Science.gov

Sample records for folate transport deficiency

  1. Increased synthesis of folate transporters regulates folate transport in conditions of ethanol exposure and folate deficiency.

    PubMed

    Thakur, Shilpa; More, Deepti; Rahat, Beenish; Khanduja, Krishan Lal; Kaur, Jyotdeep

    2016-01-01

    Excessive alcohol consumption and dietary folate inadequacy are the main contributors leading to folate deficiency (FD). The present study was planned to study regulation of folate transport in conditions of FD and ethanol exposure in human embryonic kidney cell line. Also, the reversible nature of effects mediated by ethanol exposure and FD was determined by folate repletion and ethanol removal. For ethanol treatment, HEK293 cells were grown in medium containing 100 mM ethanol, and after treatment, one group of cells was shifted on medium that was free from ethanol. For FD treatment, cells were grown in folate-deficient medium followed by shifting of one group of cells on folate containing medium. FD as well as ethanol exposure resulted in an increase in folate uptake which was due to an increase in expression of folate transporters, i.e., reduced folate carrier, proton-coupled folate transporter, and folate receptor, both at the mRNA and protein level. The effects mediated by ethanol exposure and FD were reversible on removal of treatment. Promoter region methylation of folate transporters remained unaffected after FD and ethanol exposure. As far as transcription rate of folate transporters is concerned, an increase in rate of synthesis was observed in both ethanol exposure and FD conditions. Additionally, mRNA life of folate transporters was observed to be reduced by FD. An increased expression of folate transporters under ethanol exposure and FD conditions can be attributed to enhanced rate of synthesis of folate transporters.

  2. Folate deficiency

    MedlinePlus

    ... micrograms of folate daily. Women who may become pregnant should take folic acid supplements to ensure that they get enough each day. Specific recommendations depend on a person's age, gender, and other factors (such as pregnancy ...

  3. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  4. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  5. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    als. Mouse mo dels of altered intracellular folate transport and metabolism exist (Folr1, Folr 2, Mthfr , and PCFT1). We hypothesized that folate...individuals and others (4). Severa l genetic m ouse models of altered intracellu lar folate transport and metabolism ar e in existen ce (Folr1, Folr2, Mthfr ...out mice to severely limit folate transport into the cell. We a lso utilized th e genetically modified Mthfr knock out mouse as a model of altered

  6. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  7. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  8. Folate-deficiency anemia

    MedlinePlus

    Symptoms may include: Fatigue Headache Pallor Sore mouth and tongue ... The health care provider will perform a physical exam. Tests that may be done include: Complete blood count (CBC) Red blood cell folate level Rarely, a bone marrow examination may be done.

  9. Diagnosis and management of cerebral folate deficiency

    PubMed Central

    Al-Baradie, Raidah S.; Chudary, Mohammed W.

    2014-01-01

    Folinic acid-responsive seizures (FARS) are a rare treatable cause of neonatal epilepsy. They have characteristic peaks on CSF monoamine metabolite analysis, and have mutations in the ALDH7A1 gene, characteristically found in pyridoxine-dependent epilepsy. There are case reports of patients presenting with seizures at a later age, and with folate deficiency due to different mechanisms with variable response to folinic acid supplementation. Here, we report 2 siblings who presented with global developmental delay and intractable seizures who responded clinically to folinic acid therapy. Their work-up included metabolic and genetic testing. The DNA sequencing was carried out for the ALDH7A1 gene, and the folate receptor 1 (FOLR1) gene. They had very low 5-methyltetrahydrofolate (5-MTHF) in CSF with no systemic folate deficiency and no characteristic peaks on neurotransmitter metabolite chromatogram. A novel mutation in the FOLR1 gene was found. The mutation in this gene is shown to affect CSF folate transport leading to cerebral folate deficiency. The response to treatment with folinic acid was dramatic with improvement in social interaction, mobility, and complete seizure control. We should consider the possibility of this treatable condition in appropriate clinical circumstances early, as diagnosis with favorable outcome depends on the specialized tests. PMID:25274592

  10. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  11. Iron and Folate-Deficiency Anaemias.

    ERIC Educational Resources Information Center

    Hercberg, Serge

    1990-01-01

    Nutritional anemia is believed to be the most widespread nutritional disorder in the world. While it generally affects developing countries, developed countries are also affected to an extent sufficient to justify the implementation of preventive measures at a national level. This report focuses on iron and folate deficiencies, which are by far…

  12. Clinical recognition and aspects of the cerebral folate deficiency syndromes.

    PubMed

    Ramaekers, Vincent; Sequeira, Jeffrey M; Quadros, Edward V

    2013-03-01

    We characterized cerebral folate deficiency (CFD) as any neuro-psychiatric condition associated with low spinal fluid (CSF) N5-methyltetrahydrofolate (MTHF) but normal folate status outside the central nervous system (CNS). The commonest cause underlying CFD syndromes is the presence of serum autoantibodies of the blocking type directed against folate receptor-α (FRα) attached to the plasma-side of choroid plexus epithelial cells. Blocking FR antibodies inhibit MTHF transport across the choroid plexus. Serum titers of FR antibodies may fluctuate significantly over time. Less frequent causes of CFD are FOLR-1 mutations, mitochondrial disorders and inborn errors affecting folate metabolism. Maternal FR antibodies have been associated with neural tube defects while the presence of FR antibodies in either one or both parents increases the risk of an offspring with infantile autism. Recognizable CFD syndromes attributed to FR-antibodies in childhood are infantile-onset CFD presenting 4-6 months after birth, infantile autism with neurological deficits, and a spastic ataxic syndrome from the age of 1 year, while progressive dystonic or schizophrenic syndromes develop during adolescence. FR autoantibodies are frequently found in autism spectrum disorders, in an Aicardi-Goutières variant and in Rett syndrome. The heterogeneous phenotype of CFD syndromes might be determined by different ages of onset and periods when FR autoantibodies are generated with consequent CNS folate deficiency. Folate deficiency during various critical stages of fetal and infantile development affects structural and functional refinement of the brain. Awareness of CFD syndromes should lead to early detection, diagnosis and improved prognosis of these potentially treatable group of autoimmune and genetically determined conditions.

  13. Increased folate uptake prevents dietary development of folate deficiency in the rat brain

    SciTech Connect

    McMartin, K.E.; Collins, T.D.; Eisenga, B.H.; Bhandari, S.D. )

    1990-02-26

    Folic acid and folate deficiency have been implicated in disorders of the central nervous system. In a study of the mechanism for the effects of chronic ethanol on folate homeostasis, the uptake of {sup 3}H-folic acid by the rat brain has been studied. Male Sprague-Dawley rats were fed sulfonamide-supplemented folate-sufficient and folate-deficient liquid diets containing either ethanol or isoenergic carbohydrate as a control. After 16 weeks, severe folate depletion occurred in tissues (liver, kidney, spleen, lung intestine, testes), but not in the brain. Tissue retention of {sup 3}H-folic acid was increased four-fold in the brain of folate-deficient rats. A smaller increase in uptake was observed in the other tissues, except for the liver, in which the retention of {sup 3}H-folic acid was slightly decreased. Chronic ethanol feeding decreased hepatic folate uptake, but not that by the increase the uptake of folate from the plasma of folate-deficient rats, thereby inhibiting the development of brain folate deficiency.

  14. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    PubMed Central

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-01-01

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone. PMID:26247969

  15. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice.

    PubMed

    Li, Yanli; Gao, Rufei; Liu, Xueqing; Chen, Xuemei; Liao, Xinggui; Geng, Yanqing; Ding, Yubin; Wang, Yingxiong; He, Junlin

    2015-08-04

    The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  16. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  17. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  18. The metabolic basis for developmental disorders due to defective folate transport.

    PubMed

    Desai, Ankuri; Sequeira, Jeffrey M; Quadros, Edward V

    2016-07-01

    Folates are essential in the intermediary metabolism of amino acids, synthesis of nucleotides and for maintaining methylation reactions. They are also linked to the production of neurotransmitters through GTP needed for the synthesis of tetrahydrobiopterin. During pregnancy, folate is needed for fetal development. Folate deficiency during this period has been linked to increased risk of neural tube defects. Disturbances of folate metabolism due to genetic abnormalities or the presence of autoantibodies to folate receptor alpha (FRα) can impair physiologic processes dependent on folate, resulting in a variety of developmental disorders including cerebral folate deficiency syndrome and autism spectrum disorders. Overall, adequate folate status has proven to be important during pregnancy as well as neurological development and functioning in neonates and children. Treatment with pharmacologic doses of folinic acid has led to reversal of some symptoms in many children diagnosed with cerebral folate deficiency syndrome and autism, especially in those positive for autoantibodies to FRα. Thus, as the brain continues to develop throughout fetal and infant life, it can be affected and become dysfunctional due to a defective folate transport contributing to folate deficiency. Treatment and prevention of these disorders can be achieved by identification of those at risk and supplementation with folinic acid.

  19. Folate receptor alpha is more than just a folate transporter.

    PubMed

    Mohanty, Vineet; Siddiqui, M Rizwan; Tomita, Tadanori; Mayanil, Chandra Shekhar

    2017-01-01

    Until recently folate receptor alpha (FRα) has only been considered as a folate transporter. However, a novel role of FRα as a transcription factor was reported by our lab. More recently our lab showed a novel pleiotropic role of FRα: (a) direct transcriptional activation of Oct4, Sox2, and Klf4 genes; and (b) repression of biogenesis of miRNAs that target these genes or their effector molecules. These observations beg a question: "Can a simple molecule such as folate be used to manipulate the production and/or differentiation of endogenous neural stem cells (NSCs), which may hold promise for future therapies?" Conditions such as spinal cord injury, motor neuron diseases, Alzheimer's disease and multiple sclerosis may benefit from increasing stem cell pool and promoting specific pathways of differentiation. On the flip-side, these NSCs may also contribute to some CNS tumors therefore promoting differentiation could prove more beneficial. FRα may hold promises for both since it has the potential to remodel chromatin in a context dependent manner. In this commentary we discuss our previous data and new questions arising in the context of the new role for FRα.

  20. Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice.

    PubMed

    Lawrance, Andrea K; Deng, Liyuan; Brody, Lawrence C; Finnell, Richard H; Shane, Barry; Rozen, Rima

    2007-05-01

    Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.

  1. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  2. Thiamine absorption is not compromised in folate-deficient rats

    SciTech Connect

    Walzem, R.L.; Clifford, A.J.

    1988-11-01

    Thiamine absorption and excretion were assessed in rats with severe folate deficiency (FD) by determining the fate of oral TH-labeled and intravenous UC-labeled thiamine over a 6-h test period. Thiamine status was evaluated in these same rats by measuring transketolase activity levels of blood before (TKA) and after (TPPE) addition of thiamine pyrophosphate to the incubation mixture of the assay procedure. Two additional experiments assessed active transport of thiamine and the effect of dietary succinylsulfathiazole (SST) on TKA and TPPE in rats with moderate FD. Intestinal absorption in general and thiamine absorption in particular and thiamine status were unaltered in rats with severe FD. Inanition associated with severe FD may impair thiamine status. Thiamine absorption by active transport was not compromised in FD, and dietary succinylsulfathiazole did not affect thiamine status.

  3. Periconceptional Folate Deficiency and Implications in Neural Tube Defects

    PubMed Central

    Safi, J.; Joyeux, L.; Chalouhi, G. E.

    2012-01-01

    Nutritional deficiencies are preventable etiological and epigenetic factors causing congenital abnormalities, first cause of infant mortality. Folate deficiency has a well-established teratogenic effect, leading to an increasing risk of neural tube defects. This paper highlights the most recent medical literature about folate deficiency, be it maternal or paternal. It then focuses on associated deficiencies as nutritional deficiencies are multiple and interrelated. Observational and interventional studies have all been consistent with a 50–70% protective effect of adequate women consumption of folates on neural tube defects. Since strategies to modify women's dietary habits and vitamin use have achieved little progress, scientific as well as political effort is mandatory in order to implement global preventive public health strategies aimed at improving the alimentation of women in reproductive age, especially folic acid supplementation. Even with the recent breakthrough of fetal surgery for myelomeningocele, the emphasis should still be on prevention as the best practice rather than treatment of neural tube defects. PMID:22900183

  4. Thiamine metabolism in folate deficient rats

    SciTech Connect

    Walzem, R.L.

    1987-01-01

    Folate status (FS) and resultant alterations in thiamine status (TS) were evaluated in weanling rats fed either 17% amino acids (RHAA); 14% amino acids (LOGLU); 20% Vitamin Free casein (VFC) + 8% gelatin (HICG); 10% VFC + 4% gelatin + 0.3% methionine (CGM); or 10% VFC + 4 % gelatin (LOCG). Diets were fed with and without 8 mg FA/kg diet. HICG diet contained 54 ug/kg endogenous folate, the CGM and LOCG, 27 ug/kg, RHAA and LOGLU were folate free. FS was assessed by growth rate, hematology, formiminoglutamic acid excretion following a histidine load and tissue folate levels. TS was assessed by determining the fate of oral /sup 3/H-labeled and intravenous /sup 14/C-labeled thiamine over a six hour test period and by measurement of blood transketolase activity (TKA) and TPP effect (TPPE). TKA and TPPE were measured by an enzymatic single-point assay developed during these investigations.

  5. Folate Transporters in Placentas from Preterm Newborns and Their Relation to Cord Blood Folate and Vitamin B12 Levels

    PubMed Central

    Castaño, Erika; Caviedes, Lorena; Hirsch, Sandra; Llanos, Miguel; Iñiguez, Germán; Ronco, Ana María

    2017-01-01

    Folate deficiency during pregnancy has been related to low birth weight, preterm (PT) birth and other health risks in the offspring; however, it is unknown whether prematurity is related to low folate transport through the placenta due to altered expression of specific folate transporters. We determined placental expression (mRNA and protein concentrations by RT-qPCR and WB respectively) of specific folate transporters: RFC, PCFT/HCP1 and FOLR1 in chorionic (fetal) and basal (maternal) plates of placentas of PT pregnancies (PT, 32–36 weeks, n = 51). Term placentas were used as controls (T, 37–41 weeks, n = 47). Folates and vitamin B12 levels were measured by electrochemiluminescence in umbilical cord blood of newborns. FOLR1 mRNA expression was lower and protein concentration higher in PT placentas (both plates) relative to the control group (p <0.05). In addition, gestational age was positively correlated with mRNA expression (Rho = 0.7), and negatively with protein concentration (Rho = -0.7 for chorionic and -0.43 for basal plate). PCFT/HCP1 mRNA was lower in PT placentas, without changes in protein levels. RFC did not differ in PT placentas compared to controls. PT newborns presented higher cord blood folate level (p = 0.049) along with lower vitamin B12 concentration compared to controls (p = 0.037).In conclusion, placental FOLR1 mRNA was positively associated with gestational age. Conversely, FOLR1 protein concentrations along with folate/vitamin B12 ratio in cord blood were negatively associated with gestational age. Placental FOLR1 is likely the main placental folate transporter to the fetus in newborns. PMID:28103309

  6. Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency

    PubMed Central

    Hoffbrand, A. V.; Newcombe, Beverley F. A.; Mollin, D. L.

    1966-01-01

    A simplified microbiological assay for determining the folate content of red cells is described. As in previously reported methods Lactobacillus casei is used as test organism but two modifications are introduced. First, haemolysis is carried out in water containing 1 g.% of ascorbic acid; secondly, haemolysates are not incubated before the assay. Using this assay, recovery of pteroylglutamic acid added in two different concentrations to five different whole blood samples was 97·0 ± 1·9 S.E. % and 106·1 ± 4·7 S.E. % respectively. The coefficient of variation of the assay was between 11·2 and 15·0%. Haemolysates were best stored deep frozen, showing no significant loss of L. casei activity for three to five months at −20°C. On the other hand, non-haemolysed blood samples were best stored at 4°C. when there was no loss of activity for seven to 10 days. Experiments confirmed that plasma is necessary for the maximum release of red cell L. casei activity, and showed that only small amounts of plasma are necessary; folate- and B12-deficient plasma released slightly lower L. casei activities from red cells than did normal plasma. The red cell folate levels of 40 healthy normal subjects ranged from 160 to 640 mμg. per ml. of packed red cells. One hundred and twenty patients with subnormal serum folate levels due to idiopathic steatorrhoea, nutritional folate deficiency and Crohn's disease, partial gastrectomy, myelosclerosis, and polycythaemia vera were studied. Red cell folate levels were subnormal (range from 7 to 143 mμg. per ml.) in 40 patients with megaloblastic anaemia, the lowest levels occurring in the most anaemic patients. Subnormal red cell folate levels also occurred in 23 (29%) of the 80 non-anaemic patients. There was a good correlation between red cell folate level and severity of folate deficiency assessed by polymorph nuclear lobe counts, and, in the non-anaemic patients bone marrow morphology. It is concluded that, in the absence of B12

  7. Chronic ethanol perturbs testicular folate metabolism and dietary folate deficiency reduces sex hormone levels in the Yucatan micropig.

    PubMed

    Wallock-Montelius, Lynn M; Villanueva, Jesus A; Chapin, Robert E; Conley, A J; Nguyen, Hung P; Ames, Bruce N; Halsted, Charles H

    2007-03-01

    Although alcoholism causes changes in hepatic folate metabolism that are aggravated by folate deficiency, male reproductive effects have never been studied. We evaluated changes in folate metabolism in the male reproductive system following chronic ethanol consumption and folate deficiency. Twenty-four juvenile micropigs received folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE or FDE) for 14 wk, and the differences between the groups were determined by ANOVA. Chronic ethanol consumption (FSE and FDE compared with FS and FD groups) reduced testis and epididymis weights, testis sperm concentrations, and total sperm counts and circulating FSH levels. Folate deficiency (FD and FDE compared with FS and FSE groups) reduced circulating testosterone, estradiol and LH levels, and also testicular 17,20-lyase and aromatase activities. There was histological evidence of testicular lesions and incomplete progression of spermatogenesis in all treated groups relative to the FS control, with the FDE group being the most affected. Chronic ethanol consumption increased testis folate concentrations and decreased testis methionine synthase activity, whereas folate deficiency reduced total testis folate levels and increased methionine synthase activity. In all pigs combined, testicular methionine synthase activity was negatively associated with circulating estradiol, LH and FSH, and 17,20-lyase activity after controlling for ethanol, folate deficiency, and their interaction. Thus, while chronic ethanol consumption primarily impairs spermatogenesis, folate deficiency reduces sex hormones, and the two treatments have opposite effects on testicular folate metabolism. Furthermore, methionine synthase may influence the hormonal regulation of spermatogenesis.

  8. Causes of Vitamin B12 and Folate Deficiency

    USDA-ARS?s Scientific Manuscript database

    This review describes current knowledge of the main causes of vitamin B12 and folate deficiency. The most common explanations for poor B12 status are a low dietary intake of the vitamin (i.e., a low intake of animal-source foods) and malabsorption. Although it has long been known that strict vegetar...

  9. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  10. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    EPA Science Inventory

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  11. The human proton-coupled folate transporter

    PubMed Central

    Desmoulin, Sita Kugel; Hou, Zhanjun; Gangjee, Aleem; Matherly, Larry H.

    2012-01-01

    This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis. PMID:22954694

  12. Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction.

    PubMed

    Qiu, Andong; Min, Sang Hee; Jansen, Michaela; Malhotra, Usha; Tsai, Eugenia; Cabelof, Diane C; Matherly, Larry H; Zhao, Rongbao; Akabas, Myles H; Goldman, I David

    2007-11-01

    This laboratory recently identified a human gene that encodes a novel folate transporter [Homo sapiens proton-coupled folate transporter (HsPCFT); SLC46A1] required for intestinal folate absorption. This study focused on mouse (Mus musculus) PCFT (MmPCFT) and rat (Rattus norvegicus) PCFT (RnPCFT) and addresses their secondary structure, specificity, tissue expression, and regulation by dietary folates. Both rodent PCFT proteins traffic to the cell membrane with the NH(2)- and COOH-termini accessible to antibodies targeted to these domains only in permeabilized HeLa cells. This, together with computer-based topological analyses, is consistent with a model in which rodent PCFT proteins likely contain 12 transmembrane domains. Transport of [(3)H]folates was optimal at pH 5.5 and decreased with increasing pH due to an increase in K(m) and a decrease in V(max). At pH 7.0, folic acid and methotrexate influx was negligible, but there was residual (6S)5-methyltetrahydrofolate transport. Uptake of folates in PCFT-injected Xenopus oocytes was electrogenic and pH dependent. Folic acid influx K(m) values of MmPCFT and RnPCFT, assessed electrophysiologically, were 0.7 and 0.3 microM at pH 5.5 and 1.1 and 0.8 microM at pH 6.5, respectively. Rodent PCFTs were highly specific for monoglutamyl but not polyglutamyl methotrexate. MmPCFT mRNA was highly expressed in the duodenum, proximal jejunum, liver, and kidney with lesser expression in the brain and other tissues. MmPCFT protein was localized to the apical brush-border membrane of the duodenum and proximal jejunum. MmPCFT mRNA levels increased approximately 13-fold in the proximal small intestine in mice fed a folate-deficient vesus folate-replete diet, consistent with the critical role that PCFT plays in intestinal folate absorption.

  13. Folate deficiency and an abnormal lymphocyte deoxyuridine suppression test in monkeys.

    PubMed

    Thenen, S W; Hwang, S M; Blocker, D E; Meadows, C A

    1991-01-01

    Cebus albifrons were fed folate-deficient diets in order to assess folate status at the cellular level with the deoxyuridine suppression test. Plasma and red blood cell folates were significantly lower at 2 months, compared to control values. Hematologic signs of megaloblastic anemia occurred after 6 months, with significantly lower hematocrit, hemoglobin and red blood cell number values and increased polymorphonuclear leukocyte lobe counts. Urinary formiminoglutamic acid excretion also was elevated significantly. Whole blood lymphocyte cultures exhibited abnormal deoxyuridine suppression of [3H]-thymidine incorporation into DNA with folate deficiency. Thus this deoxyuridine suppression test can be used in isolated whole blood lymphocytes of these nonhuman primates to document folate deficiency.

  14. Biology of the major facilitative folate transporters SLC19A1 and SLC46A1.

    PubMed

    Hou, Zhanjun; Matherly, Larry H

    2014-01-01

    This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.

  15. Long interspersed nucleotide element-1 hypomethylation in folate-deficient mouse embryonic stem cells.

    PubMed

    Chang, Shaoyan; Wang, Li; Guan, Yunqian; Shangguan, Shaofang; Du, Qingan; Wang, Yang; Zhang, Ting; Zhang, Yu

    2013-07-01

    Folate is thought to contribute to health and development by methylation regulation. Long interspersed nucleotide element-1 (LINE-1), which is regulated by methylation modification, plays an important role in sculpting the structure and function of genomes. Some studies have shown that folate concentration is related to LINE-1 methylation. However, the direct association between LINE-1 methylation and folate deficiency remains unclear. To explore whether folate deficiency directly induced LINE-1 hypomethylation and to analyze the relationship between folate concentration and the LINE-1 methylation level, mouse ESCs were treated with various concentrations of folate which was measured by chemiluminescent immunoassay, and the homocysteine content was detected by ELISA. LINE-1 methylation was examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry at various time points. Concurrently, cell proliferation and differentiation were observed. The result showed that the intracellular folate decreases under folate-deficient condition, conversely, homocysteine content increased gradually and there was a negatively correlated between them. Folate insufficiency induced LINE-1 hypomethylation at the lowest levels in folate-free group and moderate in folate-deficient group, compared with that in the folate-normal group at day 18. Moreover, LINE-1 methylation level was positively correlated with folate content, and negatively correlated with homocysteine content. At corresponding time points, proliferation and differentiation of mouse ESCs showed no alteration in all groups. Our data indicated that folate deficiency affected the homeostasis of folate-mediated one-carbon metabolism, leading to reduced LINE-1 methylation in mouse ESCs. This study provides preliminary evidence of folate deficiency affecting early embryonic development.

  16. Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice.

    PubMed

    Eckart, S; Hörtnagl, H; Kronenberg, G; Gertz, K; Hörster, H; Endres, M; Hellweg, R

    2013-08-15

    Folate deficiency has been linked to neurodegenerative and stress-related diseases such as stroke, dementia and depression. The role of the neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) in stress-related disorders and neurodegeneration has garnered increasing attention in recent years. Uracil misincorporation is involved in the neuropsychiatric dysfunction induced by experimental folate deprivation. However, the effects of folate deficiency on the expression of NGF and NT-3 in brain tissue have not yet been investigated. In a 2×2 design, aged mice lacking uracil-DNA N-glycosylase (Ung(-/-)) versus wild-type (Ung(+/+)) controls were subjected to a folate-deficient diet versus a regular diet for three months. Independent of genotype, folate deficiency led to decreased NGF protein levels in the frontal cortex and amygdala. In the hippocampus, NGF levels were increased in UNG(-/-) mice on the normal diet, but not under folate deficiency, while in UNG(+/+) mice, folate deprivation did not affect hippocampal NGF content. NT-3 protein concentrations were neither affected by genotype nor by folate deficiency. Altogether, the results of our study show that folate deficiency affects NGF levels in the frontal cortex, amygdala and hippocampus. The decrease in NGF content in the hippocampus in response to folate deficiency in Ung(-/-) mice may contribute to their phenotype of enhanced anxiety and despair-like behavior as well as to selective hippocampal neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. High Prevalence of Vitamin B12 Deficiency and No Folate Deficiency in Young Children in Nepal.

    PubMed

    Ng'eno, Bernadette N; Perrine, Cria G; Whitehead, Ralph D; Subedi, Giri Raj; Mebrahtu, Saba; Dahal, Pradiumna; Jefferds, Maria Elena D

    2017-01-17

    Many children in low- and middle-income countries may have inadequate intake of vitamin B12 and folate; data confirming these inadequacies are limited. We used biochemical, demographic, behavioral and anthropometric data to describe the folate and vitamin B12 concentrations among six- to 23-month-old Nepalese children. Vitamin B12 (serum B12 < 150 pmol/L) and folate deficiencies (red blood cell (RBC) folate < 226.5 nmol/L) were assessed. We used logistic regression to identify predictors of vitamin B12 deficiency. The vitamin B12 geometric mean was 186 pmol/L; 30.2% of children were deficient. The mean RBC folate concentration was 13,612 nmol/L; there was no deficiency. Factors associated with vitamin B12 deficiency included: (a) age six to 11 months (adjusted odds ratio (aOR) 1.51; 95% confidence interval (CI): 1.18, 1.92) or 12-17 months (aOR 1.38; 95% CI: 1.10, 1.72) compared to 18-23 months; (b) being stunted (aOR 1.24; 95% CI: 1.03, 1.50) compared to not being stunted; (c) and not eating animal-source foods (aOR 1.85; 95% CI: 1.42, 2.41) compared to eating animal-source foods the previous day. There was a high prevalence of vitamin B12 deficiency, but no folate deficiency. Improving early feeding practices, including the consumption of rich sources of vitamin B12, such as animal-source foods and fortified foods, may help decrease deficiency.

  18. High Prevalence of Vitamin B12 Deficiency and No Folate Deficiency in Young Children in Nepal

    PubMed Central

    Ng’eno, Bernadette N.; Perrine, Cria G.; Whitehead, Ralph D.; Subedi, Giri Raj; Mebrahtu, Saba; Dahal, Pradiumna; Jefferds, Maria Elena D.

    2017-01-01

    Many children in low- and middle-income countries may have inadequate intake of vitamin B12 and folate; data confirming these inadequacies are limited. We used biochemical, demographic, behavioral and anthropometric data to describe the folate and vitamin B12 concentrations among six- to 23-month-old Nepalese children. Vitamin B12 (serum B12 < 150 pmol/L) and folate deficiencies (red blood cell (RBC) folate < 226.5 nmol/L) were assessed. We used logistic regression to identify predictors of vitamin B12 deficiency. The vitamin B12 geometric mean was 186 pmol/L; 30.2% of children were deficient. The mean RBC folate concentration was 13,612 nmol/L; there was no deficiency. Factors associated with vitamin B12 deficiency included: (a) age six to 11 months (adjusted odds ratio (aOR) 1.51; 95% confidence interval (CI): 1.18, 1.92) or 12–17 months (aOR 1.38; 95% CI: 1.10, 1.72) compared to 18–23 months; (b) being stunted (aOR 1.24; 95% CI: 1.03, 1.50) compared to not being stunted; (c) and not eating animal-source foods (aOR 1.85; 95% CI: 1.42, 2.41) compared to eating animal-source foods the previous day. There was a high prevalence of vitamin B12 deficiency, but no folate deficiency. Improving early feeding practices, including the consumption of rich sources of vitamin B12, such as animal-source foods and fortified foods, may help decrease deficiency. PMID:28106733

  19. Vitamin B12 and folate deficiency in chronic heart failure.

    PubMed

    van der Wal, Haye H; Comin-Colet, Josep; Klip, Ijsbrand T; Enjuanes, Cristina; Grote Beverborg, Niels; Voors, Adriaan A; Banasiak, Waldemar; van Veldhuisen, Dirk J; Bruguera, Jordi; Ponikowski, Piotr; Jankowska, Ewa A; van der Meer, Peter

    2015-02-01

    To determine the prevalence, clinical correlates and the effects on outcome of vitamin B12 and folic acid levels in patients with chronic heart failure (HF). We studied an international pooled cohort comprising 610 patients with chronic HF. The main outcome measure was all-cause mortality. Mean age of the patients was 68±12 years and median serum N-terminal prohormone brain natriuretic peptide level was 1801 pg/mL (IQR 705-4335). Thirteen per cent of the patients had an LVEF >45%. Vitamin B12 deficiency (serum level <200 pg/mL), folate deficiency (serum level <4.0 ng/mL) and iron deficiency (serum ferritin level <100 µg/L, or 100-299 µg/L with a transferrin saturation <20%) were present in 5%, 4% and 58% of the patients, respectively. No significant correlation between mean corpuscular volume and vitamin B12, folic acid or ferritin levels was observed. Lower folate levels were associated with an impaired health-related quality of life (p=0.029). During a median follow-up of 2.10 years (1.31-3.60 years), 254 subjects died. In multivariable proportional hazard models, vitamin B12 and folic acid levels were not associated with prognosis. Vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. Since no significant association was observed between mean corpuscular volume and neither vitamin B12 nor folic acid levels, this cellular index should be used with caution in the differential diagnosis of anaemia in patients with chronic HF. In contrast to iron deficiency, vitamin B12 and folic acid levels were not related to prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Anemias excluding cobalamin and folate deficiencies.

    PubMed

    Dublis, Stephanie; Shah, Shefali; Nand, Sucha; Anderes, Elise

    2014-01-01

    Anemias are one of the commonest maladies affecting humans. They result from either a failure of production by the bone marrow (hypoproliferative), or from premature destruction or loss (hyperproliferative) of red cells. Hypoproliferative anemias typically result from deficiencies of essential nutrients, stem cell abnormalities or deficiency, and infiltrative processes of the bone marrow. In the hyperproliferative forms, the bone marrow function is normal and anemia results from bleeding or shortened erythrocyte lifespan due to hemoglobinopathies, red cell enzyme disorders, membrane defects, or external factors such as antibodies, trauma, or heat injury. The etiology of anemia is frequently obvious, but when obscure, a systematic diagnostic approach frequently yields the answer. It is important to realize that anemias are usually a consequence of another disease process, which must be identified. Without correction of the underlying disease process, the treatment is likely to fail.

  1. Identification of novel mutations in the proton-coupled folate transporter (PCFT-SLC46A1) associated with hereditary folate malabsorption

    PubMed Central

    Shin, Daniel Sanghoon; Mahadeo, Kris; Min, Sang Hee; Diop-Bove, Ndeye; Clayton, Peter; Zhao, Rongbao; Goldman, I. David

    2011-01-01

    Hereditary folate malabsorption (HFM) is an autosomal recessive disorder, recently shown to be due to loss-of-function mutations of the proton-coupled folate transporter (PCFT-SLC46A1), resulting in systemic and central nervous system folate deficiency. Data is emerging on the spectrum of PCFT mutations associated with this disorder. In this report, novel mutations are described in three subjects with HFM: A335D/N68Kfs (c.1004C>A/ c.204-205delCC), a compound heterozygous mutation, and two homozygous PCFT mutations, G338R (c.1012G>C) and E9Gfs (c.17-18insC). Functional assessment of A335D and G338R PCFT mutants transfected into folate transporter-deficient HeLa R1-11 cells indicated a complete loss of transport activity. There were neurological deficiencies in two of the families reported; in particular, late-onset seizures. The importance of early diagnosis and treatment to achieve physiological cerebrospinal fluid folate levels is emphasized. PMID:21333572

  2. Characterisation of exogenous folate transport in Plasmodium falciparum.

    PubMed

    Wang, Ping; Wang, Qi; Sims, Paul F G; Hyde, John E

    2007-07-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5-7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H(+) ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters.

  3. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  4. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  5. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  6. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  7. Effects of vitamin B12 and folate deficiency on brain development in children

    PubMed Central

    Black, Maureen M.

    2011-01-01

    Folate deficiency in the periconceptional period contributes to neural tube defects; deficits in vitamin B12 (cobalamin) have negative consequences on the developing brain during infancy; and deficits of both vitamins are associated with a greater risk of depression during adulthood. This review examines two mechanisms linking folate and vitamin B12 deficiency to abnormal behavior and development in infants: disruptions to myelination and inflammatory processes. Future investigations should focus on the relationship between the timing of deficient and marginal vitamin B12 status and outcomes such as infant growth, cognition, social development, and depressive symptoms, along with prevention of folate and vitamin B12 deficiency. PMID:18709887

  8. Characterisation of exogenous folate transport in Plasmodium falciparum

    PubMed Central

    Wang, Ping; Wang, Qi; Sims, Paul F.G.; Hyde, John E.

    2007-01-01

    Folate salvage by Plasmodium falciparum is an important source of key cofactors, but little is known about the underlying mechanism. Using synchronised parasite cultures, we observed that uptake of this dianionic species against the negative-inward electrochemical gradient is highly dependent upon cell-cycle stage, temperature and pH, but not on mono- or divalent metal ions. Energy dependence was tested with different sugars; glucose was necessary for folate import, although fructose was also able to function in this role, unlike sugars that cannot be processed through the glycolytic pathway. Import into both infected erythrocytes and free parasites was strongly inhibited by the anion-channel blockers probenecid and furosemide, which are likely to be acting predominantly on specific folate transporters in both cases. Import was not affected by high concentrations of the antifolate drugs pyrimethamine and sulfadoxine, but was inhibited by the close folate analogue methotrexate. The pH optimum for folate uptake into infected erythrocytes was 6.5–7.0. Dinitrophenol and nigericin, which strongly facilitate the equilibration of H+ ions across biological membranes and thus abolish or substantially reduce the proton gradient, inhibited folate uptake profoundly. The ATPase inhibitor concanamycin A also greatly reduced folate uptake, further demonstrating a link to ATP-powered proton transport. These data strongly suggest that the principal folate uptake pathway in P. falciparum is specific, highly regulated, dependent upon the proton gradient across the parasite plasma membrane, and is likely to be mediated by one or more proton symporters. PMID:17509698

  9. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    PubMed

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism.

  10. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children

    PubMed Central

    Blatter, Joshua; Brehm, John M.; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T.; Litonjua, Augusto A.; Canino, Glorisa

    2016-01-01

    Background: Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Methods: Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0–15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). Measurements and Main Results: In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1–4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7–21.6). Conclusions: Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations. PMID:26561879

  11. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children.

    PubMed

    Blatter, Joshua; Brehm, John M; Sordillo, Joanne; Forno, Erick; Boutaoui, Nadia; Acosta-Pérez, Edna; Alvarez, María; Colón-Semidey, Angel; Weiss, Scott T; Litonjua, Augusto A; Canino, Glorisa; Celedón, Juan C

    2016-02-01

    Little is known about folate and atopy or severe asthma exacerbations. We examined whether folate deficiency is associated with number of positive skin tests to allergens or severe asthma exacerbations in a high-risk population and further assessed whether such association is explained or modified by vitamin D status. Cross-sectional study of 582 children aged 6 to 14 years with (n = 304) and without (n = 278) asthma in San Juan, Puerto Rico. Folate deficiency was defined as plasma folate less than or equal to 20 ng/ml. Our outcomes were the number of positive skin tests to allergens (range, 0-15) in all children and (in children with asthma) one or more severe exacerbations in the previous year. Logistic and negative binomial regression models were used for the multivariate analysis. All multivariate models were adjusted for age, sex, household income, residential proximity to a major road, and (for atopy) case/control status; those for severe exacerbations were also adjusted for use of inhaled corticosteroids and vitamin D insufficiency (a plasma 25[OH]D < 30 ng/ml). In a multivariate analysis, folate deficiency was significantly associated with an increased degree of atopy and 2.2 times increased odds of at least one severe asthma exacerbation (95% confidence interval for odds ratio, 1.1-4.6). Compared with children who had normal levels of both folate and vitamin D, those with both folate deficiency and vitamin D insufficiency had nearly eightfold increased odds of one or more severe asthma exacerbation (95% confidence interval for adjusted odds ratio, 2.7-21.6). Folate deficiency is associated with increased degree of atopy and severe asthma exacerbations in school-aged Puerto Ricans. Vitamin D insufficiency may further increase detrimental effects of folate deficiency on severe asthma exacerbations.

  12. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2009-01-08

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.

  13. The Major Facilitative Folate Transporters Solute Carrier 19A1 and Solute Carrier 46A1: Biology and Role in Antifolate Chemotherapy of Cancer

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun

    2014-01-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases. PMID:24396145

  14. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer.

    PubMed

    Matherly, Larry H; Wilson, Mike R; Hou, Zhanjun

    2014-04-01

    This review summarizes the biology of the major facilitative membrane transporters, the reduced folate carrier (RFC) (Solute Carrier 19A1) and the proton-coupled folate transporter (PCFT) (Solute Carrier 46A1). Folates are essential vitamins, and folate deficiency contributes to a variety of health disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates the intestinal absorption of dietary folates and appears to be important for transport of folates into the central nervous system. Clinically relevant antifolates for cancer, such as methotrexate and pralatrexate, are transported by RFC, and loss of RFC transport is an important mechanism of methotrexate resistance in cancer cell lines and in patients. PCFT is expressed in human tumors, and is active at pH conditions associated with the tumor microenvironment. Pemetrexed is an excellent substrate for both RFC and PCFT. Novel tumor-targeted antifolates related to pemetrexed with selective membrane transport by PCFT over RFC are being developed. In recent years, there have been major advances in understanding the structural and functional properties and the regulation of RFC and PCFT. The molecular bases for methotrexate resistance associated with loss of RFC transport and for hereditary folate malabsorption, attributable to mutant PCFT, were determined. Future studies should continue to translate molecular insights from basic studies of RFC and PCFT biology into new therapeutic strategies for cancer and other diseases.

  15. Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase.

    PubMed

    Kronenberg, Golo; Harms, Christoph; Sobol, Robert W; Cardozo-Pelaez, Fernando; Linhart, Heinz; Winter, Benjamin; Balkaya, Mustafa; Gertz, Karen; Gay, Shanna B; Cox, David; Eckart, Sarah; Ahmadi, Michael; Juckel, Georg; Kempermann, Gerd; Hellweg, Rainer; Sohr, Reinhard; Hörtnagl, Heide; Wilson, Samuel H; Jaenisch, Rudolf; Endres, Matthias

    2008-07-09

    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency.

  16. Interactions of ethanol and folate deficiency in development of alcoholic liver disease in the micropig.

    PubMed Central

    Halsted, Charles H.; Villanueva, Jesus A.; Devlin, Angela M.; James, S. Jill

    2002-01-01

    Folate deficiency is present in most patients with alcoholic liver disease (ALD), whereas folate regulates and alcoholism perturbs intrahepatic methionine metabolism, and S-adenosyl-methionine prevents the development of experimental ALD. Our studies explored the hypothesis that abnormal methionine metabolism is exacerbated by folate deficiency and promotes the development of ALD in the setting of chronic ethanol exposure. Using the micropig animal model, dietary combinations of folate deficiency and a diet containing 40% of kcal as ethanol were followed by measurements of hepatic methionine metabolism and indices of ALD. Alcoholic liver injury, expressed as steatohepatitis in terminal 14 week liver specimens, was evident in micropigs fed the combined ethanol containing and folate deficient diet but not in micropigs fed each diet separately. Perturbations of methionine metabolism included decreased hepatic S-adenosylmethionine and glutathione with increased products of DNA and lipid oxidation. Thus, the development of ALD is linked to abnormal methionine metabolism and is accelerated in the presence of folate deficiency. PMID:12053707

  17. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    USDA-ARS?s Scientific Manuscript database

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  18. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig.

    PubMed

    Halsted, Charles H; Villanueva, Jesus A; Devlin, Angela M; Niemelä, Onni; Parkkila, Seppo; Garrow, Timothy A; Wallock, Lynn M; Shigenaga, Mark K; Melnyk, Stepan; James, S Jill

    2002-07-23

    Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2'-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury.

  19. Folate deficiency disturbs hepatic methionine metabolism and promotes liver injury in the ethanol-fed micropig

    PubMed Central

    Halsted, Charles H.; Villanueva, Jesus A.; Devlin, Angela M.; Niemelä, Onni; Parkkila, Seppo; Garrow, Timothy A.; Wallock, Lynn M.; Shigenaga, Mark K.; Melnyk, Stepan; James, S. Jill

    2002-01-01

    Alcoholic liver disease is associated with abnormal hepatic methionine metabolism and folate deficiency. Because folate is integral to the methionine cycle, its deficiency could promote alcoholic liver disease by enhancing ethanol-induced perturbations of hepatic methionine metabolism and DNA damage. We grouped 24 juvenile micropigs to receive folate-sufficient (FS) or folate-depleted (FD) diets or the same diets containing 40% of energy as ethanol (FSE and FDE) for 14 wk, and the significance of differences among the groups was determined by ANOVA. Plasma homocysteine levels were increased in all experimental groups from 6 wk onward and were greatest in FDE. Ethanol feeding reduced liver methionine synthase activity, S-adenosylmethionine (SAM), and glutathione, and elevated plasma malondialdehyde (MDA) and alanine transaminase. Folate deficiency decreased liver folate levels and increased global DNA hypomethylation. Ethanol feeding and folate deficiency acted together to decrease the liver SAM/S-adenosylhomocysteine (SAH) ratio and to increase liver SAH, DNA strand breaks, urinary 8-oxo-2′-deoxyguanosine [oxo(8)dG]/mg of creatinine, plasma homocysteine, and aspartate transaminase by more than 8-fold. Liver SAM correlated positively with glutathione, which correlated negatively with plasma MDA and urinary oxo(8)dG. Liver SAM/SAH correlated negatively with DNA strand breaks, which correlated with urinary oxo(8)dG. Livers from ethanol-fed animals showed increased centrilobular CYP2E1 and protein adducts with acetaldehyde and MDA. Steatohepatitis occurred in five of six pigs in FDE but not in the other groups. In summary, folate deficiency enhances perturbations in hepatic methionine metabolism and DNA damage while promoting alcoholic liver injury. PMID:12122204

  20. Genetics Home Reference: cerebral folate transport deficiency

    MedlinePlus

    ... treatment, these neurological problems worsen over time. Related Information What does it mean if a disorder seems ... have been described in the scientific literature. Related Information What information about a genetic condition can statistics ...

  1. Review of the magnitude of folate and vitamin B12 deficiencies worldwide

    USDA-ARS?s Scientific Manuscript database

    Human deficiencies of folate and vitamin B12 result in adverse effects which may be of public health significance, but the magnitude of these deficiencies is unknown. Therefore, we examine the prevalence data currently available, assess global coverage of surveys, determine the frequency with which...

  2. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver.

    PubMed

    Min, Hyesun; Im, Eun-Sun; Seo, Jung-Sook; Mun, Ju Ae; Burri, Betty J

    2005-12-01

    We recently observed that ethanol feeding impairs 10-formyltetrahydrofolate (10-FTHF) dehydrogenase (EC 1.5.1.6.) and 10-FTHF hydrolase activity in rats. In the present study, we explored the effects of folate deficiency or sufficiency combined with alcoholic intake on 10-FTHF and possible mechanisms by which chronic ethanol ingestion produces folate deficiency. Sprague-Dawley rats were fed either folate-sufficient (FS) or folate-deficient (FD) diets; with or without ethanol (E) for four weeks. Hepatic 10-FTHF dehydrogenase and hydrolase activity, plasma folate and homocysteine were measured at baseline and after feeding experimental diets. Liver weight increased slightly with either folate deficiency or ethanol consumption. In rats fed the folate-sufficient diet with ethanol (FSE), plasma folate was decreased slightly (p<0.05) and plasma homocysteine elevated compared to rats fed the FS diet without ethanol. Ethanol did not affect plasma folate and plasma homocysteine in FD rats. Red-blood cell (RBC) folate was increased similarly in rats by ethanol feeding (FSE and FDE>FS and FD). Feeding folate deficient or ethanol (FSE, FD and FDE) diets depressed hepatic activities of 10-FTHF dehydrogenase, which catalyzes the oxidative deformylation of 10-FTHF to tetrahydrofolate (THF) and carbon dioxide. Rats consuming the FDE diet had the lowest enzyme activities of the experimental groups, implying that folate deficiency and ethanol consumption each affect enzyme activity. We confirm that ethanol decreases hepatic 10-FTHF dehydrogenase activity and show that this decrease occurs irrespective of folate status. This shows that modulation of 10-FTHF is one possible mechanism by which ethanol intake decreases folate status and affects one-carbon metabolism.

  3. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice.

    PubMed

    Wang, Xueqian; Cabrera, Robert M; Li, Yue; Miller, David S; Finnell, Richard H

    2013-03-01

    Folate deficiency has been associated with many adverse clinical manifestations. The blood-brain barrier (BBB), formed by brain capillary endothelial cells, protects the brain from exposure to neurotoxicants. The function of BBB is modulated by multiple ABC transporters, particularly P-glycoprotein. A proton-coupled folate transporter (PCFT)-deficient mouse has been previously described as a model for systemic folate deficiency. Herein, we demonstrate that exposing mouse brain capillaries to the antiepileptic drug, valproic acid (VPA; 5 μM), significantly increased P-glycoprotein transport function in the wild-type animals. A ligand to the aryl hydrocarbon receptor, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produced a similar induction of P-glycoprotein, which tightened the BBB, thereby increasing the neuroprotection. However, VPA- or TCDD-induced P-glycoprotein transport was blocked in the PCFT-nullizygous mice, indicating that multiple neuroprotective mechanisms are compromised under folate-deficient conditions. Brain capillaries from S-folinic acid (SFA; 40 mg/kg)-treated PCFT-nullizygous mice exhibited increased P-glycoprotein transport following VPA exposure. This suggests that SFA supplementation restored the normal BBB function. In addition, we show that tight-junction proteins are disintegrated in the PCFT mutant mice. Taken together, these findings strongly suggest that folate deficiency disrupts the BBB function by targeting the transporter and tight junctions, which may contribute to the development of neurological disorders.

  4. Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled folate transporter

    PubMed Central

    Borzutzky, Arturo; Crompton, Brian; Bergmann, Anke K.; Giliani, Silvia; Baxi, Sachin; Martin, Madelena; Neufeld, Ellis J.; Notarangelo, Luigi D.

    2009-01-01

    Hereditary folate malabsorption is a rare inborn error of metabolism due to mutations in the proton-coupled folate transporter (PCFT). Clinical presentation of PCFT deficiency may mimic severe combined immune deficiency (SCID). We report a 4-month-old female who presented with failure to thrive, normocytic anemia, Pneumocystis jirovecii pneumonia and systemic cytomegalovirus infection. Immunological evaluation revealed hypogammaglobulinemia, absent antibody responses, and lack of mitogen-induced lymphocyte proliferative responses. However, the absolute number and distribution of lymphocyte subsets, including naïve T cells and recent thymic emigrants, were normal, arguing against primary SCID. Serum and cerebrospinal fluid folate levels were undetectable. A homozygous 1082-1G>A mutation of the PCFT gene was found, resulting in skipping of exon 3. Parenteral folinic acid repletion resulted in normalization of anemia, humoral and cellular immunity, and full clinical recovery. PCFT mutations should be considered in infants with SCID-like phenotype, as the immunodeficiency is reversible with parenteral folinic acid repletion. PMID:19740703

  5. Advanced age as a risk factor for folate-associated functional cobalamin deficiency.

    PubMed

    Solomon, Lawrence R

    2013-04-01

    To determine whether high serum folate levels contribute to metabolite changes in elderly subjects with normal cobalamin levels. Case series. Outpatient clinic at a university-based staff model health maintenance organization. Two hundred thirty-three ambulatory individuals without diabetes mellitus with normal renal function and normal cobalamin levels evaluated for cobalamin deficiency. Cobalamin, serum folate, methylmalonic acid (MMA), and homocysteine. Older individuals (≥60) with low-normal cobalamin levels (201-300 pg/mL) had higher MMA and lower homocysteine levels when serum folate levels were high (>20 ng/mL) than when serum folate levels were normal (P < .02), but serum folate levels within the normal range were not a determinant of either metabolite. In younger subjects with low-normal cobalamin levels, high serum folate levels were not associated with significant differences in either metabolite. At mid-normal cobalamin levels (301-600 pg/mL), high serum folate levels were associated with lower homocysteine levels in older adults (P < .001) but not with differences in MMA in either age group. Cobalamin therapy decreased or normalized MMA and homocysteine in 89% or more of participants even at pretherapy cobalamin levels greater than 600 pg/mL. High serum folate levels are associated with higher MMA levels when cobalamin levels are low-normal, and this effect is age dependent, not progressive within the normal serum folate range (suggesting a threshold effect), and reversed by cobalamin therapy. Because MMA may be neurotoxic, these findings suggest caution in the use of folic acid supplements in elderly adults. © 2013, Copyright the Author Journal compilation © 2013, The American Geriatrics Society.

  6. Folate deficiency-induced oxidative stress contributes to neuropathy in young and aged zebrafish--implication in neural tube defects and Alzheimer's diseases.

    PubMed

    Kao, Tseng-Ting; Chu, Chia-Yi; Lee, Gang-Hui; Hsiao, Tsun-Hsien; Cheng, Nai-Wei; Chang, Nan-Shan; Chen, Bing-Hung; Fu, Tzu-Fun

    2014-11-01

    Folate is a nutrient essential for the development, function and regeneration of nervous systems. Folate deficiency has been linked to many neurological disorders including neural tube defects in fetus and Alzheimer's diseases in the elderly. However, the etiology underlying these folate deficiency-associated diseases is not completely understood. In this study, zebrafish transgenic lines with timing and duration-controllable folate deficiency were developed by ectopically overexpressing a recombinant EGFP-γ-glutamyl hydrolase (γGH). Impeded neural crest cell migration was observed in the transgenic embryos when folate deficiency was induced in early stages, leading to defective neural tube closure and hematopoiesis. Adding reduced folate or N-acetylcysteine reversed the phenotypic anomalies, supporting the causal link between the increased oxidative stress and the folate deficiency-induced abnormalities. When folate deficiency was induced in aged fish accumulation of beta-amyloid and phosphorylated Tau protein were found in the fish brain cryo-sections. Increased autophagy and accumulation of acidic autolysosome were apparent in folate deficient neuroblastoma cells, which were reversed by reduced folate or N-acetylcysteine supplementation. Decreased expression of cathepsin B, a lysosomal protease, was also observed in cells and tissue with folate deficiency. We concluded that folate deficiency-induced oxidative stress contributed to the folate deficiency-associated neuropathogenesis in both early and late stages of life.

  7. Folate Deficiency during Early-Mid Pregnancy Affects the Skeletal Muscle Transcriptome of Piglets from a Reciprocal Cross

    PubMed Central

    Li, Yi; Zhang, Xu; Sun, Yanxiao; Feng, Qiang; Li, Guanglei; Wang, Meng; Cui, Xinxing; Kang, Li; Jiang, Yunliang

    2013-01-01

    Folate deficiency (FD) during pregnancy can cause fetal intrauterine growth restriction in pigs, of which the skeletal dysplasia is a major manifestation. Factors influencing muscle development are very important in the formation of porcine meat quality trait. However, the effect of folate deficiency on skeletal muscle development and its molecular mechanisms are unknown. The objective of this study is to determine the effect of maternal folate deficiency on the skeletal muscle transcriptome of piglets from a reciprocal cross, in which full-sibling Landrace (LR) and full-sibling Chinese local breed Laiwu (LW) pigs were used for reciprocal cross matings, and sows were fed either a folate deficient or a normal diet during early-mid gestation. In addition, the difference in the responsiveness of the piglets to folate deficiency during early-mid pregnancy between reciprocal cross groups was investigated. Longissimus dorsi (LD) muscle samples were collected from newborn piglets and a 4 × 44K Agilent porcine oligo microarray was used for transcriptome analysis of porcine LD muscle. The results showed that folate deficiency during early-mid pregnancy affected piglet body weight, LD muscle fiber number and content of intramuscular triglyceride. The microarray results indicated that 3154 genes were differentially expressed between folate deficient and normal piglets from the LR♂ × LW♀ cross, and 3885 differentially expressed genes (DEGs) in the ones from the LW♂ × LR♀ cross. From functional analyses, sow folate deficiency affected almost all biological processes in the progeny. Lipid metabolism-related genes and associated metabolic pathways were regulated extensively by folate deficiency, especially in LR♂ × LW♀ cross piglets. Most of the genes that are regulated by folate deficiency in the LD muscle of piglets were different between LR♂ × LW♀ and LW♂ × LR♀ crosses, suggesting some epigenetic effects of FD exist in genes underlying myogenesis and

  8. Long-Term Dietary Folate Deficiency Accelerates Progressive Hearing Loss on CBA/Ca Mice

    PubMed Central

    Martínez-Vega, Raquel; Murillo-Cuesta, Silvia; Partearroyo, Teresa; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A.

    2016-01-01

    Dietary folic acid deficiency induced early hearing loss in C57BL/6J mice after 2-months, corroborates the epidemiological association previously described between vitamin deficiency and this sensory impairment. However, this strain is prone to early hearing loss, and hence we decided to analyze whether the effects exerted by folate deprivation follow the same pattern in a mouse strain such as CBA/Ca, which is resistant to hearing impairment. Here, we show results of a long-term study on hearing carried out on CBA/Ca mice subjected to dietary folate deprivation. Systemic changes included decreased serum folate levels, hyperhomocysteinemia and signs of anemia in the group fed with folate-deficient (FD) diet. Initial signs of hearing loss were detected in this strain after 8-months of vitamin deficiency, and correlated with histological damage in the cochleae. In conclusion, the data presented reinforce the importance of adequate folic acid levels for the auditory system and suggest that the impact of dietary deficiencies may depend on the genetic background. PMID:27630560

  9. Supplementation with apple juice can compensate for folate deficiency in a mouse model deficient in methylene tetrahydrofolate reductase activity.

    PubMed

    Chan, A; Ortiz, D; Rogers, E; Shea, T B

    2011-03-01

    Folate insufficiency promotes developmental as well as age-related disorders of the nervous system. The C677T variant of 5',10' methylene tetrahydrofolate reductase (MTHFR; which utilizes folate to regenerate methionine from homocysteine) displays reduced activity, and therefore promotes functional folate deficiency. Mice heterozygously lacking this gene (MTHFR+/- mice) represent a useful model for analysis of the impact of MTHFR deficiency and potential compensatory approaches. Since consumption of apple products has benefited mouse models subjected to dietary and/or genetically-induced folate deficiency, we compared the impact of supplementation with apple juice on cognitive and neuromuscular performance of mice MTHFR+/+ and +/- mice with and without dietary folate deficiency. Mice were maintained for 1 month on a standard, complete diet, or a challenge diet lacking folate, and vitamin E and containing a 50 g iron/500 g total diet as a pro-oxidant. Additional groups received apple juice concentrate (AJC) diluted to 0.5% (vol/vol) in their sole source of drinking water. MTHFR+/- mice demonstrated significantly impaired cognitive performance in standard reward-based T maze and the non-reward-based Y maze tests as compared to MTHFR+/+ when maintained on the complete diet; supplementation with AJC improved the performance of MTHFR+/- to the level observed for MTHFR+/+ mice. Maintenance for 1 month on the deficient diet reduced the performance of both genotypes in both tests, but supplementation with AJC prevented these reductions. MTHFR+/+ and +/- displayed virtually identical neuromuscular performance in the standard paw grip endurance test when maintained on the complete diet, and displayed similar, non-significant declines in performance when maintained on the deficient diet. Supplementation of either diet with AJC dramatically improved the performance of both genotypes. The findings presented herein indicate that supplementation with AJCs can compensate for

  10. Folate deficiency in north Indian children undergoing maintenance chemotherapy for acute lymphoblastic leukemia-Implications and outcome.

    PubMed

    Roy Moulik, Nirmalya; Kumar, Archana; Agrawal, Suraksha; Mahdi, Abbas Ali

    2017-08-02

    Treatment-related toxicity and mortality are not uncommon during maintenance chemotherapy for childhood acute lymphoblastic leukemia (ALL), especially in the low- and middle-income countries (LMIC). Undernutrition and micronutrient deficiencies are commonly seen in children from LMICs undergoing treatment for ALL. The present study examines the prevalence and clinical implications of folate deficiency in north Indian children with ALL during the maintenance phase of treatment in view of prolonged antifolate treatment and high population prevalence of folate deficiency. Pre-cycle folate levels/deficiency as well as weight for age z-score and serum albumin level were determined and correlated with complications of treatment and mortality encountered during the maintenance phase of treatment. Twenty-nine of 52 children enrolled in the study had folate deficiency at some point during maintenance chemotherapy. Neutropenia (18 of 29 vs. 4 of 23; P = 0.002), thrombocytopenia (17 of 29 vs. 4 of 23; P = 0.005), febrile neutropenia (17 of 29 vs. 4 of 23; P = 0.005), and need for chemotherapy dose reduction (20 of 29 vs. 7 of 21; P = 0.01) were more common in folate-deficient children. Maintenance deaths were higher (8 of 29 vs. 1 of 23; P = 0.03) and survival lower (P = 0.02) in deficient children. In multivariate analysis, hypoalbuminemia (P = 0.02) and folate deficiency (P = 0.01) were associated with febrile neutropenia, and folate deficiency with maintenance deaths (P = 0.03). Folate deficiency was associated with treatment-related complications and adverse outcome in our patients. The risks and benefits of folate supplementation in deficient children during maintenance chemotherapy need to be explored with properly designed randomized studies in similar settings. © 2017 Wiley Periodicals, Inc.

