, Philippe; Rolling, Fabienne

    2014-01-01

    For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod–cone dystrophies but not in large models of progressive cone–rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone–rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18–72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22–29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone–rod dystrophy provides great promise for human treatment. PMID:24091916

  7. Analogue Models Of Volcanic Spreading At Mt. Vesuvius

    NASA Astrophysics Data System (ADS)

    De Matteo, Ada; Castaldo, Raffaele; D'Auria, Luca; James, Michael; Lane, Steve; Massa, Bruno; Pepe, Susi; Tizzani, Pietro

    2015-04-01

    Somma-Vesuvius is a quiescent strato-volcano of the Neapolitan district, southern Italy, for which various geophysical and geological evidences (e.g. geodetic measurements, geological and structural data, seismic profiles interpretations and surface deformation analysis with Differential Interferometric Synthetic Aperture Radar (DInSAR)) indicate ongoing spreading deformation. In this research we investigate the spreading deformation and associated surface deformation pattern by performing analogue experiments and comparing the results with actual ground deformation as measured using DInSAR data recorded between 1992 and 2010. Somma-Vesuvius consists of a volcanic cone (Gran Cono) lying within an asymmetric caldera (Somma). The Somma caldera is the result of at least 7 Plinian eruptions, the last of which was the 79 CE. Pompeii eruption. The current cone of Mt. Vesuvius grew within the caldera in the following centuries as the effect of continued explosive and effusive activity of the volcano. The volcano lies on a substratum consisting of a Mesozoic carbonatic basement, overlapped by Holocene clastic sediments and volcanic rocks. Our analogue models were built to simulate the shape of the Somma-Vesuvius top a scale of about 1:100000, emplaced on a sand layer (brittle behaviour) laid on a silicone layer (ductile behaviour). Models are based on the Fluid-dynamics Dimensionless Analysis (FDA), according to the Buckingham-Π theorem. In this context, we considered few dimensionless parameters that allowed the setting of a reliable scaled model. To represent the complex Somma-Vesuvius geometry, an asymmetric model was built by setting a truncated cone (mimicking the topography of Somma edifice) topped by another small cone (mimicking the Gran Cono) shifted off the axis of the main cone. Different experiments were carried out in which the thickness of the basal sand layer and of the silicone one were varied. To quantify the vertical and horizontal displacements the models were monitored with three synchronised digital cameras, enabling sequential 3-D models to be derived using a photogrammetric technique. Finally, our models were compared with the 1992 - 2010 SBAS DInSAR measurements of ground deformations obtained using ERS-ENVISAT satellite images. The results show that analogue models are able to reproduce different styles of volcanic spreading and to reproduce the observed surface and deformation pattern. At the end our models show a deformation rather similar to the actual deformation pattern of the Somma-Vesuvius, both in the direction and in the intensity. Further studies will be devoted at find the best combination of parameters (silicone layer thickness and viscosity) to fit observations and to introduce a tridimensional rigid based topography. These studies will be implemented also with new structural and surface deformation (DinSAR) data and will be integrated with a numerical modelling.

  8. Feed-back modulation of cone synapses by L-horizontal cells of turtle retina.

    PubMed

    Gerschenfeld, H M; Piccolino, M; Neyton, J

    1980-12-01

    Light stimulation of the periphery of the receptive field of turtle cones can evoke both transient and sustained increases of the cone Ca2+ conductance, which may become regenerative. Such increase in the cone Ca2+ conductance evoked by peripheral illumination results from the activation of a polysynaptic pathway involving a feed-back connexion from the L-horizontal cells (L-HC) to the cones. Thus the hyperpolarization of a L-HC by inward current injection can evoke a Ca2+ conductance increase in neighbouring cones. The cone Ca2+ channels thus activated are likely located at its synaptic endings and probably intervene in the cone transmitter release. Therefore the feed-back connexion between L-HC and cones by modifying the Ca2+ conductance of cones could actually modulate the transmitter release from cone synapses. Such feed-back modulation of cone synapses plays a role in the organization of the colour-coded responses of the chromaticity type-horizontal cells and probably of other second order neurones, post-synaptic to the cones. The mechanisms operating the feed-back connexion from L-HC to cones are discussed.

  9. Number and Distribution of Mouse Retinal Cone Photoreceptors: Differences between an Albino (Swiss) and a Pigmented (C57/BL6) Strain

    PubMed Central

    Jiménez-López, Manuel; Alburquerque-Béjar, Juan J.; Nieto-López, Leticia; García-Ayuso, Diego; Villegas-Pérez, Maria P.; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta

    2014-01-01

    We purpose here to analyze and compare the population and topography of cone photoreceptors in two mouse strains using automated routines, and to design a method of retinal sampling for their accurate manual quantification. In whole-mounted retinas from pigmented C57/BL6 and albino Swiss mice, the longwave-sensitive (L) and the shortwave-sensitive (S) opsins were immunodetected to analyze the population of each cone type. In another group of retinas both opsins were detected with the same fluorophore to quantify all cones. In a third set of retinas, L-opsin and Brn3a were immunodetected to determine whether L-opsin+cones and retinal ganglion cells (RGCs) have a parallel distribution. Cones and RGCs were automatically quantified and their topography illustrated with isodensity maps. Our results show that pigmented mice have a significantly higher number of total cones (all-cones) and of L-opsin+cones than albinos which, in turn, have a higher population of S-opsin+cones. In pigmented animals 40% of cones are dual (cones that express both opsins), 34% genuine-L (cones that only express the L-opsin), and 26% genuine-S (cones that only express the S-opsin). In albinos, 23% of cones are genuine-S and the proportion of dual cones increases to 76% at the expense of genuine-L cones. In both strains, L-opsin+cones are denser in the central than peripheral retina, and all-cones density increases dorso-ventrally. In pigmented animals S-opsin+cones are scarce in the dorsal retina and very numerous in the ventral retina, being densest in its nasal aspect. In albinos, S-opsin+cones are abundant in the dorsal retina, although their highest densities are also ventral. Based on the densities of each cone population, we propose a sampling method to manually quantify and infer their total population. In conclusion, these data provide the basis to study cone degeneration and its prevention in pathologic conditions. PMID:25029531

  10. Analysing rockfall processes on alpine rockfaces and the corresponding talus cones using Terrestrial Laserscanning

    NASA Astrophysics Data System (ADS)

    Haas, Florian; Heckmann, Tobias; Klein, Thomas; Becht, Michael

    2010-05-01

    In high mountain regions, rockfall plays a major role as a geomorphic process, both in terms of sediment budget and natural hazard. During the last two years, high-resolution Terrestrial Laserscanning (TLS) was applied to study (a) detachment zones and sizes of rock fall events within steep rockfaces, (b) characteristics of rockfall deposits such as surface roughness, size distribution and fragment morphology, and (c) their influence on rockfall run-out length. The investigations were carried out in three study areas located in the Northern, Central and Southern Alps (Val di Funes, Northern Dolomites/Italy; Horlachtal, Central Alps/Austria; Höllental, Northern Calcareous Alps/Germany). Within this project (funded by the German Science Foundation, DFG), rockfaces and corresponding talus cones were scanned twice a year with two scanning resolutions. Larger events were investigated by scanning large areas of rockfaces and talus cones from a great distance (~500 m). In contrast, detailed scans from shorter distances (<250m) were used to investigate the capability of the approach to detect smaller events. With this approach, it was possible to record three large and several smaller events in the three catchments. The largest event occurred in the Dolomite Alps (Val di Funes/Italy) with a volume of nearly 3300 cubic meters (8900 tons). Both the detachment zone and the depositional zones could be defined very well by a cut-and-fill analysis of the digital elevation models generated from the TLS data. In addition, ground based LIDAR data are also a very helpful tool to characterize the surface properties of talus cones and the runout distances of large boulders. The surface roughness of talus cones in all three catchments was derived from the TLS point clouds by a GIS approach according to the roughness-length method. The resulting detailed rougness maps of the talus cones will help in the future to improve existing process models which are able to model runout distances on the talus cones using friction parameters. It has often been mentioned that not only the surface roughness of the talus cone, but also the shape of the boulders itself have an influence on the runout distance. The interrelationship between rock fragment morphology (characterised by shape parameters) and runout distance was analysed at the site of a large rockfall event (>10 000 cubic meters) from the year 2003 in the northern Dolomite Alps. For these analyses, the axial ratio of 618 rocks (>50 cm long axis) in the depositional zone and their corresponding runout distance were measured using TLS data and the software RiscanPro. Results show a significant correlation between the axial ratio of the particles and their runout distance. Rocks with a "round" shape (axial ratio around 1) have a longer runout distance than elongated or irregularly shaped particles (axial ratio greater than 1).

  11. Late-Onset Cone Photoreceptor Degeneration Induced by R172W Mutation in Rds and Partial Rescue by Gene Supplementation

    PubMed Central

    Conley, Shannon; Nour, May; Fliesler, Steven J.; Naash, Muna I.

    2008-01-01

    Purpose R172W is a common mutation in the human retinal degeneration slow (RDS) gene, associated with a late-onset dominant macular dystrophy. In this study, the authors characterized a mouse model that closely mimics the human phenotype and tested the feasibility of gene supplementation as a disease treatment strategy. Methods Transgenic mouse lines carrying the R172W mutation were generated. The retinal phenotype associated with this mutation in a low-expresser line (L-R172W) was examined, both structurally (histology with correlative immunohistochemistry) and functionally (electroretinography). By examining animals over time and with various rds genetic backgrounds, the authors evaluated the dominance of the defect. To assess the efficacy of gene transfer therapy as a treatment for this defect, a previously characterized transgenic line expressing the normal mouse peripherin/Rds (NMP) was crossed with a higher-expresser Rds line harboring the R172W mutation (H-R172W). Functional, structural, and biochemical analyses were used to assess rescue of the retinal disease phenotype. Results In the wild-type (WT) background, L-R172W mice exhibited late-onset (12-month) dominant cone degeneration without any apparent effect on rods. The degeneration was slightly accelerated (9 months) in the rds+/− background. L-R172W retinas did not form outer segments in the absence of endogenous Rds. With use of the H-R172W line on an rds+/− background for proof-of-principle genetic supplementation studies, the NMP transgene product rescued rod and cone functional defects and supported outer segment integrity up to 3 months of age, but the rescue effect did not persist in older (11-month) animals. Conclusions The R172W mutation leads to dominant cone degeneration in the mouse model, regardless of the expression level of the transgene. In contrast, effects of the mutation on rods are dose dependent, underscoring the usefulness of the L-R172W line as a faithful model of the human phenotype. This model may prove helpful in future studies on the mechanisms of cone degeneration and for elucidating the different roles of Rds in rods and cones. This study provides evidence that Rds genetic supplementation can be used to partially rescue visual function. Although this strategy is capable of rescuing haplo-insufficiency, it does not rescue the long-term degeneration associated with a gain-of-function mutation. PMID:18055786

