Riese, Cornelia; Michaelis, Marten; Mentrup, Birgit; Götz, Franziska; Köhrle, Josef; Schweizer, Ulrich; Schomburg, Lutz
2006-12-01
Important enzymes for thyroid hormone metabolism, antioxidative defense, and intracellular redox control contain selenocysteine (Sec) in their active centers. Expression of these selenoproteins is tightly controlled, and a sex-specific phenotype is observed on disturbance of selenium (Se) transport in mice. Therefore, we analyzed Se concentrations and expression levels of several selenoproteins including type I iodothyronine deiodinase (Dio1) and glutathione peroxidase (GPx) isozymes in male and female mice. On regular lab chow, serum Se levels were comparable, but serum GPx3 activity was higher in females than males (1.3-fold). Selenoprotein P (SePP) mRNA levels were higher in livers (1.3-fold) and lower in kidneys (to 31%) in female compared with male mice. Orchidectomy alleviated the sex-specific differences in SePP mRNA amounts, indicating modulatory effects of androgens on SePP expression. Female mice expressed higher levels of Dio1 mRNA in kidney (2.6-fold) and liver (1.4-fold) in comparison with male mice. This sexual dimorphic expression of Dio1 mRNA was paralleled by increased Dio1 activity in female kidney (1.8-fold) but not in liver in which males expressed higher Dio1 activity (2.8-fold). Interestingly, Se deficiency decreased Dio1 activity more effectively in males than females, and resulting hepatic enzyme levels were then comparable between the sexes. At the same time, the sex-specific difference of Dio1 activity widened in kidney. Orchidectomy or estradiol treatment of ovariectomized females impacted stronger on renal than hepatic Dio1 expression. Thus, we conclude that Se-dependent posttranscriptional mechanisms are operational that affect either translational efficiency or Dio1 stability in a sex- and tissue-specific manner.
Andriamihaja, Mireille; Davila, Anne-Marie; Eklou-Lawson, Mamy; Petit, Nathalie; Delpal, Serge; Allek, Fadhila; Blais, Anne; Delteil, Corine; Tomé, Daniel; Blachier, François
2010-11-01
Hyperproteic diets are used in human nutrition to obtain body weight reduction. Although increased protein ingestion results in an increased transfer of proteins from the small to the large intestine, there is little information on the consequences of the use of such diets on the composition of large intestine content and on epithelial cell morphology and metabolism. Rats were fed for 15 days with either a normoproteic (NP, 14% protein) or a hyperproteic isocaloric diet (HP, 53% protein), and absorptive colonocytes were observed by electron microscopy or isolated for enzyme activity studies. The colonic luminal content was recovered for biochemical analysis. Absorbing colonocytes were characterized by a 1.7-fold reduction in the height of the brush-border membranes (P = 0.0001) after HP diet consumption when compared with NP. This coincided in the whole colon content of HP animals with a 1.8-fold higher mass content (P = 0.0020), a 2.2-fold higher water content (P = 0.0240), a 5.2-fold higher protease activity (P = 0.0104), a 5.5-fold higher ammonia content (P = 0.0008), and a more than twofold higher propionate, valerate, isobutyrate, and isovalerate content (P < 0.05). The basal oxygen consumption of colonocytes was similar in the NP and HP groups, but ammonia was found to provoke a dose-dependent decrease of oxygen consumption in the isolated absorbing colonocytes. The activity of glutamine synthetase (which condenses ammonia and glutamate) was found to be much higher in colonocytes than in small intestine enterocytes and was 1.6-fold higher (P = 0.0304) in colonocytes isolated from HP animals than NP. Glutaminase activity remained unchanged. Thus hyperproteic diet ingestion causes marked changes both in the luminal environment of colonocytes and in the characteristics of these cells, demonstrating that hyperproteic diet interferes with colonocyte metabolism and morphology. Possible causal relationships between energy metabolism, reduced height of colonocyte brush-border membranes, and reduced water absorption are discussed.
Han, Seon Su; Hur, Sun Jin; Lee, Si Kyung
2015-08-01
This study was conducted to determine the antioxidative and anti-inflammatory activities of non-fermented or Bacillus subtilis-fermented soybeans and sword beans (red and white). The total flavonoid content in both sword bean types was higher (1.9-2.5-fold) than that in soybeans. The total phenolic content in fermented red sword beans was 2.5-fold greater than that in non-fermented red sword beans. HPLC profiles revealed that gallic acid, methyl gallate, and ellagic acid were major phenolic components of non-fermented/fermented red sword beans. DPPH radical scavenging activity and ferric-reducing antioxidant power were higher in fermented red sword beans than in other beans. Non-fermented/fermented red sword beans had higher nitrite scavenging activity than butylated hydroxytoluene and non-fermented/fermented soybeans. The hyaluronidase inhibitory activity of non-fermented/fermented red sword beans was higher (1.5-2.6-fold) than that of non-fermented/fermented soybeans. These results suggest that B. subtilis-fermented sword beans are potential natural antioxidant sources and anti-inflammatory agents for the food industry.
Zhao, Xi-Hua; Wang, Wei; Tong, Bin; Zhang, Su-Ping; Wei, Dong-Zhi
2016-01-01
Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.
NASA Astrophysics Data System (ADS)
Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio
2014-05-01
We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.
Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging
Li, Xueyan; Nakajima, Yoshihiro; Niwa, Kazuki; Viviani, Vadim R; Ohmiya, Yoshihiro
2010-01-01
A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37°C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI. PMID:19866487
García-García, María Inmaculada; Hernández-García, Samanta; Sánchez-Ferrer, Álvaro; García-Carmona, Francisco
2013-06-26
Red Globe grape polyphenol oxidase, partially purified using phase partitioning with Triton-X114, was used to study the oxidation of hydroxytytosol (HT) and its related compounds tyrosol (TS), tyrosol acetate (TSA), and hydroxytyrosol acetate (HTA). The enzyme showed activity toward both monophenols (monophenolase activity) and o-diphenols (diphenolase activity) with a pH optimum (pH 6.5) that was independent of the phenol used. However, the optimal temperature for diphenolase activity was substrate-dependent, with a broad optimum of 25-65 °C for HT, compared with the maximum obtained for HTA (40 °C). Monophenolase activity showed the typical lag period, which was modulated by pH, substrate and enzyme concentrations, and the presence of catalytic amounts of o-diphenols. When the catalytic power (Vmax/K(M)) was determined for both activities, higher values were observed for o-diphenols than for monophenols: 9-fold higher for the HT/TS pair and 4-fold higher for HTA/TSA pair. Surprisingly, this ratio was equally higher for TSA (2.2-fold) compared with that of TS, whereas no such effect was observed for o-diphenols. This higher efficiency of TSA could be related to its greater hydrophobicity. Acetyl modification of these phenols not only changes the kinetic parameters of the enzyme but also affects their antioxidant activity (ORAC-FL assays), which is lower in HTA than in HT.
[Enhancement of laccase activity by combining white rot fungal strains].
He, Rong-yu; Liu, Xiao-feng; Yan, Zhi-ying; Yuan, Yue-xiang; Liao, Yin-zhang; Li, Xu-dong
2010-02-01
The method of combining white rot fungal strains was used to enhance laccase activity, and the interaction mechanism between strains was also studied. The laccase activity of combined fungi of strain 55 (Trametes trogii) and strain m-6 (Trametes versicolor) were 24.13 and 4.07-fold higher than that of strain 55 and strain m-6, respectively. No inhibitory effect was observed when the two strains were co-cultivated. On plate cultivation, there was hyphal interference in the contact area, where laccase activity was the highest followed by brown pigmentation. In liquid cultivation, strain m-6 played much more important role on enhancement of laccase activity, and the laccase activity of strain 55 by adding strain m-6 was 7.03-fold higher than that of strain m-6 by adding strain 55, furthermore, filter sterilized- and high temperature autoclaved-extracellular substances of strain m-6 could also stimulate strain 55 to excrete more laccase, which led to 6.79-fold and 4. 60-fold increase in laccase activity by adding 20 mL, respectively. The native staining results of Native-PAGE showed that the types of laccase isozymes were not changed when strains were co-cultured, but the concentration of three types increased.
Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.
Wilson, R E; Hoey, B; Margison, G P
1993-04-01
The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.
Gajera, H P; Katakpara, Zinkal A; Patel, S V; Golakiya, B A
2016-02-01
The study was conducted to examine the antioxidant enzymes induced by Trichoderma viride JAU60 as initial defense response during invasion of rot pathogen Aspergillus niger Van Tieghem in five groundnut varieties under pot culture. Seed treatment of T. viride JAU60 reduced 51-58% collar rot disease incidence in different groundnut varieties under pathogen infected soil culture. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11), elevated in response to pathogen infection, in higher rate by tolerant varieties (J-11 and GG-2) compared with susceptible (GAUG-10, GG-13, GG-20) and further induced by T. viride treatment. Trichoderma treatment remarkably increased the 2.3 fold SOD, 5 fold GPX and 2.5 fold APX activities during disease development in tolerant varieties and the same was found about 1.2, 1.5 and 2.0 folds, respectively, in susceptible varieties. Overall, T. viride JAU60 treated seedlings (T3) witnessed higher activities of SOD (1.5 fold), GPX (3.25 fold) and APX (1.25 fold) than pathogen treatment (T2) possibly suggest the induction of antioxidant defense response by Trichoderma bio-controller to combat oxidative burst produced by invading pathogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent
2015-08-01
Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.
Singh, Laishram Pradeepkumar; Mishra, Amartya; Saha, Debjit; Swarnakar, Snehasikta
2011-01-01
AIM: To examine the effect of doxycycline on the activity of matrix metalloproteinases (MMPs) and oxidative stress in gastric tissues of rats following gastric injury. METHODS: Gastric ulcers were generated in rats by administration of 70% ethanol, and activity of doxycycline was tested by administration 30 min prior to ethanol. Similarly, the effect of doxycycline was tested in an indomethacin-induced gastric ulcer model. The activities and expression of MMPs were examined by zymography and Western blot analysis. RESULTS: Gastric injury in rats as judged by elevated ulcer indices following exposure to ulcerogen, either indomethacin or ethanol, was reversed significantly by doxycycline. Indomethacin-induced ulcerated gastric tissues exhibited about 12-fold higher proMMP-9 activity and about 5-fold higher proMMP-3 activity as compared to control tissues. Similarly, ethanol induced about 22-fold and about 6-fold higher proMMP-9 and proMMP-3 activities, respectively, in rat gastric tissues. Both proMMP-9 and MMP-3 activities were markedly decreased by doxycycline in ulcerogen treated rat gastric tissues. In contrast, the reduced MMP-2 activity in ulcerated tissues was increased by doxycycline during ulcer prevention. On the other hand, doxycycline inhibited significantly proMMP-9, -2 and -3 activities in vitro. In addition, doxycycline reduced oxidative load in gastric tissues and scavenged H2O2 in vitro. Our results suggest a novel regulatory role of doxycycline on MMP-2 activity in addition to inhibitory action on MMP-9 and MMP-3 during prevention of gastric ulcers. CONCLUSION: This is the first demonstration of dual action of doxycycline, that is, regulation of MMP activity and reduction of oxidative stress in arresting gastric injury. PMID:21876619
Characteristics of a leucine aminoacyl transfer RNA synthetase from Tritrichomonas augusta.
Horner, J; Champney, W S; Samuels, R
1991-04-01
This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.
Tajima, Satoshi; Itoh, Yoko; Sugimoto, Takashi; Kato, Tatsuya; Park, Enoch Y
2009-10-01
The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.
The activity of hydrolases of larval stages of Anisakis simplex (Nematoda).
Lopieńska-Biernat, Elzbieta; Zółtowska, Krystyna; Rokicki, Jerzy
2004-01-01
Activity of hydrolases during the third and fourth larval stage of Anisakis simplex was identified by applying the API ZYM test method. In A. simplex larvae the activity of phosphatases was high, particularly that of acid phosphatase (40 nmol/mg(-1)). Among esterases lack of activity of lipase (C14) is worth noticing while the activity of esterases (C4) and (C8) was high. The activity of those later two enzymes was higher in L3 larvae than in L4 larvae. The highest activity in the subclass of glucosidases was recorded for beta-fucosidase and N-acetyl-beta-glucosaminidase. A higher activity in L3 larvae than in L4 larvae was recorded for: beta-glucuronidase and N-acetyl-beta-glucosaminidase (2-fold) and beta-fucosidase (3-fold). Differently the activity of beta-galactosidase and beta-glucosidase was higher in L4 larvae than in L3 larvae. The tests did not show activity of alpha-galactosidase, beta-glucosidase and alpha-mannosidase on both larval forms.
Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration
Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen
2013-01-01
Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542
Low gastric acid and high plasma gastrin in high-anxiety Wistar Kyoto rats.
Florentzson, Malin; Svensson, Karin; Astin-Nielsen, Maria; Andersson, Kjell; Håkanson, Rolf; Lindstrom, Erik
2009-01-01
Wistar Kyoto (WKY) rats are more susceptible to stress-evoked ulcerations than Sprague-Dawley (SPD) rats. We have already demonstrated that gastrin cells are more active and ghrelin cells less active in WKY rats than in SPD rats. The purpose of this study was to compare endocrine cell activity and gastric acid output in WKY and SPD rats. Gastric acid output was determined in conscious rats with gastric fistula. Plasma gastrin and ghrelin levels were measured after an overnight fast. Acid secretagogues (gastrin, histamine and carbachol) were given by continuous subcutaneous infusion. The volume of gastric juice, and the acidity and acid output were all significantly lower (p <0.05) in fasted WKY rats than in fasted SPD rats. Gastrin evoked a 4-fold (p <0.01) and 3-fold (p <0.05) increase in gastric acid output in SPD rats and WKY rats, respectively. Histamine raised the acid output 1.6-fold in SPD rats (p=0.06) and 3-fold in WKY rats (p <0.05), while carbachol failed to affect the acid output (weak increase, p >0.05). Fasting plasma ghrelin levels were 2-fold higher in SPD rats than in WKY rats (p <0.01) while fasting gastrin levels were 10-fold higher in WKY rats than in SPD rats (p <0.05). Neither the parietal-cell density nor the oxyntic mucosal thickness differed between the two strains. The results of the present study suggest that a high gastrin cell activity in WKY rats is secondary to a low gastric acidity. Whether the high gastrin cell activity is linked to susceptibility to stress ulcer in WKY rats warrants further investigation.
Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.
Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan
2017-05-19
The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.
Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.
2006-01-01
Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.
Wei, Meng; Liu, Jiaming; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Guo, Shuxia
2016-01-26
Arsenic is ubiquitously present in human lives, including in the environment and organisms, and has divergent effects between different cells and tissues and between different exposure times and doses. These observed effects have been attributed to the nuclear transcription factor kappa B(NF-κB) signaling pathway. Herein, a meta-analysis was performed by independently searching databases including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze effects of arsenic exposure on NF-κB signaling. Compared to controls, in the exposed group, p-IκB levels were found to be 8.13-fold higher (95% CI, 2.40-13.85; Z = 2.78; p = 0.005), IκB levels were 16.19-fold lower (95% CI, -27.44--4.94; Z = 2.78; p = 0.005), and NF-κBp65 levels were 0.77-fold higher (95% CI, 0.13-1.42; Z = 2.34; p = 0.02) for normal cells and tissue, while NF-κBp65 levels were 4.90-fold lower (95% CI, -8.49-1.31; Z = 2.62; p = 0.009), NF-κB activity was 2.45-fold lower (95% CI, -3.66-1.25; Z = 4.00; p < 0.0001), and DNA-binding activity of NF-κB was 9.75-fold lower (95% CI, -18.66-4.54; Z = 2.15; p = 0.03) for abnormal cells and tissue. Short exposure to high arsenic doses activated the NF-κB signaling pathway, while long exposure to low arsenic doses suppressed NF-κB signaling pathway activation. These findings may provide a theoretical basis for injurious and therapeutic mechanisms of divergent effects of arsenic.
de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio
2015-01-01
High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle. PMID:26121248
Ramos-Filho, Dionizio; Chicaybam, Gustavo; de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio
2015-01-01
High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.
Filamin A regulates the organization and remodeling of the pericellular collagen matrix.
Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A
2016-10-01
Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.
Regulation of intestinal mucosa guanylate cyclase by hemin, heme and protoporphyrin IX.
elDeib, M M; Parker, C D; White, A A
1987-04-02
Mg2+-dependent activity of intestinal brush border guanylate cyclase was stimulated 4-5-fold by 50-100 microM hemin. Higher concentrations were inhibitory. In the presence of 25% dimethyl sulfoxide, which stimulated activity 9-times, 50 microM hemin further increased activity 1.7-fold. However, when activity was stimulated 32-fold by the Escherichia coli heat-stable enterotoxin, or 26-fold by Lubrol PX, hemin produced only concentration-dependent inhibition. The first type of activation was more sensitive to hemin than the second. Reduction of hemin by dithiothreitol eliminated stimulation of basal activity, while inhibition of Lubrol PX-stimulated activity remained. Protoporphyrin IX also had no effect on basal activity, however, it inhibited enterotoxin- and Lubrol PX-stimulated activities similarly, but only to half the extent of hemin. Substitution of Mn2+ for Mg2+ elevated basal activity 15-fold, and this Mn2+-dependent activity was inhibited by hemin. Mn2+-dependent activity was stimulated (43%) by enterotoxin, however, the stimulated activity was more sensitive to hemin inhibition than the basal Mn2+-dependent activity and both inhibition curves were congruent above 50 microM hemin. Hemin inhibition of Lubrol PX-stimulated activity was much less with Mn2+ than with Mg2+. These results were interpreted as suggesting two sites of hemin inhibition; on an inhibitory regulator and on the enzyme. We also found that the secretory effect of enterotoxin in the suckling mouse bioassay was reduced 56% by the oral administration of hemin.
Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.
Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian
2011-03-15
Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-06-01
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Wong, Kien Tiek; Yoon, Yeomin; Jang, Min
2015-01-01
A novel preparation method of magnetized palm shell waste-based powdered activated carbon (MPPAC, avg. size 112 μm) was developed. The prepared MPPAC was assessed by several physicochemical analyses, and batch tests were performed for ibuprofen (IBP) removal. Field emission scanning electron microscopy (FESEM) and N2 gas isotherms revealed that magnetite and maghemite were homogeneous and deposited mostly on the surface of PPAC without a significant clogging effect on the micropores. Isotherm results showed that 3.8% Fe (w/w) impregnated PPAC [MPPAC-Fe(3.8%)] had about 2.2-fold higher maximum sorption capacity (157.3 mg g-1) and a 2.5-fold higher sorption density (0.23 mg m-2) than pristine PPAC. Both Fourier-transform infrared spectroscopy (FTIR) and isotherm data indicated that the high sorption capacity and density of IBP by MPPAC was primarily attributable to donor-acceptor complexes with the C = O group and dispersive π-π interactions with the carbon surface. Based on kinetic and repeated adsorption tests, pore diffusion was the rate-limiting step, and MPPAC-Fe(3.8%) had about 1.9~2.8- and 9.1~15.8-fold higher rate constants than MPPAC-Fe(8.6%) and palm shell-waste granular activated carbon (PGAC, avg. size 621 μm), respectively. MPPAC showed almost eight fold greater re-adsorption capacity than PPAC due to a thermal catalytic effect of magnetite/maghemite. PMID:26496196
Wong, Kien Tiek; Yoon, Yeomin; Jang, Min
2015-01-01
A novel preparation method of magnetized palm shell waste-based powdered activated carbon (MPPAC, avg. size 112 μm) was developed. The prepared MPPAC was assessed by several physicochemical analyses, and batch tests were performed for ibuprofen (IBP) removal. Field emission scanning electron microscopy (FESEM) and N2 gas isotherms revealed that magnetite and maghemite were homogeneous and deposited mostly on the surface of PPAC without a significant clogging effect on the micropores. Isotherm results showed that 3.8% Fe (w/w) impregnated PPAC [MPPAC-Fe(3.8%)] had about 2.2-fold higher maximum sorption capacity (157.3 mg g-1) and a 2.5-fold higher sorption density (0.23 mg m-2) than pristine PPAC. Both Fourier-transform infrared spectroscopy (FTIR) and isotherm data indicated that the high sorption capacity and density of IBP by MPPAC was primarily attributable to donor-acceptor complexes with the C = O group and dispersive π-π interactions with the carbon surface. Based on kinetic and repeated adsorption tests, pore diffusion was the rate-limiting step, and MPPAC-Fe(3.8%) had about 1.9~2.8- and 9.1~15.8-fold higher rate constants than MPPAC-Fe(8.6%) and palm shell-waste granular activated carbon (PGAC, avg. size 621 μm), respectively. MPPAC showed almost eight fold greater re-adsorption capacity than PPAC due to a thermal catalytic effect of magnetite/maghemite.
Tse, Christin; Sera, Takashi; Wolffe, Alan P.; Hansen, Jeffrey C.
1998-01-01
We have examined the effects of core histone acetylation on the transcriptional activity and higher-order folding of defined 12-mer nucleosomal arrays. Purified HeLa core histone octamers containing an average of 2, 6, or 12 acetates per octamer (8, 23, or 46% maximal site occupancy, respectively) were assembled onto a DNA template consisting of 12 tandem repeats of a 208-bp Lytechinus 5S rRNA gene fragment. Reconstituted nucleosomal arrays were transcribed in a Xenopus oocyte nuclear extract and analyzed by analytical hydrodynamic and electrophoretic approaches to determine the extent of array compaction. Results indicated that in buffer containing 5 mM free Mg2+ and 50 mM KCl, high levels of acetylation (12 acetates/octamer) completely inhibited higher-order folding and concurrently led to a 15-fold enhancement of transcription by RNA polymerase III. The molecular mechanisms underlying the acetylation effects on chromatin condensation were investigated by analyzing the ability of differentially acetylated nucleosomal arrays to fold and oligomerize. In MgCl2-containing buffer the folding of 12-mer nucleosomal arrays containing an average of two or six acetates per histone octamer was indistinguishable, while a level of 12 acetates per octamer completely disrupted the ability of nucleosomal arrays to form higher-order folded structures at all ionic conditions tested. In contrast, there was a linear relationship between the extent of histone octamer acetylation and the extent of disruption of Mg2+-dependent oligomerization. These results have yielded new insight into the molecular basis of acetylation effects on both transcription and higher-order compaction of nucleosomal arrays. PMID:9671473
The Complexity of Folding Self-Folding Origami
NASA Astrophysics Data System (ADS)
Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind
2017-10-01
Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.
Shinde, Dhananjay D; Kim, Ho-Sook; Choi, Jae-Seok; Pan, Wei; Bae, Soo Kyung; Yeo, Chang-Woo; Shon, Ji-Hong; Kim, Dong-Hyun; Shin, Jae Gook
2013-05-01
In this study, we assessed the effects of clopidogrel and clarithromycin, known CYP2B6 and CYP3A inhibitors, respectively, on the enantioselective disposition of racemic sibutramine in conjunction with CYP2B6 polymorphisms in humans. Sibutramine showed enantioselective plasma profiles with consistently higher concentrations of R-enantiomers. Clopidogrel and clarithromycin significantly increased the sibutramine plasma concentration, but their effects differed between enantiomers; a 2.2-fold versus 4.1-fold increase in the AUC in S-enantiomer and 1.8-fold versus 2.0-fold for the R-enantiomer, respectively. The AUCs of S- and R-desmethyl metabolites changed significantly during the clopidogrel phase (P < .001 and P < .001, respectively) but not during the clarithromycin phase (P = .099 and P = .090, respectively). Exposure to sibutramine was higher in subjects with the CYP2B6*6/*6 genotype, but no statistical difference was observed among the CYP2B6 genotypes. These results suggest that the enantioselective disposition of sibutramine and its active metabolites are influenced by the altered genetic and environmental factors of CYP2B6 and CYP3A activity in vivo. © The Author(s) 2013.
Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism.
Brewer, J M; Glover, C V; Holland, M J; Lebioda, L
1998-04-02
The S39A mutant of yeast enolase (isozyme 1), prepared by site-directed mutagenesis, has a relative Vmax of 0.01% and an activation constant for Mg2+ ca. 10-fold higher, compared with native enzyme. It is correctly folded. There is little effect of solvent viscosity on activity. We think that the loop Ser36-His43 fails to move to the 'closed' position upon catalytic Mg2+ binding, weakening several electrostatic interactions involved in the mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.
The fraction of plutonium absorbed after oral administration of Pu(VI) to 24-h-fasted mice was 19 X 10(-4), 13-fold higher than in fed mice, 1.4 X 10(-4). We have investigated the relevance of the high gastrointestinal (GI) absorption value for the 24-h-fasted animals in setting drinking water standards for humans. When fasting was initiated at the beginning of the active phase of the mouse's daily activity cycle (when they would normally eat), plutonium GI absorption rose from 2.8 X 10(-4) at zero-time to a level typical of the 24-h-fasted mouse after only 2 h of fasting. In contrast, in mice allowedmore » to eat for 4 h into their active phase prior to initiation of the fast (meal-fed mice), 8 h of fasting were required before GI absorption rose to a level similar to that of the 24-h-fasted mouse. The fraction of plutonium retained after gavage administration of Pu(VI) to 1-day-old rats was 74 X 10(-4), 70-fold higher than the value for fed adults. Retention after GI absorption in neonates remained 30- to 70-fold higher than in adults until weaning. One week after weaning, the fraction absorbed and retained by fed weanling rats was the same as that for fed adults, 1 X 10(-4). Drinking water standards for plutonium have been set based on GI absorption values for fed adult animals. The 10- to 100-fold increases in plutonium absorption in young and fasted animals reported by ourselves and others, and the rapid rise to fasted levels of absorption at the start of the animal's active phase, indicate that consideration should be given to elevated levels of plutonium absorption in young and fasted individuals.« less
Qiao, Yijuan; Zhang, Tao; Liu, Hongyan; Katzmarzyk, Peter T; Chaput, Jean-Philippe; Fogelholm, Mikael; Johnson, William D; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V; Maher, Carol; Maia, José A R; Matsudo, Victor; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L; Standage, Martyn; Tremblay, Mark S; Tudor-Locke, Catrine; Zhao, Pei; Hu, Gang
2017-06-01
To examine the joint association of birth weight and physical activity/sedentary time with childhood obesity in 12 countries. A cross-sectional study of 5,088 children aged 9 to 11 years was conducted. Birth weight was recalled by parents or guardians. Moderate-to-vigorous physical activity (MVPA) and sedentary behavior were objectively measured using accelerometry. The association of birth weight with the odds of obesity, central obesity, and high body fat was significant among children with either low MVPA or high sedentary time but not among children with either high MVPA or low sedentary time. In comparison with children with normal birth weight and high MVPA, children with high birth weight and low MVPA showed 4.48- to 5.18-fold higher odds of obesity, central obesity, and high body fat; children with normal birth weight and low MVPA showed 3.00- to 3.30-fold higher odds of obesity, central obesity, and high body fat, and children with high birth weight and high MVPA showed 1.16- to 1.68-fold higher odds of obesity, central obesity, and high body fat. High MVPA is more important than high birth weight as a correlate of obesity in children. © 2017 The Obesity Society.
Qiao, Yijuan; Zhang, Tao; Liu, Hongyan; Katzmarzyk, Peter T.; Chaput, Jean-Philippe; Fogelholm, Mikael; Johnson, William D.; Kuriyan, Rebecca; Kurpad, Anura; Lambert, Estelle V.; Maher, Carol; Maia, José A.R.; Matsudo, Victor; Olds, Timothy; Onywera, Vincent; Sarmiento, Olga L.; Standage, Martyn; Tremblay, Mark S.; Tudor-Locke, Catrine; Zhao, Pei; Hu, Gang
2017-01-01
Objective To examine the joint association of birth weight and physical/sedentary activity time with obesity in 12 countries. Methods A cross-sectional study of 5,088 children aged 9–11 years was conducted. Birth weight was recalled by parents or guardians. Moderate-to-vigorous physical activity (MVPA) and sedentary behavior were objectively measured using accelerometry. Results The association of birth weight with the odds of obesity, central obesity and high body fat was significant among children with either low MVPA or high sedentary time but not among children with either high MVPA or low sedentary time. In comparison with children with normal birth weight and high MVPA, children with high birth weight and low MVPA showed 4.48–5.18 fold higher odds of obesity, central obesity, and high body fat; children with normal birth weight and low MVPA showed 3.00–3.30 fold higher odds of obesity, central obesity, and high body fat, and children with high birth weight and high MVPA showed 1.16–1.68 fold higher odds of obesity, central obesity, and high body fat. Conclusions High MVPA is more important than high birth weight as a correlate of obesity in children. PMID:28544795
A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity
NASA Astrophysics Data System (ADS)
Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang
2005-06-01
As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.
Differential fipronil susceptibility and metabolism in two rice stem borers from China.
Fang, Qi; Huang, Cheng-Hua; Ye, Gong-Yin; Yao, Hong-Wei; Cheng, Jia-An; Akhtar, Zunnu-Raen
2008-08-01
The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results offipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.
Shin, Kyung-Chul; Sim, Dong-Hyun; Seo, Min-Ju; Oh, Deok-Kun
2016-11-02
The generally recognized as safe microorganism Corynebacterium glutamicum expressing Geobacillus thermodenitrificans d-galactose isomerase (d-GaI) was an efficient host for the production of d-tagatose, a functional sweetener. The d-tagatose production at 500 g/L d-galactose by the host was 1.4-fold higher than that by Escherichia coli expressing d-GaI. The d-tagatose-producing activity of permeabilized C. glutamicum (PCG) cells treated with 1% (w/v) Triton X-100 was 2.1-fold higher than that of untreated cells. Permeabilized and immobilized C. glutamicum (PICG) cells in 3% (w/v) alginate showed a 3.1-fold longer half-life at 50 °C and 3.1-fold higher total d-tagatose concentration in repeated batch reactions than PCG cells. PICG cells, which produced 165 g/L d-tagatose after 3 h, with a conversion of 55% (w/w) and a productivity of 55 g/L/h, showed significantly higher d-tagatose productivity than that reported for other cells. Thus, d-tagatose production by PICG cells may be an economical process to produce food-grade d-tagatose.
Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette
2016-02-11
To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.
Singhatanadgit, Weerachai; Varodomrujiranon, Manatsanan
2013-12-01
The present study aimed to investigate the osteogenic potency of scaffold-free 3-dimensional (3D) spheres of periodontal ligament stem cells (PDLSCs). The osteogenic potency of PDLSC spheres was determined by the ability to form mineralization and to express key osteogenesis-associated genes. The alkaline phosphatase (ALP) activity and the protein content of PDLSC spheres were also measured. The 3D sphere developed its osteogenic potency in a time-dependent manner, containing approximately 10-fold higher mineralization, 5-fold higher protein content, and 4-fold greater ALP activity than those in the controls. The expression of key osteogenic genes was also upregulated in the 3D PDLSC spheres. Cellular outgrowth was observed when reintroduced into 2D culture. PDLSCs were able to undergo osteogenic differentiation in a scaffold-free 3D culture, producing bonelike mineralization in vitro. This suggests, at least in vitro, the osteogenic potency of the 3D PDLSC spheres. Copyright © 2013 Elsevier Inc. All rights reserved.
Lead Optimization Studies of Cinnamic Amide EP2 Antagonists
2015-01-01
Prostanoid receptor EP2 can play a proinflammatory role, exacerbating disease pathology in a variety of central nervous system and peripheral diseases. A highly selective EP2 antagonist could be useful as a drug to mitigate the inflammatory consequences of EP2 activation. We recently identified a cinnamic amide class of EP2 antagonists. The lead compound in this class (5d) displays anti-inflammatory and neuroprotective actions. However, this compound exhibited moderate selectivity to EP2 over the DP1 prostanoid receptor (∼10-fold) and low aqueous solubility. We now report compounds that display up to 180-fold selectivity against DP1 and up to 9-fold higher aqueous solubility than our previous lead. The newly developed compounds also display higher selectivity against EP4 and IP receptors and a comparable plasma pharmacokinetics. Thus, these compounds are useful for proof of concept studies in a variety of models where EP2 activation is playing a deleterious role. PMID:24773616
Ifie, Idolo; Ifie, Beatrice E; Ibitoye, Dorcas O; Marshall, Lisa J; Williamson, Gary
2018-09-30
Seasonal variations in crops can alter the profile and amount of constituent compounds and consequentially any biological activity. Differences in phytochemical profile, total phenolic content and inhibitory activity on α-glucosidase (maltase) of Hibiscus sabdariffa calyces grown in South Western Nigeria were determined over wet and dry seasons. The phenolic profile, organic acids and sugars were analysed using HPLC, while inhibition of rat intestinal maltase was measured enzymically. There was a significant increase (1.4-fold; p ≤ 0.05) in total anthocyanin content in the dry compared to wet planting seasons, and maltase inhibition from the dry season was slightly more potent (1.15-fold, p ≤ 0.05). Fructose (1.8-fold), glucose (1.8-fold) and malic acid (3.7-fold) were significantly higher (p ≤ 0.05) but citric acid was lower (62-fold, p ≤ 0.008) in the dry season. Environmental conditions provoke metabolic responses in Hibiscus sabdariffa affecting constituent phytochemicals and nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.
Avelar, Mayra; Pastor, Nina; Ramirez-Ramirez, Joaquin; Ayala, Marcela
2018-01-01
In this work, we sought to obtain a more stable laccase with higher operational stability for the oxidation of phenols. During this reaction, phenoxy free radicals are produced that gradually inactivate the enzyme; the inactivation rate depends on the phenol chemical nature. In order to predict residues prone to oxidize within the active site, we simulated activated states of the catalytic region of a fungal laccase using QM-MM tools (Quantum Mechanics-Molecular Mechanics). After simulating the electron distribution in both the basal and activated state (plus or minus one electron) of several conformations of Coriolopsis gallica laccase, residues that could be susceptible to oxidation were identified, according to the values of spin density obtained from calculations. Three targets were selected (F357, F413, and F475) to be replaced by site-directed mutagenesis with less oxidizable residues such as leucine, alanine, and isoleucine. The resulting variants displayed a higher specific activity (from 1.5-to 4-fold) than the parental enzyme. Catalyst depletion during phenol oxidation was 2.5-fold lower for the variants, reflecting a higher operational stability. Copyright © 2017 Elsevier Inc. All rights reserved.
How reliable an indicator of inflammation is myeloperoxidase activity?
Faith, Minnie; Sukumaran, Abitha; Pulimood, Anna B; Jacob, Molly
2008-10-01
Myeloperoxidase (MPO) and interleukin-6 (IL-6) are often used as markers of inflammation. The aim of this study was to ascertain whether MPO activity is as reliable as IL-6 as an indicator of inflammation. Inflammation was induced in mice, using either turpentine or indomethacin. Duodenal tissue was removed from these animals at various time periods ranging from 6 h to 7 days later. Concentrations of IL-6 and MPO activity were estimated in the tissue. Histopathological examination was also carried out at some of the time periods to determine the presence of neutrophil infiltration in turpentine-treated mice. Concentrations of IL-6 and MPO activity were significantly higher in tissue that had been treated with the agents used, at all the time periods studied, when compared with corresponding control tissue. Fold-increases in MPO activity were higher than fold-increases in IL-6. Concentrations of the 2 parameters showed significant positive correlation. Histopathological examination did not show significantly higher numbers of neutrophils infiltrating the tissue in response to turpentine, at the time periods studied. Estimation of MPO activity is a reliable indicator of inflammation, being more sensitive than histopathological examination of tissue and as good as measurement of IL-6 concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Moon-Jung; Lee, Byung Cheon; Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701
Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specificmore » selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.« less
Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases.
Bhagi-Damodaran, Ambika; Michael, Matthew A; Zhu, Qianhong; Reed, Julian; Sandoval, Braddock A; Mirts, Evan N; Chakraborty, Saumen; Moënne-Loccoz, Pierre; Zhang, Yong; Lu, Yi
2017-03-01
Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.
Mostaghel, Elahe A.; Morgan, Andrew; Zhang, Xiaotun; Marck, Brett T.; Xia, Jing; Hunter-Merrill, Rachel; Gulati, Roman; Plymate, Stephen; Vessella, Robert L.; Corey, Eva; Higano, Celestia S.; Matsumoto, Alvin M.; Montgomery, R. Bruce; Nelson, Peter S.
2014-01-01
Background Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth. Methods We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy. Results In LuCaP35 tumors (intra-tumoral T:DHT ratio 2∶1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10∶1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6–8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts. Conclusions Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models. PMID:25356728
Mostaghel, Elahe A; Morgan, Andrew; Zhang, Xiaotun; Marck, Brett T; Xia, Jing; Hunter-Merrill, Rachel; Gulati, Roman; Plymate, Stephen; Vessella, Robert L; Corey, Eva; Higano, Celestia S; Matsumoto, Alvin M; Montgomery, R Bruce; Nelson, Peter S
2014-01-01
Factors influencing differential responses of prostate tumors to androgen receptor (AR) axis-directed therapeutics are poorly understood, and predictors of treatment efficacy are needed. We hypothesized that the efficacy of inhibiting DHT ligand synthesis would associate with intra-tumoral androgen ratios indicative of relative dependence on DHT-mediated growth. We characterized two androgen-sensitive prostate cancer xenograft models after androgen suppression by castration in combination with the SRD5A inhibitor, dutasteride, as well as a panel of castration resistant metastases obtained via rapid autopsy. In LuCaP35 tumors (intra-tumoral T:DHT ratio 2:1) dutasteride suppressed DHT to 0.02 ng/gm and prolonged survival vs. castration alone (337 vs.152 days, HR 2.8, p = 0.0015). In LuCaP96 tumors (T:DHT 10:1), survival was not improved despite similar DHT reduction (0.02 ng/gm). LuCaP35 demonstrated higher expression of steroid biosynthetic enzymes maintaining DHT levels (5-fold higher SRD5A1, 41 fold higher, 99-fold higher RL-HSD, p<0.0001 for both), reconstitution of intra-tumoral DHT (to ∼30% of untreated tumors), and ∼2 fold increased expression of full length AR. In contrast, LuCaP96 demonstrated higher levels of steroid catabolizing enzymes (6.9-fold higher AKR1C2, 3000-fold higher UGT2B15, p = 0.002 and p<0.0001 respectively), persistent suppression of intra-tumoral DHT, and 6-8 fold induction of full length AR and the ligand independent V7 AR splice variant. Human metastases demonstrated bio-active androgen levels and AR full length and AR splice-variant expression consistent with the range observed in xenografts. Intrinsic differences in basal steroidogenesis, as well as variable expression of full length and splice-variant AR, associate with response and resistance to pre-receptor AR ligand suppression. Expression of steroidogenic enzymes and AR isoforms may serve as potential biomarkers of sensitivity to potent AR-axis inhibition and should be validated in additional models.