  11. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies.

    PubMed

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter; Rychlik, Michael

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5-25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency.

  12. Stable Isotope Dilution Assays for Clinical Analyses of Folates and Other One-Carbon Metabolites: Application to Folate-Deficiency Studies

    PubMed Central

    Kopp, Markus; Morisset, Rosalie; Koehler, Peter

    2016-01-01

    Folate deficiency is generally accepted as a potential direct or indirect risk factor for diseases including spina bifida, coronary heart diseases, malfunctions of the central nervous system, and cancer. The direct inclusion of folates in the methylation cycle, including the remethylation of homocysteine and regeneration of S-adenosylmethionine, underlines the importance of these vitamins and other components of one-carbon metabolism. Therefore, the aim of the present study was to develop a multiple stable isotope dilution assay (SIDA) for the respective analytes in plasma and tissue samples to allow for a closer look at the interaction between a severe folate deficiency and local folate status, as well as further interactions with circulating S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine. The analytical methods were based on SIDAs coupled with liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis using the deuterated folates [2H4]-5-methyltetrahydrofolic acid, [2H4]-5-formyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, [2H4]-10-formylfolic acid, and [2H4]-folic acid and the deuterated one-carbon metabolites [2H4]-homocysteine, [2H4]-S-adenosylhomocysteine, and [2H3]-S-adenosylmethionine as internal standards. Three analytical methods have been developed for the analysis of homocysteine, S-adenosylmethionine, S-adenosylhomocysteine, and six folate vitamers. Validation data for the analysis of C1-metabolites in plasma and tissue samples or folate analysis in tissue samples revealed excellent sensitivity, precision, and recovery for all analytes studied. The miniaturized methods using sample volumes as low as 50 μL and weighed portions of 5–25 mg will allow the assessment of the status of folates and additional biomarkers of impaired one-carbon metabolism during folate deficiency. PMID:27276031

  13. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  14. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  15. FOLATE DEFICIENCY ENHANCES ARSENIC EFFECTS ON EXPRESSION OF GENES INVOLVED IN EPIDERMAL DIFFERENTIATION

    EPA Science Inventory

    Chronic arsenic exposure in humans is associated with cancers of the skin, lung, and bladder. There is evidence that folate deficiency may increase susceptibility to arsenic¿s effects, including arsenic-induced skin lesions. K6/ODC mice develop skin tumors when exposed to 10 ppm ...

  16. MATERNAL FOLATE DEFICIENCY AMPLIFIES THE CELLULAR AND TERATOLOGIC EFFECTS OF TOMUDEX

    EPA Science Inventory

    Lau, C., J.E. Andrews, B.E. Grey*, R.G. Hanson*, J.R. Thibodeaux* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, US EPA, ORD, Research Triangle Park, North Carolina. Maternal folate deficiency amplifies the cellular and teratologic effects of Tomudex.
    Maternal fo...

  17. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    ERIC Educational Resources Information Center

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A.; Scaglia, Fernando

    2008-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects…

  18. Brief Report: Autistic Symptoms, Developmental Regression, Mental Retardation, Epilepsy, and Dyskinesias in CNS Folate Deficiency

    ERIC Educational Resources Information Center

    Moretti, Paolo; Peters, Sarika U.; del Gaudio, Daniela; Sahoo, Trilochan; Hyland, Keith; Bottiglieri, Teodoro; Hopkin, Robert J.; Peach, Elizabeth; Min, Sang Hee; Goldman, David; Roa, Benjamin; Bacino, Carlos A.; Scaglia, Fernando

    2008-01-01

    We studied seven children with CNS folate deficiency (CFD). All cases exhibited psychomotor retardation, regression, cognitive delay, and dyskinesia; six had seizures; four demonstrated neurological abnormalities in the neonatal period. Two subjects had profound neurological abnormalities that precluded formal behavioral testing. Five subjects…

  19. MATERNAL FOLATE DEFICIENCY AMPLIFIES THE CELLULAR AND TERATOLOGIC EFFECTS OF TOMUDEX

    EPA Science Inventory

    Lau, C., J.E. Andrews, B.E. Grey*, R.G. Hanson*, J.R. Thibodeaux* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, US EPA, ORD, Research Triangle Park, North Carolina. Maternal folate deficiency amplifies the cellular and teratologic effects of Tomudex.
    Maternal fo...

  20. Deleterious Effects of Chronic Folate Deficiency in the Ts65Dn Mouse Model of Down Syndrome

    PubMed Central

    Helm, Susan; Blayney, Morgan; Whited, Taylor; Noroozi, Mahjabin; Lin, Sen; Kern, Semira; Green, David; Salehi, Ahmad

    2017-01-01

    Folate is an important B vitamin naturally found in the human diet and plays a critical role in methylation of nucleic acids. Indeed, abnormalities in this major epigenetic mechanism play a pivotal role in the pathogenesis of cognitive deficit and intellectual disability in humans. The most common cause of cognitive dysfunction in children is Down syndrome (DS). Since folate deficiency is very common among the pediatric population, we questioned whether chronic folate deficiency (CFD) exacerbates cognitive dysfunction in a mouse model of DS. To test this, adult Ts65Dn mice and their disomic littermates were chronically fed a diet free of folic acid while preventing endogenous production of folate in the digestive tract for a period of 8 weeks. Our results show that the Ts65Dn mouse model of DS was significantly more vulnerable to CFD in terms of plasma homocysteine and N5-methyltetrahydrofolate (5-MTHF) levels. Importantly, these changes were linked to degenerative alterations in hippocampal dendritic morphology and impaired nest building behavior in Ts65Dn mice. Based on our results, a rigorous examination of folate intake and its metabolism in individuals with DS is warranted. PMID:28649192

  1. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice

    PubMed Central

    Wang, Xueqian; Cabrera, Robert M.; Li, Yue; Miller, David S.; Finnell, Richard H.

    2013-01-01

    Folate deficiency has been associated with many adverse clinical manifestations. The blood-brain barrier (BBB), formed by brain capillary endothelial cells, protects the brain from exposure to neurotoxicants. The function of BBB is modulated by multiple ABC transporters, particularly P-glycoprotein. A proton-coupled folate transporter (PCFT)-deficient mouse has been previously described as a model for systemic folate deficiency. Herein, we demonstrate that exposing mouse brain capillaries to the antiepileptic drug, valproic acid (VPA; 5 μM), significantly increased P-glycoprotein transport function in the wild-type animals. A ligand to the aryl hydrocarbon receptor, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produced a similar induction of P-glycoprotein, which tightened the BBB, thereby increasing the neuroprotection. However, VPA- or TCDD-induced P-glycoprotein transport was blocked in the PCFT-nullizygous mice, indicating that multiple neuroprotective mechanisms are compromised under folate-deficient conditions. Brain capillaries from S-folinic acid (SFA; 40 mg/kg)-treated PCFT-nullizygous mice exhibited increased P-glycoprotein transport following VPA exposure. This suggests that SFA supplementation restored the normal BBB function. In addition, we show that tight-junction proteins are disintegrated in the PCFT mutant mice. Taken together, these findings strongly suggest that folate deficiency disrupts the BBB function by targeting the transporter and tight junctions, which may contribute to the development of neurological disorders.—Wang, X., Cabrera, R. M., Li, Y., Miller, D. S., Finnell, R. H. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. PMID:23212123

  2. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease.

    PubMed

    Cario, Holger; Smith, Desirée E C; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-02-11

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.

  3. Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

    PubMed Central

    Cario, Holger; Smith, Desirée E.C.; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-01-01

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. PMID:21310277

  4. Folate Deficiency and Gene Polymorphisms of MTHFR, MTR and MTRR Elevate the Hyperhomocysteinemia Risk.

    PubMed

    Li, Wen-Xing; Cheng, Fei; Zhang, A-Jie; Dai, Shao-Xing; Li, Gong-Hua; Lv, Wen-Wen; Zhou, Tao; Zhang, Qiang; Zhang, Hong; Zhang, Tao; Liu, Fang; Liu, Dahai; Huang, Jing-Fei

    2017-03-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVDs). We aimed to investigate the joint effect of homocysteine metabolism gene polymorphisms, as well as the folate deficiency on the risk of HHcy in a Chinese hypertensive population. This study enrolled 480 hypertensive patients aged 28 - 75 from six hospitals in different Chinese regions from 9/2005 - 12/2005. Known genotypes of methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G were detected by PCRRFLP methods. Serum Hcy was measured by high-performance liquid chromatography and serum folate was measured by chemiluminescent immunoassay. MTHFR C677T and MTR A2756G can independently elevate the risk of HHcy (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA, p = 0.026, respectively), whereas MTHFR A1298C decreased HHcy risk (AC + CC vs. AA, p < 0.001) and showed a protective effect against HHcy risk. Importantly, the joint effect of these risk genotypes showed significantly higher odds of HHcy than non-risk genotypes, especially the patients with four risk genotypes. It is noteworthy that this deleterious effect was aggravated by folate deficiency. These findings were verified by generalized multifactor dimensionality reduction model (p = 0.001) and a cumulative effects model (p < 0.001). We have first demonstrated that the joint effect of homocysteine metabolism gene polymorphisms and folate deficiency lead to dramatic elevations in the HHcy risk.

  5. Folate Deficiency Is Prevalent in Women of Childbearing Age in Belize and Is Negatively Affected by Coexisting Vitamin B-12 Deficiency: Belize National Micronutrient Survey 2011.

    PubMed

    Rosenthal, Jorge; Largaespada, Natalia; Bailey, Lynn B; Cannon, Michael; Alverson, C J; Ortiz, Dayrin; Kauwell, Gail Pa; Sniezek, Joe; Figueroa, Ramon; Daly, Robyn; Allen, Peter

    2017-06-01

    Background: Folate deficiency, vitamin B-12 deficiency, and anemia can have adverse effects on birth outcomes. Also, low vitamin B-12 reduces the formation of metabolically active folate.Objectives: We sought to establish the baseline prevalence of and factors associated with folate deficiency and insufficiency, vitamin B-12 deficiency, and anemia among women of childbearing age (WCBA) in Belize.Methods: In 2011, a national probability-based survey was completed among Belizean nonpregnant WCBA aged 15-49 y. Blood samples for determination of hemoglobin, folate (RBC and serum), and vitamin B-12 (plasma) and sociodemographic and health information were collected from 937 women. RBC and serum folate concentrations were measured by microbiologic assay (MBA). Folate status was defined based on both the WHO-recommended radioproteinbinding assay and the assay adjusted for the MBA.Results: The national prevalence estimates for folate deficiency in WCBA, based on serum and RBC folate concentrations by using the assay-matched cutoffs, were 11.0% (95% CI: 8.6%, 14.0%) and 35.1% (95% CI: 31.3%, 39.2%), respectively. By using the assay-matched compared with the WHO-recommended cutoffs, a substantially higher prevalence of folate deficiency was observed based on serum (6.9% absolute difference) and RBC folate (28.9% absolute difference) concentrations. The prevalence for RBC folate insufficiency was 48.9% (95% CI: 44.8%, 53.1%). Prevalence estimates for vitamin B-12 deficiency and marginal deficiency and anemia were 17.2% (95% CI: 14.2%, 20.6%), 33.2% (95% CI: 29.6%, 37.1%), and 22.7% (95% CI: 19.5%, 26.2%), respectively. The adjusted geometric means of the RBC folate concentration increased significantly (P-trend < 0.001) in WCBA who had normal vitamin B-12 status relative to WCBA who were vitamin B-12 deficient.Conclusions: In Belize, the prevalence of folate and vitamin B-12 deficiencies continues to be a public health concern among WCBA. Furthermore, low folate status co

  6. Folate Deficiency Is Prevalent in Women of Childbearing Age in Belize and Is Negatively Affected by Coexisting Vitamin B-12 Deficiency: Belize National Micronutrient Survey 20111–4

    PubMed Central

    Rosenthal, Jorge; Largaespada, Natalia; Bailey, Lynn B; Cannon, Michael; Alverson, CJ; Ortiz, Dayrin; Kauwell, Gail PA; Sniezek, Joe; Figueroa, Ramon; Daly, Robyn; Allen, Peter

    2017-01-01

    Background Folate deficiency, vitamin B-12 deficiency, and anemia can have adverse effects on birth outcomes. Also, low vitamin B-12 reduces the formation of metabolically active folate. Objectives We sought to establish the baseline prevalence of and factors associated with folate deficiency and insufficiency, vitamin B-12 deficiency, and anemia among women of childbearing age (WCBA) in Belize. Methods In 2011, a national probability-based survey was completed among Belizean nonpregnant WCBA aged 15–49 y. Blood samples for determination of hemoglobin, folate (RBC and serum), and vitamin B-12 (plasma) and sociodemographic and health information were collected from 937 women. RBC and serum folate concentrations were measured by microbiologic assay (MBA). Folate status was defined based on both the WHO-recommended radioproteinbinding assay and the assay adjusted for the MBA. Results The national prevalence estimates for folate deficiency in WCBA, based on serum and RBC folate concentrations by using the assay-matched cutoffs, were 11.0% (95% CI: 8.6%, 14.0%) and 35.1% (95% CI: 31.3%, 39.2%), respectively. By using the assay-matched compared with the WHO-recommended cutoffs, a substantially higher prevalence of folate deficiency was observed based on serum (6.9% absolute difference) and RBC folate (28.9% absolute difference) concentrations. The prevalence for RBC folate insufficiency was 48.9% (95%CI: 44.8%, 53.1%). Prevalence estimates for vitamin B-12 deficiency and marginal deficiency and anemia were 17.2% (95% CI: 14.2%, 20.6%), 33.2% (95% CI: 29.6%, 37.1%), and 22.7% (95% CI: 19.5%, 26.2%), respectively. The adjusted geometric means of the RBC folate concentration increased significantly (P-trend < 0.001) in WCBA who had normal vitamin B-12 status relative to WCBA who were vitamin B-12 deficient. Conclusions In Belize, the prevalence of folate and vitamin B-12 deficiencies continues to be a public health concern among WCBA. Furthermore, low folate status co

  7. Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults

    PubMed Central

    Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Slavkovich, Vesna; Ilievski, Vesna; Levy, Diane; Alam, Shafiul; Siddique, Abu B.; Parvez, Faruque; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Inorganic arsenic (InAs) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine (SAM), a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity, and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n = 376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations. PMID:24726863

  8. Experimental folate and vitamin B12 deficiency does not alter bone quality in rats.

    PubMed

    Herrmann, Markus; Wildemann, Britt; Wagner, Alexandra; Wolny, Martin; Schorr, Heike; Taban-Shomal, Omid; Umanskaya, Natalia; Ross, Steffen; Garcia, Patric; Hübner, Ulrich; Herrmann, Wolfgang

    2009-04-01

    Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.

  9. The Role of Folate Transport in Antifolate Drug Action in Trypanosoma brucei*

    PubMed Central

    Dewar, Simon; Sienkiewicz, Natasha; Ong, Han B.; Wall, Richard J.; Horn, David

    2016-01-01

    The aim of this study was to identify and characterize mechanisms of resistance to antifolate drugs in African trypanosomes. Genome-wide RNAi library screens were undertaken in bloodstream form Trypanosoma brucei exposed to the antifolates methotrexate and raltitrexed. In conjunction with drug susceptibility and folate transport studies, RNAi knockdown was used to validate the functions of the putative folate transporters. The transport kinetics of folate and methotrexate were further characterized in whole cells. RNA interference target sequencing experiments identified a tandem array of genes encoding a folate transporter family, TbFT1–3, as major contributors to antifolate drug uptake. RNAi knockdown of TbFT1–3 substantially reduced folate transport into trypanosomes and reduced the parasite's susceptibly to the classical antifolates methotrexate and raltitrexed. In contrast, knockdown of TbFT1–3 increased susceptibly to the non-classical antifolates pyrimethamine and nolatrexed. Both folate and methotrexate transport were inhibited by classical antifolates but not by non-classical antifolates or biopterin. Thus, TbFT1–3 mediates the uptake of folate and classical antifolates in trypanosomes, and TbFT1–3 loss-of-function is a mechanism of antifolate drug resistance. PMID:27703008

  10. Folate-deficiency induced cell-specific changes in the distribution of lymphocytes and granulocytes in rats.

    PubMed

    Abe, Ikumi; Shirato, Ken; Hashizume, Yoko; Mitsuhashi, Ryosuke; Kobayashi, Ayumu; Shiono, Chikako; Sato, Shogo; Tachiyashiki, Kaoru; Imaizumi, Kazuhiko

    2013-01-01

    Folate (vitamin B(9)) plays key roles in cell growth and proliferation through regulating the synthesis and stabilization of DNA and RNA, and its deficiency leads to lymphocytopenia and granulocytopenia. However, precisely how folate deficiency affects the distribution of a variety of white blood cell subsets, including the minor population of basophils, and the cell specificity of the effects remain unclear. Therefore, we examined the effects of a folate-deficient diet on the circulating number of lymphocyte subsets [T-lymphocytes, B-lymphocytes, and natural killer (NK) cells] and granulocyte subsets (neutrophils, eosinophils, and basophils) in rats. Rats were divided into two groups, with one receiving the folate-deficient diet (FAD group) and the other a control diet (CON group). All rats were pair-fed for 8 weeks. Plasma folate level was dramatically lower in the FAD group than in the CON group, and the level of homocysteine in the plasma, a predictor of folate deficiency was significantly higher in the FAD group than in the CON group. The number of T-lymphocytes, B-lymphocytes, and NK cells was significantly lower in the FAD group than in the CON group by 0.73-, 0.49-, and 0.70-fold, respectively, indicating that B-lymphocytes are more sensitive to folate deficiency than the other lymphocyte subsets. As expected, the number of neutrophils and eosinophils was significantly lower in the FAD group than in the CON group. However, the number of basophils, the least common type of granulocyte, showed transiently an increasing tendency in the FAD group as compared with the CON group. These results suggest that folate deficiency induces lymphocytopenia and granulocytopenia in a cell-specific manner.

  11. [Effects of maternal folate deficiency on the methylation of insulin-like growth factor system in the offspring rats].

    PubMed

    Wu, Meng-Meng; Yang, Fan; Qu, Yi; Mu, De-Zhi

    2017-04-01

    To study the effects of maternal folate deficiency on fetal growth and development and the methylation profiles of insulin-like growth factor system in the offspring rats. Twenty-two Sprague-Dawley female rats were randomly assigned to two groups: a folate deficient group (n=12) and a control group (n=10). They were fed with folate deficient and normal diet respectively. Dams were mated after 2 weeks of feeding. Eight female rats from each group were pregnant. On the 20th day of gestation, the fetuses were delivered by caesarean section. Thirty-two fetal rats from each group were randomly selected and the body length and weight were measured. Eight fetal rats from each group were randomly selected and ELISA was used to measure the level of folate content, IGF-1 and IGFBP-3 in the fetal brain and liver. Three fetal rats from each group were randomly selected and methylated DNA immunoprecipitation sequencing (MeDIP-Seq) was used to detect the methylation level of insulin-like growth factor system in the fetal brain and liver. ELISA was used to measure the level of IGF-1 and IGFBP-3 in the maternal serum from both groups. The mean fetal length and weight were lower in the folate deficient group than in the control group (P<0.05). The levels of IGF-1 and IGFBP-3 in the maternal serum, as well as folate content and IGFBP-3 in the fetal brain and liver were significantly lower in the folate deficient group than in the control group (P<0.05). The methylation levels of IGF-1R, IGF-2R, IGFBP-2, IGFBP-5, IGFBP-6 and IGFBP-7 in the fetal brain were higher in the folate deficient group than in the control group (P<0.05). The methylation levels of IGF-1R, IGF-2R, IGFBP-3 and IGFBP-5 in the fetal liver were higher in the folate deficient group than in the control group. The methylation of IGF-2 gene showed a significant reduction in the folate deficient group (P<0.05). Maternal folate deficiency may cause retardation of growth and development of the offspring, which is possibly

  12. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter.

    PubMed

    Nakai, Yasuhiro; Inoue, Katsuhisa; Abe, Naoki; Hatakeyama, Mai; Ohta, Kin-ya; Otagiri, Masaki; Hayashi, Yayoi; Yuasa, Hiroaki

    2007-08-01

    The functional characteristics of human proton coupled folate transporter (hPCFT)/heme carrier protein (HCP) 1 were investigated. hPCFT/HCP1 expressed transiently in human embryonic kidney 293 cells mediated the transport of folate at an acidic extracellular pH of 5.5 in a manner independent of Na(+) and insensitive to membrane potential, but its transport activity was absent at near-neutral pH. Folate transport mediated by hPCFT/hHCP1 at pH 5.5 was saturable with a K(m) of 1.67 microM and extensively inhibited by reduced folates, such as folinate, 5-methyltetrahydrofolate, and methotrexate (MTX). Sulfobro-mophthalein and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid were also found to be potent inhibitors of hPCFT/hHCP1, but hemin was found to exhibit only minimal inhibitory effect. When expressed stably as a protein fused with green fluorescent protein (GFP-hPCFT/HCP1) in MDCKII cells, GFP-hPCFT/HCP1 was mainly localized at the apical membrane, and the cellular accumulation of MTX was higher from the apical side than from the basal side. These functional features of hPCFT/HCP1 are consistent with those of the well characterized carrier-mediated folate transport system in the small intestine, suggesting that hPCFT/HCP1 is responsible for the intestinal absorption of folate and also MTX. We also found that sulfasalazine is a potent inhibitor of hPCFT/HCP1, which would interfere with the intestinal absorption of MTX when coadministered in therapy for rheumatoid arthritis as well as folate.

  13. Anaemia, folate, zinc and copper deficiencies among adolescent schoolgirls in eastern Sudan.

    PubMed

    Abdelrahim, Ishraga I; Mahgoub, Hyder M; Mohamed, Ayoub A; Ali, Naji I; Elbashir, Mustafa I; Adam, I

    2009-12-01

    Anaemia is a widespread problem especially in the tropics. Among adolescent girls, it has negative consequences on growth, school performance, morbidity and reproductive performance. A cross-sectional study was conducted to investigate the prevalence of anaemia, iron, folate, zinc and copper deficiencies amongst adolescent schoolgirls in New Halfa, eastern Sudan, and to examine the relationship of these micronutrients with haemoglobin (Hb) levels. Out of 187 adolescent schoolgirls, 181 (96.8%) had anaemia (Hb<12 g/dl); 21% had mild anaemia (Hb 11.0-11.9 g/dl); 66.8.1% had moderate anaemia (Hb 8.0-10.9 g/dl), and 12.1% had severe anaemia (Hb<8 g/dl), respectively. Iron deficiency (S-ferritin<12 μg/l), iron deficiency anaemia (<12 m/dl and S- ferritin<12 μg/l) and folate deficiency (S-folate<3 ng/ml) were prevalent in 17.6%, 16.5% and 69% of these girls, respectively. Nine percent and 5.9% of these girls had zinc (<75 μg/ml) and copper deficiency (<75 μg/ml), respectively. Twenty-six (14%) girls had ≥ 2 micronutrient deficiencies. S-ferritin and zinc were significantly lower in patients with severe anaemia. Haemoglobin levels were significantly positively correlated with zinc levels (r=0.161, P=0.03) and with copper levels (r=0.151, P=0.03). Thus, interventions are required to prevent and control anaemia in this setting. Further research is needed.

  14. Vitamin B12 and folate deficiency: should we use a different cutoff value for hematologic disorders?

    PubMed

    Toprak, B; Yalcın, H Z; Colak, A

    2014-08-01

    Anemia and macrocytosis are well-defined expected hematologic findings of vitamin B12 and folate deficiency; however, some previous studies did not show a significant association of subnormal B12 with anemia and macrocytosis. We retrospectively analyzed 17 713 laboratory patient records to evaluate vitamin B12 and folate levels in relation to anemia and macrocytosis. In an age- and sex-adjusted logistic regression model, low B12 status but not marginal B12 status was significantly associated with anemia [ORs respectively, 1.291 (95% CI, 1.182-1.410), 1.022 (95% CI, 0.943-1.108)] and macrocytosis [ORs, respectively, 3.853 (95% CI, 3.121-4.756), 1.031 (95% CI, 0.770-1.381)]. Also low folate status but not marginal folate status was significantly associated with anemia [adjusted ORs, respectively, 1.819 (95% CI, 1.372-2.411), 1.101 (95% CI, 0.931-1.301)] and macrocytosis [adjusted ORs, respectively, 2.945 (95% CI, 1.747-4.965), 1.228 (95% CI, 0.795-1.898)]. Our results show that increased anemia and macrocytosis are observed at values below commonly used B12 lower-reference thresholds. Determining a hematologic cutoff value may help physicians in clinical practice. © 2013 John Wiley & Sons Ltd.

  15. Prevalence of Vitamin B12 and Folate Deficiency in School Children Residing at High Altitude Regions in India.

    PubMed

    Gupta, Aakriti; Kapil, Umesh; Ramakrishnan, Lakshmy; Pandey, Ravindra Mohan; Yadav, Chander Prakash

    2017-04-01

    To assess the prevalence of vitamin B12 and folate deficiencies among children residing at high altitude regions of Himachal Pradesh, India. A total of 215 school children in the age group of 6-18 y were included. Biochemical estimation of serum vitamin B12 and folate levels was undertaken using chemiluminescence immunoassay method. The consumption pattern of foods high in dietary vitamin B12 and folate was recorded using Food Frequency Questionnaire. The median levels (interquartile range) of serum vitamin B12 and folate were 326 (259-395) pg/ml and 7.7 (6-10) ng/ml respectively. The prevalence of vitamin B12 and folate deficiency amongst school age children was found as 7.4% and 1.5% respectively. A low prevalence of vitamin B12 and folate deficiencies was found amongst children aged 6-18 y living at high altitude regions in India. This is possibly due to high frequency of consumption of foods rich in vitamin B12 and folate.

  16. Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function.

    PubMed

    Burren, Katie A; Savery, Dawn; Massa, Valentina; Kok, Robert M; Scott, John M; Blom, Henk J; Copp, Andrew J; Greene, Nicholas D E

    2008-12-01

    Risk of neural tube defects (NTDs) is determined by genetic and environmental factors, among which folate status appears to play a key role. However, the precise nature of the link between low folate status and NTDs is poorly understood, and it remains unclear how folic acid prevents NTDs. We investigated the effect of folate level on risk of NTDs in splotch (Sp(2)(H)) mice, which carry a mutation in Pax3. Dietary folate restriction results in reduced maternal blood folate, elevated plasma homocysteine and reduced embryonic folate content. Folate deficiency does not cause NTDs in wild-type mice, but causes a significant increase in cranial NTDs among Sp(2)(H) embryos, demonstrating a gene-environment interaction. Control treatments, in which intermediate levels of folate are supplied, suggest that NTD risk is related to embryonic folate concentration, not maternal blood folate concentration. Notably, the effect of folate deficiency appears more deleterious in female embryos than males, since defects are not prevented by exogenous folic acid. Folate-deficient embryos exhibit developmental delay and growth retardation. However, folate content normalized to protein content is appropriate for developmental stage, suggesting that folate availability places a tight limit on growth and development. Folate-deficient embryos also exhibit a reduced ratio of s-adenosylmethionine (SAM) to s-adenosylhomocysteine (SAH). This could indicate inhibition of the methylation cycle, but we did not detect any diminution in global DNA methylation, in contrast to embryos in which the methylation cycle was specifically inhibited. Hence, folate deficiency increases the risk of NTDs in genetically predisposed splotch embryos, probably via embryonic growth retardation.

  17. Cough mixture abuse as a novel cause of folate deficiency: a prospective, community-based, controlled study.

    PubMed

    Au, Wing-yan; Tsang, Suk-Kwan; Cheung, Ben K L; Siu, Tak-Shing; Ma, Edmond S K; Tam, Sidney

    2007-04-01

    Cough mixture abuse has been reported to cause severe folate deficiency and neurological defects. We carried out a prospective case-controlled survey to confirm this association and define the incidence and severity of the problem. A total of 57 cough mixture abusers and 47 other substance abusers (controls) were studied. When compared with controls, cough mixture abusers had a high incidence of low folate levels that could only be detected by screening.

  18. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles.

    PubMed Central

    Schron, C M; Washington, C; Blitzer, B L

    1985-01-01

    In rabbit jejunal, but not ileal brush border membrane vesicles, an outwardly directed OH- gradient (pH 7.7 inside, pH 5.5 outside) markedly stimulated the initial velocity of folate (0.1 microM) uptake compared with uptake in the absence of a pH gradient. Under pH gradient conditions, folate was transiently accumulated at a concentration four times that found at equilibrium (over-shoot), implying uphill transport of the vitamin. Equilibrium folate uptake was inversely proportional to medium osmolality, suggesting uptake into an osmotically sensitive space. pH gradient-stimulated folate uptake was markedly reduced by inhibitors of anion exchange (4,4'-diisothiocyano-2,2'-disulfonic acid stilbene; 4-acetamido-4-isothiocyanostilbene-2,2'-disulfonic acid; furosemide), and was saturable (folate Km = 0.19 +/- 0.02 microM; Vmax = 12.8 +/- 0.4 pmol X mg protein-1 X min-1). Imposition of an inside-positive electrical potential did not stimulate folate uptake, suggesting that stimulation by a pH gradient was not due to an induced electrical potential. In contrast, an inwardly directed Na+ or K+ gradient did not stimulate folate uptake. These findings provide evidence for a carrier on the jejunal brush border membrane that mediates folate/OH- exchange (or H+/folate co-transport), and are consonant with the known presence of an outwardly directed OH- gradient in vivo (brush border acid microclimate), an acidic pH optimum for intestinal folate uptake, and the primary role of the jejunum in folate absorption. PMID:4056063

  19. Anaemia, folate and vitamin B12 deficiency among pregnant women in an area of unstable malaria transmission in eastern Sudan.

    PubMed

    Abdelrahim, Ishraga I; Adam, Gamal K; Mohmmed, Ahmed A; Salih, Magdi M; Ali, Naji I; Elbashier, Mustafa I; Adam, Ishag

    2009-05-01

    A cross-sectional study was carried out between October 2007 and January 2008 to investigate the prevalence and types of anaemia among pregnant women of eastern Sudan. Socio-demographic and obstetrical data were collected using a questionnaire. Haemoglobin (Hb), serum ferritin, serum folate and vitamin B(12) were assessed using standard laboratory methods. Two hundred and seventy-nine pregnant Sudanese women were recruited. Anaemia (Hb <11 gdl) and iron deficiency (ferritin <15 microg/l) were prevalent in 80.3 and 14.3% of the study sample, respectively. Of the total sample, 11.1% had iron-deficiency anaemia. Serum folate (<6.6 ng/ml) and vitamin B(12) (<150 pg/ml) deficiency was reported in 57.7 and 1%, respectively, and none of the women had both folate and vitamin B(12) deficiencies. Univariate and multivariate analyses showed that ferritin, serum folate and vitamin B(12) levels were not significantly associated with anaemia. Thus, there was a high prevalence of anaemia and folate deficiency. Measures to control these should be considered.

  20. A novel deletion mutation in the proton-coupled folate transporter (PCFT; SLC46A1) in a Nicaraguan child with hereditary folate malabsorption.

    PubMed

    Diop-Bove, N; Jain, M; Scaglia, F; Goldman, I D

    2013-09-25

    Hereditary folate malabsorption (OMIM 229050) is a rare autosomal recessive disorder caused by loss-of-function mutations in the proton-coupled folate transporter gene (pcft/SLC46A1) resulting in impaired folate transport across the intestine and into the central nervous system. We report a novel, homozygous, deletion mutation in a child of Nicaraguan descent in exon 2 (c.558-588 del, ss778190447) at amino acid position I188 resulting in a frameshift with a premature stop. © 2013 Elsevier B.V. All rights reserved.

  1. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM).

    PubMed

    Dill, Patricia; Schneider, Jacques; Weber, Peter; Trachsel, Daniel; Tekin, Mustafa; Jakobs, Cornelis; Thöny, Beat; Blau, Nenad

    2011-11-01

    We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel homozygous nonsense mutations in the FOLR1 gene (p.R204X), and FGF3 gene (p.C50X). While the FRα defect is a disorder of brain-specific folate transport accompanied with cerebral folate deficiency (CFD) causing progressive neurological symptoms, LAMM syndrome is a solely malformative condition, with normal physical growth and cognitive development. Our patient presented with congenital deafness, hypotonia, dysphygia and ataxia in early childhood. At the age of 6 years he developed intractable epilepsy, and deteriorated clinically with respiratory arrest and severe hypercapnea at the age of 8 years. In contrast to the previously published patients with a FOLR1 gene defect, our patient presented with an abnormal l-dopa metabolism in CSF and high 3-O-methyl-dopa. Upon oral treatment with folinic acid the boy regained consciousness while the epilepsy could be successfully managed only with additional pyridoxal 5'-phosphate (PLP). This report pinpoints the importance of CSF folate investigations in children with unexplained progressive neurological presentations, even if a malformative syndrome is obviously present, and suggests a trial with PLP in folinic acid-unresponsive seizures. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Influence of Physiologic Folate Deficiency on Human Papillomavirus Type 16 (HPV16)-harboring Human Keratinocytes in Vitro and in Vivo*

    PubMed Central

    Xiao, Suhong; Tang, Ying-Sheng; Khan, Rehana A.; Zhang, Yonghua; Kusumanchi, Praveen; Stabler, Sally P.; Jayaram, Hiremagalur N.; Antony, Aśok C.

    2012-01-01

    Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2̂L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B12 deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer

  3. Influence of physiologic folate deficiency on human papillomavirus type 16 (HPV16)-harboring human keratinocytes in vitro and in vivo.

    PubMed

    Xiao, Suhong; Tang, Ying-Sheng; Khan, Rehana A; Zhang, Yonghua; Kusumanchi, Praveen; Stabler, Sally P; Jayaram, Hiremagalur N; Antony, Asok C

    2012-04-06

    Although HPV16 transforms infected epithelial tissues to cancer in the presence of several co-factors, there is insufficient molecular evidence that poor nutrition has any such role. Because physiological folate deficiency led to the intracellular homocysteinylation of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and activated a nutrition-sensitive (homocysteine-responsive) posttranscriptional RNA operon that included interaction with HPV16 L2 mRNA, we investigated the functional consequences of folate deficiency on HPV16 in immortalized HPV16-harboring human (BC-1-Ep/SL) keratinocytes and HPV16-organotypic rafts. Although homocysteinylated hnRNP-E1 interacted with HPV16 L2 mRNA cis-element, it also specifically bound another HPV16 57-nucleotide poly(U)-rich cis-element in the early polyadenylation element (upstream of L2L1 genes) with greater affinity. Together, these interactions led to a profound reduction of both L1 and L2 mRNA and proteins without effects on HPV16 E6 and E7 in vitro, and in cultured keratinocyte monolayers and HPV16-low folate-organotypic rafts developed in physiological low folate medium. In addition, HPV16-low folate-organotypic rafts contained fewer HPV16 viral particles, a similar HPV16 DNA viral load, and a much greater extent of integration of HPV16 DNA into genomic DNA when compared with HPV16-high folate-organotypic rafts. Subcutaneous implantation of 18-day old HPV16-low folate-organotypic rafts into folate-replete immunodeficient mice transformed this benign keratinocyte-derived raft tissue into an aggressive HPV16-induced cancer within 12 weeks. Collectively, these studies establish a likely molecular linkage between poor folate nutrition and HPV16 and predict that nutritional folate and/or vitamin-B(12) deficiency, which are both common worldwide, will alter the natural history of HPV16 infections and also warrant serious consideration as reversible co-factors in oncogenic transformation of HPV16-infected tissues to cancer.

  4. Preservation of folate transport activity with a low-pH optimum in rat IEC-6 intestinal epithelial cell lines that lack reduced folate carrier function.

    PubMed

    Wang, Yanhua; Rajgopal, Arun; Goldman, I David; Zhao, Rongbao

    2005-01-01

    Intestinal folate transport has been well characterized, and rat small intestinal epithelial (IEC-6) cells have been used as a model system for the study of this process on the cellular level. The major intestinal folate transport activity has a low-pH optimum, and the current paradigm is that this process is mediated by the reduced folate carrier (RFC), despite the fact that this carrier has a neutral pH optimum in leukemia cells. The current study addressed the question of whether constitutive low-pH folate transport activity in IEC-6 cells is mediated by RFC. Two independent IEC-6 sublines, IEC-6/A4 and IEC-6/PT1, were generated by chemical mutagenesis followed by selective pressure with antifolates. In IEC-6/A4 cells, a premature stop resulted in truncation of RFC at Gln(420). A green fluorescent protein (GFP) fusion with the truncated protein was not stable. In IEC-6/PT1 cells, Ser(135) was deleted, and this alteration resulted in the failure of localization of the GFP fusion protein in the plasma membrane. In both cell lines, methotrexate (MTX) influx at neutral pH was markedly decreased compared with wild-type IEC-6 cells, but MTX influx at pH 5.5 was not depressed. Transient transfection of the GFP-mutated RFC constructs into RFC-null HeLa cells confirmed their lack of transport function. These results indicate that in IEC-6 cells, folate transport at neutral pH is mediated predominantly by RFC; however, the folate transport activity at pH 5.5 is RFC independent. Hence, constitutive folate transport activity with a low-pH optimum in this intestinal cell model is mediated by a process entirely distinct from that of RFC.

  5. Incrimination of Heterogeneous Nuclear Ribonucleoprotein E1 (hnRNP-E1) as a Candidate Sensor of Physiological Folate Deficiency*

    PubMed Central

    Tang, Ying-Sheng; Khan, Rehana A.; Zhang, Yonghua; Xiao, Suhong; Wang, Mu; Hansen, Deborah K.; Jayaram, Hiremagalur N.; Antony, Aśok C.

    2011-01-01

    The mechanism underlying the sensing of varying degrees of physiological folate deficiency, prior to adaptive optimization of cellular folate uptake through the translational up-regulation of folate receptors (FR) is unclear. Because homocysteine, which accumulates intracellularly during folate deficiency, stimulated interactions between heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) and an 18-base FR-α mRNA cis-element that led to increased FR biosynthesis and net up-regulation of FR at cell surfaces, hnRNP-E1 was a plausible candidate sensor of folate deficiency. Accordingly, using purified components, we evaluated the physiological basis whereby l-homocysteine triggered these RNA-protein interactions to stimulate FR biosynthesis. l-Homocysteine induced a concentration-dependent increase in RNA-protein binding affinity throughout the range of physiological folate deficiency, which correlated with a proportionate increase in translation of FR in vitro and in cultured human cells. Targeted reduction of newly synthesized hnRNP-E1 proteins by siRNA to hnRNP-E1 mRNA reduced both constitutive and l-homocysteine-induced rates of FR biosynthesis. Furthermore, l-homocysteine covalently bound hnRNP-E1 via multiple protein-cysteine-S-S-homocysteine mixed disulfide bonds within K-homology domains known to interact with mRNA. These data suggest that a concentration-dependent, sequential disruption of critical cysteine-S-S-cysteine bonds by covalently bound l-homocysteine progressively unmasks an underlying RNA-binding pocket in hnRNP-E1 to optimize interaction with FR-α mRNA cis-element preparatory to FR up-regulation. Collectively, such data incriminate hnRNP-E1 as a physiologically relevant, sensitive, cellular sensor of folate deficiency. Because diverse mammalian and viral mRNAs also interact with this RNA-binding domain with functional consequences to their protein expression, homocysteinylated hnRNP-E1 also appears well positioned to orchestrate a novel

  6. Regional, Socioeconomic, and Dietary Risk Factors for Vitamin B-12 Deficiency Differ from Those for Folate Deficiency in Cameroonian Women and Children.

    PubMed

    Shahab-Ferdows, Setareh; Engle-Stone, Reina; Hampel, Daniela; Ndjebayi, Alex O; Nankap, Martin; Brown, Kenneth H; Allen, Lindsay H

    2015-11-01

    Representative data on folate and vitamin B-12 dietary intake and status in low-income countries are rare, despite the widespread adoption of folic acid fortification. The purpose of this study was to evaluate folate and vitamin B-12 intake, status, and risk factors for deficiency before implementation of a national fortification program in Cameroon. A nationally representative cross-sectional cluster survey was conducted in 3 ecologic zones of Cameroon (South, North, and the 2 largest cities, Yaoundé/Douala), and information on dietary intake was collected from 10 households in each of 30 randomly selected clusters per zone. In a subset of women and their 12- to 59-mo-old children (n = 396 pairs), plasma folate and vitamin B-12, as well as breast milk vitamin B-12, were analyzed. Vitamin B-12 and folate dietary intake patterns and plasma concentrations were similar for women and children. In the subsample, 18% and 29% of women and 8% and 30% of children were vitamin B-12 (≤ 221 pmol/L) and folate (< 10 nmol/L) deficient, respectively. Mean dietary folate ranged from 351 μg dietary folate equivalents/d in the North to 246 μg dietary folate equivalents/d in Yaoundé/Douala; plasma folate was negatively associated with socioeconomic status (P = 0.001). Plasma vitamin B-12 deficiency was similar in the South and North, 29% and 40%, respectively, but was only 11% in Yaoundé/Douala, and was positively associated with socioeconomic status. Mean breast milk vitamin B-12 was statistically significantly lower in the North (101 pmol/L) than in the South (296 pmol/L) or Yaoundé/Douala (349 pmol/L). Folate intake and status are inadequate among women and young children in Yaoundé/Douala, whereas low vitamin B-12 intake and status are more common in poor and rural areas, especially in the North. Different strategies may be needed to control deficiency of these nutrients in different regions of Cameroon. © 2015 American Society for Nutrition.

  7. The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis.

    PubMed

    Ifergan, Ilan; Jansen, Gerrit; Assaraf, Yehuda G

    2008-07-25

    The reduced folate carrier (RFC), a bidirectional anion transporter, is the major uptake route of reduced folates essential for a spectrum of biochemical reactions and thus cellular proliferation. However, here we show that ectopic overexpression of the RFC, but not of folate receptor alpha, a high affinity unidirectional folate uptake route serving here as a negative control, resulted in an approximately 15-fold decline in cellular viability in medium lacking folates but not in folate-containing medium. Moreover to explore possible mechanisms of adaptation to folate deficiency in various cell lines that express the endogenous RFC, we first determined the gene expression status of the following genes: (a) RFC, (b) ATP-driven folate exporters (i.e. MRP1, MRP5, and breast cancer resistance protein), and (c) folylpoly-gamma-glutamate synthetase and gamma-glutamate hydrolase (GGH), enzymes catalyzing folate polyglutamylation and hydrolysis, respectively. Upon 3-7 days of folate deprivation, semiquantitative reverse transcription-PCR analysis revealed a specific approximately 2.5-fold decrease in RFC mRNA levels in both breast cancer and T-cell leukemia cell lines that was accompanied by a consistent fall in methotrexate influx, serving here as an RFC transport activity assay. Likewise a 2.4-fold decrease in GGH mRNA levels and approximately 19% decreased GGH activity was documented for folate-deprived breast cancer cells. These results along with those of a novel mathematical biomodeling devised here suggest that upon severe short term (i.e. up to 7 days) folate deprivation RFC transport activity becomes detrimental as RFC, but not ATP-driven folate exporters, efficiently extrudes folate monoglutamates out of cells. Hence down-regulation of RFC and GGH may serve as a novel adaptive response to severe folate deficiency.

  8. DNA hypomethylation of CBS promoter induced by folate deficiency is a potential noninvasive circulating biomarker for colorectal adenocarcinomas.

    PubMed

    Xue, Geng; Lu, Chao-Jing; Pan, Shu-Jun; Zhang, Yin-Ling; Miao, Hui; Shan, Shi; Zhu, Xiao-Ting; Zhang, Yi

    2017-08-01

    Aberrant DNA methylation patterns, which induced by folate deficiency, play important roles in tumorigenesis of colorectal cancer (CRC). Some DNA methylation alterations can also be detected in cell-free DNA (cfDNA) of patients' plasma, making cfDNA an ideal noninvasive circulating biomarker. However, exact DNA methylation alterations induced by folate deficiency in tumorigenesis of CRC and exact potential circulating cfDNA methylation biomarker are still unclear. Therefore, DNA methylation patterns of the normal human colon mucosal epithelial cell line (NCM460), cultured with normal or low folate content, were screened and the DNA hypomethylation of cystathionine-beta-synthase (CBS) promoter was further validated in vitro and vivo. Then, the correlation analysis between folate level, DNA methylation alteration in promoter and expression of CBS was carried out in vitro and vivo. Further, the methylation patterns of CBS promoter in plasma cfDNA were detected and statistically correlated with pathological parameters and clinical outcome. Our study showed that DNA hypomethylation in CBS promoter, induced by folate deficiency, would lead to up-regulation of CBS both in vitro and vivo. Patients with cfDNA hypomethylation of CBS promoter in plasma were correlated with high tumor stage and poor clinical outcome. In addition, cfDNA hypomethylation of CBS promoter in plasma was shown to be an independent prognostic factor for recurrence and cancer-related death in CRC. Our results indicated that DNA hypomethylation of CBS promoter induced by folate deficiency could serve as a potential noninvasive circulating biomarker and may be helpful in developing more effective prognostic markers for CRC.

  9. Vitamin B12 and folate levels increase during treatment of iron deficiency anaemia in young adult woman.

    PubMed

    Remacha, A F; Wright, I; Fernández-Jiménez, M C; Toxqui, L; Blanco-Rojo, R; Moreno, G; Vaquero, M P

    2015-10-01

    The relationship between iron deficiency and vitamin B12 and folate was recognized several decades ago. Combined deficiency is important in clinical practice owing to its relationship with malabsorption syndromes. By contrast, iron deficiency and low levels of serum vitamin B12 with normal metabolic markers were often found mostly in young adults. In this work, vitamin B12/folate changes were investigated during treatment of iron deficiency anaemia (IDA) with pharmacological iron in young adult women. A cohort of 35 young adult women with IDA was treated with oral iron. An haematological response was obtained in 97.2% at 4-month follow-up. Changes in serum vitamin B12, serum folate and other biochemical parameters were monitored. Treatment with iron increased significantly serum folate and vitamin B12 from baseline. This increase was also observed in vitamin B12 levels ≤200 pmol/L (six patients, 17.1%), in whom serum vitamin B12 was above 200 pmol/L at the end of the study in all cases. Other biochemical parameters also changed. Significant increases were seen for glucose (P = 0.012), uric acid (P < 0.001), total cholesterol (P = 0.023), HDL cholesterol (P = 0.026) and bilirubin (P < 0.001). Urea decreased significantly (P = 0.036). Data from our work suggest that iron deficiency could affect many metabolic pathways, including vitamin B12, folate and lipids. These changes normalize after iron therapy, even in women with baseline low levels of serum vitamin B12. Healthcare practitioners should be aware of these changes in IDA management. The mechanisms controlling these changes remain to be explained, but they are probably related to the control of iron homeostasis (iron deficiency mediated stimuli). © 2015 John Wiley & Sons Ltd.

  10. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase

    PubMed Central

    Elmore, C. Lee; Wu, Xuchu; Leclerc, Daniel; Watson, Erica D.; Bottiglieri, Teodoro; Krupenko, Natalia I.; Krupenko, Sergey A.; Cross, James C.; Rozen, Rima; Gravel, Roy A.; Matthews, Rowena G.

    2007-01-01

    Hyperhomocyst(e)inemia is a metabolic derangement that is linked to the distribution of folate pools, which provide one-carbon units for biosynthesis of purines and thymidylate and for remethylation of homocysteine to form methionine. In humans, methionine synthase deficiency results in the accumulation of methyltetrahydrofolate at the expense of folate derivatives required for purine and thymidylate biosynthesis. Complete ablation of methionine synthase activity in mice results in embryonic lethality. Other mouse models for hyperhomocyst(e)inemia have normal or reduced levels of methyltetrahydrofolate and are not embryonic lethal, although they have decreased ratios of AdoMet/AdoHcy and impaired methylation. We have constructed a mouse model with a gene trap insertion in the Mtrr gene specifying methionine synthase reductase, an enzyme essential for the activity of methionine synthase. This model is a hypomorph, with reduced methionine synthase reductase activity, thus avoiding the lethality associated with the absence of methionine synthase activity. Mtrrgt/gt mice have increased plasma homocyst(e)ine, decreased plasma methionine, and increased tissue methyltetrahydrofolate. Unexpectedly, Mtrrgt/gt mice do not show decreases in the AdoMet/AdoHcy ratio in most tissues. The different metabolite profiles in the various genetic mouse models for hyperhomocysteinemia may be useful in understanding biological effects of elevated homocyst(e)ine. PMID:17369066

  11. Supplementation with vitamin D3 during pregnancy protects against lipopolysaccharide-induced neural tube defects through improving placental folate transportation.

    PubMed

    Chen, Yuan-Hua; Yu, Zhen; Fu, Lin; Xia, Mi-Zhen; Zhao, Mei; Wang, Hua; Zhang, Cheng; Hu, Yong-Fang; Tao, Fang-Biao; Xu, De-Xiang

    2015-05-01

    Several reports demonstrated that maternal lipopolysaccharide (LPS) exposure at middle gestational stage caused neural tube defects (NTDs). This study investigated the effects of supplementation with vitamin D3 (VitD3) during pregnancy on LPS-induced NTDs. Pregnant mice except controls were ip injected with LPS (25 μg/kg) daily from gestational day (GD)8 to GD12. In LPS+VitD3 group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, a 5-day LPS injection resulted in 62.5% (10/16) of dams and 20.3% of fetuses with NTDs. Additional experiment showed that a 5-day LPS injection downregulated placental proton-coupled folate transporter (pcft) and reduced folate carrier 1 (rfc1), 2 major folate transporters in placentas. Consistent with downregulation of placental folate transporters, folate transport from maternal circulation into embryos was disturbed in LPS-treated mice. Interestingly, VitD3 not only inhibited placental inflammation but also attenuated LPS-induced downregulation of placental folate transporters. Correspondingly, VitD3 markedly improved folate transport from maternal circulation into the embryos. Importantly, supplementation with VitD3 during pregnancy protected mice from LPS-induced NTDs. Taken together, these results suggest that supplementation with VitD3 during pregnancy prevents LPS-induced NTDs through inhibiting placental inflammation and improving folate transport from maternal circulation into the embryos.

  12. Wernicke's Encephalopathy, Wet Beriberi, and Polyneuropathy in a Patient with Folate and Thiamine Deficiency Related to Gastric Phytobezoar

    PubMed Central

    Huertas-González, Nuria; Hernando-Requejo, Virgilio; Luciano-García, Zaida; Cervera-Rodilla, Juan Luis

    2015-01-01

    Background. Wernicke's encephalopathy (WE) is an acute neurological disorder resulting from thiamine deficiency. It is mainly related to alcohol abuse but it can be associated with other conditions such as gastrointestinal disorders. This vitamin deficiency can also present with cardiovascular symptoms, called “wet beriberi.” Association with folate deficit worsens the clinical picture. Subject. A 70-year-old man with gastric phytobezoar presented with gait instability, dyspnoea, chest pain associated with right heart failure and pericarditis, and folate deficiency. Furosemide was administered and cardiac symptoms improved but he soon developed vertiginous syndrome, nystagmus, diplopia, dysmetria, and sensitive and motor deficit in all four limbs with areflexia. Results. A cerebral magnetic resonance imaging (MRI) showed typical findings of WE. He was immediately treated with thiamine. Neurological symptoms improved in a few days and abnormal signals disappeared in a follow-up MRI two weeks later. Conclusion. Patients with malabsorption due to gastrointestinal disorders have an increased risk of thiamine deficiency, and folate deficiency can make this vitamin malabsorption worse. An established deficiency mainly shows neurological symptoms, WE, or rarely cardiovascular symptoms, wet beriberi. Early vitamin treatment in symptomatic patients improves prognosis. We recommend administration of prophylactic multivitamins supplements in patients at risk as routine clinical practice. PMID:26697247

  13. Questionable Reliability of Homocysteine as the Metabolic Marker for Folate and Vitamin B12 Deficiency in Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Beletić, Anđelo; Mirković, Duško; Dudvarski-Ilić, Aleksandra; Milenković, Branislava; Nagorni-Obradović, Ljudmila; Đorđević, Valentina; Ignjatović, Svetlana; Majkić-Singh, Nada

    2015-01-01

    Summary Background An increased homocysteine (Hcy) concentration may represent a metabolic marker of folate and vitamin B12 deficiency, both significant public health problems. For different reasons, patients with chronic obstructive pulmonary disease (COPD) are prone to these deficiencies. The study evaluates the reliability of Hcy concentration in predicting folate or vitamin B12 deficiency in these patients. Methods A group of 50 COPD patients (28 males/22 females, age (χ̄±SD=49.0±14.5) years was enrolled. A chemiluminescent microparticle immunoassay was applied for homocysteine, folate and vitamin B12 concentration. Kolmogorov-Smirnov, Mann-Whitney U and χ2 tests, Spearman’s correlation and ROC analysis were included in the statistical analysis, with the level of significance set at 0.05. Results Average (SD) concentrations of folate and vitamin B12 were 4.13 (2.16) μg/L and 463.6 (271.0) ng/L, whereas only vitamin B12 correlated with the Hcy level (P=−0.310 (R=0.029)). Gender related differences were not significant and only a borderline significant correlation between age and folate was confirmed (R=0.279 (P=0.047)). The incidence of folate and vitamin B12 deficiency differed significantly (P=0.000 and P<0.000 for folate and vitamin B12 respectively), depending on the cutoff used for classification (4.4, 6.6 and 8.0 μg/L – folate; 203 and 473 ng/L – vitamin B12). ROC analyses failed to show any significance of hyperhomocysteinemia as a predictor of folate or vitamin B12 deficiency. Conclusion Reliability of the Hcy concentration as a biomarker of folate or vitamin B12 depletion in COPD patients is not satisfactory, so their deficiency cannot be predicted by the occurrence of HHcy. PMID:28356857

  14. Questionable Reliability of Homocysteine as the Metabolic Marker for Folate and Vitamin B12 Deficiency in Patients with Chronic Obstructive Pulmonary Disease.

    PubMed

    Beletić, Anđelo; Mirković, Duško; Dudvarski-Ilić, Aleksandra; Milenković, Branislava; Nagorni-Obradović, Ljudmila; Đorđević, Valentina; Ignjatović, Svetlana; Majkić-Singh, Nada

    2015-10-01

    An increased homocysteine (Hcy) concentration may represent a metabolic marker of folate and vitamin B12 deficiency, both significant public health problems. For different reasons, patients with chronic obstructive pulmonary disease (COPD) are prone to these deficiencies. The study evaluates the reliability of Hcy concentration in predicting folate or vitamin B12 deficiency in these patients. A group of 50 COPD patients (28 males/22 females, age (χ̄±SD=49.0±14.5) years was enrolled. A chemiluminescent microparticle immunoassay was applied for homocysteine, folate and vitamin B12 concentration. Kolmogorov-Smirnov, Mann-Whitney U and χ(2) tests, Spearman's correlation and ROC analysis were included in the statistical analysis, with the level of significance set at 0.05. Average (SD) concentrations of folate and vitamin B12 were 4.13 (2.16) μg/L and 463.6 (271.0) ng/L, whereas only vitamin B12 correlated with the Hcy level (P=-0.310 (R=0.029)). Gender related differences were not significant and only a borderline significant correlation between age and folate was confirmed (R=0.279 (P=0.047)). The incidence of folate and vitamin B12 deficiency differed significantly (P=0.000 and P<0.000 for folate and vitamin B12 respectively), depending on the cutoff used for classification (4.4, 6.6 and 8.0 μg/L - folate; 203 and 473 ng/L - vitamin B12). ROC analyses failed to show any significance of hyperhomocysteinemia as a predictor of folate or vitamin B12 deficiency. Reliability of the Hcy concentration as a biomarker of folate or vitamin B12 depletion in COPD patients is not satisfactory, so their deficiency cannot be predicted by the occurrence of HHcy.

  15. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women.

    PubMed

    Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi

    2014-10-01

    Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.

  16. Folate deficiency and aberrant expression of cell adhesion molecule 1 are potential indicators of prognosis in laryngeal squamous cell carcinoma

    PubMed Central

    Chang, Hao; Ma, Min; Ma, Rui; Zhang, Chao; Zeng, Wei; Xing, Lu Qi

    2016-01-01

    The etiology of laryngeal squamous cell carcinoma (LSCC) has not yet been adequately examined. Therefore, the present study aimed to investigate the association between serum folate deficiency and abnormal expression of the cell adhesion molecule 1 (CADM1) protein in the progression of LSCC. Samples were collected from 60 patients with LSCC and 30 healthy people. Radioimmunoassays and immunohistochemical staining were performed to measure serum folate levels and CADM1 protein expression, respectively. The results demonstrated that CADM1 expression in LSCC specimens was significantly lower than in adjacent normal tissues (χ2=28.229, P<0.001), which was associated with histological differentiation and clinical stage (P=0.010 and 0.020, respectively). Levels of serum folate in patients with LSCC were significantly lower than those observed in healthy individuals (P=0.002). Furthermore, TSLCl expression and serum folate levels were positively correlated in LSCC (r=0.642, P=0.001). Thus, the present study determined that decreased CADM1 protein expression and low levels of serum folate were correlated with an increased severity of LSCC. PMID:28105160

  17. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency.

    PubMed

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-08-10

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28-75 were enrolled in this study from September 2005-December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk.