  12. Identifying Key Networks Linked to Light-Independent Photoreceptor Degeneration in Visual Arrestin 1 Knockout Mice.

    PubMed

    Kim, Hwa Sun; Huang, Shun-Ping; Lee, Eun-Jin; Craft, Cheryl Mae

    2018-01-01

    When visual arrestin 1 (ARR1, S-antigen, 48 KDa protein) was genetically knocked out in mice (original Arr1 -/- , designated Arr1 -/-A ), rod photoreceptors degenerated in a light-dependent manner. Subsequently, a light-independent cone dystrophy was identified with minimal rod death in ARR1 knockout mice (Arr1 -/-A Arr4 +/+ , designated Arr1 -/-B ), which were F2 littermates from breeding the original Arr1 -/-A and cone arrestin knockout 4 (Arr4 -/- ) mice. To resolve the genetic and phenotypic differences between the two ARR1 knockouts, we performed Affymetrix™ exon array analysis to focus on the potential differential gene expression profile and to explore the molecular and cellular pathways leading to this observed susceptibility to cone dystrophy in Arr1 -/-B compared to Arr1 -/-A or control Arr1 +/+ Arr4 +/+ (wild type [WT]). Only in the Arr1 -/-B retina did we observe an up-regulation of retinal transcripts involved in the immune response, inflammatory response and JAK-STAT signaling molecules, OSMRβ and phosphorylation of STAT3. Of these responses, the complement system was significantly higher, and a variety of inflammatory responses by complement regulation and anti-inflammatory cytokine or factors were identified in Arr1 -/-B retinal transcripts. This discovery supports that Arr1 -/-B has a distinct genetic background from Arr1 -/-A that results in alterations in its retinal phenotype leading to susceptibility to cone degeneration induced by inappropriate inflammatory and immune responses.

  13. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects.

    PubMed

    Marcos, S; Tornow, R P; Elsner, A E; Navarro, R

    1997-07-01

    Foveal cone spacing was measured in vivo using an objective technique: ocular speckle interferometry. Cone packing density was computed from cone spacing data. Foveal cone photopigment density difference was measured in the same subjects using retinal densitometry with a scanning laser ophthalmoscope. Both the cone packing density and cone photopigment density difference decreased sharply with increasing retinal eccentricity. From the comparison of both sets of measurements, the computed amounts of photopigment per cone increased slightly with increasing retinal eccentricity. Consistent with previous results, decreases in cone outer segment length are over-compensated by an increase in the outer segment area, at least in retinal eccentricities up to 1 deg.

  14. The inviscid stability of supersonic flow past a sharp cone

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.; Shaw, Stephen J.

    1990-01-01

    The effects of lateral curvature on the development of supersonic laminar inviscid boundary-layer flow on a sharp cone with adiabatic wall conditions are investigated analytically, with a focus on the linear temporal inviscid stability properties. The derivation of the governing equations and of a 'triply generalized' inflexion condition is outlined, and numerical results for freestream Mach number 3.8 are presented in extensive graphs and characterized in detail. A third instability mode related to the viscous mode observed by Duck and Hall (1990) using triple-deck theory is detected and shown to be more unstable and to have larger growth rates than the second mode in some cases. It is found that the 'sonic' neutral mode is affected by the lateral curvature and becomes a supersonic neutral mode.

  15. Deep Chandra Observations of ESO 428-G014. II. Spectral Properties and Morphology of the Large-scale Extended X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng

    2018-03-01

    We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.

  16. The effect of chromatic and luminance information on reaction times.

    PubMed

    O'Donell, Beatriz M; Barraza, Jose F; Colombo, Elisa M

    2010-07-01

    We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.

  17. Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors

    PubMed Central

    Parmelee, Caitlyn M.; Chen, Minghui; Cork, Karlene M.; Curto, Carina; Thoreson, Wallace B.

    2014-01-01

    At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons. PMID:25311636

  18. Progression of Pro23His Retinopathy in a Miniature Swine Model of Retinitis Pigmentosa

    PubMed Central

    Scott, Patrick A.; de Castro, Juan P. Fernandez; DeMarco, Paul J.; Ross, Jason W.; Njoka, Josephat; Walters, Eric; Prather, Randall S.; McCall, Maureen A.; Kaplan, Henry J.

    2017-01-01

    Purpose We characterize the progression of retinopathy in Filial 1 (F1) progeny of a transgenic (Tg) founder miniswine exhibiting severe Pro23His (P23H) retinopathy. Methods The F1 TgP23H miniswine progeny were created by crossing TgP23H founder miniswine 53-1 with wild type (WT) inbred miniature swine. Scotopic (rod-driven) and photopic (cone-driven) retinal functions were evaluated in F1 TgP23H and WT littermates using full field electroretinograms (ffERGs) at 1, 2, 3, 6, 9, 12, and 18 months of age, as well as the Tg founder miniswine at 6 years of age. Miniswine were euthanized and their retinas processed for morphologic evaluation at the light and electron microscopic level. Retinal morphology of a 36-month-old Tg miniswine also was examined. Results Wild type littermates reached mature scotopic and photopic retinal function by 3 months, while TgP23H miniswine showed abnormal scotopic ffERGs at the earliest time point, 1 month, and depressed photopic ffERGs after 2 months. Rod and cone photoreceptors (PR) exhibited morphologic abnormalities and dropout from the outer nuclear layer at 1 month, with only a monolayer of cone PR somata remaining after 2 months. The retinas showed progressive neural remodeling of the outer retina that included dendritic retraction of rod bipolar cells and glial seal formation by Müller cells. The TgP23H founder miniswine showed cone PR with relatively intact morphology exclusive to the area centralis. Conclusions The F1 Tg miniswine and the TgP23H founder miniswine exhibit similar retinopathy. Translational Relevance TgP23H miniswine are a useful large-eye model to study pathogenesis and preservation cone PRs in humans with retinitis pigmentosa. PMID:28316877

  19. TU-H-BRC-05: Stereotactic Radiosurgery Optimized with Orthovoltage Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fagerstrom, J; Culberson, W; Bender, E

    2016-06-15

    Purpose: To achieve improved stereotactic radiosurgery (SRS) dose distributions using orthovoltage energy fluence modulation with inverse planning optimization techniques. Methods: A pencil beam model was used to calculate dose distributions from the institution’s orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods as well as measurements with radiochromic film. The orthovoltage photon spectra, modulated by varying thicknesses of attenuating material, were approximated using open-source software. A genetic algorithm search heuristic routine was used to optimize added tungsten filtration thicknesses to approach rectangular function dose distributions at depth. Optimizations were performed for depths of 2.5,more » 5.0, and 7.5 cm, with cone sizes of 8, 10, and 12 mm. Results: Circularly-symmetric tungsten filters were designed based on the results of the optimization, to modulate the orthovoltage beam across the aperture of an SRS cone collimator. For each depth and cone size combination examined, the beam flatness and 80–20% and 90–10% penumbrae were calculated for both standard, open cone-collimated beams as well as for the optimized, filtered beams. For all configurations tested, the modulated beams were able to achieve improved penumbra widths and flatness statistics at depth, with flatness improving between 33 and 52%, and penumbrae improving between 18 and 25% for the modulated beams compared to the unmodulated beams. Conclusion: A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions at depth with improved flatness and penumbrae compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system.« less

  20. Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors.

    PubMed

    Wang, Y; Smallwood, P M; Cowan, M; Blesh, D; Lawler, A; Nathans, J

    1999-04-27

    This study examines the mechanism of mutually exclusive expression of the human X-linked red and green visual pigment genes in their respective cone photoreceptors by asking whether this expression pattern can be produced in a mammal that normally carries only a single X-linked visual pigment gene. To address this question, we generated transgenic mice that carry a single copy of a minimal human X chromosome visual pigment gene array in which the red and green pigment gene transcription units were replaced, respectively, by alkaline phosphatase and beta-galactosidase reporters. As determined by histochemical staining, the reporters are expressed exclusively in cone photoreceptor cells. In 20 transgenic mice carrying any one of three independent transgene insertion events, an average of 63% of expressing cones have alkaline phosphatase activity, 10% have beta-galactosidase activity, and 27% have activity for both reporters. Thus, mutually exclusive expression of red and green pigment transgenes can be achieved in a large fraction of cones in a dichromat mammal, suggesting a facile evolutionary path for the development of trichromacy after visual pigment gene duplication. These observations are consistent with a model of visual pigment expression in which stochastic pairing occurs between a locus control region and either the red or the green pigment gene promotor.

  1. Improved resistive switching characteristics of a Pt/HfO2/Pt resistor by controlling anode interface with forming and switching polarity

    NASA Astrophysics Data System (ADS)

    Jung, Yong Chan; Seong, Sejong; Lee, Taehoon; Kim, Seon Yong; Park, In-Sung; Ahn, Jinho

    2018-03-01

    The anode interface effects on the resistive switching characteristics of Pt/HfO2/Pt resistors are investigated by changing the forming and switching polarity. Resistive switching properties are evaluated and compared with the polarity operation procedures, such as the reset voltage (Vr), set voltage (Vs), and current levels at low and high resistance states. When the same forming and switching voltage polarity are applied to the resistor, their switching parameters are widely distributed. However, the opposite forming and switching voltage polarity procedures enhance the uniformity of the switching parameters. In particular, the Vs distribution is strongly affected by the voltage polarity variation. A model is proposed based on cone-shaped filament formation through the insulator and the cone diameter at the anode interface to explain the improved resistive switching characteristics under opposite polarity operation. The filament cone is thinner near the anode interface during the forming process; hence, the anode is altered by the application of a switching voltage with opposite polarity to the forming voltage polarity and the converted anode interface becomes the thicker part of the cone. The more uniform and stable switching behavior is attributed to control over the formation and rupture of the cone-shaped filaments at their thicker parts.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.J.; Squyres, S.W.; Carr, M.H.