Haase, Matthias; Dringenberg, Till; Allelein, Stephanie; Willenberg, Holger S; Schott, Matthias
2017-10-01
Catecholamines stimulate renin-secretion in the juxtaglomerular cells of the kidney and a number of case reports suggest an association between pheochromocytoma and activation of the RAAS. Therefore, it could be asked whether patients suffering from pheochromocytoma with high concentrations of circulating catecholamines present with oversecretion of renin and aldosterone. We identified twelve patients with excessive catecholamine secretion due to pheochromocytoma and compared them to a group of twelve patients with essential hypertension (EH) with regard to the activation of the renin-angiotensin-aldosterone-system (RAAS). The PubMed database was screened for studies that investigate the association between pheochromocytoma and activation of the RAAS. The plasma concentrations of metanephrines (19.9-fold) and normetanephrines (29.5-fold) were significantly higher in the pheochromocytoma group than in the EH group. Renin and aldosterone levels were 1.3-fold and 1.6-fold higher, respectively, as compared to the EH group, whereas the differences were not statistically significant. There was no significant correlation between plasma metanephrine or normetanephrine levels and the plasma renin concentration (r s =0.077, r s =0.049, respectively) in our patients. The data from our institution and from review of literature suggest that an association between pheochromocytoma in the context of high plasma catecholamine levels and activation of the RAAS is present. However, results have not been consistent. Thus, other causes of RAAS-activation should be considered also in the presence of pheochromocytoma or reinvestigation for aldosteronism should be offered to such patients after removal of the catecholamine-producing tumour. © Georg Thieme Verlag KG Stuttgart · New York.
Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar
2015-01-01
Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182
Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar
2014-11-01
Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui
2017-01-01
Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO 3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO 3 perovskite and optimizing the morphology of LaNiO 3 perovskite. The peroxidase mimicking activity of the porous LaNiO 3 nanocubes with Ni 3+ was about 58~fold and 22~fold higher than that of NiO with Ni 2+ and Ni nanoparticles with Ni 0 . More, the porous LaNiO 3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO 3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO 3 nanocubes, facile colorimetric assays for H 2 O 2 , glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics.
Wang, Xiaoyu; Cao, Wen; Qin, Li; Lin, Tingsheng; Chen, Wei; Lin, Shichao; Yao, Jia; Zhao, Xiaozhi; Zhou, Min; Hang, Cheng; Wei, Hui
2017-01-01
Catalytic nanomaterials with intrinsic enzyme-like activities, called nanozymes, have recently attracted significant research interest due to their unique advantages relative to natural enzymes and conventional artificial enzymes. Among the nanozymes developed, particular interests have been devoted to nanozymes with peroxidase mimicking activities because of their promising applications in biosensing, bioimaging, biomedicine, etc. Till now, lots of functional nanomaterials have been used to mimic peroxidase. However, few studies have focused on the Ni-based nanomaterials for peroxidase mimics. In this work, we obtained the porous LaNiO3 nanocubes with high peroxidase-like activity by inducing its 3+ oxidation state in LaNiO3 perovskite and optimizing the morphology of LaNiO3 perovskite. The peroxidase mimicking activity of the porous LaNiO3 nanocubes with Ni3+ was about 58~fold and 22~fold higher than that of NiO with Ni2+ and Ni nanoparticles with Ni0. More, the porous LaNiO3 nanocubes exhibited about 2-fold higher activity when compared with LaNiO3 nanoparticles. Based on the superior peroxidase-like activity of porous LaNiO3 nanocubes, facile colorimetric assays for H2O2, glucose, and sarcosine detection were developed. Our present work not only demonstrates a useful strategy for modulating nanozymes' activities but also provides promising bioassays for clinical diagnostics. PMID:28740550
Tan, Chew Ling; Yeo, Chew Chieng; Khoo, Hoon Eng; Poh, Chit Laa
2005-01-01
xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (kcat/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme. PMID:16237038
Buzby, Jeffrey S.; Williams, Shirley A.; Imfeld, Karen L.; Kunicki, Thomas J.; Nugent, Diane J.
2014-01-01
Objective and design Variable tissue factor (TF) expression by human microvascular endothelial cells (HMVEC) may be regulated by two promoter haplotypes, distinguished by an 18 base pair deletion (D) or insertion (I) at -1208. We sought to determine the relationship between these haplotypes and interleukin-1 (IL-1α)-induced TF expression in neonatal versus adult HMVEC. Results IL-1-stimulated TF mRNA, protein, and activity were significantly higher in neonatal compared to adult D/D donors. IL-1-stimulated HMVEC from neonatal D/D donors expressed 3-fold higher levels of TF mRNA, 2-fold higher TF protein, and 4-fold increased TF activity compared to HMVEC from adult D/D donors. These results indicate that homozygosity for the D haplotype is characterized by increased response to IL-1 in neonates but not adults. IL-1 induced increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), which was significantly greater in neonatal compared to adult HMVEC. Moreover, inhibition of the p38 MAPK pathway reduced IL-1-stimulated TF mRNA expression in D/D neonatal but not adult HMVEC. Conclusions Up-regulation of D/D neonatal HMVEC TF expression by IL-1 is mediated through the p38 MAPK pathway. This heightened response of D/D neonatal HMVEC to inflammatory stimuli may contribute to increased microvascular coagulopathies in susceptible newborn infants. PMID:24385191
Alegre, Ana Cláudia Paiva; de Lourdes Teixeira de Moraes Polizeli, Maria; Terenzi, Héctor Francisco; Jorge, João Atílio; Guimarães, Luis Henrique Souza
2009-01-01
The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30°C, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium) with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50°C while the extra- and intracellular enzymes produced in SbmF exhibited maximal activities at 60°C. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50°C. PMID:24031406
Okot-Kotber, Moses; Liavoga, Allan; Yong, Kwon-Joong; Bagorogoza, Katherine
2002-04-10
Polyphenol oxidase (PPO), known to induce browning in wheat-based products, has been shown to be activatable in wheat (Triticum aestivum) bran extracts by chemical compounds. The activity in the extracts could be increased to varying degrees with acetone, methanol, ethanol, 2-propanol, and n-butanol as additives in the extraction buffer. The most potent alcoholic activator was n-butanol (about a 3-fold increase), followed by 2-propanol and ethanol, whereas methanol had the least effect. Ionic detergents in the extraction buffer were also good activators, with sodium dodecyl sulfate (SDS) being more potent (3-fold increase) than cetyltrimethylammonium bromide (CTAB) that had only half as much effect, whereas the nonionic detergent, Triton X-114, was ineffective. The chaotropes, urea and guanidine x HCl (GND), were the most potent activators of all, increasing the activity over 4-fold. Of the two chaotropes, GND was more effective at lower concentrations (<6 M) than urea. However, the enzyme activity lessened at a higher concentration of GND (6 M), while there was a further increase in the activity with 6 M urea treatment. The activity lessened with higher concentration of GND presumably as a result of extensive denaturation of the enzyme, as GND is known to be a more potent denaturant than urea. It is hypothesized that in wheat PPO exists in an inactive form which may be activated by the presence of activators, hitherto unknown, similar in effect to that elicited by the chemical denaturants in this study.
Gao, Haofeng; Li, Chanjuan; Bandikari, Ramesh; Liu, Ziduo; Hu, Nan; Yong, Qiang
2018-03-19
In industries lipolytic reactions occur in insensitive conditions such as high temperature thus novel stout esterases with unique properties are attracts to the industrial application. Protein engineering is the tool to obtain desirable characters of enzymes. A novel esterase gene was isolated from South China Sea and subjected to a random mutagenesis and site directed mutagenesis for higher activity and thermo-stability compared to wild type. A novel esterase showed the highest hydrolytic activity against p-nitrophenyl acetate (pNPA, C2) and the optimal activity at 40 °C and pH 8.5. It was a cold-adapted enzyme and retained approximately 40% of its maximum activity at 0 °C. A mutant, with higher activity and thermo-stability was obtained by random mutagenesis. Kinetic analysis indicated that the mutant Val29Ala/Tyr193Cys shown 43.5% decrease in K m , 2.6-fold increase in K cat , and 4.7-fold increase in K cat /K m relative to the wild type. Single mutants V29A and Y193C were constructed and their kinetic parameters were measured. The results showed that the values of K m , K cat , and K cat /K m of V29A were similar to those of the wild type while Y193C showed 52.7% decrease in K m , 2.7-fold increase in K cat , and 5.6-fold increase in K cat /K m compared with the wild type. The 3-D structure and docking analysis revealed that the replacement of Tyr by Cys could enlarge the binding pocket. Moreover Y193C also showed a better thermo-stability for the reason its higher hydrophobicity and retained 67% relative activity after incubation for 3 h at 50 °C. The superior quality of modified esterase suggested it has great potential application in extreme conditions and the mutational work recommended that important information for the study of esterase structure and function.
Boink, Mireille A.; Roffel, Sanne; Breetveld, Melanie; Thon, Maria; Haasjes, Michiel S.P.; Waaijman, Taco; Scheper, Rik J.; Blok, Chantal S.
2017-01-01
Abstract Skin and oral mucosa substitutes are a therapeutic option for closing hard‐to‐heal skin and oral wounds. Our aim was to develop bi‐layered skin and gingiva substitutes, from 3 mm diameter biopsies, cultured under identical conditions, which are compliant with current European regulations for advanced therapy medicinal products. We present in vitro mode of action methods to (i) determine viability: epithelial expansion, proliferation (Ki‐67), metabolic activity (MTT assay); (ii) characterize skin and gingiva substitutes: histology and immunohistochemistry; and (iii) determine potency: soluble wound healing mediator release (enzyme‐linked immunosorbent assay). Both skin and gingiva substitutes consist of metabolically active autologous reconstructed differentiated epithelium expanding from the original biopsy sheet on a fibroblast populated connective tissue matrix (donor dermis). Gingival epithelium expanded 1.7‐fold more than skin epithelium during the 3 week culture period. The percentage of proliferating Ki‐67‐positive cells located in the basal layer of the gingiva substitute was >1.5‐fold higher than in the skin substitute. Keratins 16 and 17, which are upregulated during normal wound healing, were expressed in both the skin and gingiva substitutes. Notably, the gingiva substitute secreted higher amounts of key cytokines involved in mitogenesis, motogenesis and chemotaxis (interleukin‐6 > 23‐fold, CXCL8 > 2.5‐fold) as well as higher amounts of the anti‐fibrotic growth factor, hepatocyte growth factor (>7‐fold), compared with the skin substitute. In conclusion, while addressing the viability, characterization and potency of the tissue substitutes, important intrinsic differences between skin and gingiva were discovered that may explain in part the superior quality of wound healing observed in the oral mucosa compared with skin. PMID:28388010
Vali, Shireen; Pallavi, Rani; Kapoor, Shweta; Tatu, Utpal
2010-03-01
Hsp90 is an ATP-dependent molecular chaperone that regulates key signaling proteins and thereby impacts cell growth and development. Chaperone cycle of Hsp90 is regulated by ATP binding and hydrolysis through its intrinsic ATPase activities, which is in turn modulated by interaction with its co-chaperones. Hsp90 ATPase activity varies in different organisms and is known to be increased in tumor cells. In this study we have quantitatively analyzed the impact of increasing Hsp90 ATPase activity on the activities of its clients through a virtual prototyping technology, which comprises a dynamic model of Hsp90 interaction with clients involved in proliferation pathways. Our studies highlight the importance of increased ATPase activity of Hsp90 in cancer cells as the key modulator for increased proliferation and survival. A tenfold increase in ATPase activity of Hsp90 often seen in cancer cells increases the levels of active client proteins such as Akt-1, Raf-1 and Cyclin D1 amongst others to about 12-, 8- and 186-folds respectively. Additionally we studied the effect of a competitive inhibitor of Hsp90 activity on the reduction in the client protein levels. Virtual prototyping experiments corroborate with findings that the drug has almost 10- to 100-fold higher affinity as indicated by a lower IC(50) value (30-100 nM) in tumor cells with higher ATPase activity. The results also indicate a 15- to 25-fold higher efficacy of the inhibitor in reducing client levels in tumor cells. This analysis provides mechanistic insights into the links between increased Hsp90 ATPase activity, tumor phenotype and the hypersensitivity of tumor Hsp90 to inhibition by ATP analogs. The online version of this article (doi:10.1007/s11693-009-9046-3) contains supplementary material, which is available to authorized users.
Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Édes, István; Papp, Zoltán; Tóth, Attila
2014-01-01
Angiotensin-converting enzyme (ACE) inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected) enzyme activities significantly increased by dilution of human serum samples (23.2±0.7 U/L at 4-fold dilution, 51.4±0.3 U/L at 32-fold dilution, n = 3, p = 0.001), suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655±145 U/L, 605±42 U/L, n = 3, p = 0.715, respectively). FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa) and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4±2.4 U/L, n = 4, control: 26.4±0.7 U/L, n = 4, p<0.001). Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity from 4-fold to 32-fold dilution: 2.8-fold, 1.7-fold, 1.5-fold, 1.8-fold, 2.6-fold, respectively). We report here the existence of an evolutionary conserved mechanism suppressing circulating ACE activity, in vivo, similarly to ACE inhibitory drugs. PMID:24691160
Mak, I. T.; Kramer, J. H.; Chmielinska, J. J.; Khalid, M. H.; Landgraf, K. M.; Weglicki, W. B.
2013-01-01
Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (~50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days ± NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s. c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal ·O2- generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21 % (p <0.025) and 7 % (NS). MgD+PR significantly reduced neutrophil NEP activity by 48 % (p <0.02); PR or MgD alone only reduced this activity 26 % and 15 %, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil ·O2- production and may promote other inflammatory activities during MgD. PMID:18607539
Mak, I T; Kramer, J H; Chmielinska, J J; Khalid, M H; Landgraf, K M; Weglicki, W B
2008-07-01
Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.
Tobias, Irene S; Lazauskas, Kara K; Arevalo, Jose A; Bagley, James R; Brown, Lee E; Galpin, Andrew J
2018-04-01
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5'-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α 1 , α 2 , β 1 , β 2 , γ 2 , and γ 3 with a tubulin loading control. Significant FT-specific differences were found for α 2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ 2 (2.5-fold higher in MHC IIa vs. others), and γ 3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5'-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Deguchi, T; Amano, E; Nakane, M
1976-11-01
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.
Gorskaya, Yu F; Danilova, T A; Nesterenko, V G
2011-06-01
The study was carried out on CBA mice using the method of heterotopic transplantation. A fragment of the femoral bone marrow (1/2) or spleen (1/5 of the organ) was transplanted under the renal capsule of a recipient. The following donor-recipient cross-transplantation variants were studied: young-young (Y-Y), young-old (Y-O), old-old (O-O), and old-young (O-Y). Cell suspensions were prepared from 2-month transplants inoculated in monolayer cultures and the cloning efficiency (ECF-F) of stromal precursor cells (CFC-F) was evaluated. The bone marrow transplant ECF-F and the count of CFC-F in the O-O group were 8-fold lower than in the Y-Y group. In the O-Y group, ECF-F was 3-fold higher than in the O-O group, but by 2.5 times lower than in the Y-Y group. ECF-F in Y-O group was 2-fold lower than in Y-Y group. The ECF-F and CFC-F count in spleen transplants in the O-O group were 4- and 6-fold lower, respectively, than in Y-Y group. However, in O-Y group ECF-F was 7-fold higher than in O-O group and higher than even in Y-Y group. The weight of induced ectopic bone tissue after transplantation of the osteoinductor (fragments of the allogenic urinary bladder mucosa) was 2-fold lower in the O-O vs. Y-Y group. However, comparison of the ectopic bone tissue weights in different experimental groups showed that osteoinductor activity of the bladder epithelium did not decrease, but increased 3-fold with age (O-Y:Y-Y). A 5-fold reduction of this proportion in groups where the osteoinductor was transplanted from old donors to old and young recipients (O-Y:O-O) could be attributed to age-specific reduction of the count of inducible osteogenic precursor cells (IOPC). The data in general suggest that age-specific reduction of the stromal precursor count and functional activity could be caused by the true reduction (exhaustion) of cell pool (bone marrow CFC-F; presumably, IOPC) and by the regulatory effects of the organism (bone marrow and splenic CFC-F, IOPC). These data seem to be significant for understanding of the role of osteogenic stromal precursor cells in the development of age-associated bone tissue defects, for example, senile osteoporosis.
Sanuki, Tetsuji; Yumoto, Eiji; Nishimoto, Kohei; Minoda, Ryosei
2014-04-01
To assess laryngeal muscle activity in unilateral vocal fold paralysis (UVFP) patients using laryngeal electromyography (LEMG) and coronal images. Case series with chart review. University hospital. Twenty-one patients diagnosed with UVFP of at least 6 months in duration with paralytic dysphonia, underwent LEMG, phonatory function tests, and coronal imaging. A 4-point scale was used to grade motor unit (MU) recruitment: absent = 4+, greatly decreased = 3+, moderately decreased = 2+, and mildly decreased = 1+. Maximum phonation time (MPT) and mean flow rate (MFR) were employed. Coronal images were assessed for differences in thickness and vertical position of the vocal folds during phonation and inhalation. MU recruitment in thyroarytenoid/lateral cricoarytenoid (TA/LCA) muscle complex results were 1+ for 4 patients, 2+ for 5, 3+ for 6, and 4+ for 6. MPT was positively correlated with MU recruitment. Thinning of the affected fold was evident during phonation in 19 of the 21 subjects. The affected fold was at an equal level with the healthy fold in all 9 subjects with MU recruitment of 1+ and 2+. Eleven of 12 subjects with MU recruitments of 3+ and 4+ showed the affected fold at a higher level than the healthy fold. There was a significant difference between MU recruitment and the vertical position of the affected fold. Synkinetic reinnervation may occur in some cases with UVFP. MU recruitments of TA/LCA muscle complex in UVFP patients may be related to phonatory function and the vertical position of the affected fold.
Erythrocyte membrane nanoparticles improve the intestinal absorption of paclitaxel.
Jiang, Xing; Wang, Kaikai; Zhou, Zaigang; Zhang, Yifan; Sha, Huizi; Xu, Qiuping; Wu, Jie; Wang, Juan; Wu, Jinhui; Hu, Yiqiao; Liu, Baorui
2017-06-24
Paclitaxel (PTX) is a cytotoxic chemotherapy drug with encouraging activity in human malignancies. However, free PTX has a very low oral bioavailability due to its low aqueous solubility and the gastrointestinal drug barrier. In order to overcome this obstacle, we have designed erythrocyte membrane nanoparticles (EMNP) using sonication method. The permeability of PTX by EMNP was 3.5-fold (P app = 0.425 nm/s) and 16.2-fold (P app = 394.1 nm/s) higher than free PTX in MDCK-MDR1 cell monolayers and intestinal mucosal tissue, respectively. The in vivo pharmacokinetics indicated that the AUC 0-t (μg/mL·h) and C max (μg/mL) of EMNP were 14.2-fold and 6.0-fold higher than that of free PTX, respectively. In summary, the EMNP appears to be a promising nanoformulation to enhance the oral bioavailability of insoluble and poorly permeable drugs. Copyright © 2017 Elsevier Inc. All rights reserved.
Schwameis, Michael; Schober, Andreas; Schörgenhofer, Christian; Sperr, Wolfgang Reinhard; Schöchl, Herbert; Janata-Schwatczek, Karin; Kürkciyan, Erol Istepan; Sterz, Fritz; Jilma, Bernd
2015-11-01
To date, no study has systematically investigated the impact of drowning-induced asphyxia on hemostasis. Our objective was to test the hypothesis that asphyxia induces bleeding by hyperfibrinolytic disseminated intravascular coagulation. Observational study. A 2,100-bed tertiary care facility in Vienna, Austria, Europe. All cases of drowning-induced asphyxia (n=49) were compared with other patients with cardiopulmonary resuscitation (n=116) and to patients with acute promyelocytic leukemia (n=83). Six drowning victims were investigated prospectively. To study the mechanism, a forearm-ischemia model was used in 20 volunteers to investigate whether hypoxia releases tissue plasminogen activator. None. Eighty percent of patients with drowning-induced asphyxia developed overt disseminated intravascular coagulation within 24 hours. When compared with nondrowning cardiac arrest patients, drowning patients had a 13 times higher prevalence of overt disseminated intravascular coagulation at admission (55% vs 4%; p<0.001). Despite comparable disseminated intravascular coagulation scores, acute promyelocytic leukemia patients had higher fibrinogen but lower d-dimer levels and platelet counts than drowning patients (p<0.001). Drowning victims had a three-fold longer activated partial thromboplastin time (124 s; p<0.001) than both nondrowning cardiac arrest and acute promyelocytic leukemia patients. Hyperfibrinolysis was reflected by up to 1,000-fold increased d-dimer levels, greater than 5-fold elevated plasmin antiplasmin levels, and a complete absence of thrombelastometric clotting patterns, which was reversed by antifibrinolytics and heparinase. Thirty minutes of forearm-ischemia increased tissue plasminogen activator 31-fold (p<0.001). The vast majority of drowning patients develops overt hyperfibrinolytic disseminated intravascular coagulation, partly caused by hypoxia induced tissue plasminogen activator release. Antifibrinolytics and heparinase partially reverse the abnormal clotting patterns. Severe activated partial thromboplastin time prolongation may be a marker of combined hyperfibrinolytic afibrinogenemia and autoheparinization in drowning-related asphyxia.
Chang, Kyu-Sik; Kim, Heung-Chul; Klein, Terry A; Ju, Young Ran
2017-01-01
Understanding the mechanisms of insecticide resistance to vector mosquitoes is critical for the implementation of effective control measures. A nulliparous susceptible Culex pipiens pallens (KSCP) laboratory colony and two field strains from Paju (PAJ) and Jeonju (JEO) Korea were evaluated for susceptibility to five pesticides by microapplication techniques. Unfed PAJ and JEO females demonstrated increased resistance compared to unfed KSCP females, respectively. While blood-fed KSCP females demonstrated <10-fold decreased susceptibility to pesticides compared to unfed KSCP females, blood-fed PAJ and JEO females demonstrated 25.0-50.0- and 16.0-38.6-fold increased resistance compared to unfed PAJ and JEO females, respectively. Unfed and blood-fed groups were assayed for α- and β-esterase, glutathione S -transferases, and cytochrome P-450 (P450) enzyme activity assays. P450 activity was 58.8- and 72.8-fold higher for unfed PAJ and JEO females, respectively, than unfed KSCP females. P450 enzyme activity of KSCP females assayed 1 and 7 days after a blood meal increased by 14.5- and 11.8-fold, respectively, compared to unfed KSCP females, while PAJ and JEO females demonstrated 164.9- and 148.5- and 170.7- and 160.4-fold increased activity, respectively, compared to unfed females of each population. However, other three resistance-related metabolic enzymes showed low activation at <10-fold after a blood meal. The data demonstrate that P450 acts on elevated insecticide resistance after blood meals in resistant field populations. Our findings might reveal that suppressing of the P450 protein by artificial gene mutation increases insecticidal susceptibility of Cx . pipiens and will promise effective vector mosquito control.
Larsson, Anna-Karin; Shokeer, Abeer; Mannervik, Bengt
2010-05-01
Glutathione transferase (GST) displaying enhanced activity with the cytostatic drug 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) and structurally related alkylating agents was obtained by molecular evolution. Mutant libraries created by recursive recombination of cDNA coding for human and rodent Theta-class GSTs were heterologously expressed in Escherichia coli and screened with the surrogate substrate 4-nitrophenethyl bromide (NPB) for enhanced alkyltransferase activity. A mutant with a 70-fold increased catalytic efficiency with NPB, compared to human GST T1-1, was isolated. The efficiency in degrading BCNU had improved 170-fold, significantly more than with the model substrate NPB. The enhanced catalytic activity of the mutant GST was also 2-fold higher with BCNU than wild-type mouse GST T1-1, which is 80-fold more efficient than wild-type human GST T1-1. We propose that GSTs catalyzing inactivation of anticancer drugs may find clinical use in protecting sensitive normal tissues to toxic side-effects in treated patients, and as selectable markers in gene therapy. Copyright 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier
The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism ofmore » MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg{sup -1} sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences.« less
Meena, Mukesh; Zehra, Andleeb; Dubey, Manish K; Aamir, Mohd; Gupta, Vijai K; Upadhyay, Ram S
2016-01-01
In the present study, we have evaluated the comparative biochemical defense response generated against Alternaria alternata and its purified toxins viz. alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA). The necrotic lesions developed due to treatment with toxins were almost similar as those produced by the pathogen, indicating the crucial role of these toxins in plant pathogenesis. An oxidative burst reaction characterized by the rapid and transient production of a large amount of reactive oxygen species (ROS) occurs following the pathogen infection/toxin exposure. The maximum concentration of hydrogen peroxide (H 2 O 2 ) produced was reported in the pathogen infected samples (22.2-fold) at 24 h post inoculation followed by TeA (18.2-fold), AOH (15.9-fold), and AME (14.1-fold) in treated tissues. 3,3'- Diaminobenzidine staining predicted the possible sites of H 2 O 2 accumulation while the extent of cell death was measured by Evans blue dye. The extent of lipid peroxidation and malondialdehyde (MDA) content was higher (15.8-fold) at 48 h in the sample of inoculated leaves of the pathogen when compared to control. The cellular damages were observed as increased MDA content and reduced chlorophyll. The activities of antioxidative defense enzymes increased in both the pathogen infected as well as toxin treated samples. Superoxide dismutase (SOD) activity was 5.9-fold higher at 24 h post inoculation in leaves followed by TeA (5.0-fold), AOH (4.1-fold) and AME (2.3-fold) treated leaves than control. Catalase (CAT) activity was found to be increased upto 48 h post inoculation and maximum in the pathogen challenged samples followed by other toxins. The native PAGE results showed the variations in the intensities of isozyme (SOD and CAT) bands in the pathogen infected and toxin treated samples. Ascorbate peroxidase (APx) and glutathione reductase (GR) activities followed the similar trend to scavenge the excess H 2 O 2 . The reduction in CAT activities after 48 h post inoculation demonstrate that the biochemical defense programming shown by the host against the pathogen is not well efficient resulting in the compatible host-pathogen interaction. The elicitor (toxins) induced biochemical changes depends on the potential toxic effects (extent of ROS accumulation, amount of H 2 O 2 produced). Thus, a fine tuning occurs for the defense related antioxidative enzymes against detoxification of key ROS molecules and effectively regulated in tomato plant against the pathogen infected/toxin treated oxidative stress. The study well demonstrates the acute pathological effects of A. alternata in tomato over its phytotoxic metabolites.
Lee, Kok Chang; Arai, Takamitsu; Ibrahim, Darah; Deng, Lan; Murata, Yoshinori; Mori, Yutaka; Kosugi, Akihiko
2016-01-01
This study characterizes crude enzymes derived from Penicillium rolfsii c3-2(1) IBRL, a mesophilic fungus isolated from the local soil of Malaysia. Prior to enzyme activity evaluation, P. rolfsii c3-2(1) IBRL was inoculated into a broth medium containing oil-palm trunk residues for the preparation of crude enzymes. Oil-palm trunk residues were optimally hydrolysed at pH5.0 and 50°C. P. rolfsii c3-2(1) IBRL-derived crude enzymes displayed higher thermal stability compared with the commercial enzymes, Celluclast 1.5 L and Acellerase 1500. Moreover, the hydrolysing activities of the P. rolfsii c3-2(1) IBRL-derived crude enzymes (xylan, arabinan, and laminarin) were superior compared to that of Celluclast 1.5 L and Acellerase 1500, and exhibit 2- to 3-fold and 3- to 4-fold higher oil-palm trunk residues-hydrolysing specific activity, respectively. This higher hydrolysis efficiency may be attributed to the weak 'lignin-binding' ability of the P. rolfsii c3-2(1) IBRL-derived enzymes compared to the commercial enzymes.
Takahashi, Kenji; Ohta, Masaru; Shoji, Yoshimichi; Kasai, Masayasu; Kunishiro, Kazuyoshi; Miike, Tomohiro; Kanda, Mamoru; Shirahase, Hiroaki
2010-08-01
To find a novel acyl-CoA: cholesterol acyltransferase inhibitor, a series of sulfamide derivatives were synthesized and evaluated. Compound 1d, in which carboxymethyl moiety at the 5-position of Pactimibe was replaced by a sulfamoylamino group, showed 150-fold more potent anti-foam cell formation activity (IC(50): 0.02 microM), 1.6-fold higher log D(7.0) (4.63), and a slightly lower protein binding ratio (93.2%) than Pactimibe. Compound 1i, in which the octyl chain at the 1-position in 1d was replaced by an ethoxyethyl, showed markedly low log D(7.0) (1.73) and maintained 3-fold higher anti-foam cell formation activity (IC(50): 1.0 microM), than Pactimibe. The plasma protein binding ratio (PBR) of 1i was much lower than that of Pactimibe (62.5% vs. 98.1%), and its partition ratio to the rabbit atherosclerotic aorta after oral administration was higher than that of Pactimibe. Compound 1i at 10 microM markedly inhibited cholesterol esterification in atherosclerotic rabbit aortas even when incubated with serum, while Pactimibe had little effect probably due to its high PBR. In conclusion, compound 1i is expected to more efficiently inhibit the progression of atherosclerosis than Pactimibe.
Arora, Aditya; Katti, Dhirendra S
2016-08-01
Post-translational modifications such as phosphorylation and sialylation impart crucial functions such as mineral deposition and osteogenic differentiation to non-collagenous bone matrix proteins. In this work, the influence of phosphorylation and polysialylation of gelatin on mineralization in simulated body fluid (SBF) and on osteogenic differentiation of mesenchymal stem cells (MSC) was studied. It was observed that increase in phosphorylation could be directly correlated with the mineralization ability of phosphorylated gelatin in SBF. The total calcium and phosphate deposited increased with increase in degree of phosphorylation and was >3 fold higher on the highest degree of phosphorylation. Whereas, polysialylation did not have any significant influence on mineral deposition in SBF. On the other hand, when MSCs were cultured on polysialylated surfaces they showed relatively higher cell elongation with 1.5 fold higher cell aspect ratio, higher alkaline phosphatase activity and 3 fold higher mineral deposition when compared to control and phosphorylated gelatin surfaces. In conclusion, phosphorylation and polysialylation of gelatin show a significant influence on mineralization and osteogenic differentiation respectively which can be advantageously used for bone tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa
NASA Astrophysics Data System (ADS)
Sun, Ming; Lin, Hong; Guo, Wen; Zhao, Fazhen; Li, Jian
2017-12-01
Intensive use of sulfamethazine (SM2) in aquaculture has resulted in some detrimental effects to non-targeted organisms. In order to assess its potential ecological risk, it is crucial to have a good understanding on the bioaccumulation and biodegradation of SM2 in Chlorella pyrenoidosa. The microalgae were treated with 2, 4, and 8 mg L-1 of sulfamethazine for 13 days, respectively, showing that the inhibition effects of sulfamethazine on the growth of Chlorella pyrenoidosa increased progressively as the concentrations of sulfamethazine increasing from 2 to 8 mg L-1. The peak concentrations of sulfamethazine accumulated in C. pyrenoidosa were 0.225, 0.325, and 0.596 ng per mg FW on day 13 for three treatment groups, respectively, showing a great ability to deplete sulfamethazine from the culture media. On day 13, the percentages of biotic degradation were 48.45%, 60.21% and 69.93%, respectively. The EC50 of 10.05 mg L-1 was derived which showed no significant risk for C. pyrenoidosa with a calculated risk quotient < 1. The activities of superoxide dismutase and catalase increased progressively in response to sulfamethazine and showed a positive correlation to the treatment concentrations. The highest superoxide dismutase activity was achieved at the concentration of 8 mg L-1 after 2 d of exposure, which was 1.89 folds higher than that of the control. The activity of catalase has a similar pattern to that of superoxide dismutase with the maximum activity achieved at day 2, which was 3.11 folds higher compared to that of the control. In contrast to superoxide dismutase and catalase, the maximum glutathione S-transferase activity was observed at day 6, showing 2.2 folds higher than that of the control.
Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential.
Mahmood, Arshad; Laffleur, Flavia; Leonaviciute, Gintare; Bernkop-Schnürch, Andreas
2017-10-30
The focus of the current study was to explore whether immobilization of proteases to microparticles could result in their enhanced penetration into mucus. The proteases papain (PAP) and bromelain (BROM) were covalently attached to a polyacrylate (PAA; Carbopol 971P) via amide bond formation based on carbodiimide reaction. Microparticles containing these conjugates were generated via ionic gelation with calcium chloride and were characterized regarding size, surface charge, enzymatic activity and fluorescein diacetate (FDA) loading efficiency. Furthermore, mucus penetration potential of these microparticles was evaluated in-vitro on freshly collected porcine intestinal mucus, on intact intestinal mucosa and in-vivo in Sprague-Dawley rats. Results showed mean diameter of microparticles ranging between 2-3μm and surface charge between -8 to -18mV. The addition of PAA-microparticles to porcine intestinal mucus led to a 1.39-fold increase in dynamic viscosity whereas a 3.10- and 2.12-fold decrease was observed in case of PAA-PAP and PAA-BROM microparticles, respectively. Mucus penetration studies showed a 4.27- and 2.21- fold higher permeation of FDA loaded PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. Extent of mucus diffusion determined via silicon tube assay illustrated 3.96- fold higher penetration for PAA-PAP microparticles and 1.99- fold for PAA-BROM microparticles. An in-vitro analysis on porcine intestinal mucosa described up to 16- and 7.35-fold higher degree of retention and furthermore, during in-vivo evaluation in Sprague-Dawley rats a 3.35- and 2.07-fold higher penetration behavior was observed in small intestine for PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. According to these results, evidence for microparticles decorated with proteases in order to overcome the mucus barrier and to reach the absorption lining has been provided that offers wide ranging applications in mucosal drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Do-Yeon; Yeom, Soo-Jin; Park, Chang-Su; Kim, Yeong-Su
2016-10-01
To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.
Shirazi, F; Kontoyiannis, DP
2015-01-01
Candida biofilms play an important role in infections associated with medical devices and are resistant to antifungals. We hypothesized that the echinocandin micafungin (MICA) exerts an enhanced antifungal activity against caspofungin (CAS)-susceptible (CAS-S) and CAS–non-susceptible (CAS-NS) Candida albicans and Candida parapsilosis which is at least in part through apoptosis, even in the biofilm environment. Apoptosis was characterized by detecting reactive oxygen species (ROS) accumulation, depolarization of mitochondrial membrane potential (MMP), DNA fragmentation, lack of plasma membrane integrity, and metacaspase activation following exposure of Candida biofilm to MICA for 3h at 37°C in RPMI 1640 medium. The minimum inhibitory concentration was higher for CAS (2.0–16.0 μg/mL) than for MICA (1.0–8.0 μg/mL) for Candida biofilms. Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Elevated intracellular ROS levels and depolarization of MMP was evident in CAS-S C. albicans (3.0–4.2 fold) and C. parapsilosis (4.8–5.4 fold) biofilms compared with CAS-NS (1.2 fold) after exposure to MICA (0.25x-1xMIC). Finally higher ß-1, 3 glucan levels were seen in sessile cells compared to planktonic cells, especially in CAS-NS strains. MICA treatment might induce a metacaspase-dependent apoptotic process in biofilms of both CAS-S C. albicans and C. parapsilosis, and to some degree in CAS-NS strains. PMID:26065323
Nallani, Srikanth C; Glauser, Tracy A; Hariparsad, Niresh; Setchell, Kenneth; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B
2003-12-01
In clinical studies, topiramate (TPM) was shown to cause a dose-dependent increase in the clearance of ethinyl estradiol. We hypothesized that this interaction results from induction of hepatic cytochrome P450 (CYP) 3A4 by TPM. Accordingly, we investigated whether TPM induces CYP3A4 in primary human hepatocytes and activates the human pregnane X receptor (hPXR), a nuclear receptor that serves as a regulator of CYP3A4 transcription. Human hepatocytes were treated for 72 h with TPM (10, 25, 50, 100, 250, and 500 microM) and known inducers, phenobarbital (PB; 2 mM), and rifampicin (10 microM). The rate of testosterone 6beta-hydroxylation by hepatocytes served as a marker for CYP3A4 activity. The CYP3A4-specific protein and mRNA levels were determined by using Western and Northern blot analyses, respectively. The hPXR activation was assessed with cell-based reporter gene assay. Compared with controls, TPM (50-500 microM)-treated hepatocytes exhibited a considerable increase in the CYP3A4 activity (1. 6- to 8.2-fold), protein levels (4.6- to 17.3-fold), and mRNA levels (1.9- to 13.3-fold). Comparatively, rifampicin (10 microM) effected 14.5-, 25.3-, and a 20.3-fold increase in CYP3A4 activity, immunoreactive protein levels, and mRNA levels, respectively. TPM (50-500 microM) caused 1.3- to 3-fold activation of the hPXR, whereas rifampicin (10 microM) caused a 6-fold activation. The observed induction of CYP3A4 by TPM, especially at the higher concentrations, provides a potential mechanistic explanation of the reported increase in the ethinyl estradiol clearance by TPM. It also is suggestive of other potential interactions when high-dose TPM therapy is used.
Lemaire, Sandrine; Kosowska-Shick, Klaudia; Appelbaum, Peter C; Verween, Gunther; Tulkens, Paul M; Van Bambeke, Françoise
2010-06-01
Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.