  18. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency

    PubMed Central

    Li, Wen-Xing; Dai, Shao-Xing; Zheng, Jun-Juan; Liu, Jia-Qian; Huang, Jing-Fei

    2015-01-01

    Folate deficiency is strongly associated with cardiovascular disease. We aimed to explore the joint effect of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C, methionine synthase (MTR) A2756G, and methionine synthase reductase (MTRR) A66G polymorphisms on folate deficiency in a Chinese hypertensive population. A total of 480 subjects aged 28–75 were enrolled in this study from September 2005–December 2005 from six hospitals in different Chinese regions. Known genotypes were detected by PCR-RFLP methods and serum folate was measured by chemiluminescence immunoassay. Our results showed that MTHFR 677TT and MTR 2756AG + GG were independently associated with a higher risk of folate deficiency (TT vs. CC + CT, p < 0.001 and AG + GG vs. AA p = 0.030, respectively). However, the MTHFR A1298C mutation may confer protection by elevating the serum folate level (p = 0.025). Furthermore, patients carrying two or more risk genotypes showed higher odds of folate deficiency than null risk genotype carriers, especially those carrying four risk genotypes. These findings were verified by generalized multifactor dimensionality reduction (p = 0.0107) and a cumulative effects model (p = 0.001). The results of this study have shown that interactions among homocysteine metabolism gene polymorphisms lead to dramatic elevations in the folate deficiency risk. PMID:26266420

  19. Evidence Favoring a Positive Feedback Loop for Physiologic Auto Upregulation of hnRNP-E1 during Prolonged Folate Deficiency in Human Placental Cells.

    PubMed

    Tang, Ying-Sheng; Khan, Rehana A; Xiao, Suhong; Hansen, Deborah K; Stabler, Sally P; Kusumanchi, Praveen; Jayaram, Hiremagalur N; Antony, Aśok C

    2017-04-01

    Background: Previously, we determined that heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) functions as an intracellular physiologic sensor of folate deficiency. In this model, l-homocysteine, which accumulates intracellularly in proportion to the extent of folate deficiency, covalently binds to and thereby activates homocysteinylated hnRNP-E1 to interact with folate receptor-α mRNA; this high-affinity interaction triggers the translational upregulation of cell surface folate receptors, which enables cells to optimize folate uptake from the external milieu. However, integral to this model is the need for ongoing generation of hnRNP-E1 to replenish homocysteinylated hnRNP-E1 that is degraded.Objective: We searched for an interrelated physiologic mechanism that could also maintain the steady-state concentration of hnRNP-E1 during prolonged folate deficiency.Methods: A novel RNA-protein interaction was functionally characterized by using molecular and biochemical approaches in vitro and in vivo.Results: l-homocysteine triggered a dose-dependent high-affinity interaction between hnRNP-E1 and a 25-nucleotide cis element within the 5'-untranslated region of hnRNP-E1 mRNA; this led to a proportionate increase in these RNA-protein complexes, and translation of hnRNP-E1 both in vitro and within placental cells. Targeted perturbation of this RNA-protein interaction either by specific 25-nucleotide antisense oligonucleotides or mutation within this cis element or by small interfering RNA to hnRNP-E1 mRNA significantly reduced cellular biosynthesis of hnRNP-E1. Conversely, transfection of hnRNP-E1 mutant proteins that mimicked homocysteinylated hnRNP-E1 stimulated both cellular hnRNP-E1 and folate receptor biosynthesis. In addition, ferrous sulfate heptahydrate [iron(II)], which also binds hnRNP-E1, significantly perturbed this l-homocysteine-triggered RNA-protein interaction in a dose-dependent manner. Finally, folate deficiency induced dual upregulation of hnRNP-E1

  20. Affinity labeling of the folate-methotrexate transporter from Leishmania donovani

    SciTech Connect

    Beck, J.T.; Ullman, B. )

    1989-08-22

    An affinity labeling technique has been developed to identify the folate-methotrexate transporter of Leishmania donovani promastigotes using activated derivatives of the ligands. These activated derivatives were synthesized by incubating folate and methotrexate with a 10-fold excess of 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide (EDC) for 10 min at ambient temperature in dimethyl sulfoxide. When intact wild-type (DI700) Leishmania donovani or preparations of their membranes were incubated with a 0.4 {mu}M concentration of either activated ({sup 3}H)folate or activated ({sup 3}H)methotrexate, the radiolabeled ligands were covalently incorporated into a polypeptide with a molecular weight of approximately 46,000, as demonstrated by SDS-polyacrylamide gel electrophoresis. No affinity labeling of a 46,000-dalton protein was observed when equimolar concentrations of activated radiolabeled ligands were incubated with intact cells or membranes prepared from a methotrexate-resistant mutant clone of Leishmania donovani, MTXA5, that is genetically defective in folate-methotrexate transport capability. Time course studies indicated that maximal labeling of the 46,000-dalton protein occurred within 5-10 min of incubation of intact cells with activated ligand. These studies provide biochemical evidence that the folate-methotrexate transporter of Leishmania donovani can be identified in crude extracts by an affinity labeling technique and serve as a prerequisite to further analysis of the transport protein by providing a vehicle for subsequent purification of this membrane carrier. Moreover, these investigations suggest that the affinity labeling technique using EDC-activated ligands may be exploitable to analyze other cell surface binding proteins in Leishmania donovani, as well as in other organisms.

  1. Folate and Colorectal Cancer in Rodents: A Model of DNA Repair Deficiency

    PubMed Central

    Rosati, Rita; Ma, Hongzhi; Cabelof, Diane C.

    2012-01-01

    Fortification of grains has resulted in a positive public health outcome vis-a-vis reduced incidence of neural tube defects. Whether folate has a correspondingly beneficial effect on other disease outcomes is less clear. A role for dietary folate in the prevention of colorectal cancer has been established through epidemiological data. Experimental data aiming to further elucidate this relationship has been somewhat equivocal. Studies report that folate depletion increases DNA damage, mutagenesis, and chromosomal instability, all suggesting inhibited DNA repair. While these data connecting folate depletion and inhibition of DNA repair are convincing, we also present data demonstrating that genetic inhibition of DNA repair is protective in the development of preneoplastic colon lesions, both when folate is depleted and when it is not. The purpose of this paper is to (1) give an overview of the data demonstrating a DNA repair defect in response to folate depletion, and (2) critically compare and contrast the experimental designs utilized in folate/colorectal cancer research and the corresponding impact on tissue folate status and critical colorectal cancer endpoints. Our analysis suggests that there is still an important need for a comprehensive evaluation of the impact of differential dietary prescriptions on blood and tissue folate status. PMID:23093960

  2. Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    PubMed Central

    2010-01-01

    Background Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction. Results We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion. Conclusions This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological

  3. Whey protein isolate improves vitamin B12 and folate status in elderly Australians with subclinical deficiency of vitamin B12.

    PubMed

    Dhillon, Varinderpal S; Zabaras, Dimitrios; Almond, Theodora; Cavuoto, Paul; James-Martin, Genevieve; Fenech, Michael

    2017-05-01

    Whey protein isolate (WPI) contains vitamin B12 and folate. However, the efficacy of WPI as a bioavailable source of these vitamins in the elderly with low vitamin B12 was not previously tested. We investigated the effects of WPI supplementation on vitamin B12 and folate status in blood and measured changes in homocysteine (HCY), methylmalonic acid (MMA), and genome integrity biomarkers in elderly individuals with low vitamin B12 status. The effect of WPI was compared to soy protein isolate (SPI). In this randomized controlled cross-over intervention trial, 56 subclinically vitamin B12 -deficient participants received 50 g WPI or 50 g SPI as a control for 8 wk followed by 16-wk washout phase and then cross-over to alternative supplement for next 8 wk. Consumption of WPI resulted in significant increase in serum active B12 (p < 0.0001) and serum folate (p = 0.0094). MMA, HCY, and nucleoplasmic bridges increased significantly after SPI intake but not after WPI (p = 0.052; p = 0.028; p = 0.0009, respectively). Results indicate that WPI consumption improves active B12 and folate status. Unlike SPI, WPI consumption may prevent increase in MMA, HCY, and genome instability in older Australians with low vitamin B12 status. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pediococcus cerevisiae mutant with altered transport of folates.

    PubMed

    Mandelbaum-Shavit, F; Grossowicz, N

    1975-08-01

    A Pediococcus cerevisiae mutant that actively accumulated folate (PteGlu), in contrast to the wild-type, was also found to exhibit changes in the pattern of uptake of 5-methyl-tetrahydrofolate (5-CH3-H4PteGlu) and amethopterin. Most of the 5-CH3-H4PteGlue accumulated through a glucose- and temperature-dependent process, and a concentrative uptake was also found in gluocse-starved cells and in cells incubated at OC. About 75% of the accumulated 5-CH3-H4PteGlu exchanged with amethopterin. In contrast to the wild type, the mutant accumulated both diastereoisomers of 5-CH3-H4PteGlue by glucose-dependent and glucose-independent processes. Amethopterin and PteGlue competitively inhibited the uptake in both processes, with an apparent lower affinity of the carrier for PteGlu than for the analogue. p-Chloromercuribenzoate strongly inhibited the uptake (75%). The p-chloromercuribenzoate-nonsusceptible and temperature-independent uptake was also competed by amethopterin. Metabolic poisons like sodium azide, potassium fluoride, iodoacetate, and 2,4-dimitrophenol inhibited the glucose-dependent process. Uptake, in the absence of glucose, was enhanced by sodium azide and potassium fluoride.

  5. COMMUNICATION: Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    NASA Astrophysics Data System (ADS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Gilman, Vladimir; Shea, Thomas B.

    2008-12-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE-/- mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or -/-, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE-/- cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE-/- cultures, which may be a reflection of the reduced SAM levels in ApoE-/- mice. The differential impact of SAM on ApoE+/+ and -/- neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis.

  6. Near-elimination of folate-deficiency anemia by mandatory folic acid fortification in older US adults: Reasons for Geographic and Racial Differences in Stroke study 2003–20072,3

    PubMed Central

    Odewole, Oluwaseun A; Williamson, Rebecca S; Zakai, Neil A; Berry, Robert J; Judd, Suzanne E; Qi, Yan Ping; Adedinsewo, Demilade A; Oakley, Godfrey P

    2015-01-01

    Background The United States implemented mandatory folic acid fortification of enriched cereal grains in 1998. Although several studies have documented the resulting decrease in anemia and folate deficiency, to our knowledge, no one has determined the prevalence of folate-deficiency anemia after fortification. Objective We determined the prevalence of folate deficiency and folate-deficiency anemia within a sample of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Design The REGARDS cohort is a prospective cohort of 30,239 black and white participants living in the contiguous United States. We measured serum folate concentrations in a random sample of 1546 REGARDS participants aged ≥50 y with baseline hemoglobin and red blood cell mean corpuscular volume measurements. Folate deficiency was defined as a serum folate concentration <6.6 nmol/L (<3.0 ng/mL), and anemia was defined as a hemoglobin concentration <13 g/dL in men and <12 g/dL in nonpregnant women (WHO criteria). Folate-deficiency anemia was defined as the presence of both folate deficiency and anemia. Results The mean hemoglobin concentration was 13.6 g/dL, and 15.9% of subjects had anemia. The median serum folate concentration was 34.2 nmol/L (15.1 ng/mL), and only 2 of 1546 participants 0.1%) were folate deficient. Both subjects were African American women with markedly elevated C-reactive protein concentrations, macrocytosis, and normal serum cobalamin concentrations; only one subject was anemic. Overall, the prevalence of folate-deficiency anemia was <0.1% (1 of 1546 subjects). Conclusion Our data suggest that, after mandatory folic acid fortification, the prevalence of folate-deficiency anemia is nearly nonexistent in a community-dwelling population in the United States. PMID:23945721

  7. Near-elimination of folate-deficiency anemia by mandatory folic acid fortification in older US adults: Reasons for Geographic and Racial Differences in Stroke study 2003-2007.

    PubMed

    Odewole, Oluwaseun A; Williamson, Rebecca S; Zakai, Neil A; Berry, Robert J; Judd, Suzanne E; Qi, Yan Ping; Adedinsewo, Demilade A; Oakley, Godfrey P

    2013-10-01

    The United States implemented mandatory folic acid fortification of enriched cereal grains in 1998. Although several studies have documented the resulting decrease in anemia and folate deficiency, to our knowledge, no one has determined the prevalence of folate-deficiency anemia after fortification. We determined the prevalence of folate deficiency and folate-deficiency anemia within a sample of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. The REGARDS cohort is a prospective cohort of 30,239 black and white participants living in the contiguous United States. We measured serum folate concentrations in a random sample of 1546 REGARDS participants aged ≥50 y with baseline hemoglobin and red blood cell mean corpuscular volume measurements. Folate deficiency was defined as a serum folate concentration <6.6 nmol/L (<3.0 ng/mL), and anemia was defined as a hemoglobin concentration <13 g/dL in men and <12 g/dL in nonpregnant women (WHO criteria). Folate-deficiency anemia was defined as the presence of both folate deficiency and anemia. The mean hemoglobin concentration was 13.6 g/dL, and 15.9% of subjects had anemia. The median serum folate concentration was 34.2 nmol/L (15.1 ng/mL), and only 2 of 1546 participants 0.1%) were folate deficient. Both subjects were African American women with markedly elevated C-reactive protein concentrations, macrocytosis, and normal serum cobalamin concentrations; only one subject was anemic. Overall, the prevalence of folate-deficiency anemia was <0.1% (1 of 1546 subjects). Our data suggest that, after mandatory folic acid fortification, the prevalence of folate-deficiency anemia is nearly nonexistent in a community-dwelling population in the United States.

  8. Using logic programming for modeling the one-carbon metabolism network to study the impact of folate deficiency on methylation processes.

    PubMed

    Gnimpieba, Etienne Z; Eveillard, Damien; Guéant, Jean-Louis; Chango, Abalo

    2011-08-01

    Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.

  9. A high prevalence of biochemical evidence of vitamin B12 or folate deficiency does not translate into a comparable prevalence of anemia.

    PubMed

    Metz, Jack

    2008-06-01

    Based on biochemical evidence, a high prevalence of biochemical evidence of vitamin B12 or folate deficiency has been reported in a number of areas in the world. The evidence that these biochemical abnormalities lead to a comparable prevalence of anemia is reviewed. The overall contribution of vitamin B12 deficiency to the global burden of anemia is probably not significant, except perhaps in women and their infants and children in vegetarian communities. In developed countries, folate-deficiency anemia is uncommon. In some developing countries, this anemia is still seen, but there are no comprehensive data on the relative prevalence compared with anemia due to malaria, iron-deficiency, hemoglobinopathy, and HIV disease. It seems unlikely that folate deficiency makes a major contribution to the burden of anemia in developing countries. Iron-deficiency anemia may coexist with vitamin B12 and especially folate deficiency, and may confound the hematological features of the vitamin deficiencies whose prevalence would then be underestimated. Supplementation of the diet of pregnant women with folic acid can virtually eliminate folate-deficiency anemia in these women. There are very few data on the hematological effect of vitamin B12 supplementation or fortification at the population level. The addition of vitamin B12 to the supplementation of the diet of pregnant women with iron and folic acid does not produce an increased hematological response, at least in nonvegetarian populations. There are numerous reports of the effect of folic acid fortification of food on tests of folate status, but only a single published report on the hematological response was found.

  10. Heterozygous carriers of classical homocystinuria tend to have higher fasting serum homocysteine concentrations than non-carriers in the presence of folate deficiency.

    PubMed

    Lu, Yung-Hsiu; Cheng, Li-Mei; Huang, Yu-Hsiu; Lo, Ming-Yu; Wu, Tina Jui-Ting; Lin, Hsiang-Yu; Hsu, Ting-Rong; Niu, Dau-Ming

    2015-12-01

    Many studies have reported that serum total homocysteine (tHcy) levels in cystathionine-beta-synthase (CBS) carriers are usually normal and only elevated after a methionine load. However, the amount of methionine required for a loading test is non-physiological and is never reached with regular feeding. Therefore, CBS carriers do not seem to be at an increased risk of cardiovascular diseases. However, the risk of cardiovascular diseases of CBS carriers with folate deficiency has not been studied. We recently found an extraordinarily high carrier rate (1/7.78) of a novel CBS mutation (p.D47E, c.T141A) in an Austronesian Taiwanese Tao tribe who live in a geographic area with folate deficiency. We evaluated if the CBS carriers tend to have higher fasting serum tHcy concentrations than non-carriers in presence of folate deficiency. The serum tHcy and folate levels before and after folate replacement were measured in 48 adult Tao carriers, 40 age-matched Tao non-carriers and 40 age-matched Han Taiwanese controls. The serum tHcy level of the Tao CBS carriers (17.9 ± 3.8 μmol/l) was significantly higher than in Tao non-carriers (15.7 ± 3.5 μmol/l; p < 0.008) and Taiwanese controls (11.8 ± 2.9 μmol/l; p < 0.001). Furthermore, a high prevalence of folate deficiency in the Tao compared with the Taiwanese controls (4.9 ± 1.8 ng/ml vs. 10.6 ± 5.5 ng/ml; p < 0.001) was also noted. Of note, the difference in tHcy levels between the carriers and non-carriers was eliminated by folate supplementation. (carriers:13.65 ± 2.13 μmol/l; non-carriers:12.39 ± 3.25 μmol/l, p = 0.321). CBS carriers tend to have a higher tHcy level in the presence of folate deficiency than non-carriers. Although many reports have indicated that CBS carriers are not associated with cardiovascular disease, the risk for CBS carriers with folate deficiency has not been well studied. Owing to a significantly elevated level of fasting tHcy without methionine loading, it is important to evaluate the

  11. Folate deficiency in human peripheral blood lymphocytes induces chromosome 8 aneuploidy but this effect is not modified by riboflavin.

    PubMed

    Ni, Juan; Lu, Lin; Fenech, Michael; Wang, Xu

    2010-01-01

    Chromosome 8 aneuploidy is a common event in certain cancers but whether folate (F) deficiency induces chromosome 8 aneuploidy is not known. Furthermore the impact of riboflavin (R) deficiency, which may alter activity of a key enzyme in folate metabolism, on these events is unknown. Therefore, the aim of our research was to test the following hypotheses: (a) F deficiency induces chromosome 8 aneuploidy; (b) chromosome 8 aneuploidy is affected by F deficiency to a similar degree as chromosome 17 and (c) R deficiency aggravates the risk of aneuploidy caused by F deficiency. These hypotheses were tested in long-term cultures of lymphocytes from twenty female healthy volunteers (aged 30-48 years). Lymphocytes were cultured in each of the four possible combinations of low (L) and high (H) F (LF, 20 nmol/L, HF 200 nmol/L, respectively) and L and H R (LR 1 nmol/L, HR 500 nmol/L, respectively) media (LFLR, LFHR, HFLR, HFHR) for 9 days. Chromosomes 8 and 17 aneuploidy was measured in mononucleated (MONO) and cytokinesis-blocked binucleated (BN) cells using dual-color fluorescence in situ hybridization (FISH) with fluorescent centromeric probes specific for chromosomes 8 and 17. Culture in LF media (LFLR or LFHR) induced significant and similar increases in frequencies of aneuploidy of chromosomes 8 and 17 (P < 0.001) relative to culture in HF media (HFLR or HFHR). There was no significant effect of R concentration on aneuploidy frequency for either chromosome. We conclude that F deficiency is a possible cause of chromosome 8 aneuploidy. (c) 2009 Wiley-Liss, Inc.

  12. Parkinson's Disease and Homocysteine: A Community-Based Study in a Folate and Vitamin B12 Deficient Population

    PubMed Central

    Tiandong, Wang; Yang, Li; Huaxing, Meng; Guowen, Min; Yalan, Fang

    2016-01-01

    Background. Homocysteine (Hcy) levels were higher in patients with Parkinson's disease (PD). This could be partially explained by levodopa treatment. Whether untreated PD patients have higher Hcy levels is contradictory. Methods. A community-based study was conducted using a two-stage approach for subjects ≥ 55 years to find PD patients in 3 towns of Lüliang City. Blood samples were collected. Serum Hcy, folate, and vitamin B12 concentrations were measured. For each untreated PD patient, 5 controls were selected matched with age and sex to evaluate the relationship between Hcy levels and PD. Results. Of 6338 eligible residents, 72.7% participated in the study. 31 PD cases were identified. The crude prevalence of PD for people ≥ 55 years was 0.67%. Blood samples were collected from 1845 subjects, including 17 untreated PD patients. There was no difference for concentrations of serum Hcy, folate, and vitamin B12 between cases and controls (P > 0.05). In univariate and multivariate analysis, there was significant inverse relation between PD and current smoking (P < 0.05). No other factor was significant statistically. Conclusions. The prevalence of PD was comparable to earlier studies in China. Hyperhomocysteinemia was not a risk factor of PD, as well as folate and vitamin B12 deficiency. PMID:27656311

  13. Parkinson's Disease and Homocysteine: A Community-Based Study in a Folate and Vitamin B12 Deficient Population.

    PubMed

    Wei, Zhang; Tiandong, Wang; Yang, Li; Huaxing, Meng; Guowen, Min; Yalan, Fang; Xiaoyuan, Niu

    2016-01-01

    Background. Homocysteine (Hcy) levels were higher in patients with Parkinson's disease (PD). This could be partially explained by levodopa treatment. Whether untreated PD patients have higher Hcy levels is contradictory. Methods. A community-based study was conducted using a two-stage approach for subjects ≥ 55 years to find PD patients in 3 towns of Lüliang City. Blood samples were collected. Serum Hcy, folate, and vitamin B12 concentrations were measured. For each untreated PD patient, 5 controls were selected matched with age and sex to evaluate the relationship between Hcy levels and PD. Results. Of 6338 eligible residents, 72.7% participated in the study. 31 PD cases were identified. The crude prevalence of PD for people ≥ 55 years was 0.67%. Blood samples were collected from 1845 subjects, including 17 untreated PD patients. There was no difference for concentrations of serum Hcy, folate, and vitamin B12 between cases and controls (P > 0.05). In univariate and multivariate analysis, there was significant inverse relation between PD and current smoking (P < 0.05). No other factor was significant statistically. Conclusions. The prevalence of PD was comparable to earlier studies in China. Hyperhomocysteinemia was not a risk factor of PD, as well as folate and vitamin B12 deficiency.

  14. Diet Treatment Glucose Transporter Type 1 Deficiency (G1D)

    ClinicalTrials.gov

    2017-06-06

    GLUT1DS1; Epilepsy; Glut1 Deficiency Syndrome 1, Autosomal Recessive; Glucose Metabolism Disorders; Glucose Transport Defect; Glucose Transporter Type 1 Deficiency Syndrome; Glucose Transporter Protein Type 1 Deficiency Syndrome

  15. Two-compartment behavior during transport of folate compounds in L1210 cell plasma membrane vesicles

    SciTech Connect

    Yang, C.H.; Dembo, M.; Sirotnak, F.M.

    1982-01-01

    The transport of (/sup 3/H) 1,L 5-formyltetrahydrofolate, (/sup 3/H) folic acid, and (/sup 3/H)methotrexate by L1210 cell plasma membrane vesicles exhibited multicompartmental behavior. Two separate vesicular compartments (parallel relationship) of approximately equal volume were revealed during measurements of influx and efflux. Flux in one compartment was rapid, saturable, highly temperature-sensitive, and inhibited by pCMBS. Flux in the other compartment exhibited all of the characteristics of passive diffusion. These results imply that our plasma membrane vesicle preparations consist of a mixture of two functional species. Transport of folate into one of these species occurs by passive diffusion alone, whereas transport into the other kind of vesicle occurs by both passive diffusion and carrier-facilitated transport.

  16. Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma.

    PubMed

    Goričar, Katja; Kovač, Viljem; Jazbec, Janez; Zakotnik, Branko; Lamovec, Janez; Dolžan, Vita

    2014-10-01

    Osteosarcoma is the most common primary bone malignancy that occurs mostly in adolescents. Treatment protocols usually include multiagent preoperative and postoperative chemotherapy based on methotrexate, cisplatin, doxorubicin and ifosfamide. Despite a favourable prognosis, there are considerable interindividual differences in treatment outcome. Genetic variability of enzymes involved in the metabolism and transport of methotrexate could contribute towards observed differences in response to chemotherapy. Our aim was to evaluate how polymorphisms in the folate pathway and transporter genes influence treatment outcome in osteosarcoma patients. In total, 44 osteosarcoma patients treated with methotrexate were genotyped for eleven polymorphisms in four folate pathway and five folate transporter genes. Cox regression was used in survival analysis. Logistic regression was used to assess the influence of polymorphisms on treatment efficacy and toxicity and nonparametric tests were used to determine the influence on serum methotrexate levels. Polymorphic SLCO1B1 rs4149056 and rs11045879 alleles were associated with significantly higher serum methotrexate area under the curve (P=0.001 and 0.011, respectively). Carriers of at least one polymorphic SLCO1B1 rs4149056 and rs11045879 allele tended to have longer event-free survival compared with patients with two wild-type alleles [P=0.040, hazard ratio (HR)=0.26, 95% confidence interval (CI)=0.07-0.94; and P=0.034, HR=0.20, 95% CI=0.05-0.89, respectively]. Compared with the most common haplotype, carriers of both polymorphic alleles had significantly longer event-free survival (P=0.009, HR=0.27, 95% CI=0.10-0.72). We have shown that SLCO1B1 polymorphisms influence methotrexate disposition and survival in methotrexate-treated osteosarcoma patients and therefore might serve as pharmacogenetic markers of treatment outcome.

  17. Short-term nutritional folate deficiency in rats has a greater effect on choline and acetylcholine metabolism in the peripheral nervous system than in the brain, and this effect escalates with age

    USDA-ARS?s Scientific Manuscript database

    The hypothesis that age- and tissue-specific differences in choline metabolism is differentially affected by folate deficiency (FD) was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats, who were fed for 10 weeks either a control diet or a folate deficient diet startin...

  18. Functional roles of the A335 and G338 residues of the proton-coupled folate transporter (PCFT-SLC46A1) mutated in hereditary folate malabsorption.

    PubMed

    Shin, Daniel Sanghoon; Zhao, Rongbao; Fiser, Andras; Goldman, David I

    2012-10-15

    The proton-coupled folate transporter (PCFT-SLC46A1) mediates intestinal folate absorption and folate transport across the choroid plexus, processes defective in hereditary folate malabsorption (HFM). This paper characterizes the functional defect, and the roles of two mutated PCFT residues, associated with HFM (G338R and A335D). The A335D-PCFT and other mutations at this residue result in an unstable protein; when expression of a mutant protein was preserved, function was always retained. The G338R and other charged mutants resulted in an unstable protein; substitutions with small neutral and polar amino acids preserved protein but with impaired function. Pemetrexed and methotrexate (MTX) influx kinetics mediated by the G338C mutant PCFT revealed marked (15- to 20-fold) decreases in K(t) and V(max) compared with wild-type PCFT. In contrast, there was only a small (∼2-fold) decrease in the MTX influx K(i) and an increase (∼3-fold) in the pemetrexed influx K(i) for the G338C-PCFT mutant. Neither a decrease in pH to 4.5, nor an increase to 7.4, restored function of the G338C mutant relative to wild-type PCFT excluding a role for this residue in proton binding or proton coupling. Homology modeling localized the A335 and G338 residues embedded in the 9th transmembrane, consistent with the inaccessibility of the A335C and G338C proteins to MTS reagents. Hence, the loss of intrinsic G338C-PCFT function was due solely to impaired oscillation of the carrier between its conformational states. The data illustrate how alterations in carrier cycling can impact influx K(t) without comparable alterations in substrate binding to the carrier.

  19. Genetics Home Reference: riboflavin transporter deficiency neuronopathy

    MedlinePlus

    ... Carpenter K, Horvath R, Straub V, Lek M, Gold W, Farrell MO, Brandner S, Phadke R, Matsubara K, ... on PubMed Central GeneReview: Riboflavin Transporter Deficiency Neuronopathy Green P, Wiseman M, Crow YJ, Houlden H, Riphagen S, ...

  20. Folate and Vitamin B12 Deficiency Among Nonpregnant Women of Childbearing Age in Guatemala 2009–2010: Prevalence and Identification of Vulnerable Populations

    PubMed Central

    Rosenthal, Jorge; Lopez-Pazos, Eunice; Dowling, Nicole F.; Pfeiffer, Christine M.; Mulinare, Joe; Vellozzi, Claudia; Zhang, Mindy; Lavoie, Donna J; Molina, Roberto; Ramirez, Nicte; Reeve, Mary-Elizabeth

    2015-01-01

    Introduction Information on folate and vitamin B12 deficiency rates in Guatemala is essential to evaluate the current fortification program. The objectives of this study were to describe the prevalence of folate and vitamin B12 deficiencies among women of childbearing age (WCBA) in Guatemala and to identify vulnerable populations at greater risk for nutrient deficiency. Methods A multistage cluster probability study was designed with national and regional representation of nonpregnant WCBA (15–49 years of age). Primary data collection was carried out in 2009–2010. Demographic and health information was collected through face-to-face interviews. Blood samples were collected from 1,473 WCBA for serum and red blood cell (RBC) folate and serum vitamin B12. Biochemical concentrations were normalized using geometric means. Prevalence rate ratios were estimated to assess relative differences among different socioeconomic and cultural groups including ethnicity, age, education level, wealth index and rural versus urban locality. Results National prevalence estimates for deficient serum (<10 nanomoles per liter [nmol/L]) and RBC folate (<340 nmol/L) concentrations were 5.1% (95% CI 3.8, 6.4) and 8.9% (95% CI 6.7, 11.7), respectively; for vitamin B12 deficiency (<148 pmol/L) 18.5% (95% CI 15.6, 21.3). Serum and RBC folate deficiency prevalences were higher for rural areas than for urban areas (8.0% vs. 2.0% and 13.5% vs. 3.9%, respectively). The prevalence of RBC folate deficiency showed wide variation by geographic region (3.2%–24.9%) and by wealth index (4.1%–15.1%). The prevalence of vitamin B12 deficiency also varied among regions (12.3% –26.1%). Conclusions In Guatemala, folate deficiency was more prevalent among indigenous rural and urban poor populations. Vitamin B12 deficiency was widespread among WCBA. Our results suggest the ongoing need to monitor existing fortification programs, in particular regarding its reach to vulnerable populations. PMID:26002178

  1. Folate and Vitamin B12 Deficiency Among Non-pregnant Women of Childbearing-Age in Guatemala 2009-2010: Prevalence and Identification of Vulnerable Populations.

    PubMed

    Rosenthal, Jorge; Lopez-Pazos, Eunice; Dowling, Nicole F; Pfeiffer, Christine M; Mulinare, Joe; Vellozzi, Claudia; Zhang, Mindy; Lavoie, Donna J; Molina, Roberto; Ramirez, Nicte; Reeve, Mary-Elizabeth

    2015-10-01

    Information on folate and vitamin B12 deficiency rates in Guatemala is essential to evaluate the current fortification program. The objectives of this study were to describe the prevalence of folate and vitamin B12 deficiencies among women of childbearing age (WCBA) in Guatemala and to identify vulnerable populations at greater risk for nutrient deficiency. A multistage cluster probability study was designed with national and regional representation of nonpregnant WCBA (15-49 years of age). Primary data collection was carried out in 2009-2010. Demographic and health information was collected through face-to-face interviews. Blood samples were collected from 1473 WCBA for serum and red blood cell (RBC) folate and serum vitamin B12. Biochemical concentrations were normalized using geometric means. Prevalence rate ratios were estimated to assess relative differences among different socioeconomic and cultural groups including ethnicity, age, education level, wealth index and rural versus urban locality. National prevalence estimates for deficient serum [<10 nmol per liter (nmol/L)] and RBC folate (<340 nmol/L) concentrations were 5.1 % (95 % CI 3.8, 6.4) and 8.9 % (95 % CI 6.7, 11.7), respectively; for vitamin B12 deficiency (<148 pmol/L) 18.5 % (95 % CI 15.6, 21.3). Serum and RBC folate deficiency prevalences were higher for rural areas than for urban areas (8.0 vs. 2.0 % and 13.5 vs. 3.9 %, respectively). The prevalence of RBC folate deficiency showed wide variation by geographic region (3.2-24.9 %) and by wealth index (4.1-15.1 %). The prevalence of vitamin B12 deficiency also varied among regions (12.3-26.1 %). In Guatemala, folate deficiency was more prevalent among indigenous rural and urban poor populations. Vitamin B12 deficiency was widespread among WCBA. Our results suggest the ongoing need to monitor existing fortification programs, in particular regarding its reach to vulnerable populations.

  2. 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Regioisomers as Targeted Antifolates for Folate Receptor α and the Proton-Coupled Folate Transporter in Human Tumors

    PubMed Central

    Wang, Lei; Wallace, Adrianne; Raghavan, Sudhir; Deis, Siobhan M.; Wilson, Mike R.; Yang, Si; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Orr, Steven; George, Christina; O’Connor, Carrie; Hou, Zhanjun; Mitchell-Ryan, Shermaine; Dann, Charles E.; Matherly, Larry H.; Gangjee, Aleem

    2016-01-01

    2-Amino-4-oxo-6-substituted-pyrrolo[2,3-d]-pyrimidine antifolate thiophene regioisomers of AGF94 (4) with a thienoyl side chain and three-carbon bridge lengths [AGF150 (5) and AGF154 (7)] were synthesized as potential antitumor agents. These analogues inhibited proliferation of Chinese hamster ovary (CHO) sublines expressing folate receptors (FRs) α or β (IC50s < 1 nM) or the proton-coupled folate transporter (PCFT) (IC50 < 7 nM). Compounds 5 and 7 inhibited KB, IGROV1, and SKOV3 human tumor cells at subnanomolar concentrations, reflecting both FRα and PCFT uptake. AGF152 (6) and AGF163 (8), 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine thiophene regioisomers, also inhibited growth of FR-expressing CHO and KB cells. All four analogues inhibited glycinamide ribonucleotide formyltransferase (GARFTase). Crystal structures of human GARFTase complexed with 5 and 7 were reported. In severe combined immunodeficient mice bearing SKOV3 tumors, 7 was efficacious. The selectivity of these compounds for PCFT and for FRα and β over the ubiquitously expressed reduced folate carrier is a paradigm for selective tumor targeting. PMID:26317331

  3. Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells.

    PubMed

    Ashokkumar, Balasubramaniem; Mohammed, Zainab M; Vaziri, Nosratola D; Said, Hamid M

    2007-07-01

    Folic acid [corrected] plays an essential role in cellular metabolism. Its deficiency can lead to neural tube defects. However, optimization of body folate homeostasis can reduce the incidence of neural tube defects and may decrease the risk of Alzheimer and cardiovascular diseases and cancer. Hence, food fortification and intake of supplemental folate are widespread. We examined the effects of long-term folate oversupplementation on the physiologic markers of intestinal and renal folate uptake processes. Human-derived intestinal Caco-2 and renal HK-2 epithelial cells were maintained (5 generations) in a growth medium oversupplemented (100 micromol folic acid/L) or maintained under sufficient conditions (0.25 and 9 micromol folic acid/L). Carrier-mediated uptake of (3)H-folic acid (2 micromol/L) at buffer pH 5.5 (but not buffer pH 7.4) by Caco-2 and HK-2 cells maintained under the folate-oversupplemented condition was significantly (P<0.01) and specifically lower than in cells maintained under the folate-sufficient condition. This reduction in folic acid uptake was associated with a significant decrease in the protein and mRNA levels of the human reduced-folate carrier (hRFC) and a decrease in the activity of the hRFC promoter. It was also associated with a decrease in mRNA levels of the proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1) and folate receptor (FR). Long-term oversupplementation with folate leads to a specific and significant down-regulation in intestinal and renal folate uptake, which is associated with a decrease in message levels of hRFC, PCFT/HCP1, and FR. This regulation appears to be mediated via a transcriptional mechanism, at least for the hRFC system.

  4. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis.

    PubMed

    Xu, Ke; Zhang, Minhua; Zhao, Qin; Yu, Fang; Guo, Hui; Wang, Chengyuan; He, Fangyuan; Ding, Jianping; Zhang, Peng

    2013-05-09

    ATP-binding cassette (ABC) transporters, composed of importers and exporters, form one of the biggest protein superfamilies that transport a variety of substrates across the membrane, powered by ATP hydrolysis. Most ABC transporters are composed of two transmembrane domains and two cytoplasmic nucleotide-binding domains. Also, importers from prokaryotes usually have extra solute-binding proteins in the periplasm that are responsible for the binding of substrates. Structures of importers have been reported that suggested a two-state model for the transport mechanism. Energy-coupling factor (ECF) transporters belong to a new class of ATP-binding cassette importers. Each ECF transporter comprises an energy-coupling module consisting of a transmembrane T protein (EcfT), two nucleotide-binding proteins (EcfA and EcfA'), and another transmembrane substrate-specific binding S protein (EcfS). Despite the similarities with ABC transporters, ECF transporters have different organizational and functional properties. The lack of solute-binding proteins in ECF transporters differentiates them clearly from the canonical ABC importers. Previously reported structures of the EcfS proteins RibU and ThiT clearly demonstrated the binding site of substrate riboflavin and thiamine, respectively. However, the organization of the four different components and the transport mechanism of ECF transporters remain unknown. Here we present the structure of an intact folate ECF transporter from Lactobacillus brevis at a resolution of 3 Å. This structure was captured in an inward-facing, nucleotide-free conformation with no bound substrate. The folate-binding protein FolT is nearly parallel to the membrane and is bound almost entirely by EcfT, which adopts an L shape and connects to EcfA and EcfA' through two coupling helices. Two conserved XRX motifs from the coupling helices of EcfT have a vital role in energy coupling by docking into EcfA-EcfA'. We propose a transport model that involves a

  5. Genetics Home Reference: hereditary folate malabsorption

    MedlinePlus

    ... link) Genetic Testing Registry: Congenital defect of folate absorption Other Diagnosis and Management Resources (5 links) GeneReview: ... Names for This Condition congenital defect of folate absorption Congenital folate malabsorption Folic acid transport defect Related ...

  6. A carrier-mediated transport for folate in basolateral membrane vesicles of rat small intestine.

    PubMed Central

    Said, H M; Redha, R

    1987-01-01

    The mechanism of exit of folate from the enterocyte, i.e. transport across the basolateral membrane, is not known. In this study we examined, using basolateral membrane vesicles, the transport of folic acid across the basolateral membrane of rat intestine. Uptake of folic acid by these vesicles represents transport of the substrate into the intravesicular compartment and not binding to the membrane surface. The rate of folic acid transport was linear for the first 1 min of incubation but decreased thereafter, reaching equilibrium after 5 min of incubation. The transport of folic acid was: (1) saturable as a function of concentration with an apparent Km of 0.6 +/- 0.17 microM and Vmax. of 1.01 +/- 0.11 pmol/30 s per mg of protein; (2) inhibited in a competitive manner by the structural analogues 5-methyltetrahydrofolate and methotrexate (Ki = 2 and 1.4 microM, respectively); (4) electroneutral; (5) Na+-independent; (6) sensitive to the effect of the anion exchange inhibitor 4,4'-di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS). These data indicate the existence of a carrier-mediated transport system for folic acid in rat intestinal basolateral membrane and demonstrate that the transport process is electroneutral, Na+-independent and sensitive to the effect of anion exchange inhibition. PMID:3689340

  7. Response to Quinlivan: Post-fortification, folate intake in vitamin B12 deficiency is positively related to homocysteine and methylmalonic acid

    USDA-ARS?s Scientific Manuscript database

    With cross-sectional data, causes and effects are difficult to distinguish, and Quinlivan suggests that high circulating concentrations of homcysteine (Hcy), methylmalonic acid (MMA), and folate observed among vitamin B12-deficient survey participants all resulted from a lack of vitamin B12 (1). How...

  8. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  9. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    David R. Geter', Tanya M. Moore', Michael H. George', Steve R. Kilburn', Gloria Huggins-Clark', James W. Allen', and Anthony B. DeAngelo' 'National H...

  10. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate123

    PubMed Central

    Miller, Joshua W; Garrod, Marjorie G; Allen, Lindsay H; Haan, Mary N

    2009-01-01

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid and higher odds ratios for cognitive impairment and anemia than the combination of low vitamin B-12 and nonelevated folate. These findings await confirmation in other populations. Objective: The purpose was to compare metabolic indicators of vitamin B-12 status, cognitive function, and depressive symptoms among elderly Latinos with elevated and nonelevated plasma folate. Design: Cross-sectional data were analyzed for 1535 subjects (age: ≥60 y) from the Sacramento Area Latino Study on Aging. Subjects were divided into 4 groups on the basis of plasma vitamin B-12 (< or ≥148 pmol/L) and folate (≤ or >45.3 nmol/L). Homocysteine, methylmalonic acid, holotranscobalamin, ratio of holotranscobalamin to vitamin B-12, Modified Mini-Mental State Examination, delayed recall, and depressive symptom scores were compared between the groups. Results: Individuals with low vitamin B-12 and elevated folate (n = 22) had the highest concentrations of homocysteine and methylmalonic acid and the lowest concentration of holotranscobalamin and ratio of holotranscobalamin to vitamin B-12 when compared with all other groups (P ≤ 0.003). No differences in Modified Mini-Mental State Examination, delayed recall, and depressive symptom scores were observed between the low vitamin B-12 and elevated-folate group compared with other groups. Conclusions: Low vitamin B-12 is associated with more pronounced metabolic evidence of vitamin B-12 deficiency when folate is elevated than when folate is not elevated. These data should be considered when assessing the potential costs, risks, and benefits of folic acid and vitamin B-12 fortification programs. PMID:19726595

  11. Elevated Homocysteine Level and Folate Deficiency Associated with Increased Overall Risk of Carcinogenesis: Meta-Analysis of 83 Case-Control Studies Involving 35,758 Individuals

    PubMed Central

    Wu, Wei; Guo, Ye; Cui, Wei

    2015-01-01

    Background Results of the association of folate metabolism and carcinogenesis are conflicting. We performed a meta-analysis to examine the effect of the interaction of serum concentration of homocysteine (Hcy), folate, and vitamin B12 and 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphism on risk of cancer overall. Method Two reviewers independently searched for all published studies of Hcy and cancer in PubMed, EMBASE-MEDLINE and Chinese databases. Pooled results were reported as odds ratios (ORs) and mean differences and presented with 95% confidence intervals (95% CIs) and 2-sided probability values. Results We identified 83 eligible studies of 15,046 cases and 20,712 controls. High level of Hcy but low level of folate was associated with risk of cancer overall, with little effect by type of cancer or ethnicity. Vitamin B12 level was inversely associated with only urinary-system and gastrointestinal carcinomas and for Asian and Middle Eastern patients. As well, MTHFR C677T, A1298C and G1793A polymorphisms were related to elevated serum level of Hcy, and folate and vitamin B12 deficiency. However, only MTHFR C677T homogeneity/wild-type (TT/CC) polymorphism was positively associated with overall risk of cancer. Conclusion Elevated serum Hcy level and folate deficiency are associated with increased overall risk of cancer. PMID:25985325

  12. Carrier-mediated transport of folate in a mutant of Pediococcus cerevisiae.

    PubMed

    Mandelbaum-Shavit, F; Grossowicz, N

    1973-05-01

    A mutant strain of Pediococcus cerevisiae (P. cerevisiae/PteGlu) was isolated which grows on low-folate (PteGlu) concentrations (200 pg/ml). The growth response of the parent and mutant strains to folinate (5-CHO-H(4)PteGlu) was the same. The transport of (14)C-PteGlu by P. cerevisiae/PteGlu was temperature-dependent (Q(10) between 27 C and 37 C was about 2), energy-dependent, and pH-dependent and was inhibited by iodoacetate, 2,4-dinitrophenol, potassium fluoride, and sodium azide. The uptake obeyed saturation kinetics with an apparent K(m) of 6.6 x 10(-6) M and V(max) of 4.0 x 10(-10) mol per min per mg (dry weight). At the steady state the intracellular concentration of PteGlu was 120-fold higher from that of the medium. Reduced folates like 5-CHO-H(4)PteGlu and methyl-tetrahydrofolate (5-CH(3)-H(4)PteGlu) as well as 2,4-diaminoanalogues (amethopterin and aminopterin) were shown to compete for the PteGlue-carrier.

  13. The Intestinal Absorption of Folates

    PubMed Central

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I. David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  14. Genetic defects in folate and cobalamin pathways affecting the brain.

    PubMed

    Kirsch, Susanne H; Herrmann, Wolfgang; Obeid, Rima

    2013-01-01

    Folate and cobalamin are necessary for early brain development and function. Deficiency of folate or cobalamin during pregnancy can cause severe malformation in the central nervous system such as neural tube defects. After birth, folate and cobalamin deficiency can cause anemia, failure to thrive, recurrent infections, psychiatric and neurological symptoms. The folate and the homocysteine metabolic pathways interact at a central step where 5-methyltetrahydrofolate donates its methyl group to homocysteine to produce methionine and tetrahydrofolate. Methyl cobalamin and folate interact at this critical step. Both nutrients have a crucial role in DNA synthesis and in delivering S-adenosylmethionine, the universal methyl donor. Severe and mild inherited disorders in folate and cobalamin pathways have been described. The two groups of disorders share some similarities, but differ in the molecular mechanism, metabolic dysregulation, and disease management. This review summarizes selected disorders, including rare and common mutations that affect folate and cobalamin absorption, transport, or dependent enzymes. When the mutations are discovered early enough, many of the described disorders are easily treatable by B vitamin supplementation, which often prevents or reverses the manifestation of the disease. Therefore, the screening for mutations is recommended and should be carried out as early as possible: after occurrence of the first symptoms or when a certain constellations of the folate and cobalamin related markers are measured, such as elevated homocysteine and/or methylmalonic acid.

  15. Nutritional role of folate.

    PubMed

    Ebara, Shuhei

    2017-09-01

    Folate functions as a coenzyme to transfer one-carbon units that are necessary for deoxythymidylate synthesis, purine synthesis, and various methylation reactions. Ingested folate becomes a functional molecule through intestinal absorption, circulation, transport to cells, and various modifications to its structure. Associations between nutritional folate status and chronic diseases such as cardiovascular disease, cancer, and cognitive dysfunction have been reported. It has also been reported that maternal folate nutritional status is related to the risk of neural tube defects (NTDs) in the offspring. It has also been recommended that folate be consumed in the diet to promote the maintenance of good health. To reduce the risk of NTDs, supplementation with folic acid (a synthetic form of folate) during the periconceptional period has also been recommended. This paper describes the basic features and nutritional role of folate. © 2017 Japanese Teratology Society.

  16. Association between the MTHFR C677T polymorphism, blood folate and vitamin B12 deficiency, and elevated serum total homocysteine in healthy individuals in Yunnan Province, China.

    PubMed

    Ni, Juan; Zhang, Ling; Zhou, Tao; Xu, Wei-Jiang; Xue, Jing-Lun; Cao, Neng; Wang, Xu

    2017-03-01

    An increased serum total homocysteine (tHcy) concentration is typically associated with genetic defects involved in Hcy metabolism or related nutritional deficiencies. In this study, the combined effects of methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and folate and vitamin B12 deficiency on serum total Hcy (tHcy) levels were evaluated in a healthy Chinese population in Yunnan Province, China. The MTHFR C677T polymorphism was genotyped in 330 volunteers (164 men and 166 women) using polymerase chain reaction-restriction fragment length polymorphism analysis. Folate, vitamin B12, and tHcy concentrations were determined by corpuscle immune chemiluminescence assays. The tHcy concentration was determined using an enzymatic assay. Significant negative correlations (p<0.001) were observed between the serum levels of tHcy and folate (r=-0.252) and vitamin B12 (r=-0.243). Men had significantly higher serum tHcy concentrations than women (p<0.001). Individuals with the MTHFR TT genotype had significantly higher serum tHcy concentrations than individuals with the CC and CT genotypes (p<0.001). The folate level of red blood cells was significantly increased in individuals with the TT genotype than in individuals with the CC genotype (p<0.05). Moreover, in the low vitamin group, the serum tHcy level was significantly correlated with the levels of folate (r=-0.334, p=0.001) and vitamin B12 (r=-0.212, p=0.046). The MTHFR C677T polymorphism, folate deficiency, and B12 deficiency were significantly associated with elevated serum tHcy levels. Among these three factors, folate deficiency had the greatest contribution to the serum tHcy concentration, followed by (in order of decreasing effect) MTHFR C677T and vitamin B12 deficiency. Thus, folic acid and vitamin B12 supplementation could help prevent diseases associated with tHcy accumulation, especially in individuals with the MTHFR 677TT genotype. Copyright © 2017. Published by Elsevier Taiwan LLC.

  17. Vitamin B12 Deficiency and Elevated Folate Levels: An Unusual Cause of Generalized Tonic-Clonic Seizure

    PubMed Central

    Lubana, Sandeep Singh; Alfishawy, Mostafa; Singh, Navdeep; Atkinson, Sharon

    2015-01-01

    Patient: Male, 49 Final Diagnosis: Generalized tonic-clonic seizures in the setting of vitamin B12 deficiency and elevated folate levels Symptoms: Seizures Medication: — Clinical Procedure: None Specialty: Neurology Objective: Unknown ethiology Background: Vitamin B12 deficiency leads to abnormal myelination or demyelination, resulting in sub-acute combined degeneration, peripheral neuropathy, and psychiatric problems, including delusions, hallucinations, cognitive changes, depression, and dementia. Vitamin B12 deficiency also leads to brain shrinkage and neurodegenerative disorders. Case Report: We report the case of a 49-year-old man presenting with new-onset seizures one and a half years following subtotal gastrectomy due to stage IV gastric adenocarcinoma. The patient did not have any history of head injury. Laboratory tests were negative for any metabolic derangements. There were no signs of infection. MRI brain and EEG were normal and there were no changes in medications. Conclusions: In case of unexplained new-onset seizures, patients should be tested for vitamin B12 and folic acid levels and these should be done as part of the initial work-up. PMID:26101427

  18. Hereditary folate malabsorption: A positively charged amino acid at position 113 of the proton-coupled folate transporter (PCFT/SLC46A1) is required for folic acid binding

    SciTech Connect

    Lasry, Inbal; Berman, Bluma; Glaser, Fabian; Jansen, Gerrit; Assaraf, Yehuda G.

    2009-08-28

    The proton-coupled folate transporter (PCFT/SLC46A1) mediates intestinal folate uptake at acidic pH. Some loss of folic acid (FA) transport mutations in PCFT from hereditary folate malabsorption (HFM) patients cluster in R113, thereby suggesting a functional role for this residue. Herein, unlike non-conservative substitutions, an R113H mutant displayed 80-fold increase in the FA transport Km while retaining parental Vmax, hence indicating a major fall in folate substrate affinity. Furthermore, consistent with the preservation of 9% of parental transport activity, R113H transfectants displayed a substantial decrease in the FA growth requirement relative to mock transfectants. Homology modeling based on the crystal structures of the Escherichia coli transporter homologues EmrD and glycerol-3-phosphate transporter revealed that the R113H rotamer properly protrudes into the cytoplasmic face of the minor cleft normally occupied by R113. These findings constitute the first demonstration that a basic amino acid at position 113 is required for folate substrate binding.

  19. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription.

    PubMed

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; Niu, Bo; Jiang, Zhengwen; Zhang, Ting

    2016-12-06

    The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development.

  20. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription

    PubMed Central

    Xie, Qiu; Li, Caihua; Song, Xiaozhen; Wu, Lihua; Jiang, Qian; Qiu, Zhiyong; Cao, Haiyan; Yu, Kaihui; Wan, Chunlei; Li, Jianting; Yang, Feng; Huang, Zebing; niu, Bo; Jiang, Zhengwen

    2017-01-01

    Abstract The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development. PMID:27924000

  1. Change in platelet endothelial cell adhesion molecule-1 immunoreactivity in the dentate gyrus in gerbils fed a folate-deficient diet.

    PubMed

    Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho

    2008-02-01

    Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.

  2. High Affinity S-Adenosylmethionine Plasma Membrane Transporter of Leishmania Is a Member of the Folate Biopterin Transporter (FBT) Family*

    PubMed Central

    Dridi, Larbi; Ahmed Ouameur, Amin; Ouellette, Marc

    2010-01-01

    S-Adenosylmethionine (AdoMet) is an important methyl group donor that plays a central role in many essential biochemical processes. The parasite Leishmania can both synthesize and transport AdoMet. Leishmania cells resistant to the antifolate methotrexate due to a rearrangement in folate biopterin transporter (FBT) genes were cross-resistant to sinefungin, an AdoMet analogue. FBT gene rearrangements were also observed in Leishmania major cells selected for sinefungin resistance. One of the rearranged FBT genes corresponded to the main AdoMet transporter (AdoMetT1) of Leishmania as determined by gene transfection and gene inactivation experiments. AdoMetT1 was determined to be a high affinity plasma membrane transporter expressed constitutively throughout the growth phases of the parasite. Leishmania cells selected for resistance or naturally insensitive to sinefungin had lower expression of AdoMetT1. A new function in one carbon metabolism, also a pathway of interest for chemotherapeutic interventions, is described for a novel class of membrane proteins found in diverse organisms. PMID:20406813

  3. Regulation of Reduced Folate Carrier (RFC) by Vitamin D Receptor at the Blood-Brain Barrier.

    PubMed

    Alam, Camille; Hoque, Md Tozammel; Finnell, Richard H; Goldman, I David; Bendayan, Reina

    2017-09-08

    Folates are essential for brain development and function. Folate transport in mammalian tissues is mediated by three major folate transport systems, i.e., reduced folate carrier (RFC), proton-coupled folate transporter (PCFT) and folate receptor alpha (FRα), known to be regulated by ligand-activated nuclear receptors such as vitamin D receptor (VDR). Folate uptake at the choroid plexus, which requires the actions of both FRα and PCFT, is critical to cerebral folate delivery. Inactivating FRα or PCFT mutations cause severe cerebral folate deficiency resulting in early childhood neurodegeneration. The objective of this study was to investigate the role of RFC in folate uptake at the level of the blood-brain barrier (BBB) and its potential regulation by VDR. We detected robust expression of RFC in different in vitro BBB model systems, particularly in immortalized cultures of human cerebral microvascular endothelial cells (hCMEC/D3) and isolated mouse brain capillaries. [(3)H]-methotrexate uptake by hCMEC/D3 cells at pH 7.4 was inhibited by PT523 and pemetrexed, antifolates with high affinity for RFC. We also showed that activation of VDR through calcitriol (1,25-dihydroxyvitamin D3) exposure up-regulates RFC mRNA and protein expression as well as function in hCMEC/D3 cells and isolated mouse brain capillaries. We further demonstrated that RFC expression could be down-regulated by VDR-targeting siRNA, further confirming the role of VDR in the direct regulation of this folate transporter. Together, these data suggest that augmenting RFC functional expression could constitute a novel strategy for enhancing brain folate delivery for the treatment of neurometabolic disorders caused by loss of FRα or PCFT function.

  4. Folate Deficiency Was Associated with Increased Alanine Aminotransferase and Glutamyl Transpeptidase Concentrations in a Chinese Hypertensive Population: A Cross-Sectional Study.

    PubMed

    Li, Wen-Xing; Li, Wei; Cao, Jia-Qian; Yan, Haiyue; Sun, Yuanyuan; Zhang, Hong; Zhang, Qiang; Tang, Ling; Wang, Manman; Huang, Jing-Fei; Liu, Dahai

    2016-01-01

    Alanine aminotransferase (ALT), aspartate transaminase (AST), and glutamyl transpeptidase (GGT) were three key enzymes in the hepatic metabolism. This study aimed to investigate the effect of homocysteine (Hcy) metabolism gene polymorphisms and serum Hcy and folate level on the hepatic functions in a Chinese hypertensive population. A representative sample with 480 subjects aged 28-75 was enrolled in 2005.9-2005.12 from six hospitals in different Chinese regions. Serum ALT, AST and GGT were measured by using an automatic biochemistry analyzer. Serum Hcy was measured by high-performance liquid chromatography, and serum folate was measured by chemiluminescent immunoassay. Known genotypes were detected by PCR-RFLP methods. The results showed that the MTHFR C677T mutation was related a decreased serum AST level (r=-0.11, p=0.026), whereas the MTHFR A1298C mutation elevated serum AST level (r=0.11, p=0.032). Furthermore, multiple regression analysis showed that folate deficiency was associated with higher serum ALT (β (SE): 0.13 (0.06), p=0.031) and GGT level (β (SE): 0.18 (0.07), p=0.011). However, serum Hcy level may not affect the hepatic functions. Our data suggested that hepatic functions were affected by MTHFR gene polymorphisms and serum folate level. Further studies are needed to confirm these correlations in a larger population.

  5. Nutrition throughout life: folate.

    PubMed

    McNulty, Helene; Pentieva, Kristina; Hoey, Leane; Strain, Jj; Ward, Mary

    2012-10-01

    Scientific evidence supports a number of roles for folate in maintaining health from early life to old age. Folate is required for one-carbon metabolism, including the remethylation of homocysteine to methionine; thus elevated plasma homocysteine reflects functional folate deficiency. Optimal folate status has an established role in preventing NTD and there is strong evidence indicating that it also has a role in the primary prevention of stroke. The most important genetic determinant of homocysteine in the general population is the common 677C → T variant in the gene encoding the folate-metabolising enzyme, MTHFR; homozygous individuals (TT genotype) have reduced enzyme activity and elevated plasma homocysteine concentrations. Meta-analyses indicate that the TT genotype carries a 14 to 21 % increased risk of CVD, but there is considerable geographic variation in the extent of excess CVD risk. A novel interaction between this folate polymorphism and riboflavin (a co-factor for MTHFR) has recently been identified. Intervention with supplemental riboflavin targeted specifically at individuals with the MTHFR 677TT genotype was shown to result in significant lowering of blood pressure in hypertensive people and in patients with CVD. This review considers the established and emerging roles for folate throughout the lifecycle, and some public health issues related to optimising folate status.