    On the flanks of Olympus Mons is a series of terraces, concentrically distributed around the caldera. Their morphology and location suggest that they could be thrust faults caused by compressional failure of the cone. In an attempt to understand the mechanism of faulting and the possible influences of the interior structure of Olympus Mons, the authors have constructed a numerical model for elastic stresses within a Martian volcano. In the absence of internal pressurization, the middle slopes of the cone are subjected to compressional stress, appropriate to the formation of thrust faults. These stresses for Olympus Mons are {approximately}250 MPa.more » If a vacant magma chamber is contained within the cone, the region of maximum compressional stress is extended toward the base of the cone. If the magma chamber is pressurized, extensional stresses occur at the summit and on the upper slopes of the cone. For a filled but unpressurized magma chamber, the observed positions of the faults agree well with the calculated region of high compressional stress. Three other volcanoes on Mars, Ascraeus Mons, Arsia Mons, and Pavonis Mons, possess similar terraces. Extending the analysis to other Martian volcanoes, they find that only these three and Olympus Mons have flank stresses that exceed the compressional failure strength of basalt, lending support to the view that the terraces on all four are thrust faults.« less

  3. Cone-shaped source characteristics and inductance effect of transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Yang, Hai-Yan; Li, Feng-Ping; Yue, Jian-Hua; Guo, Fu-Sheng; Liu, Xu-Hua; Zhang, Hua

    2017-03-01

    Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-offtime and a deep "blind zone". This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower "blind zone." Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a "smoke ring" inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep "blind zone" and also provide a theoretical indicator for further research.

  4. Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina.

    PubMed

    Wässle, Heinz; Regus-Leidig, Hanna; Haverkamp, Silke

    2006-06-01

    Cone photoreceptors have a continuous release of glutamate that is modulated by light. Vesicular glutamate transporters (vGluT) play an essential role for sustaining this release by loading synaptic vesicles in the cone synapse, the so-called cone pedicle. In the present study mouse retinas were immunostained for vGluT1 and vGluT2. vGluT1 was localized to all cone pedicles and rod spherules, whereas vGluT2 was found in only 10% of the cone pedicles. The vGluT2-expressing cones were characterized in more detail. They are distributed in a regular array, suggesting they are a distinct type. Their proportion does not differ between dorsal (L-cone-dominated) and ventral (S-cone-dominated) retina, and they are not the genuine blue cones of the mouse retina. During development, vGluT1 and vGluT2 expression in cones starts at around P0 and right from the beginning vGluT2 is only expressed in a subset of cones. Bipolar cells contact the vGluT2-expressing cones and other cones nonselectively. The possible functional role of vGluT2 expression in a small fraction of cones is discussed.

  5. 3-D model of ICME in the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Borgazzi, A.; Lara, A.; Niembro, T.

    2011-12-01

    We developed a method that describes with simply geometry the coordinates of intersection between the leading edge of an ICME and the position of an arbitrary satellite. When a fast CME is ejected from the Sun to the interplanetary space in most of the cases drives a shock. As the CME moves in the corona and later in the interplanetary space more material is stacking in the front and edges of the ejecta. In a first approximation, it is possible to assume the shape of these structures, the CME and the stacked material as a cone of revolution, (the ice-cream model [Schwenn et al., (2005)]). The interface may change due to the interaction of the structure and the non-shocked material in front of the ICME but the original shape of a cone of revolution is preserved. We assume, in a three dimensional geometry, an ice-cream cone shape for the ICME and apply an analytical model for its transport in the interplanetary medium. The goal of the present method is to give the time and the intersection coordinates between the leading edge of the ICME and any satellite that may be in the path of the ICME. With this information we can modelate the travel of the ICME in the interplanetary space using STEREO data.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P. F.; Han, J. L.; Wang, C., E-mail: pfwang@nao.cas.cn, E-mail: hjl@nao.cas.cn, E-mail: wangchen@nao.cas.cn

    Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = ({nu}/{nu}{sub 0}) {sup k} + thetav{sub 0}, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to onemore » component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from -0.1 to -2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav{sub 0} in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.« less

  7. Overall momentum balance and redistribution of the lost energy in asymmetric dijet events in 2.76 A TeV Pb-Pb collisions with a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Gao, Zhan; Luo, Ao; Ma, Guo-Liang; Qin, Guang-You; Zhang, Han-Zhong

    2018-04-01

    The overall transverse momentum balance and the redistribution of the lost energy from hard jets for asymmetric dijet events in PbPb collisions at 2.76 A TeV at the LHC is studied within a multiphase transport (AMPT) model. A detailed analysis is performed for the projected transverse momentum 〈p/T ||〉 contributed from the final charged hadrons carrying different transverse momenta and emitted from different angular directions. We find that the transverse momentum projection 〈p/T ||〉 in the leading jet direction is mainly contributed by hard hadrons (pT>8.0 GeV /c ) in both peripheral and central PbPb collisions, while the opposite direction in central collisions is dominated by soft hadrons (pT=0.5 -2.0 GeV /c ). The study of in-cone and out-of-cone contributions to 〈p/T ||〉 shows that these soft hadrons are mostly emitted at large angles away from the dijet axis. Our AMPT calculation is in qualitative agreement with the CMS measurements and the primary mechanism for the energy transported to large angles in the AMPT model is the elastic scattering at the partonic stage. Future studies including also inelastic processes should be helpful in understanding the overestimation of the magnitudes of in-cone and out-of-cone imbalances from our AMPT calculations, and shed light on different roles played by radiative and collisional processes in the redistribution of the lost energy from hard jets.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino

    We analyze a toy Swiss-cheese cosmological model to study the averaging problem. In our Swiss-cheese model, the cheese is a spatially flat, matter only, Friedmann-Robertson-Walker solution (i.e., the Einstein-de Sitter model), and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. We study the propagation of photons in the Swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the expansion scalar is unaffected by the inhomogeneities (i.e., the phenomenological homogeneous model is the cheese model). This is because of the spherical symmetry of the model;more » it is unclear whether the expansion scalar will be affected by nonspherical voids. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the {lambda}CDM concordance model. It is interesting that, although the sole source in the Swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological homogeneous model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w{sub 0} and w{sub a} follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that, within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.« less

  9. New excitations in the Thirring model

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.

    1998-12-01

    The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezei, Márk; Stanford, Douglas

    We discuss the time dependence of subsystem entropies in interacting quantum systems. As a model for the time dependence, we suggest that the entropy is as large as possible given two constraints: one follows from the existence of an emergent light cone, and the other is a conjecture associated to the ''entanglement velocity'' v E. We compare this model to new holographic and spin chain computations, and to an operator growth picture. Finally, we introduce a second way of computing the emergent light cone speed in holographic theories that provides a boundary dynamics explanation for a special case of entanglementmore » wedge subregion duality in AdS/CFT.« less

  11. Experimental Verification Of The Osculating Cones Method For Two Waverider Forebodies At Mach 4 and 6

    NASA Technical Reports Server (NTRS)

    Miller, Rolf W.; Argrow, Brian M.; Center, Kenneth B.; Brauckmann, Gregory J.; Rhode, Matthew N.

    1998-01-01

    The NASA Langley Research Center Unitary Plan Wind Tunnel and the 20-Inch Mach 6 Tunnel were used to test two osculating cones waverider models. The Mach-4 and Mach-6 shapes were generated using the interactive design tool WIPAR. WIPAR performance predictions are compared to the experimental results. Vapor screen results for the Mach-4 model at the on- design Mach number provide visual verification that the shock is attached along the entire leading edge, within the limits of observation. WIPAR predictions of pressure distributions and aerodynamic coefficients show general agreement with the corresponding experimental values.

  12. On entanglement spreading in chaotic systems

    DOE PAGES

    Mezei, Márk; Stanford, Douglas

    2017-05-11

    We discuss the time dependence of subsystem entropies in interacting quantum systems. As a model for the time dependence, we suggest that the entropy is as large as possible given two constraints: one follows from the existence of an emergent light cone, and the other is a conjecture associated to the ''entanglement velocity'' v E. We compare this model to new holographic and spin chain computations, and to an operator growth picture. Finally, we introduce a second way of computing the emergent light cone speed in holographic theories that provides a boundary dynamics explanation for a special case of entanglementmore » wedge subregion duality in AdS/CFT.« less

  13. Boundary-layer transition on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2010-11-01

    The Mach 6 Quiet Tunnel at Texas A&M is a low-disturbance blowdown facility suitable for boundary-layer stability and transition research. Following its reactivation in 2009, initial testing confirmed the presence of low-disturbance (< 0.1% Pt^'/Pt) freestream flow at select locations on the centerline of the nozzle for settling chamber pressures up to 10 atm, and a fully-traversed freestream flow-quality assessment is currently underway. As a third performance benchmark to complement these direct measurements, the present work measures the transition location on the NASA Langley 93-10 flared-cone model. This model has a 0.5m length, beginning as a 5^o half-angle circular cone. At the X=254mm station, a flare of surface radius 2.35m begins which is intended to induce transition within the quiet test core. Boundary-layer transition is detected on the thin-walled model by an observed surface temperature rise using an array of 51 embedded thermocouples. Transition data are presented for a sharp (2.5 μm) nose-tip radius case for comparison with the Lachowicz & Chokani (1996 data). Data for larger-radius nose-tips are also presented.

  14. A Learning Model for L/M Specificity in Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  15. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  16. A model for jet-noise analysis using pressure-gradient correlations on an imaginary cone

    NASA Technical Reports Server (NTRS)

    Norum, T. D.

    1974-01-01

    The technique for determining the near and far acoustic field of a jet through measurements of pressure-gradient correlations on an imaginary conical surface surrounding the jet is discussed. The necessary analytical developments are presented, and their feasibility is checked by using a point source as the sound generator. The distribution of the apparent sources on the cone, equivalent to the point source, is determined in terms of the pressure-gradient correlations.

  17. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  18. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  19. Modeling steam pressure under martian lava flows

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  20. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016

    NASA Astrophysics Data System (ADS)

    Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter

    2018-03-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  1. Primate Short-Wavelength Cones Share Molecular Markers with Rods

    PubMed Central

    Craft, Cheryl M.; Huang, Jing; Possin, Daniel E.; Hendrickson, Anita

    2015-01-01

    Macaca, Callithrix jacchus marmoset monkey, Pan troglodytes chim- panzee and human retinas were examined to define if short wavelength (S) cones share molecular markers with L&M cone or rod photoreceptors. S cones showed consistent differences in their immunohistochemical staining and expression levels compared to L&M cones for “rod” Arrestin1 (S-Antigen), “cone” Arrestin4, cone alpha transducin, and Calbindin. Our data verify a similar pattern of expression in these primate retinas and provide clues to the structural divergence of rods and S cones versus L&M cones, suggesting S cone retinal function is “intermediate” between them. PMID:24664680

  2. Physics and Psychophysics of High-Fidelity Sound. Part III: The Components of a Sound-Reproducing System: Amplifiers and Loudspeakers.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.

    1980-01-01

    Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…

  3. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method.

    PubMed

    Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe

    2013-09-01

    The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.