Hisada, Yohei; Alexander, Wyeth; Kasthuri, Raj; Voorhees, Peter; Mobarrez, Fariborz; Taylor, Angela; McNamara, Coleen; Wallen, Hakan; Witkowski, Marco; Key, Nigel S; Rauch, Ursula; Mackman, Nigel
2016-03-01
Thrombosis is a leading cause of morbidity and mortality. Detection of a prothrombotic state using biomarkers would be of great benefit to identify patients at risk of thrombosis that would benefit from thromboprophylaxis. Tissue factor (TF) is a highly procoagulant protein that under normal conditions is not present in the blood. However, increased levels of TF in the blood in the form of microparticles (MPs) (also called extracellular vesicles) are observed under various pathological conditions. In this review, we will discuss studies that have measured MP-TF activity in a variety of diseases using two similar FXa generation assay. One of the most robust signals for MP-TF activity (16-26 fold higher than healthy controls) is observed in pancreatic cancer patients with venous thromboembolism. In this case, the TF+ MPs appear to be derived from the cancer cells. Surprisingly, cirrhosis and acute liver injury are associated with 17-fold and 38-fold increases in MP-TF activity, respectively. Based on mouse models, we speculate that the TF+ MPs are derived from hepatocytes. More modest increases are observed in patients with urinary tract infections (6-fold) and in a human endotoxemia model (9-fold) where monocytes are the likely source of the TF+ MPs. Finally, there is no increase in MP-TF activity in the majority of cardiovascular disease patients. These studies indicate that MP-TF activity may be a useful biomarker to identify patients with particular diseases that have an increased risk of thrombosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
The benefits of sustained leisure-time physical activity on job strain.
Yang, X; Telama, R; Hirvensalo, M; Hintsanen, M; Hintsa, T; Pulkki-Råback, L; Viikari, J S A
2010-08-01
The long-term effects of leisure-time physical activity (LTPA) on job strain have not been assessed in a large prospective population-based cohort study. To examine the relationship between the LTPA and the prevalence of job strain. The participants were 861 full-time employees (406 men and 455 women), aged 24-39 years in 2001, from the ongoing Cardiovascular Risk in Young Finns Study. LTPA was assessed using a self-report questionnaire in 1992 and in 2001. The participants were grouped into four categories according to tertiles of LTPA index at two time points: persistently active, increasingly active, decreasingly active and persistently inactive. Job strain was measured in 2001 by indicators of job demands and job control. Baseline LTPA was inversely associated with job strain (P < 0.001) and job demands (P < 0.05) and directly associated with job control (P < 0.05) in both sexes in a model adjusted for the change in 9-year LTPA, age, educational level, occupational status and smoking. Compared with persistently active participants, persistently inactive participants had a 4.0-fold higher job strain after adjustment for the confounders. Similarly, persistently inactive participants had a 2.7-fold higher job demands and a 1.8-fold lower job control. Decreasing physical activity was independently associated with high job strain (P < 0.01) and with low job control (P < 0.01). Participation in regular LTPA during leisure may help young adults to cope with job strain. A long-term benefit of LTPA may play a role in the development of mental well-being.
Peterbauer, Thomas; Lahuta, Leslaw B.; Blöchl, Andreas; Mucha, Jan; Jones, David A.; Hedley, Cliff L.; Gòrecki, Richard J.; Richter, Andreas
2001-01-01
Raffinose family oligosaccharides (RFOs) are synthesized by a set of galactosyltransferases, which sequentially add galactose units from galactinol to sucrose. The accumulation of RFOs was studied in maturing seeds of two pea (Pisum sativum) lines with contrasting RFO composition. Seeds of the line SD1 accumulated stachyose as the predominant RFO, whereas verbascose, the next higher homolog of stachyose, was almost absent. In seeds of the line RRRbRb, a high level of verbascose was accumulated alongside with stachyose. The increase in verbascose in developing RRRbRb seeds was associated with galactinol-dependent verbascose synthase activity. In addition, a galactinol-independent enzyme activity was detected, which catalyzed transfer of a galactose residue from one stachyose molecule to another. The two enzyme activities synthesizing verbascose showed an optimum at pH 7.0. Both activities were almost undetectable in SD1. Maximum activity of stachyose synthase was about 4-fold higher in RRRbRb compared with SD1, whereas the activities of galactinol synthase and raffinose synthase were only about 1.5-fold higher in RRRbRb. The levels of galactinol synthase and stachyose synthase activity were reflected by steady-state levels of corresponding mRNAs. We suggest that the accumulation of verbascose in RRRbRb was controlled by a coordinated up-regulation of the last steps of verbascose biosynthesis. PMID:11743119
Martínez, Juan A; Tavárez, José J; Oliveira, Caroline M; Banerjee, Dipak K
2006-05-01
During tumor growth and invasion, the endothelial cells from a relatively quiescent endothelium start proliferating. The exact mechanism of switching to a new angiogenic phenotype is currently unknown. We have examined the role of intracellular cAMP in this process. When a non-transformed capillary endothelial cell line was treated with 2 mM 8Br-cAMP, cell proliferation was enhanced by approximately 70%. Cellular morphology indicated enhanced mitosis after 32-40 h with almost one-half of the cell population in the S phase. Bcl-2 expression and caspase-3, -8, and -9 activity remained unaffected. A significant increase in the Glc(3)Man(9)GlcNAc(2)-PP-Dol biosynthesis and turnover, Factor VIIIC N-glycosylation, and cell surface expression of N-glycans was observed in cells treated with 8Br-cAMP. Dol-P-Man synthase activity in the endoplasmic reticulum membranes also increased. A 1.4-1.6-fold increase in HSP-70 and HSP-90 expression was also observed in 8Br-cAMP treated cells. On the other hand, the expression of GRP-78/Bip was 2.3-fold higher compared to that of GRP-94 in control cells, but after 8Br-cAMP treatment for 32 h, it was reduced by 3-fold. GRP-78/Bip expression in untreated cells was 1.2-1.5-fold higher when compared with HSP-70 and HSP-90, whereas that of the GRP-94 was 1.5-1.8-fold lower. After 8Br-cAMP treatment, GRP-78/Bip expression was reduced 4.5-4.8-fold, but the GRP-94 was reduced by 1.5-1.6-fold only. Upon comparison, a 2.9-fold down-regulation of GRP-78/Bip was observed compared to GRP-94. We, therefore, conclude that a high level of Glc(3)Man(9)GlcNAc(2)-PP-Dol, resulting from 8Br-cAMP stimulation up-regulated HSP-70 expression and down-regulated that of the GRP-78/Bip, maintained adequate protein folding, and reduced endoplasmic reticulum stress. As a result capillary endothelial cell proliferation was induced.
Terefe, Netsanet Shiferaw; Delon, Antoine; Buckow, Roman; Versteeg, Cornelis
2015-12-01
Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Mina, Sara; Staerck, Cindy; d'Almeida, Sènan M; Marot, Agnès; Delneste, Yves; Calenda, Alphonse; Tabiasco, Julie; Bouchara, Jean-Philippe; Fleury, Maxime J J
2015-12-01
Scedosporium boydii is an opportunistic filamentous fungus which may be responsible for a large variety of infections in both immunocompetent and immunocompromised individuals. This fungus belongs to the Scedosporium apiospermum species complex which usually ranks second among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Species of the S. apiospermum complex are able to chronically colonize the CF airways suggesting pathogenic mechanisms allowing persistence and growth of these fungi in the respiratory tract. Few putative virulence factors have been purified and characterized so far in the S. apiospermum complex including a cytosolic Cu,Zn-superoxide dismutase (SOD) and a monofunctional catalase (catalase A1). Upon microbial infection, host phagocytes release reactive oxygen species (ROS), such as hydrogen peroxide, as part of the antimicrobial response. Catalases are known to protect pathogens against ROS by degradation of the hydrogen peroxide. Here, we identified the S. boydii catalase A1 gene (CATA1) and investigated its expression in response to the environmental conditions encountered in the CF airways and to the oxidative stress. Results showed that S. boydii CATA1 gene expression is not affected by hypoxia, hypercapnia or pH changes. In contrast, CATA1 gene was overexpressed in response to a chemically induced oxidative stress with a relative gene expression 37-fold higher in the presence of 250 μM H(2)O(2), 20-fold higher with 250 μM menadione and 5-fold higher with 2 mM paraquat. Moreover, S. boydii CATA1 gene expression progressively increased upon exposure to activated THP-1-derived macrophages, reaching a maximum after 12 h (26 fold). Activated HL60-derived neutrophils and activated human peripheral blood neutrophils more rapidly induced S. boydii CATA1 gene overexpression, a maximum gene expression level being reached at 75 min (17 fold) and 60 min (15 fold), respectively. In contrast expression of the gene encoding the Cu,Zn-SOD (SODC gene) was not affected by H(2)O(2), menadione, paraquat or in co-culture with phagocytic cells. These results suggest that S. boydii CATA1 gene is highly stimulated by the oxidative burst response whereas SODC gene is constitutively expressed. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Im, Yang Ju; Smith, Caroline M.; Phillippy, Brian Q.; Strand, Deserah; Kramer, David M.; Grunden, Amy M.; Boss, Wendy F.
2014-01-01
One challenge in studying the second messenger inositol(1,4,5)-trisphosphate (InsP3) is that it is present in very low amounts and increases only transiently in response to stimuli. To identify events downstream of InsP3, we generated transgenic plants constitutively expressing the high specific activity, human phosphatidylinositol 4-phosphate 5-kinase Iα (HsPIPKIα). PIP5K is the enzyme that synthesizes phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2); this reaction is flux limiting in InsP3 biosynthesis in plants. Plasma membranes from transgenic Arabidopsis expressing HsPIPKIα had 2–3 fold higher PIP5K specific activity, and basal InsP3 levels in seedlings and leaves were >2-fold higher than wild type. Although there was no significant difference in photosynthetic electron transport, HsPIPKIα plants had significantly higher starch (2–4 fold) and 20% higher anthocyanin compared to controls. Starch content was higher both during the day and at the end of dark period. In addition, transcripts of genes involved in starch metabolism such as SEX1 (glucan water dikinase) and SEX4 (phosphoglucan phosphatase), DBE (debranching enzyme), MEX1 (maltose transporter), APL3 (ADP-glucose pyrophosphorylase) and glucose-6-phosphate transporter (Glc6PT) were up-regulated in the HsPIPKIα plants. Our results reveal that increasing the phosphoinositide (PI) pathway affects chloroplast carbon metabolism and suggest that InsP3 is one component of an inter-organelle signaling network regulating chloroplast metabolism. PMID:27135490
Ghasemzadeh, Ali; Ashkani, Sadegh; Baghdadi, Ali; Pazoki, Alireza; Jaafar, Hawa Z E; Rahmat, Asmah
2016-09-09
Sweet basil (Ocimum basilicum Linnaeus) is aromatic herb that has been utilized in traditional medicine. To improve the phytochemical constituents and pharmaceutical quality of sweet basil leaves, ultraviolet (UV)-B irradiation at different intensities (2.30, 3.60, and 4.80 W/m²) and durations (4, 6, 8, and 10-h) was applied at the post-harvest stage. Total flavonoid content (TFC) and total phenolic content (TPC) were measured using spectrophotometric method, and individual flavonoids and phenolic acids were identified using ultra-high performance liquid chromatography. As a key enzyme for the metabolism of flavonoids, chalcone synthase (CHS) activity, was measured using a CHS assay. Antioxidant activity and antiproliferative activity of extracts against a breast cancer cell line (MCF-7) were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, respectively. UV-B irradiation at an intensity of 3.60 W/m² increased TFC approximately 0.85-fold and also increased quercetin (0.41-fold), catechin (0.85-fold), kaempferol (0.65-fold) rutin (0.68-fold) and luteolin (1.00-fold) content. The highest TPC and individual phenolic acid (gallic acid, cinnamic acid and ferulic acid) was observed in the 3.60 W/m² of UV-B treatment. Cinnamic acid and luteolin were not detected in the control plants, production being induced by UV-B irradiation. Production of these secondary metabolites was also significantly influenced by the duration of UV-B irradiation. Irradiation for 8-h led to higher TFC, TPC and individual flavonoids and phenolic acids than for the other durations (4, 8, and 10-h) except for cinnamic acid, which was detected at higher concentration when irradiated for 6-h. Irradiation for 10-h significantly decreased the secondary metabolite production in sweet basil leaves. CHS activity was induced by UV-B irradiation and highest activity was observed at 3.60 W/m² of UV-B irradiation. UV-B treated leaves presented the highest DPPH activity and antiproliferative activity with a half-maximal inhibitory concentration (IC50) value of 56.0 and 40.8 µg/mL, respectively, over that of the control plants (78.0 and 58.2 µg/mL, respectively). These observations suggest that post-harvest irradiation with UV-B can be considered a promising technique to improve the healthy-nutritional and pharmaceutical properties of sweet basil leaves.
Weitnauer, E; Robitzki, A; Layer, P G
1998-10-02
Several side activities have been attributed to butyrylcholinesterase (BChE), including aryl acylamidase (AAA) activity, which is an amidase-like activity with unknown physiological function splitting the artificial substrate o-nitroacetanilide. For avians, extensive developmental data have pointed to neurogenetic functions of BChE, however, a possible AAA activity of BChE has not been studied. In this study, we first compare the relative levels of AAA exhibited by BChE in whole sera from chick, fetal calves (FCS) and horse. Remarkably, FCS exhibits a 400-fold higher ratio of AAA/BChE than horse and 80-fold higher than chick serum. We then show that an immunoisolated preparation of BChE from chicken serum presents significant activity for AAA. Both in sera and with the purified enzyme, the AAA activity is fully inhibited by anticholinesterase drugs, showing that AAA activity is exclusively conveyed by the BChE molecule. Noticeably, AAA inhibition even occurs at lower drug concentrations than that of BChE activity itself. Moreover, AAA is sensitive to serotonin. These data indicate that (1) AAA is a general feature of serum BChE of vertebrates including avians, (2) AAA is effectively inhibited by cholinergic and serotonergic agents, and (3) AAA may have a developmental role, since it is much pronounced in a serum from fetal animals. Functionally, deamination of neuropeptides, a link between cholinergic and serotonergic neurotransmitter systems, and roles in lipoprotein metabolism could be relevant.
Wang, P; Walter, R D; Bhat, B G; Florant, G L; Coleman, R A
1997-10-01
In order to determine whether critical enzyme activities of glycerolipid synthesis change seasonally in the golden-mantled ground squirrel (Spermophilus lateralis), we collected summer and winter samples of liver, brown adipose tissue (BAT), and white adipose tissue (WAT). Compared with fatty acid synthase activity during hibernation, summer activities were 2.5- to 8-fold higher in adipose tissue and liver. Diacylglycerol acyltransferase (DGAT) activity was 2.6-fold higher in WAT during the summer, consistent with increased seasonal triacylglycerol storage, but the activity did not change in liver or BAT, suggesting that in these tissues, triacylglycerol synthesis is equally active in summer and winter. Lack of change in acyl-CoA synthetase in liver and BAT may reflect high synthetic rates for acyl-CoAs that are destined in the summer for glycerolipid synthesis and in the winter for beta-oxidation. Monoacylglycerol acyltransferase (MGAT) activity increased significantly in both liver and WAT during the summer but decreased in BAT. Although the changes were consistent with active year-round triacylglycerol synthesis, the higher summer MGAT activity observed in the squirrel liver and WAT suggest that MGATs function may not be limited to conserving essential fatty acids during physiological states of lipolysis. Seasonal changes observed in the ground squirrel were similar to those previously reported in the yellow-bellied marmot (Marmota flaviventris), confirming that important adjustments occur in energy metabolism necessitated by long seasonal hibernation.
In Vitro and Ex Vivo Evaluation of Novel Curcumin-Loaded Excipient for Buccal Delivery.
Laffleur, Flavia; Schmelzle, Franziska; Ganner, Ariane; Vanicek, Stefan
2017-08-01
This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.
Bassan, Juliana Cristina; de Souza Bezerra, Thaís Milena; Peixoto, Guilherme; da Cruz, Clariana Zanutto Paulino; Galán, Julián Paul Martínez; Vaz, Aline Buda dos Santos; Garrido, Saulo Santesso; Filice, Marco; Monti, Rubens
2016-01-01
In this study, trypsin (Enzyme Comission 3.4.21.4) was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP) with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides. PMID:28773482
Viscosity dictates metabolic activity of Vibrio ruber
Borić, Maja; Danevčič, Tjaša; Stopar, David
2012-01-01
Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705
Effect of brain-derived neurotrophic factor (BDNF) on hepatocyte metabolism.
Genzer, Yoni; Chapnik, Nava; Froy, Oren
2017-07-01
Brain-derived neurotrophic factor (BDNF) plays crucial roles in the development, maintenance, plasticity and homeostasis of the central and peripheral nervous systems. Perturbing BDNF signaling in mouse brain results in hyperphagia, obesity, hyperinsulinemia and hyperglycemia. Currently, little is known whether BDNF affects liver tissue directly. Our aim was to determine the metabolic signaling pathways activated after BDNF treatment in hepatocytes. Unlike its effect in the brain, BDNF did not lead to activation of the liver AKT pathway. However, AMP protein activated kinase (AMPK) was ∼3 times more active and fatty acid synthase (FAS) ∼2-fold less active, suggesting increased fatty acid oxidation and reduced fatty acid synthesis. In addition, cAMP response element binding protein (CREB) was ∼3.5-fold less active together with its output the gluconeogenic transcript phosphoenolpyruvate carboxykinase (Pepck), suggesting reduced gluconeogenesis. The levels of glycogen synthase kinase 3b (GSK3b) was ∼3-fold higher suggesting increased glycogen synthesis. In parallel, the expression levels of the clock genes Bmal1 and Cry1, whose protein products play also a metabolic role, were ∼2-fold increased and decreased, respectively. In conclusion, BDNF binding to hepatocytes leads to activation of catabolic pathways, such as fatty acid oxidation. In parallel gluconeogenesis is inhibited, while glycogen storage is triggered. This metabolic state mimics that of after breakfast, in which the liver continues to oxidize fat, stops gluconeogenesis and replenishes glycogen stores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Higgins, Vincent J.; Braidwood, Mark; Bell, Phil; Bissinger, Peter; Dawes, Ian W.; Attfield, Paul V.
1999-01-01
Strain selection and improvement in the baker’s yeast industry have aimed to increase the speed of maltose fermentation in order to increase the leavening activity of industrial baking yeast. We identified two groups of baker’s strains of Saccharomyces cerevisiae that can be distinguished by the mode of regulation of maltose utilization. One group (nonlagging strains), characterized by rapid maltose fermentation, had at least 12-fold more maltase and 130-fold-higher maltose permease activities than maltose-lagging strains in the absence of inducing sugar (maltose) and repressing sugar (glucose). Increasing the noninduced maltase activity of a lagging strain 13-fold led to an increase in CO2 production in unsugared dough. This increase in CO2 production also was seen when the maltose permease activity was increased 55-fold. Only when maltase and maltose permease activities were increased in concert was CO2 production by a lagging strain similar to that of a nonlagging strain. The noninduced activities of maltase and maltose permease constitute the largest determinant of whether a strain displays a nonlagging or a lagging phenotype and are dependent upon the MALx3 allele. Previous strategies for strain improvement have targeted glucose derepression of maltase and maltose permease expression. Our results suggest that increasing noninduced maltase and maltose permease levels is an important target for improved maltose metabolism in unsugared dough. PMID:9925600
Kim, Kyoung Whun; Jeong, Soyoung; Ahn, Ki Bum; Yang, Jae Seung; Yun, Cheol-Heui; Han, Seung Hyun
2017-12-01
The vibriocidal assay using guinea pig complement is widely used for the evaluation of immune responses to cholera vaccines in human clinical trials. However, it is unclear why guinea pig complement has been used over human complement in the measurement of vibriocidal activity of human sera and there have not been comparison studies for the use of guinea pig complement over those from other species. Therefore, we comparatively investigated the effects of complements derived from human, guinea pig, rabbit, and sheep on vibriocidal activity. Complements from guinea pig, rabbit, and human showed concentration-dependent vibriocidal activity in the presence of quality control serum antibodies. Of these complements, guinea pig complement was the most sensitive and effective over a wide concentration range. When the vibriocidal activity of complements was measured in the absence of serum antibodies, human, sheep, and guinea pig complements showed vibriocidal activity up to 40-fold, 20-fold, and 1-fold dilution, respectively. For human pre- and post-vaccination sera, the most potent vibriocidal activity was observed when guinea pig complement was used. In addition, the highest fold-increases between pre- and post- vaccinated sera were obtained with guinea pig complement. Furthermore, human complement contained a higher amount of V. cholerae- and its lipopolysaccharide-specific antibodies than guinea pig complement. Collectively, these results suggest that guinea pig complements are suitable for vibriocidal assays due to their high sensitivity and effectiveness to human sera.
Quang, Nguyen Ngoc; Chavchich, Marina; Anh, Chu Xuan; Birrell, Geoffrey W; van Breda, Karin; Travers, Thomas; Rowcliffe, Kerryn; Edstein, Michael D
2018-05-07
The pharmacokinetics (PK) and ex vivo activity (pharmacodynamics [PD]) of two artemisinin combination therapies (ACTs) (artemisinin-piperaquine [ARN-PPQ] [Artequick ® ] and artesunate-amodiaquine [ARS-AQ] [Coarsucam ™ ]) in healthy Vietnamese volunteers were compared following 3-day courses of the ACTs for the preselection of the drugs for falciparum malaria therapy. For PK analysis, serial plasma samples were collected from two separate groups of 22 volunteers after ACT administration. Of these volunteers, ex vivo activity was assessed in plasma samples from seven volunteers who received both ACTs. The area under the concentration-time curve (AUC 0-∞ ) was 3.6-fold higher for dihydroartemisinin (active metabolite of ARS) than that for ARN, whereas the AUC 0-∞ of desethylamodiaquine (active metabolite of AQ) was 2.0-fold lower than that of PPQ. Based on the 50% inhibitory dilution values of the volunteers' plasma samples collected from 0.25 to 3 hours after the last dose, the ex vivo activity of ARS-AQ was 2.9- to 16.2-fold more potent than that of ARN-PPQ against the drug-sensitive D6 Plasmodium falciparum line. In addition, at 1.5, 4.0, and 24 hours after the last dose, the ex vivo activity of ARS-AQ was 20.8-, 3.5-, and 8.5-fold more potent than that of ARN-PPQ against the ARN-sensitive MRA1239 line. By contrast, at 1.5 hours, the ex vivo activity of ARS-AQ was 5.4-fold more active than that of ARN-PPQ but had similar activities at 4 and 24 hours against the ARN-resistant MRA1240 line. The PK-PD data suggest that ARS-AQ possesses superior antimalarial activity than that of ARN-PPQ and would be the preferred ACT for further in vivo efficacy testing in multidrug-resistant falciparum malaria areas.
Worakan, Phapawee; Karaket, Netiya; Maneejantra, Nuchada; Supaibulwatana, Kanyaratt
2017-02-01
Cytokinins are phytohormones that play multiple roles to control plant growth and development. In this study, leaf biomass and the production of andrographolide compounds in a medicinal plant Andrographis paniculata were significantly increased after exogenously treating with the synthetic cytokinin cytokinin-1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU) at 0 (water), 5, or 10 mg L -1 and observed the results for 24 h, 48 h, and 7 days of treatment. It was found that CPPU could significantly enhance new axillary bud formation and further promote branching 4.6-5.6-fold higher, resulting in higher fresh weight (FW) and dry weight (DW) than the control. Application of CPPU at 5 mg L -1 significantly promoted the highest contents of total reducing sugar at 2.5-fold in leaves and at 1.5-fold in roots. Although treatments of CPPU significantly affected the increasing contents of chlorophyll and carotenoid (1.2-1.6-fold), CPPU at 10 mg L -1 slightly caused leaf stress and chlorophyll reduction. Interestingly, 5 mg L -1 CPPU could enhance andrographolide content, an active anti-infectious compound in Andrographis paniculata (2.2-fold higher than the control) that reached the highest content at 24 h after treatment. This study suggested that CPPU should be suitable for field application to promote leaf yields and induce the production of useful pharmaceutical compounds in Andrographis paniculata.
Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H
1985-01-01
We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661
In Vitro and In Vivo Antibacterial Activities of DK-507k, a Novel Fluoroquinolone
Otani, Tsuyoshi; Tanaka, Mayumi; Ito, Emi; Kurosaka, Yuichi; Murakami, Yoichi; Onodera, Kiyomi; Akasaka, Takaaki; Sato, Kenichi
2003-01-01
The antibacterial activities of DK-507k, a novel quinolone, were compared with those of other quinolones: ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, sitafloxacin, and garenoxacin (BMS284756). DK-507k was as active as sitafloxacin and was as active as or up to eightfold more active than gatifloxacin, moxifloxacin, and garenoxacin against Streptococcus pneumoniae, methicillin-susceptible and methicillin-resistant Staphylococcus aureus, and coagulase-negative staphylococci. DK-507k was as active as or 4-fold more active than garenoxacin and 2- to 16-fold more active than gatifloxacin and moxifloxacin against ciprofloxacin-resistant strains of S. pneumoniae, including clinical isolates and in vitro-selected mutants with known mutations. DK-507k inhibited all ciprofloxacin-resistant strains of S. pneumoniae at 1 μg/ml. A time-kill assay with S. pneumoniae showed that DK-507k was more bactericidal than gatifloxacin and moxifloxacin. The activities of DK-507k against most members of the family Enterobacteriaceae were comparable to those of ciprofloxacin and equal to or up to 32-fold higher than those of gatifloxacin, levofloxacin, moxifloxacin, and garenoxacin. DK-507k was fourfold less active than sitafloxacin and ciprofloxacin against Pseudomonas aeruginosa, while it was two to four times more potent than levofloxacin, gatifloxacin, moxifloxacin, and garenoxacin against P. aeruginosa. In vivo, intravenous treatment with DK-507k was more effective than that with gatifloxacin and moxifloxacin against systemic infections caused by S. aureus, S. pneumoniae, and P. aeruginosa in mice. In a mouse model of pneumonia due to penicillin-resistant S. pneumoniae, DK-507k administered subcutaneously showed dose-dependent efficacy and eliminated the bacteria from the lungs, whereas gatifloxacin and moxifloxacin had no significant efficacy. Oral treatment with DK-507k was slightly more effective than that with ciprofloxacin in a rat model of foreign body-associated urinary tract infection caused by a P. aeruginosa isolate for which the MIC of DK-507k was fourfold higher than that of ciprofloxacin. Oral administration of DK-507k to rats achieved higher peak concentrations in serum and higher concentrations in cumulative urine than those achieved with ciprofloxacin. These data indicate the potential advantages of DK-507k over other quinolones for the treatment of a wide range of community-acquired infections. PMID:14638477
Dolfi, Sonia C; Yang, Zhihong; Lee, Mao-Jung; Guan, Fei; Hong, Jungil; Yang, Chung S
2013-09-11
Tocopherols are the major source of dietary vitamin E. In this study, the growth inhibitory effects of different forms of tocopherols (T), tocopheryl phosphates (TP), and tocopherol quinones (TQ) on human colon cancer HCT116 and HT29 cells were investigated. δ-T was more active than γ-T in inhibiting colon cancer cell growth, decreasing cancer cell colony formation, and inducing apoptosis; however, α-T was rather ineffective. Similarly, the rate of cellular uptake also followed the ranking order δ-T > γ-T ≫ α-T. TP and TQ generally had higher inhibitory activities than their parent compounds. Interestingly, the γ forms of TP and TQ were more active than the δ forms in inhibiting cancer cell growth, whereas the α forms were the least effective. The potencies of γ-TQ and δ-TQ (showing IC50 values of ∼0.8 and ∼2 μM on HCT116 cells after a 72 h incubation, respectively) were greater than 100-fold and greater than 20-fold higher, respectively, than those of their parent tocopherols. Induction of cancer cell apoptosis by δ-T, γ-TP, and γ-TQ was characterized by the cleavage of caspase 3 and PARP1 and DNA fragmentation. These studies demonstrated the higher growth inhibitory activity of δ-T than γ-T, the even higher activities of the γ forms of TP and TQ, and the ineffectiveness of the α forms of tocopherol and their metabolites against colon cancer cells.
Brewer, Gregory J; Boehler, Michael D; Jones, Torrie T; Wheeler, Bruce C
2008-05-30
The most interesting property of neurons is their long-distance propagation of signals as spiking action potentials. Since 1993, Neurobasal/B27 has been used as a serum-free medium optimized for hippocampal neuron survival. Neurons on microelectrode arrays (MEA) were used as an assay system to increase spontaneous spike rates in media of different compositions. We find spike rates of 0.5 s(-1) (Hz) for rat embryonic hippocampal neurons cultured in Neurobasal/B27, lower than cultures in serum-based media and offering an opportunity for improvement. NbActiv4 was formulated by addition of creatine, cholesterol and estrogen to Neurobasal/B27 that synergistically produced an eightfold increase in spontaneous spike activity. The increased activity with NbActiv4 correlated with a twofold increase in immunoreactive synaptophysin bright puncta and GluR1 total puncta. Characteristic of synaptic scaling, immunoreactive GABAAbeta puncta also increased 1.5-fold and NMDA-R1 puncta increased 1.8-fold. Neuron survival in NbActiv4 equaled that in Neurobasal/B27, but with slightly higher astroglia. Resting respiratory demand was decreased and demand capacity was increased in NbActiv4, indicating less stress and higher efficiency. These results show that NbActiv4 is an improvement to Neurobasal/B27 for cultured networks with an increased density of synapses and transmitter receptors which produces higher spontaneous spike rates in neuron networks.
The glutathione defense system in the pathogenesis of rheumatoid arthritis.
Hassan, M Q; Hadi, R A; Al-Rawi, Z S; Padron, V A; Stohs, S J
2001-01-01
In order to assess a possible role of the natural glutathione defense system in the pathogenesis of rheumatoid arthritis (RA), serum reduced glutathione levels (GSH), glutathione reductase (GSR), glutathione S-transferase (GST), glutathione peroxidase (GSH-Px) and alkaline phosphatase (ALP) activities, lipid peroxidation (MDA content) and indexes of inflammation were evaluated in 58 rheumatic patients. Rheumatoid athritis was associated with significant depletion (ca. 50%) in GSH levels compared with normal control subjects. Serum levels of the detoxifying enzymes GSR and GSH-Px decreased by ca. 50% and 45%, respectively, whereas a threefold increase in the activity of GST was observed. A 1.2-fold increase in ALP was observed in patients with RA. These effects were accompanied by a 3.1-fold increase in serum MDA content. The MDA content was higher in RA patients who were seropositive for rheumatoid factor as well as positive for C-reactive proteins. The erythrocyte sedimentation rate for all patients with RA was approximately 13.8-fold higher than for the control group, and was higher among RA patients who were positive for C-reactive proteins and exhibited seropositivity for rheumatoid factor. Patients with RA receiving gold therapy exhibited significantly lower MDA levels whereas all other factors that were measured were not effected. The results support a hypothesis that defense mechanisms against reactive oxygen species are impaired in RA. Copyright 2001 John Wiley & Sons, Ltd.
Drozd, Ewa; Krzysztoń-Russjan, Jolanta; Marczewska, Jadwiga; Drozd, Janina; Bubko, Irena; Bielak, Magda; Lubelska, Katarzyna; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Anuszewska, Elżbieta; Gruber-Bzura, Beata
2016-10-01
Doxorubicin (DOX), one of the most effective anticancer drugs, acts in a variety of ways including DNA damage, enzyme inhibition and generation of reactive oxygen species. Glutathione (GSH) and glutathione-related enzymes including: glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferases (GST) may play a role in adaptive detoxification processes in response to the oxidative stress, thus contributing to drug resistance phenotype. In this study, we investigated effects of DOX treatment on expression and activity of GSH-related enzymes and multidrug resistance-associated proteins in cultured human cervical cancer cells displaying different resistance against this drug (HeLa and KB-V1). Determination of expression level of genes encoding GST isoforms and MRP proteins (GCS, GPX, GSR, GSTA1-3, GSTM1, GSTP1, ABCC1-3, MGST1-3) was performed using StellARray™ Technology. Enzymatic activities of GPX and GSR were measured using biochemical methods. Expression of MRP1 was examined by immunofluorescence microscopy. This study showed that native expression levels of GSTM1 and GSTA3 were markedly higher in KB-V1 cells (2000-fold and 200-fold) compared to HeLa cells. Resistant cells have also shown significantly elevated expression of GSTA1 and GSTA2 genes (200-fold and 50-fold) as a result of DOX treatment. In HeLa cells, exposure to DOX increased expression of all genes: GSTM1 (7-fold) and GSTA1-3 (550-fold, 150-fold and 300-fold). Exposure to DOX led to the slight increase of GCS expression as well as GPX activity in KB-V1 cells, while in HeLa cells it did not. Expression of ABCC1 (MRP1) was not increased in any of the tested cell lines. Our results indicate that expression of GSTM1 and GSTA1-3 genes is up-regulated by DOX treatment and suggest that activity of these genes may be associated with drug resistance of the tested cells. At the same time, involvement of MRP1 in DOX resistance in the given experimental conditions is unlikely. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults
Collin, Fidéline; Duval, Xavier; Lemoing, Vincent; Piroth, Lionel; Al Kaied, Firas; Massip, Patrice; Villes, Virginie; Chêne, Geneviève; Raffi, François
2009-01-01
In the ANRS CO8 APROCO-COPILOTE cohort of patients treated with combination antiretroviral therapy since 1997–1999, the incidence density of bone fractures was 3.3 for 1,000 patient-years (95% CI: 2.0–4.6). Rate was 2.9-fold (95% CI: 1.3–6.5) higher among patients with excessive alcohol consumption and 3.6-fold (95% CI: 1.6–8.1) higher in those with Hepatitis C virus (HCV) co-infection. Specific monitoring of HCV/HIV-coinfected patients and active promotion of alcohol cessation should be recommended for the prevention of bone fractures. PMID:19300202
EGR-1 and DUSP-1 are important negative regulators of pro-allergic responses in airway epithelium.
Golebski, Korneliusz; van Egmond, Danielle; de Groot, Esther J; Roschmann, Kristina I L; Fokkens, Wytske J; van Drunen, Cornelis M
2015-05-01
Primary nasal epithelium of house dust mite allergic individuals is in a permanently activated inflammatory transcriptional state. To investigate whether a deregulated expression of EGR-1 and/or DUSP-1, two potential negative regulators of pro-inflammatory responses, could contribute to the activation of the inflammatory state. We silenced the expression of EGR-1 or DUSP-1 in the airway epithelial cell line NCI-H292. The cell lines were stimulated in a 24-h time course with the house dust mite allergen or poly(I:C). RNA expression profiles of cytokines were established using q-PCR and protein levels were determined in supernatants with ELISA. The shRNA-mediated gene silencing reduced expression levels of EGR-1 by 92% (p<0.0001) and of DUSP-1 by 76% (p<0.0001). Both mutant cells lines showed an increased and prolonged response to the HDM allergen. The mRNA induction of IL-6 was 4.6 fold (p=0.02) and 2.4 fold higher (p=0.01) in the EGR-1 and DUSP-1 knock-down, respectively when compared to the induced levels in the control cell line. For IL-8, the induction levels were 4.6 fold (p=0.01) and 13.0 (p=0.001) fold higher. The outcome was largely similar, yet not identical at the secreted protein levels. Furthermore, steroids were able to suppress the poly(I:C) induced cytokine levels by 70-95%. Deregulation of EGR-1 and/or DUSP-1 in nasal epithelium could be responsible for the prolonged activated transcriptional state observed in vivo in allergic disease. This could have clinical consequences as cytokine levels after the steroid treatment in EGR-1 or DUSP-1 knock-down remained higher than in the control cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of the Microbicidal activity of monochloramine and iodine.
Arnitz, R; Nagl, M; Gottardi, W
2015-12-01
Recently, we showed that monochloramine (NH2 Cl) has a significantly stronger bactericidal and fungicidal activity than chloramine T despite its lower oxidizing power. This phenomenon was explained by increased penetration because of the higher lipophilicity and smaller bulk of NH2 Cl. As iodine (I2 ) has an even fivefold higher bulk than NH2 Cl, a comparison of both compounds regarding their microbicidal activity became the aim of this study. Aqueous solutions of I2 at a concentration of 10·7 μmol l(-1) killed 10(6) colony forming units per millilitre (CFU ml(-1) ) of Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa to the detection limit of 10(2) CFU ml(-1) within 1 min at 20°C and pH 7·1, while a concentration of 36-355 μmol l(-1) of NH2 Cl was needed to achieve the same effect. Aspergillus fumigatus was inactivated within 5 min by 36 μmol l(-1) I2 and by 355 μmol l(-1) NH2 Cl, Candida albicans within 1 min by 10·7 μmol l(-1) I2 and by 355 μmol l(-1) NH2 Cl. The lipophilicity of I2 , determined with the octanol/water method, was three powers of 10 higher than that of NH2 Cl. The at least 10-fold stronger microbicidal activity of iodine suggests that the hindrance of penetration of the bulky molecule is outweighed by enhanced lipophilicity. The microbicidal activity of active halogen compounds increases not only with their reactivity, but also with higher lipophilicity and lower bulk, as shown recently. In this study, iodine showed a higher microbicidal activity than monochloramine and a 1000-fold higher lipophilicity. Therefore, the lipophilicity of a disinfectant may be more important than the bulk for bactericidal activity. These facts should be considered upon the design of new antiseptics and their clinical application. © 2015 The Society for Applied Microbiology.
Mishra, Vartika; Jana, Asim K
2017-09-01
Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.
Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G
2015-01-01
This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean region. Copyright © 2014 Elsevier Ltd. All rights reserved.