  6. Cerebral perfusion and oxygenation are impaired by folate deficiency in rat: absolute measurements with noninvasive near-infrared spectroscopy

    PubMed Central

    Hallacoglu, Bertan; Sassaroli, Angelo; Fantini, Sergio; Troen, Aron M

    2011-01-01

    Brain microvascular pathology is a common finding in Alzheimer's disease and other dementias. However, the extent to which microvascular abnormalities cause or contribute to cognitive impairment is unclear. Noninvasive near-infrared spectroscopy (NIRS) can address this question, but its use for clarifying the role of microvascular dysfunction in dementia has been limited due to theoretical and practical considerations. We developed a new noninvasive NIRS method to obtain quantitative, dynamic measurements of absolute brain hemoglobin concentration and oxygen saturation and used it to show significant cerebrovascular impairments in a rat model of diet-induced vascular cognitive impairment. We fed young rats folate-deficient (FD) and control diets and measured absolute brain hemoglobin and hemodynamic parameters at rest and during transient mild hypoxia and hypercapnia. With respect to control animals, FD rats featured significantly lower brain hemoglobin concentration (72±4 μmol/L versus 95±6 μmol/L) and oxygen saturation (54%±3% versus 65%±2%). By contrast, resting arterial oxygen saturation was the same for both groups (96%±4%), indicating that decrements in brain hemoglobin oxygenation were independent of blood oxygen carrying capacity. Vasomotor reactivity in response to hypercapnia was also impaired in FD rats. Our results implicate microvascular abnormality and diminished oxygen delivery as a mechanism of cognitive impairment. PMID:21386853

  7. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  8. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC

    PubMed Central

    Rosario, Fredrick J.; Powell, Theresa L.; Jansson, Thomas

    2016-01-01

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming. PMID:27562465

  9. Mechanistic target of rapamycin (mTOR) regulates trophoblast folate uptake by modulating the cell surface expression of FR-α and the RFC.

    PubMed

    Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2016-08-26

    Folate deficiency in fetal life is strongly associated with structural malformations and linked to intrauterine growth restriction. In addition, limited availability of methyl donors, such as folate, during pregnancy may result in abnormal gene methylation patterns and contribute to developmental programming. The fetus is dependent on placental transfer of folate, however the molecular mechanisms regulating placental folate transport are unknown. We used cultured primary human trophoblast cells to test the hypothesis that mechanistic target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate folate transport by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal folate uptake. Folate uptake stimulated by insulin + IGF-1 was mediated by mTORC2 but did not involve mTORC1. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of FR-α and RFC transporter isoforms without affecting global protein expression. Inhibition of the ubiquitin ligase Nedd4-2 had no effect on folate transport. In conclusion, we report for the first time that mTORC1/C2 are positive regulators of cellular folate uptake by modulating the cell surface abundance of specific transporter isoforms. We propose that regulation of placental folate transport by mTOR signaling provide a direct link between placental function, gene methylation and fetal programming.

  10. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children

    PubMed Central

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C.; Reyes-López, Miguel A.; Quiñones, Luis A.

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11–5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62–78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42–191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94–31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05–6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19–31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children. PMID:27547186

  11. Folate biofortification in food crops.

    PubMed

    Strobbe, Simon; Van Der Straeten, Dominique

    2017-03-19

    Folates are essential vitamins in the human diet. Folate deficiency is still very common, provoking disorders such as birth defects and anemia. Biofortification via metabolic engineering is a proven powerful means to alleviate folate malnutrition. A variety of metabolic engineering approaches have been successfully implemented in different crops and tissues. Furthermore, ensuring folate stability is crucial for long-term storage of crop products. However, the current strategies, shown to be successful in rice and tomato, will need to be fine-tuned to enable adequate biofortification of other staples such as potato, wheat and cassava. Thus, there is a need to overcome remaining hurdles in folate biofortification. Overall, biofortification, via breeding or metabolic engineering, will be imperative to effectively combat folate deficiency.

  12. X-linked creatine transporter deficiency: clinical aspects and pathophysiology.

    PubMed

    van de Kamp, Jiddeke M; Mancini, Grazia M; Salomons, Gajja S

    2014-09-01

    Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.

  13. Glucose transporter type1 (GLUT-1) deficiency.

    PubMed

    Gordon, Neil; Newton, Richard W

    2003-10-01

    Glucose transporter type1 (GLUT-1) deficiency may be rare, but it is a preventable cause of severe learning difficulties; and therefore there is an urgency in making an early diagnosis. Suspicions must be roused when intractable seizures occur in infancy. These may be associated with acquired microcephaly and developmental delay. The finding of low glucose sugar levels in the cerebrospinal fluid, but not in the blood will identify the condition. The gene encoding the GLUT-1 protein is located on the short arm of chromosome 1, and inheritance is by a dominant trait. Patients with this syndrome can have heterozygous mutations, with one allele being a normal wild type and one being mutant. An efficient transport of glucose across the blood-brain barrier is essential as it is such an important fuel for the brain, and this is provided by glucose transporter type1 in the endothelial cells of the brain capillaries. Another minor contribution to the symptomatology of GLUT-1 may be impaired transport of an oxidised form of vitamin C. Treatment with anti-epileptic drugs may be needed, and the ketogenic diet may reduce symptoms, as ketosis can provide an alternative source of fuel for the brain. It has also been suggested that antioxidant thioctic acid may be of benefit. Substances such as caffeine and phenobarbitone should be avoided as they inhibit glucose transport.

  14. [Glucose transporter type 1 (GLUT-1) deficiency].

    PubMed

    Cano, A; Ticus, I; Chabrol, B

    2008-11-01

    Impaired glucose transport across the blood brain barrier results in glucose transporter type 1 (GLUT-1) deficiency syndrome, first described in 1991. It is characterized by infantile seizures refractory to anticonvulsive treatments, microcephaly, delays in mental and motor development, spasticity, ataxia, dysarthria and other paroxysmal neurologic phenomena, often occurring prior to meals. Affected infants are normal at birth following an uneventful pregnancy and delivery. Seizures usually begin between the age of one and four months and can be preceded by apneic episodes or abnormal eyes movements. Patients with atypical presentations such as mental retardation and intermittent ataxia without seizures, or movement disorders characterized by choreoathetosis and dystonia, have also been described. Glucose is the principal fuel source for the brain and GLUT-1 is the only vehicle by which glucose enters the brain. In case of GLUT-1 deficiency, the risk of clinical manifestations is increased in infancy and childhood, when the brain glucose demand is maximal. The hallmark of the disease is a low glucose concentration in the cerebrospinal fluid in a presence of normoglycemia (cerebrospinal fluid/blood glucose ratio less than 0.4). The GLUT-1 defect can be confirmed by molecular analysis of the SCL2A1 gene or in erythrocytes by glucose uptake studies and GLUT-1 immunoreactivity. Several heterozygous mutations, with a majority of de novo mutations, resulting in GLUT-1 haploinsufficiency, have been described. Cases with an autosomal dominant transmission have been established and adults can exhibit symptoms of this deficiency. Ketogenic diet is an effective treatment of epileptic manifestations as ketone bodies serve as an alternative fuel for the developing brain. However, this diet is not effective on cognitive impairment and other treatments are being evaluated. The physiopathology of this disorder is partially unclear and its understanding could explain the clinical

  15. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice.

    PubMed

    Denny, Kerina J; Coulthard, Liam G; Jeanes, Angela; Lisgo, Steven; Simmons, David G; Callaway, Leonie K; Wlodarczyk, Bogdan; Finnell, Richard H; Woodruff, Trent M; Taylor, Stephen M

    2013-04-01

    The complement system is involved in a range of diverse developmental processes, including cell survival, growth, differentiation, and regeneration. However, little is known about the role of complement in embryogenesis. In this study, we demonstrate a novel role for the canonical complement 5a receptor (C5aR) in the development of the mammalian neural tube under conditions of maternal dietary folic acid deficiency. Specifically, we found C5aR and C5 to be expressed throughout the period of neurulation in wild-type mice and localized the expression to the cephalic regions of the developing neural tube. C5aR was also found to be expressed in the neuroepithelium of early human embryos. Ablation of the C5ar1 gene or the administration of a specific C5aR peptide antagonist to folic acid-deficient pregnant mice resulted in a high prevalence of severe anterior neural tube defect-associated congenital malformations. These findings provide a new and compelling insight into the role of the complement system during mammalian embryonic development.

  16. Late Maternal Folate Supplementation Rescues from Methyl Donor Deficiency-Associated Brain Defects by Restoring Let-7 and miR-34 Pathways.

    PubMed

    Geoffroy, Andréa; Kerek, Racha; Pourié, Grégory; Helle, Déborah; Guéant, Jean-Louis; Daval, Jean-Luc; Bossenmeyer-Pourié, Carine

    2017-09-01

    The micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency. In several countries, public health policies recommend periconceptional supplementation with folic acid. However, the question about the duration and periodicity of supplementation remains. We therefore tested maternal supply (3 mg/kg/day) during the last third of gestation from embryonic days (E) 13 to 20. Methyl donor deficiency-related developmental disorders at E20, including cerebellar and interhemispheric suture defects and atrophy of selective cerebral layers, were associated with increased brain expression (by 2.5-fold) of let-7a and miR-34a, with subsequent downregulation of their regulatory targets such as Trim71 and Notch signaling partners, respectively. These processes could be reversed by siRNA strategy in differentiating neuroprogenitors lacking folate, with improvement of their morphological characteristics. While folic acid supplementation helped restoring the levels of let-7a and miR-34a and their downstream targets, it led to a reduction of structural and functional defects taking place during the perinatal period. Our data outline the potential role of let-7 and miR-34 and their related signaling pathways in the developmental defects following gestational methyl donor deficiency and support the likely usefulness of late folate supplementation in at risk women.

  17. Folate, alcohol, and liver disease.

    PubMed

    Medici, Valentina; Halsted, Charles H

    2013-04-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of ALD with particular focus on ethanol-induced alterations in methionine metabolism, which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of ALD based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Folate, Alcohol, and Liver Disease

    PubMed Central

    Medici, Valentina; Halsted, Charles H.

    2013-01-01

    Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133

  19. Chromosomal localization of the murine RFC-1 gene encoding a folate transporter and its amplification in an antifolate resistant variant overproducing the transporter.

    PubMed

    Roy, K; Chiao, J H; Spengler, B A; Tolner, B; Yang, C H; Biedler, J L; Sirotnak, F M

    1998-08-01

    A variant of the L1210 cell (L1210/R83) selected in the presence of the lipophilic antifolate, metoprine, and a concentration of the natural diastereoisomer of 5-formyltetrahydrofolate, lL5CHO-folateH4, suboptimum for growth exhibited a 35-fold increase compared to parental L1210 cells in one-carbon, reduced folate transport. This was evidenced by the increase in Vmax for [3H]MTX (methotrexate) influx and a commensurate increase in the amount of the 46 kilodalton (kDa) transport protein and reduced folate carrier (RFC-1) mRNA. The variant is resistant to lipophilic antifolates, but shows collateral sensitivity to classical folate analogues. Karyotype analysis of L1210/R83 cells revealed the presence of several new chromosome abnormalities. One of these was a large, submetacentric marker chromosome comprising a normal #10 and a longer, abnormally banded arm of uncertain origin which exhibited an interstitial, palely staining, HSR-like segment. The results of Southern and Northern blotting showed that the RFC-1 gene copy number and RNA transcript level were markedly increased (30-35 fold) in L1210/R83 cells. Fluorescence in situ hybridization (FISH) analysis revealed that the HSR-like segment in these cells was the site of amplified RFC-1 genes. Independent revertant subclones, obtained following growth in the absence of selection pressure, showed four- to 12-fold decreases in [3H]MTX influx Vmax and in amount of NHS (N-hydroxysuccinimide)-[3H]MTX affinity labeled one-carbon, reduced folate transporter compared to L1210/R83 cells. RFC-1 gene copy number also decreased, and the mean length of the HSR in these revertants declined 1.6- to 5-fold. Based upon genomic nucleotide sequencing, the RFC-1 gene in the normal mouse genome was localized to chromosome 10 in close association with the alpha 1 (Col18a1) collagen gene at 10B3(locus 41cM). The close association of these genes was confirmed by other data showing that the alpha 1 collagen gene was co-amplified in L1210/R

  20. Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome.

    PubMed

    Quijada-Fraile, Pilar; O'Callaghan, Mar; Martín-Hernández, Elena; Montero, Raquel; Garcia-Cazorla, Àngels; de Aragón, Ana Martínez; Muchart, Jordi; Málaga, Ignacio; Pardo, Rafael; García-Gonzalez, Pedro; Jou, Cristina; Montoya, Julio; Emperador, Sonia; Ruiz-Pesini, Eduardo; Arenas, Joaquín; Martin, Miguel Angel; Ormazabal, Aida; Pineda, Mercè; García-Silva, María T; Artuch, Rafael

    2014-12-24

    Kearns-Sayre syndrome (KSS) is a mitochondrial DNA deletion syndrome that presents with profound cerebral folate deficiency and other features. Preliminary data support the notion that folinic acid therapy might be useful in the treatment of KSS patients. Our aim was to assess the clinical and neuroimaging outcomes of KSS patients receiving folinic acid therapy. We recruited eight patients with diagnoses of KSS. Four cases were treated at 12 de Octubre Hospital, and the other two cases were treated at Sant Joan de Déu Hospital. Two patients refused to participate in the treatment protocol. Clinical, biochemical and neuroimaging data (magnetic resonance imaging or computed tomography scan) were collected in baseline conditions and at different time points after the initiation of therapy. Cerebrospinal fluid 5-methyltetrahydrofolate levels were analysed with HPLC and fluorescence detection. Large-scale mitochondrial DNA deletions were analysed by Southern blot. The follow-up periods ranged from one to eight years. Cases 1-4 received oral folinic acid at a dose of 1 mg/kg/day, and cases 6 and 8 received 3 mg/kg/day. No adverse effects of folinic acid treatment were observed. Cerebral 5-methyltetrahydrofolate deficiencies were observed in all cases in the baseline conditions. Moreover, all three patients who accepted lumbar puncture after folinic acid therapy exhibited complete recoveries of their decreased basal cerebrospinal fluid 5-methyltetrahydrofolate levels to normal values. Two cases neurologically improved after folinic therapy. Disease worsened in the other patients. Post-treatment neuroimaging was performed for the 6 cases that received folinic acid therapy. One patient exhibited improvements in white matter abnormalities. The remaining patients displayed progressions in subcortical cerebral white matter, the cerebellum and cerebral atrophy. Four patients exhibited clinical and radiological progression of the disease following folinic acid treatment. Only

  1. Use of a novel genetic mouse model to investigate the role of folate in colitis-associated colon cancer.

    PubMed

    Chapkin, Robert S; Kamen, Barton A; Callaway, Evelyn S; Davidson, Laurie A; George, Nysia I; Wang, Naisyin; Lupton, Joanne R; Finnell, Richard H

    2009-08-01

    Inflammatory bowel disease (IBD) patients are at high risk for developing folate deficiency and colon cancer. Since it is difficult to study the subtle global and gene-specific epigenetic mechanisms involved in folate-mediated tumor initiation and promotion, we have generated genetically modified mouse models by targeting the reduced folate carrier (RFC1) and folate-binding protein (Folbp1) genes. The transgenic mice were fed semi-purified diets for 8 weeks containing either normal (2 mg) or deficient (0.1 mg folate/kg diet) levels of folate. Compound heterozygous mice (Folbp1(+/-); RFC1(+/-)) fed an adequate folate diet exhibited a reduction in plasma folate concentrations compared to heterozygous (Folbp1(+/-)) and littermate wild-type mice (P<.05). In contrast, no differences were observed in colonic mucosa. Consumption of a low folate diet significantly reduced (three- to fourfold) plasma and tissue folate levels in all animal models, although plasma homocysteine levels were not altered. In order to elucidate the relationship between folate status and inflammation-associated colon cancer, animals were injected with azoxymethane followed by dextran sodium sulphate treatment in the drinking water. Mice were fed a normal folate diet and were terminated 5 weeks after carcinogen injection. The number of high multiplicity aberrant crypt foci per centimeter of colon was significantly elevated (P<.05) in compound Folbp1(+/-); RFC1(+/-) (3.5+/-0.4) mice as compared to Folbp1(+/-) (1.9+/-0.3) and wild-type control mice (1.1+/-0.1). These data demonstrate that the ablation of two receptor/carrier-mediated pathways for folate transport increases the risk for developing inflammation-associated colon cancer.

  2. Use of a Novel Genetic Mouse Model to Investigate the Role of Folate in Colitis-Associated Colon Cancer

    PubMed Central

    Chapkin, Robert S.; Kamen, Barton A.; Callaway, Evelyn S.; Davidson, Laurie A.; George, Nysia I.; Wang, Naisyin; Lupton, Joanne R.; Finnell, Richard H.

    2009-01-01

    Inflammatory bowel disease (IBD) patients are at high risk for developing folate deficiency and colon cancer. Since it is difficult to study the subtle global and gene-specific epigenetic mechanisms involved in folate-mediated tumor initiation and promotion, we have generated genetically modified mouse models by targeting the reduced folate carrier (RFC1) and folate binding protein (Folbp1) genes. The transgenic mice were fed semi-purified diets for 8 wk containing either normal (2 mg) or deficient (0.1 mg folate/kg diet) levels of folate. Compound heterozygous mice (Folbp1+/−RFC1+/−) mice fed an adequate folate diet exhibited a reduction in plasma folate concentrations compared to heterozygous (Folbp1+/−) and littermate wild-type mice (p<0.05). In contrast, no differences were observed in colonic mucosa. Consumption of a low folate diet significantly reduced (3–4 fold) plasma and tissue folate levels in all animal models, although plasma homocysteine levels were not altered. In order to elucidate the relationship between folate status and inflammation-associated colon cancer, animals were injected with azoxymethane followed by dextran sodium sulphate treatment in the drinking water. Mice were fed a normal folate diet and were terminated 5 wks after carcinogen injection. The number of high multiplicity aberrant crypt foci per cm of colon was significantly elevated (p<0.05) in compound Folbp1+/− RFC1+/− (3.5±0.4) mice as compared to Folbp1+/− (1.9±0.3) and wild-type control mice (1.1±0.1). These data demonstrate that the ablation of two receptor/carrier-mediated pathways for folate transport increases the risk for developing inflammation-associated colon cancer. PMID:18926688

  3. Short-term nutritional folate deficiency in rats has a greater effect on choline and acetylcholine metabolism in the peripheral nervous system than in the brain, and this effect escalates with age

    PubMed Central

    Crivello, Natalia A.; Blusztajn, Jan K.; Joseph, James A.; Shukitt-Hale, Barbara; Smith, Donald E.

    2010-01-01

    The hypothesis of this study is that a folate-deficient diet (FD) has a greater effect on cholinergic system in the peripheral nervous system than in the brain, and that this effect escalates with age. It was tested by comparing choline and acetylcholine levels in male Sprague Dawley rats fed either control or folate-deficient diets for 10 weeks, starting at age 4 weeks (the young group) or 9 months (the adult group). FD consumption resulted in depletion of plasma folate in both age groups. In young folate-deficient rats, liver and lung choline levels were significantly lower than those in the respective controls. No other significant effects of FD on choline and acetylcholine metabolism were found in young rats. In adult rats, FD consumption markedly decreased choline levels in the liver, kidneys, and heart; furthermore, choline levels in the cortex and striatum were moderately elevated, although hippocampal choline levels were not affected. Acetylcholine levels were higher in the heart, cortex, and striatum but lower in the hippocampus in adult folate-deficient rats, as compared to controls. Higher acetylcholine levels in the striatum in adult folate-deficient rats were also associated with higher dopamine release in the striatal slices. Thus, both age groups showed higher cholinergic metabolic sensitivity to FD in the peripheral nervous system than in the brain. However, compensatory abilities appeared to be better in the young group, implicating the adult group as a preferred model for further investigation of folate-choline-acetylcholine interactions and their role in brain plasticity and cognitive functions. PMID:21056288

  4. Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh.

    PubMed

    Tauheed, Jannah; Sanchez-Guerra, Marco; Lee, Jane J; Paul, Ligi; Ibne Hasan, Md Omar Sharif; Quamruzzaman, Quazi; Selhub, Jacob; Wright, Robert O; Christiani, David C; Coull, Brent A; Baccarelli, Andrea A; Mazumdar, Maitreyi

    2017-06-03

    Arsenic exposure may contribute to disease risk in humans through alterations in the epigenome. Previous studies reported that arsenic exposure is associated with changes in plasma histone concentrations. Posttranslational histone modifications have been found to differ between the brain tissue of human embryos with neural tube defects and that of controls. Our objectives were to investigate the relationships between plasma histone 3 levels, history of having an infant with myelomeningocele, biomarkers of arsenic exposure, and maternal folate deficiency. These studies took place in Bangladesh, a country with high environmental arsenic exposure through contaminated drinking water. We performed ELISA assays to investigate plasma concentration of total histone 3 (H3) and the histone modification H3K27me3. The plasma samples were collected from 85 adult women as part of a case-control study of arsenic and myelomeningocele risk in Bangladesh. We found significant associations between plasma %H3K27me3 levels and risk of myelomeningocele (P<0.05). Mothers with higher %H3K27me3 in their plasma had lower risk of having an infant with myelomeningocele (odds ratio: 0.91, 95% confidence interval: 0.84, 0.98). We also found that arsenic exposure, as estimated by arsenic concentration in toenails, was associated with lower total H3 concentrations in plasma, but only among women with folate deficiency (β = -9.99, standard error = 3.91, P=0.02). Our results suggest that %H3K27me3 in maternal plasma differs between mothers of infants with myelomeningocele and mothers of infants without myelomeningocele, and may be a marker for myelomeningocele risk. Women with folate deficiency may be more susceptible to the epigenetic effects of environmental arsenic exposure.

  5. Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet.

    PubMed

    Pogribny, Igor P; Karpf, Adam R; James, Smitha R; Melnyk, Stepan; Han, Tao; Tryndyak, Volodymyr P

    2008-10-27

    The maintenance of the cellular epigenomic landscape, which depends on the status of the one-carbon metabolic pathway, is essential for normal central nervous system development and function. In the present study, we examined the epigenetic alterations in the brains of Fisher 344 rats induced by the long-term administration of a diet lacking of essential one-carbon nutrients, methionine, choline, and folic acid. The results demonstrated that feeding a folate/methyl-deficient diet causes global DNA hypermethylation as indicated by an increase of genomic 5-methyl-2'-deoxycytidine (5mdC) content and more importantly, by an increase of methylation within unmethylated CpG-rich DNA domains. Interestingly, these epigenetic changes were opposite to those observed in the livers of the same folate/methyl-deficient rats. The hypermethylation changes were associated with an increased protein expression of de novo DNA methyltransferase DNMT3a and methyl-CpG-binding protein 2. Additionally, the gene expression profiling identified 33 significantly up- or down-regulated genes (fold change > or =1.5 and p< or =0.05) in the brains of rats fed a folate/methyl-deficient diet for 36 weeks. Interestingly, we detected an up-regulation of regulatory factor X, 3 (Rfx3) gene, a sequence-specific DNA-binding protein, that mediates the transcriptional activation of silenced by methylation genes, which may be an adaptive protective brain response to hypermethylation. Together, these data suggest that the proper maintenance of the epigenomic landscape in normal brain depends on the adequate supply of essential nutrients involved in the metabolism of methyl groups.

  6. Acceleration of brain amyloidosis in an Alzheimer's disease mouse model by a folate, vitamin B6 and B12-deficient diet.

    PubMed

    Zhuo, Jia-Min; Praticò, Domenico

    2010-03-01

    Epidemiological and clinical studies indicate that elevated circulating level of homocysteine (Hcy) is a risk factor for developing Alzheimer's disease (AD). Dietary deficiency of folate, vitamin B6 and B12 results in a significant increase of Hcy levels, a condition also known as hyperhomocysteinemia (HHcy). In the present study we tested the hypothesis that a diet deficient for these three important factors when administered to a mouse model of AD, i.e. Tg2576, will result in HHcy and in an acceleration of their amylodotic phenotype. Compared with Tg2576 mice on regular chow, the ones receiving the diet deficient for folate, B6 and B12 developed HHcy. This condition was associated with a significant increase in Abeta levels in the cortex and hippocampus, and an elevation of Abeta deposits in the same regions. No significant changes were observed for steady-state levels of total APP, BACE-1, ADAM-10, PS1 and nicastrin in the brains of mice with HHcy. No differences were observed for the main Abeta catabolic pathways, i.e. IDE and neprilysin proteins, or the Abeta chaperone apolipoprotein E. Our findings demonstrate that a dietary condition which leads to HHcy may also result in increased Abeta levels and deposition in a transgenic mouse model of AD-like amylodosis. They further support the concept that dietary factors can contribute to the development of AD neuropathology. Copyright 2009 Elsevier Inc. All rights reserved.

  7. Adult neurogenesis in serotonin transporter deficient mice.

    PubMed

    Schmitt, A; Benninghoff, J; Moessner, R; Rizzi, M; Paizanis, E; Doenitz, C; Gross, S; Hermann, M; Gritti, A; Lanfumey, L; Fritzen, S; Reif, A; Hamon, M; Murphy, D L; Vescovi, A; Lesch, K-P

    2007-09-01

    Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (approximately 14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (approximately 7 weeks and approximately 3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation.

  8. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia.

    PubMed

    Farkas, Sanja A; Böttiger, Anna K; Isaksson, Helena S; Finnell, Richard H; Ren, Aiguo; Nilsson, Torbjörn K

    2013-03-01

    The objectives of this study were to identify tissue-specific differentially methylated regions (T-DMR's) in the folate transport genes in placental tissue compared with leukocytes, and from placental tissues obtained from normal infants or with neural tube defects (NTDs). Using pyrosequencing, we developed methylation assays for the CpG islands (CGIs) and the CGI shore regions of the folate receptor α (FOLR1), proton-coupled folate transporter (PCFT) and reduced folate carrier 1 (RFC1) genes. The T-DMRs differed in location for each gene and the difference in methylation ranged between 2 and 54%. A higher T-DMR methylated fraction was associated with a lower mRNA level of the FOLR1 and RFC1 genes. Methylation fractions differed according to RFC1 80G > A genotype in the NTD cases and in leukocytes from subjects with high total plasma homocysteine (tHcy). There were no differences in methylated fraction of folate transporter genes between NTD cases and controls. We suggest that T-DMRs participate in the regulation of expression of the FOLR1 and RFC1 genes, that the RFC1 80G > A polymorphism exerts a gene-nutrition interaction on DNA methylation in the RFC1 gene, and that this interaction appears to be most prominent in NTD-affected births and in subjects with high tHcy concentrations.

  9. Epigenetic alterations in folate transport genes in placental tissue from fetuses with neural tube defects and in leukocytes from subjects with hyperhomocysteinemia

    PubMed Central

    Farkas, Sanja A.; Böttiger, Anna K.; Isaksson, Helena S.; Finnell, Richard H.; Ren, Aiguo; Nilsson, Torbjörn K.; Nilsson, Torbjörn K.

    2013-01-01

    The objectives of this study were to identify tissue-specific differentially methylated regions (T-DMR’s) in the folate transport genes in placental tissue compared with leukocytes, and from placental tissues obtained from normal infants or with neural tube defects (NTDs). Using pyrosequencing, we developed methylation assays for the CpG islands (CGIs) and the CGI shore regions of the folate receptor α (FOLR1), proton-coupled folate transporter (PCFT) and reduced folate carrier 1 (RFC1) genes. The T-DMRs differed in location for each gene and the difference in methylation ranged between 2 and 54%. A higher T-DMR methylated fraction was associated with a lower mRNA level of the FOLR1 and RFC1 genes. Methylation fractions differed according to RFC1 80G > A genotype in the NTD cases and in leukocytes from subjects with high total plasma homocysteine (tHcy). There were no differences in methylated fraction of folate transporter genes between NTD cases and controls. We suggest that T-DMRs participate in the regulation of expression of the FOLR1 and RFC1 genes, that the RFC1 80G > A polymorphism exerts a gene-nutrition interaction on DNA methylation in the RFC1 gene, and that this interaction appears to be most prominent in NTD-affected births and in subjects with high tHcy concentrations. PMID:23417011

  10. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability.

    PubMed

    Saini, Ramesh Kumar; Nile, Shivraj Hariram; Keum, Young-Soo

    2016-11-01

    Folates (Vitamin B9) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. AB173. Heterozygous carriers of classical homocystinuria tend to have higher fasting serum homocysteine concentrations than non-carriers in a folate deficiency area where has inordinately high homocystinuria prevalence

    PubMed Central

    Lin, Yu-Ting; Lu, Yung-Hsiu; Chen, Ya-Chi; Pai, Ju-Shan; Hsu, Ting-Rong; Niu, Dau-Ming

    2015-01-01

    Background The newborn screening of homocystinuria in Taiwan has started since 1984. Out of 5 million newborns screened, only 3 newborns (Han Taiwanese) suffering from homocystinuria were detected in this newborn screening program. The prevalence is less than 1 in 1 million. However we recently found 8 patients presenting with homocystinuria in an Austronesian Taiwanese Tao tribe. All the Tao patients are homozygous for a novel mutation (p.D47E, c.141T > A). Among the 428 adult islanders screened for the D47E mutation, approximately 1 in 7.78 is a carrier of the mutation, and an estimated 1 in 240 islanders suffered from homocystinuria. This is the highest known prevalence of homocystinuria worldwide. The expression study revealed that this p.D47E mutation interferes not only with the function but also with the stability of the CBS protein in vivo. We evaluated if the CBS carriers tend to have higher fasting serum tHcy concentrations than non-carriers in presence of folate deficiency. Methods The serum tHcy and folate levels before and after folate replacement was measured in 48 adult Tao carriers, 40 age-matched Tao non-carriers and 40 age-matched Han Taiwanese controls. Results We found that serum tHcy level of the Tao CBS carriers (17.9±3.8 µmol/L) was significantly higher than in Tao non-carriers (15.7±3.5 µmol/L; P<0.008) in the presence of folate deficiency. Of note, the difference in tHcy levels between the carriers and non-carriers was eliminated by folate supplementation (carriers: 13.65±2.13 µmol/L; non-carriers: 12.39±3.25 µmol/L, P=0.321). This finding implies that CBS carriers tend to have the risk of cardiovascular disease in presence of folate deficiency. Conclusions CBS carriers tend to have a higher tHcy level in the presence of folate deficiency than non-carriers. Although many reports have indicated that CBS carriers are not associated with cardiovascular disease, the risk for CBS carriers with folate deficiency has not been well studied

  12. Homocysteine and folate deficiency sensitize oligodendrocytes to the cell death-promoting effects of a presenilin-1 mutation and amyloid beta-peptide.

    PubMed

    Pak, Kirk J; Chan, Sic L; Mattson, Mark P

    2003-01-01

    Although damage to white matter occurs in the brains of patients with Alzheimer's disease (AD), the underlying mechanisms are unknown. Recent findings suggest that individuals with elevated levels of homocysteine are at increased risk of AD. Here we show that oligodendrocytes from mice expressing a mutant form of presenilin-1 (PS1) that causes familial AD exhibit increased sensitivity to death induced by homocysteine compared to oligodendrocytes from wild-type control mice. Homocysteine also sensitized oligodendrocytes to the cytotoxicity of amyloid beta-peptide. Folate deficiency, which is known to result in elevated levels of homocysteine in vivo, also sensitized oligodendrocytes to the cell-death-promoting actions of mutant PS1 and amyloid beta-peptide. Inhibitors of poly (ADP-ribose) polymerase and p53 protected oligodendrocytes against cell death induced by homocysteine and amyloid beta-peptide, consistent with a role for a DNA-damage response in the cell death process. These findings demonstrate an adverse effect of homocysteine on oligodendrocytes, and suggest roles for homocysteine and folate deficiency in the white matter damage in AD and related neurodegenerative disorders.

  13. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Strobbe, Simon; Kiekens, Filip; Storozhenko, Sergei; De Steur, Hans; Gellynck, Xavier; Lambert, Willy; Stove, Christophe; Van Der Straeten, Dominique

    2015-10-01

    Biofortification of staple crops could help to alleviate micronutrient deficiencies in humans. We show that folates in stored rice grains are unstable, which reduces the potential benefits of folate biofortification. We obtain folate concentrations that are up to 150 fold higher than those of wild-type rice by complexing folate to folate-binding proteins to improve folate stability, thereby enabling long-term storage of biofortified high-folate rice grains.

  14. Pyridoxal-5'-phosphate deficiency is associated with hyperhomocysteinemia regardless of antioxidant, thiamine, riboflavin, cobalamine, and folate status in critically ill patients.

    PubMed

    Molina-López, Jorge; Florea, Daniela; Quintero-Osso, Bartolomé; de la Cruz, Antonio Pérez; Rodríguez-Elvira, Manuel; Del Pozo, Elena Planells

    2016-06-01

    Critically ill patients develop severe stress, inflammation and a clinical state that may raise the utilization and metabolic replacement of pyridoxal-5'-phosphate decreasing their body reserves. This study was designed to assess the nutritional pyridoxal-5'-phosphate status in critical care patients with systemic inflammatory response syndrome, comparing them with a group of healthy people, and studying it's association with factors involved in the pyridoxine and other B vitamins metabolism, as the total antioxidant capacity and Hcy as cardiovascular risk biomarker. Prospective, multicentre, comparative, observational and analytic study. One hundred and three critically ill patients from different hospitals, and eighty four healthy subjects from Granada, Spain, all with informed consent. Data from daily nutritional assessment, ICU severity scores, clinical and nutritional parameters, antioxidant status and homocysteine levels was taken at admission and at the seventh day of the ICU stay. Thiamine, riboflavin, pyridoxine and folate status proved deficient in a large number of patients, being significantly lower in comparison with control group, and significantly decreased at 7th day of ICU stay. Higher homocysteine was observed in patients compared with control group (p < 0.05) where 31.5 and 26.8 percent of subjects presented hyperhomocysteinemia at initial and final of study, respectively. Antioxidant status was lower than control group in two periods analysed, and decreased at 7th day of ICU stay (p < 0.05) being associated with PLP deficiency. PLP deficiency was also correlated with hyperhomocysteinemia at two times measured (r. -0.73, p < 0.001; r. -0.69, p < 0.001, respectively), showing at day 7 an odds ratio of 6.62 in our multivariate model. Critically ill patients with SIRS show deficient B vitamin and low antioxidant statuses. Despite association found between PLP deficiency and low antioxidant status in critically ill patients, PLP deficiency

  15. Expression in Sf9 insect cells, purification and functional reconstitution of the human proton-coupled folate transporter (PCFT, SLC46A1).

    PubMed

    Date, Swapneeta S; Fiori, Mariana C; Altenberg, Guillermo A; Jansen, Michaela

    2017-01-01

    The proton-coupled folate transporter (PCFT) provides an essential uptake route for the vitamin folic acid (B9) in mammals. In addition, it is currently of high interest for targeting chemotherapeutic agents to tumors due to the increased folic acid requirement of rapidly dividing tumor cells as well as the upregulated PCFT expression in several tumors. To understand its function, determination of its atomic structure and molecular mechanism of transport are essential goals that require large amounts of functional PCFT. Here, we present a high-level heterologous expression system for human PCFT using a recombinant baculovirus and Spodoptera frugiperda (Sf9) insect cells. We demonstrate folate transport functionality along the PCFT expression, isolation, and purification process. Importantly, purified PCFT transports folic acid after reconstitution. We thus succeeded in overcoming heterologous expression as a major bottleneck of PCFT research. The availability of an overexpression system for human PCFT provides the basis for future biochemical, biophysical and structural studies.

  16. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood

    PubMed Central

    Ng, Joanne; Zhen, Juan; Meyer, Esther; Erreger, Kevin; Li, Yan; Kakar, Naseebullah; Ahmad, Jamil; Thiele, Holger; Kubisch, Christian; Rider, Nicholas L.; Holmes Morton, D.; Strauss, Kevin A.; Puffenberger, Erik G.; D’Agnano, Daniela; Anikster, Yair; Carducci, Claudia; Hyland, Keith; Rotstein, Michael; Leuzzi, Vincenzo; Borck, Guntram; Reith, Maarten E. A.

    2014-01-01

    Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more

  17. Effects of Cu deficiency on photosynthetic electron transport

    SciTech Connect

    Droppa, M.; Terry, N.; Horvath, G.

    1984-04-01

    The role of copper (Cu) in photosynthetic electron transport was explored by using Cu deficiency in sugar beet as an experimental approach. Copper influenced electron transport at two sites in addition to plastocyanin. Under mild deficiency (0.84 nmol of Cu per cm/sup 2/ of leaf area), electron transport between the two photosystems (PS) is inhibited but not electron transport within PS I or PS II measured separately. The chlorophyll/plastoquinone ratio was normal in Cu-deficient plants. However, the breakpoint in the Arrhenius plot of electron transport was shifted towards a higher temperature. It is concluded that Cu is necessary to maintain the appropriate membrane fluidity to ensure the mobility of plastoquinone molecules to transfer electrons between the two photosystems. Under severe deficiency (0.22 nmol of Cu per cm/sup 2/ of leaf area) both PS II and PS I electron transports were inhibited and to the same extent. PS II electron transport activity could not be restored by adding artifical electron donors. Polypeptides with M/sub r/s of 28,000 and 13,500 were missing in Cu-deficient chloroplast membranes. In PS II particles prepared from normal chloroplasts of spinach, 2 atoms of Cu per reaction center are present. We conclude that Cu influences PS II electron transport either directly, by participation in electron transfer as a constituent of an electron carrier, or indirectly, via the polypeptide composition of the membrane in the PS II complex.

  18. Folate- and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α.

    PubMed

    Pourié, Grégory; Martin, Nicolas; Bossenmeyer-Pourié, Carine; Akchiche, Nassila; Guéant-Rodriguez, Rosa Maria; Geoffroy, Andréa; Jeannesson, Elise; El Hajj Chehadeh, Sarah; Mimoun, Khalid; Brachet, Patrick; Koziel, Violette; Alberto, Jean-Marc; Helle, Deborah; Debard, Renée; Leininger, Brigitte; Daval, Jean-Luc; Guéant, Jean-Louis

    2015-09-01

    Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway. © FASEB.

  19. Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking.

    PubMed

    Zhao, Rongbao; Najmi, Mitra; Fiser, Andras; Goldman, I David

    2016-04-08

    The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon theEscherichia coliglycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln(45)-TMD1, Asn(90)-TMD2, Leu(290)-TMD7, Ser(407)-TMD11 and Asn(411)-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [(3)H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd(2+)complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/S407C pair and a CuPh- and Cd(2+)-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influxVmaxconsistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Identification of an Extracellular Gate for the Proton-coupled Folate Transporter (PCFT-SLC46A1) by Cysteine Cross-linking*

    PubMed Central

    Zhao, Rongbao; Najmi, Mitra; Fiser, Andras; Goldman, I. David

    2016-01-01

    The proton-coupled folate transporter (PCFT, SLC46A1) is required for intestinal folate absorption and folate homeostasis in humans. A homology model of PCFT, based upon the Escherichia coli glycerol 3-phosphate transporter structure, predicted that PCFT transmembrane domains (TMDs) 1, 2, 7, and 11 form an extracellular gate in the inward-open conformation. To assess this model, five residues (Gln45-TMD1, Asn90-TMD2, Leu290-TMD7, Ser407-TMD11 and Asn411-TMD11) in the predicted gate were substituted with Cys to generate single and nine double mutants. Transport function of the mutants was assayed in transient transfectants by measurement of [3H]substrate influx as was accessibility of the Cys residues to biotinylation. Pairs of Cys residues were assessed for spontaneous formation of a disulfide bond, induction of a disulfide bond by oxidization with dichloro(1,10-phenanthroline)copper (II) (CuPh), or the formation of a Cd2+ complex. The data were consistent with the formation of a spontaneous disulfide bond between the N90C/S407C pair and a CuPh- and Cd2+-induced disulfide bond and complex, respectively, for the Q45C/L290C and L290C/N411C pairs. The decrease in activity induced by cross-linkage of the Cys residue pairs was due to a decrease in the influx Vmax consistent with restriction in the mobility of the transporter. The presence of folate substrate decreased the CuPh-induced inhibition of transport. Hence, the data support the glycerol 3-phosphate transporter-based homology model of PCFT and the presence of an extracellular gate formed by TMDs 1, 2, 7, and 11. PMID:26884338

  1. Functional and mechanistic roles of the human proton-coupled folate transporter transmembrane domain 6–7 linker

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun; Wilson, Lucas J.; Ye, Jun; Matherly, Larry H.

    2016-01-01

    The proton-coupled folate transporter (PCFT; SLC46A1) is a folate–proton symporter expressed in solid tumors and is used for tumor-targeted delivery of cytotoxic antifolates. Topology modeling suggests that the PCFT secondary structure includes 12 transmembrane domains (TMDs) with TMDs 6 and 7 linked by an intracellular loop (positions 236–265) including His247, implicated as functionally important. Single-cysteine (Cys) mutants were inserted from positions 241 to 251 in Cys-less PCFT and mutant proteins were expressed in PCFT-null (R1–11) HeLa cells; none were reactive with 2-aminoethyl methanethiosulfonate biotin, suggesting that the TMD6–7 loop is intracellular. Twenty-nine single alanine mutants spanning the entire TMD6–7 loop were expressed in R1–11 cells; activity was generally preserved, with the exception of the 247, 250, and 251 mutants, partly due to decreased surface expression. Coexpression of PCFT TMD1–6 and TMD7–12 half-molecules in R1–11 cells partially restored transport activity, although removal of residues 252–265 from TMD7–12 abolished transport. Chimeric proteins, including a nonhomologous sequence from a thiamine transporter (ThTr1) inserted into the PCFT TMD6–7 loop (positions 236–250 or 251–265), were active, although replacement of the entire loop with the ThTr1 sequence resulted in substantial loss of activity. Amino acid replacements (Ala, Arg, His, Gln, and Glu) or deletions at position 247 in wild-type and PCFT–ThTr1 chimeras resulted in differential effects on transport. Collectively, our findings suggest that the PCFT TMD6–7 connecting loop confers protein stability and may serve a unique functional role that depends on secondary structure rather than particular sequence elements. PMID:27514717

  2. When transporters fail to be transported: how to rescue folding-deficient SLC6 transporters

    PubMed Central

    Sucic, Sonja; Kasture, Ameya; Mazhar Asjad, H. M.; Kern, Carina; El-Kasaby, Ali; Freissmuth, Michael

    2017-01-01

    The human dopamine transporter (hDAT) belongs to the solute carrier 6 (SLC6) gene family. Point mutations in hDAT (SLC6A3) have been linked to a syndrome of dopamine transporter deficiency or infantile dystonia/parkinsonism. The mutations impair DAT folding, causing retention of variant DATs in the endoplasmic reticulum and subsequently impair transport activity. The folding trajectory of DAT itself is not understood, though many insights have been gained from studies of folding-deficient mutants of the closely related serotonin transporter (SERT); i.e. their functional rescue by pharmacochaperoning with (nor)ibogaine or heat-shock protein inhibitors. We recently provided a proof-of-principle that folding-deficits in DAT are amenable to rescue in vitro and in vivo. As a model we used the Drosophila melanogaster DAT mutant dDAT-G108Q, which phenocopies the fumin/sleepless DAT-knockout. Treatment with noribogaine and/or HSP70 inhibitor pifithrin-μ restored folding of, and dopamine transport by, dDAT-G108Q, its axonal delivery and normal sleep time in mutant flies. The possibility of functional rescue of misfolded DATs in living flies by pharmacochaperoning grants new therapeutic prospects in the remedy of folding diseases, not only in hDAT, but also in other SLC6 transporters, in particular mutants of the creatine transporter-1, which give rise to X-linked mental retardation. PMID:28405636

  3. Gene expression profiling in the fetal cardiac tissue after folate and low dose trichloroethylene exposure

    PubMed Central

    Caldwell, Patricia T.; Manziello, Ann; Howard, Jamie; Palbykin, Brittany; Runyan, Raymond B.; Selmin, Ornella

    2014-01-01

    Background Previous studies show gene expression alterations in rat embryo hearts and cell lines that correspond to the cardio-teratogenic effects of trichloroethylene (TCE) in animal models. One potential mechanism of TCE teratogenicity may be through altered regulation of calcium homeostatic genes with a corresponding inhibition of cardiac function. It has been suggested that TCE may interfere with the folic acid/methylation pathway in liver and kidney and alter gene regulation by epigenetic mechanisms. According to this hypothesis, folate supplementation in the maternal diet should counteract TCE effects on gene expression in the embryonic heart. Approach To identify transcriptional targets altered in the embryonic heart after exposure to TCE, and possible protective effects of folate, we used DNA microarray technology to profile gene expression in embryonic mouse hearts with maternal TCE exposure and dietary changes in maternal folate. Results Exposure to low doses of TCE (10ppb) caused extensive alterations in transcripts encoding proteins involved in transport, ion channel, transcription, differentiation, cytoskeleton, cell cycle and apoptosis. Exogenous folate did not offset the effects of TCE exposure on normal gene expression and both high and low levels of folate produced additional significant changes in gene expression. Conclusions A mechanism where TCE induces a folate deficiency does not explain altered gene expression patterns in the embryonic mouse heart. The data further suggest that use of folate supplementation, in the presence of this toxin, may be detrimental and non-protective of the developing embryo. PMID:19813261

  4. Genetics Home Reference: dopamine transporter deficiency syndrome

    MedlinePlus

    ... dystonia and parkinsonism, described below) usually start in infancy and worsen over time. However, the features of ... Affected individuals who develop movement problems starting in infancy most often have transporter activity that is less ...

  5. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  6. Folate Metabolism and the Risk of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2008-01-01

    Folate is an important vitamin that contributes to cell division and growth and is therefore of particular importance during infancy and pregnancy. Folate deficiency has been associated with slowed growth, anaemia, weight loss, digestive disorders and some behavioural issues. Adequate folate intake around the time of conception and early pregnancy…

  7. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-06

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory

  8. Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3-d] Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis.

    PubMed

    Golani, Lalit K; Wallace-Povirk, Adrianne; Deis, Siobhan M; Wong, Jennifer; Ke, Jiyuan; Gu, Xin; Raghavan, Sudhir; Wilson, Mike R; Li, Xinxin; Polin, Lisa; de Waal, Parker W; White, Kathryn; Kushner, Juiwanna; O'Connor, Carrie; Hou, Zhanjun; Xu, H Eric; Melcher, Karsten; Dann, Charles E; Matherly, Larry H; Gangjee, Aleem

    2016-09-08

    Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and β or the proton-coupled folate transporter. Results show increased in vitro antiproliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4-9 over the CH2 analogue 1. Compounds 4-9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.

  9. Prevalence of a Loss-of-Function Mutation in the Proton-Coupled Folate Transporter Gene (PCFT-SLC46A1) Causing Hereditary Folate Malabsorption in Puerto Rico

    PubMed Central

    Mahadeo, Kris M.; Diop-Bove, Ndeye; Ramirez, Sonia I.; Cadilla, Carmen L.; Rivera, Enid; Martin, Madelena; Lerner, Norma B.; DiAntonio, Lisa; Duva, Salvatore; Santiago-Borrero, Pedro J.; Goldman, I. David

    2014-01-01

    Objective To determine whether subjects of Puerto Rican heritage are at increased risk for a specific mutation of the proton-coupled folate transporter (PCFT) causing hereditary folate malabsorption (HFM). Study design Three percent of the births in Puerto Rico in 2005, with additional regional oversampling, were screened for the prevalence of the c.1082G>A; p.Y362_G389 del PCFT gene mutation. Six new subjects of Puerto Rican heritage with the clinical diagnosis of HFM were also assessed for this mutation. Results Six subjects of Puerto Rican heritage with the clinical diagnosis of HFM were all homozygous for the c.1082G>A; p.Y362_G389 del PCFT mutation. Three heterozygote carriers were identified from the 1582 newborn samples randomly selected from births in Puerto Rico in 2005. The carrier frequency for the mutated allele was 0.2% island-wide and 6.3% in Villalba. Conclusion These findings are consistent with a common mutation in the PCFT gene causing HFM that has disseminated to Puerto Ricans who have migrated to mainland United States. Because prompt diagnosis and treatment of infants with HFM can prevent the consequences of this disorder, newborn screening should be considered in high-risk populations and physicians should be aware of its prevalence in infants of Puerto Rican ancestry. PMID:21489556

  10. Vitamin B-12 Deficiency in Children Is Associated with Grade Repetition and School Absenteeism, Independent of Folate, Iron, Zinc, or Vitamin A Status Biomarkers.

    PubMed

    Duong, Minh-Cam; Mora-Plazas, Mercedes; Marín, Constanza; Villamor, Eduardo

    2015-07-01

    Micronutrients are essential to neurocognitive development; yet their role in educational outcomes is unclear. We examined the associations of micronutrient status biomarkers with the risk of grade repetition and rates of school absenteeism in a cohort of school children. We recruited 3156 children aged 5-12 y from public schools in Bogota, Colombia. Circulating ferritin, hemoglobin, zinc, vitamin A, and vitamin B-12; erythrocyte folate; and mean corpuscular volume (MCV) were measured in blood samples obtained at the beginning of the year. Absenteeism was recorded weekly during the school year, and grade repetition was determined the next year. Risk ratios for grade repetition and rate ratios for absenteeism were estimated by categories of micronutrient status indicators with use of Poisson regression, adjusting for potential confounders. The risk of grade repetition was 4.9%, and the absenteeism rate was 3.8 d per child-year of observation. Vitamin B-12 deficiency (<148 pmol/L) was associated with an adjusted 2.36-fold greater risk of grade repetition (95% CI: 1.03, 5.41; P = 0.04) compared with plasma concentrations ≥148 pmol/L. Other micronutrients were not related to grade repetition. Vitamin B-12 deficiency was also associated with school absenteeism rates. Compared with children with plasma vitamin B-12 concentrations ≥148 pmol/L, vitamin B-12-deficient children had a 1.89-times higher adjusted rate (95% CI: 1.53, 2.34; P < 0.0001). Anemia was related to a 72% higher rate (95% CI: 48%, 99%; P < 0.0001), whereas every 5-fL difference in MCV was associated with a 7% lower adjusted rate (95% CI: 4%, 10%; P < 0.0001). Vitamin B-12 deficiency was associated with risk of grade repetition and school absenteeism rates in school children from Bogota, Colombia. The effects of correcting vitamin B-12 deficiency on educational outcomes and neurocognitive development of school children need to be determined in intervention studies. © 2015 American Society for

  11. Efficacy of DL-alpha-lipoic acid on methanol induced free radical changes, protein oxidative damages and hsp70 expression in folate deficient rat nervous tissue.

    PubMed

    Rajamani, Rathinam; Muthuvel, Arumugam; Manikandan, Sundaramahalingam; Srikumar, Ramasundaram; Sheeladevi, Rathinasamy

    2007-05-01

    DL-alpha-Lipoic acid (LPA) was reported to be effective in reducing free radicals generated by oxidative stress. The protective of effect of LPA on methanol (MeOH) induced free radical changes and oxidative damages in discrete regions of rat brain have been reported in this study. Folate deficient rat (FDD) model was used. The five animal groups (saline control, FDD control, FDD+MeOH, FDD+LPA+MeOH, LPA control) were used. The FDD+MeOH and FDD+LPA+MeOH animals were injected intraperitoneally with methanol (3gm/kg). After 24h, the level of free radical scavengers such as, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione was estimated in six discrete regions of brain, retina and optic nerve. Level of protein thiol, protein carbonyl and lipid peroxidation was also estimated. Expression of heat shock protein 70 mRNA (hsp70) was studied in the cerebellum and hippocampus by reverse transcriptase PCR. All the samples showed elevation in the level of free radical scavenging enzymes and reduced level of glutathione in the FDD+MeOH group in relation to the other groups. hsp70 expression was more in FDD+MeOH group when compared to FDD+LPA+MeOH group. In conclusion, MeOH exposure leads to increased free radical generation and protein oxidative damages in the rat nervous tissue. Treatment with LPA prevents oxidative damage induced by MeOH exposure.

  12. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    Folate and folic acid are forms of the B vitamin that are involved in the synthesis, repair and functioning of DNA and are required for the production and maintenance of cells. Low levels of folate have been associated with several forms of cancer, including colon cancer. Aberran...

  13. TRIBROMOMETHANE EXPOSURE AND DIETARY FOLATE DEFICIENCY IN THE FORMATION OF ABERRANT CRYPT FOCI IN THE COLONS OF F344/N RATS

    EPA Science Inventory

    Folate and folic acid are forms of the B vitamin that are involved in the synthesis, repair and functioning of DNA and are required for the production and maintenance of cells. Low levels of folate have been associated with several forms of cancer, including colon cancer. Aberran...

  14. The first Chinese case report of hereditary folate malabsorption with a novel mutation on SLC46A1.

    PubMed

    Wang, Qiao; Li, Xiyuan; Ding, Yuan; Liu, Yupeng; Qin, Yaping; Yang, Yanling

    2015-01-01

    Hereditary folate malabsorption is a rare, autosomal recessive disorder of proton-coupled folate transporter deficiency resulting in folate deficiency. Left untreated, the condition can cause severe brain damage and megaloblastic anemia, leading to progressive psychomotor retardation, seizures and other neurological problems. Early diagnosis and treatment are crucial. No case has been documented yet in Mainland China until now. A Chinese girl affected by hereditary folate malabsorption was studied. The girl presented with recurrent megaloblastic anemia from the age of 7 months. Paroxysmal limbs trembling and seizures were presented from the age of three years. Intracranial calcification was noted by CT. At her age of 5 years, mental regression, lower-extremity weakness and sleeping problems were observed. Her plasma folate decreased to 4.49 nmol/L (normal control>6.8nmol/L). Plasma total homocysteine elevated to 28.11 μmol/L (normal control<15 μmol/L). Folate and 5-methylterahydrofolate in cerebrospinal fluid were significantly decreased to undetectable level. On SLC46A1 gene, a novel mutation, c.1A>T (M1L), and a reported mutation c.194-195 insG (p.Cys66LeufsX99) were identified, supported the diagnosis of hereditary folate malabsorption. Each parent carries one of two mutations. Folinic calcium supplement resulted in rapid clinical improvement. She is currently 6 years old with normal development and routine blood features. Hereditary folate malabsorption is one of the few easily-treatable inherited metabolic diseases. Measurements of folate and 5-methyltetrahydrofolate in cerebrospinal fluid are keys for the diagnosis of the patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects.

    PubMed

    Czeizel, Andrew E; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-11-21

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin's statement: "An ounce of prevention is better than a pound of care".

  16. Folate Deficiency and Folic Acid Supplementation: The Prevention of Neural-Tube Defects and Congenital Heart Defects

    PubMed Central

    Czeizel, Andrew E.; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-01-01

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin’s statement: “An ounce of prevention is better than a pound of care”. PMID:24284617

  17. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate.

    PubMed

    Hwa Kim, Sun; Hoon Jeong, Ji; Joe, Cheol O; Gwan Park, Tae

    2005-04-18

    To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins or other bioactive macromolecules into a specific cell, a di-block copolymer conjugate, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL), was synthesized. The PLL-PEG-FOL conjugate was physically complexed with fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) in an aqueous phase by ionic interactions. Cellular uptake of PLL-PEG-FOL/FITC-BSA complexes was greatly enhanced against a folate receptor over-expressing cell line (KB cells) compared to a folate receptor deficient cell line (A549 cells). The presence of an excess amount of free folate (1 mM) in the medium inhibited the intracellular delivery of PLL-PEG-FOL/FITC-BSA complexes. This suggests that the enhanced cellular uptake of FITC-BSA by KB cells in a specific manner was attributed to folate receptor-mediated endocytosis of the complexes having folate moieties on the surface. The PLL-PEG-FOL di-block copolymer could be potentially applied for intracellular delivery of a wide range of other biological active agents that have negative charges on the surface.

  18. Increased hippocampal DNA oxidation in serotonin transporter deficient mice.

    PubMed

    Mössner, R; Dringen, R; Persico, A M; Janetzky, B; Okladnova, O; Albert, D; Götz, M; Benninghoff, J; Schmitt, A; Gerlach, M; Riederer, P; Lesch, K P

    2002-05-01

    The serotonin transporter (5HTT) is the molecule responsible for the high-affinity reuptake of 5HT from the synaptic cleft. Mice lacking the 5HTT exhibit highly elevated extracellular concentrations of 5HT. We assessed whether the glutathione detoxification system is altered in 5HTT-deficient mice. While levels of reduced and oxidized glutathione were unchanged, glutathione metabolising enzymes showed a differential pattern of modulation. Glutathione peroxidase was reduced in frontal cortex, brainstem, and cerebellum of 5HTT-deficient mice, though not to a statistically significant extent, while a putative isoform of the detoxifying enzyme glutathione-S-transferase pi was decreased in a number of brain regions, especially in brainstem. At the level of the DNA, we found an increase of oxidative DNA adducts in the hippocampus of 5HTT-deficient mice. Given the importance of the hippocampus in learning and memory, this may be the most important neurochemical consequence of the absence of the 5HTT.

  19. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry

    PubMed Central

    Deng, Yijun; Zhou, Xilin; Desmoulin, Sita Kugel; Wu, Jianmei; Cherian, Christina; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2009-01-01

    A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines, with bridge length variations (from 2-8 carbon atoms) were synthesized as selective folate receptor (FR) α and β substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23-29. Cyclization with chlorformamidine afforded the thieno[2,3-d]pyrimidines 30-36 which were hydrolyzed and coupled with diethyl-L-glutamate, followed by saponification to give the target compounds 2-8. Compounds 3-6 were potent growth inhibitors (IC50 4.7 to 334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3-6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno[2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3-6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory. PMID:19371039

  20. Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line.