  4. Radiated chemical reaction impacts on natural convective MHD mass transfer flow induced by a vertical cone

    NASA Astrophysics Data System (ADS)

    Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir

    2018-03-01

    The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.

  5. Neurobiological hypothesis of color appearance and hue perception

    PubMed Central

    Schmidt, Brian P.; Neitz, Maureen; Neitz, Jay

    2014-01-01

    DeValois and DeValois (1993) showed that to explain hue appearance, S-cone signals have to be combined with M vs. L opponent signals in two different ways to produce red-green and yellow-blue axes respectively. Recently, it has been shown that color appearance is normal for individuals with genetic mutations that block S-cone input to blue-on ganglion cells. This is inconsistent with the DeValois hypothesis in which S-opponent konio-geniculate signals are combined with L−M signals at a 3rd processing stage in cortex. Instead, here we show that color appearance, including individual differences never explained before, are predicted by a model in which S-cone signals are combined with L vs. M signals in the outer retina. PMID:24695170

  6. Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.

    1999-01-01

    The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.

  7. Design of crusher liner based on time - varying uncertainty theory

    NASA Astrophysics Data System (ADS)

    Tang, J. C.; Shi, B. Q.; Yu, H. J.; Wang, R. J.; Zhang, W. Y.

    2017-09-01

    This article puts forward the time-dependent design method considering the load fluctuation factors for the liner based on the time-varying uncertainty theory. In this method, the time-varying uncertainty design model of liner is constructed by introducing the parameters that affect the wear rate, the volatility and the drift rate. Based on the design example, the timevarying design outline of the moving cone liner is obtained. Based on the theory of minimum wear, the gap curve of wear resistant cavity is designed, and the optimized cavity is obtained by the combination of the thickness of the cone and the cavity gap. Taking the PYGB1821 multi cylinder hydraulic cone crusher as an example, it is proved that the service life of the new liner is improved by more than 14.3%.

  8. Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: characterization with anti-opsin immunolabeling.

    PubMed

    Ahnelt, P K; Hokoç, J N; Röhlich, P

    1995-01-01

    The retinas of placental mammals appear to lack the large number and morphological diversity of cone subtypes found in diurnal reptiles. We have now studied the photoreceptor layer of a South American marsupial (Didelphis marsupialis aurita) by peanut agglutinin labeling of the cone sheath and by labeling of cone outer segments with monoclonal anti-visual pigment antibodies that have been proven to consistently label middle-to-long wavelength (COS-1) and short-wavelength (OS-2) cone subpopulations in placental mammals. Besides a dominant rod population (max. = 400,000/mm2) four subtypes of cones (max. = 3000/mm2) were identified. The outer segments of three cone subtypes were labeled by COS-1: a double cone with a principal cone containing a colorless oil droplet, a single cone with oil droplet, and another single cone. A second group of single cones lacking oil droplets was labeled by OS-2 antibody. The topography of these cone subtypes showed striking anisotropies. The COS-1 labeled single cones without oil droplets were found all over the retina and constituted the dominant population in the area centralis located in the temporal quadrant of the upper, tapetal hemisphere. The population of OS-2 labeled cones was also ubiquitous although slightly higher in the upper hemisphere (200/mm2). The COS-1 labeled cones bearing an oil droplet, including the principal member of double cones, were concentrated (800/mm2) in the inferior, non-tapetal half of the retina. The two spectral types of single cones resemble those of dichromatic photopic systems in most placental mammals. The additional set of COS-1 labeled cones is a distinct marsupial feature. The presence of oil droplets in this cone subpopulation, its absence in the area centralis, and the correlation with the non-tapetal inferior hemisphere suggest a functional specialization, possibly for mesopic conditions. Thus, sauropsid features have been retained but probably with a modified function.

  9. UAS Collision Avoidance Algorithm that Minimizes the Impact on Route Surveillance

    DTIC Science & Technology

    2009-03-01

    Appendix A: Collision Avoidance Algorithm/Virtual Cockpit Interface .......................124 Appendix B : Collision Cone Boundary Rates... b ) Split Cone (c) Multiple Intruders, Single and Split Cones [27] ........................................................ 27 3-3: Collision Cone...Approach in the Vertical Plane (a) Single Cone ( b ) Multiple Intruders, Single and Split Cone [27

  10. Effect of Altered Retinal Cones/Opsins on Refractive Development under Monochromatic Lights in Guinea Pigs

    PubMed Central

    Zou, Leilei; Zhu, Xiaoyu; Liu, Rui; Ma, Fei; Yu, Manrong

    2018-01-01

    Purpose To analyze the changes of refraction and metabolism of the retinal cones under monochromatic lights in guinea pigs. Methods Sixty guinea pigs were randomly divided into a short-wavelength light (SL) group, a middle-wavelength light (ML) group, and a white light (WL) group. Refraction and axial length were measured before and after 10-week illumination. The densities of S-cones and M-cones were determined by retinal cone immunocytochemistry, and the expressions of S-opsins and M-opsins were determined by real-time PCR and Western blot. Results After 10-week illumination, the guinea pigs developed relative hyperopia in the SL group and relative myopia in the ML group. Compared with the WL group, the density of S-cones and S-opsins increased while M-cones and M-opsins decreased in the SL group (all, p < 0.05); conversely, the density of S-cones and S-opsins decreased while M-cones and M-opsins increased in the ML group (all, p < 0.05). Increased S-cones/opsins and decreased M-cones/opsins were induced by short-wavelength lights. Decreased S-cones/opsins and increased M-cones/opsins were induced by middle-wavelength lights. Conclusions Altered retinal cones/opsins induced by monochromatic lights might be involved in the refractive development in guinea pigs. PMID:29675275

  11. Tephro- and chemo-stratigraphy of the Vulcanello Peninsula (Vulcano, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Rosi, M.; Fusillo, R.; di Traglia, F.; Pistolesi, M.; Todman, A.; Menzies, M. A.

    2009-12-01

    New stratigraphic studies of the Vulcanello Peninsula have been used to better define the small-scale evolution of this young (1000 AD and 325±100 BP) volcanic center and to re-investigate the last 1000 years of volcanic history for the Island of Vulcano (Aeolian Islands, Southern Italy). Vulcanello Peninsula is the northern-most part of the Island of Vulcano. It comprises a shoshonitic lava platform and a volcanic edifice made up of three overlying cones, which are shoshonitic to trachytic in composition. Volcanic activity in this area was coeval with the recent eruptions of the La Fossa Cone, the present-day active center of the island. Our goal is to constrain the recent volcanic development of this mafic volcano and to focus on the historic eruptive activity of the two other recent or active centres in the southern Aeolian Islands, Mt. Pilato (Island of Lipari) and La Fossa Cone. In order to do so, we reconstructed the stratigraphical setting of the proximal deposits of the three Vulcanello cones, through the investigation of 25 outcrops. We analyzed the stratigraphy of the tephra blankets deposited on the lava platform, studying 10 trenches. Our intention is to integrate morphological, textural and chemical data in order to correlate these deposits with the Vulcanello, La Fossa Cone or Mt Pilato. LA-MC-ICPMS (RHUL) analysis of juvenile clasts is underway in order to investigate the evolution of the Vulcanello juvenile clasts. In addition 14C dating is planned on selected organic matter from the volcanostratigraphic sections. Our preliminary data for the Vulcanello proximal deposits suggest that each of the three cones experienced several eruptions, with a wide spectrum of eruptive styles and a diversity of chemistry. The oldest cone (Vulcanello I) is characterised by four different eruptions separated by minor unconformities or reworking material indicative of little or not time breaks in the eruptive cycle. The eruptions shift from Violent Strombolian to Hawaiian in style, testifying to a reduction in fragmentation and dispersal. The second cone (Vulcanello II), contains volcanic deposits from Strombolian eruptions only. The third cone (Vulcanello III), displays a complex evolution with an initial effusive episode of a trachytic lava flow, followed by phreatic explosions, evident as altered fine ash layers. These deposits are interbedded with scoriaceous fall deposits, attesting the occurrence of some mild explosive activity during this eruptive phase. This detailed study of the effusive and explosive products from Vulcanello reveals rapid evolution of Vulcanello during the initial phases (1000 AD to 1200 AD) with voluminous mafic eruptions, both effusive and explosive. A progressive reduction in emitted volume is apparent. The presence of abundant explosive deposits related to phreatic explosions during the Vulcanello III phase, is related to the presence of water, a reduction in magma volume and the presence of intense hydrothermal activity in the latter stage of the evolution of Vulcanello evolution until 1878. This may indicate the presence of a stable shallow thermal anomaly.

  12. Regional Stratigraphy from Stereo Imaging near the Hypanis Fan Deposit: Marking the Extent of the Largest Delta on Mars?

    NASA Astrophysics Data System (ADS)

    Adler, J.; Harrison, T. N.; Bell, J. F., III; Mayer, D. P.

    2017-12-01

    The layered fan-shaped sedimentary deposit at the terminus of Hypanis Valles has been classified by some as an ancient delta marking the presence of a sea in Chryse Planitia, Mars. The deposit's age is estimated to be 3.6 Ga based on crater counts in the upstream catchment. We further our research on the Hypanis deposit and its relative age by analyzing digital terrain models and high-resolution orbital images of two key study areas: Lederberg crater rim and the distal island deposits. We constructed a 2 m/pix digital terrain model from our requested HiRISE stereo images (0.5 m/pix) of the Lederberg rim northwest of Hypanis, as well as a 24 m/pix digital terrain model from CTX stereo images (6 m/pix) of the island structures northeast of Hypanis. Both terrain models were controlled to MOLA shot data. We added these elevation models to a regional elevation mosaic in order to assess stratigraphy. We found that the Lederberg crater rim has polygonally fractured units, consistent with those in the plains near Hypanis, as well as an example of a distinct mildly sinuous ridge with smooth cones along its profile. We hypothesize that the formation of rounded cones in this region of Xanthe Terra near Hypanis is related to the presence of wrinkle ridges and degraded crater rims. Furthermore, we investigate whether these cones are the youngest geologic formations in the region, postdating the aqueous periods in which the delta and hydrovolcanic cones were formed. We also analyzed the elevation profiles of potential deltaic distal island deposits, and found that some islands are likely part of the main lobe of Hypanis, while others more closely match the chaos units to the east. From our analysis, it is unlikely that the large northern island was once part of the Hypanis deposit. Rather, a larger laterally continuous unit likely once draped the region post-Hypanis formation and has subsequently been eroded.