    PubMed

    Diop-Bove, Ndeye Khady; Wu, Julia; Zhao, Rongbao; Locker, Joseph; Goldman, I David

    2009-08-01

    This laboratory recently identified a novel proton-coupled folate transporter (PCFT) that mediates intestinal folate absorption and transport of folates into the central nervous system. The present study focuses on the definition of the minimum transcriptional regulatory region of this gene in HeLa cells and the mechanism(s) underlying the loss of PCFT expression in the methotrexate-resistant HeLa R1-11 cell line. The PCFT transcriptional regulatory controls were localized between -42 and +96 bases from the transcriptional start site using a luciferase-reporter gene system. The promoter is a G + C rich region of 139 nucleotides contained in a CpG island. HeLa R1-11 cells have no mutations in the PCFT open reading frame and its promoter; the transcription/translation machinery is intact because transient transfections in HeLa R1-11 and wild-type HeLa cells produced similar luciferase activities. Hypermethylation at CpG sites within the minimal transcriptional regulatory region was shown in HeLa R1-11 cells as compared with the parental PCFT-competent HeLa cells, using bisulfite conversion and sequence analysis. Treatment with 5-aza-2'-deoxycytidine resulted in a substantial restoration of transport and PCFT mRNA expression and small but significant decreases in methylation in the promoter region. In vitro methylation of the transfected reporter plasmid inhibited luciferase gene expression. Cytogenetics/fluorescence in situ hybridization indicated a loss of half the PCFT gene copies in HeLa R1-11 as compared with PCFT-competent HeLa cells. Taken together, promoter silencing through methylation and gene copy loss accounted for the loss of PCFT activity in antifolate-resistant HeLa R1-11 cells.

  1. Creatine transporter deficiency: Novel mutations and functional studies.

    PubMed

    Ardon, O; Procter, M; Mao, R; Longo, N; Landau, Y E; Shilon-Hadass, A; Gabis, L V; Hoffmann, C; Tzadok, M; Heimer, G; Sada, S; Ben-Zeev, B; Anikster, Y

    2016-09-01

    X-linked cerebral creatine deficiency (MIM 300036) is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent ([14])C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C > T, p.R207W). Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del) as well as a single base change (c.1254 + 1G > A) at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del) previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel.

  2. [Glucose transporter-1 deficiency syndrome can cause various clinical symptoms].

    PubMed

    Larsen, Jan; Stubbings, Vibeke; Møller, Rikke Steensbjerre; Hjalgrim, Helle

    2013-12-09

    Glucose transporter-1 deficiency syndrome (GLUT1-DS) is caused by a decreased function of the glucose transporter GLUT1 protein, which is located in the blood brain barrier. This leads to inadequate glucose levels for brain metabolism and can cause various clinical symptoms including medically intractable epilepsy, developmental delay and complex movement disorders. Ketonic diet is the golden standard for treatment of GLUT1-DS. GLUT1-DS should be suspected in patients with early-onset intractable epilepsy with developmental delay or activity-induced movement disorders with or without epilepsy.

  3. Folates in Plants: Research Advances and Progress in Crop Biofortification

    PubMed Central

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-01-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore, strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today's knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  4. Folates in Plants: Research Advances and Progress in Crop Biofortification.

    PubMed

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-01-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore, strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today's knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  5. Folates in plants: research advances and progress in crop biofortification

    NASA Astrophysics Data System (ADS)

    Gorelova, Vera; Ambach, Lars; Rébeillé, Fabrice; Stove, Christophe; Van Der Straeten, Dominique

    2017-03-01

    Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today’s knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the

  6. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate.

    PubMed

    Klee, G G

    2000-08-01

    Vitamin B(12) and folate are two vitamins that have interdependent roles in nucleic acid synthesis. Deficiencies of either vitamin can cause megaloblastic anemia; however, inappropriate treatment of B(12) deficiency with folate can cause irreversible nerve degeneration. Inadequate folate nutrition during early pregnancy can cause neural tube defects in the developing fetus. In addition, folate and vitamin B(12) deficiency and the compensatory increase in homocysteine are a significant risk factor for cardiovascular disease. Laboratory support for the diagnosis and management of these multiple clinical entities is controversial and somewhat problematic. Automated ligand binding measurements of vitamin B(12) and folate are easiest to perform and widely used. Unfortunately, these tests are not the most sensitive indicators of disease. Measurement of red cell folate is less dependent on dietary fluctuations, but these measurements may not be reliable. Homocysteine and methylmalonic acid are better metabolic indicators of deficiencies at the tissue level. There are no "gold standards" for the diagnosis of these disorders, and controversy exists regarding the best diagnostic approach. Healthcare strategies that consider the impact of laboratory tests on the overall costs and quality of care should consider the advantages of including methylmalonic acid and homocysteine in the early evaluation of patients with suspected deficiencies of vitamin B(12) and folate.

  7. Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase

    PubMed Central

    Wang, Lei; Desmoulin, Sita Kugel; Cherian, Christina; Polin, Lisa; White, Kathryn; Kushner, Juiwanna; Fulterer, Andreas; Chang, Min-Hwang; Mitchell, Shermaine; Stout, Mark; Romero, Michael F.; Hou, Zhanjun; Matherly, Larry H.; Gangjee, Aleem

    2011-01-01

    2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series. PMID:21879757

  8. Red cell or serum folate: what to do in clinical practice?

    PubMed

    Farrell, Christopher-John L; Kirsch, Susanne H; Herrmann, Markus

    2013-03-01

    Folate deficiency has been linked to diverse clinical manifestations and despite the importance of accurate assessment of folate status, the best test for routine use is uncertain. Both serum and red cell folate assays are widely available in clinical laboratories; however, red cell folate is the more time-consuming and costly test. This review sought to evaluate whether the red cell assay demonstrated superior performance characteristics to justify these disadvantages. Red cell folate, but not serum folate, measurements demonstrated analytical variation due to sample pre-treatment parameters, oxygen saturation of haemoglobin and haematocrit. Neither marker was clearly superior in characterising deficiency but serum folate more frequently showed the higher correlation with homocysteine, a sensitive marker of deficiency. Similarly, both serum and red cell folate were shown to increase in response to folic acid supplementation. However, serum folate generally gave the greater response and was able to distinguish different supplementation doses. The C677T polymorphism of methylenetetrahydrofolate reductase alters the distribution of folate forms in red cells and may thereby cause further analytical variability in routine red cell folate assays. Overall, serum folate is cheaper and faster to perform than red cell folate, is influenced by fewer analytical variables and provides an assessment of folate status that may be superior to red cell folate.

  9. Random mutagenesis of the proton-coupled folate transporter (SLC46A1), clustering of mutations, and the bases for associated losses of function.

    PubMed

    Zhao, Rongbao; Shin, Daniel Sanghoon; Diop-Bove, Ndeye; Ovits, Channa Gila; Goldman, I David

    2011-07-08

    Loss-of-function mutations in the proton-coupled folate transporter (PCFT, SLC46A1) result in the autosomal recessive disorder, hereditary folate malabsorption (HFM). Identification and characterization of HFM mutations provide a wealth of information on the structure-function relationship of this transporter. In the current study, PCR-based random mutagenesis was employed to generate unbiased loss-of-function mutations of PCFT, simulating the spectrum of alterations that might occur in the human disorder. A total of 26 mutations were generated and 4 were identical to HFM mutations. Eleven were base deletion or insertion mutations that led to a frameshift and, along with similar HFM mutations, are predominantly localized to two narrow regions of the pcft gene at the 5'-end. Base substitution mutations identified in the current study and HFM patients were largely distributed across the pcft gene. Elimination of the ATG initiation codon by a one-base substitution (G > A) did not result in a complete lack of translation at the same codon consistent with rare non-ATG translation initiation. Among six missense mutants evaluated, three mutant PCFTs were not detected at the plasma membrane, one mutation resulted in decreased binding to folate substrate, and one had a reduced rate of conformational change associated with substrate translocation. The remaining PCFT mutant had defects in both processes. These results broaden understanding of the regions of the pcft gene prone to base insertion and deletion and inform further approaches to the analysis of the structure-function of PCFT.

  10. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency.

    PubMed

    Serrano, Mercedes; Rebollo, Mónica; Depienne, Christel; Rastetter, Agnès; Fernández-Álvarez, Emilio; Muchart, Jordi; Martorell, Loreto; Artuch, Rafael; Obeso, José A; Pérez-Dueñas, Belén

    2012-09-01

    Thiamine transporter-2 deficiency, a condition resulting from mutations in the SLC19A3 gene, has been described in patients with subacute dystonia and striatal necrosis. The condition responds extremely well to treatment with biotin and has thus been named biotin-responsive basal ganglia disease. Recently, this deficiency has also been related to Wernicke's-like encephalopathy and atypical infantile spasms, showing heterogeneous responses to biotin and/or thiamine. Two Spanish siblings with a biotin-responsive basal ganglia disease phenotype and mutations in SLC19A3 presented with acute episodes of generalized dystonia, rigidity, and symmetrical lesions involving the striatum, midline nuclei of the thalami, and the cortex of cerebral hemispheres as shown by magnetic resonance imaging. The clinical features resolved rapidly after thiamine administration. Despite the rarity of thiamine transporter-2 deficiency, it should be suspected in patients with acute dystonia and basal ganglia injury, as thiamine can halt disease evolution and prevent further episodes. © 2012 Movement Disorder Society. Copyright © 2012 Movement Disorder Society.

  11. Intestinal Transport of Aminopterin Enantiomers in Dogs and Humans with Psoriasis Is Stereoselective: Evidence for a Mechanism Involving the Proton-Coupled Folate Transporter

    PubMed Central

    Menter, Alan; Thrash, Breck; Cherian, Christina; Matherly, Larry H.; Wang, Lei; Gangjee, Aleem; Morgan, Joel R.; Maeda, Dean Y.; Schuler, Aaron D.; Zebala, John A.

    2012-01-01

    N-[4-[[(2,4-diamino-6-pterdinyl)methyl]amino]benzoyl]-l/d-glutamic acid (l/d-AMT) is an investigational drug in phase 1 clinical development that consists of the l-and d-enantiomers of aminopterin (AMT). l/d-AMT is obtained from a novel process for making the l-enantiomer (l-AMT), a potent oral anti-inflammatory agent. The purpose of these studies was to characterize oral uptake and safety in the dog and human of each enantiomer alone and in combination and provide in vitro evidence for a mechanism of intestinal absorption. This is the first report of l /d-AMT in humans. In dogs (n = 40) orally dosed with l-AMT or d-AMT absorption was stereoselective for the l-enantiomer (6- to 12-fold larger peak plasma concentration after oral administration and area under the plasma concentration-time curve at 0–4 h; p < 0.001). d-AMT was not toxic at the maximal dose tested (82.5 mg/kg), which was 100-fold larger than the maximal nonlethal l-AMT dose (0.8 mg/kg). Dogs (n = 10) and humans with psoriasis (n = 21) orally administered l-AMT and l /d-AMT at the same l-enantiomer dose resulted in stereoselective absorption (absent d-enantiomer in plasma), bioequivalent l-enantiomer pharmacokinetics, and equivalent safety. Thus, the d-enantiomer in l/d-AMT did not perturb l-enantiomer absorption or alter the safety of l-AMT. In vitro uptake by the human proton-coupled folate transporter (PCFT) demonstrated minimal transport of d-AMT compared with l-AMT, mirroring the in vivo findings. Enantiomer selectivity by PCFT was attributable almost entirely to decreased binding affinity rather than changes in transport rate. Collectively, our results demonstrate a strong in vitro-in vivo correlation implicating stereoselective transport by PCFT as the mechanism underlying stereoselective absorption observed in vivo. PMID:22653877

  12. Intestinal transport of aminopterin enantiomers in dogs and humans with psoriasis is stereoselective: evidence for a mechanism involving the proton-coupled folate transporter.

    PubMed

    Menter, Alan; Thrash, Breck; Cherian, Christina; Matherly, Larry H; Wang, Lei; Gangjee, Aleem; Morgan, Joel R; Maeda, Dean Y; Schuler, Aaron D; Kahn, Stuart J; Zebala, John A

    2012-09-01

    N-[4-[[(2,4-diamino-6-pterdinyl)methyl]amino]benzoyl]-L/D-glutamic acid (L/D-AMT) is an investigational drug in phase 1 clinical development that consists of the L-and D-enantiomers of aminopterin (AMT). L/D-AMT is obtained from a novel process for making the L-enantiomer (L-AMT), a potent oral antiinflammatory agent. The purpose of these studies was to characterize oral uptake and safety in the dog and human of each enantiomer alone and in combination and provide in vitro evidence for a mechanism of intestinal absorption. This is the first report of L /D-AMT in humans. In dogs (n = 40) orally dosed with L-AMT or D-AMT absorption was stereoselective for the L-enantiomer (6- to 12-fold larger peak plasma concentration after oral administration and area under the plasma concentration-time curve at 0-4 h; p < 0.001). D-AMT was not toxic at the maximal dose tested (82.5 mg/kg), which was 100-fold larger than the maximal nonlethal L-AMT dose (0.8 mg/kg). Dogs (n = 10) and humans with psoriasis (n = 21) orally administered L-AMT and L /D-AMT at the same L-enantiomer dose resulted in stereoselective absorption (absent D-enantiomer in plasma), bioequivalent L-enantiomer pharmacokinetics, and equivalent safety. Thus, the D-enantiomer in L/D-AMT did not perturb L-enantiomer absorption or alter the safety of L-AMT. In vitro uptake by the human proton-coupled folate transporter (PCFT) demonstrated minimal transport of D-AMT compared with L-AMT, mirroring the in vivo findings. Enantiomer selectivity by PCFT was attributable almost entirely to decreased binding affinity rather than changes in transport rate. Collectively, our results demonstrate a strong in vitro-in vivo correlation implicating stereoselective transport by PCFT as the mechanism underlying stereoselective absorption observed in vivo.

  13. Exogenous folates stimulate growth and budding of Candida glabrata

    PubMed Central

    Porzoor, Afsaneh; Macreadie, Ian G.

    2015-01-01

    Folate, vitamin B9, is well recognized as being essential for cell growth. The utilization of folate is common to all cells, but the source of it may be quite different. For example, mammalian cells depend on exogenous uptake of folates, while plants and microbes can synthesize them. There has been little consideration of uptake of folate in microbial cells, and studies on the effects of folates in mammalian cells, where conditions are restricted. This study shows that exogenous folates (folic acid or folinic acid), causes Candida glabrata cells suspended in water alone to undergo two cycles of cell division and to form multiple buds. The effect was limited to cells in the stationary phase and more profound in quiescent cells. These data indicate a novel response of yeast to folates that may increase the utility of yeast as a model to study folate transport and signaling. PMID:28357288

  14. Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts.

    PubMed

    VanderMeer, Julia E; Carter, Tonia C; Pangilinan, Faith; Mitchell, Adam; Kurnat-Thoma, Emma; Kirke, Peadar N; Troendle, James F; Molloy, Anne M; Munger, Ronald G; Feldkamp, Marcia L; Mansilla, Maria A; Mills, James L; Murray, Jeff C; Brody, Lawrence C

    2016-04-01

    Many folate-related genes have been investigated for possible causal roles in neural tube defects (NTDs) and oral clefts. However, no previous reports have examined the major gene responsible for folate uptake, the proton-coupled folate transporter (SLC46A1). We tested for association between these birth defects and single nucleotide polymorphisms in the SLC46A1 gene. The NTD study population included 549 complete and incomplete case-family triads, and 999 controls from Ireland. The oral clefts study population comprised a sample from Utah (495 complete and incomplete case-family triads and 551 controls) and 221 Filipino multiplex cleft families. There was suggestive evidence of increased NTD case risk with the rs17719944 minor allele (odds ratio (OR): 1.29; 95% confidence intervals (CI): [1.00-1.67]), and decreased maternal risk of an NTD pregnancy with the rs4795436 minor allele (OR: 0.62; [0.39-0.99]). In the Utah sample, the rs739439 minor allele was associated with decreased case risk for cleft lip with cleft palate (genotype relative risk (GRR): 0.56 [0.32-0.98]). Additionally, the rs2239907 minor allele was associated with decreased case risk for cleft lip with cleft palate in several models, and with cleft palate only in a recessive model (OR: 0.41; [0.20-0.85]). These associations did not remain statistically significant after correcting for multiple hypothesis testing. Nominal associations between SLC46A1 polymorphisms and both Irish NTDs and oral clefts in the Utah population suggest some role in the etiology of these birth defects, but further investigation in other populations is needed.

  15. Folate Intake and Markers of Folate Status in Women of Reproductive Age, Pregnant and Lactating Women: A Meta-Analysis

    PubMed Central

    Berti, Cristiana; Fekete, Katalin; Dullemeijer, Carla; Trovato, Monica; Souverein, Olga W.; Cavelaars, Adriënne; Dhonukshe-Rutten, Rosalie; Massari, Maddalena; Decsi, Tamás; van't Veer, Pieter; Cetin, Irene

    2012-01-01

    Background. Pregnant and breastfeeding women are at risk for folate deficiency. Folate supplementation has been shown to be associated with enhanced markers of folate status. However, dose-response analyses for adult women are still lacking. Objective. To assess the dose-response relationship between total folate intake (folic acid plus dietary folate) and markers of folate status (plasma/serum folate, red blood cell folate, and plasma homocysteine); to evaluate potential differences between women in childbearing age, pregnant and lactating women. Methods. Electronic literature searches were carried out on three databases until February 2010. The overall pooled regression coefficient (β) and SE(β) were calculated using meta-analysis on a double-log scale. Results. The majority of data was based on nonpregnant, nonlactating women in childbearingage. The pooled estimate of the relationship between folate intake and serum/plasma folate was 0.56 (95% CI = 0.40–0.72, P < 0.00001); that is, the doubling of folate intake increases the folate level in serum/plasma by 47%. For red blood cell folate, the pooled-effect estimate was 0.30 (95% CI = 0.22–0.38, P < 0.00001), that is, +23% for doubling intake. For plasma-homocysteine it was –0.10 (95% = –0.17 to –0.04, P = 0.001), that is, –7% for doubling the intake. Associations tended to be weaker in pregnant and lactating women. Conclusion. Significant relationships between folate intake and serum/plasma folate, red blood cell folate, and plasma homocysteine were quantified. This dose-response methodology may be applied for setting requirements for women in childbearing age, as well as for pregnant and lactating women. PMID:23024859

  16. Zebrafish as a model for monocarboxyl transporter 8-deficiency.

    PubMed

    Vatine, Gad David; Zada, David; Lerer-Goldshtein, Tali; Tovin, Adi; Malkinson, Guy; Yaniv, Karina; Appelbaum, Lior

    2013-01-04

    Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter, monocarboxylate transporter 8 (MCT8), are associated with AHDS. MCT8 knock-out mice exhibit impaired TH levels; however, they lack neurological defects. Here, the zebrafish mct8 gene and promoter were isolated, and mct8 promoter-driven transgenic lines were used to show that, similar to humans, mct8 is primarily expressed in the nervous and vascular systems. Morpholino-based knockdown and rescue experiments revealed that MCT8 is strictly required for neural development in the brain and spinal cord. This study shows that MCT8 is a crucial regulator during embryonic development and establishes the first vertebrate model for MCT8 deficiency that exhibits a neurological phenotype.

  17. [Molecular genetic studies of mitochondrial ornithine transporter deficiency (HHH syndrome)].

    PubMed

    Tsujino, S; Miyamoto, T; Kanazawa, N

    2001-11-01

    Mitochondrial ornithine transporter deficiency has been called HHH syndrome, because this disorder is characterized by three biochemical abnormalities; hyperornithinemia, hyperammonemia, and homocitrullinuria, and presents with various neurological symptoms; mental retardation, spastic paraparesis with pyramidal signs, cerebellar ataxia and episodic disturbance of consciousness or coma due to hyperammonemia. We identified four mutations in the mitochondrial ornithine transporter gene (ORNT1) of Japanese patients with HHH syndrome. These include a nonsense mutation (R179X), associated with exon skipping, missense mutations (G27E, P126R), and an insertion of AAC between codons 228 and 229, leading to an insertion of amino acid Asn. Especially, R179X was detected 4 of 7 Japanese patients (8 of 14 alleles), implying that this is a common mutation in Japanese population.

  18. Folate metabolic pathways in Leishmania

    PubMed Central

    Vickers, Tim J.; Beverley, Stephen M.

    2012-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for ‘repurposing’ of compounds developed originally for treatment of human cancers or other infectious agents. PMID:22023442

  19. Folate metabolic pathways in Leishmania.

    PubMed

    Vickers, Tim J; Beverley, Stephen M

    2011-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.

  20. Thiamine transporter-2 deficiency: outcome and treatment monitoring

    PubMed Central

    2014-01-01

    Background The clinical characteristics distinguishing treatable thiamine transporter-2 deficiency (ThTR2) due to SLC19A3 genetic defects from the other devastating causes of Leigh syndrome are sparse. Methods We report the clinical follow-up after thiamine and biotin supplementation in four children with ThTR2 deficiency presenting with Leigh and biotin-thiamine-responsive basal ganglia disease phenotypes. We established whole-blood thiamine reference values in 106 non-neurological affected children and monitored thiamine levels in SLC19A3 patients after the initiation of treatment. We compared our results with those of 69 patients with ThTR2 deficiency after a review of the literature. Results At diagnosis, the patients were aged 1 month to 17 years, and all of them showed signs of acute encephalopathy, generalized dystonia, and brain lesions affecting the dorsal striatum and medial thalami. One patient died of septicemia, while the remaining patients evidenced clinical and radiological improvements shortly after the initiation of thiamine. Upon follow-up, the patients received a combination of thiamine (10–40 mg/kg/day) and biotin (1–2 mg/kg/day) and remained stable with residual dystonia and speech difficulties. After establishing reference values for the different age groups, whole-blood thiamine quantification was a useful method for treatment monitoring. Conclusions ThTR2 deficiency is a reversible cause of acute dystonia and Leigh encephalopathy in the pediatric years. Brain lesions affecting the dorsal striatum and medial thalami may be useful in the differential diagnosis of other causes of Leigh syndrome. Further studies are needed to validate the therapeutic doses of thiamine and how to monitor them in these patients. PMID:24957181

  1. Relative bioavailability of folate from the traditional food plant Moringa oleifera L. as evaluated in a rat model.

    PubMed

    Saini, R K; Manoj, P; Shetty, N P; Srinivasan, K; Giridhar, P

    2016-01-01

    Moringa oleifera is an affordable and rich source of dietary folate. Quantification of folate by HPLC showed that 5-formyl-5,6,7,8-tetrahydrofolic acid (502.1 μg/100 g DW) and 5,6,7,8-tetrahydrofolic acid (223.9 μg/100 g DW) as the most dominant forms of folate in M. oleifera leaves. The bioavailability of folate and the effects of folate depletion and repletion on biochemical and molecular markers of folate status were investigated in Wistar rats. Folate deficiency was induced by keeping the animals on a folate deficient diet with 1 % succinyl sulfathiazole (w/w). After the depletion period, animals were repleted with different levels of folic acid and M. oleifera leaves as a source of folate. Feeding the animals on a folate deficient diet for 7 weeks caused a significant (3.4-fold) decrease in serum folate content, compared to non-depleted control animals. Relative bioavailability of folate from dehydrated leaves of M. oleifera was 81.9 %. During folate depletion and repletion, no significant changes in liver glycine N-methyl transferase and 5-methyltetrahydrofolate-homocysteine methyltransferase expression were recorded. In RDA calculations, only 50 % of natural folate is assumed to be bioavailable. Therefore, the bioavailability of folate from Moringa is much higher, suggesting that M. oleifera based food can be used as a significant source of folate.

  2. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    USDA-ARS?s Scientific Manuscript database

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  3. In vitamin B12 deficiency, higher serum folate is assoicated with increased total homocysteine (tHcy) and methlmalonic acid (MMA) concentrations

    USDA-ARS?s Scientific Manuscript database

    In a recent study of older participants (age >/= 60 y) in the 1999-2002 National Health and Nutrition Examination Survey (NHANES), we showed that a combination of high serum folate and low vitamin B-12 status was associated with higher prevalence of cognitive impairment and anemia than other combina...

  4. Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes.

    PubMed

    Blancquaert, Dieter; Van Daele, Jeroen; Storozhenko, Sergei; Stove, Christophe; Lambert, Willy; Van Der Straeten, Dominique

    2013-11-01

    Folates are key-players in one-carbon metabolism in all organisms. However, only micro-organisms and plants are able to synthesize folates de novo and humans rely entirely on their diet as a sole folate source. As a consequence, folate deficiency is a global problem. Although different strategies are currently implemented to fight folate deficiency, up until now, all of them have their own drawbacks. As an alternative and complementary means to those classical strategies, folate biofortification of rice by metabolic engineering was successfully achieved a couple of years ago. To gain more insight into folate biosynthesis regulation and the effect of folate enhancement on general rice seed metabolism, a transcriptomic study was conducted in developing transgenic rice seeds, overexpressing 2 genes of the folate biosynthetic pathway. Upon folate enhancement, the expression of 235 genes was significantly altered. Here, we show that rice folate biofortification has an important effect on folate dependent, seed developmental and plant stress response/defense processes, but does not affect the expression of the endogenous folate biosynthesis genes.

  5. Folate status and neural tube defects.

    PubMed

    Molloy, A M; Mills, J L; Kirke, P N; Weir, D G; Scott, J M

    1999-01-01

    Periconceptional folic acid supplementation prevents approximately 70% of neural tube defects (NTDs). While most women carrying affected fetuses do not have deficient blood folate levels, the risk of having an NTD affected child is inversely correlated with pregnancy red cell folate levels. Current research is focused on the discovery of genetic abnormalities in folate related enzymes which might explain the role of folate in NTD prevention. The first candidate gene to emerge was the C677T variant of 5,10-methylenetetrahydrofolate reductase. Normal subjects who are homozygous for the mutation (TT) have red cell folate status some 20% lower than expected. It is now established that the prevalence of the TT genotype is significantly higher among spina bifida cases and their parents. Nevertheless, our studies show that the variant does not account for the reduced blood folate levels in many NTD affected mothers. We conclude that low maternal folate status may in itself be the most important risk factor for NTDs and that food fortification may be the only population strategy of benefit in the effort to eliminate NTDs.

  6. Response of MiRNA-22-3p and MiRNA-149-5p to Folate Deficiency and the Differential Regulation of MTHFR Expression in Normal and Cancerous Human Hepatocytes

    PubMed Central

    Li, Chao; Ni, Juan; Liu, Yao-Xian; Wang, Han; Liang, Zi-Qing; Wang, Xu

    2017-01-01

    Background/Aims Folic acid (FA) is a core micronutrient involved in DNA synthesis/methylation, and the metabolism of FA is responsible for genomic stability. MicroRNAs may affect gene expression during folate metabolism when cellular homeostasis is changed. This study aimed to reveal the relationship between FA deficiency and the expression of miR-22-p/miR-149-5p and the targeted regulation of miR-22-3p/miR-149-5p on the key folate metabolic gene Methylenetetrahydrofolate reductase (MTHFR). Methods Normal (HL-7702 cells) and cancerous (QGY-7703 cells) human hepatocytes were intervened in modified RPMI 1640 with FA deficiency for 21 days. The interaction between MTHFR and the tested miRNAs was verified by Dual-Luciferase Reporter Assays. The changes in the expression of miR-22-3p/miR-149-5p in response to FA deficiency were detected by Poly (A) Tailing RT-qPCR, and the expression of MTHFR at both the transcriptional and translational levels was determined by RT-qPCR and Western blotting, respectively. Result MiR-22-3p/miR-149-5p directly targeted the 3’UTR sequence of the MTHFR gene. FA deficiency led to an upregulation of miR-22-3p/miR-149-5p expression in QGY-7703/HL-7702 cells, while the transcription of MTHFR was decreased in QGY-7703 cells but elevated in HL-7702 cells. Western blotting showed that FA deficiency resulted in a decline of the MTHFR protein in QGY-7703 cells, whereas in HL-7702 cells, the MTHFR protein level remained constant. Conclusion The results suggested that miR-22-3p/miR-149-5p exert different post-transcriptional effects on MTHFR under conditions of FA deficiency in normal and cancerous human hepatocytes. The results also implied that miR-22-3p/miR-149-5p might exert anticancer effects in cases of long-term FA deficiency. PMID:28045918

  7. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice.

    PubMed

    Trajkovic-Arsic, Marija; Visser, Theo J; Darras, Veerle M; Friesema, Edith C H; Schlott, Bernhard; Mittag, Jens; Bauer, Karl; Heuer, Heike

    2010-02-01

    Patients carrying inactivating mutations in the gene encoding the thyroid hormone transporting monocarboxylate transporter (MCT)-8 suffer from a severe form of psychomotor retardation and exhibit abnormal serum thyroid hormone levels. The thyroidal phenotype characterized by high-serum T(3) and low-serum T(4) levels is also found in mice mutants deficient in MCT8 although the cause of these abnormalities is still unknown. Here we describe the consequences of MCT8 deficiency for renal thyroid hormone transport, metabolism, and function by studying MCT8 null mice and wild-type littermates. Whereas serum and urinary parameters do not indicate a strongly altered renal function, a pronounced induction of iodothyronine deiodinase type 1 expression together with increased renal T(3) and T(4) content point to a general hyperthyroid state of the kidneys in the absence of MCT8. Surprisingly, accumulation of peripherally injected T(4) and T(3) into the kidneys was found to be enhanced in the absence of MCT8, indicating that MCT8 deficiency either directly interferes with the renal efflux of thyroid hormones or activates indirectly other renal thyroid hormone transporters that preferentially mediate the renal uptake of thyroid hormones. Our findings indicate that the enhanced uptake and accumulation of T(4) in the kidneys of MCT8 null mice together with the increased renal conversion of T(4) into T(3) by increased renal deiodinase type 1 activities contributes to the generation of the low-serum T(4) and the increase in circulating T(3) levels, a hallmark of MCT8 deficiency.

  8. Natural variation of folate content and composition in spinach (Spinacia oleracea) germplasm.

    PubMed

    Shohag, M J I; Wei, Yan-yan; Yu, Ning; Zhang, Jie; Wang, Kai; Patring, Johan; He, Zhen-li; Yang, Xiao-e

    2011-12-14

    Breeding to increase folate levels in edible parts of plants, termed folate biofortification, is an economical approach to fight against folate deficiency in humans, especially in the developing world. Germplasm with elevated folates are a useful genetic source for both breeding and direct use. Spinach is one of the well-know vegetables that contains a relatively high amount of folate. Currently, little is known about how much folate, and their composition varies in different spinach accessions. The aim of this study was to investigate natural variation in the folate content and composition of spinach genotypes grown under controlled environmental conditions. The folate content and composition in 67 spinach accessions were collected from the United States Department of Agriculture (USDA) and Asian Vegetable Research and Development Center (AVRDC) germplasm collections according to their origin, grown under control conditions to screen for natural diversity. Folates were extracted by a monoenzyme treatment and analyzed by a validated liquid chromatography (LC) method. The total folate content ranged from 54.1 to 173.2 μg/100 g of fresh weight, with 3.2-fold variation, and was accession-dependent. Four spinach accessions (PI 499372, NSL 6095, PI 261787, and TOT7337-B) have been identified as enriched folate content over 150 μg/100 g of fresh weight. The folate forms found were H(4)-folate, 5-CH(3)-H(4)-folate, and 5-HCO-H(4)-folate, and 10-CHO-folic acid also varied among different accessions and was responsible for variation in the total folate content. The major folate vitamer was represented by 5-CH(3)-H(4)-folate, which on average accounted for up to 52% of the total folate pool. The large variation in the total folate content and composition in diverse spinach accessions demonstrates the great genetic potential of diverse genotypes to be exploited by plant breeders.

  9. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism

    PubMed Central

    Tryndyak, Volodymyr; de Conti, Aline; Kobets, Tetyana; Kutanzi, Kristy; Koturbash, Igor; Han, Tao; Fuscoe, James C.; Latendresse, John R.; Melnyk, Stepan; Shymonyak, Svitlana; Collins, Leonard; Ross, Sharon A.; Rusyn, Ivan; Beland, Frederick A.; Pogribny, Igor P.

    2012-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.—Tryndyak, V., de Conti, A., Kobets, T., Kutanzi, K., Koturbash, I., Han, T., Fuscoe, J. C., Latendresse, J. R., Melnyk, S., Shymonyak, S., Collins, L., Ross, S. A., Rusyn, I., Beland, F. A., Pogribny, I. P. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. PMID:22872676

  10. Targeting Nonsquamous Nonsmall Cell Lung Cancer via the Proton-Coupled Folate Transporter with 6-Substituted Pyrrolo[2,3-d]Pyrimidine Thienoyl Antifolates

    PubMed Central

    Wilson, Mike R.; Hou, Zhanjun; Yang, Si; Polin, Lisa; Kushner, Juiwanna; White, Kathryn; Huang, Jenny; Ratnam, Manohar; Gangjee, Aleem

    2016-01-01

    Pemetrexed (PMX) is a 5-substituted pyrrolo[2,3-d]pyrimidine antifolate used for therapy of nonsquamous nonsmall cell lung cancer (NS-NSCLC). PMX is transported by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). Unlike RFC, PCFT is active at acidic pH levels characterizing the tumor microenvironment. By real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry, PCFT transcripts and proteins were detected in primary NS-NSCLC specimens. In six NS-NSCLC cell lines (A549, H1437, H460, H1299, H1650, and H2030), PCFT transcripts and proteins were detected by real-time RT-PCR and western blots, respectively. 6-Substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates related to PMX [compound 1 (C1) and compound 2 (C2), respectively] are selective substrates for PCFT over RFC. In the NS-NSCLC cell lines, both [3H]PMX and [3H]C2 were transported by PCFT. C1 and C2 inhibited proliferation of the NS-NSCLC cell lines; A549, H460, and H2030 cells were more sensitive to C1 than to PMX. C1 and C2 inhibited glycinamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis. When treated at pH 6.8, which favors PCFT uptake, C1 and C2 inhibited clonogenicity of H460 cells greater than PMX; PMX inhibited clonogenicity more than C1 or C2 at pH 7.2, which favors RFC transport over PCFT. Knockdown of PCFT in H460 cells resulted in decreased [3H]PMX and [3H]C2 transport and decreased growth inhibition by C1 and C2, and to a lesser extent by PMX. In vivo efficacy of C1 was seen toward H460 tumor xenografts in severe-combined immunodeficient mice. Our results suggest that 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolates offer significant promise for treating NS-NSCLC by selective uptake by PCFT. PMID:26837243

  11. Folate and homocysteine levels in pregnancy.

    PubMed

    Megahed, M A; Taher, I M

    2004-01-01

    This study aims to determine serum folate and plasma homocysteine levels in healthy pregnant women following a live birth and compare them with healthy non-pregnant women. Fifty healthy gravid multiparous women are included in the study and 25 normal non-pregnant female subjects act as controls (group I). The pregnant women are divided into two groups according to interpregnancy interval: group II (six months or less); group III (18-24 months). Venous blood samples are analysed for red blood cell folate and homocysteine, vitamin B12, serum folate and albumin, and serum aminotransferases (ALT and AST). There was a significant decrease in red cell folate and serum folate in group II compared to the control group (P<0.001). Serum vitamin B12 showed no significant difference. Plasma homocysteine and serum albumin showed significant decreases in both groups II and III compared to the control group. (P<0.001) There was significant positive correlation between homocysteine and serum albumin in the three studied groups. (r=0.42, P<0.001; r=0.45, P<0.001; r=0.51, P<0.001, respectively). There was significant negative correlation between red cell folate and homocysteine in the three studied groups. (r=-0.48, P<0.001; r=-0.53, P<0.001; r=-0.49, P<0.001, respectively). Two cases in group II showed signs of intrauterine growth retardation. The results suggest that pregnant females with short interpregnancy intervals are more likely to develop folate deficiency. Educational strategies are required to increase folate awareness among women to promote the benefits of folic acid supplementation. Mandatory folate fortification of foods should be defined and monitored.

  12. [Serum homocysteine, folate and vitamin B12 in venezuelan elderly].

    PubMed

    Meertens, Lesbia; Díaz, Nayka; Solano, Liseti; Baron, Maria Adela; Rodríguez, Adelmo

    2007-03-01

    The anatomical and physiological changes of aging make elderly people a vulnerable group to malnutrition and specific deficiencies of nutrients such as vitamin B12 and folate. This study was aimed to establish relationships among serum vitamin B12, folate, homocysteine concentrations and dietary intake and adequacy. Fifty five male and female elderly (60 and more years), free-living, were assessed. Measurements were: serum vitamin B12 and folate by radioimmunoanalysis (RIA), homocysteine by polarized fluorescence immunoassay, nutrient intake by three 24 hours recalls and food frequency questionnaire. Nutritional status was determined by Body Mass Index (BMI). Serum vitamin B12 and folate were at normal range (423,3+/-227,6 pmol/l and 6,4 +/- 4,5 mg/ml), but 17,5% of elderly had B12 deficiency and 12% had folate deficiency. Serum homocysteine was higher than reference values (15,8+/-4,4 mmol/l), but 47,5% showed concentrations above 15 mmol/L, male population showed higher mean value (p: 0,01). Nutrient intake was inadequate by deficiency. BMI indicated 11,8% of undernutrition, 29,4% of overweight and 20,6% of obesity A negative and inverse correlation between homocysteine and serum folate was found. Results suggest a biochemical deficiency of B12 and folate that is expressed as elevated homocysteine levels. These finding represent a high cardiovascular risk factor for this elderly group.

  13. Severe leukoencephalopathy with cortical involvement and peripheral neuropathy due to FOLR1 deficiency.

    PubMed

    Kobayashi, Yu; Tohyama, Jun; Akiyama, Tomoyuki; Magara, Shinichi; Kawashima, Hideshi; Akasaka, Noriyuki; Nakashima, Mitsuko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2017-03-01

    Cerebral folate deficiency due to folate receptor 1 gene (FOLR1) mutations is an autosomal recessive disorder resulting from a brain-specific folate transport defect. It is characterized by late infantile onset, severe psychomotor regression, epilepsy, and leukodystrophy. We describe a consanguineous girl exhibiting severe developmental regression, intractable epilepsy, polyneuropathy, and profound hypomyelination with cortical involvement. Magnetic resonance imaging showed cortical disturbances in addition to profound hypomyelination and cerebellar atrophy. Nerve conduction studies revealed both axonal degeneration and demyelinating features. A diagnosis of cerebral folate deficiency was confirmed by a homozygous c.466T>G (p.W156G) mutation in FOLR1, coupled with extremely low cerebrospinal fluid levels of 5-methyltetrahydrofolate. Her symptoms, neuroradiological findings, and polyneuropathy were alleviated by oral folinic acid treatment in conjunction with intravenous and intramuscular administration therapy. Our patient shows that folinic acid therapy can ameliorate the clinical symptoms, white matter disturbances, cortical insults, and peripheral neuropathy of cerebral folate deficiency caused by FOLR1 mutation. It is important to recognize these clinical symptoms and make a precise diagnosis early on, because cerebral folate deficiency is treatable.

  14. A Dual-Targeting Octaguanidine-Doxorubicin Conjugate Transporter for Inducing Caspase-Mediated Apoptosis on Folate-Expressing Cancer Cells.

    PubMed

    Nair, Jyothi B; Joseph, Manu M; Mohapatra, Saswat; Safeera, M; Ghosh, Surajit; Sreelekha, T T; Maiti, Kaustabh Kumar

    2016-04-05

    An efficient synthetic framework was assembled (G8-FKE-FA-Dox), consisting of a lysosome-targeting octaguanidine molecular transporter with a cathepsin B (cath B)-specific peptide substrate, folic acid, and the potent chemotherapeutic drug doxorubicin (Dox). Because the folate receptor (FR) and cath B are overexpressed in malignant cells, this transporter conjugate successfully executed lysosome-mediated transport of Dox to FR-positive tumor cells, illustrating this framework as an excellent targeted drug delivery system (TDDS). G8-FKE-FA-Dox was shown to exhibit selective toxicity toward FR-overexpressing cancer cells, with an IC50 value superior to that of the USFDA-approved Lipodox(TM) and proportional to that of free Dox via selective induction of apoptosis by the activation of caspases 8, 9, and 3. This TDDS was observed to be nontoxic to red blood cells and lymphocytes at neutral pH. Furthermore the tumor-targeting dissemination pattern of this system was revealed by monitoring the in vivo biodistribution of the carrier (G8-FKE-FA-FL) in normal and FR-overexpressing tumor-bearing mice.

  15. Lower Circulating Folate Induced by a Fidgetin Intronic Variant Is Associated With Reduced Congenital Heart Disease Susceptibility.

    PubMed

    Wang, Dan; Wang, Feng; Shi, Kai-Hu; Tao, Hui; Li, Yang; Zhao, Rui; Lu, Han; Duan, Wenyuan; Qiao, Bin; Zhao, Shi-Min; Wang, Hongyan; Zhao, Jian-Yuan

    2017-05-02

    Folate deficiency is an independent risk factor for congenital heart disease (CHD); however, the maternal plasma folate level is paradoxically not a good diagnostic marker. Genome-wide surveys have identified variants of nonfolate metabolic genes associated with the plasma folate level, suggesting that these genetic polymorphisms are potential risk factors for CHD. To examine the effects of folate concentration-related variations on CHD risk in the Han Chinese population, we performed 3 independent case-control studies including a total of 1489 patients with CHD and 1745 control subjects. The expression of the Fidgetin (FIGN) was detected in human cardiovascular and decidua tissue specimens with quantitative real-time polymerase chain reaction and Western blotting. The molecular mechanisms were investigated by luciferase reporter assays, surface plasmon resonance, and chromatin immunoprecipitation. FIGN-interacting proteins were confirmed by tandem affinity purification and coimmunoprecipitation. Proteasome activity and metabolite concentrations in the folate pathway were quantified with a commercial proteasome activity assay and immunoassays, respectively. The +94762G>C (rs2119289) variant in intron 4 of the FIGN gene was associated with significant reduction in CHD susceptibility (P=5.1×10(-14) for the allele, P=8.5×10(--13) for the genotype). Analysis of combined samples indicated that CHD risks in individuals carrying heterozygous (GC) or homozygous (CC) genotypes were reduced by 44% (odds ratio [OR]=0.56; 95% confidence interval [CI]=0.47-0.67) and 66% (OR=0.34; 95% CI=0.23-0.50), respectively, compared with those with the major GG genotype. Minor C allele carriers who had decreased plasma folate levels exhibited significantly increased FIGN expression because the transcription suppressor CREB1 did not bind the alternative promoter of FIGN isoform X3. Mechanistically, increased FIGN expression led to the accumulation of both reduced folate carrier 1 and

  16. The transport of indole-3-acetic Acid in boron- and calcium-deficient sunflower hypocotyl segments.

    PubMed

    Tang, P M; Dela Fuente, R K

    1986-06-01

    Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K(+) leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.

  17. The distribution of serum folate concentration and red blood cell indices in alcoholics.

    PubMed

    Cylwik, Bogdan; Naklicki, Marcin; Gruszewska, Ewa; Szmitkowski, Maciej; Chrostek, Lech

    2013-01-01

    Chronic alcohol consumption leads to malnutrition and to the deficiency of many vitamins. One of the most important is folate deficiency. Folate deficiency disrupts the process of hematopoiesis, which can be evaluated by the changes of red cell indices. The aim of this study was to determine the hematological disturbances by the measurement of red blood cell indices in a Polish population of chronic alcoholics according to folate status. We studied 80 consecutive chronic alcoholic men and 30 healthy controls. Patients were divided into 2 groups according to the folate concentration. The serum folate and vitamin B12 concentration and the blood count were determined. We have shown that the serum folate concentration was decreased in 40% of alcoholics, but there was no folate deficiency and the level of vitamin B12 was normal. There was no correlation between folate, vitamin B12 and hematological indices. We have observed that most hematological parameters (Hb, RBCs, and Hct) in alcoholics were decreased and only two of them (MCV and MCHC) were increased in comparison with the controls. We observed no significant correlation between the RBCs indices and the weekly alcohol intake, but the correlation between RBCs, Hb, Hct and the duration of dependence have been shown. We concluded that, there is no folate deficiency in the Polish alcoholic population but the abusers with low folate levels may already have some RBCs indices affected. It means that the Polish alcoholic population consumes a sufficient amount of vitamins, which prevents the occurrence of hematological disturbances.

  18. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption.

    PubMed

    Kishimoto, Kenji; Kobayashi, Ryoji; Sano, Hirozumi; Suzuki, Daisuke; Maruoka, Hayato; Yasuda, Kazue; Chida, Natsuko; Yamada, Masafumi; Kobayashi, Kunihiko

    2014-07-01

    Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder. Severe folate deficiency in HFM can result in immunodeficiency. We describe a female infant with HFM who acquired severe Pneumocystis pneumonia. The objective of the present study was to elucidate her immunological phenotype and to examine the time course of immune recovery following parenteral folate therapy. The patient demonstrated a combined immunodeficiency with an impaired T cell proliferation response, pan-hypogammaglobulinemia, and an imbalanced pro-inflammatory cytokine profile. She had normal white blood cell count, normal lymphocyte subsets, and normal complement levels. Two novel mutations were identified within the SLC46A1 gene to produce a compound heterozygote. We confirmed full recovery of her immunological and neurophysiological status with parenteral folate replacement. The time course of recovery of her immunological profile varied widely, however. HFM should be recognized as a unique form of immunodeficiency.

  19. Folate and MMA predict cognitive impairment in elderly stroke survivors: A cross sectional study.

    PubMed

    Pascoe, Michaela C; Linden, Thomas

    2016-09-30

    Elderly stroke survivors are at risk of malnutrition and long-term cognitive impairment. Vitamin B-related metabolites, folate and methylmalonic acid, have been implicated in cognitive function. We conducted a study exploring the relationship between blood folate, methylmalonic acid and post-stroke cognitive impairment. This is a cross sectional study of elderly Swedish patients (n=149) 20 months post-stroke, assessed using the Mini Mental State Examination, serum blood levels of methylmalonic acid and red blood cell levels of folate. Linear modeling indicated that low levels of blood folate and elevated methylmalonic acid significantly contributed to cognitive impairment in stroke survivors. Half of the stroke survivors were shown to have folate deficiency at 20 months after stroke. Folate deficiency is common long term after stroke and both low folate and elevated methylmalonic acid appear to be associated with long term cognitive impairment, in elderly Swedish stroke survivors.

  20. Homogeneous assay for whole blood folate using photon upconversion.

    PubMed

    Arppe, Riikka; Mattsson, Leena; Korpi, Krista; Blom, Sami; Wang, Qi; Riuttamäki, Terhi; Soukka, Tero

    2015-02-03

    Red blood cell folate is measured for folate deficiency diagnosis, because it reflects the long-term folate level in tissues, whereas serum folate only represents the dietary intake. Direct homogeneous assay from whole blood would be ideal but conventional fluorescence techniques in blood suffer from high background and strong absorption of light at ultraviolet and visible wavelengths. In this study, a new photon upconversion-based homogeneous assay for whole blood folate is introduced based on resonance energy transfer from upconverting nanophosphor donor coated with folate binding protein to a near-infrared fluorescent acceptor dye conjugated to folate analogue. The sensitized acceptor emission is measured at 740 nm upon 980 nm excitation. Thus, optically transparent wavelengths are utilized for both donor excitation and sensitized acceptor emission to minimize the sample absorption, and anti-Stokes detection completely eliminates the Stokes-shifted autofluorescence. The IC50 value of the assay was 6.0 nM and the limit of detection (LOD) was 1 nM. The measurable concentration range was 2 orders of magnitude between 1.0-100 nM, corresponding to 40-4000 nM folate in the whole blood sample. Recoveries of added folic acid were 112%-114%. A good correlation was found when compared to a competitive heterogeneous assay based on the DELFIA-technology. The introduced assay provides a simple and fast method for whole blood folate measurement.

  1. Hepatic folate metabolism in the chronic alcoholic monkey

    SciTech Connect

    Tamura, T.; Romero, J.J.; Watson, J.E.; Gong, E.J.; Halsted, C.H.

    1981-05-01

    To assess the role of altered hepatic folate metabolism in the pathogenesis of the folate deficiency of chronic alcoholism, the hepatic metabolism of a tracer dose of /sup 3/H-PteGlu was compared in monkeys given 50% of energy as ethanol for 2 years and in control monkeys. Long-term ethanol feeding resulted in mild hepatic injury, with a significant decrease in hepatic folate levels. Chromatographic studies of liver biopsies obtained after the tracer dose indicated that the processes of reduction, methylation, and formylation of reduced folate and the synthesis of polyglutamyl folates were not affected by long-term ethanol feeding. Hepatic tritium levels were significantly decreased in the ethanol-fed group. These studies suggest that the decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decreased ability to retain folates in the liver, whereas reduction and further metabolism of folates is not affected.

  2. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells

    SciTech Connect

    Price, E.M.; Freisheim, J.H.

    1987-07-28

    A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a K/sub t/ of 506 +/- 79 nM and a V/sub max/ of 17.9 +/- 4.2 pmol min/sup -1/ (mg of total cellular protein)/sup -1/. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate. The parent compounds of the iodinated photoprobe inhibit (/sup 3/H)methotrexate uptake, with the uniodinated 4-azidosalicylyl derivative exhibiting a K/sub i/ of 66 +/- 21 nM. UV irradiation, at 4 /sup 0/C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the K/sub t/ for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. Evidence that, in the absence of irradiation and at 37/sup 0/C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (M/sub r/ 38K and 21K) derived from the cell homogenate supernatant.

  3. [Folates and fetal programming: role of epigenetics and epigenomics].

    PubMed

    Guéant, Jean-Louis; Daval, Jean-Luc; Vert, Paul; Nicolas, Jean-Pierre

    2012-12-01

    Folates are needed for synthesis of methionine, the precursor of S-adenosyl methionine (SAM). They play therefore a key role in nutrition and epigenomics by fluxing monocarbons towards synthesis or methylation of DNA and RNA, and methylation of gene transregulators, respectively. The deficiency produces intrauterine growth retardation and birth dejects. Folate deficiency deregulates epigenomic mechanisms related to fetal programming through decreased cellular availability of SAM. Epigenetic mechanisms of folate deficiency are illustrated by inheritance of coat colour of agouti mice model and altered expression of Igf2/H19 imprinting genes. Dietary exposure to fumonisin FB1 acts synergistically with folate deficiency on alterations of heterochromatin assembly. Deficiency in folate and vitamin B12 produces impaired fatty acid oxidation in liver and heart through imbalanced methylation and acetylation of PGC1-alpha and decreased expression of SIRT1, and long-lasting cognitive disabilities through impaired hippocampal cell proliferation, differentiation and plasticity and atrophy of hippocampal CA1. Deciphering these mechanisms will help understand the discordances between experimental models and population studies on folate supplementation.

  4. A single amino acid difference within the folate transporter encoded by the murine RFC-1 gene selectively alters its interaction with folate analogues. Implications for intrinsic antifolate resistance and directional orientation of the transporter within the plasma membrane of tumor cells.

    PubMed

    Roy, K; Tolner, B; Chiao, J H; Sirotnak, F M

    1998-01-30

    The apparent Km, but not Vmax, for influx of methotrexate (MTX) mediated through the plasma membrane of S180 cells by the one-carbon, reduced folate transporter as well as the KD for binding to the transporter were 4-fold higher than in L1210 cells correlating with the greater intrinsic resistance of the former to this folate analogue. In contrast, no difference was observed between each cell type with regard to efflux of [3H]MTX mediated by this same transporter in ATP-depleted cells. The difference in influx Km in the case of this 10-methyl substituted N1O analogue of folic acid was not seen with more effective permeants, such as the unsubstituted N1O aminopterin or C1O analogues. Thus, values for influx Km for aminopterin, which were 1-1.2 microM in each cell type, increased as a result of substitution at N1O (MTX) 3-fold in L1210 cells but 12-fold in S180 cells. Nucleotide sequencing of reverse transcriptase-polymerase chain reaction-generated cDNA and of polymerase chain reaction-generated genomic DNA identified a single nucleotide difference between each cell type at +890 within exon 3 of the RFC-1 gene. This was in the form of a G (L1210 cells) to A (S180 cells) transition. Codon 297, the site of this transition, encodes either Ser or Asn in L1210 or S180 cells, respectively, which is located between the seventh and eight membrane-spanning helices. This amino acid difference had no effect on the electrophoretic mobility or amount of the transporter in each cell type that was shown by Western blotting with anti-RFC-1 peptide antibodies to migrate as 46 kDa in each case. Proof that this nucleotide difference alone accounted for the alteration in influx between each cell type was obtained by S180 RFC-1 cDNA versus L1210 RFC-1 cDNA transfection of an L1210 cell variant with undetectable MTX influx and RFC-1 gene expression. In this case, the higher Km for MTX influx associated with S180 cells was duplicated only in the S180 RFC-1 transfectants. These results

  5. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation.

    PubMed

    Hsu, Hung-Chih; Chang, Wen-Ming; Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA.

  6. Vitamin-responsive disorders: cobalamin, folate, biotin, vitamins B1 and E.

    PubMed

    Baumgartner, Matthias R

    2013-01-01

    The catalytic properties of many enzymes depend on the participation of vitamins as obligatory cofactors. Vitamin B12 (cobalamin) and folic acid (folate) deficiencies in infants and children classically present with megaloblastic anemia and are often accompanied by neurological signs. A number of rare inborn errors of cobalamin and folate absorption, transport, cellular uptake, and intracellular metabolism have been delineated and identification of disease-causing mutations has improved our ability to diagnose and treat many of these conditions. Two inherited defects in biotin metabolism are known, holocarboxylase synthetase and biotinidase deficiency. Both lead to multiple carboxylase deficiency manifesting with metabolic acidosis, neurological abnormalities, and skin rash. Thiamine-responsive megaloblastic anemia is characterized by megaloblastic anemia, non-type I diabetes, and sensorineural deafness that responds to pharmacological doses of thiamine (vitamin B1). Individuals affected with inherited vitamin E deficiencies including ataxia with isolated vitamin E deficiency and abetalipoproteinemia present with a spinocerebellar syndrome similar to patients with Friedreich's ataxia. If started early, treatment of these defects by oral or parenteral administration of the relevant vitamin often results in correction of the metabolic defect and reversal of the signs of disease, stressing the importance of early and correct diagnosis in these treatable conditions.

  7. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  8. Maternal bile acid transporter deficiency promotes neonatal demise.

    PubMed

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-Ze; Frank, Matthew W; Calabrese, Christopher; Krausz, Kristopher W; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O; Gonzalez, Frank J; Schuetz, John D

    2015-09-29

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition.

  9. Mathematical Modelling of Folate Metabolism

    PubMed Central

    Panetta, John C.; Paugh, Steven W.

    2013-01-01

    Folate metabolism is a complex biological process that is influenced by many variables including transporters, co-factors and enzymes. Mathematical models provide a useful tool to evaluate this complex system and to elucidate hypotheses that would be otherwise untenable to test in vitro or in vivo. Forty years of model development and refinement along with enhancements in technology have led to systematic improvement in our biological understanding from these models. However, increased complexity does not always lead to increased understanding, and a balanced approach to modelling the system is often advantageous. This approach should address questions about sensitivity of the model to variation and incorporate genomic data. The folate model is a useful platform for investigating the effects of antifolates on the folate pathway. The utility of the model is demonstrated through interrogation of drug resistance, drug-drug interactions, drug selectivity, and drug doses and schedules. Mathematics can be used to create models with the ability to design and improve rationale therapeutic interventions. PMID:23703958

  10. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet

    SciTech Connect

    Tryndyak, Volodymyr P.; Latendresse, John R.; Montgomery, Beverly; Ross, Sharon A.; Beland, Frederick A.; Rusyn, Ivan; Pogribny, Igor P.

    2012-07-01

    MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in the pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers for the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD. -- Highlights: ► Choline- and folate-deficiency induces a strain-specific fatty liver injury in mice. ► The extent of liver pathology was accompanied by the changes in microRNA expression. ► The levels of circulating microRNAs mirror the magnitude of

  11. Clinical utility of folate-containing oral contraceptives

    PubMed Central

    Lassi, Zohra S; Bhutta, Zulfiqar A

    2012-01-01

    Folate is a generic term for a water-soluble B-complex vitamin which plays an important role in protein synthesis and metabolism and other processes related to cell multiplication and tissue growth. Pregnant and lactating women are at increased risk of folic acid deficiency because generally their dietary folate is insufficient to meet their physiological requirements and the metabolic demands of the growing fetus. The evidence pertaining to the reduction of the risk of neural tube defects (NTDs) due to folate is so compelling that supplementation with 400 μg of folic acid to all women trying to conceive until 12 weeks of pregnancy has been recommended by every relevant authority. A recent Cochrane review has also found protective effects of folate supplementation in occurrence and reoccurrence of NTDs. Despite food fortification and targeted public health campaigns promoting folic acid supplementation, 4,300,000 new cases occur each year worldwide resulting in an estimated 41,000 deaths and 2.3 million disability-adjusted life years (DALYS). This article will review the burden and risk factors of NTDS, and the role of folate in preventing NTDs. It will also describe different modes of supplementing folate and the newer evidence of the effectiveness of adding folate in oral contraceptives for raising serum and red blood cell folate levels. PMID:22570577

  12. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition.

    PubMed

    Wibowo, Ardian S; Singh, Mirage; Reeder, Kristen M; Carter, Joshua J; Kovach, Alexander R; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E

    2013-09-17

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases.

  13. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition

    PubMed Central

    Wibowo, Ardian S.; Singh, Mirage; Reeder, Kristen M.; Carter, Joshua J.; Kovach, Alexander R.; Meng, Wuyi; Ratnam, Manohar; Zhang, Faming; Dann, Charles E.

    2013-01-01

    Antifolates, folate analogs that inhibit vitamin B9 (folic acid)-using cellular enzymes, have been used over several decades for the treatment of cancer and inflammatory diseases. Cellular uptake of the antifolates in clinical use occurs primarily via widely expressed facilitative membrane transporters. More recently, human folate receptors (FRs), high affinity receptors that transport folate via endocytosis, have been proposed as targets for the specific delivery of new classes of antifolates or folate conjugates to tumors or sites of inflammation. The development of specific, FR-targeted antifolates would be accelerated if additional biophysical data, particularly structural models of the receptors, were available. Here we describe six distinct crystallographic models that provide insight into biological trafficking of FRs and distinct binding modes of folate and antifolates to these receptors. From comparison of the structures, we delineate discrete structural conformations representative of key stages in the endocytic trafficking of FRs and propose models for pH-dependent conformational changes. Additionally, we describe the molecular details of human FR in complex with three clinically prevalent antifolates, pemetrexed (also Alimta), aminopterin, and methotrexate. On the whole, our data form the basis for rapid design and implementation of unique, FR-targeted, folate-based drugs for the treatment of cancer and inflammatory diseases. PMID:23934049

  14. Update on cobalamin, folate, and homocysteine.

    PubMed

    Carmel, Ralph; Green, Ralph; Rosenblatt, David S; Watkins, David

    2003-01-01

    Three topics affecting cobalamin, folate, and homocysteine that have generated interest, activity, and advances in recent years are discussed. These are: (I). the application of an expanded variety of tools to the diagnosis of cobalamin deficiency, and how these affect and are affected by our current understanding of deficiency; (II). the nature of the interaction between homocysteine and vascular disease, and how the relationship is affected by vitamins; and (III). the improved understanding of relevant genetic disorders and common genetic polymorphisms, and how these interact with environmental influences. The diagnostic approach to cobalamin deficiency now allows better diagnosis of difficult and atypical cases and more confident rejection of the diagnosis when deficiency does not exist. However, the process has also become a complex and sometimes vexing undertaking. Part of the difficulty derives from the lack of a diagnostic gold standard among the many available tests, part from the overwhelming numerical preponderance of patients with subclinical deficiency (in which isolated biochemical findings exist without clinical signs or symptoms) among the cobalamin deficiency states, and part from the decreased availability of reliable tests to identify the causes of a patient's cobalamin deficiency and thus a growing deemphasis of that important part of the diagnostic process. In Section I, Dr. Carmel discusses the tests, the diagnostic issues, and possible approaches to the clinical evaluation. It is suggested no single algorithm fits all cases, some of which require more biochemical proof than others, and that differentiating between subclinical and clinical deficiency, despite their overlap, may be a helpful and practical point of departure in the evaluation of patients encountered in clinical practice. The arguments for and against a suggested expansion of the cobalamin reference range are also weighed. The epidemiologic data suggest that homocysteine elevation

  15. Potential role of folate in pre-eclampsia.

    PubMed

    Singh, Mansi Dass; Thomas, Philip; Owens, Julie; Hague, William; Fenech, Michael

    2015-10-01

    Dietary deficiencies of folate and other B vitamin cofactors involved in one-carbon metabolism, together with genetic polymorphisms in key folate-methionine metabolic pathway enzymes, are associated with increases in circulating plasma homocysteine, reduction in DNA methylation patterns, and genome instability events. All of these biomarkers have also been associated with pre-eclampsia. The aim of this review was to explore the literature and identify potential knowledge gaps in relation to the role of folate at the genomic level in either the etiology or the prevention of pre-eclampsia. A systematic search strategy was designed to identify citations in electronic databases for the following terms: folic acid supplementation AND pre-eclampsia, folic acid supplementation AND genome stability, folate AND genome stability AND pre-eclampsia, folic acid supplementation AND DNA methylation, and folate AND DNA methylation AND pre-eclampsia. Forty-three articles were selected according to predefined selection criteria. The studies included in the present review were not homogeneous, which made pooled analysis of the data very difficult. The present review highlights associations between folate deficiency and certain biomarkers observed in various tissues of women at risk of pre-eclampsia. Further investigation is required to understand the role of folate in either the etiology or the prevention of pre-eclampsia. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience.

    PubMed

    Jaeger, Bregje; Bosch, Annet M

    2016-07-01

    Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.

  17. Glucose Transporter Type 1 Deficiency Syndrome with Carbohydrate-Responsive Symptoms but without Epilepsy

    ERIC Educational Resources Information Center

    Koy, Anne; Assmann, Birgit; Klepper, Joerg; Mayatepek, Ertan

    2011-01-01

    Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female…

  18. Glucose Transporter Type 1 Deficiency Syndrome with Carbohydrate-Responsive Symptoms but without Epilepsy

    ERIC Educational Resources Information Center

    Koy, Anne; Assmann, Birgit; Klepper, Joerg; Mayatepek, Ertan

    2011-01-01

    Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female…

  19. Iatrogenic nutritional deficiencies.

    PubMed

    Young, R C; Blass, J P

    1982-01-01

    This article catalogs the nutritional deficiencies inadvertently introduced by certain treatment regimens. Specifically, the iatrogenic effects on nutrition of surgery, hemodialysis, irradiation, and drugs are reviewed. Nutritional problems are particularly frequent consequences of surgery on the gastrointestinal tract. Gastric surgery can lead to deficiencies of vitamin B12, folate, iron, and thiamine, as well as to metabolic bone disease. The benefits of small bowel bypass are limited by the potentially severe nutritional consequences of this procedure. Following bypass surgery, patients should be monitored for signs of possible nutritional probems such as weight loss, neuropathy, cardiac arrhythmias, loss of stamina, or changes in mental status. Minimal laboratory tests should include hematologic evaluation, B12, folate, iron, albumin, calcium, phosphorus, alkaline phosphatase, transaminases, sodium, potassium, chloride, and carbon dioxide levels. Roentgenologic examination of the bone should also be obtained. Loss of bone substance is a major consequence of many forms of treatment, and dietary supplementation with calcium is warranted. Patients undergoing hemodialysis have shown carnitine and choline deficiencies, potassium depletion, and hypovitaminosis, as well as osteomalacia. Chronic drug use may alter intake, synthesis, absorption, transport, storage, metabolism, or excretion of nutrients. Patients vary markedly in the metabolic effects of drugs, and recommendations for nutrition must be related to age, sex, reproductive status, and genetic endowment. Moreover, the illness being treated can itself alter nutritional requirements and the effect of the treatment on nutrient status. The changes in nutritional levels induced by use of estrogen-containing oral contraceptives (OCs) are obscure; however, the effects on folate matabolism appear to be of less clinical import than previously suggested. Reduction in pyridoxine and serum vitamin B12 levels has been

  20. Folate nutrition and blood-brain barrier dysfunction.

    PubMed

    Stover, Patrick J; Durga, Jane; Field, Martha S

    2017-04-01

    Mammals require essential nutrients from dietary sources to support normal metabolic, physiological and neuronal functions, to prevent diseases of nutritional deficiency as well as to prevent chronic disease. Disease and/or its treatment can modify fundamental biological processes including cellular nutrient accretion, stability and function in cells. These effects can be isolated to a specific diseased organ in the absence of whole-body alterations in nutrient status or biochemistry. Loss of blood-brain barrier function, which occurs in in-born errors of metabolism and in chronic disease, can cause brain-specific folate deficiency and contribute to disease co-morbidity. The role of brain folate deficiency in neuropsychiatric disorders is reviewed, as well as emerging diagnostic and nutritional strategies to identify and address brain folate deficiency in blood-brain barrier dysfunction.

  1. Reversible white matter lesions during ketogenic diet therapy in glucose transporter 1 deficiency syndrome.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Takahashi, Satoru; Nakamura, Fumito; Kohno, Yoichi

    2013-12-01

    Glucose transporter type 1 deficiency syndrome is caused by brain energy failure resulting from a disturbance in glucose transport. We describe a 4-year-old boy with classical type glucose transporter type 1 deficiency syndrome with a heterozygous splice acceptor site mutation (c.517-2A>G) in the SLCA2A1 gene. We initiated a ketogenic diet at 4 months of age. However, even though his condition was good during ketogenic diet therapy, multiple cerebral white matter and right cerebellum lesions appeared at 9 months of age. The lesions in the cerebral white matter subsequently disappeared, indicating that white matter lesions during diet therapy may be reversible and independent of the ketogenic diet. This is the first report of reversible white matter lesions during ketogenic diet therapy in glucose transporter type 1 deficiency syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Folate, vitamin B12 and human health].

    PubMed

    Brito, Alex; Hertrampf, Eva; Olivares, Manuel; Gaitán, Diego; Sánchez, Hugo; Allen, Lindsay H; Uauy, Ricardo

    2012-11-01

    During the past decade the role of folate and vitamin B12 in human nutrition have been under constant re-examination. Basic knowledge on the metabolism and interactions between these essential nutrients has expanded and multiple complexities have been unraveled. These micronutrients have shared functions and intertwined metabolic pathways that define the size of the "methyl donor" pool utilized in multiple metabolic pathways; these include DNA methylation and synthesis of nucleic acids. In Chile, folate deficiency is virtually nonexistent, while vitamin B12 deficiency affects approximately 8.5-51% depending on the cut-off value used to define deficiency. Folate is found naturally mainly in vegetables or added as folic acid to staple foods. Vitamin B12 in its natural form is present only in foods of animal origin, which is why deficit is more common among strict vegetarians and populations with a low intake of animal foods. Poor folate status in vulnerable women of childbearing age increases the risk of neural tube birth defects, so the critical time for the contribution of folic acid is several months before conception since neural tube closure occurs during the first weeks of life. The absorption of vitamin B12 from food is lower in older adults, who are considered to have higher risk of gastric mucosa atrophy, altered production of intrinsic factor and acid secretion. Deficiency of these vitamins is associated with hematological disorders. Vitamin B12 deficiency can also induce clinical and sub-clinical neurological and of other disorders. The purpose of this review is to provide an update on recent advances in the basic and applied knowledge of these vitamins relative to human health.

  3. Folate and neural tube defects: The role of supplements and food fortification

    PubMed Central

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-01-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada. PMID:27398055

  4. Folate and neural tube defects: The role of supplements and food fortification.

    PubMed

    Ami, Noam; Bernstein, Mark; Boucher, François; Rieder, Michael; Parker, Louise

    2016-04-01

    Periconceptional folic acid significantly reduces the risk of neural tube defects. It is difficult to achieve optimal levels of folate by diet alone, even with fortification of flour, especially because flour consumption in Canada is slightly decreasing. Intermittent concerns have been raised concerning possible deleterious effects of folate supplementation, including the masking of symptoms of vitamin B12 deficiency and an association with cancer, especially colorectal cancer. Both concerns have been disproved. The Canadian Paediatric Society endorses the following steps to enhance folate intake in women of child-bearing age: encouraging the consumption of folate-rich foods such as leafy vegetables, increasing the level of folate food fortification, taking a supplement containing folate and B12, and providing free folate supplementation to disadvantaged women of child-bearing age. These recommendations are consistent with those of the Society of Obstetricians and Gynaecologists of Canada.

  5. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    USDA-ARS?s Scientific Manuscript database

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  6. Present and future of folate biofortification of crop plants.

    PubMed

    Blancquaert, Dieter; De Steur, Hans; Gellynck, Xavier; Van Der Straeten, Dominique

    2014-03-01

    Improving nutritional health is one of the major socio-economic challenges of the 21st century, especially with the continuously growing and ageing world population. Folate deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. More and more countries are adapting policies to fight folate deficiency, mostly by fortifying foods with folic acid. However, there is growing concern about this practice, calling for alternative or complementary strategies. In addition, fortification programmes are often inaccessible to remote and poor populations where folate deficiency is most prevalent. Enhancing folate content in staple crops by metabolic engineering is a promising, cost-effective strategy to eradicate folate malnutrition worldwide. Over the last decade, major progress has been made in this field. Nevertheless, engineering strategies have thus far been implemented on a handful of plant species only and need to be transferred to highly consumed staple crops to maximally reach target populations. Moreover, successful engineering strategies appear to be species-dependent, hence the need to adapt them in order to biofortify different staple crops with folate.

  7. The role of folate metabolism in orofacial development and clefting.

    PubMed

    Wahl, Stacey E; Kennedy, Allyson E; Wyatt, Brent H; Moore, Alexander D; Pridgen, Deborah E; Cherry, Amanda M; Mavila, Catherine B; Dickinson, Amanda J G

    2015-09-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects.

  8. The role of folate metabolism in orofacial development and clefting

    PubMed Central

    Wahl, Stacey E.; Kennedy, Allyson E.; Wyatt, Brent H.; Moore, Alexander D.; Pridgen, Deborah E.; Cherry, Amanda M.; Mavila, Catherine B.; Dickinson, Amanda J.G.

    2015-01-01

    Folate deficiency has been associated with numerous diseases and birth defects including orofacial defects. However, whether folate has a role in the face during early orofacial development has been unclear. The present study reveals that pharmacological and antisense oligonucleotide mediated inhibition of DHFR, an integral enzyme in the folate pathway, results in specific changes in the size and shape of the midface and embryonic mouth. Such defects are accompanied by a severe reduction in the muscle and cartilage jaw elements without significant change in neural crest pattern or global levels of methylation. We propose that the orofacial defects associated with DHFR deficient function are the result of decreased cell proliferation and increased cell death via DNA damage. In particular, localized apoptosis may also be depleting the cells of the face that express crucial genes for the differentiation of the jaw structures. Folate supplementation is widely known to reduce human risk for orofacial clefts. In the present study, we show that activating folate metabolism can reduce median oral clefts in the primary palate by increasing cell survival. Moreover, we demonstrate that a minor decrease in DHFR function exacerbates median facial clefts caused by RAR inhibition. This work suggests that folate deficiencies could be a major contributing factor to multifactorial orofacial defects. PMID:26144049

  9. Folate during reproduction: the Canadian experience with folic acid fortification

    PubMed Central

    Lindzon, Gillian

    2007-01-01

    Folate has received international attention regarding its role in the risk-reduction of birth defects, specifically neural tube defects (NTDs). In 1998, health officials in Canada, like the United States, mandated the addition of folic acid to white flour and select grain products to increase the folate intake of reproductive-aged women. Subsequent to this initiative there has been an increase in blood folate concentrations in Canada and a 50% reduction in NTDs. Many countries, including Korea, have not mandated folic acid fortification of their food supply. Reasons vary but often include concern over the masking of vitamin B12 deficiency, a belief that folate intakes among womenare adequate, low priority relative to other domestic issues, and the philosophy that individuals have the right not to consume supplemental folic acid if they so choose. Prior to folic acid fortification of the food supply in Canada, the folate intakes of women were low, and their blood folate concentrations while not sufficiently low to produce overt signs of folate deficiency (eg. anemia) were inconsistent with a level known to reduce the risk of an NTD-affected pregnancy. The purpose of this article is to describe the role of folate during the periconceptional period, pregnancy, and during lactation. The rationale for, and history of recommending folic acid-containing supplements during the periconceptional period and pregnancy is described as is folic acid fortification of the food supply. The impact of folic acid fortification in Canada is discussed, and unresolved issues associated with this policy described. While the incidence of NTDs in Canada pre-folic acid fortification were seemingly higherthan that of Korea today, blood folate levels of Korean women are strikingly similar. We will briefly explore these parallels in an attempt to understand whether folic acid fortification of the food supply in Korea might be worth consideration PMID:20368933

  10. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  11. HLA class I deficiencies due to mutations in subunit 1 of the peptide transporter TAP1

    PubMed Central

    de la Salle, Henri; Zimmer, Jacques; Fricker, Dominique; Angenieux, Catherine; Cazenave, Jean-Pierre; Okubo, Mitsuo; Maeda, Hiroo; Plebani, Alessandro; Tongio, Marie-Marthe; Dormoy, Anne; Hanau, Daniel

    1999-01-01

    The transporter associated with antigen processing (TAP), which is composed of two subunits (TAP1 and TAP2) that have different biochemical and functional properties, plays a key role in peptide loading and the cell surface expression of HLA class I molecules. Three cases of HLA class I deficiency have previously been shown to result from the absence of a functional TAP2 subunit. In the present study, we analyzed two cases displaying not only the typical lung syndrome of HLA class I deficiency but also skin lesions, and found these patients to be TAP1-deficient. This defect leads to unstable HLA class I molecules and their retention in the endoplasmic reticulum. However, the absence of TAP1 is compatible with life and does not seem to result in higher susceptibility to viral infections than TAP2 deficiency. This work also reveals that vasculitis is often observed in HLA class I–deficient patients. PMID:10074495

  12. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  13. Critical Issues in the Study of Magnesium Transport Systems and Magnesium Deficiency Symptoms in Plants

    PubMed Central

    Kobayashi, Natsuko I.; Tanoi, Keitaro

    2015-01-01

    Magnesium (Mg) is the second most abundant cation in living cells. Over 300 enzymes are known to be Mg-dependent, and changes in the Mg concentration significantly affects the membrane potential. As Mg becomes deficient, starch accumulation and chlorosis, bridged by the generation of reactive oxygen species, are commonly found in Mg-deficient young mature leaves. These defects further cause the inhibition of photosynthesis and finally decrease the biomass. Recently, transcriptome analysis has indicated the transcriptinal downregulation of chlorophyll apparatus at the earlier stages of Mg deficiency, and also the potential involvement of complicated networks relating to hormonal signaling and circadian oscillation. However, the processes of the common symptoms as well as the networks between Mg deficiency and signaling are not yet fully understood. Here, for the purpose of defining the missing pieces, several problems are considered and explained by providing an introduction to recent reports on physiological and transcriptional responses to Mg deficiency. In addition, it has long been unclear whether the Mg deficiency response involves the modulation of Mg2+ transport system. In this review, the current status of research on Mg2+ transport and the relating transporters are also summarized. Especially, the rapid progress in physiological characterization of the plant MRS2 gene family as well as the fundamental investigation about the molecular mechanism of the action of bacterial CorA proteins are described. PMID:26404266

  14. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing.

    PubMed

    Scaglione, Francesco; Panzavolta, Giscardo

    2014-05-01

    1. Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism. Mammals cannot synthesize folate and depend on supplementation to maintain normal levels. Low folate status may be caused by low dietary intake, poor absorption of ingested folate and alteration of folate metabolism due to genetic defects or drug interactions. 2. Folate deficiency has been linked with an increased risk of neural tube defects, cardiovascular disease, cancer and cognitive dysfunction. Most countries have established recommended intakes of folate through folic acid supplements or fortified foods. External supplementation of folate may occur as folic acid, folinic acid or 5-methyltetrahydrofolate (5-MTHF). 3. Naturally occurring 5-MTHF has important advantages over synthetic folic acid - it is well absorbed even when gastrointestinal pH is altered and its bioavailability is not affected by metabolic defects. Using 5-MTHF instead of folic acid reduces the potential for masking haematological symptoms of vitamin B12 deficiency, reduces interactions with drugs that inhibit dihydrofolate reductase and overcomes metabolic defects caused by methylenetetrahydrofolate reductase polymorphism. Use of 5-MTHF also prevents the potential negative effects of unconverted folic acid in the peripheral circulation. 4. We review the evidence for the use of 5-MTHF in preventing folate deficiency.

  15. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    PubMed

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  16. Glucose transporter type 1 deficiency syndrome effectively treated with modified Atkins diet.

    PubMed

    Haberlandt, Edda; Karall, Daniela; Jud, Veronika; Baumgartner, Sara Sigl; Zotter, Sibylle; Rostasy, Kevin; Baumann, Matthias; Scholl-Buergi, Sabine

    2014-04-01

    This is a report on the successful treatment of a 6-year-old girl with genetically proven glucose transporter type 1 deficiency syndrome (GLUT1-DS) with modified Atkins diet (MAD). GLUT1-DS is an inborn disorder of glucose transport across the blood-brain barrier, which leads to energy deficiency of the brain with a broad spectrum of neurological symptoms including therapy-resistant epilepsy. Usually classical ketogenic diet (KD) is the standard treatment for patients with GLUT1-DS. Treatment with MAD, a variant of KD, for an observation period of 17 months resulted in improvement of seizures, alertness, cognitive abilities, and electroencephalography in this patient.

  17. Thiamine transport in thiamine-deficient rats. Role of the unstirred water layer.

    PubMed

    Hoyumpa, A M; Nichols, S; Schenker, S; Wilson, F A

    1976-06-17

    As part of a systematic study of alcoholism and thiamine absorption, the effect of diet-induced thiamine deficiency and the role of the unstirred water layer on the thiamine transport were investigated. Using 3H-labeled dextran as a marker of adherent mucosal volume, jejunal uptake of 14C-labeled thiamine hydrochloride was measured, in vitro, in thiamine-deficient rats and pair-fed controls. Uptake of low thiamine concentrations (0.2 and 0.5 muM) was greater in the thiamine-deficient rats than in the controls. In contrast, uptake rates for high thiamine concentrations (20 and 50 muM) were similar in both groups. While Jmax was unaltered, Km was decreased in thiamine deficiency, suggesting a decrease in unstirred water layer thickness. Accordingly, the thickness of the water layer was measured in both groups of animals and correlated with Jmax and Km under unstirred and stirred conditions. Without stirring, there was no difference in Jmax between the two groups. In contrast, both Km and the water layer were reduced in the thiamine-deficient rats. With stirring, Jmax was not affected, but both Km and the water layer thickness were reduced to similar values in both groups. Reversal of thiamine deficiency resulted in the return of thiamine uptake and the unstirred water layer thickness to control values. These data support the concept of a dual system of thiamine transport and emphasize the role of the unstirred water layer as an important determinant of transport kinetics not only under physiologic situations but also in diet-induced rat thiamine deficiency, a model for a clinical patholigical state. The decrease in the unstirred water layer thickness in thiamine deficiency may be also viewed as a possible adaptive mechanism to facilitate absorption of meager supplies of thiamine.

  18. Effects of alcohol on folate metabolism: implications for carcinogenesis.

    PubMed

    Mason, Joel B; Choi, Sang-Woon

    2005-04-01

    Epidemiologic observations implicate excess ethanol ingestion as well as low dietary folate intake as risk factors for several cancers. Moreover, the epidemiologic observations support the concept of a synergistic effect between these two factors. Such a relation is biologically plausible because ethanol impedes the bioavailability of dietary folate and is known to inhibit select folate-dependent biochemical reactions. For example, alcohol ingestion in animals is known to inhibit folate-mediated methionine synthesis and thereby may interrupt critical methylation processes that are mediated by the activated form of methionine that provides substrate for biologic methylation, S-adenosylmethionine. Consistent with this observed inhibition of methionine synthesis is the observation that chronic alcohol ingestion in laboratory animals is known to produce hypomethylation of DNA in the colonic mucosa, a constant feature of early colorectal neoplasia. Inhibition of methionine synthase also creates a "methylfolate trap," analogous to what occurs in vitamin B12 deficiency. In addition, some evidence indicates that alcohol may redirect the utilization of folate toward serine synthesis and thereby may interfere with a critical function of methylenetetrahydrofolate, thymidine synthesis. Although a mechanistic link between alcohol and impaired folate metabolism in the genesis of cancer is still not definitively established, such a link should be pursued in future studies because of the intimate metabolic relation between alcohol and folate metabolism.

  19. Folate Augmentation of Treatment – Evaluation for Depression (FolATED): protocol of a randomised controlled trial

    PubMed Central

    Roberts, Seren Haf; Bedson, Emma; Hughes, Dyfrig; Lloyd, Keith; Moat, Stuart; Pirmohamed, Munir; Slegg, Gary; Tranter, Richard; Whitaker, Rhiannon; Wilkinson, Clare; Russell, Ian

    2007-01-01

    Background Clinical depression is common, debilitating and treatable; one in four people experience it during their lives. The majority of sufferers are treated in primary care and only half respond well to active treatment. Evidence suggests that folate may be a useful adjunct to antidepressant treatment: 1) patients with depression often have a functional folate deficiency; 2) the severity of such deficiency, indicated by elevated homocysteine, correlates with depression severity, 3) low folate is associated with poor antidepressant response, and 4) folate is required for the synthesis of neurotransmitters implicated in the pathogenesis and treatment of depression. Methods/Design The primary objective of this trial is to estimate the effect of folate augmentation in new or continuing treatment of depressive disorder in primary and secondary care. Secondary objectives are to evaluate the cost-effectiveness of folate augmentation of antidepressant treatment, investigate how the response to antidepressant treatment depends on genetic polymorphisms relevant to folate metabolism and antidepressant response, and explore whether baseline folate status can predict response to antidepressant treatment. Seven hundred and thirty patients will be recruited from North East Wales, North West Wales and Swansea. Patients with moderate to severe depression will be referred to the trial by their GP or Psychiatrist. If patients consent they will be assessed for eligibility and baseline measures will be undertaken. Blood samples will be taken to exclude patients with folate and B12 deficiency. Some of the blood taken will be used to measure homocysteine levels and for genetic analysis (with additional consent). Eligible participants will be randomised to receive 5 mg of folic acid or placebo. Patients with B12 deficiency or folate deficiency will be given appropriate treatment and will be monitored in the 'comprehensive cohort study'. Assessments will be at screening, randomisation

  20. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster.

    PubMed

    Sullivan, D T; Bell, L A; Paton, D R; Sullivan, M C

    1979-06-01

    Uptakes of guanine into Malpighian tubules of wild-type Drosophila and the eye color mutants white (w), brown (bw), and pink-peach (pp) have been compared. Tubules for each of these mutants are unable to concentrate guanine intracellularly. The transport of xanthine and riboflavin is also deficient in w tubules. The transport of guanosine, adenine, hypoxanthine, and guanosine monophosphate is similar in wild-type and white Malpighian tubules. These data and other information about these mutants make it likely that these pteridine-deficient eye color mutants do not produce pigments because of the inability to transport a pteridine precursor. This view supports the hypothesis that mutants which lack both pteridine and ommochromes do so because precursors to both classes of pigments share a common transport system.

  1. Folate and vitamin B12 status in Latin America and the Caribbean: An update

    USDA-ARS?s Scientific Manuscript database

    Background: The current magnitude of folate and vitamin B12 deficiency in Latin America and the Caribbean is uncertain. Objective: To summarize data on plasma or serum vitamin B12 and folate concentrations in Latin America and the Caribbean reported since 1990, a period that covers the era before an...

  2. Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women

    USDA-ARS?s Scientific Manuscript database

    Background: B vitamins such as folate, vitamin B-6, and vitamin B-12 are coenzymes that are important for DNA integrity and stability. Deficiency in these B vitamins may promote tumor carcinogenesis. Objective: We prospectively evaluated plasma concentrations of folate, pyridoxal 5'-phosphate (PLP; ...

  3. Deficiencies of Serum Ferritin and Vitamin B12, but not Folate, are Common in Adolescent Girls Residing in a Slum in Delhi.

    PubMed

    Gupta Bansal, Priyanka; Singh Toteja, Gurudayal; Bhatia, Neena; Kishore Vikram, Naval; Siddhu, Anupa; Kumar Garg, Ashok; Kumar Roy, Ashok

    2015-01-01

    Anemia among adolescent girls is one of the major challenges faced by India. The present study was undertaken to assess the prevalence of anemia and status of other hematological parameters among adolescent girls (11 - 18 years) residing in an urban slum of Delhi. A total of 794 adolescent girls were recruited for the study. The prevalence of anemia was estimated using the cyanmethemoglobin method. Serum levels of ferritin, folic acid and vitamin B12 were estimated for anemic subjects. The prevalence of anemia was reported as 58.7 %, with 31.6 %, 25.7 % and 1.4 % of subjects being mild, moderate and severely anemic. Hemoglobin levels of subjects who had attained menarche were found to be significantly lower than those who had not attained menarche. The prevalence of serum ferritin, folic acid and vitamin B12 deficiency among those who were anemic was reported as 41.1 %, 5.0 % and 63.3 % respectively. A total of 23.5 % anemic subjects had concomitant micronutrient deficiencies of serum vitamin B12 and ferritin. The results indicate that supplemental iron and vitamin B12 may better address the burden of anemia in adolescent girls in Delhi.

  4. Auditory neuropathy in Brown-Vialetto-Van Laere syndrome due to riboflavin transporter RFVT2 deficiency.

    PubMed

    Menezes, Manoj P; O'Brien, Katherine; Hill, Mandy; Webster, Richard; Antony, Jayne; Ouvrier, Robert; Birman, Catherine; Gardner-Berry, Kirsty

    2016-08-01

    Mutations in the genes encoding the riboflavin transporters RFVT2 and RFVT3 have been identified in Brown-Vialetto-Van Laere syndrome, a neurodegenerative disorder characterized by hearing loss and pontobulbar palsy. Treatment with riboflavin has been shown to benefit individuals with the phenotype of RFVT2 deficiency. Understanding the characteristics of hearing loss in riboflavin transporter deficiency would enable early diagnosis and therapy. We performed hearing assessments in seven children (from four families) with RFVT2 deficiency and reviewed results from previous assessments. Assessments were repeated after 12 months and 24 months of riboflavin therapy and after cochlear implantation in one individual. Hearing loss in these individuals was due to auditory neuropathy spectrum disorder (ANSD). Hearing loss was identified between 3 years and 8 years of age and progressed rapidly. Hearing aids were not beneficial. Riboflavin therapy resulted in improvement of hearing thresholds during the first year of treatment in those with recent-onset hearing loss. Cochlear implantation resulted in a significant improvement in speech perception in one individual. Riboflavin transporter deficiency should be considered in all children presenting with an auditory neuropathy. Speech perception in children with ANSD due to RFVT2 deficiency may be significantly improved by cochlear implantation. © 2016 Mac Keith Press.

  5. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    USDA-ARS?s Scientific Manuscript database

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  6. Association between coenzyme Q10 and glucose transporter (GLUT1) deficiency.

    PubMed

    Yubero, Delia; O'Callaghan, Mar; Montero, Raquel; Ormazabal, Aida; Armstrong, Judith; Espinos, Carmina; Rodríguez, Maria A; Jou, Cristina; Castejon, Esperanza; Aracil, Maria A; Cascajo, Maria V; Gavilan, Angela; Briones, Paz; Jimenez-Mallebrera, Cecilia; Pineda, Mercedes; Navas, Plácido; Artuch, Rafael

    2014-11-08

    It has been demonstrated that glucose transporter (GLUT1) deficiency in a mouse model causes a diminished cerebral lipid synthesis. This deficient lipid biosynthesis could contribute to secondary CoQ deficiency. We report here, for the first time an association between GLUT1 and coenzyme Q10 deficiency in a pediatric patient. We report a 15 year-old girl with truncal ataxia, nystagmus, dysarthria and myoclonic epilepsy as the main clinical features. Blood lactate and alanine values were increased, and coenzyme Q10 was deficient both in muscle and fibroblasts. Coenzyme Q10 supplementation was initiated, improving ataxia and nystagmus. Since dysarthria and myoclonic epilepsy persisted, a lumbar puncture was performed at 12 years of age disclosing diminished cerebrospinal glucose concentrations. Diagnosis of GLUT1 deficiency was confirmed by the presence of a de novo heterozygous variant (c.18+2T>G) in the SLC2A1 gene. No mutations were found in coenzyme Q10 biosynthesis related genes. A ketogenic diet was initiated with an excellent clinical outcome. Functional studies in fibroblasts supported the potential pathogenicity of coenzyme Q10 deficiency in GLUT1 mutant cells when compared with controls. Our results suggest that coenzyme Q10 deficiency might be a new factor in the pathogenesis of G1D, although this deficiency needs to be confirmed in a larger group of G1D patients as well as in animal models. Although ketogenic diet seems to correct the clinical consequences of CoQ deficiency, adjuvant treatment with CoQ could be trialled in this condition if our findings are confirmed in further G1D patients.

  7. Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect?

    PubMed

    Cecil, K M; Salomons, G S; Ball, W S; Wong, B; Chuck, G; Verhoeven, N M; Jakobs, C; DeGrauw, T J

    2001-03-01

    Recent reports highlight the utility of in vivo magnetic resonance spectroscopy (MRS) techniques to recognize creatine deficiency syndromes affecting the central nervous system (CNS). Reported cases demonstrate partial reversibility of neurologic symptoms upon restoration of CNS creatine levels with the administration of oral creatine. We describe a patient with a brain creatine deficiency syndrome detected by proton MRS that differs from published reports. Metabolic screening revealed elevated creatine in the serum and urine, with normal levels of guanidino acetic acid. Unlike the case with other reported creatine deficiency syndromes, treatment with oral creatine monohydrate demonstrated no observable increase in brain creatine with proton MRS and no improvement in clinical symptoms. In this study, we report a novel brain creatine deficiency syndrome most likely representing a creatine transporter defect.

  8. Correspondence of folate dietary intake and biomarker data.

    PubMed

    Bailey, Regan L; Fulgoni, Victor L; Taylor, Christine L; Pfeiffer, Christine M; Thuppal, Sowmyanarayanan V; McCabe, George P; Yetley, Elizabeth A

    2017-06-01

    Background: Public health concerns with regard to both low and high folate status exist in the United States. Recent publications have questioned the utility of self-reported dietary intake data in research and monitoring.Objectives: The purpose of this analysis was to examine the relation between self-reported folate intakes and folate status biomarkers and to evaluate their usefulness for several types of applications.Design: We examined usual dietary intakes of folate by using the National Cancer Institute method to adjust two 24-h dietary recalls (including dietary supplements) for within-person variation and then compared these intakes with serum and red blood cell (RBC) folate among 4878 men and nonpregnant, nonlactating women aged ≥19 y in NHANES 2011-2012, a nationally representative, cross-sectional survey, with respect to consistency across prevalence estimates and rank order comparisons.Results: There was a very low prevalence (<1%) of folate deficiency when serum (<7 nmol/L) and RBC (<305 nmol/L) folate were considered, whereas a higher proportion of the population reported inadequate total dietary folate intakes (6%). Similar patterns of change occurred between intakes and biomarkers of folate status when distributions were examined (i.e., dose response), particularly when diet was expressed in μg. Intakes greater than the Tolerable Upper Intake Level greatly increased the odds of having high serum folate (OR: 17.6; 95% CI: 5.5, 56.0).Conclusions: When assessing folate status in the United States, where fortification and supplement use are common, similar patterns in the distributions of diet and biomarkers suggest that these 2 types of status indicators reflect the same underlying folate status; however, the higher prevalence estimates for inadequate intakes compared with biomarkers suggest, among other factors, a systematic underestimation bias in intake data. Caution is needed in the use of dietary folate data to estimate the prevalence of

  9. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Flattem, N. L.; Jordan, J.; Jacob, G.; Black, B. K.; Biaggioni, I.; Blakely, R. D.; Robertson, D.

    2000-01-01

    BACKGROUND: Orthostatic intolerance is a syndrome characterized by lightheadedness, fatigue, altered mentation, and syncope and associated with postural tachycardia and plasma norepinephrine concentrations that are disproportionately high in relation to sympathetic outflow. We tested the hypothesis that impaired functioning of the norepinephrine transporter contributes to the pathophysiologic mechanism of orthostatic intolerance. METHODS: In a patient with orthostatic intolerance and her relatives, we measured postural blood pressure, heart rate, plasma catecholamines, and systemic norepinephrine spillover and clearance, and we sequenced the norepinephrine-transporter gene and evaluated its function. RESULTS: The patient had a high mean plasma norepinephrine concentration while standing, as compared with the mean (+/-SD) concentration in normal subjects (923 vs. 439+/-129 pg per milliliter [5.46 vs. 2.59+/-0.76 nmol per liter]), reduced systemic norepinephrine clearance (1.56 vs. 2.42+/-0.71 liters per minute), impairment in the increase in the plasma norepinephrine concentration after the administration of tyramine (12 vs. 56+/-63 pg per milliliter [0.07 vs. 0.33+/-0.37 pmol per liter]), and a disproportionate increase in the concentration of plasma norepinephrine relative to that of dihydroxyphenylglycol. Analysis of the norepinephrine-transporter gene revealed that the proband was heterozygous for a mutation in exon 9 (encoding a change from guanine to cytosine at position 237) that resulted in more than a 98 percent loss of function as compared with that of the wild-type gene. Impairment of synaptic norepinephrine clearance may result in a syndrome characterized by excessive sympathetic activation in response to physiologic stimuli. The mutant allele in the proband's family segregated with the postural heart rate and abnormal plasma catecholamine homeostasis. CONCLUSIONS: Genetic or acquired deficits in norepinephrine inactivation may underlie hyperadrenergic

  10. Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Flattem, N. L.; Jordan, J.; Jacob, G.; Black, B. K.; Biaggioni, I.; Blakely, R. D.; Robertson, D.

    2000-01-01

    BACKGROUND: Orthostatic intolerance is a syndrome characterized by lightheadedness, fatigue, altered mentation, and syncope and associated with postural tachycardia and plasma norepinephrine concentrations that are disproportionately high in relation to sympathetic outflow. We tested the hypothesis that impaired functioning of the norepinephrine transporter contributes to the pathophysiologic mechanism of orthostatic intolerance. METHODS: In a patient with orthostatic intolerance and her relatives, we measured postural blood pressure, heart rate, plasma catecholamines, and systemic norepinephrine spillover and clearance, and we sequenced the norepinephrine-transporter gene and evaluated its function. RESULTS: The patient had a high mean plasma norepinephrine concentration while standing, as compared with the mean (+/-SD) concentration in normal subjects (923 vs. 439+/-129 pg per milliliter [5.46 vs. 2.59+/-0.76 nmol per liter]), reduced systemic norepinephrine clearance (1.56 vs. 2.42+/-0.71 liters per minute), impairment in the increase in the plasma norepinephrine concentration after the administration of tyramine (12 vs. 56+/-63 pg per milliliter [0.07 vs. 0.33+/-0.37 pmol per liter]), and a disproportionate increase in the concentration of plasma norepinephrine relative to that of dihydroxyphenylglycol. Analysis of the norepinephrine-transporter gene revealed that the proband was heterozygous for a mutation in exon 9 (encoding a change from guanine to cytosine at position 237) that resulted in more than a 98 percent loss of function as compared with that of the wild-type gene. Impairment of synaptic norepinephrine clearance may result in a syndrome characterized by excessive sympathetic activation in response to physiologic stimuli. The mutant allele in the proband's family segregated with the postural heart rate and abnormal plasma catecholamine homeostasis. CONCLUSIONS: Genetic or acquired deficits in norepinephrine inactivation may underlie hyperadrenergic

  11. Adaptive regulation of riboflavin transport in heart: effect of dietary riboflavin deficiency in cardiovascular pathogenesis.

    PubMed

    Udhayabanu, Tamilarasan; Karthi, Sellamuthu; Mahesh, Ayyavu; Varalakshmi, Perumal; Manole, Andreea; Houlden, Henry; Ashokkumar, Balasubramaniem

    2017-08-23

    Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na(+) and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110-130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases.

  12. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  13. Familial orthostatic tachycardia due to norepinephrine transporter deficiency

    NASA Technical Reports Server (NTRS)

    Robertson, D.; Flattem, N.; Tellioglu, T.; Carson, R.; Garland, E.; Shannon, J. R.; Jordan, J.; Jacob, G.; Blakely, R. D.; Biaggioni, I.

    2001-01-01

    Orthostatic intolerance (OI) or postural tachycardia syndrome (POTS) is a syndrome primarily affecting young females, and is characterized by lightheadedness, palpitations, fatigue, altered mentation, and syncope primarily occurring with upright posture and being relieved by lying down. There is typically tachycardia and raised plasma norepinephrine levels on upright posture, but little or no orthostatic hypotension. The pathophysiology of OI is believed to be very heterogeneous. Most studies of the syndrome have focused on abnormalities in norepinephrine release. Here the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to the pathophysiology in some patients with OI was tested. In a proband with significant orthostatic symptoms and tachycardia, disproportionately elevated plasma norepinephrine with standing, impaired systemic, and local clearance of infused tritiated norepinephrine, impaired tyramine responsiveness, and a dissociation between stimulated plasma norepinephrine and DHPG elevation were found. Studies of NET gene structure in the proband revealed a coding mutation that converts a highly conserved transmembrane domain Ala residue to Pro. Analysis of the protein produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in activity relative to normal. NE, DHPG/NE, and heart rate correlated with the mutant allele in this family. CONCLUSION: These results represent the first identification of a specific genetic defect in OI and the first disease linked to a coding alteration in a Na+/Cl(-)-dependent neurotransmitter transporter. Identification of this mechanism may facilitate our understanding of genetic causes of OI and lead to the development of more effective therapeutic modalities.

  14. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes.

    PubMed

    Pong, Amanda W; Geary, Brianna R; Engelstad, Kris M; Natarajan, Ashwini; Yang, Hong; De Vivo, Darryl C

    2012-09-01

    Glut 1 deficiency syndrome (DS) is defined by hypoglycorrhachia with normoglycemia, acquired microcephaly, episodic movements, and epilepsy refractory to standard antiepileptic drugs (AEDs). Gold standard treatment is the ketogenic diet (KD), which provides ketones to treat neuroglycopenia. Our purpose is (1) to describe epilepsy phenotypes in a large Glut 1 DS cohort, to facilitate diagnosis; and (2) to describe cases in which non-KD agents achieved seizure freedom (SF), highlighting potential adjunctive treatments. Retrospective review of 87 patients with Glut 1 DS (45% female, age range 3 months-35 years, average diagnosis 6.5 years) at Columbia University, from 1989 to 2010. Seventy-eight (90%) of 87 patients had epilepsy, with average onset at 8 months. Seizures were mixed in 68% (53/78): generalized tonic-clonic (53%), absence (49%), complex partial (37%), myoclonic (27%), drop (26%), tonic (12%), simple partial (3%), and spasms (3%). We describe the first two cases of spasms in Glut 1 DS. Electrophysiologic abnormalities were highly variable over time; only 13 (17%) of 75 had exclusively normal findings. KD was used in 82% (64/78); 67% (41/61) were seizure-free and 68% of seizure-free patients (28/41) resolved in <1 week and 76% (31/41) in <1 month. Seven patients achieved SF with broad agents only. Glut 1 DS is a genetic metabolic encephalopathy with variable focal and multifocal seizure types and electroencephalographic findings. Infants with seizures, spasms, or paroxysmal events should be tested for Glut 1 DS. Evidence is insufficient to recommend specific AEDs as alternatives to KD. Early diagnosis and initiation of KD and prevention of unnecessary AED trials in Glut 1 DS are important goals for the treatment of children with epilepsy. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  15. Dietary folate and APC mutations in sporadic colorectal cancer.

    PubMed

    de Vogel, Stefan; van Engeland, Manon; Lüchtenborg, Margreet; de Bruïne, Adriaan P; Roemen, Guido M J M; Lentjes, Marjolein H F M; Goldbohm, R Alexandra; van den Brandt, Piet A; de Goeij, Anton F P M; Weijenberg, Matty P

    2006-12-01

    Folate deficiency has been associated with colorectal cancer risk and may be involved in colorectal carcinogenesis through increased chromosome instability, gene mutations, and aberrant DNA methylation. Within the Netherlands Cohort Study on diet and cancer, we investigated the associations between dietary folate intake and colorectal cancer risk with (APC(+)) and without (APC(-)) truncating APC mutations, accounting for hMLH1 expression and K-ras mutations. In total, 528 cases and 4200 subcohort members were available for data analyses of the study cohort (n = 120,852) from a follow-up period between 2.3 and 7.3 y after baseline. Adjusted gender-specific incidence rate ratios (RR) over tertiles of folate intake were calculated in case-cohort analyses for colon and rectal cancer. Although relatively high folate intake was not associated with overall colorectal cancer risk, it reduced the risk of APC(-)colon tumors in men (RR 0.58, 95% CI 0.32-1.05, P(trend) = 0.06 for the highest vs. lowest tertile of folate intake). In contrast, it was positively associated with APC(+) colon tumors in men (highest vs. lowest tertile: RR 2.77, 95% CI 1.29-5.95, P(trend) = 0.008) and was even stronger when the lack of hMLH1 expression and K-ras mutations were excluded (RR 3.99, 95% CI 1.43-11.14, P(trend) = 0.007). Such positive associations were not observed among women; nor was folate intake associated with rectal cancer when APC mutation status was taken into account. Relatively high folate consumption reduced the risk of APC(-) colon tumors, but folate intake was positively associated with APC(+) colon tumors among men. These opposite results may indicate that folate enhances colorectal carcinogenesis through a distinct APC mutated pathway.

  16. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  17. Urinary folate excretion in chronic ethanol- and diet-treated rats

    SciTech Connect

    Collins, T.D.; McMartin, K.E.; Bairnsfather, L.

    1986-03-05

    Acute ethanol treatment of rats produces a marked increase in urinary folate excretion, which accumulates in correlation with the duration of ethanol treatment. In order to study the role of excess urinary folate excretion in the development of folate deficiency by chronic ethanol feeding, groups of male Sprague-Dawley rats were maintained for four months on one of the following liquid diets: ethanol, pair-fed control, ethanol minus folic acid, and pair-fed control minus folic acid. A fifth group was provided a control chow diet ad libitum. Blood ethanol levels were generally maintained between 80-150 mg/dl at various times of the day. Decrease in plasma and tissue folate levels occurred within four weeks in all liquid diet groups compared to chow rats and within two weeks for urinary folate levels. Greater effects were generally observed in both folate-deficient groups than in the control or ethanol group. Acute ethanol treatment of rats from the various diet groups produced increases in urinary folate excretion in all groups except the ethanol minus folic acid diet group. When the folate system of rats are compromised by dietary deprivation and/or chronic ethanol treatment, these results suggest that urinary folate excretion is greatly reduced as a conservation measure.

  18. Renal sodium transport in renin-deficient Dahl salt-sensitive rats.

    PubMed

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-07-01

    The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Renin knockout (Ren(-/-)) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na(+) transporters. It has been described previously that Ren(-/-) rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na(+)/H(+) exchanger involved in Na(+) absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren(-/-) rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren(-/-) rats which was mediated via changes in the channel open probability. These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. © The Author(s) 2016.

  19. No relation between folate and homocysteine levels and depression in early pregnant women.

    PubMed

    Watanabe, Hiroko; Suganuma, Nobuhiko; Hayashi, Ayako; Hirowatari, Yumiko; Hirowatari, Tsuneharu; Ohsawa, Masami

    2010-12-01

    The objective in this study was to evaluate the association between folate and homocysteine (Hcy) levels and depressive symptoms in early pregnancy. A cross-sectional study was conducted with 86 pregnant women in the first trimester. A Japanese version of the Center for Epidemiologic Studies Depression (CES-D) scale was used to screen for depression. Non-fasting blood samples were collected from the women to measure folate and Hcy levels. Fifty-three (61.6%) women scored at or above a clinical cut-off of 16, and were classified with depression. In logistic regression analyses, no significant associations were observed between the incidence of depression in the first trimester and elevated Hcy and deficiencies of serum folate, folate intake, vitamin B6 intake and vitamin B12 intake. Folate and Hcy concentrations, and folate consumption, may not be protective against depression in early pregnancy.

  20. Copper Transporter 2 Content Is Lower in Liver and Heart of Copper-Deficient Rats

    PubMed Central

    Bertinato, Jesse; Duval, Sébastien; L’Abbé, Mary R.

    2010-01-01

    Copper (Cu) transporter 2 (Ctr2) is a transmembrane protein that transports Cu across cell membranes and increases cytosolic Cu levels. Experiments using cell lines have suggested that Ctr2 expression is regulated by Cu status. The importance of changes in Ctr2 expression is underscored by recent studies demonstrating that lower Ctr2 content in cells increases the cellular uptake of platinum-containing cancer drugs and toxicity to the drugs. In this study, we examined whether Ctr2 expression is altered by a nutritional Cu deficiency in vivo. Ctr2 mRNA and protein in liver and heart from rats fed a normal (Cu-N), moderately deficient (Cu-M) or deficient (Cu-D) Cu diet was measured. Rats fed the Cu-deficient diets showed a dose-dependent decrease in liver Ctr2 protein compared to Cu-N rats. Ctr2 protein was 42% and 85% lower in Cu-M and Cu-D rats, respectively. Liver Ctr2 mRNA was 50% lower in Cu-D rats and unaffected in Cu-M rats. In heart, Ctr2 protein was only lower in Cu-D rats (46% lower). These data show that Cu deficiency decreases Ctr2 content in vivo. PMID:21151468

  1. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome.

    PubMed

    Klepper, Jörg; Diefenbach, Sonja; Kohlschütter, Alfried; Voit, Thomas

    2004-03-01

    The ketogenic diet (KD), established to treat intractable childhood epilepsy, has emerged as the principal treatment of GLUT1 deficiency syndrome (OMIM 606777). This defect of glucose transport into the brain results in hypoglycorrhachia causing epilepsy, developmental delay, and a complex motor disorder in early childhood. Ketones provided by a high-fat, low-carbohydrate diet serve as an alternative fuel to the brain. Glucose, lactate, lipids, and ketones in blood and cerebrospinal fluid were investigated in five GLUT1-deficient patients before and on the KD. Hypoglycorrhachia was detected in the non-ketotic and ketotic state. In ketosis, lactate concentrations in the cerebrospinal fluid increased moderately. The CSF/blood ratio for acetoacetate was higher compared to beta-hydroxybutyrate. Free fatty acids did not enter the brain in significant amounts. Blood concentrations of essential fatty acids determined in 18 GLUT1-deficient patients on the KD were sufficient in all age groups. The effects of the KD in GLUT1 deficiency syndrome, particularly the course of blood lipids, are discussed in an illustrative case. In this syndrome, the KD effectively restores brain energy metabolism. Ketosis does not influence impaired GLUT1-mediated glucose transport into brain: hypoglycorrhachia, the biochemical hallmark of the disease, can be identified in GLUT1-deficient patients on a KD. The effects of ketosis on the concentrations of glucose, lactate, ketones, and fatty acids in blood and cerebrospinal fluid in this entity are discussed in view of previous data on ketosis in man.

  2. Associations between Folate and Vitamin B12 Levels and Inflammatory Bowel Disease: A Meta-Analysis.

    PubMed

    Pan, Yun; Liu, Ya; Guo, Haizhuo; Jabir, Majid Sakhi; Liu, Xuanchen; Cui, Weiwei; Li, Dong

    2017-04-13

    Inflammatory bowel disease (IBD) patients may be at risk of vitamin B12 and folate insufficiencies, as these micronutrients are absorbed in the small intestine, which is affected by IBD. However, a consensus has not been reached on the association between IBD and serum folate and vitamin B12 concentrations. In this study, a comprehensive search of multiple databases was performed to identify studies focused on the association between IBD and serum folate and vitamin B12 concentrations. Studies that compared serum folate and vitamin B12 concentrations between IBD and control patients were selected for inclusion in the meta-analysis. The main outcome was the mean difference in serum folate and vitamin B12 concentrations between IBD and control patients. Our findings indicated that the average serum folate concentration in IBD patients was significantly lower than that in control patients, whereas the mean serum vitamin B12 concentration did not differ between IBD patients and controls. In addition, the average serum folate concentration in patients with ulcerative colitis (UC) but not Crohn's disease (CD) was significantly lower than that in controls. This meta-analysis identified a significant relationship between low serum folate concentration and IBD. Our findings suggest IBD may be linked with folate deficiency, although the results do not indicate causation. Thus, providing supplements of folate and vitamin B12 to IBD patients may improve their nutritional status and prevent other diseases.

  3. LRP2 mediates folate uptake in the developing neural tube.

    PubMed

    Kur, Esther; Mecklenburg, Nora; Cabrera, Robert M; Willnow, Thomas E; Hammes, Annette

    2014-05-15

    The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.

  4. Folate and alcohol consumption and the risk of lung cancer

    SciTech Connect

    Bandera, E.V.; Graham, S.; Freudenheim, J.L.; Marshall, J.R.; Haughey, B.P.; Swanson, M.; Brasure, J.; Wilkinson, G. )

    1991-03-11

    Because both folate deficiency and alcohol intake have been hypothesized to be lung cancer risk factors, the authors examined the effect of folate and alcohol consumption on risk of lung cancer in a case-control study conducted 1980-1984. Usual dietary intake of 450 histologically confirmed lung cancer cases and 902 controls, all Western New York residents, was ascertained using a modified food frequency questionnaire. Folate intake was not associated with lung cancer risk. After adjusting for age, cigarette smoking, education, and carotene intake, the odds ratio (OR) for the highest category of folate intake was 1.59 in males and 1.34 in females. There was some indication of a protective effect of folate only among women who never smoked. There was a suggestion of a positive association of alcohol intake with lung cancer risk in males, independent of age, education, cigarette smoking, and carotene. Consumers of more than 9 beers per month had an OR of 1.51 compared to non-drinkers. In both sexes, there was an indication of an interaction between beer ingestion and cigarette smoking. While folate intake did not appear to affect risk of lung cancer, the association of alcohol intake with risk independent of cigarette smoking deserves further inquiry.

  5. Vitamin Deficiency Anemia

    MedlinePlus

    ... used to treat cancer can interfere with the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most people with a vitamin B-12 deficiency anemia lack intrinsic factor — a protein secreted by the stomach that is necessary for ...

  6. Does iron deficiency in pea enhance the activity of the root-plasmalemma iron transport system

    SciTech Connect

    Grusak, M.A.; Welch, R.M.; Kochian, L.V. )

    1990-05-01

    When dicots are subjected to Fe-deficiency stress, the ability of the root system to reduce exogenous Fe is increased. The question remains, however, whether the activity of the root-plasmalemma Fe transport system (which transports Fe{sup 2+}) is similarly enhanced or altered in response to this stress. Since it is currently difficult to supply Fe{sup 2+} to roots in an oxygenated solution, we have indirectly addressed this question by measuring both Fe(III) reduction and short-term Fe{sup 2+} influx (Fe{sup 2+} derived from the reduction of {sup 59}Fe-labelled Fe(III)EDTA) on the same root system. The rate of Fe(III) reduction was used to normalize subsequently determined influx values, such that different treatments could be compared. Measurements at various concentrations of Fe(III)EDTA with excised, primary lateral roots of both iron-deficient and iron-adequate peas (Pisum sativum), showed that the ratio of Fe influx to Fe reduction never exceeded an average value of 0.15 {mu}mol Fe{sup 2+} absorbed/{mu}mol Fe(III) reduced. At high concentrations of Fe(III)EDTA (> 100 {mu}M), the value of this ratio often decreased. Our results suggest that while increased rates of Fe influx can be measured in Fe-deficient peas, this increase is due to an increased production of the transported species Fe{sup 2+}, and the specific activity of the root-plasmalemma Fe transport system is not altered or enhanced in response to Fe-deficiency.

  7. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants.

    PubMed

    Eckhardt, U; Mas Marques, A; Buckhout, T J

    2001-03-01

    Although iron deficiency poses severe nutritional problems to crop plants, to date iron transporters have only been characterized from the model plant Arabidopsis thaliana. To extend our molecular knowledge of Fe transport in crop plants, we have isolated two cDNAs (LeIRT1 and LeIRT2) from a library constructed from roots of iron-deficient tomato (Lycopersicon esculentum) plants, using the Arabidopsis iron transporter cDNA, IRTI, as a probe. Their deduced polypeptides display 64% and 62% identical amino acid residues to the IRT1 protein, respectively. Transcript level analyses revealed that both genes were predominantly expressed in roots. Transcription of LeIRT2 was unaffected by the iron status of the plant, while expression of LeIRT1 was strongly enhanced by iron limitation. The growth defect of an iron uptake-deficient yeast (Saccharomyces cerevisiae) mutant was complemented by LeIRT1 and LeIRT2 when ligated to a yeast expression plasmid. Transport assays revealed that iron uptake was restored in the transformed yeast cells. This uptake was temperature-dependent and saturable, and Fe2+ rather than Fe3+ was the preferred substrate. A number of divalent metal ions inhibited Fe2+ uptake when supplied at 100-fold or 10-fold excess. Manganese, zinc and copper uptake-deficient yeast mutants were also rescued by the two tomato cDNAs, suggesting that their gene products have a broad substrate range. The gene structure was determined by polymerase chain reaction experiments and, surprisingly, both genes are arranged in tandem with a tail-to-tail orientation.

  8. Targeting the Proton-Coupled Folate Transporter for Selective Delivery of 6-Substituted Pyrrolo[2,3-d]Pyrimidine Antifolate Inhibitors of De Novo Purine Biosynthesis in the Chemotherapy of Solid TumorsS⃞

    PubMed Central

    Desmoulin, Sita Kugel; Wang, Yiqiang; Wu, Jianmei; Stout, Mark; Hou, Zhanjun; Fulterer, Andreas; Chang, Min-Hwang; Romero, Michael F.; Cherian, Christina; Gangjee, Aleem

    2010-01-01

    The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-{4-[3-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)propyl]benzoyl}-l-glutamic acid (compound 2) and N-{4-[4-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]benzoyl}*-l-glutamic acid (compound 3), respectively) were inhibitory, with 2 ≫ 3. Activity toward RFC-expressing cells was negligible. Compound 2 and pemetrexed (Pmx) competed with [3H]methotrexate for PCFT transport in PCFT-expressing CHO (R2/hPCFT4) cells from pH 5.5 to 7.2; inhibition increased with decreasing pH. In Xenopus laevis oocytes microinjected with PCFT cRNA, uptake of 2, like that of Pmx, was electrogenic. Cytotoxicity of 2 toward R2/hPCFT4 cells was abolished in the presence of adenosine or 5-amino-4-imidazolecarboxamide, suggesting that glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis was the primary target. Compound 2 decreased GTP and ATP pools by ∼50 and 75%, respectively. By an in situ GARFTase assay, 2 was ∼20-fold more inhibitory toward intracellular GARFTase than toward cell growth or colony formation. Compound 2 irreversibly inhibited clonogenicity, although this required at least 4 h of exposure. Our results document the potent antiproliferative activity of compound 2, attributable to its efficient cellular uptake by PCFT, resulting in inhibition of GARFTase and de novo purine biosynthesis. Furthermore, they establish the feasibility of selective chemotherapy drug delivery via PCFT over RFC, a process that takes advantage of a unique biological feature of solid tumors. PMID

  9. Translational upregulation of folate receptors is mediated by homocysteine via RNA-heterogeneous nuclear ribonucleoprotein E1 interactions

    PubMed Central

    Antony, Aśok C.; Tang, Ying-Sheng; Khan, Rehana A.; Biju, Mangatt P.; Xiao, Xiangli; Li, Qing-Jun; Sun, Xin-Lai; Jayaram, Hiremagalur N.; Stabler, Sally P.