  13. Auto calibration of a cone-beam-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferablymore » form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the achievable spatial resolution of their calibration procedure. Results: Compared to the results published in the most closely related work [K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)], the simulation proved the greater accuracy of their method, as well as a lower standard deviation of roughly 1 order of magnitude. When compared to another similar approach [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004)], their results were roughly of the same order of accuracy. Their analysis revealed that the method is capable of sufficiently calibrating out-of-plane angles in cases of larger cone angles when neglecting these angles negatively affects the reconstruction. Fine details in the 3D reconstruction of the spine segment and an electronic device indicate a high geometric calibration accuracy and the capability to produce state-of-the-art reconstructions. Conclusions: The method introduced here makes no requirements on the accuracy of the test object. In contrast to many previous autocalibration methods their approach also includes out-of-plane rotations of the detector. Although assuming a perfect rotation, the method seems to be sufficiently accurate for a commercial CBCT scanner. For devices which require higher dimensional geometry models, the method could be used as a initial calibration procedure.« less

  14. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility*

    PubMed Central

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H.; Rodgers, Karla K.; Smith, Marci L.; Wang, Jin-Shan; Pittler, Steven J.; Kefalov, Vladimir J.

    2016-01-01

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2–3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3−/−/Nrl−/− mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3−/−/Nrl−/− mice compared with Nrl−/− mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377

  15. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds

    PubMed Central

    Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C

    2016-01-01

    Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384

  16. Transition from ideal to viscous Mach cones in a kinetic transport approach

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.

    2012-04-01

    Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.

  17. Grip and slip of L1-CAM on adhesive substrates direct growth cone haptotaxis

    PubMed Central

    Abe, Kouki; Katsuno, Hiroko; Toriyama, Michinori; Baba, Kentarou; Mori, Tomoyuki; Hakoshima, Toshio; Kanemura, Yonehiro; Watanabe, Rikiya; Inagaki, Naoyuki

    2018-01-01

    Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. PMID:29483251

  18. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    PubMed Central

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  19. Simultaneously constraining the astrophysics of reionisation and the epoch of heating with 21CMMC

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2018-05-01

    We extend our MCMC sampler of 3D EoR simulations, 21CMMC, to perform parameter estimation directly on light-cones of the cosmic 21cm signal. This brings theoretical analysis one step closer to matching the expected 21-cm signal from next generation interferometers like HERA and the SKA. Using the light-cone version of 21CMMC, we quantify biases in the recovered astrophysical parameters obtained from the 21cm power spectrum when using the co-eval approximation to fit a mock 3D light-cone observation. While ignoring the light-cone effect does not bias the parameters under most assumptions, it can still underestimate their uncertainties. However, significant biases (~few - 10 σ) are possible if all of the following conditions are met: (i) foreground removal is very efficient, allowing large physical scales (k ~ 0.1 Mpc-1) to be used in the analysis; (ii) theoretical modelling is accurate to ~10 per cent in the power spectrum amplitude; and (iii) the 21cm signal evolves rapidly (i.e. the epochs of reionisation and heating overlap significantly

  20. Color constancy: enhancing von Kries adaption via sensor transformations

    NASA Astrophysics Data System (ADS)

    Finlayson, Graham D.; Drew, Mark S.; Funt, Brian V.

    1993-09-01

    Von Kries adaptation has long been considered a reasonable vehicle for color constancy. Since the color constancy performance attainable via the von Kries rule strongly depends on the spectral response characteristics of the human cones, we consider the possibility of enhancing von Kries performance by constructing new `sensors' as linear combinations of the fixed cone sensitivity functions. We show that if surface reflectances are well-modeled by 3 basis functions and illuminants by 2 basis functions then there exists a set of new sensors for which von Kries adaptation can yield perfect color constancy. These new sensors can (like the cones) be described as long-, medium-, and short-wave sensitive; however, both the new long- and medium-wave sensors have sharpened sensitivities -- their support is more concentrated. The new short-wave sensor remains relatively unchanged. A similar sharpening of cone sensitivities has previously been observed in test and field spectral sensitivities measured for the human eye. We present simulation results demonstrating improved von Kries performance using the new sensors even when the restrictions on the illumination and reflectance are relaxed.

  1. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  2. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  3. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  4. The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Németh, Karoly; Risso, Corina; Nullo, Francisco; Kereszturi, Gabor

    2011-06-01

    Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, conebuilding style, forming a cone over 150 metres high on a northward dipping (˜4°) surface. An initial cone gradually grew until a lava flow breached the cone's base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone. A likely increase in magma flux coupled with the gradual growth of a new cone caused another lava flow outbreak at the structurally weakened earlier breach site. For a second time, the unstable flank of the cone was rafted, triggering a second violent Strombolian eruptive stage which was followed by a Hawaiian style lava fountain stage. The lava fountaining was accompanied by a steady outpour of voluminous lava emission accompanied by constant rafting of the cone flank, preventing the healing of the cone. Santa Maria is another scoria cone built on a nearly flat pre-eruption surface. Despite this it went through similar stages as Los Morados main cone, but probably not in as dramatic a manner as Los Morados. In contrast to these examples of large breached cones, volumetrically smaller cones, associated to less extensive lava flows, were able to heal raft/collapse events, due to the smaller magma output and flux rates. Our evidence shows that scoria cone growth is a complex process, and is a consequence of the magma internal parameters (e.g. volatile content, magma flux, recharge, output volume) and external conditions such as inclination of the pre-eruptive surface where they grew and thus gravitational instability.

  5. Strong-field ionization with twisted laser pulses

    NASA Astrophysics Data System (ADS)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  6. Passive method of eliminating accommodation/convergence disparity in stereoscopic head-mounted displays

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    2005-03-01

    The difference in accommodation and convergence distance experienced when viewing stereoscopic displays has long been recognized as a source of visual discomfort. It is especially problematic in head mounted virtual reality and enhanced reality displays, where images must often be displayed across a large depth range or superimposed on real objects. DTI has demonstrated a novel method of creating stereoscopic images in which the focus and fixation distances are closely matched for all parts of the scene from close distances to infinity. The method is passive in the sense that it does not rely on eye tracking, moving parts, variable focus optics, vibrating optics, or feedback loops. The method uses a rapidly changing illumination pattern in combination with a high speed microdisplay to create cones of light that converge at different distances to form the voxels of a high resolution space filling image. A bench model display was built and a series of visual tests were performed in order to demonstrate the concept and investigate both its capabilities and limitations. Results proved conclusively that real optical images were being formed and that observers had to change their focus to read text or see objects at different distances

  7. Gene Therapy for Color Blindness.

    PubMed

    Hassall, Mark M; Barnard, Alun R; MacLaren, Robert E

    2017-12-01

    Achromatopsia is a rare congenital cause of vision loss due to isolated cone photoreceptor dysfunction. The most common underlying genetic mutations are autosomal recessive changes in CNGA3 , CNGB3 , GNAT2 , PDE6H , PDE6C , or ATF6 . Animal models of Cnga3 , Cngb3 , and Gnat2 have been rescued using AAV gene therapy; showing partial restoration of cone electrophysiology and integration of this new photopic vision in reflexive and behavioral visual tests. Three gene therapy phase I/II trials are currently being conducted in human patients in the USA, the UK, and Germany. This review details the AAV gene therapy treatments of achromatopsia to date. We also present novel data showing rescue of a Cnga3 -/- mouse model using an rAAV.CBA.CNGA3 vector. We conclude by synthesizing the implications of this animal work for ongoing human trials, particularly, the challenge of restoring integrated cone retinofugal pathways in an adult visual system. The evidence to date suggests that gene therapy for achromatopsia will need to be applied early in childhood to be effective.

  8. Simulating Photo-Refraction Images of Keratoconus and Near-Sightedness Eyes

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Lewis, James W. L.; Chen, Ying-Ling

    2004-11-01

    Keratoconus is an abnormal condition of the eye resulting from cone-shaped features on the cornea that degrade the quality of vision. These corneal features result from thinning and subsequent bulging due to intraocular pressure. The abnormal corneal curvature increases the refractive power asymmetrically and can be misdiagnosed by examiners as astigmatism and nearsightedness. Since corrective treatment is possible, early detection of this condition is desirable. Photo-refraction (PR) detects the retinal irradiance reflected from a single light source and is an inexpensive method used to identify refractive errors. For near- (far-) sighted eye, a crescent appears on the same (opposite) side of the light source. The capability of a PR device to detect keratoconus and to differentiate this condition from myopia was investigated. Using a commercial optical program, synthetic eye models were constructed for both near-sighted and keratoconus eyes. PR images of various eye conditions were calculated. The keratoconus cone shapes were modeled with typical published cone locations and sizes. The results indicate significant differences between the images of keratoconus and near-sighted eyes.

  9. Nature's Notebook Provides Phenology Observations for NASA Juniper Phenology and Pollen Transport Project

    NASA Technical Reports Server (NTRS)

    Luval, J. C.; Crimmins, T. M.; Sprigg, W. A.; Levetin, E.; Huete, A.; Nickovic, S.; Prasad, A.; Vukovic, A.; VandeWater, P. K.; Budge, A. M.; hide

    2014-01-01

    Phenology Network has been established to provide national wide observations of vegetation phenology. However, as the Network is still in the early phases of establishment and growth, the density of observers is not yet adequate to sufficiently document the phenology variability over large regions. Hence a combination of satellite data and ground observations can provide optimal information regarding juniperus spp. pollen phenology. MODIS data was to observe Juniperus supp. pollen phenology. The MODIS surface reflectance product provided information on the Juniper supp. cone formation and cone density. Ground based observational records of pollen release timing and quantities were used as verification. Approximately 10, 818 records of juniper phenology for male cone formation Juniperus ashei., J. monosperma, J. scopulorum, and J. pinchotti were reported by Nature's Notebook observers in 2013 These observations provided valuable information for the analysis of satellite images for developing the pollen concentration masks for input into the PREAM (Pollen REgional Atmospheric Model) pollen transport model. The combination of satellite data and ground observations allowed us to improve our confidence in predicting pollen release and spread, thereby improving asthma and allergy alerts.

  10. SRS Computer Animation and Drive Train System

    NASA Technical Reports Server (NTRS)

    Arthun, Daniel; Schachner, Christian

    2001-01-01

    The spinning rocket simulator (SRS) is an ongoing project at Oral Roberts University. The goal of the SRS is to gather crucial data concerning a spinning rocket under thrust for the purpose of analysis and correction of the coning motion experienced by this type of spacecraft maneuver. The computer animation simulates a virtual, scale model of the component of the SRS that represents the spacecraft itself. This component is known as the (VSM), or virtual spacecraft model. During actual physical simulation, this component of the SRS will experience a coning. The goal of the animation is to cone the VSM within that range to accurately represent the motion of the actual simulator. The drive system of the SRS is the apparatus that turns the actual simulator. It consists of a drive motor, motor mount and chain to power the simulator into motion. The motor mount is adjustable and rigid for high torque application. A digital stepper motor controller actuates the main drive motor for linear acceleration. The chain transfers power from the motor to the simulator via sprockets on both ends.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinmann, Amanda L.; Hruska, Carrie B.; Conners, Amy L.

    Purpose: Molecular breast imaging (MBI) is a dedicated nuclear medicine breast imaging modality that employs dual-head cadmium zinc telluride (CZT) gamma cameras to functionally detect breast cancer. MBI has been shown to detect breast cancers otherwise occult on mammography and ultrasound. Currently, a MBI-guided biopsy system does not exist to biopsy such lesions. Our objective was to consider the utility of a novel conical slant-hole (CSH) collimator for rapid (<1 min) and accurate monitoring of lesion position to serve as part of a MBI-guided biopsy system. Methods: An initial CSH collimator design was derived from the dimensions of a parallel-holemore » collimator optimized for MBI performed with dual-head CZT gamma cameras. The parameters of the CSH collimator included the collimator height, cone slant angle, thickness of septa and cones of the collimator, and the annular areas exposed at the base of the cones. These parameters were varied within the geometric constraints of the MBI system to create several potential CSH collimator designs. The CSH collimator designs were evaluated using Monte Carlo simulations. The model included a breast compressed to a thickness of 6 cm with a 1-cm diameter lesion located 3 cm from the collimator face. The number of particles simulated was chosen to represent the count density of a low-dose, screening MBI study acquired with the parallel-hole collimator for 10 min after a {approx}150 MBq (4 mCi) injection of Tc-99m sestamibi. The same number of particles was used for the CSH collimator simulations. In the resulting simulated images, the count sensitivity, spatial resolution, and accuracy of the lesion depth determined from the lesion profile width were evaluated. Results: The CSH collimator design with default parameters derived from the optimal parallel-hole collimator provided 1-min images with error in the lesion depth estimation of 1.1 {+-} 0.7 mm and over 21 times the lesion count sensitivity relative to 1-min images acquired with the current parallel-hole collimator. Sensitivity was increased via more vertical cone slant angles, larger annular areas, thinner cone walls, shorter cone heights, and thinner radiating septa. Full width at half maximum trended in the opposite direction as sensitivity for all parameters. There was less error in the depth estimates for less vertical slant angles, smaller annular areas, thinner cone walls, cone heights near 1 cm, and generally thinner radiating septa. Conclusions: A Monte Carlo model was used to demonstrate the feasibility of a CSH collimator design for rapid biopsy application in molecular breast imaging. Specifically, lesion depth of a 1-cm diameter lesion positioned in the center of a typical breast can be estimated with error of less than 2 mm using circumferential count profiles of images acquired in 1 min.« less

  12. Whiskers, cones and pyramids created in sputtering by ion bombardment

    NASA Technical Reports Server (NTRS)

    Wehner, G. K.

    1979-01-01

    A thorough study of the role which foreign atoms play in cone formation during sputtering of metals revealed many experimental facts. Two types of cone formation were distinquished, deposit cones and seed cones. Twenty-six combinations of metals for seed cone formation were tested. The sputtering yield variations with composition for combinations which form seed cones were measured. It was demonstrated that whisker growth becomes a common occurrence when low melting point material is sputter deposited on a hot nonsputtered high melting point electrode.

  13. Effects of anode geometry on forward wide-angle neon ion emissions in 3.5 kJ plasma focus device by novel mega-size panorama polycarbonate image detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Soltani, Z.; Sarlak, Z.

    2018-03-01

    Forward wide-angle neon ion emissions in a 3.5 kJ plasma focus device (PFD) were studied using 5 different anode top geometries; hollow-end cylinder, solid triangle, solid hemisphere, hollow-end cone and flat-end cone. Position-sensitive mega-size panorama polycarbonate ion image detectors (MS-PCID) developed by dual-cell circular mega-size electrochemical etching (MS-ECE) systems were applied for processesing wide-angle neon ion images on MS-PCIDs exposed on the PFD cylinder top base under a single pinch shot. The images can be simply observed, analyzed and relatively quantified in terms of ion emission angular distributions even by the unaided eyes. By analysis of the forward neon ion emission images, the ion emission yields, ion emission angular distributions, iso-fluence ion contours and solid angles of ion emissions in 4π PFD space were determined. The neon ion emission yields on the PFD cylinder top base are in an increasing order ~2.1×109, ~2.2 ×109, ~2.8×109, ~2.9×109, and ~3.5×109 neon ions/shot for the 5 stated anode top geometries respectively. The panorama neon ion images as diagnosed even by the unaided eyes demonstrate the lowest and highest ion yields from the hollow-end cylinder and flat-end cone anode tops respectively. Relative dynamic qualitative neon ion spectrometry was made by the unaided eyes demonstrating relative neon ion energy as they appear. The study also demonstrates the unique power of the MS-PCID/MS-ECE imaging system as an advanced state-of-the-art ion imaging method for wide-angle dynamic parametric studies in PFD space and other ion study applications.

  14. Self-similar Relativisitic Disks revisted

    NASA Astrophysics Data System (ADS)

    Cai, M. J.; Shu, F. H.

    2001-05-01

    We revisit the rotating self-similar disk first studied by Lynden-Bell and Pineault and extend it to include pressure. A two-parameter family of solutions is constructed numerically. These disks are parameterized by the constant linear rotation velocity v, and the isothermal sound speed γ 1/2. For sufficiently high velocities, an ergo region develops in the form of the exterior of a cone. For each value of γ , there is a maximum velocity vc above which there is no equilibrium solutions. For this solution the frame dragging is infinite and the ergo cone closes on the rotation axis. The null geodesic equations are also integrated numerically. Due to the infinite extend and mass of the system, all photon trajectories are focused towards the disk. The behavior of equatorial photons orbits is qualitatively the same as that of cold disks.

  15. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils.

    PubMed

    Igalavithana, Avanthi Deshani; Lee, Sung-Eun; Lee, Young Han; Tsang, Daniel C W; Rinklebe, Jörg; Kwon, Eilhann E; Ok, Yong Sik

    2017-05-01

    In order to determine the efficacy of vegetable waste and pine cone biochar for immobilization of metal/metalloid (lead and arsenic) and abundance of microbial community in different agricultural soils, we applied the biochar produced at two different temperatures to two contaminated soils. Biochar was produced by vegetable waste, pine cone, and their mixture (1:1 ww -1 ) at 200 °C (torrefied biomass) and 500 °C (biochar). Contaminated soils were incubated with 5% (ww -1 ) torrefied biomass or biochar. Sequential extraction, thermodynamic modeling, and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy were used to evaluate the metal immobilization. Microbial communities were characterized by microbial fatty acid profiles and microbial activity was assessed by dehydrogenase activity. Vegetable waste and the mixture of vegetable waste and pine cone biochar exhibited greater ability for Pb immobilization than pine cone biochar and three torrefied biomass, and vegetable waste biochar was found to be most effective. However, torrefied biomass was most effective in increasing both microbial community and dehydrogenase activity. This study confirms that vegetable waste could be a vital biomass to produce biochar to immobilize Pb, and increase the microbial communities and enzyme activity in soils. Biomass and pyrolytic temperature were not found to be effective in the immobilization of As in this study. Copyright © 2017. Published by Elsevier Ltd.

  16. Advanced designs for non-imaging submillimeter-wave Winston cone concentrators

    NASA Astrophysics Data System (ADS)

    Nelson, A. O.; Grossman, E. N.

    2014-05-01

    We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.

  17. 21CMMC with a 3D light-cone: the impact of the co-evolution approximation on the astrophysics of reionization and cosmic dawn

    NASA Astrophysics Data System (ADS)

    Greig, Bradley; Mesinger, Andrei

    2018-07-01

    We extend 21CMMC, a Monte Carlo Markov Chain sampler of 3D reionization simulations, to perform parameter estimation directly on 3D light-cones of the cosmic 21 cm signal. This brings theoretical analysis closer to the tomographic 21 cm observations achievable with next generation interferometers like the Hydrogen Epoch of Reionization Array and the Square Kilometre Array. Parameter recovery can therefore account for modes that evolve with redshift/frequency. Additionally, simulated data can be more easily corrupted to resemble real data. Using the light-cone version of 21CMMC, we quantify the biases in the recovered astrophysical parameters if we use the 21 cm power spectrum from the co-evolution approximation to fit a 3D light-cone mock observation. While ignoring the light-cone effect under most assumptions will not significantly bias the recovered astrophysical parameters, it can lead to an underestimation of the associated uncertainty. However, significant biases (˜few - 10σ) can occur if the 21 cm signal evolves rapidly (i.e. the epochs of reionization and heating overlap significantly), and (i) foreground removal is very efficient, allowing large physical scales (k ≲ 0.1 Mpc-1) to be used in the analysis or (ii) theoretical modelling is accurate to within ˜10 per cent in the power spectrum amplitude.

  18. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  19. Modeling Adhesive Anchors in a Discrete Element Framework

    PubMed Central

    Marcon, Marco; Vorel, Jan; Ninčević, Krešimir; Wan-Wendner, Roman

    2017-01-01

    In recent years, post-installed anchors are widely used to connect structural members and to fix appliances to load-bearing elements. A bonded anchor typically denotes a threaded bar placed into a borehole filled with adhesive mortar. The high complexity of the problem, owing to the multiple materials and failure mechanisms involved, requires a numerical support for the experimental investigation. A reliable model able to reproduce a system’s short-term behavior is needed before the development of a more complex framework for the subsequent investigation of the lifetime of fasteners subjected to various deterioration processes can commence. The focus of this contribution is the development and validation of such a model for bonded anchors under pure tension load. Compression, modulus, fracture and splitting tests are performed on standard concrete specimens. These serve for the calibration and validation of the concrete constitutive model. The behavior of the adhesive mortar layer is modeled with a stress-slip law, calibrated on a set of confined pull-out tests. The model validation is performed on tests with different configurations comparing load-displacement curves, crack patterns and concrete cone shapes. A model sensitivity analysis and the evaluation of the bond stress and slippage along the anchor complete the study. PMID:28786964

  20. Development and calibration of a ground-water flow model for the Sparta Aquifer of southeastern Arkansas and north-central Louisiana and simulated response to withdrawals, 1998-2027

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.