    2004-01-01

    Cellular acquisition of folate is mediated by folate receptors (FRs) in many malignant and normal human cells. Although FRs are upregulated in folate deficiency and downregulated following folate repletion, the mechanistic basis for this relationship is unclear. Previously we demonstrated that interaction of an 18-base cis-element in the 5′-untranslated region of FR mRNA and a cystolic trans-factor (heterogeneous nuclear ribonucleoprotein E1 [hnRNP E1]) is critical for FR synthesis. However, the molecular mechanisms controlling this interaction, especially within the context of FR regulation and folate status, have remained obscure. Human cervical carcinoma cells exhibited progressively increasing upregulation of FRs after shifting of folate-replete cells to low-folate media, without a proportionate rise in FR mRNA or rise in hnRNP E1. Translational FR upregulation was accompanied by a progressive accumulation of the metabolite homocysteine within cultured cells, which stimulated interaction of the FR mRNA cis-element and hnRNP E1 as well as FR biosynthesis in a dose-dependent manner. Abrupt reversal of folate deficiency also led to a rapid parallel reduction in homocysteine and FR biosynthesis to levels observed in folate-replete cells. Collectively, these results suggest that homocysteine is the key modulator of translational upregulation of FRs and establishes the linkage between perturbed folate metabolism and coordinated upregulation of FRs. PMID:14722620

  10. Intakes of Folate and Vitamin B12 and Biomarkers of Status in the Very Old: The Newcastle 85+ Study.

    PubMed

    Mendonça, Nuno; Mathers, John C; Adamson, Ashley J; Martin-Ruiz, Carmen; Seal, Chris J; Jagger, Carol; Hill, Tom R

    2016-09-28

    Very old adults are at increased risk of folate and vitamin B12 deficiencies due to reduced food intake and gastrointestinal absorption. The main aim was to determine the association between folate and vitamin B12 intake from total diets and food groups, and status. Folate or vitamin B12 intakes (2 × 24 h multiple pass recalls) and red blood cell (RBC) folate or plasma vitamin B12 (chemiluminescence immunoassays) concentrations were available at baseline for 731 participants aged 85 from the Newcastle 85+ Study (North-East England). Generalized additive and binary logistic models estimated the associations between folate and vitamin B12 intakes from total diets and food groups, and RBC folate and plasma B12. Folate intake from total diets and cereal and cereal products was strongly associated with RBC folate (p < 0.001). Total vitamin B12 intake was weakly associated with plasma vitamin B12 (p = 0.054) but those with higher intakes from total diets or meat and meat products were less likely to have deficient status. Women homozygous for the FUT2 G allele had higher concentrations of plasma vitamin B12. Cereals and cereal products are a very important source of folate in the very old. Higher intakes of folate and vitamin B12 lower the risk of "inadequate" status.

  11. Intakes of Folate and Vitamin B12 and Biomarkers of Status in the Very Old: The Newcastle 85+ Study

    PubMed Central

    Mendonça, Nuno; Mathers, John C.; Adamson, Ashley J.; Martin-Ruiz, Carmen; Seal, Chris J.; Jagger, Carol; Hill, Tom R.

    2016-01-01

    Very old adults are at increased risk of folate and vitamin B12 deficiencies due to reduced food intake and gastrointestinal absorption. The main aim was to determine the association between folate and vitamin B12 intake from total diets and food groups, and status. Folate or vitamin B12 intakes (2 × 24 h multiple pass recalls) and red blood cell (RBC) folate or plasma vitamin B12 (chemiluminescence immunoassays) concentrations were available at baseline for 731 participants aged 85 from the Newcastle 85+ Study (North-East England). Generalized additive and binary logistic models estimated the associations between folate and vitamin B12 intakes from total diets and food groups, and RBC folate and plasma B12. Folate intake from total diets and cereal and cereal products was strongly associated with RBC folate (p < 0.001). Total vitamin B12 intake was weakly associated with plasma vitamin B12 (p = 0.054) but those with higher intakes from total diets or meat and meat products were less likely to have deficient status. Women homozygous for the FUT2 G allele had higher concentrations of plasma vitamin B12. Cereals and cereal products are a very important source of folate in the very old. Higher intakes of folate and vitamin B12 lower the risk of “inadequate” status. PMID:27690091

  12. Performance, serum biochemical responses, and gene expression of intestinal folate transporters of young and older laying hens in response to dietary folic acid supplementation and challenge with Escherichia coli lipopolysaccharide.

    PubMed

    Jing, M; Munyaka, P M; Tactacan, G B; Rodriguez-Lecompte, J C; O, K; House, J D

    2014-01-01

    The present study was conducted to investigate the effects of dietary folic acid (FA) supplementation on performance, serum biochemical indices, and mRNA abundance of intestinal folate transporters in young and older laying hens after acute lipopolysaccharide (LPS) challenge. Two experiments were conducted separately involving 48 Shaver White young laying hens (24 wk of age) in experiment 1 and 48 Shaver White older laying hens (58 wk of age) in experiment 2. Birds were fed 2 diets in a complete randomized design. The diets were wheat-soybean meal based, with or without supplemental 4 mg of FA/kg of diet. Birds were fed for 8 wk, during which time feed consumption and egg production were monitored. At the end of each feeding experiment, 6 hens from each dietary treatment were injected intravenously with 8 mg/kg of BW of either Escherichia coli LPS or sterile saline. Four hours after injection, blood and intestinal samples were collected for further analysis. Compared with the control, dietary FA supplementation increased egg weight and egg mass and decreased serum glucose levels in the young laying hens, and reduced serum uric acid in the older laying hens (P < 0.05). Relative to saline injection, plasma homocysteine, serum calcium, and phosphorus levels were found to be lower in both young and older laying hens after LPS challenge (P < 0.05). Other serum biochemical variables and the mRNA expression of 2 folate transport genes in the small and large intestine were differentially affected by LPS challenge, and some of those responses varied with the age of the birds. Additionally, interactions between diet and LPS challenge were specifically found in the older laying hens. In summary, in addition to improving production performance, there were effects of dietary FA supplementation and its interaction with LPS challenge on biochemical constituents, and age played a role in the development of responses to diet and bacterial LPS infections.

  13. Vitamin B12 and Folate Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Vitamin B12 and Folate Share this page: Was this ... as: Cobalamin; Folic Acid; RBC Folate Formal name: Vitamin B12; Folate Related tests: Complete Blood Count , Methylmalonic ...

  14. Folate and vitamin B12: function and importance in cognitive development.

    PubMed

    Troen, Aron M

    2012-01-01

    The importance of the B vitamins folate and vitamin B12 for healthy neurological development and function is unquestioned. Folate and vitamin B12 are required for biological methylation and DNA synthesis. Vitamin B12 also participates in the mitochondrial catabolism of odd-chain fatty acids and some amino acids. Inborn errors of their metabolism and severe nutritional deficiencies cause serious neurological and hematological pathology. Poor folate and vitamin B12 status short of clinical deficiency is associated with increased risk of cognitive impairment, depression, Alzheimer's disease and stroke among older adults and increased risk of neural tube defects among children born to mothers with low folate status. Folate supplementation and food fortification are known to reduce incident neural tube defects, and B vitamin supplementation may have cognitive benefit in older adults. Less is known about folate and vitamin B12 requirements for optimal brain development and long-term cognitive health in newborns, children and adolescents. While increasing suboptimal nutritional status has observed benefits, the long-term effects of high folate intake are uncertain. Several observations of unfavorable health indicators in children and adults exposed to high folic acid intake make it imperative to achieve a more precise definition of folate and B12 requirements for brain development and function.

  15. Folate intake of older adults before and after fortification of grain products.

    PubMed

    DeWolfe, Judy

    2007-01-01

    To determine whether fortification allowed older adults in the Kingston, Frontenac, and Lennox & Addington (KFL&A) Public Health area to obtain adequate amounts of food folate, and the proportion at risk of consuming more than the upper limit (UL) of folic acid (1,000 mcg). Dietary intake of a convenience sample of 103 healthy, active older adults (age range: 65 to 95 years) was measured using three 24-hour recalls. Dietary folate pre- and post-fortification was estimated. Mean dietary folate increased from pre- to post-fortification, but 43.4% of women and 20% of men still consumed less than the Estimated Average Requirement of 320 mcg dietary folate equivalent. No intakes exceeded the UL. Participants whose diet met grain products and vegetable and fruit recommendations of Canada's Food Guide to Healthy Eating consumed significantly more folate. Despite fortification, some older adults in the KFL&A area may not be obtaining enough folate to meet their nutritional needs, and may be at risk for health problems associated with folate deficiency. However, without concomitant serum folate measurements, the proportion is not known. Dietitians need to continue promoting foods naturally rich in folate, along with folic acid-fortified foods. While none of the older adults consumed more than the UL, some could exceed this amount if folic acid supplements were added to a folic acid-rich diet.

  16. The effect of ethanol on the urinary excretion and differential metabolism of folate compounds

    SciTech Connect

    Eisenga, B.H.

    1989-01-01

    In rats chronically fed ethanol and folate-containing diets for 12 weeks, urinary folate excretion was increased. However, no significant tissue depletion was noted unless rats were fed folate deficient diets. In rats fed folate-deficient diets urinary folate excretion was dramatically decreased at two weeks, when tissue folate stores were replete. After 16 weeks of diet treatment, the urinary excretion of an intraperitoneal dose of {sup 3}H-PteGlu was not altered in folate-deficient rats. Although acute ethanol administration (oral or intravenous) increased endogenous folate excretion that of {sup 3}H-PteGlu was not significantly altered, nor was the fractional excretion of {sup 3}H-label. To clarify this effect, the metabolism of {sup 3}H-PteGlu was studied. HPLC analysis of urine showed extensive metabolism of {sup 3}H-PteGlu to other folate substrates. Oral ethanol-treatment increased the fractional excretion of endogenous 5-CH{sub 3}-H{sub 4}PteGlu with no increase in urinary excretion or fractional excretion of other {sup 3}H-labeled derivatives. After infusion of tritium labeled 5-CH{sub 3}-H{sub 4}PteGlu, ethanol treatment increased the fractional excretion of endogenous and {sup 3}H-5-CH{sub 3}-H{sub 4}PteGlu, but not that of other folates. There was rapid uptake of {sup 3}H-label by the kidney with only 10% of the urinary {sup 3}H-label as {sup 3}H-5-CH{sub 3}-H{sub 4}PteGlu.

  17. Monocarboxylate transporter 8 deficiency: altered thyroid morphology and persistent high triiodothyronine/thyroxine ratio after thyroidectomy.

    PubMed

    Wirth, Eva K; Sheu, Sien-Yi; Chiu-Ugalde, Jazmin; Sapin, Remy; Klein, Marc O; Mossbrugger, Ilona; Quintanilla-Martinez, Leticia; de Angelis, Martin Hrabĕ; Krude, Heiko; Riebel, Thomas; Rothe, Karin; Köhrle, Josef; Schmid, Kurt W; Schweizer, Ulrich; Grüters, Annette

    2011-10-01

    Thyroid hormone transport across the plasma membrane depends on transmembrane transport proteins, including monocarboxylate transporter 8 (MCT8). Mutations in MCT8 (or SLC16A2) lead to a severe form of X-linked psychomotor retardation, which is characterised by elevated plasma triiodothyronine (T(3)) and low/normal thyroxine (T(4)). MCT8 contributes to hormone release from the thyroid gland. To characterise the potential impact of MCT8-deficiency on thyroid morphology in a patient and in Mct8-deficient mice. Thyroid morphology in a patient carrying the A224V mutation was followed by ultrasound imaging for over 10 years. After thyroidectomy, a histopathological analysis was carried out. The findings were compared with histological analyses of mouse thyroids from the Mct8(-/y) model. We show that an inactivating mutation in MCT8 leads to a unique, progressive thyroid follicular pathology in a patient. After thyroidectomy, histological analysis revealed gross morphological changes, including several hyperplastic nodules, microfollicular areas with stromal fibrosis and a small focus of microfollicular structures with nuclear features reminiscent of papillary thyroid carcinoma (PTC). These findings are supported by an Mct8-null mouse model in which we found massive papillary hyperplasia in 6- to 12-month-old mice and nuclear features consistent with PTC in almost 2-year-old animals. After complete thyroidectomy and substitution with levothyroxine (l-T(4)), the preoperative, inadequately low T(4) and free T(4) remained, while increasing the l-T(4) dosage led to T(3) serum concentrations above the normal range. Our results implicate peripheral deiodination in the peculiar hormonal constellation of MCT8-deficient patients. Other MCT8-deficient patients should be closely monitored for potential thyroid abnormalities.

  18. Mammalian folylpoly-. gamma. -glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis

    SciTech Connect

    Cook, J.D.; Cichowicz, D.J.; George, S.; Lawler, Ann; Shane, B.

    1987-01-27

    The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B/sub 12/ status, can be mimicked in vitro by using purified enzyme. (/sup 3/H)Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B/sub 12/ deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly.

  19. The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron Deficiency-Induced Chlorosis in Arabidopsis.

    PubMed

    Eroglu, Seckin; Meier, Bastian; von Wirén, Nicolaus; Peiter, Edgar

    2016-02-01

    Iron (Fe) deficiency is a widespread nutritional disorder on calcareous soils. To identify genes involved in the Fe deficiency response, Arabidopsis (Arabidopsis thaliana) transfer DNA insertion lines were screened on a high-pH medium with low Fe availability. This approach identified METAL TOLERANCE PROTEIN8 (MTP8), a member of the Cation Diffusion Facilitator family, as a critical determinant for the tolerance to Fe deficiency-induced chlorosis, also on soil substrate. Subcellular localization to the tonoplast, complementation of a manganese (Mn)-sensitive Saccharomyces cerevisiae yeast strain, and Mn sensitivity of mtp8 knockout mutants characterized the protein as a vacuolar Mn transporter suitable to prevent plant cells from Mn toxicity. MTP8 expression was strongly induced on low-Fe as well as high-Mn medium, which were both strictly dependent on the transcription factor FIT, indicating that high-Mn stress induces Fe deficiency. mtp8 mutants were only hypersensitive to Fe deficiency when Mn was present in the medium, which further suggested an Mn-specific role of MTP8 during Fe limitation. Under those conditions, mtp8 mutants not only translocated more Mn to the shoot than did wild-type plants but suffered in particular from critically low Fe concentrations and, hence, Fe chlorosis, although the transcriptional Fe deficiency response was up-regulated more strongly in mtp8. The diminished uptake of Fe from Mn-containing low-Fe medium by mtp8 mutants was caused by an impaired ability to boost the ferric chelate reductase activity, which is an essential process in Fe acquisition. These findings provide a mechanistic explanation for the long-known interference of Mn in Fe nutrition and define the molecular processes by which plants alleviate this antagonism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Effects of anticonvulsants on GLUT1-mediated glucose transport in GLUT1 deficiency syndrome in vitro.

    PubMed

    Klepper, Jörg; Flörcken, Anne; Fischbarg, Jorge; Voit, Thomas

    2003-02-01

    Facilitative type-1 glucose transporter (GLUT1) deficiency syndrome is caused by a defect of glucose transport into brain, resulting in an epileptic encephalopathy. Seizures respond effectively to a ketogenic diet, but a subgroup of patients require add-on anticonvulsant therapy or do not tolerate the diet. With the exception of barbiturates, which have been shown to inhibit GLUT1 function, no anticonvulsants have been investigated for possible interactions with GLUT1. Kinetic analyses of (14)C-labeled 3-O-methyl glucose (3OMG) uptake into erythroctes were performed in 11 patients and 30 controls. For in vitro inhibition studies, zero-trans influx of 3OMG (5 mmol/L) into erythrocytes was determined following preincubation with diazepam, carbamazepine, phenytoin, and chloralhydrate. In addition, the effects of ethanol on cell lysis and 3OMG transport into erythrocytes were determined. In patients, mean 3OMG influx was 53% of controls. Ethanol, diazepam, and chloralhydrate significantly inhibited GLUT1 function. Erythrocyte cell lysis was evident at concentrations of 2.5% ethanol. Diazepam, chloralhydrate, and ethanol are inhibitors of GLUT1 function in vitro and might potentiate the effects of GLUT1-mediated glucose transport in patients with GLUT1 deficiency syndrome. In contrast, no inhibitory effects were observed for carbamazepine and phenytoin, indicating that these substances might be preferable for additional seizure control in this disorder.

  1. Iron, folate, and vitamin B12 nutrition in pregnancy: a study of 1 000 women from southern India*

    PubMed Central

    Yusufji, D.; Mathan, V. I.; Baker, S. J.

    1973-01-01

    As part of a WHO collaborative programme the prevalence of anaemia was studied and the serum concentrations of iron, folate, and vitamin B12 were measured in 1 000 pregnant women from southern India. The results of the study show a high prevalence of anaemia, resulting from iron and folate deficiency with iron deficiency predominating. Interrelationships between these nutrients and their effect on pregnancy and the fetus were investigated. The results indicate that, in comparison with populations in developed countries, there was a high prevalence of iron and vitamin B12 deficiency in the community, but the state of folate nutrition was similar to that found elsewhere. PMID:4541142

  2. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study.

    PubMed

    Kurian, Manju A; Li, Yan; Zhen, Juan; Meyer, Esther; Hai, Nebula; Christen, Hans-Jürgen; Hoffmann, Georg F; Jardine, Philip; von Moers, Arpad; Mordekar, Santosh R; O'Callaghan, Finbar; Wassmer, Evangeline; Wraige, Elizabeth; Dietrich, Christa; Lewis, Timothy; Hyland, Keith; Heales, Simon; Sanger, Terence; Gissen, Paul; Assmann, Birgit E; Reith, Maarten E A; Maher, Eamonn R

    2011-01-01

    dopamine transporter deficiency syndrome is the first identified parkinsonian disorder caused by genetic alterations of the dopamine transporter. We describe a cohort of children with mutations in the gene encoding the dopamine transporter (SLC6A3) with the aim to improve clinical and molecular characterisation, reduce diagnostic delay and misdiagnosis, and provide insights into the pathophysiological mechanisms. 11 children with a biochemical profile suggestive of dopamine transporter deficiency syndrome were enrolled from seven paediatric neurology centres in the UK, Germany, and the USA from February, 2009, and studied until June, 2010. The syndrome was characterised by detailed clinical phenotyping, biochemical and neuroradiological studies, and SLC6A3 mutation analysis. Mutant constructs of human dopamine transporter were used for in-vitro functional analysis of dopamine uptake and cocaine-analogue binding. children presented in infancy (median age 2·5 months, range 0·5-7) with either hyperkinesia (n=5), parkinsonism (n=4), or a mixed hyperkinetic and hypokinetic movement disorder (n=2). Seven children had been initially misdiagnosed with cerebral palsy. During childhood, patients developed severe parkinsonism-dystonia associated with an eye movement disorder and pyramidal tract features. All children had raised ratios of homovanillic acid to 5-hydroxyindoleacetic acid in cerebrospinal fluid, of range 5·0-13·2 (normal range 1·3-4·0). Homozygous or compound heterozygous SLC6A3 mutations were detected in all cases. Loss of function in all missense variants was recorded from in-vitro functional studies, and was supported by the findings of single photon emission CT DaTSCAN imaging in one patient, which showed complete loss of dopamine transporter activity in the basal nuclei. dopamine transporter deficiency syndrome is a newly recognised, autosomal recessive disorder related to impaired dopamine transporter function. Careful characterisation of patients

  3. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study

    PubMed Central

    Kurian, Manju A; Li, Yan; Zhen, Juan; Meyer, Esther; Hai, Nebula; Christen, Hans-Jürgen; Hoffmann, Georg F; Jardine, Philip; von Moers, Arpad; Mordekar, Santosh R; O'Callaghan, Finbar; Wassmer, Evangeline; Wraige, Elizabeth; Dietrich, Christa; Lewis, Timothy; Hyland, Keith; Heales, Simon JR; Sanger, Terence; Gissen, Paul; Assmann, Birgit E; Reith, Maarten EA; Maher, Eamonn R

    2010-01-01

    Summary Background Dopamine transporter deficiency syndrome is the first identified parkinsonian disorder caused by genetic alterations of the dopamine transporter. We describe a cohort of children with mutations in the gene encoding the dopamine transporter (SLC6A3) with the aim to improve clinical and molecular characterisation, reduce diagnostic delay and misdiagnosis, and provide insights into the pathophysiological mechanisms. Methods 11 children with a biochemical profile suggestive of dopamine transporter deficiency syndrome were enrolled from seven paediatric neurology centres in the UK, Germany, and the USA from February, 2009, and studied until June, 2010. The syndrome was characterised by detailed clinical phenotyping, biochemical and neuroradiological studies, and SLC6A3 mutation analysis. Mutant constructs of human dopamine transporter were used for in-vitro functional analysis of dopamine uptake and cocaine-analogue binding. Findings Children presented in infancy (median age 2·5 months, range 0·5–7) with either hyperkinesia (n=5), parkinsonism (n=4), or a mixed hyperkinetic and hypokinetic movement disorder (n=2). Seven children had been initially misdiagnosed with cerebral palsy. During childhood, patients developed severe parkinsonism-dystonia associated with an eye movement disorder and pyramidal tract features. All children had raised ratios of homovanillic acid to 5-hydroxyindoleacetic acid in cerebrospinal fluid, of range 5·0–13·2 (normal range 1·3–4·0). Homozygous or compound heterozygous SLC6A3 mutations were detected in all cases. Loss of function in all missense variants was recorded from in-vitro functional studies, and was supported by the findings of single photon emission CT DaTSCAN imaging in one patient, which showed complete loss of dopamine transporter activity in the basal nuclei. Interpretation Dopamine transporter deficiency syndrome is a newly recognised, autosomal recessive disorder related to impaired dopamine

  4. Induction of protective CTL immunity against peptide transporter TAP-deficient tumors through dendritic cell vaccination.

    PubMed

    Chambers, Benedict; Grufman, Per; Fredriksson, Vanoohi; Andersson, Kenth; Roseboom, Marjet; Laban, Sandra; Camps, Marcel; Wolpert, Elisabeth Z; Wiertz, Emmanuel J H J; Offringa, Rienk; Ljunggren, Hans-Gustaf; van Hall, Thorbald

    2007-09-15

    A large proportion of human cancers show deficiencies in the MHC class I antigen-processing machinery. Such defects render tumors resistant to immune eradication by tumoricidal CTLs. We recently identified a unique population of CTL that selectively targets tumor immune-escape variants through recognition of MHC-presented peptides, termed TEIPP (T cell epitopes associated with impaired peptide processing), expressed on cells lacking functional TAP-peptide transporters. Previously, we showed that vaccination with TEIPP peptides mediates protection against TAP-deficient tumors. Here, we further explored the concept of TEIPP-targeted therapy using a dendritic cell (DC)-based cellular vaccine. Impairment of TAP function in DC induced the presentation of endogenous TEIPP antigens by MHC class I molecules, and immunization with these DCs protected mice against the outgrowth of TAP-deficient lymphomas and fibrosarcomas. Immune analysis of vaccinated mice revealed strong TEIPP-specific CTL responses, and a crucial role for CD8(+) cells in tumor resistance. Finally, we show that TEIPP antigens could be successfully induced in wild-type DC by introducing the viral TAP inhibitor UL49.5. Our results imply that immune intervention strategies with TAP-inhibited DC could be developed for the treatment of antigen processing-deficient cancers in humans.

  5. A candidate mouse model for Hartnup disorder deficient in neutral amino acid transport.

    PubMed

    Symula, D J; Shedlovsky, A; Guillery, E N; Dove, W F

    1997-02-01

    The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder cases also show niacin deficiency symptoms, of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human.

  6. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  7. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo.

    PubMed

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun; Shucun, Qin

    2016-07-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with (3)H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of (3)H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed (3)H-cholesterol of plasma was decreased by 68% for male and 62% for female, and (3)H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and (3)H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, (3)H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0-24 h period, but there was no significant difference during 24-48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  8. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo

    PubMed Central

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun

    2016-01-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo. After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with 3H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of 3H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed 3H-cholesterol of plasma was decreased by 68% for male and 62% for female, and 3H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and 3H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, 3H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0–24 h period, but there was no significant difference during 24–48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  9. Screening of male patients with autism spectrum disorder for creatine transporter deficiency.

    PubMed

    Newmeyer, A; deGrauw, T; Clark, J; Chuck, G; Salomons, G

    2007-12-01

    Creatine deficiency syndromes (CDS) are newly identified genetic disorders that result in neurological impairment of cognition and communication. The purpose of our study was to screen 100 male subjects with autism spectrum disorder for mutations in the SLC6A8 gene in order to determine the frequency of this genetic disorder in this population. One hundred males ages 3-18 years diagnosed with autism spectrum disorder based on DSM-IV criteria were recruited. DNA sequence analysis was performed on all subjects for creatine transporter gene (SLC6A8) defects. One subject had a novel unclassified variant in the SLC6A8 gene exon 13: c.1890G>C. Given that autistic features are found in a number of patients with CDS, SLC6A8 deficiency as well as the treatable forms of CDS should be included in the differential diagnosis of patients with autism spectrum disorder.

  10. Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad

    PubMed Central

    DeFlaun, M. F.; Oppenheimer, S. R.; Streger, S.; Condee, C. W.; Fletcher, M.

    1999-01-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. We compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435. PMID:9925613

  11. Intravenous infusion of iron and tetrahydrofolate does not influence intrauterine uteroferrin and secreted folate-binding protein content in swine.

    PubMed

    Vallet, J L; Christenson, R K; Klemcke, H G; Pearson, P L

    2001-01-01

    The effect of exogenous iron and folate on reproductive performance in swine is equivocal. However, the effect of exogenous iron and folate on secretion of their respective uterine transport proteins has never been reported. Twenty gilts were infused (n = 5 per treatment) with either 1) saline, 2) alpha-tocopherol, 3) alpha-tocopherol plus iron citrate, or 4) alpha-tocopherol plus tetrahydrofolate on d 11 to 14 of pregnancy. Intravenous infusion of iron citrate and tetrahydrofolate increased (P < 0.05) plasma iron and folate, respectively, for 6 to 8 h after treatment. Treatments had no effect on uterine content of uteroferrin or secreted folate-binding protein in uterine flushings obtained on d 15 of pregnancy. These data suggest that uterine secretion of uteroferrin and secreted folate-binding protein are not influenced by plasma levels of iron and folate, respectively, and may provide an explanation for the equivocal effect of iron and folate treatment on reproductive performance in gilts.

  12. How I treat anemia in pregnancy: iron, cobalamin, and folate.

    PubMed

    Achebe, Maureen M; Gafter-Gvili, Anat

    2017-02-23

    Anemia of pregnancy, an important risk factor for fetal and maternal morbidity, is considered a global health problem, affecting almost 50% of pregnant women. In this article, diagnosis and management of iron, cobalamin, and folate deficiencies, the most frequent causes of anemia in pregnancy, are discussed. Three clinical cases are considered. Iron deficiency is the most common cause. Laboratory tests defining iron deficiency, the recognition of developmental delays and cognitive abnormalities in iron-deficient neonates, and literature addressing the efficacy and safety of IV iron in pregnancy are reviewed. An algorithm is proposed to help clinicians diagnose and treat iron deficiency, recommending oral iron in the first trimester and IV iron later. Association of folate deficiency with neural tube defects and impact of fortification programs are discussed. With increased obesity and bariatric surgery rates, prevalence of cobalamin deficiency in pregnancy is rising. Low maternal cobalamin may be associated with fetal growth retardation, fetal insulin resistance, and excess adiposity. The importance of treating cobalamin deficiency in pregnancy is considered. A case of malarial anemia emphasizes the complex relationship between iron deficiency, iron treatment, and malaria infection in endemic areas; the heightened impact of combined etiologies on anemia severity is highlighted. © 2017 by The American Society of Hematology.

  13. Serum and red cell folate and serum vitamin B12 levels in hyperthyroidism.

    PubMed

    Ford, H C; Carter, J M; Rendle, M A

    1989-08-01

    Serum and red blood cell folate levels and serum B12 concentration were determined by radioassay in 20 hyperthyroid patients and compared with values obtained when the same patients had been euthyroid for at least 4 months. In hyperthyroidism, the levels of serum and red blood cell folate were significantly (P less than .01) higher than when euthyroidism was achieved. There was no significant change in serum B12 concentration. Declines in serum and red blood cell folate levels between hyperthyroidism and euthyroidism occurred in 15 and 16 of the 20 patients, respectively. Although the explanation for the relative elevations of serum and red blood cell folate levels in hyperthyroid patients is unclear at present, our findings do not support the view that hyperthyroidism in man is associated with depletion of folate stores or subclinical deficiency of the vitamin.

  14. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice.

    PubMed

    Dumitrescu, Alexandra M; Liao, Xiao-Hui; Weiss, Roy E; Millen, Kathleen; Refetoff, Samuel

    2006-09-01

    Mutations of the X-linked thyroid hormone (TH) transporter (monocarboxylate transporter, MCT8) produce in humans unusual abnormalities of thyroid function characterized by high serum T3 and low T4 and rT3. The mechanism of these changes remains obscure and raises questions regarding the regulation of intracellular availability and metabolism of TH. To study the pathophysiology of MCT8 deficiency, we generated Mct8 knockout mice. Male mice deficient in Mct8 (Mct8(-/y)) replicate the thyroid abnormalities observed in affected men. TH deprivation and replacement with L-T3 showed that suppression of TSH required higher serum levels T3 in Mct8(-/y) than wild-type (WT) littermates, indicating hypothalamus and/or thyrotroph resistance to T3. Furthermore, T4 is required to maintain the high serum T3 level because the latter was not different between the two genotypes during administration of T3. Mct8(-/y) mice have 2.3-fold higher T3 content in liver associated with 6.1- and 3.1-fold increase in deiodinase 1 mRNA and enzymatic activity, respectively. The relative T3 excess in liver of Mct8(-/y) mice produced a decrease in serum cholesterol (79 +/- 18 vs. 137 +/- 38 mg/dl in WT) and an increase in alkaline phosphatase (107 +/- 23 vs. 58 +/- 3 U/liter in WT) levels. In contrast, T3 content in cerebrum was 1.8-fold lower in Mct8(-/y) mice, associated with a 1.6- and 10.6-fold increase in D2 mRNA and enzymatic activity, respectively, as previously observed in TH-deprived WT mice. We conclude that cell-specific differences in intracellular TH content due to differences in contribution of the various TH transporters are responsible for the unusual clinical presentation of this defect, in contrast to TH deficiency.

  15. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    PubMed

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Iron and folate in fortified cereals.

    PubMed

    Whittaker, P; Tufaro, P R; Rader, J I

    2001-06-01

    Fortification of cereal-grain products was introduced in 1941 when iron and three vitamins were added to flour and bread. Ready-to-eat cereals were fortified at about the same time. These fortifications have contributed to increased dietary iron intake and reductions in iron deficiency anemia in the US. In 1996, FDA finalized rules for fortification of specific enriched cereal-grain products with folic acid. This measure was instituted to increase the folate intakes of women of child-bearing age and thereby reduce the risk of having a pregnancy affected with a neural tube birth defect. However, with recent increases in fortification, public health officials in the US are concemed that excess intake of specific nutrients such as iron and folic acid may result in toxic manifestations. Our objective was to measure iron and total folate content in breakfast cereals and compare assay to label values for % Daily Value. We also determined by weight the amount of a ready-to-eat breakfast cereal adults would eat and compared this to the labeled serving size, for which the reference amount for this cereal per eating occasion was 1 cup or 30 g. Twenty-nine breakfast cereals were analyzed for iron content using the bathophenanthroline reaction. Twenty-eight cereals were analyzed for total folate, utilizing a microbiological assay with tri-enzyme digestion. Serving size quantities were estimated in seventy-two adults who regularly ate breakfast cereal and were asked to fill a 16 or 22 cm round bowl with the amount of cereal that they would consume for breakfast. When the labeled value was compared to the assayed value for iron content 21 of the 29 breakfast cereals were 120% or more of the label value and 8 cereals were 150% or more of the label value. Overall, analyzed values for iron ranged from 80% to 190% of label values. Analyzed values for folate ranged from 98% to 320% of label values. For 14 of 28 cereals, analyzed values exceeded label declarations by more than 150

  17. Reference Interval and Status for Serum Folate and Serum Vitamin B12 in a Norwegian Population.

    PubMed

    Schwettmann, Lutz; Berbu, Siw

    2015-01-01

    Deficiencies of folate and vitamin B12 lead to an elevated serum concentration of homocysteine which has been associated with many diseases including cardiovascular disease. Laboratory algorithms often include initial testing of serum folate and vitamin B12. Reference intervals for these vitamins can vary significantly among populations for which dietary intakes may be different. The aim of this study was to establish reference intervals in a Norwegian population and to assess the folate and vitamin B12 status related to reference intervals. Blood samples were taken from 144 healthy volunteers aged 18 - 65 years. A questionnaire provided data of medication, medical history, vitamin supplementation, alcohol consumption, and use of oral contraceptives and others. Serum folate and vitamin B12 concentrations were measured on the Abbott Architect i2000. Reference values were calculated using the bootstrap method. Results of serum folate, vitamin B12, and homocysteine from 1190 individuals from regional primary health care centers were evaluated related to reference values and the proportion of individuals with deficiency was estimated. Mean serum concentrations of folate and vitamin B12 were 11.9 nmol/L and 328 pmol/L, respectively. Men were found to have statistically significant higher vitamin B12 concentrations than women. 95%-reference intervals were calculated to 5.2 - 29.2 nmol/L for folate and 133 - 595 pmol/L for vitamin B12. 1.1% of the study population has serum vitamin B12-concentrations < 133 pmol/L and 3.4% has serum folate concentrations < 5.2 nmoI/L. The serum reference intervals for folate and vitamin B12 for a healthy, not vitamin-supplemented adult population were determined from 144 subjects. The application of these intervals will assist in the evaluation of folate and vitamin status.

  18. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain.

    PubMed

    Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-07-01

    Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Zinc Deficiency Up-Regulates Expression of High-Affinity Phosphate Transporter Genes in Both Phosphate-Sufficient and -Deficient Barley Roots1

    PubMed Central

    Huang, Chunyuan; Barker, Susan Jane; Langridge, Peter; Smith, Frank W.; Graham, Robin David

    2000-01-01

    Phosphate (P) is taken up by plants through high-affinity P transporter proteins embedded in the plasma membrane of certain cell types in plant roots. Expression of the genes that encode these transporters responds to the P status of the plants, and their transcription is normally tightly controlled. However, this tight control of P uptake is lost under Zn deficiency, leading to very high accumulation of P in plants. We examined the effect of plant Zn status on the expression of the genes encoding the HVPT1 and HVPT2 high-affinity P transporters in barley (Hordeum vulgare L. cv Weeah) roots. The results show that the expression of these genes is intimately linked to the Zn status of the plants. Zn deficiency induced the expression of genes encoding these P transporters in plants grown in either P-sufficient or -deficient conditions. Moreover, the role of Zn in the regulation of these genes is specific in that it cannot be replaced by manganese (a divalent cation similar to Zn). It appears that Zn plays a specific role in the signal transduction pathway responsible for the regulation of genes encoding high-affinity P transporters in plant roots. The significance of Zn involvement in the regulation of genes involved in P uptake is discussed. PMID:10982454

  20. Folate status of young Canadian women after folic acid fortification of grain products.

    PubMed

    Shuaibi, Aysheh M; House, James D; Sevenhuysen, Gustaaf P

    2008-12-01

    Women of childbearing age are advised to consume folic acid-containing supplements. Whether this remains necessary after folic acid fortification of the food supply in North America has yet to be determined. The objectives of this study were to assess folate intakes and the contribution of folic acid to the diets of women of childbearing age in the post-folic acid fortification era. Using a cross-sectional study design, fasting blood samples were obtained from 95 women (aged 18 to 25 years), and the samples were analyzed for serum and red blood cell folate, as well for total homocysteine. Dietary and supplemental folate intakes were assessed. The biochemical evidence showed that no women were folate deficient, but only 14% reached red blood cell folate concentrations associated with significant reductions in neural tube defect risk. Mean dietary intake of food folic acid was 96+/-64 microg/day, supplemental folic acid was 94+/-189 microg/day, natural folate was 314+/-134 microg/day, and the total intake, as dietary folate equivalents, was 646+/-368 microg dietary folate equivalents/day. Therefore, intakes of folic acid from fortified foods are within the level originally predicted for the fortification efforts; however, only 17% of participants met the special recommendation for women capable of becoming pregnant (400 microg folic acid daily from supplements, fortified foods, or both in addition to consuming food folate from a varied diet). These data suggest that women of childbearing age are achieving positive folate status in the postfortification era, but it may not be sufficient to achieve red blood cell folate concentrations associated with a significant reduction in neural tube defect risk. Even with food fortification, women of childbearing age should be advised to take a folic acid-containing supplement on a daily basis.

  1. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.).

    PubMed

    Ramírez Rivera, Naty G; García-Salinas, Carolina; Aragão, Francisco J L; Díaz de la Garza, Rocío Isabel

    2016-10-01

    Folate (vitamin B9) deficiency causes several health problems globally. However, folate biofortification of major staple crops is one alternative that can be used to improve vitamin intakes in populations at risk. We increased the folate levels in common bean by engineering the pteridine branch required for their biosynthesis. GTP cyclohydrolase I from Arabidopsis (AtGchI) was stably introduced into three common bean Pinto cultivars by particle bombardment. Seed-specific overexpression of AtGCHI caused significant increases of up to 150-fold in biosynthetic pteridines in the transformed lines. The pteridine boost enhanced folate levels in raw desiccated seeds by up to threefold (325 μg in a 100 g portion), which would represent 81% of the adult recommended daily allowance. Unexpectedly, the engineering also triggered a general increase in PABA levels, the other folate precursor. This was not observed in previous engineering studies and was probably caused by a feedforward mechanism that remains to be elucidated. Results from this work also show that common bean grains accumulate considerable amounts of oxidized pteridines that might represent products of folate degradation in desiccating seeds. Our study uncovers a probable different regulation of folate homoeostasis in these legume grains than that observed in other engineering works. Legumes are good sources of folates, and this work shows that they can be engineered to accumulate even greater amounts of folate that, when consumed, can improve folate status. Biofortification of common bean with folates and other micronutrients represents a promising strategy to improve the nutritional status of populations around the world. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Endo-Lysosomal Dysfunction in Human Proximal Tubular Epithelial Cells Deficient for Lysosomal Cystine Transporter Cystinosin

    PubMed Central

    Van Den Heuvel, Lambertus; Pastore, Anna; Dijkman, Henry; De Matteis, Maria Antonietta; Levtchenko, Elena N.

    2015-01-01

    Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles. PMID:25811383

  3. Altered microtubule dynamics and vesicular transport in mouse and human MeCP2-deficient astrocytes

    PubMed Central

    Delépine, Chloé; Meziane, Hamid; Nectoux, Juliette; Opitz, Matthieu; Smith, Amos B.; Ballatore, Carlo; Saillour, Yoann; Bennaceur-Griscelli, Annelise; Chang, Qiang; Williams, Emily Cunningham; Dahan, Maxime; Duboin, Aurélien; Billuart, Pierre; Herault, Yann; Bienvenu, Thierry

    2016-01-01

    Rett syndrome (RTT) is a rare X-linked neurodevelopmental disorder, characterized by normal post-natal development followed by a sudden deceleration in brain growth with progressive loss of acquired motor and language skills, stereotypic hand movements and severe cognitive impairment. Mutations in the methyl-CpG-binding protein 2 (MECP2) cause more than 95% of classic cases. Recently, it has been shown that the loss of Mecp2 from glia negatively influences neurons in a non-cell-autonomous fashion, and that in Mecp2-null mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern and greatly prolonged lifespan compared with globally null mice. We now report that microtubule (MT)-dependent vesicle transport is altered in Mecp2-deficient astrocytes from newborn Mecp2-deficient mice compared with control wild-type littermates. Similar observation has been made in human MECP2 p.Arg294* iPSC-derived astrocytes. Importantly, administration of Epothilone D, a brain-penetrant MT-stabilizing natural product, was found to restore MT dynamics in Mecp2-deficient astrocytes and in MECP2 p.Arg294* iPSC-derived astrocytes in vitro. Finally, we report that relatively low weekly doses of Epothilone D also partially reversed the impaired exploratory behavior in Mecp2308/y male mice. These findings represent a first step toward the validation of an innovative treatment for RTT. PMID:26604147

  4. Iodine deficiency up-regulates monocarboxylate transporter 8 expression of mouse thyroid gland.

    PubMed

    Hu, Zhimei; Zhuo, Xiaohua; Shi, Yanan; Liu, Xin; Yuan, Jihong; Li, Lanying; Sun, Yina

    2014-01-01

    Iodine deficiency is a major factor affecting thyroid auto-regulation, the quantity of iodine may greatly influence the synthesis of thyroid hormones (THs). It has long been believed that TH enters the cell through passive diffusion. Recent studies have suggested that several transporters could facilitate transportation of TH. The monocarboxylate transporter 8 (MCT8) was identified as a very active and specific TH transporter. The purpose of this study was to investigate whether iodine insufficient affected the expression of MCT8 in the thyroid gland. Sixty BALB/c mice were randomly divided into two groups: control group was fed with standard feed (iodine concentration of 300 µg/kg); while low-iodine (LI) group received iodine-insufficient feed (iodine concentration of 20-40 µg/kg). After 3 months, 10 mice of each group were sacrificed. The remaining 20 mice of each group were kept till 6 months. From the LI group, we randomly selected 15 mice and injected triiodothyronine (T3, 100 µg/kg body weight per day) intraperitoneally for 24, 48 or 72 hours (5 mice for each time-point). Then, all the mice were sacrificed. Mouse serum thyroxine (T4), T3, and thyroid-stimulating hormone (TSH) levels were determined by chemiluminescence immunoassay (CIA). The protein content or messenger RNA (mRNA) level of thyroid MCT8 was measured by Western blotting analysis or real time RT-PCR respectively. MCT8 subcellular location in thyroid tissues was probed with immunohistochemistry (IHC) assay. We found that mouse serum T3 and T4 levels decreased and TSH level increased by the end of the third month. Consistent with these findings, there was significant goiter and hypothyroidism in the LI group. Meanwhile, the MCT8 mRNA increased to 1.36-fold of the level in the control group at the 3(rd) month. At 6(th) month, the serum T4 level in LI mice remained at a lower level, and MCT8 mRNA expression continued rising to nearly 1.60-fold compared with the control group. The protein content

  5. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate.

    PubMed

    Blancquaert, Dieter; Storozhenko, Sergei; Van Daele, Jeroen; Stove, Christophe; Visser, Richard G F; Lambert, Willy; Van Der Straeten, Dominique

    2013-09-01

    Folates are important cofactors in one-carbon metabolism in all living organisms. Since only plants and micro- organisms are capable of biosynthesizing folates, humans depend entirely on their diet as a folate source. Given the low folate content of several staple crop products, folate deficiency affects regions all over the world. Folate biofortification of staple crops through enhancement of pterin and para-aminobenzoate levels, precursors of the folate biosynthesis pathway, was reported to be successful in tomato and rice. This study shows that the same strategy is not sufficient to enhance folate content in potato tubers and Arabidopsis thaliana plants and concludes that other steps in folate biosynthesis and/or metabolism need to be engineered to result in substantial folate accumulation. The findings provide a plausible explanation why, more than half a decade after the proof of concept in rice and tomato, successful folate biofortification of other food crops through enhancement of para-aminobenzoate and pterin content has not been reported thus far. A better understanding of the folate pathway is required in order to determine an engineering strategy that can be generalized to most staple crops.

  6. Nutrient Intake Values for Folate during Pregnancy and Lactation Vary Widely around the World

    PubMed Central

    Stamm, Rosemary A.; Houghton, Lisa A.

    2013-01-01

    Folate is a B-vitamin with particular importance during reproduction due to its role in the synthesis and maintenance of DNA. Folate is well known for its role in preventing neural tube defects (NTDs) during the periconceptional period. There is also an increased need for folate throughout pregnancy to support optimal growth and development of the fetus and blood volume expansion and tissue growth of the mother. During lactation, women are at risk of folate deficiency due to increased demands to accommodate milk folate levels. Nutrient Intake Values (NIVs) for folate have been calculated to take into account additional needs during pregnancy and lactation. However, these values vary widely between countries. For example, the folate requirement that is set to meet the needs of almost all healthy women during pregnancy varies from 300 µg/day in the United Kingdom to 750 µg/day in Mexico. Currently, there is no accepted standardized terminology or framework for establishing NIVs. This article reviews country-specific NIVs for folate during pregnancy and lactation and the basis for setting these reference values. PMID:24084052

  7. Folate receptor alpha is necessary for neural plate cell apical constriction during Xenopus neural tube formation.

    PubMed

    Balashova, Olga A; Visina, Olesya; Borodinsky, Laura N

    2017-03-02

    Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that knockdown of folate receptor-α (FRα) impairs neural tube formation and leads to NTDs. FRα knockdown in neural plate cells only is necessary and sufficient to induce NTDs. FRα-deficient neural plate cells fail to constrict, resulting in widening of the neural plate midline and defective neural tube closure. Pharmacological inhibition of folate action by methotrexate during neurulation induces NTDs by inhibiting folate interaction with its uptake systems. Our findings support a model for folate receptor interacting with cell adhesion molecules, thus regulating apical cell membrane remodeling and cytoskeletal dynamics necessary for neural plate folding. Further studies in this organism may unveil novel cellular and molecular events mediated by folate and lead to new means for preventing NTDs.

  8. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Folate Biofortification in Hydroponically Cultivated Spinach by the Addition of Phenylalanine.

    PubMed

    Watanabe, Sho; Ohtani, Yuta; Tatsukami, Yohei; Aoki, Wataru; Amemiya, Takashi; Sukekiyo, Yasunori; Kubokawa, Seiichi; Ueda, Mitsuyoshi

    2017-06-14

    Folate is an important vitamin mainly ingested from vegetables, and folate deficiency causes various health problems. Recently, several studies demonstrated folate biofortification in plants or food crops by metabolic engineering through genetic modifications. However, the production and sales of genetically modified foods are under strict regulation. Here, we developed a new approach to achieve folate biofortification in spinach (Spinacia oleracea) without genetic modification. We hydroponically cultivated spinach with the addition of three candidate compounds expected to fortify folate. As a result of liquid chromatography tandem mass spectrometry analysis, we found that the addition of phenylalanine increased the folate content up to 2.0-fold (306 μg in 100 g of fresh spinach), representing 76.5% of the recommended daily allowance for adults. By measuring the intermediates of folate biosynthesis, we revealed that phenylalanine activated folate biosynthesis in spinach by increasing the levels of pteridine and p-aminobenzoic acid. Our approach is a promising and practical approach to cultivate nutrient-enriched vegetables.

  10. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes

    PubMed Central

    Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.

    2013-01-01

    Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934

  11. Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model.

    PubMed

    Castorena-Torres, Fabiola; Ramos-Parra, Perla A; Hernández-Méndez, Rogelio V; Vargas-García, Andrés; García-Rivas, Gerardo; de la Garza, Rocío I Díaz

    2014-03-01

    Folate deficiency is a global health problem related to neural tube defects, cardiovascular disease, dementia, and cancer. Considering that folic acid (FA) supply through industrialized foods is the most successful intervention, limitations exist for its complete implementation worldwide. Biofortification of plant foods, on the other hand, could be implemented in poor areas as a complementary alternative. A biofortified tomato fruit that accumulates high levels of folates was previously developed. In this study, we evaluated short-term folate bioavailability in rats infused with this folate-biofortified fruit. Fruit from tomato segregants hyperaccumulated folates during an extended ripening period, ultimately containing 3.7-fold the recommended dietary allowance in a 100-g portion. Folate-depleted Wistar rats separated in three groups received a single dose of 1 nmol of folate/g body weight in the form of lyophilized biofortified tomato fruit, FA, or synthetic 5-CH3-THF. Folate bioavailability from the biofortified tomato was comparable to that of synthetic 5-CH3-THF, with areas under the curve (AUC(0-∞)) of 2,080 ± 420 and 2,700 ± 220 pmol · h/mL, respectively (P = 0.12). Whereas, FA was less bioavailable with an AUC(0-∞) of 750 ± 10 pmol · h/mL. Fruit-supplemented animals reached maximum levels of circulating folate in plasma at 2 h after administration with a subsequent steady decline, while animals treated with FA and synthetic 5-CH3-THF reached maximum levels at 1 h. Pharmacokinetic parameters revealed that biofortified tomato had slower intestinal absorption than synthetic folate forms. This is the first study that demonstrates the bioavailability of folates from a biofortified plant food, showing its potential to improve folate deficiency.

  12. Dodecyl creatine ester and lipid nanocapsule: a double strategy for the treatment of creatine transporter deficiency.

    PubMed

    Trotier-Faurion, Alexandra; Passirani, Catherine; Béjaud, Jérôme; Dézard, Sophie; Valayannopoulos, Vassili; Taran, Fréderic; de Lonlay, Pascale; Benoit, Jean-Pierre; Mabondzo, Aloïse

    2015-01-01

    Creatine transporter (CT) deficiency is characterized by mutations in the gene encoding CT, leading to impaired transport of creatine at the cell membrane. Patients with this disease would thus benefit from replenishment of creatine inside the brain cells. We report a therapeutic strategy based on the use of dodecyl creatine ester incorporated into lipid nanocapsules (LNCs). The dodecyl creatine ester was incorporated in the shells of LNCs using Transcutol(®) (Gattefossé SAS, Saint-Priest, France). The interactions of dodecyl creatine ester encapsulated in LNCs with an in vitro cell-based blood-brain barrier model was studied. The entry of the dodecyl creatine ester encapsulated in LNCs and the conversion of dodecyl creatine ester to creatine in the cells were also studied in the pathological context of CT deficiency. We showed that these LNCs can cross the blood-brain barrier and enter brain endothelial cells. In human fibroblasts lacking functional CT, all or part of the dodecyl creatine ester was released from the LNCs and biotransformed to creatine, thus indicating the value of this strategy in this therapeutic context.

  13. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies.

    PubMed

    Stover, Patrick J

    2011-01-01

    Folate-mediated 1-carbon metabolism is a network of interconnected metabolic pathways necessary for the synthesis of purine nucleotides, thymidylate and the remethylation of homocysteine to methionine. Disruptions in this pathway influence both DNA synthesis and stability and chromatin methylation, and result from nutritional deficiencies and common gene variants. The mechanisms underlying folate-associated pathologies and developmental anomalies have yet to be established. This review focuses on the relationships among folate-mediated 1-carbon metabolism, chromatin methylation and human disease, and the role of gene-nutrient interactions in modifying epigenetic processes. Copyright © 2012 S. Karger AG, Basel.

  14. Mutation at the folate receptor 4 locus modulates gene expression profiles in the mouse uterus in response to preconceptual folate supplementation

    PubMed Central

    Salbaum, J. michael; Kruger, Claudia; Kappen, Claudia

    2013-01-01

    Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has lead to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental - for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a preconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanisms of gene regulation in this model. PMID:23651732

  15. Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro.

    PubMed

    Ho, Y Y; Yang, H; Klepper, J; Fischbarg, J; Wang, D; De Vivo, D C

    2001-08-01

    Methylxanthines such as caffeine and theophylline are known to inhibit glucose transport. We have studied such inhibition in the glucose transporter type 1 deficiency syndrome (Glut1DS) by erythrocyte glucose transport assays. Data from four patients with individual mutations in the GLUT1 gene are discussed: patient 1 (hemizygosity), 3 (S66F), 15 (368Ins23), and 17 (R333W). Zero-trans influx of (14)C-labeled 3-O-methyl glucose (3-OMG) into erythrocytes of patients is reduced (patient 1, 51%; 3, 45%; 15, 31%; 17, 52%) compared with maternal controls. Inhibition studies on patients 1, 3, 17, and maternal controls show an IC(50) for caffeine of approximately 1.5 mM both in controls (n = 3) and patients (n = 3) at 5 mM 3-OMG concentration. In the same two groups, kinetic studies show that 3 mM caffeine significantly decreases V(max) (p < 0.005), whereas the decrease in K(m) is significant (p < 0.01) only in the three controls and one patient (patient 3). Kinetic data from individual patients permit us to speculate that the interactions between caffeine and Glut1 are influenced by the mutation. Three mM caffeine also inhibits the transport of dehydroascorbic acid (DHA), another substrate for Glut1. The combined effects of caffeine (3 mM) and phenobarbital (10 mM) on glucose transport, as determined in patient 15 and the maternal control, show no additive or synergistic inhibition. These data indicate that caffeine and phenobarbital have similar Glut1 inhibitory properties in these two subjects. Our study suggests that Glut1DS patients may have a reduced safety margin for methylxanthines. Consumption of methylxanthine-containing products may aggravate the neurologic symptoms associated with the Glut1DS.

  16. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency.

    PubMed

    Fourcroy, Pierre; Sisó-Terraza, Patricia; Sudre, Damien; Savirón, María; Reyt, Guilhem; Gaymard, Frédéric; Abadía, Anunciación; Abadia, Javier; Alvarez-Fernández, Ana; Briat, Jean-François

    2014-01-01

    Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition. © 2013 CNRS. New Phytologist © 2013 New Phytologist Trust.

  17. Vitamin B-12 treatment of asymptomatic, deficient, elderly Chileans improves conductivity in myelinated peripheral nerves, but high serum folate impairs vitamin B-12 status response assessed by the combined indicator of vitamin B-12 status.

    PubMed

    Brito, Alex; Verdugo, Renato; Hertrampf, Eva; Miller, Joshua W; Green, Ralph; Fedosov, Sergey N; Shahab-Ferdows, Setareh; Sanchez, Hugo; Albala, Cecilia; Castillo, Jose L; Matamala, Jose M; Uauy, Ricardo; Allen, Lindsay H

    2016-01-01

    It is uncertain whether vitamin B-12 supplementation can improve neurophysiologic function in asymptomatic elderly with low vitamin B-12 status or whether folate status affects responses to vitamin B-12 supplementation. We assessed the effects of a single intramuscular injection of 10 mg vitamin B-12 (which also contained 100 mg vitamin B-6 and 100 mg vitamin B-1) on vitamin B-12 status and neurophysiologic function in elderly community-dwelling Chileans with low serum vitamin B-12 concentrations who were consuming bread fortified with folic acid. A pretreatment and posttreatment study was conducted in 51 participants (median ± SD age: 73 ± 3 y; women: 47%) with serum vitamin B-12 concentrations <120 pmol/L at screening. Vitamin B-12 status was defined by combining vitamin B-12, plasma total homocysteine (tHcy), methylmalonic acid (MMA), and holotranscobalamin into one variable [combined indicator of vitamin B-12 status (cB-12)]. The response to treatment was assessed by measuring cB-12 and neurophysiologic variables at baseline and 4 mo after treatment. Treatment increased serum vitamin B-12, holotranscobalamin, and cB-12 (P < 0.001) and reduced plasma tHcy and serum MMA (P < 0.001). Treatment produced consistent improvements in conduction in myelinated peripheral nerves; the sensory latency of both the left and right sural nerves improved on the basis of faster median conduction times of 3.1 and 3.0 ms and 3.3 and 3.4 ms, respectively (P < 0.0001). A total of 10 sensory potentials were newly observed in sural nerves after treatment. Participants with high serum folate at baseline (above the median, ≥33.9 nmol/L) had less improvement in cB-12 (P < 0.001) than did individuals whose serum folate was less than the median concentration (i.e., with a concentration <33.9 nmol/L). Asymptomatic Chilean elderly with poor vitamin B-12 status displayed improved conductivity in myelinated peripheral nerves after vitamin B-12 treatment and an interaction with folate status

  18. Citrus pectin and oligofructose improve folate status and lower serum total homocysteine in rats.

    PubMed

    Thoma, Christian; Green, Timothy J; Ferguson, Lynnette R

    2003-11-01

    Low folate status leads to increased total homocysteine (tHcy) concentration, and this has been associated with an increased risk of several diseases. Many colonic bacteria are capable of synthesizing folate, and certain dietary fibers may enhance this effect. We assessed the ability of non-fermentable (cellulose) and fermentable (citrus pectin and oligofructose) fibers to improve folate status and lower tHcy in rats. Weanling Sprague-Dawley rats were fed a folate-deficient diet with 5% cellulose for four weeks. Rats were then randomly assigned to one of five folate-adequate (400 micrograms/kg diet) test diets for 24 days. Diets were as follows: Basal; Basal + Sulfa Drug (succinylsulfathiazole); Cellulose; Citrus Pectin; and Oligofructose. High-fiber diets were formulated by diluting the basal diet such that the final diets contained 10% of the added fiber. Twenty-one days later, 3H-p-aminobenzoic acid was injected into the cecum, and rats were terminated three days later. Rats receiving the Citrus Pectin diet had significantly higher plasma (p = 0.011), erythrocyte (p = 0.035), and colonic tissue folate concentrations (p = 0.013) and lower tHcy (p = 0.003) than rats given the Cellulose diet. Rats receiving the Oligofructose had significantly higher plasma folate (p < 0.001) and lower tHcy (p = 0.032) concentrations than rats receiving the Cellulose diet. 3H-folate was detected in the livers of all rats except those receiving Sulfa Drug. Our study indicates that Citrus Pectin and Oligofructose, but not Cellulose, can significantly increase indices of folate status in rats and lower tHcy. It also confirms the ability of the large bowel to absorb folate.

  19. Intestinal folate binding protein (FBP) and folate absorption in the suckling rat

    SciTech Connect

    Mason, J.B.; Selhub, J.