    2003-01-01

    The Sparta aquifer, which consists of the Sparta Sand, in southeastern Arkansas and north-central Louisiana is a major water resource and provides water for municipal, industrial, and agricultural uses. In recent years, the demand in some areas has resulted in withdrawals from the Sparta aquifer that substantially exceed replenishment of the aquifer. Considerable drawdown has occurred in the potentiometric surface forming regional cones of depression as water is removed from storage by withdrawals. These cones of depression are centered beneath the Grand Prairie area and the cities of Pine Bluff and El Dorado in Arkansas, and Monroe in Louisiana. The rate of decline for hydraulic heads in the aquifer has been greater than 1 foot per year for more than a decade in much of southern Arkansas and northern Louisiana where hydraulic heads are now below the top of the Sparta Sand. Continued hydraulic-head declines have caused water users and managers alike to question the ability of the aquifer to supply water for the long term. Concern over protecting the Sparta aquifer as a sustainable resource has resulted in a continued, cooperative effort by the Arkansas Soil and Water Conservation Commission, U.S. Army Corps of Engineers, and the U.S. Geological Survey to develop, maintain, and utilize numerical ground-water flow models to manage and further analyze the ground-water system. The work presented in this report describes the development and calibration of a ground-water flow model representing the Sparta aquifer to simulate observed hydraulic heads, documents major differences in the current Sparta model compared to the previous Sparta model calibrated in the mid-1980's, and presents the results of three hypothetical future withdrawal scenarios. The current Sparta model-a regional scale, three-dimensional numerical ground-water flow model-was constructed and calibrated using available hydrogeologic, hydraulic, and water-use data from 1898 to 1997. Significant changes from the previous model include grid rediscretization of the aquifer, extension of the active model area northward beyond the Cane River Formation facies change, and representation of model boundaries. The current model was calibrated with the aid of parameter estimation, a nonlinear regression technique, combined with trial and error parameter adjustment using a total of 795 observations from 316 wells over 4 different years-1970, 1985, 1990, and 1997. The calibration data set provides broad spatial and temporal coverage of aquifer conditions. Analysis of the residual statistics, spatial distribution of residuals, simulated compared to observed hydrographs, and simulated compared to observed potentiometric surfaces were used to analyze the ability of the calibrated model to simulate aquifer conditions within acceptable error. The calibrated model has a root mean square error of 18 feet for all observations, an improvement of more than 12 feet from the previous model. The current Sparta model was used to predict the effects of three hypothetical withdrawal scenarios on hydraulic heads over the period 1998-2027 with one of those extended indefinitely until equilibrium conditions were attained, or steady state. In scenario 1a, withdrawals representing the time period from 1990 to 1997 was held constant for 30 years from 1998 to 2027. Hydraulic heads in the middle of the cone of depression centered on El Dorado decreased by 10 feet from the 1997 simulation to 222 feet below NGVD of 1929 in 2027. Hydraulic heads in the Pine Bluff cone of depression showed a greater decline from 61 feet below NGVD of 1929 to 78 feet below NGVD of 1929 in the center of the cone. With these same withdrawals extended to steady state (scenario 1b), hydraulic heads in the Pine Bluff cone of depression center declined an 2 Development and Calibration of a Ground-Water Flow Model for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana and Simulated Response to Withdrawa

  1. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation.

    PubMed

    Litts, Katie M; Messinger, Jeffrey D; Freund, K Bailey; Zhang, Yuhua; Curcio, Christine A

    2015-04-01

    To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.

  2. Tauroursodeoxycholic acid preserves photoreceptor structure and function in the rd10 mouse through post-natal day 30

    PubMed Central

    Phillips, M. Joe; Walker, Tiffany A.; Choi, Hee-young; Faulkner, Amanda E.; Kim, Moon K.; Sidney, Sheree; Boyd, Amber; Nickerson, John M.; Boatright, Jeffrey H.; Pardue, Machelle T.

    2008-01-01

    Purpose Retinitis Pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. While the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods followed by cones. Recently, the bile acid, tauroursodeoxycholic acid (TUDCA), has been shown to have anti-apoptotic properties in neurodegenerative diseases, including those of the retina. In this study we examine the efficacy of TUDCA on preserving rod and cone function and morphology at post-natal day 30 (P30) in the rd10 mouse, a model of RP. Methods Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every three days from P6-P30 and compared to vehicle (0.15M NaHCO3). At P30, retinal function was measured with electroretinography (ERG) and morphological preservation of the rods and cones assessed with immunohistochemistry. Results Dark-adapted ERG responses were two-fold greater in rd10 mice treated with TUDCA compared to vehicle, while light-adapted responses were two-fold larger in TUDCA-treated mice compared to controls, at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had five-fold more photoreceptors than vehicle-treated. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. Conclusions TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved both rod and cone function and greatly preserved overall photoreceptor numbers. PMID:18436848

  3. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  4. Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature.

    PubMed

    Han, Xinhai; Wang, Guanzhong; Jie, Jiansheng; Choy, Wallace C H; Luo, Yi; Yuk, T I; Hou, J G

    2005-02-24

    Novel ZnO cone arrays with controllable morphologies have been synthesized on silicon (100) substrates by thermal evaporation of metal Zn powder at a low temperature of 570 degrees C without a metal catalyst. Clear structure evolutions were observed using scanning electron microscopy: well-aligned ZnO nanocones, double-cones with growing head cones attached by stem cones, and cones with straight hexagonal pillar were obtained as the distance between the source and the substrates was increased. X-ray diffraction shows that all cone arrays grow along the c-axis. Raman and photoluminescence spectra reveal that the optical properties of the buffer layer between the ZnO cone arrays and the silicon substrates are better than those of the ZnO cone arrays due to high concentration of Zn in the heads of the ZnO cone arrays and higher growth temperature of the buffer layer. The growth of ZnO arrays reveals that the cone arrays are synthesized through a self-catalyzed vapor-liquid-solid (VLS) process.

  5. Variability in bleach kinetics and amount of photopigment between individual foveal cones.

    PubMed

    Bedggood, Phillip; Metha, Andrew

    2012-06-20

    To study the bleaching dynamics of individual foveal cone photoreceptors using an adaptive optics ophthalmoscope. After dark adaptation, cones were progressively bleached and imaged by a series of flashes of 545-nm to 570-nm light at 12 Hz. Intensity measurements were made within the foveal avascular zone (FAZ) to avoid confounding signals from the inner retinal blood supply. Over 1300 cones in this region were identified and tracked through the imaging sequences. A single subject was used who demonstrated the necessary steady fixation, wide FAZ, and resolvability of cones close to the foveal center. The mean intensity of all cones was well-described by first-order kinetics. Individual cones showed marked differences from the mean, both in rate of bleach and amount of photopigment; there was an inverse correlation between these two parameters. A subset of the cones showed large oscillations in intensity consistent with interference from light scattered within the cone outer segment. These cones also bleached more quickly, implying that rapid bleaching induces greater amounts of scatter. Neighboring cones in the fovea display high variability in their optical properties.

  6. Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Doggett, Glen P.; Chokani, Ndaona

    1996-01-01

    An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra.

  7. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

    PubMed

    Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu

    2014-10-14

    The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.

  8. Nontraumatic tibial polyethylene insert cone fracture in mobile-bearing posterior-stabilized total knee arthroplasty.

    PubMed

    Tanikake, Yohei; Hayashi, Koji; Ogawa, Munehiro; Inagaki, Yusuke; Kawate, Kenji; Tomita, Tetsuya; Tanaka, Yasuhito

    2016-12-01

    A 72-year-old male patient underwent mobile-bearing posterior-stabilized total knee arthroplasty for osteoarthritis. He experienced a nontraumatic polyethylene tibial insert cone fracture 27 months after surgery. Scanning electron microscopy of the fracture surface of the tibial insert cone suggested progress of ductile breaking from the posterior toward the anterior of the cone due to repeated longitudinal bending stress, leading to fatigue breaking at the anterior side of the cone, followed by the tibial insert cone fracture at the anterior side of the cone, resulting in fracture at the base of the cone. This analysis shows the risk of tibial insert cone fracture due to longitudinal stress in mobile-bearing posterior-stabilized total knee arthroplasty in which an insert is designed to highly conform to the femoral component.

  9. 3-D Hybrid Kinetic Modeling of the Interaction Between the Solar Wind and Lunar-like Exospheric Pickup Ions in Case of Oblique/ Quasi-Parallel/Parallel Upstream Magnetic Field

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.

    2015-01-01

    The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.

  10. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina

    PubMed Central

    Sabesan, Ramkumar; Sincich, Lawrence C.

    2017-01-01

    A remarkable feature of human vision is that the retina and brain have evolved circuitry to extract useful spatial and spectral information from signals originating in a photoreceptor mosaic with trichromatic constituents that vary widely in their relative numbers and local spatial configurations. A critical early transformation applied to cone signals is horizontal-cell-mediated lateral inhibition, which imparts a spatially antagonistic surround to individual cone receptive fields, a signature inherited by downstream neurons and implicated in color signaling. In the peripheral retina, the functional connectivity of cone inputs to the circuitry that mediates lateral inhibition is not cone-type specific, but whether these wiring schemes are maintained closer to the fovea remains unsettled, in part because central retinal anatomy is not easily amenable to direct physiological assessment. Here, we demonstrate how the precise topography of the long (L)-, middle (M)-, and short (S)-wavelength-sensitive cones in the human parafovea (1.5° eccentricity) shapes perceptual sensitivity. We used adaptive optics microstimulation to measure psychophysical detection thresholds from individual cones with spectral types that had been classified independently by absorptance imaging. Measured against chromatic adapting backgrounds, the sensitivities of L and M cones were, on average, receptor-type specific, but individual cone thresholds varied systematically with the number of preferentially activated cones in the immediate neighborhood. The spatial and spectral patterns of these interactions suggest that interneurons mediating lateral inhibition in the central retina, likely horizontal cells, establish functional connections with L and M cones indiscriminately, implying that the cone-selective circuitry supporting red–green color vision emerges after the first retinal synapse. SIGNIFICANCE STATEMENT We present evidence for spatially antagonistic interactions between individual, spectrally typed cones in the central retina of human observers using adaptive optics. Using chromatic adapting fields to modulate the relative steady-state activity of long (L)- and middle (M)-wavelength-sensitive cones, we found that single-cone detection thresholds varied predictably with the spectral demographics of the surrounding cones. The spatial scale and spectral pattern of these photoreceptor interactions were consistent with lateral inhibition mediated by retinal horizontal cells that receive nonselective input from L and M cones. These results demonstrate a clear link between the neural architecture of the visual system inputs—cone photoreceptors—and visual perception and have implications for the neural locus of the cone-specific circuitry supporting color vision. PMID:28871030

  11. The Na+/Ca2+, K+ exchanger NCKX4 is required for efficient cone-mediated vision.

    PubMed

    Vinberg, Frans; Wang, Tian; De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven; Chen, Jeannie; Kefalov, Vladimir J

    2017-06-26

    Calcium (Ca 2+ ) plays an important role in the function and health of neurons. In vertebrate cone photoreceptors, Ca 2+ controls photoresponse sensitivity, kinetics, and light adaptation. Despite the critical role of Ca 2+ in supporting the function and survival of cones, the mechanism for its extrusion from cone outer segments is not well understood. Here, we show that the Na + /Ca 2+ , K + exchanger NCKX4 is expressed in zebrafish, mouse, and primate cones. Functional analysis of NCKX4-deficient mouse cones revealed that this exchanger is essential for the wide operating range and high temporal resolution of cone-mediated vision. We show that NCKX4 shapes the cone photoresponse together with the cone-specific NCKX2: NCKX4 acts early to limit response amplitude, while NCKX2 acts late to further accelerate response recovery. The regulation of Ca 2+ by NCKX4 in cones is a novel mechanism that supports their ability to function as daytime photoreceptors and promotes their survival.

  12. Region-of-interest image reconstruction in circular cone-beam microCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.

    2007-12-15

    Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolutionmore » entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.« less

  13. [Effects of moxibustion with seed-sized moxa cone at "Ganshu" (BL 18) on liver function in rats with precancerous lesion of hepatic cellular cancer].

    PubMed

    Liu, Yang; Hou, Zhongwei; Lu, Jun; Dong, Feng; Wang, Pei; Jia, Wenrui; Wang, Chaoyang

    2015-07-01

    To explore the effects of moxibustion with seed-sized moxa cone at "Ganshu" (BL 18) on liver furiction and morphology in rat with precancerous lesion of hepatic cellular cancer MCC). A total of 60 male Wistar rats were randomly divided into a normal group (10 rats), a model group (20 rats), a 20-day treatment group (15 rats) and a 40-day treatment group (15 rats). HCC model was established by intraperitoneal injection of diethylnitrosamine (DEN). Rats in the normal group received no treatment. Rats in the model group were treated with fixation. Rats in the 20-day treatment group and 40-day treatment group were treated by moxibustion with seed-sized moxa cone at "Ganshu" (BL 18), once every other day, for 20 days and 40 days, respectively. Blood sample in each group was collected 1 d before model establishment, 20 d, 40 d and 84 d after model establishment. Chemical method was applied to test the activity of ALT (alamine aminotransferase), AST (aspartate transaminase) and GGT (glutamyl transpeptidase); at the end of model establishment, all the rats were sacrificed to observe the liver morphology changes. After the first therapeutic course, the. content of ALT and AST in the 20-day treatment group was significantly lower than that in the model group (all P<0. 05); after the second therapeutic course, the content of ALT, AST and GGT in the 40-day treatment group was insignificantly lower than that in the model group (all P>0. 05). Under light microscope, the slice of liver tissue indicated that primary tumor was induced in the model group, and the tumor cells were stained and irregular; the cytoplasm in the 20-day treatment group was even, and the tumor cells were few with several nodules alone. In the 40-day treatment group the liver morphology was normal and the staining was even; the tumor cells were few without nodules or a few. Conclusion Moxibustion with seed-sized moxa cone at "Ganshu" (BL 18) could reduce the serum content of ALT, AST and GGT in rats with HCC, which could protect the liver and: delay the DEN-induced precancerous lesion on some levels.

  14. Processing, Properties and Arc Jet Testing of HfB2/SiC

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matt; Gusman, Michael

    2004-01-01

    Contents include the following: Background on Ultra High Temperature Ceramics - UHTCs. Summary UNTC processing: power processing, scale-up. Preliminary material properties: mechanical, thermal. Arc jet testing: flat face models, cone models. Summary.

  15. Early-onset, slow progression of cone photoreceptor dysfunction and degeneration in CNG channel subunit CNGB3 deficiency.

    PubMed

    Xu, Jianhua; Morris, Lynsie; Fliesler, Steven J; Sherry, David M; Ding, Xi-Qin

    2011-06-01

    To investigate the progression of cone dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. Retinal structure and function in CNGB3(-/-) and wild-type (WT) mice were evaluated by electroretinography (ERG), lectin cytochemistry, and correlative Western blot analysis of cone-specific proteins. Cone and rod terminal integrity was assessed by electron microscopy and synaptic protein immunohistochemical distribution. Cone ERG amplitudes (photopic b-wave) in CNGB3(-/-) mice were reduced to approximately 50% of WT levels by postnatal day 15, decreasing further to approximately 30% of WT levels by 1 month and to approximately 20% by 12 months of age. Rod ERG responses (scotopic a-wave) were not affected in CNGB3(-/-) mice. Average CNGB3(-/-) cone densities were approximately 80% of WT levels at 1 month and declined slowly thereafter to only approximately 50% of WT levels by 12 months. Expression levels of M-opsin, cone transducin α-subunit, and cone arrestin in CNGB3(-/-) mice were reduced by 50% to 60% by 1 month and declined to 35% to 45% of WT levels by 9 months. In addition, cone opsin mislocalized to the outer nuclear layer and the outer plexiform layer in the CNGB3(-/-) retina. Cone and rod synaptic marker expression and terminal ultrastructure were normal in the CNGB3(-/-) retina. These findings are consistent with an early-onset, slow progression of cone functional defects and cone loss in CNGB3(-/-) mice, with the cone signaling deficits arising from disrupted phototransduction and cone loss rather than from synaptic defects.

  16. Effect of truncated cone roughness element density on hydrodynamic drag

    NASA Astrophysics Data System (ADS)

    Womack, Kristofer; Schultz, Michael; Meneveau, Charles

    2017-11-01

    An experimental study was conducted on rough-wall, turbulent boundary layer flow with roughness elements whose idealized shape model barnacles that cause hydrodynamic drag in many applications. Varying planform densities of truncated cone roughness elements were investigated. Element densities studied ranged from 10% to 79%. Detailed turbulent boundary layer velocity statistics were recorded with a two-component LDV system on a three-axis traverse. Hydrodynamic roughness length (z0) and skin-friction coefficient (Cf) were determined and compared with the estimates from existing roughness element drag prediction models including Macdonald et al. (1998) and other recent models. The roughness elements used in this work model idealized barnacles, so implications of this data set for ship powering are considered. This research was supported by the Office of Naval Research and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  17. Development of one-equation transition/turbulence models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J.R.; Roy, C.J.; Blottner, F.G.

    2000-01-14

    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test casesmore » include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed.« less

  18. Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2013-12-01

    The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.

  19. Sedimentary Biosignatures of Social Organization in Cone-Forming Filamentous Bacteria

    NASA Astrophysics Data System (ADS)

    Tice, M. M.; Gong, J.; Zeng, Z.; Sneed, J.; Wehner, M.; Sparks, D. W.

    2013-12-01

    Conical mats consisting of centimeter-scale steep-sided cones growing above flat basal films form some of the most distinctive fossil microbial communities in the geologic record. Cones have been hypothesized to form by the initially random motion of filamentous bacteria into small tangled clumps followed by the phototactic motion of the same bacteria up resulting slopes. More recent models of cone development suggest that they form in response to growth in stagnant fluids where diffusion limits exchange of nutrients and wastes with the environment. Determining the biological and environmental factors that promote cone formation will be important for interpreting the geological record of fossil mats and stromatolites, on Earth and potentially on Mars. Here we report the results of new experiments demonstrating complex social organization of cone-forming communities and a novel biosignature of the growth of such communities on sandy sediments, as well as detection of that biosignature in 3.2 Ga fossil mats of the Moodies Group (Barberton greenstone belt, South Africa). In order to investigate the processes involved in cone formation, we grew cultures of a filamentous cyanobacterium originally isolated from tufted cones in Yellowstone National Park, Montana, U.S.A. (Leptolyngbya sp. Y-WT-2000 Cl 1). During early mat development, filaments coat sand grain surfaces and aggregate into ~100-μm-long tufts, or mutually aligned bundles of filaments. Tufts are highly motile, bridging sand grains and merging to form larger tufts. After 10-14 days of growth, tufts aggregate during the early morning into centers composed of many tufts that wave vertically and along the sand surface. Centers move across the sediment surface during the middle of the day and merge along bridging tufts. These bridges transmit force to the underlying sediment and are capable of rolling sand grains. At this stage, mats are composed of small mobile centers that disperse along streams of co-moving bacteria during the evening. This diel cycle, together with preferential movement of relatively coarse sand grains that protrude above surrounding finer grains, efficiently sorts the underlying sediment such that mature mats are composed of large stabilized centers resting on small piles of coarser sand. Because these cone-forming mats sort sand grains by applying a shear stress at the sediment surface, growth of similar bacteria on sand surfaces should result in the preferential aggregation of equant coarse light mineral grains into cones and the formation of finer heavy mineral lags in interconical spaces. We observe these patterns of sorting by grain size, aspect ratio, and density around cones in Moodies Group fossil mats. These patterns could not have been produced by hydraulic sorting alone, and instead suggest the following conclusions. Cone-constructing Moodies microorganisms were 1) filamentous, 2) moved by gliding motility, and 3) moved as socially organized groups. In addition, it seems probable that these organisms 4) periodically reversed the direction of their movement on a time scale much more rapid than the time between deposition of sand beds, possibly as part of a diel cycle.

  20. A Comparative Evaluation of Mixed Dentition Analysis on Reliability of Cone Beam Computed Tomography Image Compared to Plaster Model.

    PubMed

    Gowd, Snigdha; Shankar, T; Dash, Samarendra; Sahoo, Nivedita; Chatterjee, Suravi; Mohanty, Pritam

    2017-01-01

    The aim of the study was to evaluate the reliability of cone beam computed tomography (CBCT) obtained image over plaster model for the assessment of mixed dentition analysis. Thirty CBCT-derived images and thirty plaster models were derived from the dental archives, and Moyer's and Tanaka-Johnston analyses were performed. The data obtained were interpreted and analyzed statistically using SPSS 10.0/PC (SPSS Inc., Chicago, IL, USA). Descriptive and analytical analysis along with Student's t -test was performed to qualitatively evaluate the data and P < 0.05 was considered statistically significant. Statistically, significant results were obtained on data comparison between CBCT-derived images and plaster model; the mean for Moyer's analysis in the left and right lower arch for CBCT and plaster model was 21.2 mm, 21.1 mm and 22.5 mm, 22.5 mm, respectively. CBCT-derived images were less reliable as compared to data obtained directly from plaster model for mixed dentition analysis.

Top