    1986-03-01

    The folate in milk is bound to high affinity FBPs but it is unknown whether this binding affects intestinal transport of milk folate in the suckling rat. The authors examined the FBP activity of segments of the GI tract in fed and fasting states. Under fed conditions, the FBP activity in the mucosa of the stomach and proximal small intestine were similar (0.28 and 0.32 pMole folic acid binding/mg protein, N.S.). Both demonstrated less activity than the mucosa of the distal small intestine (1.31 pMole/mg protein, P < .001). A 6 hr fast produced no change in the FBP activity in the stomach or proximal small intestine but resulted in a 42% decrease in the distal small intestine (p < .01). Intestinal transport of unbound and FB-bound H/sup 3/pteryolmonoglutamate (H/sup 3/PGA) was examined in suckling rats by the intestinal loop model. Unbound H/sup 3/PGA demonstrated greater lumenal disappearance in the proximal segment of the small intestine compared to the distal segment (79% vs. 56%, P < .001) whereas the bound H/sup 3/PGA demonstrated greater lumenal disappearance in the distal segment (36% vs. 21%, p < .005). That porton of FBP activity in the distal small intestine that disappears with fasting may represent FBP absorbed from the lumen of the intestine. The FBP-bound folate in milk appears to be absorbed in the suckling rat by a mechanism that favors the distal small intestine and is different from the mechanism responsible for absorption of the unbound folate.

  20. Divalent metal transporter 1 (Dmt1) Mediates Copper Transport in the Duodenum of Iron-Deficient Rats and When Overexpressed in Iron-Deprived HEK-293 Cells12

    PubMed Central

    Jiang, Lingli; Garrick, Michael D.; Garrick, Laura M.; Zhao, Lin; Collins, James F.

    2013-01-01

    Intracellular copper-binding proteins (metallothionein I/II) and a copper exporter (Menkes copper-transporting ATPase) are upregulated in duodenal enterocytes from iron-deficient rats, consistent with copper accumulation in the intestinal mucosa. How copper enters enterocytes during iron deficiency is, however, not clear. Divalent metal transporter 1 (Dmt1), the predominant iron importer in the mammalian duodenum, also transports other metal ions, possibly including copper. Given this possibility and that Dmt1 expression is upregulated by iron deprivation, we sought to test the hypothesis that Dmt1 transports copper during iron deficiency. Two model systems were utilized: the Belgrade (b) rat, expressing mutant Dmt1, and an inducible Dmt1-overexpression cell culture system. Mutant rats (b/b) were fed a semipurified, AIN93G-based control diet and phenotypically normal littermates (+/b) were fed control or iron-deficient diets for ∼14 wk. An everted gut sleeve technique and a colorimetric copper quantification assay were utilized to assess duodenal copper transport. The control diet-fed +/b rats had normal hematological parameters, whereas iron-deprived +/b and b/b rats were iron deficient and Dmt1 mRNA and protein levels increased. Importantly, duodenal copper transport was similar in the control +/b and b/b rats; however, it significantly increased (∼4-fold) in the iron-deprived +/b rats. Additional experiments in Dmt1 overexpressing HEK-293 cells showed that copper (64Cu) uptake was stimulated (∼3-fold) in the presence of an iron chelator. Dmt1 transcript stabilization due to a 3′ iron-responsive element was also documented, likely contributing to increased transport activity. In summary, these studies suggest that Dmt1 enhances copper uptake into duodenal enterocytes during iron deprivation. PMID:24089420

  1. Divalent metal transporter 1 (Dmt1) mediates copper transport in the duodenum of iron-deficient rats and when overexpressed in iron-deprived HEK-293 cells.

    PubMed

    Jiang, Lingli; Garrick, Michael D; Garrick, Laura M; Zhao, Lin; Collins, James F

    2013-12-01

    Intracellular copper-binding proteins (metallothionein I/II) and a copper exporter (Menkes copper-transporting ATPase) are upregulated in duodenal enterocytes from iron-deficient rats, consistent with copper accumulation in the intestinal mucosa. How copper enters enterocytes during iron deficiency is, however, not clear. Divalent metal transporter 1 (Dmt1), the predominant iron importer in the mammalian duodenum, also transports other metal ions, possibly including copper. Given this possibility and that Dmt1 expression is upregulated by iron deprivation, we sought to test the hypothesis that Dmt1 transports copper during iron deficiency. Two model systems were utilized: the Belgrade (b) rat, expressing mutant Dmt1, and an inducible Dmt1-overexpression cell culture system. Mutant rats (b/b) were fed a semipurified, AIN93G-based control diet and phenotypically normal littermates (+/b) were fed control or iron-deficient diets for ~14 wk. An everted gut sleeve technique and a colorimetric copper quantification assay were utilized to assess duodenal copper transport. The control diet-fed +/b rats had normal hematological parameters, whereas iron-deprived +/b and b/b rats were iron deficient and Dmt1 mRNA and protein levels increased. Importantly, duodenal copper transport was similar in the control +/b and b/b rats; however, it significantly increased (~4-fold) in the iron-deprived +/b rats. Additional experiments in Dmt1 overexpressing HEK-293 cells showed that copper ((64)Cu) uptake was stimulated (∼3-fold) in the presence of an iron chelator. Dmt1 transcript stabilization due to a 3' iron-responsive element was also documented, likely contributing to increased transport activity. In summary, these studies suggest that Dmt1 enhances copper uptake into duodenal enterocytes during iron deprivation.

  2. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation

    PubMed Central

    Park, Julien H.; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L.; Reunert, Janine; Schlingmann, Karl P.; Boycott, Kym M.; Beaulieu, Chandree L.; Mhanni, Aziz A.; Innes, A. Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M.; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W.; Rust, Stephan; Marquardt, Thorsten

    2015-01-01

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. PMID:26637979

  3. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.

    PubMed

    Park, Julien H; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L; Reunert, Janine; Schlingmann, Karl P; Boycott, Kym M; Beaulieu, Chandree L; Mhanni, Aziz A; Innes, A Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W; Rust, Stephan; Marquardt, Thorsten

    2015-12-03

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders.

  4. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  5. New Paradigm for the Treatment of Glucose Transporter 1 Deficiency Syndrome: Low Glycemic Index Diet and Modified High Amylopectin Cornstarch.

    PubMed

    Almuqbil, Mohammed; Go, Cristina; Nagy, Laura L; Pai, Nisha; Mamak, Eva; Mercimek-Mahmutoglu, Saadet

    2015-09-01

    Glucose transporter 1 deficiency syndrome is an autosomal, dominantly inherited neurometabolic disorder caused by mutations in the SLC2A1 gene. Decreased glucose transport into the brain results in seizures and cognitive dysfunction. The ketogenic diet is the treatment of choice, but complicated with compliance problems. Stabilization of blood glucose levels by low glycemic index diet and modified high amylopectin cornstarch would provide steady-state glucose transport into the brain to prevent seizures and cognitive dysfunction in patients with glucose transporter 1 deficiency syndrome as an alternative treatment. We report a new glucose transporter 1 deficiency syndrome patient (c.988C>T; p. Arg330X in the SLC2A1) treated with modified high amylopectin cornstarch (Glycosade) and low glycemic index diet because of compliance problems with the ketogenic diet. She was diagnosed at 11.5 years of age and was treated with the ketogenic diet between ages 12 and 18 years. She was started on modified high amylopectin cornstarch at bedtime and low glycemic index diet with meals and snacks every 3-4 hours. Within the first 6 months of therapy, she improved in her seizures and cognitive functions, but experienced compliance problems afterwards. Neuropsychological assessment was stable at 12 months of therapy. This diet was easy to apply compared with the ketogenic diet and resulted in stable neuropsychological functioning of this glucose transporter 1 deficiency syndrome patient. Modified high amylopectin cornstarch and low glycemic index diet might be an alternative treatment in glucose transporter 1 deficiency syndrome patients with compliance problems to the ketogenic diet treatment, but additional patients should be treated to prove usefulness of this new treatment. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  6. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.

    PubMed

    Garcia-Molina, Antoni; Andrés-Colás, Nuria; Perea-García, Ana; Neumann, Ulla; Dodani, Sheel C; Huijser, Peter; Peñarrubia, Lola; Puig, Sergi

    2013-08-01

    Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins. In the model plant Arabidopsis thaliana, COPT1 protein mediates root Cu acquisition, whereas COPT5 protein functions in Cu mobilization from intracellular storage organelles. The function of these transporters becomes critical when environmental Cu bioavailability diminishes. However, little is know about the mechanisms that mediate plant Cu distribution. In this report, we present evidence supporting an important role for COPT6 in Arabidopsis Cu distribution. Similarly to COPT1 and COPT2, COPT6 fully complements yeast mutants defective in high-affinity Cu uptake and localizes to the plasma membrane of Arabidopsis cells. Whereas COPT2 mRNA is only up-regulated upon severe Cu deficiency, COPT6 transcript is expressed under Cu excess conditions and displays a more gradual increase in response to decreases in environmental Cu levels. Consistent with COPT6 expression in aerial vascular tissues and reproductive organs, copt6 mutant plants exhibit altered Cu distribution under Cu-deficient conditions, including increased Cu in rosette leaves but reduced Cu levels in seeds. This altered Cu distribution is fully rescued when the wild-type COPT6 gene is reintroduced into the copt6 mutant line. Taken together, these findings highlight the relevance of COPT6 in shoot Cu redistribution when environmental Cu is limited.

  7. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency.

    PubMed

    Pérez-Dueñas, Belén; Serrano, Mercedes; Rebollo, Mónica; Muchart, Jordi; Gargallo, Eva; Dupuits, Celine; Artuch, Rafael

    2013-05-01

    Thiamine transporter-2 deficiency is a recessive disease caused by mutations in the SLC19A3 gene. Patients manifest acute episodes of encephalopathy; symmetric lesions in the cortex, basal ganglia, thalami or periaqueductal gray matter, and a dramatic response to biotin or thiamine. We report a 30-day-old patient with mutations in the SLC19A3 gene who presented with acute encephalopathy and increased level of lactate in the blood (8.6 mmol/L) and cerebrospinal fluid (7.12 mmol/L), a high excretion of α-ketoglutarate in the urine, and increased concentrations of the branched-chain amino acids leucine and isoleucine in the plasma. MRI detected bilateral and symmetric cortico-subcortical lesions involving the perirolandic area, bilateral putamina, and medial thalami. Some lesions showed low apparent diffusion coefficient values suggesting an acute evolution; others had high values likely to be subacute or chronic, most likely related to the perinatal period. After treatment with thiamine and biotin, irritability and opisthotonus disappeared, and the patient recovered consciousness. Biochemical disturbances also disappeared within 48 hours. After discontinuing biotin, the patient remained stable for 6 months on thiamine supplementation (20 mg/kg/day). The examination revealed subtle signs of neurologic sequelae, and MRI showed necrotic changes and volume loss in some affected areas. Our observations suggest that patients with thiamine transporter 2 deficiency may be vulnerable to metabolic decompensation during the perinatal period, when energy demands are high. Thiamine defects should be excluded in newborns and infants with lactic acidosis because prognosis largely depends on the time from diagnosis to thiamine supplementation.

  8. Dietary folate is associated with p16(INK4A) methylation in head and neck squamous cell carcinoma.

    PubMed

    Kraunz, Kim S; Hsiung, Debra; McClean, Michael D; Liu, Mei; Osanyingbemi, Joyce; Nelson, Heather H; Kelsey, Karl T

    2006-10-01

    Inactivation of the p16(INK4A) (CDKN2A) gene in the Rb pathway is among the most common somatic alterations observed in tobacco-related solid tumors, including head and neck squamous cell carcinoma (HNSCC). In addition, a low folate diet is an important risk factor for HNSCC. Decreased dietary folate in an animal model of hepatocellular carcinoma has been associated with the induction of epigenetic silencing of the p16(INK4A) gene. In an ongoing population-based study of HNSCC, we sought to extend this observation to human disease testing the hypothesis that p16(INK4A) methylation is associated with decreased dietary folate. We also investigated the association of methylation silencing with functional polymorphisms in the folate metabolism enzyme methylene tetrahydrofolate reductase (MTHFR). In 169 HNSCCs, the odds ratio for p16(INK4A) methylation among those with low dietary folate intake was 2.3 (95% CI = 1.1-4.8) when compared with those with high folate intake. Furthermore, this increased risk for epigenetic silencing at p16(INK4A) was modified by the MTHFR alleles previously associated with diminished serum folate levels. Hence, in HNSCC low dietary intake of folate is associated with p16(INK4A) methylation, and this relationship is modified by the MTHFR genotype. Our data provides important evidence for a mechanism of action of folate deficiency in cancer. Copyright 2006 Wiley-Liss, Inc.

  9. Mechanism and regulation of folate uptake by pancreatic acinar cells: effect of chronic alcohol consumption.

    PubMed

    Said, Hamid M; Mee, Lisa; Sekar, V Thillai; Ashokkumar, Balasubramaniem; Pandol, Stephen J

    2010-06-01

    Folate plays an essential role in one-carbon metabolism, and a relationship exists between methyl group metabolism and pancreatic exocrine function. Little, however, is known about the mechanism(s) and regulation of folate uptake by pancreatic acinar cells and the effect of chronic alcohol use on the process. We addressed these issues using the rat-derived pancreatic acinar cell line AR42J and freshly isolated primary rat pancreatic acinar cells as models. We found [(3)H]folic acid uptake to be 1) temperature and pH dependent with a higher uptake at acidic than at neutral/alkaline pH; 2) saturable as a function of substrate concentration at both buffer pH 7.4 and 6.0; 3) inhibited by folate structural analogs and by anion transport inhibitors at both buffer pH 7.4 and 6.0; 4) trans-stimulated by unlabeled folate; 5) adaptively regulated by the prevailing extracellular folate level, and 6) inhibited by modulators of the cAMP/PKA-mediated pathway. Both the reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT) were found to be expressed in AR42J and in primary pancreatic acinar cells, as well as in native human pancreas with expression of RFC being higher than PCFT. Chronic alcohol feeding of rats (4 wk; 36% of calories from ethanol) led to a significant decrease in folate uptake by freshly isolated primary pancreatic acinar cells compared with cells from pair-fed controls; this effect was associated with a parallel decrease in the level of expression of RFC and PCFT. These studies reveal that folate uptake by pancreatic acinar cells is via a regulated carrier-mediated process which may involve RFC and PCFT. In addition, chronic alcohol feeding leads to a marked inhibition in folate uptake by pancreatic acinar cells, an effect that is associated with reduction in level of expression of RFC and PCFT.

  10. The Role of Iron-Deficiency Stress Responses in Stimulating Heavy-Metal Transport in Plants1

    PubMed Central

    Cohen, Clara K.; Fox, Tama C.; Garvin, David F.; Kochian, Leon V.

    1998-01-01

    Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+. PMID:9501139

  11. Delivery of orally supplemented alpha-tocotrienol to vital organs of rats and tocopherol-transport protein deficient mice.

    PubMed

    Khanna, Savita; Patel, Viren; Rink, Cameron; Roy, Sashwati; Sen, Chandan K

    2005-11-15

    The natural vitamin E tocotrienol (TCT) possesses biological properties not shared by tocopherols (TCP). Nanomolar alpha-TCT, not alpha-TCP, is potently neuroprotective (JBC 275:13049; 278:43508). Tocopherol-transport protein (TTP) represents the primary mechanism for maintaining normal alpha-TCP concentrations in plasma and extrahepatic tissues. TTP primarily transports alpha-TCP and has low affinity for alpha-TCT. There are no studies that have investigated tissue delivery of alpha-TCT when orally gavaged on a long-term basis. A long-term study was conducted to examine the effects of alpha-TCT or alpha-TCP supplementation, either alone or in combination, on tissue levels. Rats were maintained on a vitamin E-deficient diet and gavaged with alpha-TCT or alpha-TCP alone or in combination. Five generations of rats were studied over 60 weeks. TTP-deficient mice were supplemented with TCT and bred to examine tissue delivery of oral alpha-TCT. Orally supplemented alpha-TCT was effectively delivered to most tissues over time. When co-supplemented, alpha-TCP outcompeted alpha-TCT for transport systems delivering vitamin E to tissues. To evaluate the significance of TTP in alpha-TCT delivery to tissues, tissue levels of alpha-TCT in supplemented TTP-deficient mice were studied. alpha-TCT was transported to several vital organs in TTP-deficient mice. alpha-TCT restored fertility in TTP-deficient mice. In sum, orally supplemented alpha-TCT was successfully delivered to several vital organs. The transport efficiency of alpha-TCT to tissues may be maximized by eliminating the co-presence of alpha-TCP in the oral supplement. Examination of whether alpha-TCT may benefit humans suffering from neurological disorders because of congenital TTP deficiency is warranted.

  12. Implication of homocysteine in diabetes and impact of folate and vitamin B12 in diabetic population.

    PubMed

    Mursleen, M Tahir; Riaz, Samreen

    2016-12-13

    Diabetes mellitus is an acutely debilitating ailment affecting a large population of the world. At present, over 415 million people around the world including 7 million people in Pakistan suffering from diabetes. Homocysteine is an amino acid that is inversely related to vitamin B12 and folate, and raised level of homocysteine is implicated in many adverse health conditions. In this study, the potential role of homocysteine in diabetes and the epidemiology of hyperhomocysteinaemia, and vitamin B12 and folate deficiency is reviewed along with the impact of folate and vitamin B12 in regulation of homocysteine level. Deficiency of vitamin B12 and folate is rare in developed countries and the countries which adopted fortification programs, but deficiency of these vitamins is found to be highly prevalent in developing world, particularly in Pakistan. Several studies have found an association of high homocysteine levels and diabetes, but a few studies found contrary results. Hence, further epidemiological studies are recommended for homocysteine involvement in diabetes and vitamin B12 and folate deficiency, so that an urgent action can be taken to control the hyperhomocysteinaemia and consequently the ever increasing burden of disease and specifically diabetes.

  13. Association between serum folate level and cervical cancer: a meta-analysis.

    PubMed

    Zhou, Xinyue; Meng, Yuanguang

    2016-04-01

    The aim of this study was to evaluate the association between serum folate level and cervical cancer. PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library and Google scholar were searched for relevant trials. Rev.Man5.1 and Stata 11.0 software were applied for this meta-analysis. Odds Ratio (OR) and 95 % confidence intervals (95 % CI) were collected and calculated in a fixed-effects model or a random-effects model when appropriate. Subgroup analysis was performed by sample size, participant's geographical location and definition of deficient serum folate level. A total of 6 case-control studies including 2383 participants were included in the meta-analysis. The overall meta-analysis showed that there were significant differences between cases and controls, suggesting that deficient serum folate level was associated with the increased risk of cervical cancer. After stratification subgroup analysis, significant difference was also found in subgroup with sample size <500 as well as in Asian population, but not in subgroup with sample size ≥500, American populations as well as different definition of deficient serum folate level (<6.4 ng/ml or others). Based on our meta-analysis, deficiency of serum folate level was associated with the increased risk of cervical cancer among Asian populations.

  14. Folate and Vitamin B12 Status in Latin America and the Caribbean: An Update.

    PubMed

    Brito, Alex; Mujica-Coopman, Maria F; López de Romaña, Daniel; Cori, Héctor; Allen, Lindsay H

    2015-06-01

    Background: The current magnitude of folate and vitamin B12 deficiency in Latin America and the Caribbean is uncertain. To summarize data on plasma or serum vitamin B12 and folate concentrations in Latin America and the Caribbean reported since 1990, a period that covers the era before and after the introduction of folic acid fortification. A systematic review was conducted in 2012 and updated in 2014. Studies and surveys using biochemical biomarkers and conducted in apparently healthy individuals were identified. Folate deficiency in Latin America and the Caribbean appears not to be a public health problem (prevalence < 5%) after the introduction of folic acid fortification. However, there is some indication that high rates of low or marginal vitamin B12 status remain in most locations and across population groups. Adding vitamin B12 as a fortificant with folic acid may be the best strategy in areas where vitamin B12 deficiency is an established concern.

  15. Status of serum vitamin B12 and folate in patients with inflammatory bowel disease in China

    PubMed Central

    Huang, Shaozhong; Ma, Jiayi; Zhu, Mingming

    2017-01-01

    Background/Aims Inflammatory bowel disease (IBD) primarily involves the intestinal tract and can affect vitamin absorption. This study was designed to assess the prevalence of vitamin B12 and folate deficiencies in patients with IBD, and to identify the risk factors associated with abnormal serum vitamin B12 and folate levels. Methods We evaluated the medical records of 195 patients with Crohn's disease (CD) and 62 patients with ulcerative colitis (UC), and selected 118 healthy subjects for the control group. Results There were more CD patients with vitamin B12 deficiency than UC patients (14.9% vs. 3.2%, P=0.014) and controls (14.9% vs. 4.2%, P=0.003). The prevalence of folate deficiency was higher in CD patients than in controls (13.3% vs. 3.4%, P=0.004). There were no significant differences in the serum vitamin B12 and folate statuses of the UC and control groups. Patients with prior ileal or ileocolic resection showed a higher prevalence of abnormal vitamin B12 levels than those without prior resection (n=6/16, n=23/179; P=0.018). A disease duration within 5 years was a risk factor of abnormal folate levels in CD patients. Conclusions This study showed that vitamin B12 and folate deficiencies were more common in patients with CD than in UC patients and controls. Prior ileal or ileocolonic resection was a risk factor of serum vitamin B12 abnormalities, and a disease duration within 5 years was a risk factor of low serum folate levels in CD patients. PMID:28239320

  16. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    PubMed

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1

    PubMed Central

    Uraguchi, Shimpei; Kato, Yuichi; Hanaoka, Hideki; Miwa, Kyoko; Fujiwara, Toru

    2014-01-01

    Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B) is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate transporter gene AtBOR1 or boric acid channel gene AtNIP5;1 improves plant growth under B-deficient conditions. In this study, we examined whether high expression of a borate transporter gene increases B accumulation in shoots and improves the growth of tomato plant, a model of fruit-bearing crops, under B-deficient conditions. We established three independent transgenic tomato plants lines expressing AtBOR1 using Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L. cv. Micro-Tom). Reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed that two lines (Line 1 and Line 2) more strongly expressed AtBOR1 than Line 3. Wild-type plants and the transgenic plants were grown hydroponically under B-sufficient and B-deficient conditions. Wild-type and Line 3 (weakly expressing transgenic line) showed a defect in shoot growth under B-deficient conditions, especially in the development of new leaves. However, seedlings of Line 1 and Line 2, the transgenic lines showing strong AtBOR1 expression, did not show the B-deficiency phenotype in newly developing leaves. In agreement with this phenotype, shoot biomass under low-B conditions was higher in the strongly expressing AtBOR1 line. B concentrations in leaves or fruits were also higher in Line 2 and Line 1. The present study demonstrates that strong expression of AtBOR1 improved growth in tomato under B-deficient conditions. PMID:24744768

  18. Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1.

    PubMed

    Uraguchi, Shimpei; Kato, Yuichi; Hanaoka, Hideki; Miwa, Kyoko; Fujiwara, Toru

    2014-01-01

    Nutrient deficiency in soil poses a widespread agricultural problem. Boron (B) is an essential micronutrient in plants, and its deficiency causes defects in both vegetative and reproductive growth in various crops in the field. In Arabidopsis thaliana, increased expression of a major borate transporter gene AtBOR1 or boric acid channel gene AtNIP5;1 improves plant growth under B-deficient conditions. In this study, we examined whether high expression of a borate transporter gene increases B accumulation in shoots and improves the growth of tomato plant, a model of fruit-bearing crops, under B-deficient conditions. We established three independent transgenic tomato plants lines expressing AtBOR1 using Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L. cv. Micro-Tom). Reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed that two lines (Line 1 and Line 2) more strongly expressed AtBOR1 than Line 3. Wild-type plants and the transgenic plants were grown hydroponically under B-sufficient and B-deficient conditions. Wild-type and Line 3 (weakly expressing transgenic line) showed a defect in shoot growth under B-deficient conditions, especially in the development of new leaves. However, seedlings of Line 1 and Line 2, the transgenic lines showing strong AtBOR1 expression, did not show the B-deficiency phenotype in newly developing leaves. In agreement with this phenotype, shoot biomass under low-B conditions was higher in the strongly expressing AtBOR1 line. B concentrations in leaves or fruits were also higher in Line 2 and Line 1. The present study demonstrates that strong expression of AtBOR1 improved growth in tomato under B-deficient conditions.

  19. Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism.

    PubMed

    Lan, Tian; Rao, Anuradha; Haywood, Jamie; Kock, Nancy D; Dawson, Paul A

    2012-08-01

    Blocking intestinal bile acid (BA) absorption by inhibiting or inactivating the apical sodium-dependent BA transporter (Asbt) classically induces hepatic BA synthesis. In contrast, blocking intestinal BA absorption by inactivating the basolateral BA transporter, organic solute transporter alpha-beta (Ostα-Ostβ) is associated with an altered homeostatic response and decreased hepatic BA synthesis. The aim of this study was to determine the mechanisms underlying this phenotype, including the role of the farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15). BA and cholesterol metabolism, intestinal phenotype, expression of genes important for BA metabolism, and intestinal FGF15 expression were examined in wild type, Ostα(-/-), Fxr(-/-), and Ostα(-/-)Fxr(-/-) mice. Inactivation of Ostα was associated with decreases in hepatic cholesterol 7α-hydroxylase (Cyp7a1) expression, BA pool size, and intestinal cholesterol absorption. Ostα(-/-) mice exhibited significant small intestinal changes, including altered ileal villus morphology, and increases in intestinal length and mass. Total ileal FGF15 expression was elevated almost 20-fold in Ostα(-/-) mice as a result of increased villus epithelial cell number and ileocyte FGF15 protein expression. Ostα(-/-)Fxr(-/-) mice exhibited decreased ileal FGF15 expression, restoration of intestinal cholesterol absorption, and increases in hepatic Cyp7a1 expression, fecal BA excretion, and BA pool size. FXR deficiency did not reverse the intestinal morphological changes or compensatory decrease for ileal Asbt expression in Ostα(-/-) mice. These results indicate that signaling via FXR is required for the paradoxical repression of hepatic BA synthesis but not the complex intestinal adaptive changes in Ostα(-/-) mice. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum.

    PubMed

    Chiu, Chi-Sung; Brickley, Stephen; Jensen, Kimmo; Southwell, Amber; Mckinney, Sheri; Cull-Candy, Stuart; Mody, Istvan; Lester, Henry A

    2005-03-23

    GABA transporter subtype 1 (GAT1) knock-out (KO) mice display normal reproduction and life span but have reduced body weight (female, -10%; male, -20%) and higher body temperature fluctuations in the 0.2-1.5/h frequency range. Mouse GAT1 (mGAT1) KO mice exhibit motor disorders, including gait abnormality, constant 25-32 Hz tremor, which is aggravated by flunitrazepam, reduced rotarod performance, and reduced locomotor activity in the home cage. Open-field tests show delayed exploratory activity, reduced rearing, and reduced visits to the central area, with no change in the total distance traveled. The mGAT1 KO mice display no difference in acoustic startle response but exhibit a deficiency in prepulse inhibition. These open-field and prepulse inhibition results suggest that the mGAT1 KO mice display mild anxiety or nervousness. The compromised GABA uptake in mGAT1 KO mice results in an increased GABA(A) receptor-mediated tonic conductance in both cerebellar granule and Purkinje cells. The reduced rate of GABA clearance from the synaptic cleft is probably responsible for the slower decay of spontaneous IPSCs in cerebellar granule cells. There is little or no compensatory change in other proteins or structures related to GABA transmission in the mGAT1 KO mice, including GAT1-independent GABA uptake, number of GABAergic interneurons, and GABA(A)-, vesicular GABA transporter-, GAD65-, and GAT3-immunoreactive structures in cerebellum or hippocampus. Therefore, the excessive extracellular GABA present in mGAT1 KO mice results in behaviors that partially phenocopy the clinical side effects of tiagabine, suggesting that these side effects are inherent to a therapeutic strategy that targets the widely expressed GAT1 transporter system.

  1. Effect of chronic alcohol exposure on folate uptake by liver mitochondria.

    PubMed

    Biswas, Arundhati; Senthilkumar, Sundar Rajan; Said, Hamid M

    2012-01-01

    Mammalian cells obtain folate, a water-soluble vitamin, from their surroundings via transport across cell membrane. Intracellular folate is compartmentalized between the cytoplasm and the mitochondria. Transport of folate from the cytoplasm into the mitochondria is via a specific carrier-mediated process involving the mitochondrial folate transporter (MFT). Chronic alcohol use negatively impacts folate homeostasis, but its effect on mitochondrial folate uptake is not clear. We addressed this issue using mitochondrial preparations isolated from the liver of rats chronically fed an alcohol liquid diet and from human liver HepG2 cells chronically exposed to alcohol. The results showed that chronic alcohol feeding of rats leads to a significant inhibition in mitochondrial carrier-mediated folate uptake. This inhibition was associated with a significant reduction in the level of expression of the MFT protein, mRNA, and heterogenous nuclear RNA (hnRNA). Similarly, chronic alcohol exposure (96 h) of HepG2 cells led to significant inhibition in mitochondrial carrier-mediated folate uptake, which was associated with a marked reduction in the level of expression of the human MFT (hMFT). To determine whether the latter effect is, in part, being exerted at the transcriptional level, we cloned the 5'-regulatory region of the human SLC25A32 gene (which encodes the hMFT) and showed that chronic alcohol exposure of HepG2 cells leads to a significant inhibition in its promoter activity. These studies show for the first time that chronic alcohol feeding/exposure leads to a significant inhibition in mitochondrial carrier-mediated folate uptake and that the inhibition is, in part, being exerted at the level of transcription of the SLC25A32 gene.

  2. The status of vitamin B12 and folate among Chinese women: a population-based cross-sectional study in northwest China.

    PubMed

    Dang, Shaonong; Yan, Hong; Zeng, Lingxia; Wang, Quanli; Li, Qiang; Xiao, Shengbin; Fan, Xiaojing

    2014-01-01

    To assess the status of the vitamin B12 and folate of Chinese women living in northwest China. A population-based cross-sectional study was conducted in 2008 among Chinese women aged 10-49 years living in Shaanxi province of northwest China. A stratified multistage random sampling method was adopted to obtain a sample of 1170 women. The women were interviewed for collection of their background information and their plasma vitamin B12 and folate were measured with the immunoassay method. The status of both vitamins was evaluated and the prevalence of deficiency was estimated. The median value of the women was 214.5 pg/mL for vitamin B12 and 4.6 ng/mL for folate. The urban women had a significantly higher vitamin B12 (254.1 vs. 195.9 pg/mL) but lower folate (4.4 vs. 4.7 ng/mL) than rural women. Total prevalence of deficiency was 45.5% (95% CI: 42.6% ∼ 48.4%) for vitamin B12 and 14.7% (95% CI: 12.6% ∼ 16.8%) for folate. About 36% of women presented vitamin B12 deficiency alone, 5.2% belonged to folate deficiency alone and 9.5% was combined deficiency in both vitamins. More than 25% of the women were in marginal vitamin B12 status (200-299 pg/mL) and 60% in marginal status of folate (3-6 ng/mL). About 75.2% of rural women with folate deficiency were deficient in vitamin B12 and 46% for urban women. Quantile regression model found decreasing coefficient of folate status across 73 different quantiles of vitamin B12, which indicated that the women with folate deficiency had lower vitamin B12 significantly compared with those with no deficiency. The deficiency of vitamin B12 and folate is still prevalent among the Chinese women in northwest China. Vitamin B12 deficiency could be more serious and the improvement of poor vitamin B12 status should be invoked when practicing the supplementation of folate against the neural tube defects in northwest China.

  3. The Status of Vitamin B12 and Folate among Chinese Women: A Population-Based Cross-Sectional Study in Northwest China

    PubMed Central

    Dang, Shaonong; Yan, Hong; Zeng, Lingxia; Wang, Quanli; Li, Qiang; Xiao, Shengbin; Fan, Xiaojing

    2014-01-01

    Objective To assess the status of the vitamin B12 and folate of Chinese women living in northwest China. Methods A population-based cross-sectional study was conducted in 2008 among Chinese women aged 10–49 years living in Shaanxi province of northwest China. A stratified multistage random sampling method was adopted to obtain a sample of 1170 women. The women were interviewed for collection of their background information and their plasma vitamin B12 and folate were measured with the immunoassay method. The status of both vitamins was evaluated and the prevalence of deficiency was estimated. Results The median value of the women was 214.5 pg/mL for vitamin B12 and 4.6 ng/mL for folate. The urban women had a significantly higher vitamin B12 (254.1 vs. 195.9 pg/mL) but lower folate (4.4 vs. 4.7 ng/mL) than rural women. Total prevalence of deficiency was 45.5% (95% CI: 42.6%∼48.4%) for vitamin B12 and 14.7% (95% CI: 12.6%∼16.8%) for folate. About 36% of women presented vitamin B12 deficiency alone, 5.2% belonged to folate deficiency alone and 9.5% was combined deficiency in both vitamins. More than 25% of the women were in marginal vitamin B12 status (200–299 pg/mL) and 60% in marginal status of folate (3–6 ng/mL). About 75.2% of rural women with folate deficiency were deficient in vitamin B12 and 46% for urban women. Quantile regression model found decreasing coefficient of folate status across 73 different quantiles of vitamin B12, which indicated that the women with folate deficiency had lower vitamin B12 significantly compared with those with no deficiency. Conclusions The deficiency of vitamin B12 and folate is still prevalent among the Chinese women in northwest China. Vitamin B12 deficiency could be more serious and the improvement of poor vitamin B12 status should be invoked when practicing the supplementation of folate against the neural tube defects in northwest China. PMID:25390898

  4. Neural tube defects: pathogenesis and folate metabolism.

    PubMed

    Pulikkunnel, Scaria T; Thomas, S V

    2005-02-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex aetio-pathogenesis. Animal studies indicate that there may be four sites of initiation of neural tube closure (NTC). Selective involvement of these sites may lead to defects varying from anencephaly to spina bifida. The NTC involves formation of medial and dorsolateral hinge points, convergent extension and a zipper release process. Proliferation and migration of neuroectodermal cells and its morphological changes brought about by microfilaments and other cytoskeletal proteins mediate NTC. Genetic, nutritional and teratogenic mechanisms have been implicated in the pathogenesis of NTDs. Folate is an important component in one carbon metabolism that provides active moieties for synthesis of nucleic acids and proteins. Several gene defects affecting enzymes and proteins involved in transport and metabolism of folate have been associated with NTDs. It may be possible in future, to identify individuals at higher risk of NTDs by genetic studies. Epidemiological and clinical studies have shown that dietary supplementation or food fortification with folic acid would reduce the incidence of NTDs. The protective effect of folic acid may be by overcoming these metabolic blocks through unidentified mechanisms. Genetic and biochemical studies on foetal cells may supplement currently available prenatal tests to diagnose NTDs. Antiepileptic drugs (AEDs), particularly valproate and carbamazepine have been shown to increase the risk of NTDs by possibly increasing the oxidative stress and deranging the folate metabolism. Accordingly, it is recommended that all women taking AEDs may use 1-5 mg folic acid daily in the pre conception period and through pregnancy.

  5. Preliminary Evidence of Apathetic-Like Behavior in Aged Vesicular Monoamine Transporter 2 Deficient Mice

    PubMed Central

    Baumann, Aron; Moreira, Carlos G.; Morawska, Marta M.; Masneuf, Sophie; Baumann, Christian R.; Noain, Daniela

    2016-01-01

    Apathy is considered to be a core feature of Parkinson’s disease (PD) and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e., 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2). Apathetic-like behavior in VMAT2 deficient (LO) mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD. PMID:27917116

  6. Large –scale wheat flour folic acid fortification program increases plasma folate levels among women of reproductive age in urban Tanzania

    PubMed Central

    Abioye, Ajibola I.; Ulenga, Nzovu; Msham, Salum; Kaishozi, George; Gunaratna, Nilupa S; Mwiru, Ramadhani; Smith, Erin; Dhillon, Christina Nyhus; Spiegelman, Donna; Fawzi, Wafaie

    2017-01-01

    There is widespread vitamin and mineral deficiency problem in Tanzania with known deficiencies of at least vitamin A, iron, folate and zinc, resulting in lasting negative consequences especially on maternal health, cognitive development and thus the nation’s economic potential. Folate deficiency is associated with significant adverse health effects among women of reproductive age, including a higher risk of neural tube defects. Several countries, including Tanzania, have implemented mandatory fortification of wheat and maize flour but evidence on the effectiveness of these programs in developing countries remains limited. We evaluated the effectiveness of Tanzania’s food fortification program by examining folate levels for women of reproductive age, 18–49 years. A prospective cohort study with 600 non-pregnant women enrolled concurrent with the initiation of food fortification and followed up for 1 year thereafter. Blood samples, dietary intake and fortified foods consumption data were collected at baseline, and at 6 and 12 months. Plasma folate levels were determined using a competitive assay with folate binding protein. Using univariate and multivariate linear regression, we compared the change in plasma folate levels at six and twelve months of the program from baseline. We also assessed the relative risk of folate deficiency during follow-up using log-binomial regression. The mean (±SE) pre–fortification plasma folate level for the women was 5.44-ng/ml (±2.30) at baseline. These levels improved significantly at six months [difference: 4.57ng/ml (±2.89)] and 12 months [difference: 4.27ng/ml (±4.18)]. Based on plasma folate cut-off level of 4 ng/ml, the prevalence of folate deficiency was 26.9% at baseline, and 5% at twelve months. One ng/ml increase in plasma folate from baseline was associated with a 25% decreased risk of folate deficiency at 12 months [(RR = 0.75; 95% CI = 0.67–0.85, P<0.001]. In a setting where folate deficiency is high, food

  7. Salicylic acid-induced elicitation of folates in coriander (Coriandrum sativum L.) improves bioaccessibility and reduces pro-oxidant status.

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2013-01-15

    Foliage of Coriandrum sativum is a rich source of natural folates amenable for enhancement through salicylic acid-mediated elicitation, thereby holding a great promise for natural-mode alleviation of this vitamin (B(9)) deficiency. In the present study we report salicylic acid-mediated differential elicitation of different forms of folates - 5-methyltetrahydrofolate, 5-formyltetrahydrofolate and 10-formyltetrahydrofolate - their stabilities during microwave-drying and bioaccessibilities from fresh and dried foliage. The first two compounds nearly doubled and the third increased sixfold post-elicitation, with all three showing concomitant increase in bioaccessibilities. Although a slight decrease in bioaccessibility was observed in dried foliage, over twofold increase of each form of folate upon elicitation would deliver much higher levels of natural folates from this traditional culinary foliage, which is widely used in many cuisines. Elicitor-mediated folate enhancement also imparted reduction of oxidative status and the enhancement of antioxidant enzyme activities in coriander foliage.

  8. FOLATE CONTENT IN SELECT DRY BEAN GENOTYPES

    USDA-ARS?s Scientific Manuscript database

    Dry edible beans are a good natural source of folate (½-cup serving of cooked beans provide 35% daily value of folate). Recognized healthful benefits of folate in the human diet include reduced birth defects, decreased plasma homocysteine level which is a risk factor in cardiovascular disease, reduc...

  9. Lifestyle and genetic determinants of folate and vitamin B12 levels in a general adult population.

    PubMed

    Thuesen, Betina H; Husemoen, Lise Lotte N; Ovesen, Lars; Jørgensen, Torben; Fenger, Mogens; Linneberg, Allan

    2010-04-01

    Danish legislation regarding food fortification has been very restrictive resulting in few fortified food items on the Danish market. Folate and vitamin B12 deficiency is thought to be common due to inadequate intakes but little is known about the actual prevalence of low serum folate and vitamin B12 in the general population. The aim of the present study was to evaluate the folate and vitamin B12 status of Danish adults and to investigate associations between vitamin status and distinct lifestyle and genetic factors. The study included a random sample of 6784 individuals aged 30-60 years. Information on lifestyle factors was obtained by questionnaires and blood samples were analysed for serum folate and vitamin B12 concentrations and several genetic polymorphisms. The overall prevalence of low serum folate ( < 6.8 nmol/l) was 31.4 %. Low serum folate was more common among men than women and the prevalence was lower with increasing age. Low serum folate was associated with smoking, low alcohol intake, high coffee intake, unhealthy diet, and the TT genotype of the methylenetetrahydrofolate reductase (MTHFR)-C677T polymorphism. The overall prevalence of low serum vitamin B12 ( < 148 pmol/l) was 4.7 %. Low serum vitamin B12 was significantly associated with female sex, high coffee intake, low folate status, and the TT genotype of the MTHFR-C677T polymorphism. In conclusion, low serum folate was present in almost a third of the adult population in the present study and was associated with several lifestyle factors whereas low serum concentrations of vitamin B12 were less common and only found to be associated with a few lifestyle factors.

  10. Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.).

    PubMed

    Puthusseri, Bijesh; Divya, Peethambaran; Lokesh, Veeresh; Neelwarne, Bhagyalakshmi

    2012-06-01

    Folate (vitamin B₉) content was evaluated in 10 varieties of coriander with the aim of enhancing its concentration and stability, because of three reasons: 1) coriander is among a few widely used greens in the world and suits many cuisines, 2) folate deficiency is prevalent in developing countries causing anaemia, infant mortality and neural tube closure defects, and 3) natural folate is preferred due to doubts about health risks associated with the synthetic form. In C. sativum, the highest folate content of 1,577 μg/100 g DW was found in var. GS4 Multicut foliage of mature plants (marketable stage) with an insignificantly higher content (1,599.74 μg/100 g DW) at flowering, which is a stage not preferred in markets. In callus cultures treated with plant growth regulators (GRs) (6-benzylaminopurine, kinetin and abscisic acid) substantial increase in folate occurred after 6 h, whereas elicitors (methyl jasmonate and salicylic acid) caused rapid 2-fold increase of folate, particularly in response to salicylic acid. Based on these observations, foliar applications were done for in vivo plants, where salicylic acid (250 μM, 24 h) also enhanced folate level by 2-folds (3,112.33 μg/100 g DW), although the content varied with diurnal rhythms. Stability of folates in treated coriander foliage was 10 % higher than in untreated foliage when stored at 25 °C and 4 °C. This study has established for the first time that coriander foliage is rich in folates, which can be doubled by elicitation and impart 10 % more stability than control during processing and storage.

  11. Effect of Cu deficiency on the transport behavior and thermoelectric properties in Cu3SbSe4

    NASA Astrophysics Data System (ADS)

    Kumar, Aparabal; Dhama, P.; Banerji, P.

    2017-05-01

    We investigate the effect of Cu deficiency on the transport behavior and thermoelectric properties in Cu3-δSbSe4 in the temperature range of 300 - 650 K. Samples were synthesized by melt grown technique followed by spark plasma sintering. The electrical resistivity and thermal conductivity were found to decrease with increase in Cu deficiency till a certain limit (δ = 0.03), and after that, increase in electrical resistivity was observed. Positive value of Seebeck coefficient indicates p-type behavior of the carriers taking part in transport. Enhancement in power factor and thermoelectric figure of merit was achieved by controlling the transport of phonons and electrons, and a maximum thermoelectric figure of merit (0.59 at 650 K) was achieved for Cu2.98SbSe4 in this study.

  12. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots.

    PubMed

    Dong, Jinsong; Piñeros, Miguel A; Li, Xiaoxuan; Yang, Haibing; Liu, Yu; Murphy, Angus S; Kochian, Leon V; Liu, Dong

    2017-02-13

    The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe(3+) in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe(3+) accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.

  13. Tackling serum folate test in European countries within the health technology assessment paradigm: request appropriateness, assays and health outcomes.

    PubMed

    Ferraro, Simona; Panzeri, Andrea; Panteghini, Mauro

    2017-08-28

    Several authors have recently claimed an excess in serum folate test ordering, suggesting phasing out it from clinical use. According to studies performed in countries undergoing folic acid fortification policies, it is indeed no more cost-effective to test folate in the face of deficiency prevalence <1%. In this paper, we sought to evaluate request appropriateness, analytical issues, and cost-effectiveness of serum folate determination for clinical purposes in the European context, considering if evidence retrieved in fortified countries may be generalized. Studies performed in non-fortified countries have generally reported a suboptimal folate intake and suggest a remarkable prevalence of folate deficiency. Our internal data suggest that ~20%-25% of the subjects undergoing serum folate test are at risk for deficiency. However, a reliable evaluation of the risk for deficiency implies the knowledge of all issues related to the total testing process of folate measurement as well as the identification of the appropriate population in which to perform the test. The cost-effectiveness of the test is maximized when the request is oriented to subjects suggestive/at risk for deficiency, becoming low if the test is used as a screening tool or for monitoring of vitamin intake/supplementation. Because the individual folate status has a key role in ensuring normal development, physiologic growth, and maintenance of optimal health, the evaluation of its serum levels has to be retained in the clinical use in non-fortified countries, boosting for more appropriate request, and evidence from countries following fortification policies should be cautionary interpreted.

  14. A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism.

    PubMed

    Reed, Michael C; Nijhout, H Frederik; Neuhouser, Marian L; Gregory, Jesse F; Shane, Barry; James, S Jill; Boynton, Alanna; Ulrich, Cornelia M

    2006-10-01

    Impaired folate-mediated 1-carbon metabolism has been linked to multiple disease outcomes. A better understanding of the nutritional and genetic influences on this complex biochemical pathway is needed to comprehend their impact on human health. To this end, we created a mathematical model of folate-mediated 1-carbon metabolism. The model uses published data on folate enzyme kinetics and regulatory mechanisms to simulate the impact of genetic and nutritional variation on critical aspects of the pathway. We found that the model predictions match experimental data, while providing novel insights into pathway kinetics. Our primary observations were as follows: 1) the inverse association between folate and homocysteine is strongest at very low folate concentrations, but there is no association at high folate concentrations; 2) the DNA methylation reaction rate is relatively insensitive to changes in folate pool size; and 3) as folate concentrations become very high, enzyme velocities decrease. With regard to polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR), the modeling predicts that decrease MTHFR activity reduces concentrations of S-adenosylmethionine and 5-methyltetrahydrofolate, as well as DNA methylation, while modestly increasing S-adenosylhomocysteine and homocysteine concentrations and thymidine or purine synthesis. Decreased folate together with a simulated vitamin B-12 deficiency results in decreases in DNA methylation and purine and thymidine synthesis. Decreased MTHFR activity superimposed on the B-12 deficiency appears to reverse the declines in purine and thymidine synthesis. These mathematical simulations of folate-mediated 1-carbon metabolism provide a cost-efficient approach to in silico experimentation that can complement and help guide laboratory studies.

  15. Selenium, Folate, and Colon Cancer

    PubMed Central

    Connelly-Frost, Alexandra; Poole, Charles; Satia, Jessie A.; Kupper, Lawrence L.; Millikan, Robert C.; Sandler, Robert S.

    2009-01-01

    Background Selenium is an essential trace element which has been implicated in cancer risk; however, study results have been inconsistent with regard to colon cancer. Our objectives were to 1) investigate the association between selenium and colon cancer 2) evaluate possible effect measure modifiers and 3) evaluate potential biases associated with the use of post-diagnostic serum selenium measures Methods The North Carolina Colon Cancer Study is a large population-based, case-control study of colon cancer in North Carolina between 1996 and 2000 (n=1,691). Nurses interviewed patients about diet and lifestyle and drew blood specimens which were used to measure serum selenium. Results Individuals who had both high serum selenium (>140 mcg/L) and high reported folate (>354 mcg/day), had a reduced relative risk of colon cancer (OR=0.5, 95% CI=0.4,0.8). The risk of colon cancer for those with high selenium and low folate was approximately equal to the risk among those with low selenium and low folate (OR=1.1, 95% CI=0.7,1.5) as was the risk for those with low selenium and high folate (OR=0.9, 95% CI=0.7–1.2). We did not find evidence of bias due to weight loss, stage at diagnosis, or time from diagnosis to selenium measurement. Conclusion High levels of serum selenium and reported folate jointly were associated with a substantially reduced risk of colon cancer. Folate status should be taken into account when evaluating the relation between selenium and colon cancer in future studies. Importantly, weight loss, stage at diagnosis, or time from diagnosis to blood draw did not appear to produce strong bias in our study. PMID:19235033

  16. Serum Folate Shows an Inverse Association with Blood Pressure in a Cohort of Chinese Women of Childbearing Age: A Cross-Sectional Study

    PubMed Central

    Shen, Minxue; Tan, Hongzhuan; Zhou, Shujin; Retnakaran, Ravi; Smith, Graeme N.; Davidge, Sandra T.; Trasler, Jacquetta; Walker, Mark C.; Wen, Shi Wu

    2016-01-01

    Background It has been reported that higher folate intake from food and supplementation is associated with decreased blood pressure (BP). The association between serum folate concentration and BP has been examined in few studies. We aim to examine the association between serum folate and BP levels in a cohort of young Chinese women. Methods We used the baseline data from a pre-conception cohort of women of childbearing age in Liuyang, China, for this study. Demographic data were collected by structured interview. Serum folate concentration was measured by immunoassay, and homocysteine, blood glucose, triglyceride and total cholesterol were measured through standardized clinical procedures. Multiple linear regression and principal component regression model were applied in the analysis. Results A total of 1,532 healthy normotensive non-pregnant women were included in the final analysis. The mean concentration of serum folate was 7.5 ± 5.4 nmol/L and 55% of the women presented with folate deficiency (< 6.8 nmol/L). Multiple linear regression and principal component regression showed that serum folate levels were inversely associated with systolic and diastolic BP, after adjusting for demographic, anthropometric, and biochemical factors. Conclusions Serum folate is inversely associated with BP in non-pregnant women of childbearing age with high prevalence of folate deficiency. PMID:27182603

  17. Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice.

    PubMed

    Trajkovic-Arsic, Marija; Müller, Julia; Darras, Veerle M; Groba, Claudia; Lee, Sooyeon; Weih, Debra; Bauer, Karl; Visser, Theo J; Heuer, Heike

    2010-10-01

    In patients, inactivating mutations in the gene encoding the thyroid hormone-transporting monocarboxylate transporter 8 (Mct8) are associated with severe mental and neurological deficits and disturbed thyroid hormone levels. The latter phenotype characterized by high T3 and low T4 serum concentrations is replicated in Mct8 knockout (ko) mice, indicating that MCT8 deficiency interferes with thyroid hormone production and/or metabolism. Our studies of Mct8 ko mice indeed revealed increased thyroidal T3 and T4 concentrations without overt signs of a hyperactive thyroid gland. However, upon TSH stimulation Mct8 ko mice showed decreased T4 and increased T3 secretion compared with wild-type littermates. Moreover, similar changes in the thyroid hormone secretion pattern were observed in Mct8/Trhr1 double-ko mice, which are characterized by normal serum T3 levels and normal hepatic and renal D1 expression in the presence of very low T4 serum concentrations. These data strongly indicate that absence of Mct8 in the thyroid gland affects thyroid hormone efflux by shifting the ratio of the secreted hormones toward T3. To test this hypothesis, we generated Mct8/Pax8 double-mutant mice, which in addition to Mct8 lack a functional thyroid gland and are therefore completely athyroid. Following the injection of these animals with either T4 or T3, serum analysis revealed T3 concentrations similar to those observed in Pax8 ko mice under thyroid hormone replacement, indicating that indeed increased thyroidal T3 secretion in Mct8 ko mice represents an important pathogenic mechanism leading to the high serum T3 levels.

  18. Duodenal expression of iron transport molecules in patients with hereditary hemochromatosis or iron deficiency

    PubMed Central

    Dostalikova-Cimburova, Marketa; Kratka, Karolina; Balusikova, Kamila; Chmelikova, Jitka; Hejda, Vaclav; Hnanicek, Jan; Neubauerova, Jitka; Vranova, Jana; Kovar, Jan; Horak, Jiri

    2012-01-01

    Abstract Disturbances of iron metabolism are observed in chronic liver diseases. In the present study, we examined gene expression of duodenal iron transport molecules and hepcidin in patients with hereditary hemochromatosis (HHC) (treated and untreated), involving various genotypes (genotypes which represent risk for HHC were examined), and in patients with iron deficiency anaemia (IDA). Gene expressions of DMT1, ferroportin, Dcytb, hephaestin, HFE and TFR1 were measured in duodenal biopsies using real-time PCR and Western blot. Serum hepcidin levels were measured using ELISA. DMT1, ferroportin and TFR1 mRNA levels were significantly increased in post-phlebotomized hemochromatics relative to controls. mRNAs of all tested molecules were significantly increased in patients with IDA compared to controls. The protein expression of ferroportin was increased in both groups of patients but not significantly. Spearman rank correlations showed that DMT1 versus ferroportin, Dcytb versus hephaestin and DMT1 versus TFR1 mRNAs were positively correlated regardless of the underlying cause, similarly to protein levels of ferroportin versus Dcytb and ferroportin versus hephaestin. Serum ferritin was negatively correlated with DMT1 mRNA in investigated groups of patients, except for HHC group. A decrease of serum hepcidin was observed in IDA patients, but this was not statistically significant. Our data showed that although untreated HHC patients do not have increased mRNA levels of iron transport molecules when compared to normal subjects, the expression is relatively increased in relation to body iron stores. On the other hand, post-phlebotomized HHC patients had increased DMT1 and ferroportin mRNA levels possibly due to stimulated erythropoiesis after phlebotomy. PMID:21973163

  19. Homocysteine, folate, vitamin B-12, and 10-y incidence of age-related macular degeneration.

    PubMed

    Gopinath, Bamini; Flood, Victoria M; Rochtchina, Elena; Wang, Jie Jin; Mitchell, Paul

    2013-07-01

    Epidemiologic evidence of a relation between serum total homocysteine (tHcy), vitamin B-12, and folate and age-related macular degeneration (AMD) is inconsistent and unresolved. In this cohort study, we aimed to investigate associations between intakes and serum concentrations of folate and vitamin B-12 or serum tHcy and 10-y AMD incidence. Serum folate, vitamin B-12, and tHcy were determined from blood samples drawn in 1997-1999 from cohort members aged ≥55 y. AMD was assessed in 1760 survivors from retinal photographs taken in 2002-2004 and 2007-2009. Total intakes of folate and vitamin B-12 were assessed by using a food-frequency questionnaire. After adjustment for age, sex, current smoking, white blood cell count, and fish consumption, each 1-SD increase in serum tHcy was associated with increased risk of incident early and any AMD [ORs (95% CIs): 1.33 (1.09, 1.63) and 1.33 (1.11, 1.60), respectively]. Participants with a serum vitamin B-12 deficiency (<185 pmol/L) had higher risk of incident early and late AMD [ORs (95% CIs): 1.58 (1.06, 2.36) and 2.56 (1.38, 4.73), respectively]. Folate deficiency (<11 nmol/L) was associated with 75% and 89% increased risk of incident early and any AMD, respectively, 10 y later. Participants who reported supplementary vitamin B-12 intake had 47% reduced risk of incident any AMD (OR: 0.53; 95% CI: 0.33, 0.85). Elevated serum tHcy and folate and vitamin B-12 deficiencies predicted increased risk of incident AMD, which suggests a potential role for vitamin B-12 and folate in reducing AMD risk.

  20. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS).

    PubMed

    Pearson, Toni S; Akman, Cigdem; Hinton, Veronica J; Engelstad, Kristin; De Vivo, Darryl C

    2013-04-01

    Glut1 deficiency syndrome (Glut1 DS) was originally described in 1991 as a developmental encephalopathy characterized by infantile onset refractory epilepsy, cognitive impairment, and mixed motor abnormalities including spasticity, ataxia, and dystonia. The clinical condition is caused by impaired glucose transport across the blood brain barrier. The past 5 years have seen a dramatic expansion in the range of clinical syndromes that are recognized to occur with Glut1 DS. In particular, there has been greater recognition of milder phenotypes. Absence epilepsy and other idiopathic generalized epilepsy syndromes may occur with seizure onset in childhood or adulthood. A number of patients present predominantly with movement disorders, sometimes without any accompanying seizures. In particular, paroxysmal exertional dyskinesia is now a well-documented clinical feature that occurs in individuals with Glut1 DS. A clue to the diagnosis in patients with paroxysmal symptoms may be the triggering of episodes during fasting or exercise. Intellectual impairment may range from severe to very mild. Awareness of the broad range of potential clinical phenotypes associated with Glut1 DS will facilitate earlier diagnosis of this treatable neurologic condition. The ketogenic diet is the mainstay of treatment and nourishes the starving symptomatic brain during development.

  1. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice.

    PubMed

    Aida, Tomomi; Yoshida, Junichi; Nomura, Masatoshi; Tanimura, Asami; Iino, Yusuke; Soma, Miho; Bai, Ning; Ito, Yukiko; Cui, Wanpeng; Aizawa, Hidenori; Yanagisawa, Michiko; Nagai, Terumi; Takata, Norio; Tanaka, Kenji F; Takayanagi, Ryoichi; Kano, Masanobu; Götz, Magdalena; Hirase, Hajime; Tanaka, Kohichi

    2015-06-01

    An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLAST(CreERT2/+)/GLT1(flox/flox), iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors.

  2. Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice

    PubMed Central

    Aida, Tomomi; Yoshida, Junichi; Nomura, Masatoshi; Tanimura, Asami; Iino, Yusuke; Soma, Miho; Bai, Ning; Ito, Yukiko; Cui, Wanpeng; Aizawa, Hidenori; Yanagisawa, Michiko; Nagai, Terumi; Takata, Norio; Tanaka, Kenji F; Takayanagi, Ryoichi; Kano, Masanobu; Götz, Magdalena; Hirase, Hajime; Tanaka, Kohichi

    2015-01-01

    An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLASTCreERT2/+/GLT1flox/flox, iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors. PMID:25662838

  3. A parametric study of golf car and personal transport vehicle braking stability and their deficiencies.

    PubMed

    Seluga, Kristopher J; Baker, Lowell L; Ojalvo, Irving U

    2009-07-01

    This paper describes research and parametric analyses of braking effectiveness and directional stability for golf cars, personal transport vehicles (PTVs) and low speed vehicles (LSVs). It is shown that current designs, which employ brakes on only the rear wheels, can lead to rollovers if the brakes are applied while traveling downhill. After summarizing the current state of existing safety standards and brake system designs, both of which appear deficient from a safety perspective, a previously developed dynamic simulation model is used to identify which parameters have the greatest influence on the vehicles' yaw stability. The simulation results are then used to parametrically quantify which combination of these factors can lead to yaw induced rollover during hard braking. Vehicle velocity, steering input, path slope and tire friction are all identified as important parameters in