Napoli, Eleonora; Ross-Inta, Catherine; Wong, Sarah; Omanska-Klusek, Alicja; Barrow, Cedrick; Iwahashi, Christine; Garcia-Arocena, Dolores; Sakaguchi, Danielle; Berry-Kravis, Elizabeth; Hagerman, Randi; Hagerman, Paul J.; Giulivi, Cecilia
2011-01-01
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects individuals who are carriers of small CGG premutation expansions in the fragile X mental retardation 1 (FMR1) gene. Mitochondrial dysfunction was observed as an incipient pathological process occurring in individuals who do not display overt features of FXTAS ( 1). Fibroblasts from premutation carriers had lower oxidative phosphorylation capacity (35% of controls) and Complex IV activity (45%), and higher precursor-to-mature ratios (P:M) of nDNA-encoded mitochondrial proteins (3.1-fold). However, fibroblasts from carriers with FXTAS symptoms presented higher FMR1 mRNA expression (3-fold) and lower Complex V (38%) and aconitase activities (43%). Higher P:M of ATPase β-subunit (ATPB) and frataxin were also observed in cortex from patients that died with FXTAS symptoms. Biochemical findings observed in FXTAS cells (lower mature frataxin, lower Complex IV and aconitase activities) along with common phenotypic traits shared by Friedreich's ataxia and FXTAS carriers (e.g. gait ataxia, loss of coordination) are consistent with a defective iron homeostasis in both diseases. Higher P:M, and lower ZnT6 and mature frataxin protein expression suggested defective zinc and iron metabolism arising from altered ZnT protein expression, which in turn impairs the activity of mitochondrial Zn-dependent proteases, critical for the import and processing of cytosolic precursors, such as frataxin. In support of this hypothesis, Zn-treated fibroblasts showed a significant recovery of ATPB P:M, ATPase activity and doubling time, whereas Zn and desferrioxamine extended these recoveries and rescued Complex IV activity. PMID:21558427
Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque
2006-02-15
Polyphenol oxidase (PPO) has been extracted from both soluble and particulate fractions of loquat fruit (Eriobotrya japonica Lindl. cv. Algerie). The soluble PPO (20% of total activity) was partially purified 3.3-fold after ammonium sulfate fractionation being in its active state. The particulate PPO fraction (80% of total activity) was purified to homogeneity in a latent form being activable by sodium dodecyl sulfate (SDS). The enzyme was purified 40.0-fold with a total yield of 15.3% after extraction by phase partitioning in Triton X-114 followed by three chromatographic steps. The molecular weight was estimated to be about 59.2 and 61.2 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography, respectively, indicating that latent PPO is a monomer. Latent PPO catalyzed the oxidation of chlorogenic acid (CA) at a rate 50-fold faster than that of 4-tert-butylcatechol (TBC) but the soluble active counterpart only twice. Both PPOs exhibited similar Km values for TBC but Km for CA was 5-fold higher for the latent than for the active soluble PPO. Other kinetic characteristics, including sensitivity to inhibitors, substrate specificity, thermal stability, temperature, and pH profiles, were quite different between both PPOs. These results provide strong evidences that the soluble active and the particulate latent are different forms of PPO in loquat fruit flesh. The results suggest that the major PPO form for the oxidation of CA, leading to enzymatic browning under physiological conditions, is the latent one.
INTERSTITIAL PLASMIN ACTIVITY WITH EPSILON AMINOCAPROIC ACID: TEMPORAL AND REGIONAL HETEROGENEITY
Reust, Daryl L.; Reeves, Scott T.; Abernathy, James H.; Dixon, Jennifer A.; Gaillard, William F.; Mukherjee, Rupak; Koval, Christine N.; Stroud, Robert E.; Spinale, Francis G.
2010-01-01
Background Epsilon aminocaproic acid (EACA) is used in cardiac surgery to modulate plasmin activity (PLact). The present study developed a fluorogenic-microdialysis system to measure in-vivo region specific temporal changes in PLact following EACA administration. Methods Pigs (25-35kg) received EACA (75mg/kg, n=7) or saline in which microdialysis probes were placed in the liver, myocardium, kidney and quadricep muscle. The microdialysate contained a plasmin specific fluorogenic peptide and fluorescence emission, which directly reflected PLact, determined at baseline, 30, 60, 90 and 120 minutes following EACA/vehicle infusion. Results EACA caused significant decreases in liver and quadricep PLact at 60, 90, 120 minutes and at 30, 60, 120 minutes respectively (p<0.05). In contrast, EACA induced significant biphasic changes in heart and kidney PLact profiles with initial increases followed by decreases at 90 and 120 minutes (p<0.05). The peak EACA interstitial concentrations for all compartments occurred at 30 minutes post infusion, and were 5-fold higher in the renal compartment and 4-fold higher in the myocardium, when compared to the liver or muscle (p<0.05). Conclusions Using a large animal model and in-vivo microdialysis measurements of plasmin activity, the unique findings from this study were 2-fold. First, EACA induced temporally distinct plasmin activity profiles within the plasma and interstitial compartments. Second, EACA caused region specific changes in plasmin activity profiles. These temporal and regional heterogeneic effects of EACA may have important therapeutic considerations when managing fibrinolysis in the perioperative period. PMID:20417774
Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline
Ma, Huaxian; Wang, Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze
2008-01-01
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2’-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ~1.3 fold in the nuclear protein extracts (NE) and ~1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ~1.5 fold higher, whereas in the MEs it was ~1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process. PMID:18793663
Nagarkar, Bhagyashri; Jagtap, Suresh
2017-04-04
Aim of the present study was to evaluate anti-inflammatory activity of newly developed polyherbal formulations DF1911, DF2112 and DF2813. These newly developed formulations are modifications of Dashamoola, a well known Ayurvedic formulation, along with addition of new plants. Complete Freund's adjuvant (CFA) induced inflammation in rat was used as an experimental model. Effects of the treatment in rats were monitored by physiological and biochemical parameters, histopathology and through gene expression studies. Diclofenac sodium showed maximum percentage inhibition (56.8 ± 3.5%) of paw edema followed by Dashamoola Kwatha (19.9 ± 1.8%). Among test formulations treated groups, DF1911 at 250 mg/kg bw (48.2 ± 5.4%, p < 0.001) and DF2112 at 250 mg/kg bw (49.9 ± 3.5%, p < 0.001) showed significant and maximum increase in percentage inhibition of paw edema as compared to Dashamoola Kwatha. Hematological alterations in CFA rats were normalized after treatment with test formulations. Results of serum markers and histopathological observations also supported the activity of formulations. Increased MDA levels in liver tissue of CFA injected animals significantly (p < 0.05) decreased by Diclofenac sodium and test formulation treated groups. DF1911, DF2112 and DF2813 showed down-regulation of IL1-β (~6.4-fold, ~5.2-fold and ~7.6-fold), IL-6 (~1.1-fold, ~1.6-fold and ~1.9-fold), TNF-α (~2.0-fold, ~4.6-fold and ~3.5-fold), and iNOS (~1.2-fold, ~1.8-fold and ~1.1-fold) in inflamed paw tissue compared to negative control group, respectively. The anti-inflammatory effects of DF1911 and DF2112 in rats were significantly higher than the Dashamoola Kwatha and are comparable to Diclofenac sodium.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-05-15
Sweet sorghum bagasse (SSB) generated in large quantities could be hydrolyzed to sugar and then fermented to green fuels. The hydrolysis of SSB polysaccharides interlocked in recalcitrant lignin network is the major problem. Pretreatment of SSB in SSF by using Coriolus versicolor with CuSO 4 -syringic acid supplements for effects on production of ligninocellulolytic enzymes, lignin degradation and selectivity values (SV) were studied. C. versicolor was selected based on high ligninolytic and low cellulolytic abilily. Individually, CuSO 4 increased the activities of laccase (4.9 folds) and PPO (1.9 folds); syringic acid increased LiP (13 folds), AAO (2.8 folds) and laccase (5.6 folds) resulting in increased lignin degradation and SVs. Combined syringic acid (4.4 μmol g -1 SSB) and CuSO 4 (4.4 μmol g -1 SSB) increased the activities of laccase, LiP, MnP, PPO and AAO by 11.2, 17.6, 2.8, 2.4 and 2.3 folds respectively due to synergistic effect, resulting in maximum lignin degradation 35.9 ± 1.3% (w w -1 ) (1.86 fold) and highest SV 3.07 (4.7 fold). Enzymatic hydrolysis of pretreated SSB yielded higher (∼2.2 times) fermentable sugar. Pretreated SSB was characterized by XRD, SEM, FTIR and TGA/DTG analysis to confirm results. It is possible to improve fungal pretreatment of agricultural waste by combination of supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G
2018-05-19
Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.
Molecular imprinting of enzymes with water-insoluble ligands for nonaqueous biocatalysis.
Rich, Joseph O; Mozhaev, Vadim V; Dordick, Jonathan S; Clark, Douglas S; Khmelnitsky, Yuri L
2002-05-15
Attaining higher levels of catalytic activity of enzymes in organic solvents is one of the major challenges in nonaqueous enzymology. One of the most successful strategies for enhancing enzyme activity in organic solvents involves tuning the enzyme active site by molecular imprinting with substrates or their analogues. Unfortunately, numerous imprinters of potential importance are poorly soluble in water, which significantly limits the utility of this method. In the present study, we have developed strategies that overcome this limitation of the molecular-imprinting technique and that thus expand its applicability beyond water-soluble ligands. The solubility problem can be addressed either by converting the ligands into a water-soluble form or by adding relatively high concentrations of organic cosolvents, such as tert-butyl alcohol and 1,4-dioxane, to increase their solubility in the lyophilization medium. We have succeeded in applying both of these strategies to produce imprinted thermolysin, subtilisin, and lipase TL possessing up to 26-fold higher catalytic activity in the acylation of paclitaxel and 17beta-estradiol compared to nonimprinted enzymes. Furthermore, we have demonstrated for the first time that molecular imprinting and salt activation, applied in combination, produce a strong additive activation effect (up to 110-fold), suggesting different mechanisms of action involved in these enzyme activation techniques.
Athas, Jasmin C; Nguyen, Catherine P; Kummar, Shailaa; Raghavan, Srinivasa R
2018-04-04
The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy can be made to natural structures (such as leaves and seed pods) where stiff elements provide the directionality for folding.
Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen
2016-07-01
Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Souza, A O; Hemerly, F P; Gomes-Cardoso, L; Santa-Rita, R M; Leon, L L; de Castro, S L; Durán, N
2004-12-01
The potential activity of three new derivatives of 3-(4'-Y-[1,1'-biphenyl]-4-yl)-3-(4-X-phenyl)-N,N-dimethyl-2-propen-1-amine (2-PAMs) was assayed against Trypanosoma cruzi and Leishmania amazonensis. They showed higher activity against trypomastigotes and epimastigotes of T. cruzi than the standard drugs, crystal violet and nifurtimox. Besides these derivatives, a series of eleven 2-PAMs derivatives and the corresponding intermediates, biphenyl methanones (BPMs) were assayed against promastigotes of L. amazonensis, showing that the 2-PAMs were remarkably more active than the BPMs. The PAMs 2c, 2e and 2j were about 2-fold more active that pentamidine isothionate and between 27.2- and 46.4-fold less toxic to V79 mammalian cells. The present results encourage further studies, especially against intracellular parasites and in experimental animals.
Uracil-DNA Glycosylase in Base Excision Repair and Adaptive Immunity
Doseth, Berit; Visnes, Torkild; Wallenius, Anders; Ericsson, Ida; Sarno, Antonio; Pettersen, Henrik Sahlin; Flatberg, Arnar; Catterall, Tara; Slupphaug, Geir; Krokan, Hans E.; Kavli, Bodil
2011-01-01
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung+/+ and Ung−/− backcrossed mice. Interestingly, human cells displayed ∼15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ∼8-fold higher in mouse cells, constituting ∼50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung−/− mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity. PMID:21454529
Philipova, Rada; Whitaker, Michael
2012-01-01
SUMMARY ERK1 and ERK2 are widely involved in cell signalling. Using a recombinant approach, it has been shown that exogenous ERK2 is capable of dimerisation and that preventing dimerisation reduces its nuclear accumulation on stimulation. Dimerisation occurs on phosphorylation; the dimer partner of phosphorylated ERK2 may be either phosphorylated or unphosphorylated. It has been assumed that monophosphodimers are hemiactive. Here we show that ERK1 is capable of dimerisation both in vivo and in vitro. Dimerisation of human recombinant ERK1 in vitro requires both ERK1 phosphorylation and cellular cofactor(s); it leads to the formation of a high molecular weight complex that can be dissociated by treatment with β-mercaptoethanol. We demonstrate for the first time in both sea urchin embryos and human cells that native ERK forms dimers and that high ERK kinase activity is largely associated with bisphosphodimers, not with monophosphodimers or phosphorylated monomers: the activity of the bisphosphodimer is about 20-fold higher than that of the phosphorylated monomer in vitro and the bisphosphodimer shows 5 to 7-fold higher in vivo activity than the basal activity attributable to the monophosphodimer. Thus phosphorylation of both partners in the dimer is a hallmark of ERK activation. Judgments made about ERK kinase activity associated with phosphorylated monomers are at best a proxy for ERK activity. PMID:16317051
Wang, Xin; Komatsu, Setsuko
2016-07-01
Soybean is a widely cultivated crop; however, it is sensitive to flooding and drought stresses. The adverse environmental cues cause the endoplasmic reticulum (ER) stress due to accumulation of unfolded or misfolded proteins. To investigate the mechanisms in response to flooding and drought stresses, ER proteomics was performed in soybean root tips. The enzyme activity of NADH cytochrome c reductase was two-fold higher in the ER than other fractions, indicating that the ER was isolated with high purity. Protein abundance of ribosomal proteins was decreased under both stresses compared to control condition; however, the percentage of increased ribosomes was two-fold higher in flooding compared to drought. The ER proteins related to protein glycosylation and signaling were in response to both stresses. Compared to control condition, calnexin was decreased under both stresses; however, protein disulfide isomerase-like proteins and heat shock proteins were markedly decreased under flooding and drought conditions, respectively. Furthermore, fewer glycoproteins and higher levels of cytosolic calcium were identified under both stresses compared to control condition. These results suggest that reduced accumulation of glycoproteins in response to both stresses might be due to dysfunction of protein folding through calnexin/calreticulin cycle. Additionally, the increased cytosolic calcium levels induced by flooding and drought stresses might disturb the ER environment for proper protein folding in soybean root tips.
HUMAN SPEECH: A RESTRICTED USE OF THE MAMMALIAN LARYNX
Titze, Ingo R.
2016-01-01
Purpose Speech has been hailed as unique to human evolution. While the inventory of distinct sounds producible with vocal tract articulators is a great advantage in human oral communication, it is argued here that the larynx as a sound source in speech is limited in its range and capability because a low fundamental frequency is ideal for phonemic intelligibility and source-filter independence. Method Four existing data sets were combined to make an argument regarding exclusive use of the larynx for speech: (1) range of fundamental frequency, (2) laryngeal muscle activation, (3) vocal fold length in relation to sarcomere length of the major laryngeal muscles, and (4) vocal fold morphological development. Results Limited data support the notion that speech tends to produce a contracture of the larynx. The morphological design of the human vocal folds, like that of primates and other mammals, is optimized for vocal communication over distances for which higher fundamental frequency, higher intensity, and fewer unvoiced segments are utilized than in conversational speech. Conclusion The positive message is that raising one’s voice to call, shout, or sing, or executing pitch glides to stretch the vocal folds, can counteract this trend toward a contracted state. PMID:27397113
Wu, Tung-Yun; Chen, Chang-Ting; Liu, Jessica Tse-Jin; Bogorad, Igor W; Damoiseaux, Robert; Liao, James C
2016-06-01
Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation.
Bhattacharya, Abhishek; Pletschke, Brett I
2014-01-01
The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136h of incubation at 50°C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks. Copyright © 2014 Elsevier Inc. All rights reserved.
Surbatovic, Maja; Filipovic, Nikola; Radakovic, Sonja; Stankovic, Nebojsa; Slavkovic, Zoran
2007-02-01
The aim of this study was to assess the prognostic value of tumor necrosis factor (TNF) alpha, interleukin (IL)-8, IL-4, and IL-10 in combat casualties. Fifty-six casualties with severe trauma (blast and explosive) who developed sepsis and 20 casualties with the same severity of trauma without sepsis were enrolled in this study. Fifty-five casualties developed multiple organ dysfunction syndrome; 36 died. Blood was drawn on the first day of trauma. Concentrations of IL-8, TNF-alpha, IL-4, and IL-10 were determined in plasma using enzyme-linked immunosorbent assays. Mean values of IL-8 were 230-fold, IL-10 were 42-fold, and TNF-alpha were 17-fold higher in trauma and sepsis group (p < 0.01). Mean values of IL-8 were 60-fold, TNF-alpha were 43.5-fold, and IL-10 were 70-fold higher in the multiple organ dysfunction syndrome group (p < 0.01). Mean values of IL-8 were 2.3-fold and IL-10 were 1.4-fold higher in nonsurvivors and TNF-alpha were 2.2-fold higher in survivors (p < 0.01). IL-4 had no significance as a predictor of severity and outcome.
Collagen Content Limits Optical Coherence Tomography Image Depth in Porcine Vocal Fold Tissue.
Garcia, Jordan A; Benboujja, Fouzi; Beaudette, Kathy; Rogers, Derek; Maurer, Rie; Boudoux, Caroline; Hartnick, Christopher J
2016-11-01
Vocal fold scarring, a condition defined by increased collagen content, is challenging to treat without a method of noninvasively assessing vocal fold structure in vivo. The goal of this study was to observe the effects of vocal fold collagen content on optical coherence tomography imaging to develop a quantifiable marker of disease. Excised specimen study. Massachusetts Eye and Ear Infirmary. Porcine vocal folds were injected with collagenase to remove collagen from the lamina propria. Optical coherence tomography imaging was performed preinjection and at 0, 45, 90, and 180 minutes postinjection. Mean pixel intensity (or image brightness) was extracted from images of collagenase- and control-treated hemilarynges. Texture analysis of the lamina propria at each injection site was performed to extract image contrast. Two-factor repeated measure analysis of variance and t tests were used to determine statistical significance. Picrosirius red staining was performed to confirm collagenase activity. Mean pixel intensity was higher at injection sites of collagenase-treated vocal folds than control vocal folds (P < .0001). Fold change in image contrast was significantly increased in collagenase-treated vocal folds than control vocal folds (P = .002). Picrosirius red staining in control specimens revealed collagen fibrils most prominent in the subepithelium and above the thyroarytenoid muscle. Specimens treated with collagenase exhibited a loss of these structures. Collagen removal from vocal fold tissue increases image brightness of underlying structures. This inverse relationship may be useful in treating vocal fold scarring in patients. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.
Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan
2015-12-01
Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Specific pretreatments reduce curing period of vanilla (Vanilla planifolia) beans.
Sreedhar, R V; Roohie, K; Venkatachalam, L; Narayan, M S; Bhagyalakshmi, N
2007-04-18
With the aiming of reducing the curing period, effects of pretreatments on flavor formation in vanilla beans during accelerated curing at 38 degrees C for 40 days were studied. Moisture loss, change in texture, levels of flavoring compounds, and activities of relevant enzymes were compared among various pretreatments as well as the commercial sample. Use of naphthalene acetic acid (NAA; 5 mg/L) or Ethrel (1%) with blanching pretreatment resulted in 3-fold higher vanillin on the 10th day. Other flavoring compounds-vanillic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde-fluctuated greatly, showing no correlation with the pretreatments. Scarification of beans resulted in nearly 4- and 3.6-fold higher vanillin formations on the 10th day in NAA- and Ethrel-treated beans, respectively, as compared to control with a significant change in texture. When activities of major relevant enzymes were followed, addition of NAA or Ethrel helped to retain higher levels of cellulase throughout the curing period and higher levels of beta-glucosidase on the 20th day that correlated with higher vanillin content during curing and subsequent periods. Peroxidase, being highest throughout, did not correlate with the change in levels of major flavoring compounds. The pretreatment methods of the present study may find importance for realizing higher flavor formation in a shorter period because the major quality parameters were found to be comparable to those of a commercial sample.
Pre-participation and follow-up screening of athletes for endurance sport.
Leischik, Roman; Dworrak, Birgit; Foshag, Peter; Strauss, Markus; Spelsberg, Norman; Littwitz, Henning; Horlitz, Marc
2015-06-01
Physical activity increases life expectancy and sport is a priori not harmful. Exhausted sporting activity (e.g. endurance running, triathlon, cycling or competitive sport) can lead under individual conditions to negative cardiac remodelling (pathological enlargement/function of cardiac cavities/structures) or in worst case to cardiac arrhythmias and sudden cardiac death (SCD). This individually disposition can be genetically determined or behaviourally/environmentally acquired. Overall competitive young male athletes suffer five-fold higher than non-competitive athletes from sudden death and athletes aged over 30 bear a potential for arrhythmias, atrial fibrillation or a 20-fold higher possibility for SCD as female athletes. Patients with diabetes, coronary disease, obesity or hypertension require different special managements. Screening of cardiorespiratory health for sport activities has a lot of faces. Basically there is a need for indicated examinations or possible preventive measures inside or outside of pre-competition screening. The costs of screening compared to expenditure of whole effort for sporting activities are acceptable or even negligible, but of course dependent on national/regional settings. The various causes and possibilities of screening will be discussed in this article as basic suggestion for an open discussion beyond national borders and settings.
Blibech, Monia; Ellouz Ghorbel, Raoudha; Chaari, Fatma; Dammak, Ilyes; Bhiri, Fatma; Neifar, Mohamed; Ellouz Chaabouni, Semia
2011-01-01
By applying a fed-batch strategy, production of Penicillium occitanis mannanases could be almost doubled as compared to a batch cultivation on acacia seeds (76 versus 41 U/mL). Also, a 10-fold increase of enzyme activities was observed from shake flask fermentation to the fed-batch fermentation. These production levels were 3-fold higher than those obtained on coconut meal. The high mannanase production using acacia seeds powder as inducer substrate showed the suitability of this culture process for industrial-scale development. PMID:23724314
Bunzemeier, Holger; Engelbertz, Christiane; Malyar, Nasser M.; Meyborg, Matthias; Roeder, Norbert; Berger, Klaus; Reinecke, Holger
2016-01-01
Background and objectives Despite the many studies showing an association between CKD and a high risk of ischemic events and mortality, the association of CKD with peripheral arterial disease (PAD) still has not been well described. Design, setting, participants, & measurements This large cohort study assessed the association of CKD, even in the earlier stages, with morbidity, short- and long-term outcome, and costs among patients with PAD. Results We identified 41,882 patients with PAD who had an index hospitalization between January 1, 2009, and December 31, 2011. Of these, 8470 (20.2%) also had CKD (CKD stage 2: n=2158 [26%]; stage 3: n=3941 [47%]; stage 4: n=935 [11%]; stage 5: n=1436 [17%]). The ratio of women to men was 1:1.2. Compared with patients without known CKD, those with CKD had higher frequencies of coronary artery disease (1.8-fold higher; P<0.001), chronic heart failure (3.3-fold higher; P<0.001), and Rutherford PAD categories 5 and 6 (1.8-fold higher; P<0.001); underwent significantly fewer revascularizations (0.9-fold fewer; P<0.001); had a nearly two-fold higher amputation rate (P<0.001); had higher frequencies of in-hospital infections (2.1-fold higher; P<0.001), acute renal failure (2.8-fold higher; P<0.001), and sepsis (1.9-fold higher; P<0.001); had a 2.5-fold higher frequency of myocardial infarction (P<0.001); and had a nearly three-fold higher in-hospital mortality rate (P<0.001). In an adjusted multivariable Cox regression model, CKD remained a significant predictor of long-term outcome of patients with PAD during follow-up for up to 4 years (until December 31, 2012; median, 775 days; 25th–75th percentiles, 469–1120 days); the hazard ratio was 2.59 (95% confidence interval, 2.21 to 2.78; P<0.001). The projected mortality rates after 4 years were 27% in patients without known CKD and 46%, 52%, 72%, and 78% in those with CKD stages 2, 3, 4, and 5, respectively. Lengths of hospital stay and reimbursement costs were on average nearly 1.4-fold higher (P<0.001) in patients who also had CKD. Conclusions This analysis illustrates the significant and important association of CKD with in-hospital and long-term mortality, morbidity, amputation rates, duration and costs of hospitalization, in-hospital treatment, and complications in patients with PAD. PMID:26668023
Lüders, Florian; Bunzemeier, Holger; Engelbertz, Christiane; Malyar, Nasser M; Meyborg, Matthias; Roeder, Norbert; Berger, Klaus; Reinecke, Holger
2016-02-05
Despite the many studies showing an association between CKD and a high risk of ischemic events and mortality, the association of CKD with peripheral arterial disease (PAD) still has not been well described. This large cohort study assessed the association of CKD, even in the earlier stages, with morbidity, short- and long-term outcome, and costs among patients with PAD. We identified 41,882 patients with PAD who had an index hospitalization between January 1, 2009, and December 31, 2011. Of these, 8470 (20.2%) also had CKD (CKD stage 2: n=2158 [26%]; stage 3: n=3941 [47%]; stage 4: n=935 [11%]; stage 5: n=1436 [17%]). The ratio of women to men was 1:1.2. Compared with patients without known CKD, those with CKD had higher frequencies of coronary artery disease (1.8-fold higher; P<0.001), chronic heart failure (3.3-fold higher; P<0.001), and Rutherford PAD categories 5 and 6 (1.8-fold higher; P<0.001); underwent significantly fewer revascularizations (0.9-fold fewer; P<0.001); had a nearly two-fold higher amputation rate (P<0.001); had higher frequencies of in-hospital infections (2.1-fold higher; P<0.001), acute renal failure (2.8-fold higher; P<0.001), and sepsis (1.9-fold higher; P<0.001); had a 2.5-fold higher frequency of myocardial infarction (P<0.001); and had a nearly three-fold higher in-hospital mortality rate (P<0.001). In an adjusted multivariable Cox regression model, CKD remained a significant predictor of long-term outcome of patients with PAD during follow-up for up to 4 years (until December 31, 2012; median, 775 days; 25th-75th percentiles, 469-1120 days); the hazard ratio was 2.59 (95% confidence interval, 2.21 to 2.78; P<0.001). The projected mortality rates after 4 years were 27% in patients without known CKD and 46%, 52%, 72%, and 78% in those with CKD stages 2, 3, 4, and 5, respectively. Lengths of hospital stay and reimbursement costs were on average nearly 1.4-fold higher (P<0.001) in patients who also had CKD. This analysis illustrates the significant and important association of CKD with in-hospital and long-term mortality, morbidity, amputation rates, duration and costs of hospitalization, in-hospital treatment, and complications in patients with PAD. Copyright © 2016 by the American Society of Nephrology.
Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal
2015-08-26
We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading tomore » higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.« less
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad Shamsuddin; Jeon, Seungwon
2015-05-01
The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.
NASA Technical Reports Server (NTRS)
Kim, D.; Kaufman, P. B.
1995-01-01
During the gravitropic response, auxin-sensitivity of the lower flanks of leaf-sheath pulvini of Avena sativa (oat) is at least 1000-fold higher than those of the upper flanks and non-gravistimulated pulvini. When the pulvini are treated with 1 mM Ca2+, a 10-fold increase in auxin-sensitivity of the pulvini is observed. Related to this difference in auxin-sensitivity, in vitro activation of the vanadate-sensitive H(-)-ATPase by IAA was observed. Results show that the activation of the H(+)-ATPase by IAA is probably mediated by soluble protein factors and that the H(+)-ATPase prepared from the lower flanks is activated by IAA with a 1000-fold higher auxin-sensitivity as compared with that from the upper flanks of the graviresponding pulvini. Ammonium sulfate fractionation experiments show that these soluble protein factors are in the 30 to 60% fraction. Auxin-binding assays reveal that lower flanks contain more high-affinity soluble auxin-binding sites (kD; on the order of 10(-9) M) and less low-affinity soluble auxin-binding sites (kD; on the order of 10(-6) M) than upper flanks. It is concluded that differential auxin-sensitivity of graviresponding oat-shoot pulvini is achieved by the modulation of affinities of auxin-binding sites in upper and lower flanks of the pulvini, that Ca2+ is involved in such modulation, and that one of the probable cellular functions of these auxin binding sites is the activation of the proton pump on the plasma membranes.
Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.
Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi
2016-01-01
We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.
A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats.
Gandolfi, B; Alamri, S; Darby, W G; Adhikari, B; Lattimer, J C; Malik, R; Wade, C M; Lyons, L A; Cheng, J; Bateman, J F; McIntyre, P; Lamandé, S R; Haase, B
2016-08-01
Scottish fold cats, named for their unique ear shape, have a dominantly inherited osteochondrodysplasia involving malformation in the distal forelimbs, distal hindlimbs and tail, and progressive joint destruction. This study aimed to identify the gene and the underlying variant responsible for the osteochondrodysplasia. DNA samples from 44 Scottish fold and 54 control cats were genotyped using a feline DNA array and a case-control genome-wide association analysis conducted. The gene encoding a calcium permeable ion channel, transient receptor potential cation channel, subfamily V, member 4 (TRPV4) was identified as a candidate within the associated region and sequenced. Stably transfected HEK293 cells were used to compare wild-type and mutant TRPV4 expression, cell surface localisation and responses to activation with a synthetic agonist GSK1016709A, hypo-osmolarity, and protease-activated receptor 2 stimulation. The dominantly inherited folded ear and osteochondrodysplasia in Scottish fold cats is associated with a p.V342F substitution (c.1024G>T) in TRPV4. The change was not found in 648 unaffected cats. Functional analysis in HEK293 cells showed V342F mutant TRPV4 was poorly expressed at the cell surface compared to wild-type TRPV4 and as a consequence the maximum response to a synthetic agonist was reduced. Mutant TRPV4 channels had a higher basal activity and an increased response to hypotonic conditions. Access to a naturally-occurring TRPV4 mutation in the Scottish fold cat will allow further functional studies to identify how and why the mutations affect cartilage and bone development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2014-01-01
In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.
Aporphine alkaloids from Guatteria spp. with leishmanicidal activity.
Montenegro, Hector; Gutiérrez, Marcelino; Romero, Luz I; Ortega-Barría, Eduardo; Capson, Todd L; Rios, Luis Cubilla
2003-07-01
Fractionation of Guatteria amplifolia yielded the alkaloids xylopine (1), nornuciferine (4), lysicamine (6), and laudanosine (5). Fractionation of Guatteria dumetorum yielded the alkaloids cryptodorine (2) and nornantenine (3). Compounds 1-4 demonstrated significant activity against Leishmania mexicana and L. panamensis. Xylopine (1) was among the most active compounds (LD 50 = 3 microM) and showed a 37-fold higher toxicity towards L. mexicana than macrophages, the regular host cells of Leishmania spp.
Vlaskou, D; Hofmann, W; Guder, W G; Siskos, P A; Dionyssiou-Asteriou, A
2000-07-01
Human neutral brush border endopeptidase (NEP) was purified from the urine of patients suffering from acute toxic tubulointerstitial nephropathy. An enzyme preparation with specific activity of 102 Ug(-1) protein was obtained. The urinary activities of neutral endopeptidase and alanine aminopeptidase were measured in patients with renal disease and in 30 control patients, resulting in a reference range from 0.1 to 0.7 Ug(-1) creatinine and 1.4-14.1 Ug(-1) creatinine, respectively. Urine enzyme activities were highest in patients with acute tubulotoxic renal diseases. Neutral endopeptidase and alanine aminopeptidase activities were found to be 6.5- and 10-fold higher than the upper value of the reference range, respectively. Smaller increases in the rate of excretion of these enzymes (2.5- and 3.5-fold), respectively, were observed in patients suffering from acute tubular insufficiency and even lower increases, 2- and 1.5-fold, respectively, were observed in patients with chronic renal diseases. In diabetics and kidney transplant patients the enzyme excretion rates were within the reference range. Assay of both transmembrane metalloproteinases in urine may prove valuable in serving as markers for renal toxicity. Together with beta-NAG these enzymes could be employed as differentiation markers between acute and chronic tubular insufficiency.
Truchado, P; Van den Abbeele, P; Rivière, A; Possemiers, S; De Vuyst, L; Van de Wiele, T
2015-01-01
Long-chain arabinoxylans (LC-AX) are degraded in the colon by intestinal bacteria possessing AX-degrading enzymes, such as bifidobacteria. Enzymatic activity of intestinal bacterial might vary depending on the composition of the gut microbiota. To compare the enzymatic activities of the bacterial gut communities of two healthy individuals (donors D1 and D2), these bacterial communities were inoculated into in vitro model M-SHIME(®). Differences in xylanase activities and denaturing gradient gel electrophoresis profiles, in particular a DNA-band corresponding with Bifidobacterium longum, were found in the proximal colon vessel. 16S rRNA gene sequencing analysis demonstrated the presence of two different B. longum species in these bacterial communities, showing 99% gene sequence similarity with B. longum NCC2705 and B. longum. subsp. longum KACC 91563, respectively, further referred to as B. longum D1 and B. longum D2. When grown on LC-AX as the sole added energy source, B. longum D2 displayed significantly higher activities of β-xylanase (5.3-fold), β-xylosidase (2.9-fold), and α-arabinofuranosidase (1.5-fold), respectively, compared to B. longum D1. When B. longum D2 was inoculated in the M-SHIME, inoculated with the bacterial gut communities of the individual with low AX-degrading enzyme activities, the β-xylanase activity increased (1.5-fold) in the proximal vessel. We demonstrated the presence of differences in LC-AX degrading enzyme activities of the bacterial gut communities of two individuals in the in vitro M-SHIME model, which could be linked to the presence of a potent AX-degrading B. longum (D2) strain.
Carbohydrate fatty acid monosulphate esters are safe and effective adjuvants for humoral responses.
Hilgers, Luuk A Th; Platenburg, Peter Paul L I; Bajramovic, Jeffrey; Veth, Jennifer; Sauerwein, Robert; Roeffen, Will; Pohl, Marie; van Amerongen, Geert; Stittelaar, Koert J; van den Bosch, Johannes F
2017-05-31
Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5μg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Flow fields and acoustics in a unilateral scarred vocal fold model.
Murugappan, Shanmugam; Khosla, Sid; Casper, Keith; Oren, Liran; Gutmark, Ephraim
2009-01-01
From prior work in an excised canine larynx model, it has been shown that intraglottal vortices form between the vocal folds during the latter part of closing. It has also been shown that the vortices generate a negative pressure between the folds, producing a suction force that causes sudden, rapid closing of the folds. This rapid closing will produce increased loudness and increased higher harmonics. We used a unilateral scarred excised canine larynx model to determine whether the intraglottal vortices and resulting acoustics were changed, compared to those of normal larynges. Acoustic, flow field, and high-speed imaging measurements from 5 normal and 5 unilaterally scarred canine larynges are presented in this report. Scarring was produced by complete resection of the vocal fold mucosa and superficial layer of the lamina propria on the right vocal fold only. Two months later, these dogs were painlessly sacrificed, and testing was done on the excised larynges during phonation. High-speed video imaging was then used to measure vocal fold displacement during different phases. Particle image velocimetry and acoustic measurements were used to describe possible acoustic effects of the vortices. A higher phonation threshold was required to excite the motion of the vocal fold in scarred larynges. As the subglottal pressure increased, the strength of the vortices and the higher harmonics both consistently increased. However, it was seen that increasing the maximum displacement of the scarred fold did not consistently increase the higher harmonics. The improvements that result from increasing subglottal pressure may be due to a combination of increasing the strength of the intraglottal vortices and increasing the maximum displacement of the vocal fold; however, the data in this study suggest that the vortices play a much more important role. The current study indicates that higher subglottal pressures may excite higher harmonics and improve loudness for patients with unilateral vocal fold scarring. This finding implies that therapies that raise the subglottal pressure may be helpful in improving voice quality.
Tao, Li-Ming; Yang, Jian-Zhong; Zhuang, Pei-Jun; Tang, Zhen-Hua
2006-01-01
A malathion-resistant (RM) strain of Culex pipiens pallens Coq was obtained by successively selecting a field population with malathion in the laboratory. The synergistic effect of iprobenfos on malathion toxicity and alpha-naphthyl acetate (alpha-NA) esterase assay revealed that malathion resistance in the RM strain was associated with increased alpha-NA esterase activity and the synergism was mainly due to the inhibition by iprobenfos of this activity. There was no difference in alpha-NA esterase activity between the larvae and female adults in the susceptible (S) strain, but the activity in the adults was 13-fold higher than in the larvae of the RM strain. To understand the effect of the application of a mixture of iprobenfos and malathion on the evolution of malathion resistance, an artificial strain (Syn) was generated by mixing the RM and S strains with 0.1 frequency of the malathion-resistant individuals. The offspring of the Syn strain were divided into two sub-strains, Rm and Rm+ibp, which were successively treated with, respectively, malathion alone and malathion + iprobenfos (1:2) at LC70. In the mixture, the fungicide iprobenfos acted as a synergist of malathion. After treatment for 10 generations, the resistance level to malathion was 317.4-fold for the Rm sub-strain, whereas for the Rm+ibp sub-strain it was only 38.9-fold, compared with the Syn strain. Similar results were obtained by measurement of alpha-NA esterase activity from both larvae and female adults. The alpha-NA esterase activities in larvae and female adults at F10 generation were 2.6- and 10.9-fold from the Rm+ibp sub-strain and 5.7- and 98.5-fold from the Rm sub-strain, respectively, compared with the Syn strain. The above results suggested that iprobenfos, although it cannot completely stop or prevent the onset of malathion resistance, could dramatically delay its evolution. Copyright 2005 Society of Chemical Industry.
Rossi, Omar; Pesce, Isabella; Giannelli, Carlo; Aprea, Susanna; Caboni, Mariaelena; Citiulo, Francesco; Valentini, Sara; Ferlenghi, Ilaria; MacLennan, Calman Alexander; D'Oro, Ugo; Saul, Allan; Gerke, Christiane
2014-09-05
Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Comparison between Seed and Foliar Treatment as a Tool in Integrated Pest Management.
Matyjaszczyk, Ewa
2017-08-02
A study into doses of seed treatments and foliar plant protection products containing an identical active substance registered to control the same pest in the same crops was carried out in the European Union. The results show that, for fungicides, the use of seed treatment is often connected with a significantly lower release of active substance per hectare when compared to foliar treatments. In 11 of 13 cases, the difference was 8-fold or higher. For insecticides, in most of the cases, the consumption of an active substance was several times higher for seed treatment, in one case for foliar application.
Hernandez, Karel; Garcia-Galan, Cristina; Fernandez-Lafuente, Roberto
2011-06-10
Two commercial porous styrene-divinylbenzene beads (Diaion HP20LX and MCI GEL CHP20P) have been evaluated as supports to immobilize lipase B from Candida antarctica (CALB). MCI GEL CHP20P rapidly immobilized the enzyme, permitting a very high loading capacity: around 110mgCALB/wetg of support compared to the 50mg obtained using decaoctyl Sepabeads. Although enzyme specificity of the enzyme immobilized on different supports was quite altered by the support used in the immobilization, specific activity of the enzyme immobilized on MCI GEL CHP20P was always higher than those found using decaoctyl Sepabeads for all assayed substrates. Thus, a CALB biocatalyst having 3-8 folds (depending on the substrate) higher activity/wet gram of support than the commercial Novozym 435 was obtained. Half-live of CAL-Diaion HP20LX at 60°C was 2-3 higher than the one of Novozym 435, it was 30-40 higher in the presence of 50% acetonitrile and it was around 100 folds greater in the presence of 10M hydrogen peroxide. Results indicate that styrene-divinylbenzene supports may be promising alternatives as supports to immobilize CALB. Copyright © 2011 Elsevier Inc. All rights reserved.
Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L.; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard
2010-01-01
Objective Human parturition is characterized by the activation of genes involved in acute inflammatory in the fetal membranes. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). MnSOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in MnSOD mRNA expression in the fetal membranes in patients with term and preterm labor as well as in acute chorioamnionitis. Study design Fetal membranes were obtained from patients in the following groups: 1) term not in labor (n=29); 2) term in labor (n=29); 3) spontaneous preterm labor with intact mebranes (n=16); 4) PTL with histological chorioamnionitis (n=12); 5) preterm prelabor rupture of membranes (PPROM; n=17); and 6) PPROM with histological chorioamnionitis (n=21). MnSOD mRNA expression in the membranes was determined by quantitative real-time RT-PCR. Results 1) MnSOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p=0.02); 2) the amount of MnSOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p=0.03; 3.2-fold, p=0.03, respectively); 3) MnSOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p=0.02) and with PTL (5.4-fold, p=0.02) than in patients with these conditions without histological chorioamnionitis; 4) expression of MnSOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p=0.03); Conclusion The increase in MnSOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes. PMID:19900038
Charoensinphon, Noppawat; Qiu, Peiju; Dong, Ping; Zheng, Jinkai; Ngauv, Pearline; Cao, Yong; Li, Shiming; Ho, Chi-Tang; Xiao, Hang
2013-12-01
Tangeretin (TAN) and 5-demethyltangeretin (5DT) are two closely related polymethoxyflavones found in citrus fruits. We investigated growth inhibitory effects on three human nonsmall cell lung cancer (NSCLC) cells. Cell viability assay demonstrated that 5DT inhibited NSCLC cell growth in a time- and dose-dependent manner, and IC50 s of 5DT were 79-fold, 57-fold, and 56-fold lower than those of TAN in A549, H460, and H1299 cells, respectively. Flow cytometry analysis showed that 5DT induced extensive G2/M cell cycle arrest and apoptosis in NSCLC cells, while TAN at tenfold higher concentrations did not. The apoptosis induced by 5DT was further confirmed by activation of caspase-3 and cleavage of PARP. Moreover, 5DT dose-dependently upregulated p53 and p21(Cip1/Waf1), and downregulated Cdc-2 (Cdk-1) and cyclin B1. HPLC analysis revealed that the intracellular levels of 5DT in NSCLC cells were 2.7-4.9 fold higher than those of TAN after the cells were treated with 5DT or TAN at the same concentration. Our results demonstrated that 5DT inhibited NSCLC cell growth by inducing G2/M cell cycle arrest and apoptosis. These effects were much stronger than those produced by TAN, which is partially due to the higher intracellular uptake of 5DT than TAN. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Manna, Alak; De Sarkar, Sritama; De, Soumita; Bauri, Ajay K; Chattopadhyay, Subrata; Chatterjee, Mitali
2015-07-15
The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting. MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered. Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration. Copyright © 2015. Published by Elsevier GmbH.
Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe
2017-02-01
Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m 2 ) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m 2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m 2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m 2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures. Copyright © 2017 Elsevier B.V. All rights reserved.
Phospholipid transfer activities in toad oocytes and developing embryos. [Bufo arenarum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusinol, A.; Salomon, R.A.; Bloj, B.
1987-01-01
The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing /sup 14/C-labeled phospholipids and /sup 3/H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily aftermore » fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth.« less
Active Flexural-Slip Faulting: Controls Exerted by Stratigraphy, Geometry, and Fold Kinematics
NASA Astrophysics Data System (ADS)
Li, Tao; Chen, Jie; Thompson Jobe, Jessica A.; Burbank, Douglas W.
2017-10-01
Flexural slip plays an important role in accommodating fold growth, and its topographic expression, flexural-slip fault (FSF) scarps, may be one of the most commonly occurring secondary structures in areas dominated by active thrusts and folds. Where FSF scarps are present and what factors control their occurrence, however, are typically poorly known. Through an investigation of clearly expressed FSF scarps, well-preserved fluvial terraces, and well-exposed bedrock at eight sites in the Pamir-Tian Shan convergent zone and Kuche fold belt, NW China, we summarize the most favorable conditions for active flexural-slip faulting. Our study yields six key results. First, flexural slip operates commonly in well-layered beds, although uncommonly can occur in massive, poorly layered beds as well. Second, in well-layered beds, the slip surface is commonly located either (a) close to the contact of competent and incompetent beds or (b) within thin incompetent beds. Third, FSF scarps are always found overlying steep beds with dips of 30-100°. Fourth, slip surfaces are typically spaced between 10 and 440 m but can reach up to 600 m. Fifth, FSF scarps at most sites can be observed far away from the hinge-migrated fold scarps, suggesting that compared to hinge migration, limb rotation is generally required to accumulate flexural slip and produce associated topographic scarps. Finally, a higher regional convergent rate seems to facilitate the creation of FSF scarps more often than lower rates, whereas well-preserved, old terraces capped by thin deposits are more likely to record FSF scarps than unevenly preserved, young terraces with thick sedimentary caps.
Purification and substrate specificity of Staphylococcus hyicus lipase.
van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F
1989-11-28
The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.
Wei, Zuo-Fu; Luo, Meng; Zhao, Chun-Jian; Li, Chun-Ying; Gu, Cheng-Bo; Wang, Wei; Zu, Yuan-Gang; Efferth, Thomas; Fu, Yu-Jie
2013-02-13
In this study, the effect of UV irradiation (UV-A, UV-B, and UV-C) on phytochemicals, total phenolics, and antioxidant activity of postharvest pigeon pea leaves was evaluated. The response of pigeon pea leaves to UV irradiation was phytochemical specific. UV-B and UV-C induced higher levels of phytochemicals, total phenolics, and antioxidant activity in pigeon pea leaves compared with UV-A. Furthermore, UV-B irradiation proved to possess a long-lasting effect on the levels of phenolics and antioxidant activity. After adapting for 48 h at 4 °C following 4 h UV-B irradiation, total phenolics and antioxidant activity were approximately 1.5-fold and 2.2-fold increased from 39.4 mg GAE/g DM and 15.0 μmol GAE/g DM to 59.1 mg GAE/g DM and 32.5 μmol GAE/g DM, respectively. These results indicate that UV irradiation of pigeon pea leaves can be beneficial in terms of increasing active components and antioxidant activity.
Khattab, Sherine Nabil; Haiba, Nesreen Saied; Asal, Ahmed Mosaad; Bekhit, Adnan A; Guemei, Aida A; Amer, Adel; El-Faham, Ayman
2017-02-15
A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC 50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC 50 =0.051μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC 50 =7.832μM), and half fold the activity of amphotericin B (IC 50 =0.035μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250mg/kg and parenterally up to 100mg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bosch, Ronald J.; Macatangay, Bernard J.; Rinaldo, Charles R.; Riddler, Sharon A.; Mellors, John W.
2017-01-01
Antiretroviral therapy (ART) reduces levels of HIV-1 and immune activation but both can persist despite clinically effective ART. The relationships among pre-ART and on-ART levels of HIV-1 and activation are incompletely understood, in part because prior studies have been small or cross-sectional. To address these limitations, we evaluated measures of HIV-1 persistence, inflammation, T cell activation and T cell cycling in a longitudinal cohort of 101 participants who initiated ART and had well-documented sustained suppression of plasma viremia for a median of 7 years. During the first 4 years following ART initiation, HIV-1 DNA declined by 15-fold (93%) whereas cell-associated HIV-1 RNA (CA-RNA) fell 525-fold (>99%). Thereafter, HIV-1 DNA levels continued to decline slowly (5% per year) with a half-life of 13 years. Participants who had higher HIV-1 DNA and CA-RNA before starting treatment had higher levels while on ART, despite suppression of plasma viremia for many years. Markers of inflammation and T cell activation were associated with plasma HIV-1 RNA levels before ART was initiated but there were no consistent associations between these markers and HIV-1 DNA or CA-RNA during long-term ART, suggesting that HIV-1 persistence is not driving or driven by inflammation or activation. Higher levels of inflammation, T cell activation and cycling before ART were associated with higher levels during ART, indicating that immunologic events that occurred well before ART initiation had long-lasting effects despite sustained virologic suppression. These findings should stimulate studies of viral and host factors that affect virologic, inflammatory and immunologic set points prior to ART initiation and should inform the design of strategies to reduce HIV-1 reservoirs and dampen immune activation that persists despite ART. PMID:28426825
Chandrayan, Sanjeev K; McTernan, Patrick M; Hopkins, R Christopher; Sun, Junsong; Jenney, Francis E; Adams, Michael W W
2012-01-27
The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.
Chandrayan, Sanjeev K.; McTernan, Patrick M.; Hopkins, R. Christopher; Sun, Junsong; Jenney, Francis E.; Adams, Michael W. W.
2012-01-01
The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H2 production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production. PMID:22157005
Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro.
Dash, A; Simmers, M B; Deering, T G; Berry, D J; Feaver, R E; Hastings, N E; Pruett, T L; LeCluyse, E L; Blackman, B R; Wamhoff, B R
2013-06-01
In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma C(max) levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ~4-fold and urea ~5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport parameters in vitro.
Warepam, Marina; Sharma, Gurumayum Suraj; Dar, Tanveer Ali; Khan, Md. Khurshid Alam; Singh, Laishram Rajendrakumar
2014-01-01
Osmolytes are low molecular weight organic molecules accumulated by organisms to assist proper protein folding, and to provide protection to the structural integrity of proteins under denaturing stress conditions. It is known that osmolyte-induced protein folding is brought by unfavorable interaction of osmolytes with the denatured/unfolded states. The interaction of osmolyte with the native state does not significantly contribute to the osmolyte-induced protein folding. We have therefore investigated if different denatured states of a protein (generated by different denaturing agents) interact differently with the osmolytes to induce protein folding. We observed that osmolyte-assisted refolding of protein obtained from heat-induced denatured state produces native molecules with higher enzyme activity than those initiated from GdmCl- or urea-induced denatured state indicating that the structural property of the initial denatured state during refolding by osmolytes determines the catalytic efficiency of the folded protein molecule. These conclusions have been reached from the systematic measurements of enzymatic kinetic parameters (K m and k cat), thermodynamic stability (T m and ΔH m) and secondary and tertiary structures of the folded native proteins obtained from refolding of various denatured states (due to heat-, urea- and GdmCl-induced denaturation) of RNase-A in the presence of various osmolytes. PMID:25313668
Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua
2006-06-01
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.
Viroporins, Examples of the Two-Stage Membrane Protein Folding Model.
Martinez-Gil, Luis; Mingarro, Ismael
2015-06-26
Viroporins are small, α-helical, hydrophobic virus encoded proteins, engineered to form homo-oligomeric hydrophilic pores in the host membrane. Viroporins participate in multiple steps of the viral life cycle, from entry to budding. As any other membrane protein, viroporins have to find the way to bury their hydrophobic regions into the lipid bilayer. Once within the membrane, the hydrophobic helices of viroporins interact with each other to form higher ordered structures required to correctly perform their porating activities. This two-step process resembles the two-stage model proposed for membrane protein folding by Engelman and Poppot. In this review we use the membrane protein folding model as a leading thread to analyze the mechanism and forces behind the membrane insertion and folding of viroporins. We start by describing the transmembrane segment architecture of viroporins, including the number and sequence characteristics of their membrane-spanning domains. Next, we connect the differences found among viroporin families to their viral genome organization, and finalize focusing on the pathways used by viroporins in their way to the membrane and on the transmembrane helix-helix interactions required to achieve proper folding and assembly.
NASA Astrophysics Data System (ADS)
Rimando, J. M.; Schoenbohm, L. M.
2016-12-01
The Barrancas anticline in Mendoza Province, west-central Argentina is a N-NW-oriented, east-vergent fault-bend fold located in the transition from the mainly east-vergent, thin-skinned Argentine Precordillera to the mainly west-vergent, thick-skinned Sierras Pampeanas — one of the most active thrust zones on Earth. Previous studies of the Barrancas anticline interpreted its structure from 2-D and 3-D seismic data. The anticline is a fault-bend fold with multiple segments with different uplift histories and which linked only after 2.3Ma. This study aims to establish the temporal persistence of segmentation and to describe the role, extent and rates of deformation processes involved in the development of the Barrancas anticline from morphometric analyses, geologic and geomorphic mapping, and accurate dating of relevant geomorphic features. Longitudinal profile analysis of streams on the anticline reveals marked differences in normalized steepness index (ksn) between the western and eastern limbs as well as variation along strike. This distribution of ksn values reveals patterns consistent with asymmetry and segmentation of the Barrancas anticline. Swath profiles parallel to the fold axis resemble fault slip distribution profiles which was a basis for segmentation from previous studies. Drainage basin morphometric indices such as hypsometry, drainage density, and basin elongation were also measured. Hypsometric integral values were particularly higher on the west than on the east, possibly indicating younger folding on the western limb. This study will contribute to a better understanding of the nature, extent, timing, and rate of folding at the transition from thin- to thick-skinned thrust deformation in west-central Argentina. Additionally, this study will contribute to assessment of seismic hazards associated with fault-related folds in Argentina and in similar tectonic settings worldwide.
Lin, Chwan-Fwu; Hwang, Tsong-Long; Al-Suwayeh, Saleh A; Huang, Yu-Ling; Hung, Yi-Yun; Fang, Jia-You
2013-03-10
Magnolol and honokiol, predominant active compounds in the family Magnoliaceae, are known to exhibit strong anti-inflammatory activities against dermal disorders. We attempted to modify the structures of magnolol and honokiol by methoxylation to optimize the skin delivery ability. Absorption of these permeants into and through the skin was performed at both an infinite dose and saturated solubility. Superoxide anion and elastase released from human neutrophils were the biomarkers used to examine anti-inflammatory potencies of these permeants. The safety of the permeants was evaluated by keratinocyte viability and in vivo bioengineering techniques. Topical magnolol and honokiol at an infinite dose (7.5 mM) showed skin accumulations of 0.22 and 0.16 nmol/mg, respectively. Methoxylation significantly enhanced their skin absorption. Deposition amounts of dimethylmagnolol and dimethylhonokiol were respectively 15- and 7-fold greater than those of magnolol and honokiol. Contrary to the skin accumulation results, the transdermal penetration across skin decreased following methoxylation. No transdermal delivery occurred for dimethylhonokiol. Skin uptake of 4'-O-methylhonokiol was 2-fold higher than that of 2-O-methylhonokiol, although they are isomers. Methoxylated permeants demonstrated selective absorption into follicles, which showed 3-5-fold higher follicular amounts compared to magnolol and honokiol. The relative order of anti-inflammatory activities was honokiol>2-O-methylmagnolol>dimethylhonokiol>magnolol. The other compounds exhibited negligible or negative responses in activated neutrophils. Magnolol and honokiol induced slight but significant keratinocyte cytotoxicity and stratum corneum disruption. Daily administration of methoxylated permeants, especially dimethylhonokiol, produced no skin irritation for up to 7 days. Methoxylated magnolol and honokiol can be efficient and safe candidates for treating inflammatory skin disorders. Copyright © 2013 Elsevier B.V. All rights reserved.
Rodriguez, Evelyn B; Vidallon, Mark Louis P; Mendoza, David Joram R; Reyes, Charisse T
2016-11-01
Betalains, which are red-purple and yellow pigments, are ideal alternatives to synthetic colorants as they possess strong coloring potential and excellent health-contributing properties. However, the instability of betalains toward normal storage and biological conditions, in addition to the limited number of betalain sources, impedes their food application and diminishes their bioactivities. This study aimed to evaluate the health-promoting bioactivities of betalains from red dragon fruit (Hylocereus polyrhizus (Weber) Britton and Rose) peels as affected by encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices. Encapsulation in maltodextrin-gum Arabic and maltodextrin-pectin matrices afforded dry betalain powders after lyophilization. Optical microscopy imaging showed that the betalain powders consisted of matrix-type and shard-like microparticles. ABTS antioxidant assay revealed that maltodextrin-gum Arabic-betalain (MGB) and maltodextrin-pectin-betalain (MPB) microparticles possessed higher antioxidant capacities (195.39 ± 8.63 and 201.76 ± 4.06 µmol Trolox g -1 microparticles respectively) than the non-encapsulated betalain extract (151.07 ± 2.57 µmol Trolox g -1 extract). Duck embryo chorioallantoic membrane (CAM) vascular irritation assay showed that the anti-inflammatory activity of encapsulated betalains was five- to six-fold higher than that of non-encapsulated betalains (P ≤ 0.05). Antiangiogenic activity, as evaluated by duck embryo CAM assay, was enhanced two- to four-fold by carbohydrate encapsulation. Glutathione S-transferase (GST)-inducing activity of betalains was likewise improved four- to five-fold. The study showed that the antioxidant, anti-inflammatory, antiangiogenic and GST-inducing activities of betalains from red dragon fruit peels were enhanced through carbohydrate encapsulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Matic, Marija; Dragicevic, Biljana; Pekmezovic, Tatjana; Suvakov, Sonja; Savic-Radojevic, Ana; Pljesa-Ercegovac, Marija; Dragicevic, Dejan; Smiljic, Jelena; Simic, Tatjana
2016-09-01
Balkan endemic nephropathy (BEN) is a chronic familial form of interstitial nephritis that might eventually lead to end stage renal disease. This nephropathy affects individuals living along of the Danube River and its tributaries in Serbia, Bosnia, Croatia, Bulgaria and Romania. The increased incidence of urinary tract tumors in the BEN areas is well described, but its specific genetic predisposition is still unclear. Certain nephrocarcinogenic compounds, including those associated with BEN, are metabolized by glutathione S-transferase (GST) superfamily of phase II detoxication enzymes. Importantly, the GST-mediated detoxification may result in formation of more toxic compounds. We examined the association of common GST polymorphisms and bladder cancer (BC) risk in individuals from BEN areas in Serbia. A hospital-based case-control study included 201 BC cases (67 from BEN region) and 122 controls. Each polymorphism was identified by a PCR-based method. Individuals from BEN region with low-expression GSTA1 genotype (AB+BB) exhibited a 2.6-fold higher BC risk compared to those with GSTA1 (AA) genotype who were from non-BEN region (OR = 2.60, p = 0.015). In contrast, carriers of GSTM1-active genotype from BEN region had a 2.9-fold increased BC risk compared to those with GSTM1-active genotype from non-BEN region (OR = 2.90, p = 0.010). Likewise, carriers with GSTT1-active genotype from BEN region exhibited 2.1-fold higher BC risk compared to those from non-BEN region with GSTT1-active genotype (OR = 2.10, p = 0.027). Thus, common polymorphisms in GSTA1, GSTM1 and GSTT1 are associated with susceptibility to BC in individuals from BEN areas of Serbia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldstein, E.A.; Cao, E.H.; Miller, M.E.
Extracts of peripheral lymphocytes from six individuals with chronic lymphocytic leukemia (CLL) were assayed for the ability to remove O/sup 6/-methylguanine (O/sup 6/MeGua) from exogenous DNA. The O/sup 6/MeGua-removing activity in CLL lymphocytes, predominantly B cells, was approximately 7-fold higher than in B lymphocytes of normal individuals and about 2-fold higher than in the unstimulated T type cells of normal persons. The activity measured in extracts of lymphocytes from three blood relatives was in the upper range of the normal distribution. Over 80% of the removal of O/sup 6/MeGua was accomplished by the transfer of the methyl group to cysteinemore » moieties of acceptor proteins in a stoichiometric reaction. If one assumes one acceptor group per acceptor protein, the calculated number of acceptor molecules per CLL lymphocyte falls between 91,000 and 220,000. Thus CLL lymphocytes do not show lower O/sup 6/MeGua-removing activity, in contrast to many tumor cell strains or transformed cell lines, which are reported to have a deficient methyl excision repair phenotype (Mer/sup -/). Instead, the CLL lymphocytes act as if they have a super-Mer/sup +/ phenotype.« less
Seddon, Jo; Kasprowicz, Victoria; Walker, Naomi F.; Yuen, Ho Ming; Sunpath, Henry; Tezera, Liku; Meintjes, Graeme; Wilkinson, Robert J.; Bishai, William R.; Friedland, Jon S.; Elkington, Paul T.
2013-01-01
Background. Tuberculosis is transmitted by patients with pulmonary disease. Matrix metalloproteinases (MMPs) drive lung destruction in tuberculosis but the resulting matrix degradation products (MDPs) have not been studied. We investigate the hypothesis that MMP activity generates matrix turnover products as correlates of lung pathology. Methods. Induced sputum and plasma were collected prospectively from human immunodeficiency virus (HIV) positive and negative patients with pulmonary tuberculosis and controls. Concentrations of MDPs and MMPs were analyzed by ELISA and Luminex array in 2 patient cohorts. Results. Procollagen III N-terminal propeptide (PIIINP) was 3.8-fold higher in induced sputum of HIV-uninfected tuberculosis patients compared to controls and desmosine, released during elastin degradation, was 2.4-fold higher. PIIINP was elevated in plasma of tuberculosis patients. Plasma PIIINP correlated with induced sputum MMP-1 concentrations and radiological scores, demonstrating that circulating MDPs reflect lung destruction. In a second patient cohort of mixed HIV seroprevalence, plasma PIIINP concentration was increased 3.0-fold above controls (P < .001). Plasma matrix metalloproteinase-8 concentrations were also higher in tuberculosis patients (P = .001). Receiver operating characteristic analysis utilizing these 2 variables demonstrated an area under the curve of 0.832 (P < .001). Conclusions. In pulmonary tuberculosis, MMP-driven immunopathology generates matrix degradation products. PMID:23922364
Naimuddin, Mohammed; Kubo, Tai
2011-12-01
We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.
Degeneration modulates retinal response to transient exogenous oxidative injury.
Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay
2014-01-01
Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1-7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from oxidative injury.
Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.
Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa
2017-01-01
To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human diseases.
Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1
Martin-Nieto, José; Flores, Enrique; Herrero, Antonia
1992-01-01
Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939
Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He
2017-10-01
The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.
Domain structure of the ribozyme from eubacterial ribonuclease P.
Loria, A; Pan, T
1996-01-01
Large RNAs can be composed of discrete domains that fold independently. One such "folding domain" has been identified previously in the ribozyme from Bacillus subtilis ribonuclease P (denoted P RNA). This domain contains roughly one-third of all residues. Folding of an RNA construct consisting of the remaining two-thirds of B. subtilis P RNA was examined by Fe(II)-EDTA hydroxyl radical protection. This molecule folds into the proper higher-order structure under identical conditions as the full-length P RNA, suggesting the presence of a second folding domain in B. subtilis P RNA. Folding analysis of the Escherichia coli P RNA by hydroxyl radical protection shows that this P RNA is completely folded at 5-6 mM Mg2+. In order to analyze the structural organization of folding domains in E. coli P RNA, constructs were designed based on the domain structure of B. subtilis P RNA. Fe(II)-EDTA protection indicates that E. coli P RNA also contains two folding domains. Despite the significant differences at the secondary structure level, both P RNAs appear to converge structurally at the folding domain level. The pre-tRNA substrate, localized in previous studies, may bind across the folding domains with the acceptor stem/3'CCA contacting the domain including the active site and the T stem-loop contacting the other. Because all eubacterial P RNAs share considerable homology in secondary structure to either B. subtilis or E. coli P RNA, these results suggest that this domain structure may be applicable for most, if not all, eubacterial P RNAs. Identification of folding domains should be valuable in dissecting structure-function relationship of large RNAs. PMID:8718684
2011-12-01
8 C. Catalytic activity of evolved variants with GA ................................................................. 11 D...several variants of rePON1 with enhanced activity towards a racemic mixture of CMP-Coumarin by screening ‘neutral drift’ libraries of rePON1 (e.g. 1G3, 2G9...22. The most active variant was 3B3, which had ~250-fold higher catalytic efficiency (kcat/Km 20x106 M-1min-1) compared to the wild-type-like
Hydrogenase activity in the thermophile mastigocladus laminosus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benemann, J.R.; Miyamoto, K.; Hallenbeck, P.C.
Hydrogenase activity in the thermophilic cyanobacterium, Mastigocladus laminosus was studied both in vivo and in vitro. In vivo hydrogen consumption required oxygen but not light, was about ten-fold higher than in mesophilic cyanobacteria, and was relatively insensitive to carbon monoxide. H/sub 2/-supported acetylene reduction in reductant-limited cultures was a light-dependent, but O/sub 2/-independent reaction. In vitro hydrogen evolution was unaffected by carbon monoxide, and this activity could be partially purified using a procedure developed for Anabaena cylindrica.
The M-T Hook Structure Is Critical for Design of HIV-1 Fusion Inhibitors*
Chong, Huihui; Yao, Xue; Sun, Jianping; Qiu, Zonglin; Zhang, Meng; Waltersperger, Sandro; Wang, Meitian; Cui, Sheng; He, Yuxian
2012-01-01
CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors. PMID:22879603
Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells.
Hartmann, Anna-Maria; Nothwang, Hans Gerd
2011-12-09
Cation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown. Here, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C. These data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.
Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun
2018-06-19
Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Richardson, Kristine L; Gold-Bouchot, Gerardo; Schlenk, Daniel
2009-08-01
Glutathione s-transferases (GST) play a critical role in the detoxification of exogenous and endogenous electrophiles, as well as the products of oxidative stress. As compared to mammals, GST activity has not been extensively characterized in reptiles. Throughout the globe, most sea turtle populations face the risk of extinction. Of the natural and anthropogenic threats to sea turtles, the effects of environmental chemicals and related biochemical mechanisms, such as GST catalyzed detoxification, are probably the least understood. In the present study, GST activity was characterized in four species of sea turtles with varied life histories and feeding strategies: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Although similar GST kinetics was observed between species, rates of catalytic activities using class-specific substrates show inter- and intra-species variation. GST from the spongivorous hawksbill sea turtle shows 3-4.5 fold higher activity with the substrate 4-nitrobenzylchloride than the other 3 species. GST from the herbivorous green sea turtle shows 3 fold higher activity with the substrate ethacrynic acid than the carnivorous olive ridley sea turtle. The results of this study may provide insight into differences in biotransformation potential in the four species of sea turtles and the possible health impacts of contaminant biotransformation by sea turtles.
Chu, Ling-yun; Chang, Tzu-Ching; Kuo, Cheng-Chin; Wu, Kenneth K.
2014-01-01
Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold) in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2–3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development. PMID:24523905
Wessels, Anna G.; Kluge, Holger; Hirche, Frank; Kiowski, Andreas; Schutkowski, Alexandra; Corrent, Etienne; Bartelt, Jörg; König, Bettina; Stangl, Gabriele I.
2016-01-01
In addition to its role as an essential protein component, leucine (Leu) displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH). To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2) and four-fold (L4) higher Leu contents than the recommended amount (control). We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05), liver (1.8-fold, P < 0.05) and cardiac muscle (1.7-fold, P < 0.05), whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth. PMID:26930301
Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A
2015-05-19
The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.
Mechanism of Sulfonylurea Herbicide Resistance in the Broadleaf Weed, Kochia scoparia
Saari, Leonard L.; Cotterman, Josephine C.; Primiani, Michael M.
1990-01-01
Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistant kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measured by the ratio of resistant I50 to susceptible I50) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of [14C]chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The Km values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mm, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme. PMID:16667465
Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saari, L.L.; Cotterman, J.C.; Primiani, M.M.
Selection of kochia (Kochia scoparia) biotypes resistant to the sulfonylurea herbicide chlorsulfuron has occurred through the continued use of this herbicide in monoculture cereal-growing areas in the United States. The apparent sulfonylurea resistance observed in kochia was confirmed in greenhouse tests. Fresh and dry weight accumulation in the resistance kochia was 2- to >350-fold higher in the presence of four sulfonylurea herbicides as compared to the susceptible biotype. Acetolactate synthase (ALS) activity isolated from sulfonylurea-resistant kochia was less sensitive to inhibition by three classes of ALS-inhibiting herbicides, sulfonylureas, imidazolinones, and sulfonanilides. The decrease in ALS sensitivity to inhibition (as measuredmore » by the ratio of resistant I{sub 50} to susceptible I{sub 50}) was 5- to 28-fold, 2- to 6-fold, and 20-fold for sulfonylurea herbicides, imidazolinone herbicides, and a sulfonanilide herbicide, respectively. No differences were observed in the ALS-specific activities or the rates of ({sup 14}C)chlorsulfuron uptake, translocation, and metabolism between susceptible and resistant kochia biotypes. The K{sub m} values for pyruvate using ALS from susceptible and resistant kochia were 2.13 and 1.74 mM, respectively. Based on these results, the mechanism of sulfonylurea resistance in this kochia biotype is due solely to a less sulfonylurea-sensitive ALS enzyme.« less
Allosteric Control of Substrate Specificity of the Escherichia coli ADP-glucose Pyrophosphorylase
NASA Astrophysics Data System (ADS)
Ebrecht, Ana C.; Solamen, Ligin; Hill, Benjamin L.; Iglesias, Alberto A.; Olsen, Kenneth W.; Ballicora, Miguel A.
2017-06-01
The substrate specificity of enzymes is crucial to control the fate of metabolites to different pathways. However, there is growing evidence that many enzymes can catalyze alternative reactions. This promiscuous behavior has important implications in protein evolution and the acquisition of new functions. The question is how the undesirable outcomes of in vivo promiscuity can be prevented. ADP-glucose pyrophosphorylase from Escherichia coli is an example of an enzyme that needs to select the correct substrate from a broad spectrum of alternatives. This selection will guide the flow of carbohydrate metabolism towards the synthesis of reserve polysaccharides. Here, we show that the allosteric activator fructose-1,6-bisphosphate plays a role in such selection by increasing the catalytic efficiency of the enzyme towards the use of ATP rather than other nucleotides. In the presence of fructose-1,6-bisphosphate, the kcat/S0.5 for ATP was near 600-fold higher that other nucleotides, whereas in the absence of activator was only 3-fold higher. We propose that the allosteric regulation of certain enzymes is an evolutionary mechanism of adaptation for the selection of specific substrates.
Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G
2013-05-01
Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.
Mahrooz, Abdolkarim; Gohari, Ghorban; Hashemi, Mohammad-Bagher; Zargari, Mehryar; Musavi, Hadis; Abedini, Mahmoud; Alizadeh, Ahad
2012-12-01
The polymorphic gene of serum paraoxonase (PON1) and its activity involved in atherosclerosis. The purpose of the study was to analyze PON1 192 Q/R polymorphism and the enzyme activities in ischemic stroke. The polymorphism as the most common polymorphism in PON1 gene coding sequence is associated with variation in the enzyme activity and vascular disease. The study included 85 stroke patients and 71 control subjects. PON1 192 polymorphism was genotyped using PCR protocol. Paraoxonase activity (Para) and arylesterase activity (Aryl) were determined spectrophotometrically using paraoxon and phenylacetate as the substrates. The QR and RR genotypes were more frequent in stroke population compared to controls, resulting in a higher frequency of the R allele in patients (0.24 vs 0.18, OR = 1.41). Patients had significantly higher Para/Aryl ratio than that of controls (P = 0.016). In stroke patients, Para/Aryl and Para/HDL ratios increased with this order: QQ < QR < RR. Hypertension significantly increased the risk of ischemic stroke by 15-fold among R-containing people, while this was significantly increased 4-fold for QQ homozygotes. Smoking increased the risk of having ischemic stroke in both QQ homozygote and QR + RR group (OR = 2.84 and OR = 2.33, respectively). In conclusion, these data highlight the importance of PON1 192 R allele and high Para/Aryl ratio in susceptibility to ischemic stroke in the population. The presence of the 192 R allele potentiates the risk of stroke especially in hypertensive people. Decreased Aryl and increased Para/Aryl, Para/HDL and Aryl/HDL ratios may be markers indicated the increased susceptibility to ischemic stroke in the population.
Balaña-Fouce, R; Pulido, T G; Escudero, D O; Sanz-Sanchez, F
1986-01-01
Two phenylated compounds of methylglyoxal bis(guanylhydrazone), potentially inhibitors of diamine oxidase activity, have been synthesized: phenylglyoxal bis(guanylhydrazone) and diphenylglyoxal bis(guanylhydrazone). Their inhibitory capacity was tested: while PGBG was able to reduce the enzyme activity by 50% at 1.3 microM, DPGBG was only able to reduce diamine oxidase activity by less than 2% at a concentration 1000-fold higher. The inhibition of PGBG was non-competitive and the Ki calculated by a Dixon plot was estimated as 1.7 microM.
2013-01-01
Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has led to the isolation of mutants E(M) over-secreting the α-sec-EAP reporter protein by a minimum of 50 fold higher levels than that exported by non-mutagenized E(P) parental strains. Unselected proteins were also over-secreted. PMID:23602005
Sone, Je Yeong; Courtney-Kay Lamb, S; Techar, Kristina; Dammavalam, Vikalpa; Uppal, Mohit; Williams, Cedric; Bergman, Thomas; Tupper, David; Ort, Paul; Samadani, Uzma
2018-04-27
OBJECTIVE Increased understanding of the consequences of traumatic brain injury has heightened concerns about youth participation in contact sports. This study investigated the prevalence of high school and collegiate contact sports play and concussion history among surgical department chairs. METHODS A cross-sectional survey was administered to 107 orthopedic and 74 neurosurgery chairs. Responses were compared to published historical population norms for contact sports (high school 27.74%, collegiate 1.44%), football (high school 10.91%, collegiate 0.76%), and concussion prevalence (12%). One-proportion Z-tests, chi-square tests, and binary logistic regression were used to analyze differences. RESULTS High school contact sports participation was 2.35-fold higher (65.3%, p < 0.001) for orthopedic chairs and 1.73-fold higher (47.9%, p = 0.0018) for neurosurgery chairs than for their high school peers. Collegiate contact sports play was 31.0-fold higher (44.7%, p < 0.001) for orthopedic chairs and 15.1-fold higher (21.7%, p < 0.001) for neurosurgery chairs than for their college peers. Orthopedic chairs had a 4.30-fold higher rate of high school football participation (46.9%, p < 0.001) while neurosurgery chairs reported a 3.05-fold higher rate (33.3%, p < 0.001) than their high school peers. Orthopedic chairs reported a 28.1-fold higher rate of collegiate football participation (21.3%, p < 0.001) and neurosurgery chairs reported an 8.58-fold higher rate (6.5%, p < 0.001) compared to their college peers. The rate at which orthopedic (42.6%, p < 0.001) and neurosurgical (42.4%, p < 0.001) chairs reported having at least 1 concussion in their lifetime was significantly higher than the reported prevalence in the general population. After correction for worst possible ascertainment bias, all results except high school contact sports participation remained significant. CONCLUSIONS The high prevalence of youth contact sports play and concussion among surgical specialty chairs affirms that individuals in careers requiring high motor and cognitive function frequently played contact sports. The association highlights the need to further examine the relationships between contact sports and potential long-term benefits as well as risks of sport-related injury.
Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress.
Elsawy, Hayam I A; Mekawy, Ahmad Mohammad M; Elhity, Mahmoud A; Abdel-Dayem, Sherif M; Abdelaziz, Maha Nagy; Assaha, Dekoum V M; Ueda, Akihiro; Saneoka, Hirofumi
2018-06-01
Although barley (Hordeum vulgare L.) is considered a salt tolerant crop species, productivity of barley is affected differently by ionic, osmotic, and oxidative stresses resulting from a salty rhizosphere. The current study was conducted to elucidate the mechanism of salt tolerance in two barley cultivars, Giza128 and Giza126. The two cultivars were exposed to 200 mM NaCl hydroponically for 12 days. Although both cultivars accumulated a large amount of Na + in their leaves with similar concentrations, the growth of Giza128 was much better than that of Giza126, as measured by maintaining a higher dry weight, relative growth rate, leaf area, and plant height. To ascertain the underlying mechanisms of this differential tolerance, first, the relative expression patterns of the genes encoding Na + /H + antiporters (NHX) and the associated proton pumps (V-PPase and V-ATPase) as well as the gene encoding the plasma membrane PM H + -ATPase were analyzed in leaf tissues. Salt stress induced higher HvNHX1 expression in Giza128 (3.3-fold) than in Giza126 (1.9-fold), whereas the expression of the other two genes, HvNHX2 and HvNHX3, showed no induction in either cultivar. The expression of HvHVP1 and HvHVA was higher in Giza128 (3.8- and 2.1-fold, respectively) than in Giza126 (1.6- and 1.1-fold, respectively). The expression of the PM H + -ATPase (ha1) gene was induced more in Giza128 (8.8-fold) than in Giza126 (1.8-fold). Second, the capacity for ROS detoxification was assessed using the oxidative stress biomarkers electrolyte leakage ratio (ELR) and the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ), and these parameters sharply increased in Giza126 leaves by 66.5%, 42.8% and 50.0%, respectively, compared with those in Giza128 leaves. The antioxidant enzyme (CAT, APX, sPOD, GR, and SOD) activities were significantly elevated by salt treatment in Giza128 leaves, whereas in Giza126, these activities were not significantly altered. Overall, the results indicate that the superior salt tolerance of Giza128 is primarily the result of the ability to counter Na + -induced oxidative stress by increasing antioxidant enzyme levels and possibly by increasing vacuolar Na + sequestration and prevention of cellular K + leakage. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Malathi, Vijayakumar Maheshwari; Jalali, Sushil K; Gowda, Dandinashivara K Sidde; Mohan, Muthugounder; Venkatesan, Thiruvengadam
2017-02-01
The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the major pests of rice throughout Asia. Extensive use of insecticides for suppressing N. lugens has resulted in the development of insecticide resistance leading to frequent control failures in the field. The aim of the present study was to evaluate resistance in the field populations of N. lugens from major rice growing states of South India to various insecticides. We also determined the activity of detoxifying enzymes (esterases [ESTs], glutathione S-transferases [GSTs], and mixed-function oxidases [MFOs]). Moderate levels of resistance were detected in the field populations to acephate, thiamethoxam and buprofezin (resistance factors 1.05-20.92 fold, 4.52-14.99 fold, and 1.00-18.09 fold, respectively) as compared with susceptible strain while there were low levels of resistance to imidacloprid (resistance factor 1.23-6.70 fold) and complete sensitivity to etofenoprox (resistance factor 1.05-1.66 fold). EST activities in the field populations were 1.06 to 3.09 times higher than the susceptible strain while for GST and MFO the ratios varied from 1.29 to 3.41 and 1.03 to 1.76, respectively. The EST activity was found to be correlated to acephate resistance (r = 0.999, P ≥ 0.001). The high selection pressure of organophosphate, neonicotinoid, and insect growth regulator (IGR) in the field is likely to be contributing for resistance in BPH to multiple insecticides, leading to control failures. The results obtained will be beneficial to IPM recommendations for the use of effective insecticides against BPH. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Kharazmi, Elham; Fallah, Mahdi; Pukkala, Eero; Olsen, Jörgen H; Tryggvadottir, Laufey; Sundquist, Kristina; Tretli, Steinar; Hemminki, Kari
2015-10-22
We aimed to provide the familial risk of classical Hodgkin lymphoma (HL) by relationship, histology, age at diagnosis, and sex. A cohort of 57,475 first-degree relatives of 13,922 HL patients diagnosed between 1955 and 2009 in 5 European countries was observed for HL incidence. The overall lifetime cumulative risk (CR) of HL in first-degree relatives of a patient with HL was 0.6%, which represents a threefold (standardized incidence ratio [SIR], 3.3; 95% confidence interval [CI], 2.8-3.9) increased risk over the general population risk. The risk in siblings (6.0-fold; 95% CI, 4.8- to 7.4-fold) was significantly higher than in parents and/or children (2.1-fold; 95% CI, 1.6- to 2.6-fold). Very high lifetime risk of HL was found for those with multiple affected first-degree relatives (13-fold; 95% CI, 2.8- to 39-fold) and for same-sex twins (57-fold; 95% CI, 21- to 125-fold). We found high familial risks between some concordant histologic subtypes of HL such as lymphocyte-rich (81-fold; 95% CI, 30- to 177-fold) and nodular sclerosis (4.6-fold; 95% CI, 2.9- to 7.0-fold) and also between some discordant subtypes. The familial risk in sisters (9.4-fold; 95% CI, 5.9- to 14-fold) was higher than in brothers (4.5-fold; 95% CI, 2.9- to 6.7-fold) or unlike-sex siblings (5.9-fold; 95% CI, 4.3- to 8.1-fold). The lifetime risk of HL was higher when first-degree relatives were diagnosed at early ages (before age 30 years). This study provides tangible absolute risk estimates for relatives of HL patients, which can be used as a sex-, age-, and family history-based risk calculator for classical HL by oncologists and genetic counselors. © 2015 by The American Society of Hematology.
Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh
2017-07-01
The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO 4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background The incidence of lung cancer is expected to increase due to increases in exposure to airborne pollutants and cigarette smoke. Moringa oleifera (MO), a medicinal plant found mainly in Asia and South Africa is used in the traditional treatment of various ailments including cancer. This study investigated the antiproliferative effect of MO leaf extract (MOE) in cancerous A549 lung cells. Methods A crude aqueous leaf extract was prepared and the cells were treated with 166.7 μg/ml MOE (IC50) for 24 h and assayed for oxidative stress (TBARS and Glutathione assays), DNA fragmentation (comet assay) and caspase (3/7 and 9) activity. In addition, the expression of Nrf2, p53, Smac/DIABLO and PARP-1 was determined by Western blotting. The mRNA expression of Nrf2 and p53 was assessed using qPCR. Results A significant increase in reactive oxygen species with a concomitant decrease in intracellular glutathione levels (p < 0.001) in MOE treated A549 cells was observed. MOE showed a significant reduction in Nrf2 protein expression (1.89-fold, p < 0.05) and mRNA expression (1.44-fold). A higher level of DNA fragmentation (p < 0.0001) was seen in the MOE treated cells. MOE’s pro-apoptotic action was confirmed by the significant increase in p53 protein expression (1.02-fold, p < 0.05), p53 mRNA expression (1.59-fold), caspase-9 (1.28-fold, p < 0.05), caspase-3/7 (1.52-fold) activities and an enhanced expression of Smac/DIABLO. MOE also caused the cleavage and activation of PARP-1 into 89 KDa and 24 KDa fragments (p < 0.0001). Conclusion MOE exerts antiproliferative effects in A549 lung cells by increasing oxidative stress, DNA fragmentation and inducing apoptosis. PMID:24041017
Kiran Kumar, J; Sharif, H; Westberg, S; von Euler, H; Eriksson, S
2013-09-01
Determination of serum thymidine kinase 1 (STK1) activity has been used as a proliferation marker for neoplastic diseases in both human and veterinary medicine. The purpose of this study was to determine STK1 activity and enzyme levels in different dog tumours. Serum samples from three dogs with leukaemia, five with lymphoma, 21 with solid tumours and 18 healthy dogs were analyzed for STK1 activity, using an optimized [(3)H]-deoxythymidine (dThd) phosphorylation assay, and for STK1 protein levels using an immunoaffinity/western blot assay. STK1 activity in dogs with haematological tumours was significantly higher than in the solid tumour and healthy dog groups (mean ± standard deviation [SD] = 65 ± 79, 1.1 ± 0.5, and 1.0 ± 0.4 pmol/min/mL, respectively). Serum samples were analyzed after immunoaffinity isolation by western blot and the TK1 26 kDa band intensities quantified revealing that concentrations were significantly higher in dogs with haematological tumours and solid tumours compared to healthy dogs (mean ± SD=33 ± 12, 30 ± 13, and 10 ± 5 ng/mL, respectively). Pre-incubation with the reducing agent dithioerythritol (DTE) showed a decrease in STK1 activity and protein levels in most samples, but an increase of about 20% in sera from healthy dogs and from those with haematological malignancies. Compared to animals with solid tumours, the specific STK1 activity (nmol [(3)H]-deoxythymidine monophosphate (dTMP)/min/mg of TK1 protein of 26 kDa) was 30-fold higher in haematological malignancies and 2.5-fold higher in healthy dogs, respectively. The results demonstrate that there is a large fraction of inactive TK1 protein, particularly in sera from dogs with solid tumours. The findings are important in the use of STK1 as a biomarker. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Xia; Wang, Hong-Yan; Ning, Yu-Bo; Qiao, Kang; Wang, Kai-Yun
2015-08-01
The diamondback moth, Plutella xylostella (L.), is considered one of the most damaging lepidopteran pests, and it has developed resistance to all conventional insecticide classes in the field. Chlorantraniliprole is the first commercial insecticide that belongs to the new chemical class of diamide insecticides. But, P. xylostella have already shown resistance to chlorantraniliprole in China. After 52 generations of selection with chlorantraniliprole, ∼48.17-fold resistance was observed. The resistant strain showed cross-resistance to flubendiamide (7.29-fold), abamectin (6.11-fold), and cyantraniliprole (3.31-fold). Quantitative real-time polymerase chain reaction analysis showed that the expression of the ryanodine receptor gene was higher in the resistant strain than that in the susceptible strain. Enzyme assays indicated that cytochrome P450 activity in the resistant strain was 4.26 times higher compared with the susceptible strain, whereas no difference was seen for glutathione-S-transferase and esterase. Moreover, the toxicity of chlorantraniliprole in the resistant strain could be synergized by piperonyl butoxide, but not by diethyl maleate, and S,S,S-tributyl phosphorothioate. These results can serve as an important base for guiding the use of insecticide in field and delaying the development of pests that are resistant to the insecticides. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of pyrethroid-like fluorescent substrates for glutathione S-transferase
Huang, Huazhang; Yao, Hongwei; Liu, Jun-Yan; Samra, Aman I.; Kamita, Shizuo G.; Cornel, Anthony J.; Hammock, Bruce D.
2012-01-01
The availability of highly sensitive substrates is critical for the development of precise and rapid assays for detecting changes in glutathione S-transferase (GST) activity that are associated with GST-mediated metabolism of insecticides. In this study, six pyrethroid-like compounds were synthesized and characterized as substrates for insect and mammalian GSTs. All of the substrates were esters composed of the same alcohol moiety, 7-hydroxy-4-methylcoumarin, and acid moieties that structurally mimic some commonly used pyrethroid insecticides including cypermethrin and cyhalothrin. CpGSTD1, a recombinant Delta class GST from the mosquito Culex pipiens, metabolized our pyrethroid-like substrates with both chemical and geometric (i.e., the cis-isomers were metabolized at 2- to 5-fold higher rates than the corresponding trans-isomers) preference. A GST preparation from mouse liver also metabolized most of our pyrethroid-like substrates with both chemical and geometric preference but at 10- to 170-fold lower rates. CpGSTD1 and mouse GSTs metabolized CDNB, a general GST substrate, at more than 200-fold higher rates than our novel pyrethroid-like substrates. There was a 10-fold difference in the specificity constant (kcat/KM ratio) of CpGSTD1 for CDNB and those of CpGSTD1 for cis-DCVC and cis-TFMCVC suggesting that cis-DCVC and cis-TFMCVC may be useful for the detection of GST-based metabolism of pyrethroids in mosquitoes. PMID:23000005
Hong, Chenlu; Chen, Yangyang; Li, Lu; Chen, Shouwen; Wei, Xuetuan
2017-03-01
Natto as a fermented soybean product has many health benefits for human due to its rich nutritional and functional components. However, the unpleasant odor of natto, caused by the formation of branched-chain short fatty acids (BCFAs), prohibits the wide acceptance of natto products. This work is to identify the key gene of BCFAs formation and develop the guidance to reduce natto odor. Transcriptional analysis of BCFAs synthesis pathway genes was conducted in two Bacillus subtilis strains with obvious different BCFAs synthesis abilities. The transcriptional levels of bcd, bkdAA, and ptb in B. subtilis H-9 were 2.7-fold, 0.7-fold, and 8.9-fold higher than that of B. subtilis H-4, respectively. Therefore, the ptb gene with the highest transcriptional change was considered as the key gene in BCFAs synthesis. The ptb encoded enzyme Ptb was further characterized by inducible expression in Escherichia coli. The recombinant Ptb protein (about 32 kDa) was verified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis. The catalysis functions of Ptb were confirmed on substrates of isovaleryl-CoA and isobutyryl-CoA, and the higher catalysis efficiency of Ptb on isovaleryl-CoA explained the higher level of isovaleric acid in natto. The optimal activities of Ptb were observed at 50 °C and pH 8.0, and the enzymatic activity was inhibited by Ca 2+ , Zn 2+ , Ba 2+ , Mn 2+ , Cu 2+ , SDS, and EDTA. Collectively, this study reports a key gene responsible for BCFAs formation in natto fermentation and provides potential strategies to solve the odor problem.
Gao, W Y; Shirasaka, T; Johns, D G; Broder, S; Mitsuya, H
1993-01-01
The antiviral activity of azidothymidine (AZT), dideoxycytidine (ddC), and dideoxyinosine (ddI) against HIV-1 was comparatively evaluated in PHA-stimulated PBM. The mean drug concentration which yielded 50% p24 Gag negative cultures were substantially different: 0.06, 0.2, and 6 microM for AZT, ddC, and ddI, respectively. We found that AZT was preferentially phosphorylated to its triphosphate (TP) form in PHA-PBM rather than unstimulated, resting PBM (R-PBM), producing 10- to 17-fold higher ratios of AZTTP/dTTP in PHA-PBM than in R-PBM. The phosphorylation of ddC and ddI to their TP forms was, however, much less efficient in PHA-PBM, resulting in approximately 5-fold and approximately 15-fold lower ratios of ddCTP/dCTP and ddATP/dATP, respectively, in PHA-PBM than in R-PBM. The comparative order of PHA-induced increase in cellular enzyme activities examined was: thymidine kinase > uridine kinase > deoxycytidine kinase > adenosine kinase > 5'-nucleotidase. We conclude that AZT, ddC, and ddI exert disproportionate antiviral effects depending on the activation state of the target cells, i.e., ddI and ddC exert antiviral activity more favorably in resting cells than in activated cells, while AZT preferentially protects activated cells against HIV infection. Considering that HIV-1 proviral DNA synthesis in resting lymphocytes is reportedly initiated at levels comparable with those of activated lymphocytes, the current data should have practical relevance in the design of anti-HIV chemotherapy, particularly combination chemotherapy. PMID:8387546
Michikawa, Mari; Ichinose, Hitomi; Momma, Mitsuru; Biely, Peter; Jongkees, Seino; Yoshida, Makoto; Kotake, Toshihisa; Tsumuraya, Yoichi; Withers, Stephen G; Fujimoto, Zui; Kaneko, Satoshi
2012-04-20
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.
Michikawa, Mari; Ichinose, Hitomi; Momma, Mitsuru; Biely, Peter; Jongkees, Seino; Yoshida, Makoto; Kotake, Toshihisa; Tsumuraya, Yoichi; Withers, Stephen G.; Fujimoto, Zui; Kaneko, Satoshi
2012-01-01
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-d-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)8-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu173 (acid base) and Glu287 (nucleophile), consistent with the retaining mechanism demonstrated by 1H NMR analysis. Glu45, Tyr243, Tyr292–Gly294, and Tyr334 form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln293 and Gly294 and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ∼200-fold lower (kcat/Km) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr334 in recognition of the C6 position of GlcA. The involvement of Glu45 in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (kcat/Km) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower. PMID:22367201
Dieter, M.P.
1975-01-01
Wild-trapped starlings (Sturnus vulgaris) were fed concentrations of Morsodren (2, 4, and 8 ppm), DDE or Aroclor 1254 (5, 25, and 100 ppm), or malathion (8, 35, and 160 ppm) that were found to be sublethal in pen-reared Coturnix quail fed these amounts for 12 weeks. Plasma enzymes had to be measured earlier than planned in starlings fed Morsodren (at three weeks) or the organochlorine compounds (at seven weeks) because of unexpected, subsequent mortality. Variations in enzyme response were greater in wild than in pen-reared birds, but not enough to mask the toxicant-induced changes in enzyme activity. Cholinesterase activities decreased in birds fed Morsodren or malathion, and increased in those fed the organochlorine compounds. Lactate dehydrogenase activities increased two-fold in starlings fed Morsodren and two- to four-fold in those fed the organochlorine compounds, but only 50% in those fed malathion. Further examination of enzyme profiles showed that creatine kinase and aspartate aminotransferase activities increased two-to four-fold in birds fed Morsodren or the organochlorine compounds but not at all in those fed malathion. Thus the classes of environmental contaminants fed to starlings could be easily distinguished by these enzymatic parameters. Evaluation of enzymatic profiles appears to be a potentially valuable technique to monitor the presence of toxicants in wild populations, especially if used to complement standard chemical residue analyses. Here the residue analyses showed, after three weeks feeding, that mercury in the carcasses reflected the concentrations fed daily, whereas accumulation in the livers was two- to four-fold greater. After seven weeks feeding, liver residues of either organochlorine compound were about three-fold higher than the concentrations fed daily. However, four times as much DDE as Aroclor 1254 had accumulated in the carcasses.
Losina, Elena; Yang, Heidi Y; Deshpande, Bhushan R; Katz, Jeffrey N; Collins, Jamie E
2017-01-01
Illness-related absenteeism is a major threat to work productivity. Our objective was to assess the relationship between physical activity and unplanned illness-related absenteeism from work. We implemented physical activity program for sedentary non-clinician employees of a tertiary medical center. Financial rewards were available for reaching accelerometer-measured ambulatory physical activity goals over a 24-week period. We categorized participants into three groups based on mean levels of physical activity: low (0-74 min/week), medium (75-149 min/week) and meeting CDC guidelines (≥150 min/week). We built a multivariable Poisson regression model to evaluate the relationship between physical activity and rates of unplanned illness-related absenteeism. The sample consisted of 292 employees who participated in the program. Their mean age was 38 years (SD 11), 83% were female, and 38% were obese. Over the 24 intervention weeks, participants engaged in a mean of 90 min/week (SD 74) of physical activity and missed a mean of 14 hours of work (SD 38) due to illness. Unplanned absenteeism due to illness was associated with physical activity. As compared to the group meeting CDC guidelines, in multivariable analyses those in the medium physical activity group had a 2.4 (95% CI 1.3-4.5) fold higher rate of illness-related absenteeism and those in the lowest physical activity group had a 3.5 (95% CI 1.7-7.2) fold higher rate of illness-related absenteeism. Less physical activity was associated with more illness-related absenteeism. Workforce-based interventions to increase physical activity may thus be a promising vehicle to reduce unplanned illness-related absenteeism.
Yang, Heidi Y.; Katz, Jeffrey N.; Collins, Jamie E.
2017-01-01
Background Illness-related absenteeism is a major threat to work productivity. Our objective was to assess the relationship between physical activity and unplanned illness-related absenteeism from work. Methods We implemented physical activity program for sedentary non-clinician employees of a tertiary medical center. Financial rewards were available for reaching accelerometer-measured ambulatory physical activity goals over a 24-week period. We categorized participants into three groups based on mean levels of physical activity: low (0–74 min/week), medium (75–149 min/week) and meeting CDC guidelines (≥150 min/week). We built a multivariable Poisson regression model to evaluate the relationship between physical activity and rates of unplanned illness-related absenteeism. Results The sample consisted of 292 employees who participated in the program. Their mean age was 38 years (SD 11), 83% were female, and 38% were obese. Over the 24 intervention weeks, participants engaged in a mean of 90 min/week (SD 74) of physical activity and missed a mean of 14 hours of work (SD 38) due to illness. Unplanned absenteeism due to illness was associated with physical activity. As compared to the group meeting CDC guidelines, in multivariable analyses those in the medium physical activity group had a 2.4 (95% CI 1.3–4.5) fold higher rate of illness-related absenteeism and those in the lowest physical activity group had a 3.5 (95% CI 1.7–7.2) fold higher rate of illness-related absenteeism. Discussion Less physical activity was associated with more illness-related absenteeism. Workforce-based interventions to increase physical activity may thus be a promising vehicle to reduce unplanned illness-related absenteeism. PMID:28472084
Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.
Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J
2017-01-01
Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.
Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.
2016-01-01
Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561
Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M
2016-03-01
Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.
2010-01-01
Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct chemical compositions caused differential response patterns in endothelial cells. PMID:20307321
Burns, Erin E; Keith, Barbara K; Refai, Mohammed Y; Bothner, Brian; Dyer, William E
2017-08-01
Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes. Published by Elsevier Inc.
Doyle, Sean P.; Nguyen, Kristine; Ribeiro, Carla M. P.; Vasquez, Paula A.; Forest, M. Gregory; Lethem, Michael I.; Dickey, Burton F.; Davis, C. William
2015-01-01
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion. PMID:26024524
Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G
2015-06-15
For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Hoffman, D.J.; Heinz, G.H.; Audet, D.J.
2006-01-01
Lead poisoning of waterfowl has been reported for decades in the Coeur d'Alene River Basin (CDARB) in Idaho as a result of the ingestion of lead-contaminated sediments. This study was conducted to determine whether the addition of phosphoric acid to CDARB sediments would reduce the bioavailability and toxicity of lead to the liver and kidney of mallards (Anas platyrhynchos). Mallards received diets containing 12% clean sediment (controls) or 12% sediment from three different CDARB sites containing 4520, 5390, or 6990 ug/g lead (dry weight) with or without phosphoric acid amendment. Liver and kidney lead concentrations were significantly higher in all CDARB treatment groups and ranged from geometric mean values of 18.2 (liver) and 28.7 (kidney) for the first 2 sites to 22.5 (liver) and 45.6 (kidney) ug/g (wet weight) for the third site. With amendments all liver lead concentrations were reduced 36 to 55%, and all kidney lead concentrations were lowered 54 to 73%. Unamended CDARB sediment from the third site resulted in the following hepatic effects: over 1.6-fold elevation of liver glutathione (reduced form; GSH) concentration, higher GSH S-transferase and oxidized glutathione (GSSG) reductase activities, and lower protein-bound thiols (PBSH) concentration. Renal effects included higher kidney GSH concentrations for all CDARB sites, with over 2.1-fold higher for the third site. Resulting kidney GSSG to GSH ratios were lower at two sites. At the third site, gamma-glutamyl transferase (GGT) activity was elevated, and lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) was 1.7-fold greater. Amendment restored all hepatic variables as well as the renal variables TBARS and GGT so they did not differ from controls. Although amendments of phosphorus substantially reduced the bioavailability of lead and some of the adverse effects, lead concentrations in the tissues of mallards fed the amended sediments were still above those considered to be harmful to waterfowl under the present conditions.
Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E
2011-01-01
Replacement of the signal peptide (SP) of the bacteriocins enterocin P (EntP) and hiracin JM79 (HirJM79), produced by Enterococcus faecium P13 and Enterococcus hirae DCH5, respectively, by the signal peptide of Usp45 (SP(usp45)), the major Sec-dependent protein secreted by Lactococcus lactis, permits the production, secretion, and functional expression of EntP and HirJM79 by L. lactis. Chimeric genes encoding the SP(usp45) fused to either mature EntP (entP), with or without the immunity gene (entiP) or to mature HirJM79 (hirJM79), with or without the immunity gene (hiriJM79), were cloned into the expression vector pMG36c, carrying the P(32) constitutive promoter, and into pNZ8048 under control of the inducible PnisA promoter. The production of EntP and HirJM79 by most of the L. lactis recombinant strains was 1.5- to 3.7-fold higher and up to 3.6-fold higher than by the E. faecium P13 and E. hirae DCH5 control strains, respectively. However, the specific antimicrobial activity of the recombinant EntP was 1.1- to 6.2-fold higher than that produced by E. faecium P13, while that of the HirJM79 was a 40% to an 89% of that produced by E. hirae DCH5. Chimeras of SP(usp45) fused to mature EntP or HirJM79 drive the production and secretion of these bacteriocins in L. lactis in the absence of specific immunity and secretion proteins. The supernatants of the recombinant L. lactis NZ9000 strains, producers of EntP, showed a much higher antimicrobial activity against Listeria spp. than that of the recombinant L. lactis NZ9000 derivatives, producers of HirJM79.
Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.
2015-01-01
Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singleton, A.H.
1995-06-28
The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less
Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists
2014-01-01
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362
Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists.
Hansen, Martin; Phonekeo, Karina; Paine, James S; Leth-Petersen, Sebastian; Begtrup, Mikael; Bräuner-Osborne, Hans; Kristensen, Jesper L
2014-03-19
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor.
Species differences in methanol and formic acid pharmacokinetics in mice, rabbits and primates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeting, J. Nicole; Siu, Michelle; McCallum, Gordon P.
2010-08-15
Methanol (MeOH) is metabolized primarily by alcohol dehydrogenase in humans, but by catalase in rodents, with species variations in the pharmacokinetics of its formic acid (FA) metabolite. The teratogenic potential of MeOH in humans is unknown, and its teratogenicity in rodents may not accurately reflect human developmental risk due to differential species metabolism, as for some other teratogens. To determine if human MeOH metabolism might be better reflected in rabbits than rodents, the plasma pharmacokinetics of MeOH and FA were compared in male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys over time (24, 48 and 6 h, respectively)more » following a single intraperitoneal injection of 0.5 or 2 g/kg MeOH or its saline vehicle. Following the high dose, MeOH exhibited saturated elimination kinetics in all 3 species, with similar peak concentrations and a 2.5-fold higher clearance in mice than rabbits. FA accumulation within 6 h in primates was 5-fold and 43-fold higher than in rabbits and mice respectively, with accumulation being 10-fold higher in rabbits than mice. Over 48 h, FA accumulation was nearly 5-fold higher in rabbits than mice. Low-dose MeOH in mice and rabbits resulted in similarly saturated MeOH elimination in both species, but with approximately 2-fold higher clearance rates in mice. FA accumulation was 3.8-fold higher in rabbits than mice. Rabbits more closely than mice reflected primates for in vivo MeOH metabolism, and particularly FA accumulation, suggesting that developmental studies in rabbits may be useful for assessing potential human teratological risk.« less
Mitra, Sayani; Pramanik, Arnab; Banerjee, Srijoni; Haldar, Saubhik; Gachhui, Ratan
2013-01-01
The aims of the investigation were to ascertain if surface attachment of Cunninghamella elegans and niche intertidal conditions provided in a bioreactor influenced biotransformation of fluoranthene by C. elegans. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disc allowed comparison of fluoranthene biotransformation between CCFs with a hydrophobic surface (PMMA-CCF) and a hydrophilic glass surface (GS-CCF) and a 500-ml Erlenmeyer flask (EF). Fluoranthene biotransformation was higher by 22-fold, biofilm growth was higher by 3-fold, and cytochrome P450 gene expression was higher by 2.1-fold when C. elegans was cultivated with 2% inoculum as biofilm culture in PMMA-CCF compared to planktonic culture in EF. Biotransformation was enhanced by 7-fold with 10% inoculum. The temporal pattern of biofilm progression based on three-channel fluorescence detection by confocal laser scanning microscopy demonstrated well-developed, stable biofilm with greater colocalization of fluoranthene within extracellular polymeric substances and filaments of the biofilm grown on PMMA in contrast to a glass surface. A bioreactor with discs rotating at 2 revolutions per day affording 6-hourly emersion and immersion mimicked the niche intertidal habitat of C. elegans and supported biofilm formation and transformation of fluoranthene. The amount of transformed metabolite was 3.5-fold, biofilm growth was 3-fold, and cytochrome P450 gene expression was 1.9-fold higher in the process mimicking the intertidal conditions than in a submerged process without disc rotation. In the CCF and reactor, where biofilm formation was comparatively greater, higher concentration of exopolysaccharides allowed increased mobilization of fluoranthene within the biofilm with consequential higher gene expression leading to enhanced volumetric productivity. PMID:24038685
Bone-related gene profiles in developing calvaria.
Cho, Je-Yoel; Lee, Won-Bong; Kim, Hyun-Jung; Mi Woo, Kyung; Baek, Jeong-Hwa; Choi, Je-Yong; Hur, Cheol-Gu; Ryoo, Hyun-Mo
2006-05-10
Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.
Increased PI3-kinase in presympathetic brain areas of the spontaneously hypertensive rat.
Veerasingham, Shereeni J; Yamazato, Masanobu; Berecek, Kathleen H; Wyss, J Michael; Raizada, Mohan K
2005-02-18
Existing evidence led us to hypothesize that increases in p85alpha, a regulatory subunit of PI3-kinase, in presympathetic brain areas contribute to hypertension. PI3-kinase p85alpha, p110alpha, and p110delta mRNA was 1.5- to 2-fold higher in the paraventricular nucleus (PVN) of spontaneously hypertensive rats (SHR) compared with their controls, Wistar Kyoto rats (WKY). The increase in p85alpha/p110delta was attenuated in SHR treated with captopril, an angiotensin (Ang)-converting enzyme inhibitor, from in utero to 6 months of age. In the rostral ventrolateral medulla (RVLM), p110delta mRNA was approximately 2-fold higher in SHR than in WKY. Moreover, the increases in mRNA were associated with higher PI3-kinase activity in both nuclei. The functional relevance was studied in neuronal cultures because SHR neurons reflect the augmented p85alpha mRNA and PI3-kinase activity. Expression of a p85 dominant-negative mutant decreased norepinephrine (NE) transporter mRNA and [3H]NE uptake by approximately 60% selectively in SHR neurons. In summary, increased p85alpha/p110delta expression in the PVN and RVLM is associated with increased PI3-kinase activity in the SHR. Furthermore, normalized PI3-kinase p85alpha/p110delta expression within the PVN might contribute to the overall effect of captopril, perhaps attributable to a consequent decrease in NE availability.
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2018-02-01
In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors
Xu, Peng; Andreasen, Peter A.; Huang, Mingdong
2017-01-01
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases. PMID:29104489
Scorrano, Fabrizio; Carrasco, Javier; Pastor-Ciurana, Jordi; Belda, Xavier; Rami-Bastante, Alicia; Bacci, Maria Laura; Armario, Antonio
2015-03-01
The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. However, current methods have important limitations. The potential use of hair glucocorticoids as a noninvasive retrospective biomarker of long-term HPA activity is gaining acceptance in humans and wild animals. However, there is no study examining hair corticosterone (HC) in laboratory animals. The present study validates a method for measuring HC in rats and demonstrates that it properly reflects chronic HPA activity. The HC concentration was similar in male and female rats, despite higher total plasma corticosterone levels in females, tentatively suggesting that it reflects free rather than total plasma corticosterone. Exposure of male rats to 2 different chronic stress protocols (chronic immobilization and chronic unpredictable stress) resulted in similarly higher HC levels compared to controls (1.8-fold). HC also increased after a mild chronic stressor (30 min daily restraint). Chronic administration of 2 different doses of a long-acting ACTH preparation dramatically increased HC (3.1- and 21.5-fold, respectively), demonstrating that a ceiling effect in HC accumulation is unlikely under other more natural conditions. Finally, adrenalectomy significantly reduced HC. In conclusion, HC measurement in rats appears appropriate to evaluate integrated chronic changes in circulating corticosterone. © FASEB.
Guzmán-Maldonado, Salvador H; Morales-Montelongo, Ana L; Mondragón-Jacobo, Candelario; Herrera-Hernández, Guadalupe; Guevara-Lara, Fidel; Reynoso-Camacho, Rosalia
2010-08-01
Xoconostle cv. Cuaresmeño (Opuntia matudae) has attracted domestic and international industry attention; however, variations of composition from xoconostle structures have not been evaluated. Industries discard the pulp (endocarp) and peel (pericarp) as wastes and utilize the skin (mesocarp), which is the edible portion. The physicochemical, nutritional, and functional characterization of structures from xoconostle pear from 3 major sites of production in Mexico were assessed. Skin yield ranged from 58% to 64% and was higher to that of peel (22% to 24%) and pulp (12% to 18%) yields. pH, degrees Brix, and acidity were similar among xoconostle structures. Total fiber showed by peel (18.23% to 20.37%) was 2-fold higher than that of skin. Protein and ether extract were higher in xoconostle pulp compared to that showed by peel and skin. Iron content of xoconostle peel (6 to 9.6 mg/100 g, DWB) was higher to that of skin and pulp and prickly pear pulp. Soluble phenols of peel (840 to 863 mg GAE/100 g, DWB) were almost similar to that of skin (919 to 986 mg GAE/100 g, dry weigh basis); meanwhile, ascorbic acid concentration of skin was 2-fold higher compared to that of peel. The phenolic fraction of xoconostle structures consisted of gallic, vanillic, and 4-hydroxybenzoic acids; catechin, epicatechin, and vanillin were also identified by high-performance liquid chromatography-didoe array detection (HPLC-DAD). Xoconostle peel showed higher antioxidant activity (TEAC) compared to that of skin (2-fold) and pulp (6-fold) of commonly consumed fruits and vegetables. The potential of xoconostle peel and pulp for the production of feed or food is promissory. Practical Application: Outstanding nutritional and functional properties of xoconostle cv. Cuaresmeño fruits are demonstrated. Increased consumption could contribute positively to improve the diet of rural and urban consumers. The high fiber, mineral, and antioxidant components of xoconostle peel and pulp suggest that these fruit structures, which are currently discarded as waste, have promissory use as feed or food by industry.
GroEL actively stimulates folding of the endogenous substrate protein PepQ.
Weaver, Jeremy; Jiang, Mengqiu; Roth, Andrew; Puchalla, Jason; Zhang, Junjie; Rye, Hays S
2017-06-30
Many essential proteins cannot fold without help from chaperonins, like the GroELS system of Escherichia coli. How chaperonins accelerate protein folding remains controversial. Here we test key predictions of both passive and active models of GroELS-stimulated folding, using the endogenous E. coli metalloprotease PepQ. While GroELS increases the folding rate of PepQ by over 15-fold, we demonstrate that slow spontaneous folding of PepQ is not caused by aggregation. Fluorescence measurements suggest that, when folding inside the GroEL-GroES cavity, PepQ populates conformations not observed during spontaneous folding in free solution. Using cryo-electron microscopy, we show that the GroEL C-termini make physical contact with the PepQ folding intermediate and help retain it deep within the GroEL cavity, resulting in reduced compactness of the PepQ monomer. Our findings strongly support an active model of chaperonin-mediated protein folding, where partial unfolding of misfolded intermediates plays a key role.
Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut
2014-01-01
Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69-77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in mitochondria at 4h, and 2.5 and 3.3 fold higher in the total liver at 4h and 6h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4h post-APAP, it was 3.1 fold lower at 6h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. PMID:25218290
Uroplakins do not restrict CO2 transport through urothelium.
Zocher, Florian; Zeidel, Mark L; Missner, Andreas; Sun, Tung-Tien; Zhou, Ge; Liao, Yi; von Bodungen, Maximilian; Hill, Warren G; Meyers, Susan; Pohl, Peter; Mathai, John C
2012-03-30
Lipid bilayers and biological membranes are freely permeable to CO(2), and yet partial CO(2) pressure in the urine is 3-4-fold higher than in blood. We hypothesized that the responsible permeability barrier to CO(2) resides in the umbrella cell apical membrane of the bladder with its dense array of uroplakin complexes. We found that disrupting the uroplakin layer of the urothelium resulted in water and urea permeabilities (P) that were 7- to 8-fold higher than in wild type mice with intact urothelium. However, these interventions had no impact on bladder P(CO2) (∼1.6 × 10(-4) cm/s). To test whether the observed permeability barrier to CO(2) was due to an unstirred layer effect or due to kinetics of CO(2) hydration, we first measured the carbonic anhydrase (CA) activity of the bladder epithelium. Finding none, we reduced the experimental system to an epithelial monolayer, Madin-Darby canine kidney cells. With CA present inside and outside the cells, we showed that P(CO2) was unstirred layer limited (∼7 × 10(-3) cm/s). However, in the total absence of CA activity P(CO2) decreased 14-fold (∼ 5.1 × 10(-4) cm/s), indicating that now CO(2) transport is limited by the kinetics of CO(2) hydration. Expression of aquaporin-1 did not alter P(CO2) (and thus the limiting transport step), which confirmed the conclusion that in the urinary bladder, low P(CO2) is due to the lack of CA. The observed dependence of P(CO2) on CA activity suggests that the tightness of biological membranes to CO(2) may uniquely be regulated via CA expression.
Ding, Feng; Lee, Kerry J.; Vahedi-Faridi, Ardeschir; Yoneyama, Hiroshi; Osgood, Christopher J.; Xu, Xiao-Hong Nancy
2014-01-01
Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined their expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with the cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 μM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As EtBr concentration increases to 40 μM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. Modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block the translocation pore or restrict the movement of the individual pump domains, which leads to partially restrict efflux activity. PMID:24781334
Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites.
Byeon, Ji-Yeong; Kim, Young-Hoon; Na, Han-Sung; Jang, Jong-Hwa; Kim, Se-Hyung; Lee, Yun-Jeong; Bae, Jung-Woo; Kim, In Su; Jang, Choon-Gon; Chung, Myeon-Woo; Lee, Seok-Yong
2015-11-01
To investigate the effect of the variant CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine (4-HAT) and N-desmethylatomoxetine (NAT), in healthy subjects, a single oral dose of atomoxetine was administered to 62 subjects with a CYP2D6*wt/*wt (*wt = *1 or *2, n = 22), CYP2D6*wt/*10 (n = 22) or CYP2D6*10/*10 (n = 18) genotype. Plasma samples were then collected for 24 h after atomoxetine administration. The concentrations of atomoxetine and its metabolites were assayed using LC-MS/MS. For atomoxetine, the Cmax, AUC0-∞, t1/2 and CL/F showed genotype-dependent differences. The CYP2D6*10/*10 and CYP2D6*wt/*10 groups showed 1.74- and 1.15-fold higher Cmax, 3.40- and 1.33-fold higher AUC0-∞, and 69.7 and 24.6 % lower CL/F, compared to those of the CYP2D6*wt/*wt group, respectively. The Cmax and t1/2 for 4-HAT were lower and longer in the CYP2D6*10/*10 group than those in the CYP2D6*wt/*wt group, but the AUC0-∞ was not different between these groups. The Cmax, AUC0-∞ and t1/2 for NAT were profoundly greater in the CYP2D6*10/*10 group than they were in the CYP2D6*wt/*wt group. The concentration of active moieties of atomoxetine (atomoxetine + 4-HAT) in the CYP2D6*10/*10 group was 3.32-fold higher than that in the CYP2D6*wt/*wt group. The mean exposure to active moieties of atomoxetine was markedly higher in subjects with the CYP2D6*10/*10 genotype compared to that in those with the CYP2D6*wt/*wt genotype. The higher systemic exposure of the active atomoxetine moieties in CYP2D6*10/*10 individuals may increase the risk of concentration-related adverse events of atomoxetine, although this has not yet been clinically confirmed.
Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej
2015-02-23
Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs. This present study has not only confirmed the traditional use of the Thai/Lanna medicinal plant recipes for cancer treatments, but also the potential of the selected plant, G. superba for the further development as a modern anti-cancer drug. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A rabbit vocal fold laser scarring model for testing lamina propria tissue engineering therapies
Mau, Ted; Du, Mindy; Xu, Chet C.
2015-01-01
Objectives/Hypothesis To develop a vocal fold scarring model using an ablative laser in the rabbit as a platform for testing bioengineered therapies for missing or damaged lamina propria. Study Design Prospective controlled animal study. Methods An optimal laser energy level was first determined by assessing the depths of vocal fold injury created by a Holmium:YAG laser at various energy levels on fresh cadaveric rabbit larynges. The selected energy level was then used to create controlled unilateral injuries in vocal folds of New Zealand white rabbits, with the contralateral folds serving as uninjured controls. After 4 weeks, the larynges were harvested and subjected to excised-larynx phonation with high-speed imaging and immunohistochemical staining for collagen types I and III, elastin, and hyaluronic acid (HA) with quantitative histological analysis. Results 1.8 joules produced full-thickness injury of the lamina propria without extensive muscle injury. After 4 weeks, the injured vocal folds vibrated with reduced amplitude (P = 0.036) in excised-larynx phonation compared to normal vocal folds. The injured vocal folds contained a higher relative density of collagen type I (P = 0.004), higher elastin (P = 0.022), and lower HA (P = 0.030) compared to normal controls. Collagen type III was unchanged. Conclusions With its potential for higher precision of injury, this laser vocal fold scarring model may serve as an alternative to scarring produced by cold instruments for studying the effects of vocal fold lamina propria bioengineered therapies. Level of Evidence N/A. PMID:24715695
Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M
2014-07-15
Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato. Copyright © 2014 Elsevier GmbH. All rights reserved.
Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail.
Berger, Benjamin; Donzelli, Massimiliano; Maseneni, Swarna; Boess, Franziska; Roth, Adrian; Krähenbühl, Stephan; Haschke, Manuel
2016-01-01
Currently used hepatocyte cell systems for in vitro assessment of drug metabolism include hepatoma cell lines and primary human hepatocyte (PHH) cultures. We investigated the suitability of the validated in vivo Basel phenotyping cocktail (caffeine [CYP1A2], efavirenz [CYP2B6], losartan [CYP2C9], omeprazole [CYP2C19], metoprolol [CYP2D6], midazolam [CYP3A4]) in vitro and characterized four hepatocyte cell systems (HepG2 cells, HepaRG cells, and primary cryopreserved human hepatocytes in 2-dimensional [2D] culture or in 3D-spheroid co-culture) regarding basal metabolism and CYP inducibility. Under non-induced conditions, all CYP activities could be determined in 3D-PHH, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 in 2D-PHH and HepaRG, and CYP2C19 and CYP3A4 in HepG2 cells. The highest non-induced CYP activities were observed in 3D-PHH and HepaRG cells. mRNA expression was at least four-fold higher for all CYPs in 3D-PHH compared to the other cell systems. After treatment with 20 μM rifampicin, mRNA increased 3- to 50-fold for all CYPs except CYP1A2 and 2D6 for HepaRG and 3D-PHH, 4-fold (CYP2B6) and 17-fold (CYP3A4) for 2D-PHH and four-fold (CYP3A4) for HepG2. In 3D-PHH at least a two-fold increase in CYP activity was observed for all inducible CYP isoforms while CYP1A2 and CYP2C9 activity did not increase in 2D-PHH and HepaRG. CYP inducibility assessed in vivo using the same phenotyping probes was also best reflected by the 3D-PHH model. Our studies show that 3D-PHH and (with some limitations) HepaRG are suitable cell systems for assessing drug metabolism and CYP induction in vitro . HepG2 cells are less suited to assess CYP induction of the 2C and 3A family. The Basel phenotyping cocktail is suitable for the assessment of CYP activity and induction also in vitro .
Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail
Berger, Benjamin; Donzelli, Massimiliano; Maseneni, Swarna; Boess, Franziska; Roth, Adrian; Krähenbühl, Stephan; Haschke, Manuel
2016-01-01
Currently used hepatocyte cell systems for in vitro assessment of drug metabolism include hepatoma cell lines and primary human hepatocyte (PHH) cultures. We investigated the suitability of the validated in vivo Basel phenotyping cocktail (caffeine [CYP1A2], efavirenz [CYP2B6], losartan [CYP2C9], omeprazole [CYP2C19], metoprolol [CYP2D6], midazolam [CYP3A4]) in vitro and characterized four hepatocyte cell systems (HepG2 cells, HepaRG cells, and primary cryopreserved human hepatocytes in 2-dimensional [2D] culture or in 3D-spheroid co-culture) regarding basal metabolism and CYP inducibility. Under non-induced conditions, all CYP activities could be determined in 3D-PHH, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 in 2D-PHH and HepaRG, and CYP2C19 and CYP3A4 in HepG2 cells. The highest non-induced CYP activities were observed in 3D-PHH and HepaRG cells. mRNA expression was at least four-fold higher for all CYPs in 3D-PHH compared to the other cell systems. After treatment with 20 μM rifampicin, mRNA increased 3- to 50-fold for all CYPs except CYP1A2 and 2D6 for HepaRG and 3D-PHH, 4-fold (CYP2B6) and 17-fold (CYP3A4) for 2D-PHH and four-fold (CYP3A4) for HepG2. In 3D-PHH at least a two-fold increase in CYP activity was observed for all inducible CYP isoforms while CYP1A2 and CYP2C9 activity did not increase in 2D-PHH and HepaRG. CYP inducibility assessed in vivo using the same phenotyping probes was also best reflected by the 3D-PHH model. Our studies show that 3D-PHH and (with some limitations) HepaRG are suitable cell systems for assessing drug metabolism and CYP induction in vitro. HepG2 cells are less suited to assess CYP induction of the 2C and 3A family. The Basel phenotyping cocktail is suitable for the assessment of CYP activity and induction also in vitro. PMID:27917125
McDermott, Mary M; Greenland, Philip; Tian, Lu; Kibbe, Melina R; Green, David; Zhao, Lihui; Criqui, Michael H; Guralnik, Jack M; Ferrucci, Luigi; Liu, Kiang; Wilkins, John T; Huffman, Mark D; Shah, Sanjiv J; Liao, Yihua; Lloyd-Jones, Donald M
2015-01-01
Background We determined whether poorer 6-minute walk performance and lower physical activity levels are associated with higher rates of ischemic heart disease (IHD) events in people with lower extremity peripheral artery disease (PAD). Methods and Results Five hundred ten PAD participants were identified from Chicago-area medical centers and followed prospectively for 19.0±9.5 months. At baseline, participants completed the 6-minute walk and reported number of blocks walked during the past week (physical activity). IHD events were systematically adjudicated and consisted of new myocardial infarction, unstable angina, and cardiac death. For 6-minute walk, IHD event rates were 25/170 (14.7%) for the third (poorest) tertile, 10/171 (5.8%%) for the second tertile, and 6/169 (3.5%) for the first (best) tertile (P=0.003). For physical activity, IHD event rates were 21/154 (13.6%) for the third (poorest) tertile, 15/174 (8.6%) for the second tertile, and 5/182 (2.7%) for the first (best) tertile (P=0.001). Adjusting for age, sex, race, smoking, body mass index, comorbidities, and physical activity, participants in the poorest 6-minute walk tertile had a 3.28-fold (95% CI 1.17 to 9.17, P=0.024) higher hazard for IHD events, compared with those in the best tertile. Adjusting for confounders including 6-minute walk, participants in the poorest physical activity tertile had a 3.72-fold (95% CI 1.24 to 11.19, P=0.019) higher hazard for IHD events, compared with the highest tertile. Conclusions Six-minute walk and physical activity predict IHD event rates in PAD. Further study is needed to determine whether interventions that improve 6-minute walk, physical activity, or both can reduce IHD events in PAD. PMID:26219563
Highly potent fibrinolytic serine protease from Streptomyces.
Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi
2011-01-05
We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. Copyright © 2010 Elsevier Inc. All rights reserved.
Doronin, Vasilii B; Parkhomenko, Taisiya A; Castellazzi, Massimiliano; Cesnik, Edward; Buneva, Valentina N; Granieri, Enrico; Nevinsky, Georgy A
2016-01-01
We have recently shown that IgGs from serum and cerebrospinal fluid (CSF) of MS patients are active in hydrolysis of DNA and myelin basic protein. According to literature data, anti-DNA and anti-MBP abzymes may promote important neuropathologic mechanisms in this chronic inflammatory disorder and in MS pathogenesis development. At the same time, the involvement of antibodies with amylase activity in the pathogenesis of any autoimmune disease has not yet been identified. Electrophoretically and immunologically homogeneous IgGs were obtained by a sequential affinity chromatography of the CSF proteins on protein G-Sepharose and FPLC gel filtration. We are able to present the first unpredictable evidence showing that IgGs from CSF possess amylase activity and efficiently hydrolyze maltoheptaose; their average specific Ab activity is ~30-fold higher than that of antibodies from sera of the same MS patients. Specific average RA (SAA) for IgGs from healthy volunteers was approximately ~1000 lower than that for MS patients. In addition, it was shown that a relative SAA of total proteins of CSF (including Abs) ~15-fold lower than that for purified IgGs, while the relative SAA of the total sera protein is higher than that of sera IgGs by a factor of 1033. This result speaks in favor of the fact that amylolytic activity of CSF proteins is mainly caused by the activity of amylase abzymes. One cannot exclude, that amylase abzymes of CSF can play a, as yet unknown, role in the pathogenesis of MS. Some possible reasons of these findings are discussed.
A novel toll-like receptor from Mytilus coruscus is induced in response to stress.
Xu, Mengshan; Wu, Jiong; Ge, Delong; Wu, Changwen; Changfeng Chi; Lv, Zhenming; Liao, Zhi; Liu, Huihui
2018-07-01
Toll-like receptor (TLR) is considered to be an evolutionarily conserved transmembrane protein which promotes the Toll signal pathway to active the expression of transcription factors in the innate immunity of the organism. In this study, a full length of TLR homologue of 2525bp in Mytilus coruscus (named as McTLR-a, GenBank accession no: KY940571) was characterized. Its ORF was 1815 bp with a 5'untranslated region (UTR) of 128 bp and a 3'UTR of 582 bp, encoding 602 amino acid residues with a calculated molecular weight of 70.870 kDa (pI = 6.10). BLASTn analysis and phylogenetic relationship strongly suggested that this cDNA sequence was a member of TLR family. Quantitative real time RT-PCR showed that constitutive expression of McTLR-a was occurred, with increasing order in hemocyte, gonad, mantle, adducter, gill and hepatopancreas. Bacterial infection and heavy metals stimulation up-regulated the expression of McTLR-a mRNA in hepatopancreas with time-dependent manners. The maximum expression appeared at 12 h after pathogenic bacteria injection, with approximately 22-fold in Aeromonas hydrophila and 17-fold in Vibrio parahemolyticus higher than that of the blank group. In heavy metals stress group, they all reached peaks at 3d, while the diverse concentration caused the maximum expression were different. The highest expression reached approximately 7-fold higher than the blank in low concentration of Pb 2+ exposure. In Cu 2+ treated group, it reached the peak (approximately 12-fold higher than the blank)in middle concentration. These results indicated that McTLR-a might be involved in the defense response and had a significant role in mediating the environmental stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marimuthu, Arivusudar; Chavan, Sandip; Sathe, Gajanan; Sahasrabuddhe, Nandini A; Srikanth, Srinivas M; Renuse, Santosh; Ahmad, Sartaj; Radhakrishnan, Aneesha; Barbhuiya, Mustafa A; Kumar, Rekha V; Harsha, H C; Sidransky, David; Califano, Joseph; Pandey, Akhilesh; Chatterjee, Aditi
2013-11-01
Protein biomarker discovery for early detection of head and neck squamous cell carcinoma (HNSCC) is a crucial unmet need to improve patient outcomes. Mass spectrometry-based proteomics has emerged as a promising tool for identification of biomarkers in different cancer types. Proteins secreted from cancer cells can serve as potential biomarkers for early diagnosis. In the current study, we have used isobaric tag for relative and absolute quantitation (iTRAQ) labeling methodology coupled with high resolution mass spectrometry to identify and quantitate secreted proteins from a panel of head and neck carcinoma cell lines. In all, we identified 2,472 proteins, of which 225 proteins were secreted at higher or lower abundance in HNSCC-derived cell lines. Of these, 148 were present in higher abundance and 77 were present in lower abundance in the cancer-cell derived secretome. We detected a higher abundance of some previously known markers for HNSCC including insulin like growth factor binding protein 3, IGFBP3 (11-fold) and opioid growth factor receptor, OGFR (10-fold) demonstrating the validity of our approach. We also identified several novel secreted proteins in HNSCC including olfactomedin-4, OLFM4 (12-fold) and hepatocyte growth factor activator, HGFA (5-fold). IHC-based validation was conducted in HNSCC using tissue microarrays which revealed overexpression of IGFBP3 and OLFM4 in 70% and 75% of the tested cases, respectively. Our study illustrates quantitative proteomics of secretome as a robust approach for identification of potential HNSCC biomarkers. This article is part of a Special Issue entitled: An Updated Secretome. Copyright © 2013 Elsevier B.V. All rights reserved.
Ahmad, Niyaz; Alam, Md Aftab; Ahmad, Rizwan; Umar, Sadiq; Ahmad, Farhan Jalees
2018-06-06
Irinotecan (CPT-11) is a camptothecin derivative with low oral bioavailability due to active efflux by intestinal P-glycoprotein receptors. Hence, no oral formulation is marketed for Irinotecan till date and its oral ingestion continues to remain a challenge. The study aims to develop a nanoformulation i.e. Chitosan (CS)-coated-Irinotecan (IRN)-loaded-poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) in order to enhance oral bioavailability of Irinotecan. Developed formulation revealed particle size, 166.9 ±13.63 nm, zeta potential, 14.67 ±1.08 mV and drug content (42.69 ± 1.97 µg/mg), with spherical shape and smooth surface. Cytotoxicity studies, performed against human breast adenocarcinoma cell lines (MCF-7), confirmed the superiority of IRN-loaded-CS-coated-PLGA-NPs over free IRN solution (IRN-S). Cellular transport conducted on human colon adenocarcinoma cell line (Caco-2) exhibited a higher permeability of 1.33 folds for IRN through CS-IRN-PLGA-NPs as compared to IRN-S (p < 0.01) whereas the permeability for IRN was found to be higher at a rate of 4.32 folds, across rat ileum. Furthermore, pharmacokinetic studies demonstrated marked improvement of 3.53 fold and 8.03 fold in wistar rat's plasma as well as brain higher oral bioavailability through IRN-CS-PLGA-NPs when compared with IRN-S. A simple, rapid UPLC-ESI-Q-TOF-MS/MS method for the determination of IRN (CPT-11) and SN-38 in both plasma and brain (over a range: 1.00-25000.00 ng/mL) was also developed and successfully applied for pharmacokinetic study. CS-IRN-PLGA-NPs approach may be effectively utilized, to replace pre-existing intravenous therapy thus providing "patient care at home".
Ong, Z Y; Muhlhausler, B S
2011-07-01
Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal "junk-food" diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16 ± 0.6 vs. 11 ± 0.8 g/kg/d; females: 19 ± 1.3 vs. 13 ± 0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.
2014-01-01
Background As anti-malarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malaria infections. The US Army is developing tafenoquine (TQ), an analogue of primaquine (PQ), which is expected to be more effective in preventing malaria in deployed military personnel. Methods To compare the prophylactic efficacy of TQ and PQ, a transgenic Plasmodium berghei parasite expressing the bioluminescent reporter protein luciferase was utilized to visualize and quantify parasite development in C57BL/6 albino mice treated with PQ and TQ in single or multiple regimens using a real-time in vivo imaging system (IVIS). As an additional endpoint, blood stage parasitaemia was monitored by flow cytometry. Comparative pharmacokinetic (PK) and liver distribution studies of oral and intravenous PQ and TQ were also performed. Results Mice treated orally with three doses of TQ at 5 mg/kg three doses of PQ at 25 mg/kg demonstrated no bioluminescence liver signal and no blood stage parasitaemia was observed suggesting both drugs showed 100% causal activity at the doses tested. Single dose oral treatment with 5 mg TQ or 25 mg of PQ, however, yielded different results as only TQ treatment resulted in causal prophylaxis in P. berghei sporozoite-infected mice. TQ is highly effective for causal prophylaxis in mice at a minimal curative single oral dose of 5 mg/kg, which is a five-fold improvement in potency versus PQ. PK studies of the two drugs administered orally to mice showed that the absolute bioavailability of oral TQ was 3.5-fold higher than PQ, and the AUC of oral TQ was 94-fold higher than oral PQ. The elimination half-life of oral TQ in mice was 28 times longer than PQ, and the liver tissue distribution of TQ revealed an AUC that was 188-fold higher than PQ. Conclusions The increased drug exposure levels and longer exposure time of oral TQ in the plasma and livers of mice highlight the lead quality attributes that explain the much improved efficacy of TQ when compared to PQ. PMID:24731238
Li, Qigui; O'Neil, Michael; Xie, Lisa; Caridha, Diana; Zeng, Qiang; Zhang, Jing; Pybus, Brandon; Hickman, Mark; Melendez, Victor
2014-04-14
As anti-malarial drug resistance escalates, new safe and effective medications are necessary to prevent and treat malaria infections. The US Army is developing tafenoquine (TQ), an analogue of primaquine (PQ), which is expected to be more effective in preventing malaria in deployed military personnel. To compare the prophylactic efficacy of TQ and PQ, a transgenic Plasmodium berghei parasite expressing the bioluminescent reporter protein luciferase was utilized to visualize and quantify parasite development in C57BL/6 albino mice treated with PQ and TQ in single or multiple regimens using a real-time in vivo imaging system (IVIS). As an additional endpoint, blood stage parasitaemia was monitored by flow cytometry. Comparative pharmacokinetic (PK) and liver distribution studies of oral and intravenous PQ and TQ were also performed. Mice treated orally with three doses of TQ at 5 mg/kg three doses of PQ at 25 mg/kg demonstrated no bioluminescence liver signal and no blood stage parasitaemia was observed suggesting both drugs showed 100% causal activity at the doses tested. Single dose oral treatment with 5 mg TQ or 25 mg of PQ, however, yielded different results as only TQ treatment resulted in causal prophylaxis in P. berghei sporozoite-infected mice. TQ is highly effective for causal prophylaxis in mice at a minimal curative single oral dose of 5 mg/kg, which is a five-fold improvement in potency versus PQ. PK studies of the two drugs administered orally to mice showed that the absolute bioavailability of oral TQ was 3.5-fold higher than PQ, and the AUC of oral TQ was 94-fold higher than oral PQ. The elimination half-life of oral TQ in mice was 28 times longer than PQ, and the liver tissue distribution of TQ revealed an AUC that was 188-fold higher than PQ. The increased drug exposure levels and longer exposure time of oral TQ in the plasma and livers of mice highlight the lead quality attributes that explain the much improved efficacy of TQ when compared to PQ.
NASA Astrophysics Data System (ADS)
Trifonova, T. A.; Zabelina, O. N.
2017-04-01
Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.
Genzer, Yoni; Dadon, Maayan; Burg, Chen; Chapnik, Nava; Froy, Oren
2015-12-05
Ketogenic diet (KD) is used for weight loss or to treat epilepsy. KD leads to liver AMP-activated protein kinase (AMPK) activation, which would be expected to inhibit gluconeogenesis. However, KD leads to increased hepatic glucose output. As AMPK and its active phosphorylated form (pAMPK) show circadian oscillation, this discrepancy could stem from wrong-time-of-day sampling. The effect of KD was tested on mouse clock gene expression, AMPK, mTOR, SIRT1 and locomotor activity for 2 months and compared to low-fat diet (LFD). KD led to 1.5-fold increased levels of blood glucose and insulin. Brain pAMPK/AMPK ratio was 40% higher under KD, whereas that in liver was not affected. KD led to 40% and 20% down-regulation of the ratio of pP70S6K/P70S6K, the downstream target of mTOR, in the brain and liver, respectively. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed mice. Clock genes showed delayed rhythms under KD. In the brain of KD-fed mice, amplitudes of clock genes were down-regulated, whereas 6-fold up-regulation was found in the liver. The metabolic state under KD indicates reduced satiety in the brain and reduced anabolism alongside increased gluconeogenesis in the liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mouse Cone Photoreceptors Co-express Two Functional Visual Arrestins
Nikonov, Sergei S.; Brown, Bruce M.; Davis, Jason A.; Zuniga, Freddi I.; Bragin, Alvina; Pugh, Edward N.; Craft, Cheryl M.
2008-01-01
Arrestins are members of a superfamily of proteins that arrest the activity of G-protein coupled receptors. Mouse cone photoreceptors express two visual arrestins, Arr1 and Arr4 (Carr). We quantified their expression levels and subcellular distributions in mouse cones: total Arr1 was estimated to be in an ~ 6:1 ratio to cone opsin, about 50-fold higher than Arr4. Recordings from single cones of Arr1−/− and Arr4−/− mice establish that both proteins are competent to arrest the activity of photoactivated S- and M- cone opsins. Recordings from Arr1−/− , Arr4−/− double-knockout mice establish a requirement for at least one of the two visual arrestins for normal cone opsin inactivation at all flash intensities. These recordings also reveal low activity photoproducts of S- and M-opsins that are absent when Grk1 and an arrestin are co-expressed, but which decay 70-fold more rapidly than the comparable photoproducts of rhodopsin in rods. PMID:18701071
Combined strategies for improving expression of Citrobacter amalonaticus phytase in Pichia pastoris.
Li, Cheng; Lin, Ying; Zheng, Xueyun; Pang, Nuo; Liao, Xihao; Liu, Xiaoxiao; Huang, Yuanyuan; Liang, Shuli
2015-09-26
Phytase is used as an animal feed additive that degrades phytic acid and reduces feeding costs and pollution caused by fecal excretion of phosphorus. Some phytases have been expressed in Pichia pastoris, among which the phytase from Citrobacter amalonaticus CGMCC 1696 had high specific activity (3548 U/mg). Improvement of the phytase expression level will contribute to facilitate its industrial applications. To improve the phytase expression, we use modification of P AOX1 and the α-factor signal peptide, increasing the gene copy number, and overexpressing HAC1 (i) to enhance folding and secretion of the protein in the endoplasmic reticulum. The genetic stability and fermentation in 10-L scaled-up fed-batch fermenter was performed to prepare for the industrial production. The phytase gene from C. amalonaticus CGMCC 1696 was cloned under the control of the AOX1 promoter (P AOX1 ) and expressed in P. pastoris. The phytase activity achieved was 414 U/mL. Modifications of P AOX1 and the α-factor signal peptide increased the phytase yield by 35 and 12%, respectively. Next, on increasing the copy number of the Phy gene to six, the phytase yield was 141% higher than in the strain containing only a single gene copy. Furthermore, on overexpression of HAC1 (i) (i indicating induced), a gene encoding Hac1p that regulates the unfolded protein response, the phytase yield achieved was 0.75 g/L with an activity of 2119 U/mL, 412% higher than for the original strain. The plasmids in this high-phytase expression strain were stable during incubation at 30 °C in Yeast Extract Peptone Dextrose (YPD) Medium. In a 10-L scaled-up fed-batch fermenter, the phytase yield achieved was 9.58 g/L with an activity of 35,032 U/mL. The production of a secreted protein will reach its limit at a specific gene copy number where further increases in transcription and translation due to the higher abundance of gene copies will not enhance the secretion process any further. Enhancement of protein folding in the ER can alleviate bottlenecks in the folding and secretion pathways during the overexpression of heterologous proteins in P. pastoris. Using modification of P AOX1 and the α-factor signal peptide, increasing the gene copy number, and overexpressing HAC1 (i) to enhance folding and secretion of the protein in the endoplasmic reticulum, we have successfully increased the phytase yield 412% relative to the original strain. In a 10-L fed-batch fermenter, the phytase yield achieved was 9.58 g/L with an activity of 35,032 U/mL. Large-scale production of phytase can be applied towards different biocatalytic and feed additive applications.
Mohsin, Samreen; Maqbool, Asma; Ashraf, Mehwish; Malik, Kauser Abdulla
2017-08-01
A significant portion of organic phosphorus comprises of phytates which are not available to wheat for uptake. Hence for enabling wheat to utilize organic phosphorus in form of phytate, transgenic wheat expressing phytase from Aspergillus japonicus under barley root-specific promoter was developed. Transgenic events were initially screened via selection media containing BASTA, followed by PCR and BASTA leaf paint assay after hardening. Out of 138 successfully regenerated T o events, only 12 had complete constructs and thus further analyzed. Positive T1 transgenic plants, grown in sand, exhibited 0.08-1.77, 0.02-0.67 and 0.44-2.14 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, after 4 weeks of phosphorus stress. Based on these results, T2 generation of four best transgenic events was further analyzed which showed up to 1.32, 56.89, and 15.40 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, while in case of real-time PCR, maximum fold increase of 19.8 in gene expression was observed. Transgenic lines showed 0.01-1.18 fold increase in phosphorus efficiency along with higher phosphorus content when supplied phytate or inorganic phosphorus than control plants. Thus, this transgenic wheat may aid in reducing fertilizer utilization and enhancing wheat yield.
Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati
2016-01-01
In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964
Gao, Cong-Fen; Ma, Shao-Zhi; Shan, Cai-Hui; Wu, Shun-Fan
2014-09-01
The western flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), an important pest of various crops in the world, has invaded China since 2003. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in WFT, a resistant strain was selected under the laboratory conditions. Cross-resistance and the possible biochemical resistance mechanisms were investigated in this study. A 15.1-fold thiamethoxam-resistant WFT strain (TH-R) was established after selection for 55 generations. Compared with the susceptible strain (TH-S), the selected TH-R strain showed extremely high level cross-resistance to imidaclothiz (392.1-fold) and low level cross-resistance to dinotefuran (5.7-fold), acetamiprid (2.9-fold) and emamectin benzoate (2.1-fold), respectively. No cross-resistance to other fourteen insecticides was detected. Synergism tests showed that piperonyl butoxide (PBO) and triphenyl phosphate (TPP) produced a high synergism of thiamethoxam effects in the TH-R strain (2.6- and 2.6-fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that mixed function oxidase (MFO) activities and carboxylesterase (CarE) activity of the TH-R strain were 2.8- and 1.5-fold higher than that of the TH-S strain, respectively. When compared with the TH-S strain, the TH-R strain had a relative fitness of 0.64. The results show that WFT develops resistance to thiamethoxam after continuous application and thiamethoxam resistance had considerable fitness costs in the WFT. It appears that enhanced metabolism mediated by cytochrome P450 monooxygenases and CarE was a major mechanism for thiamethoxam resistance in the WFT. The use of cross-resistance insecticides, including imidaclothiz and dinotefuran, should be avoided for sustainable resistance management. Copyright © 2014 Elsevier Inc. All rights reserved.
Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen
2016-05-01
Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.
Hao, Jiuxiao; Wang, Hui
2015-01-01
The volatile fatty acids (VFAs) productions, as well as hydrolases activities, microbial communities, and homoacetogens, of mesophilic and thermophilic sludge anaerobic fermentation were investigated to reveal the microbial responses to different fermentation temperatures. Thermophilic fermentation led to 10-fold more accumulation of VFAs compared to mesophilic fermentation. α-glucosidase and protease had much higher activities in thermophilic reactor, especially protease. Illumina sequencing manifested that raising fermentation temperature increased the abundances of Clostridiaceae, Microthrixaceae and Thermotogaceae, which could facilitate either hydrolysis or acidification. Real-time PCR analysis demonstrated that under thermophilic condition the relative abundance of homoacetogens increased in batch tests and reached higher level at stable fermentation, whereas under mesophilic condition it only increased slightly in batch tests. Therefore, higher fermentation temperature increased the activities of key hydrolases, raised the proportions of bacteria involved in hydrolysis and acidification, and promoted the relative abundance of homoacetogens, which all resulted in higher VFAs production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gupta, Rakesh Kumar; Singh, Neeta
2013-01-01
Cervical cancer, the second most common cancer in women, has a high mortality rate. Cisplatin, an antitumor agent, is generally used for its treatment. However, the administration of cisplatin is associated with side effects and intrinsic resistance. Morinda citrifolia (Noni), a natural plant product, has been shown to have antioxidant activities in vitro and in vivo. Both HeLa and SiHa cervical cancer cell lines were treated with 10% Noni, 10 mg/dl cisplatin, or a combination of both 10% Noni and 10 mg/dl cisplatin for 24 hours. Post culturing, the cells were pelleted and stored at -70oC for malondialdehyde and catalase assays. On treatment with Noni, CP, and their combination, the level of MDA decreased by 0.76 fold, 0.49 fold, and 0.68 fold respectively in HeLa cells; and by 0.93 fold, 0.67 fold, and 0.79 fold respectively in SiHa cells, as compared to their controls; whereas catalase activity increased by 1.61 fold, 0.54 fold, and 2.35 fold, respectively in HeLa cells; and by 0.98 fold, 0.39 fold, and 1.85 fold respectively in SiHa cells. A decrease in level of lipid peroxidation and an increase in catalase activity were observed with Noni by itself and the effect ameliorated changes observed with cisplatin when given in combination.
Brattsten, L B; Evans, C K; Bonetti, S; Zalkow, L H
1984-01-01
Carrot foliage monoterpenes induce cytochrome P-450 up to 2.9-fold, NADPH cytochrome c (P-450) reductase up to 1.6-fold, NADPH-oxidation up to 3.8-fold, aldrin epoxidation up to 1.5-fold in southern armyworm larval midgut tissues when incorporated in their diet at 0.2% for 3 days. Stigmasterol and ergosterol did not substantially induce microsomal oxidase activities and significantly inhibited GSH S-aryltransferase activity and sulfotransferase activity. Coumarin did not substantially affect microsomal oxidase and sulfotransferase activity but is the most potent inducer of GSH S-aryltransferase activity, increasing this activity 7-fold. None of the chemicals is acutely toxic to the sixth instar larvae or affect the larval weight gain except coumarin which significantly depressed the maximal body weight attained.
LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.
Clayton, R N; Shakespear, R A; Marshall, J C
1978-06-01
Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.
Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz
2016-06-01
The pectinase was separately immobilized onto Florisil and nano silica supports through both glutaraldehyde and 3-glyoxypropyltrietoxysilane spacer arms. The effects of spacer arm, particle size of support and ionic liquids on the activities of pectinase preparations were investigated. The immobilization of pectinase onto Florisil and nano silica through 3-glyoxypropyltrietoxysilane spacer arm completely led to inactivation of enzyme; however, 10 and 75% pectinase activity were retained when it was immobilized through glutaraldehyde spacer arm onto Florisil and nano silica, respectively. The pectinase immobilized onto nano silica through glutaraldehyde spacer arm showed 6.3-fold higher catalytic efficiency than that of the pectinase immobilized onto Florisil through same spacer arm. A 2.3-fold increase in thermal stability of pectinase was provided upon immobilization onto nano silica at 35°C. The effects of IL/buffer mixture and volume ratio of IL/buffer mixture on the catalytic activities of free and immobilized pectinase preparations were also tested. All the pectinase preparations showed highest activity in 10% (v/v) 1-butyl-3-methylimidazolium hexafluorophosphate containing medium and their activities significantly affected from the concentration of 1-butyl-3-methylimidazolium hexafluorophosphate. Copyright © 2016 Elsevier B.V. All rights reserved.
New coumarin derivatives: design, synthesis and use as inhibitors of hMAO.
He, Xu; Chen, Yan-Yan; Shi, Jing-Bo; Tang, Wen-Jiang; Pan, Zhi-Xiang; Dong, Zhi-Qiang; Song, Bao-An; Li, Jun; Liu, Xin-Hua
2014-07-15
A series new 2H-chromene-3-carboxamides (4a-4i) and S-2H-chromene-3-carbothioates (5j-5t) were synthesized and evaluated as monoamine oxidase A and B inhibitors. Among them, compound 5k (IC50=0.21μM, IC50 iproniazid=7.65μM) showed the most activity and higher MAO-B selectivity (189.2-fold vs 1-fold) with respect to the MAO-A isoform. The need to clarify at a 3D level some important molecular aspects of discussed SAR, we undertaked a number of docking simulations to better assess. The steric effect was analyzed interms of both posing and scoring by investigating the nature of the binding interactions. The docking results of active compound 5k with hMAO-B complex indicated that conserved residue ILE 199 was important for ligand binding via Sigma-Pi interaction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hart, Daniel; Weinstein, Melvin P
2007-07-01
We compared the serum bactericidal activity (SBA) of moxifloxacin and levofloxacin against penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae in 12 healthy volunteers. Each subject received 3 days of oral moxifloxacin 400 mg daily and levofloxacin 750 mg daily, respectively, with a 2- to 4-week washout period between regimens. Blood was drawn at 6 time points after the third dose of each antibiotic. Mean serum bactericidal titers (MSBTRs) for moxifloxacin were 4-fold higher than the mean titers for levofloxacin at each time point. For each drug, MSBTRs at each time point were the same or within one 2-fold dilution when analyzed according to the penicillin susceptibility of the strains or the sex of the subjects. The difference in SBA of the 2 drugs may have implications for the emergence of resistance and clinical outcome.
Structure prediction and activity analysis of human heme oxygenase-1 and its mutant.
Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang
2004-08-15
To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (delta hHO-1) structures, to clone and express them and analyze their activities. Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5alpha. Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of delta hHO-1 was reduced 91.21% after mutation compared with whHO-1. Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. delta hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. delta hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia.
Structure prediction and activity analysis of human heme oxygenase-1 and its mutant
Xia, Zhen-Wei; Zhou, Wen-Pu; Cui, Wen-Jun; Zhang, Xue-Hong; Shen, Qing-Xiang; Li, Yun-Zhu; Yu, Shan-Chang
2004-01-01
AIM: To predict wild human heme oxygenase-1 (whHO-1) and hHO-1 His25Ala mutant (△hHO-1) structures, to clone and express them and analyze their activities. METHODS: Swiss-PdbViewer and Antheprot 5.0 were used for the prediction of structure diversity and physical-chemical changes between wild and mutant hHO-1. hHO-1 His25Ala mutant cDNA was constructed by site-directed mutagenesis in two plasmids of E. coli DH5α . Expression products were purified by ammonium sulphate precipitation and Q-Sepharose Fast Flow column chromatography, and their activities were measured. RESULTS: rHO-1 had the structure of a helical fold with the heme sandwiched between heme-heme oxygenase-1 helices. Bond angle, dihedral angle and chemical bond in the active pocket changed after Ala25 was replaced by His25, but Ala25 was still contacting the surface and the electrostatic potential of the active pocket was negative. The mutated enzyme kept binding activity to heme. Two vectors pBHO-1 and pBHO-1(M) were constructed and expressed. Ammonium sulphate precipitation and column chromatography yielded 3.6-fold and 30-fold higher purities of whHO-1, respectively. The activity of △hHO-1 was reduced 91.21% after mutation compared with whHO-1. CONCLUSION: Proximal His25 ligand is crucial for normal hHO-1 catalytic activity. △hHO-1 is deactivated by mutation but keeps the same binding site as whHO-1. △hHO-1 might be a potential inhibitor of whHO-1 for preventing neonatal hyperbilirubinemia. PMID:15285018
Park, Sangkyu; Kim, Da-Hye; Lee, Jong-Yeol; Ha, Sun-Hwa; Lim, Sun-Hyung
2017-07-05
We isolated cDNAs encoding flavonol synthase (FLS) from the red onion "H6" (AcFLS-H6) and the yellow onion "Hwangryongball" (AcFLS-HRB). We found three amino acid variations between the two sequences. Kinetic analysis with recombinant proteins revealed that AcFLS-HRB exhibited approximately 2-fold higher catalytic efficiencies than AcFLS-H6 for dihydroflavonol substrates and that both proteins preferred dihydroquercetin to dihydrokaempferol. The expression patterns of flavonoid biosynthesis genes corresponded to the accumulation patterns of flavonoid aglycones in both onions. Whereas the other flavonoid biosynthesis genes were weakly expressed in the HRB sheath compared to that of H6, the expression of FLS was similar in both onions. This relatively enhanced FLS expression, along with the higher activity of AcFLS-HRB, could increase the quercetin production in the HRB sheath. The quercetin content was approximately 12-fold higher than the cyanidin content in the H6 sheath, suggesting that FLS has priority in the competition between FLS and dihydroflavonol 4-reductase (DFR) for their substrate dihydroquercetin.
Degeneration Modulates Retinal Response to Transient Exogenous Oxidative Injury
Lederman, Michal; Hagbi-Levi, Shira; Grunin, Michelle; Obolensky, Alexey; Berenshtein, Eduard; Banin, Eyal; Chevion, Mordechai; Chowers, Itay
2014-01-01
Purpose Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Methods Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Results Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1–7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). Conclusions This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from oxidative injury. PMID:24586289
Sankaranarayanan, Mugesh; Seol, Eunhee; Kim, Yeonhee; Chauhan, Ashish Singh; Park, Sunghoon
2017-03-01
Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster ® /B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.
Zheng, Ming-Min; Chen, Ke-Cai; Wang, Ru-Feng; Li, Hao; Li, Chun-Xiu; Xu, Jian-He
2017-02-15
Ursodeoxycholic acid (UDCA) is the main active ingredient of natural bear bile powder with multiple pharmacological functions. 7β-Hydroxysteroid dehydrogenase (HSDH) is a key biocatalyst for the synthesis of UDCA. However, all the 7β-HSDHs reported commonly suffer from poor activity and thermostability, resulting in limited productivity of UDCA. In this study, a multiobjective directed evolution (MODE) strategy was proposed and applied to improve the activity, thermostability, and pH optimum of a 7β-HSDH. The best variant (V 3-1 ) showed a specific activity 5.5-fold higher than and a half-life 3-fold longer than those of the wild type. In addition, the pH optimum of the variant was shifted to a weakly alkaline value. In the cascade reaction, the productivity of UDCA with V 3-1 increased to 942 g L -1 day -1 , in contrast to 141 g L -1 day -1 with the wild type. Therefore, this study provides a useful strategy for improving the catalytic efficiency of a key enzyme that significantly facilitated the bioproduction of UDCA.
ERIC Educational Resources Information Center
Pagni, David
2007-01-01
In this article, the author presents a paper folding activity that can be used for teaching fractions. This activity can be used to describe areas of folded polygons in terms of a standard unit of measure. A paper folding fractions worksheet and its corresponding solutions are also presented in this article. (Contains 2 figures.)
Marzec, Natalie S; Bessesen, Mary T
2016-04-01
The risk of nosocomial methicillin-sensitive Staphylococcus aureus bacteremia in patients with nasal colonization on admission is 3-fold higher than in patients who are not colonized. Limited data on this question have been reported for methicillin-resistant S aureus (MRSA). This is an observational cohort study of patients admitted to a tertiary care medical center from October 1, 2007-September 30, 2013, who underwent active screening for nasal colonization with MRSA. There were 29,371 patients who underwent screening for nasal MRSA colonization; 3,262 (11%) were colonized with MRSA. There were 32 cases of MRSA bacteremia among colonized patients, for an incidence of 1%. Thirteen cases of bacteremia occurred in non-MRSA-colonized patients, for an incidence of 0.05%. The odds of developing MRSA bacteremia for patients who were nasally colonized with MRSA compared with those who were not colonized were 19.89. There was no difference between colonized and noncolonized subjects with bacteremia in all-cause mortality at 30 days or 1 year. In a setting with active screening for MRSA, the risk of MRSA bacteremia is 19.89-fold higher among colonized than noncolonized patients. Published by Elsevier Inc.
Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Yoshihara, H; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K
1986-03-01
The in vitro susceptibilities of various causative organisms recently isolated from patients with genital infections to BRL 25000 (a formulation with 2 parts of amoxicillin and 1 part of potassium clavulanate), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase-producing strains were detected by the nitrocefin disc method. Frequencies of isolation of beta-lactamase producing strains of E. coli, K. pneumoniae and B. fragilis were 36%, 96% and 100%, respectively. The activity of BRL 25000 against S. agalactiae and anaerobic GPC (anaerobic Streptococci, Peptostreptococcus spp.) was slightly less than that of AMPC but was 2- to 4-fold higher than CCL and 8- to 16-fold higher than CEX, CDX and CXD. Against E. coli and K. pneumoniae, the activity of BRL 25000 was superior to that of AMPC and approximately equal to CEX, CDX and CXD but 2-fold less than CCL. Against the B. fragilis group, BRL 25000 was much more active than AMPC or any of the cephalosporins tested, clearly demonstrating the beta-lactamase inhibitory properties of the clavulanic acid in BRL 25000. At inocula of 10(6) CFU/ml, MIC values of BRL 25000 were 12.5-50 micrograms/ml against some strains of E. coli, K. pneumoniae and B. fragilis. A mechanism of resistance other than beta-lactamase production is obviously prevalent in these strains. It is speculated that the resistance may be due to a low affinity of the drug to target proteins. Mixed infections of B. fragilis and E. coli or K. pneumoniae are commonly found in the obstetric and gynecological patients. BRL 25000 shows activity against these strains and also against both aerobic and anaerobic GPC. Therefore, BRL 25000 is considered useful for the treatment of genital infections.
Kögel, D; Aboud, M; Flügel, R M
1995-01-01
Human foamy or spuma virus (HFV) codes for a distinct set of pol gen products. To determine the minimal requirements for the HFV enzymatic activities, defined residues of the reverse transcriptase (RT) and ribo-nuclease H (RNase H) domain of the HFV pol gene were mutated by site-specific PCR mutagenesis. The mutant gene products were bacterially expressed, purified by Ni2+ chelate affinity chromatography and characterised by Western blotting. The enzymatic activities of the individual recombinant HFV pol mutant proteins were characterised by the situ RT, RNase H and RNase H assays. Two substitution mutants reached RT activity levels higher than that of the intact recombinant HFV RT-RH-His. When the catalytically essential D508 was substituted by A508, 5% of RNase H activity was retained while DNA polymerase activity increased 2-fold. A deletion of 11 amino acid residues in the hinge region completely abolished DNA polymerase while RNase H activity decreased 2-fold. A deletion mutant in the C-terminal RH domain showed no RNase H but retained RNase H activity indicating that the activities are genetically separable. The combined data reveal that the HFV DNA polymerase and RNase H activities are interdependent. Images PMID:7544460
Horbowicz, Marcin; Wiczkowski, Wiesław; Sawicki, Tomasz; Szawara-Nowak, Dorota; Sytykiewicz, Hubert; Mitrus, Joanna
2015-01-01
Methyl jasmonate has a strong effect on secondary metabolizm in plants, by stimulating the biosynthesis a number of phenolic compounds and alkaloids. Common buckwheat (Fagopyrum esculentum Moench) is an important source of biologically active compounds. This research focuses on the detection and quantification of 2-phenylethylamine and its possible metabolites in the cotyledons, hypocotyl and roots of common buckwheat seedlings treated with methyl jasmonate. In cotyledons of buckwheat sprouts, only traces of 2-phenylethylamine were found, while in the hypocotyl and roots its concentration was about 150 and 1000-times higher, respectively. Treatment with methyl jasmonate resulted in a 4-fold increase of the 2-phenylethylamine level in the cotyledons of 7-day buckwheat seedlings, and an 11-fold and 5-fold increase in hypocotyl and roots, respectively. Methyl jasmonate treatment led also to about 4-fold increase of phenylacetic acid content in all examined seedling organs, but did not affect the 2-phenylethanol level in cotyledons, and slightly enhanced in hypocotyl and roots. It has been suggested that 2-phenylethylamine is a substrate for the biosynthesis of phenylacetic acid and 2-phenylethanol, as well as cinnamoyl 2-phenethylamide. In organs of buckwheat seedling treated with methyl jasmonate, higher amounts of aromatic amino acid transaminase mRNA were found. The enzyme can be involved in the synthesis of phenylpyruvic acid, but the presence of this compound could not be confirmed in any of the examined organs of common buckwheat seedling.
Baek, Seung Cheol; Ho, Thien-Hoang; Lee, Hyun Woo; Jung, Won Kyeong; Gang, Hyo-Seung; Kang, Lin-Woo; Kim, Hoon
2017-05-01
β-1,3-1,4-Glucanase (BGlc8H) from Paenibacillus sp. X4 was mutated by error-prone PCR or truncated using termination primers to improve its enzyme properties. The crystal structure of BGlc8H was determined at a resolution of 1.8 Å to study the possible roles of mutated residues and truncated regions of the enzyme. In mutation experiments, three clones of EP 2-6, 2-10, and 5-28 were finally selected that exhibited higher specific activities than the wild type when measured using their crude extracts. Enzyme variants of BG 2-6 , BG 2-10 , and BG 5-28 were mutated at two, two, and six amino acid residues, respectively. These enzymes were purified homogeneously by Hi-Trap Q and CHT-II chromatography. Specific activity of BG 5-28 was 2.11-fold higher than that of wild-type BG wt , whereas those of BG 2-6 and BG 2-10 were 0.93- and 1.19-fold that of the wild type, respectively. The optimum pH values and temperatures of the variants were nearly the same as those of BG wt (pH 5.0 and 40 °C, respectively). However, the half-life of the enzyme activity and catalytic efficiency (k cat /K m ) of BG 5-28 were 1.92- and 2.12-fold greater than those of BG wt at 40 °C, respectively. The catalytic efficiency of BG 5-28 increased to 3.09-fold that of BG wt at 60 °C. These increases in the thermostability and catalytic efficiency of BG 5-28 might be useful for the hydrolysis of β-glucans to produce fermentable sugars. Of the six mutated residues of BG 5-28 , five residues were present in mature BGlc8H protein, and two of them were located in the core scaffold of BGlc8H and the remaining three residues were in the substrate-binding pocket forming loop regions. In truncation experiments, three forms of C-terminal truncated BGlc8H were made, which comprised 360, 286, and 215 amino acid residues instead of the 409 residues of the wild type. No enzyme activity was observed for these truncated enzymes, suggesting the complete scaffold of the α 6 /α 6 -double-barrel structure is essential for enzyme activity.
Lee, Chul-Ho; Kamijima, Michihiro; Li, ChunMei; Taneda, Shinji; Suzuki, Akira K; Nakajima, Tamie
2007-09-01
3-Methyl-4-nitrophenol (PNMC) is a component of diesel exhaust particles and one of the major breakdown products of the insecticide fenitrothion. This chemical has a high potential for reproductive toxicity in Japanese quail (Coturnix japonica) and rats. Because PNMC inhaled by the body is metabolized by uridine diphosphate glucuronosyltransferase (UGT) and sulfotransferase, we investigated these enzyme activities in the hepatic microsomes and cytosols of quail (as a model of wild birds) and compared these activities with those of rats and mice as models of ecological and human risk assessment. The maximum velocity of the UGT for PNMC in quail was 12.7 nmol/min/mg, which was one third and one fourth those of rats and mice, respectively. The Michaelis-Menten constant of UGT for PNMC in quail was 0.29 mM, which was 1.3- and 1.8-fold higher than that in mice and rats, respectively, but not significantly different. In accordance with these results, UGT activities for PNMC were lowest in quail, with those in mice and rats being 4.4- and 2.7-fold higher, respectively. Sulfotransferase activity for PNMC was considerably less than that of UGT in all animals, including quail; no significant differences in the activities were found among mice, rats, and quail. These results suggest that glucuronidation may be involved primarily in PNMC elimination from wild birds as well as mammals and that the UGT activity in quail is less than that in the rodents.
3D fold growth rates in transpressional tectonic settings
NASA Astrophysics Data System (ADS)
Frehner, Marcel
2015-04-01
Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end-member case of unidirectional layer-parallel compression (Frehner, 2014). Fold growth rates in the two lateral directions are almost identical resulting in bulk fold structures with aspect ratios in map view close to 1. Fold elongation is continuous with increasing bulk deformation, while sequential fold growth exhibits jumps whenever a new sequential fold appears. Compared with the two lateral growth directions, fold amplification exhibits a slightly higher growth rate. The orientation of the fold axis has an angle equal to 1 2 of 90° minus the convergence angle; and this orientation is stable with increasing bulk deformation, i.e. the fold axis does not rotate with increasing general-shear deformation. For example, for simple-shear boundary conditions (convergence angle 0°) the fold axis is stable at an angle of 45° to the boundaries; for a convergence angle of 45° the fold axis is stable at an angle of 22.5° to the boundaries. REFERENCE: Frehner M., 2014: 3D fold growth rates, Terra Nova 26, 417-424, doi:10.1111/ter.12116.
Darkoh, Charles; Kaplan, Heidi B; Dupont, Herbert L
2011-08-01
The incidence of Clostridium difficile infection (CDI) has been increasing within the last decade. Pathogenic strains of C. difficile produce toxin A and/or toxin B, which are important virulence factors in the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect either the bacterium or the toxins. We have developed an assay (Cdifftox activity assay) to detect C. difficile toxin A and B activities that is quantitative and cost-efficient and utilizes a substrate that is stereochemically similar to the native substrate of the toxins (UDP-glucose). To characterize toxin activity, toxins A and B were purified from culture supernatants by ammonium sulfate precipitation and chromatography through DEAE-Sepharose and gel filtration columns. The activities of the final fractions were quantitated using the Cdifftox activity assay and compared to the results of a toxin A- and B-specific enzyme-linked immunosorbent assay (ELISA). The affinity for the substrate was >4-fold higher for toxin B than for toxin A. Moreover, the rate of cleavage of the substrate was 4.3-fold higher for toxin B than for toxin A. The optimum temperature for both toxins ranged from 35 to 40°C at pH 8. Culture supernatants from clinical isolates obtained from the stools of patients suspected to be suffering from CDI were tested using the Cdifftox activity assay, and the results were compared to those of ELISA and PCR amplification of the toxin genes. Our results demonstrate that this new assay is comparable to the current commercial ELISA for detecting the toxins in the samples tested and has the added advantage of quantitating toxin activity.
Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V
1997-07-20
Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions.
Tiedge, Kira; Lohaus, Gertrud
2017-01-01
Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino acids are more strongly correlated with the preferences of predominant pollinators than organic acids and inorganic ions. PMID:28467507
Bolinger, Mark T; Rodnick, Kenneth J
2014-05-01
The pathways and regulatory mechanisms of glycogenolysis remain relatively unexplored in non-mammalian vertebrates, especially poikilotherms. We studied the temperature sensitivity and inhibition of glycogenolytic enzymes in liver, ventricle, and white muscle of rainbow trout acclimated to 14 °C. Glycogen phosphorylase (GP) and acid α-glucosidase (GAA) activities were measured in homogenates of tissues at physiological temperatures (4, 14, and 24 °C), and in the presence of allosteric inhibitor, glucose. Higher GP versus GAA activity in all three tissues suggested a predominance of phosphorolytic glycogenolysis over the lysosomal glucosidic pathway. GP activities at 14 °C were ~2-fold higher in the ventricle and white muscle versus the liver and selectively increased by AMP in striated muscle. Conversely, the activities of GAA and lysosomal marker acid phosphatase were 8- to 10-fold higher in the liver compared with the ventricle and white muscle. Thermal sensitivity (Q10) was increased for GP in all tissues below 14 °C and decreased in striated muscle in the absence of AMP above 14 °C. GAA had lower Q10 values than GP below 14 °C, and, unlike GP, Q10s for GAA were not different between tissues or affected by temperature. Both GP (in the absence of AMP) and GAA were inhibited by glucose in a dose-dependent manner, with the lowest IC50 values observed in the white muscle (1.4 and 6.3 mM, respectively). In conclusion, despite comparatively low kinetic potential, lysosomal GAA might facilitate glycogenolysis at colder body temperatures in striated muscle and intracellular glucose could limit phosphorolytic and glucosidic glycogenolysis in multiple tissues of the rainbow trout. Copyright © 2014 Elsevier Inc. All rights reserved.
Ramos, Margarita D; Miranda, Letícia P; Giordano, Raquel L C; Fernandez-Lafuente, Roberto; Kopp, William; Tardioli, Paulo W
2018-04-25
The preparation of crosslinked aggregates of pancreatic porcine lipase (PPL-CLEA) was systematically studied, evaluating the influence of three precipitants and two crosslinking agents, as well as the use of soy protein as an alternative feeder protein on the catalytic properties and stability of the immobilized PPL. Standard CLEAs showed a global yield (CLEA' observed activity/offered total activity) of less than 4%, whereas with the addition of soy protein (PPL:soy protein mass ratio of 1:3) the global yield was approximately fivefold higher. The CLEA of PPL prepared with soy protein as feeder (PPL:soy protein mass ratio of 1:3) and glutaraldehyde as crosslinking reagent (10 μmol of aldehyde groups/mg of total protein) was more active mainly because of the reduced enzyme leaching in the washing step. This CLEA, named PPL-SOY-CLEA, had an immobilization yield around 60% and an expressed activity around 40%. In the ethanolysis of soybean oil, the PPL-SOY-CLEA yielded maximum fatty acid ethyl ester (FAEE) concentration around 12-fold higher than that achieved using soluble PPL (34 h reaction at 30°C, 300 rpm stirring, soybean oil/ethanol molar ratio of 1:5) with an enzyme load around 2-fold lower (very likely due to free enzyme inactivation). The operational stability of the PPL-SOY-CLEA in the ethanolysis of soybean oil in a vortex flow type reactor showed that FAEE yield was higher than 50% during ten reaction cycles of 24 h. This reactor configuration may be an attractive alternative to the conventional stirred reactors for biotransformations in industrial plants using carrier-free biocatalysts. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.
1993-01-01
Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.
Groebner, A E; Schulke, K; Unterseer, S; Reichenbach, H D; Reichenbach, M; Büttner, M; Wolf, E; Meyer, H H D; Ulbrich, S E
2010-03-01
Bovine trophoblast cells release interferon-tau (IFNT), a type I IFN, as the pregnancy recognition signal. Since type I IFNs exert growth inhibitory and proapoptotic actions, the effect of the conceptus on components of the apoptosis pathways was determined in the bovine endometrium during the periimplantation period. Uteri of Simmental heifers were flushed post mortem at days 12, 15, and 18 of cycle or pregnancy for the recovery of conceptuses and the sampling of ipsilateral endometrial tissue at slaughter for quantitative RT-PCR, immunohistochemistry, caspase activity and TUNEL assays. Endometrium samples of pregnant animals revealed increased transcript levels for the proapoptotic genes XAF1 (day 15: 2.9-fold; day 18: 15.1-fold; p=0.005) and CASP8 (day 18: 2.4-fold; p=0.007). The mRNA expression increased significantly with the day of the cycle for the proapoptotic genes FASLG, TNFSF10, TNF and TNFSF1A (p=0.004, p=0.006, p=0.001 and p=0.007) and the antiapoptotic gene BIRC4 (p=0.03). We detected high amounts of FASLG transcripts in day 18 conceptuses (16-fold higher than day 18 endometria). This finding was validated at the protein level by immunohistochemistry. To further analyse the endometrial activation of the caspase cascade, the activities of initiator caspase 8 and effector caspases 3/7 were determined luminometrically. No difference between pregnant and cyclic animals was found for either caspase activity. Additionally, a TUNEL assay showed no increase of apoptotic cells in the pregnant endometrium. In conclusion, although the bovine conceptus induces the expression of proapoptotic genes, neither an activation of a caspase cascade nor an increase of apoptotic cells was noticed. These results suggest inhibitory mechanisms preventing endometrial cells from programmed cell death. Copyright 2009 Elsevier Ltd. All rights reserved.
Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼
Fulcher, Yan G.; Van Doren, Steven R.
2011-01-01
How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233
Rivera-Meza, Mario; Quintanilla, María Elena; Tampier, Lutske; Mura, Casilda V; Sapag, Amalia; Israel, Yedy
2010-01-01
Humans who carry a point mutation in the gene coding for alcohol dehydrogenase-1B (ADH1B*2; Arg47His) are markedly protected against alcoholism. Although this mutation results in a 100-fold increase in enzyme activity, it has not been reported to cause higher levels of acetaldehyde, a metabolite of ethanol known to deter alcohol intake. Hence, the mechanism by which this mutation confers protection against alcoholism is unknown. To study this protective effect, the wild-type rat cDNA encoding rADH-47Arg was mutated to encode rADH-47His, mimicking the human mutation. The mutated cDNA was incorporated into an adenoviral vector and administered to genetically selected alcohol-preferring rats. The V(max) of rADH-47His was 6-fold higher (P<0.001) than that of the wild-type rADH-47Arg. Animals transduced with rAdh-47His showed a 90% (P<0.01) increase in liver ADH activity and a 50% reduction (P<0.001) in voluntary ethanol intake. In animals transduced with rAdh-47His, administration of ethanol (1g/kg) produced a short-lived increase of arterial blood acetaldehyde concentration to levels that were 3.5- to 5-fold greater than those in animals transduced with the wild-type rAdh-47Arg vector or with a noncoding vector. This brief increase (burst) in arterial acetaldehyde concentration after ethanol ingestion may constitute the mechanism by which humans carrying the ADH1B*2 allele are protected against alcoholism.
Hussey, Stephen L; Muddana, Smita S; Peterson, Blake R
2003-04-02
Small molecules that dimerize proteins in living cells provide powerful probes of biological processes and have potential as tools for the identification of protein targets of natural products. We synthesized 7-alpha-substituted derivatives of beta-estradiol tethered to the natural product biotin to regulate heterodimerization of estrogen receptor (ER) and streptavidin (SA) proteins expressed as components of a yeast three-hybrid system. Addition of an estradiol-biotin chimera bearing a 19-atom linker to yeast expressing DNA-bound ER-alpha or ER-beta LexA fusion proteins and wild-type SA protein fused to the B42 activation domain activated reporter gene expression by as much as 450-fold in vivo (10 muM ligand). Comparative analysis of lower affinity Y43A (biotin Kd approximately 100 pM) and W120A (biotin Kd approximately 100 nM) mutants of SA indicated that moderate affinity interactions can be readily detected with this system. Comparison of a 7-alpha-substituted estradiol-biotin chimera with a structurally similar dexamethasone-biotin chimera revealed that yeast expressing ER proteins can detect cognate ligands with up to 5-fold greater potency and 70-fold higher activity than yeast expressing analogous glucocorticoid receptor (GR) proteins. This approach may facilitate the identification of protein targets of biologically active small molecules screened against genetically encoded libraries of proteins expressed in yeast three-hybrid systems.
Associations between time in bed and suicidal thoughts, plans and attempts in Korean adolescents
Kim, Jae-Hyun; Park, Eun-Cheol; Lee, Sang Gyu; Yoo, Ki-Bong
2015-01-01
Objectives To examine the hypothesis that respondents with any of three specific sleep patterns would have a higher likelihood of suicidality than those without reports of these patterns in Korean adolescents. Setting Data from the 2011–2013 Korea Youth Risk Behavior Web-based Survey were used. Participants 191 642 subjects were included. The survey's target population was students in grades 7 through 12 in South Korea. Independent variable Sleep time. Primary and secondary outcome measures Suicidal thoughts, plans and attempts. Results The odds of suicidal thoughts in subjects with very short or long time in bed were 1.487-fold higher (95% CI 1.219 to 1.815) or 0.611-fold lower (95% CI 0.460 to 0.811), respectively, than for subjects with 7 h/day in bed; the odds were similar for suicidal plans. The odds of suicidal thoughts in subjects with early or late awakening times were 1.231-fold higher (95% CI 1.050 to 1.442) or 1.528-fold lower (95% CI 1.000 to 2.334), respectively, than for subjects with 7 h/day in bed; these odds were lower for suicidal plans and attempts. The odds of suicidal thoughts in subjects with early bedtime were 1.748-fold higher (95% CI 1.302 to 2.346), the odds of suicidal plans in people with an early bedtime were 2.494-fold higher (95% CI 1.671 to 3.722) and the odds of suicide attempts in subjects with late bedtime were 1.313-fold higher (95% CI 1.005 to 1.716) than for subjects with a bedtime of 23:00. Conclusions The sleep-related time is associated with suicide-related behaviours in Korean adolescents. Multilateral approaches are needed to identify the greatest risk factors for suicidal behaviours. PMID:26341585
Associations between time in bed and suicidal thoughts, plans and attempts in Korean adolescents.
Kim, Jae-Hyun; Park, Eun-Cheol; Lee, Sang Gyu; Yoo, Ki-Bong
2015-09-04
To examine the hypothesis that respondents with any of three specific sleep patterns would have a higher likelihood of suicidality than those without reports of these patterns in Korean adolescents. Data from the 2011-2013 Korea Youth Risk Behavior Web-based Survey were used. 191,642 subjects were included. The survey's target population was students in grades 7 through 12 in South Korea. Sleep time. Suicidal thoughts, plans and attempts. The odds of suicidal thoughts in subjects with very short or long time in bed were 1.487-fold higher (95% CI 1.219 to 1.815) or 0.611-fold lower (95% CI 0.460 to 0.811), respectively, than for subjects with 7 h/day in bed; the odds were similar for suicidal plans. The odds of suicidal thoughts in subjects with early or late awakening times were 1.231-fold higher (95% CI 1.050 to 1.442) or 1.528-fold lower (95% CI 1.000 to 2.334), respectively, than for subjects with 7 h/day in bed; these odds were lower for suicidal plans and attempts. The odds of suicidal thoughts in subjects with early bedtime were 1.748-fold higher (95% CI 1.302 to 2.346), the odds of suicidal plans in people with an early bedtime were 2.494-fold higher (95% CI 1.671 to 3.722) and the odds of suicide attempts in subjects with late bedtime were 1.313-fold higher (95% CI 1.005 to 1.716) than for subjects with a bedtime of 23:00. The sleep-related time is associated with suicide-related behaviours in Korean adolescents. Multilateral approaches are needed to identify the greatest risk factors for suicidal behaviours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Miyauchi, Yumi; Sakai, Satoshi; Maeda, Seiji; Shimojo, Nobutake; Watanabe, Shigeyuki; Honma, Satoshi; Kuga, Keisuke; Aonuma, Kazutaka; Miyauchi, Takashi
2012-10-15
Big endothelins (pro-endothelin; inactive-precursor) are converted to biologically active endothelins (ETs). Mammals and humans produce three ET family members: ET-1, ET-2 and ET-3, from three different genes. Although ET-1 is produced by vascular endothelial cells, these cells do not produce ET-3, which is produced by neuronal cells and organs such as the thyroid, salivary gland and the kidney. In patients with end-stage renal disease, abnormal vascular endothelial cell function and elevated plasma ET-1 and big ET-1 levels have been reported. It is unknown whether big ET-2 and big ET-3 plasma levels are altered in these patients. The purpose of the present study was to determine whether endogenous ET-1, ET-2, and ET-3 systems including big ETs are altered in patients with end-stage renal disease. We measured plasma levels of ET-1, ET-3 and big ET-1, big ET-2, and big ET-3 in patients on chronic hemodialysis (n=23) and age-matched healthy subjects (n=17). In patients on hemodialysis, plasma levels (measured just before hemodialysis) of both ET-1 and ET-3 and big ET-1, big ET-2, and big ET-3 were markedly elevated, and the increase was higher for big ETs (Big ET-1, 4-fold; big ET-2, 6-fold; big ET-3: 5-fold) than for ETs (ET-1, 1.7-fold; ET-3, 2-fold). In hemodialysis patients, plasma levels of the inactive precursors big ET-1, big ET-2, and big ET-3 levels are markedly increased, yet there is only a moderate increase in plasma levels of the active products, ET-1 and ET-3. This suggests that the activity of endothelin converting enzyme contributing to circulating levels of ET-1 and ET-3 may be decreased in patients on chronic hemodialysis. Copyright © 2012 Elsevier Inc. All rights reserved.
Kutsuki, H; Higuchi, T
1981-07-01
The activities of the following five enzymes which are involved in the formation of lignin have been compared in reaction wood and in opposite wood: phenylalanine ammonia lyase (EC 4.3.1.5), caffeate 3-O-methyltransferase (EC 2.1.1.-), p-hydroxycinnamate: CoA ligase (EC 6.2.1.12), cinnamyl alcohol dehydrogenase (EC 1.1.1.-) and peroxidase (EC 1.11.1.7). The activities of the four first-named enzymes in the compression wood of Thuja orientalis L. and Metasequoia glyptostroboides Hu et Cheng were 2.8±1.4-fold and 2.6±1.5-fold higher than those in opposite wood, respectively, whereas peroxidase had the same level of activity in either type of wood. On the other hand, no differences were observed in the activities of the five enzymes between tension and opposite woods of Robinia pseudoacacia L. These findings are well in accord with the chemical structure of lignin in the compression and tension woods of the three species studied: high content of lignin rich in condensed units in compression wood, and little difference in lignin between tension and opposite woods.
Kinematics, structural mechanics, and design of origami structures with smooth folds
NASA Astrophysics Data System (ADS)
Peraza Hernandez, Edwin Alexander
Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.
DIRECT AND INDIRECT BIOLOGICAL EFFECTS OF RADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobitz, H.
1961-01-01
The primary physical processes, ionization and excitation, induced by radiation in biological materials are discussed. Their effects in causing reduction, decarboxylation, and depolymerization in proteins and deoxyribonucleic acid of the cell nucleus are examined. The action of radiation doses of 100,000- 600,000 r on pollen of Digitalis purpurea maintained at room temperature and at approximates 190 deg C showed that biological activity was destroyed by doses >200,000 r at room temperature, but at approximates 190 deg the pollen retained some activity even after the highest dose. A similar effect was seen with Bacterium cadaveris cells, about 0.5% of which survivedmore » 50000 r given at l8O deg whereas no cells survived 20000 r given at 4 deg . The presence of 1% cysteamine at the higher temperature increased survival 20-fold. Cytochrome c showed markedly different responses to radiation in dry form as compared with aqueous solution. The anhydrous enzyme showed a linear decline in log activity with radiation dose but in aqueous solution the activity declined more slowly at higher doses. The radiation dose to-produce 50% inactivation was 4 x 10/sup 7/ r in dry form and 6 x 10/sup 5/ r in solution, a 67-fold difference. The results suggest that diffusion of the free radicals (H: or OH:) produced in the primary process is considerably hindered at low temperature and by the absence of water. (H.H.D.)« less
Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K.
2011-01-01
Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding. PMID:21521136
Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D
2017-05-01
A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7 CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serum C-reactive protein in patients undergoing elective shoulder arthroplasty. Prospective study.
Torrens, Carlos; Santana, Fernando; Marí, Raquel; Puig, Lluis; Alier, Albert
2017-09-01
The objective of the study was to determine the normalization curve of the serum C-reactive protein (CRP) in elective shoulder arthroplasty. A prospective study including 58 consecutive patients who had undergone elective shoulder arthroplasty. Forty-one patients had received a Reverse Shoulder Arthroplasty, 13 a Total Shoulder Arthroplasty and 4 a Hemiarthroplasty. Based on a pilot study, blood samples to determine CRP values were obtained at baseline (1 h before surgery), on the 1st, 2nd, 6th, 8th and 14th postoperative days. All the patients included presented no postoperative complications during inpatient stay or any re-admission during the three months after surgery. Mean CRP values showed a rapid increase on the 1st postoperative day (7-fold higher than the baseline in cuff tear arthropathy, 11-fold higher in primary osteoarthritis, 1-fold higher in acute fracture) and reached a peak on the 2nd postoperative day (14-fold higher than the baseline in cuff tear arthropathy, 24-fold higher in primary osteoarthritis and 2-fold higher in acute fracture). After the 2nd postoperative day CRP values began to slowly decrease reaching the normal range in the 14th postoperative day. Serum CRP levels after elective shoulder arthroplasty rapidly increase to reach a maximum peak after the 2nd surgery day and then slowly decrease to return to normality on the 14th day. Knowing the normalization curve of CRP can be a helpful tool to help in the diagnosis of acute infections in elective shoulder arthroplasty. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Lüders, Florian; Engelbertz, Christiane; Meyborg, Matthias; Freisinger, Eva; Malyar, Nasser M; Zeller, Thomas; Reinecke, Holger
2016-06-01
Evident data about the additive effect of "the fifth cardiovascular risk factor" (anemia) and peripheral arterial disease (PAD) focused on morbidity and outcome of patients with PAD are currently still missing. A total of 41,882 PAD patients were included. Of these, 5566 (13.3%) suffered from anemia. Patients with anemia were older (P<0.001), suffered more often from chronic kidney disease (P<0.001), coronary artery disease (P<0.001), and more severe PAD (P<0.001). However, they received significantly less endovascular revascularizations (P<0.001), had higher amputation rates (acute anemia: 3.7-fold, P<0.001; nutritional, aplastic, and anemia in chronic disease: 2.9-fold, P<0.001), higher in-hospital mortality rates (acute anemia: 6.4-fold, P<0.001; nutritional, aplastic, and anemia in chronic disease: 4.6-fold; P<0.001), had significantly higher in-hospital complications (P<0.001) compared to those without anemia. During a follow-up time up to 4years (until Dec. 31st, 2012, median 775days, 25th-75th percentiles 469-1120days) nutritional, aplastic, and anemia in chronic disease and acute anemia were high significant predictors of long-term mortality and amputation (each P<0.001). Lengths of hospital stay and reimbursement costs were higher (nutritional, aplastic, and anemia in chronic disease: 2-fold higher (P<0.001), acute anemia: 3-fold higher (P<0.001)) than in patients without anemia. This study illustrates from a large, comprehensive database the association of acute, nutritional, aplastic, and anemia in chronic disease on morbidity, in-hospital treatment and complications, short- and long term outcome, and costs of patients with PAD. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.
Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana
2012-06-01
Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.
Scale-up laccase production from Trametes versicolor stimulated by vanillic acid.
Wang, Ke-Feng; Hu, Jian-Hua; Guo, Chen; Liu, Chun-Zhao
2016-07-01
An efficient strategy for laccase production in Trametes versicolor cultures was developed using vanillic acid as the inducer. The optimized vanillic acid treatment strategy consisted of exposing 2-day-old mycelia cultures to 80 mg/L vanillic acid. After 4 days, laccase activity of 588.84 U/L was achieved in flasks which represented a 1.79-fold increase compared to the control. In 200-L airlift bioreactor, the maximal laccase activity reached up to 785.12 U/L using the optimized vanillic acid treatment strategy. The zymograms of culture supernatants revealed three bands with laccase activity, among which Lac1 and Lac2 were abundant laccase isoforms constitutively expressed, and Lac3 was an inducible isozyme by vanillic acid. The results of real-time quantitative PCR showed that the transcription level of lcc in T. versicolor cultures grown with vanillic acid for 7 days was about 5.64-fold greater than that without vanillic acid in flasks. In 200-L airlift bioreactor cultures of T. versicolor with addition of vanillic acid, the transcript level of lcc at day 7 was 2.62-fold higher than that in flasks with vanillic acid due to the good mass transfer and oxygen supply in the bioreactor system. This study provides a basis for understanding the induction mechanism of vanillic acid for laccase production and has good potential for industrial applications.
Ultrahigh-throughput–directed enzyme evolution by absorbance-activated droplet sorting (AADS)
Gielen, Fabrice; Hours, Raphaelle; Emond, Stephane; Fischlechner, Martin; Schell, Ursula
2016-01-01
Ultrahigh-throughput screening, in which members of enzyme libraries compartmentalized in water-in-oil emulsion droplets are assayed, has emerged as a powerful format for directed evolution and functional metagenomics but is currently limited to fluorescence readouts. Here we describe a highly efficient microfluidic absorbance-activated droplet sorter (AADS) that extends the range of assays amenable to this approach. Using this module, microdroplets can be sorted based on absorbance readout at rates of up to 300 droplets per second (i.e., >1 million droplets per hour). To validate this device, we implemented a miniaturized coupled assay for NAD+-dependent amino acid dehydrogenases. The detection limit (10 μM in a coupled assay producing a formazan dye) enables accurate kinetic readouts sensitive enough to detect a minimum of 1,300 turnovers per enzyme molecule, expressed in a single cell, and released by lysis within a droplet. Sorting experiments showed that the AADS successfully enriched active variants up to 2,800-fold from an overwhelming majority of inactive ones at ∼100 Hz. To demonstrate the utility of this module for protein engineering, two rounds of directed evolution were performed to improve the activity of phenylalanine dehydrogenase toward its native substrate. Fourteen hits showed increased activity (improved >4.5-fold in lysate; kcat increased >2.7-fold), soluble protein expression levels (up 60%), and thermostability (Tm, 12 °C higher). The AADS module makes the most widely used optical detection format amenable to screens of unprecedented size, paving the way for the implementation of chromogenic assays in droplet microfluidics workflows. PMID:27821774
Pajander, Jari; Rensonnet, Alexia; Hietala, Sami; Rantanen, Jukka; Baldursdottir, Stefania
2017-02-25
The effect of product design parameters on the formation and properties of an injection molded solid dosage form consisting of poly(ethylene oxide)s (PEO) and two different active pharmaceutical ingredients (APIs) was studied. The product design parameters explored were melting temperature and the duration of melting, API loading degree and the molecular weight (M w ) of PEO. The solid form composition of the model APIs, theophylline and carbamazepine, was of specific interest, and its possible impact on the in vitro drug release behavior. M w of PEO had the greatest impact on the release rate of both APIs. High M w resulted in slower API release rate. Process temperature had two-fold effect with PEO 300,000g/mol. Firstly, higher process temperature transformed the crystalline part of the polymer into metastable folded form (more folded crystalline regions) and less into the more stable extended form (more extended crystalline regions), which lead to enhanced theophylline release rate. Secondly, the higher process temperature seemed to induce carbamazepine polymorphic transformation from p-monoclinic form III (carbamazepine (M)) into trigonal form II (carbamazepine (T)). The results indicated that the actual content of carbamazepine (T) affected drug release behavior more than the magnitude of transformation. Copyright © 2016 Elsevier B.V. All rights reserved.
Mogaki, Rina
2015-01-01
Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668
A Simple and Effective Protein Folding Activity Suitable for Large Lectures
ERIC Educational Resources Information Center
White, Brian
2006-01-01
This article describes a simple and inexpensive hands-on simulation of protein folding suitable for use in large lecture classes. This activity uses a minimum of parts, tools, and skill to simulate some of the fundamental principles of protein folding. The major concepts targeted are that proteins begin as linear polypeptides and fold to…
Cho, Dae Haeng; Kim, Min Hoo; Lee, Sang Hyun; Jung, Kwang Deog; Kim, Yong Hwan
2014-01-01
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2-reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme, i.e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65MA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k cat/K B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systems. PMID:25061666
do Amaral, M. Clara F.; Lee, Richard E.; Costanzo, Jon P.
2013-01-01
The wood frog, Rana sylvatica, from Interior Alaska survives freezing at –16°C, a temperature 10–13°C below that tolerated by its southern conspecifics. We investigated the hepatic freezing response in this northern phenotype to determine if its profound freeze tolerance is associated with an enhanced glucosic cryoprotectant system. Alaskan frogs had a larger liver glycogen reserve that was mobilized faster during early freezing as compared to conspecifics from a cool-temperate region (southern Ohio, USA). In Alaskan frogs the rapid glucose production in the first hours of freezing was associated with a 7-fold increase in glycogen phosphorylase activity above unfrozen frog levels, and the activity of this enzyme was higher than that of frozen Ohioan frogs. Freezing of Ohioan frogs induced a more modest (4-fold) increase in glycogen phosphorylase activity above unfrozen frog values. Relative to the Ohioan frogs, Alaskan frogs maintained a higher total protein kinase A activity throughout an experimental freezing/thawing time course, and this may have potentiated glycogenolysis during early freezing. We found populational variation in the activity and protein level of protein kinase A which suggested that the Alaskan population had a more efficient form of this enzyme. Alaskan frogs modulated their glycogenolytic response by decreasing the activity of glycogen phosphorylase after cryoprotectant mobilization was well under way, thereby conserving their hepatic glycogen reserve. Ohioan frogs, however, sustained high glycogen phosphorylase activity until early thawing and consumed nearly all their liver glycogen. These unique hepatic responses of Alaskan R. sylvatica likely contribute to this phenotype’s exceptional freeze tolerance, which is necessary for their survival in a subarctic climate. PMID:24236105
Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol.
Sun, Wenjun; Chen, Liangjing; Zheng, Wei; Wei, Xiaoan; Wu, Wenqi; Duysen, Ellen G; Jiang, Wei
2017-06-01
Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Reinke, N B; O'Brien, G M
2006-11-01
Flying-foxes are better able to defend haemoglobin against autoxidation than non-volant mammals such as sheep. When challenged with the common physiological oxidant, hydrogen peroxide, haemolysates of flying-fox red blood cells (RBC) were far less susceptible to methaemoglobin formation than sheep. Challenge with 1-acetyl-2-phenylhydrazine (APH) caused only half as much methaemoglobin formation in flying-fox as in ovine haemolysates. When intact cells were challenged with phenazine methosulfate (PMS), flying-fox RBC partially reversed the oxidant damage, and reduced methaemoglobin from 40 to 20% over 2 h incubation, while ovine methaemoglobin remained at 40%. This reflected flying-fox cells' capacity to replenish GSH fast enough that it did not deplete beyond 50%, while ovine RBC GSH was depleted to around 20%. The greater capacity of flying-foxes to defend haemoglobin against oxidant damage may be explained in part by antioxidant enzymes catalase, superoxide dismutase and cytochrome-b ( 5 ) reductase having two- to four-fold higher activity than in sheep (P < 0.001). Further, their capacity to limit GSH depletion to 50% and reduce methaemoglobin (in the presence of glucose), despite ongoing exposure to PMS may result from having ten-fold higher activity of G6PD and 6PGD than sheep (P < 0.001), indicating the presence of a very efficient pentose phosphate pathway in flying-foxes.
Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California
Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.
2002-01-01
High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.
Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays
NASA Technical Reports Server (NTRS)
Reinecke, D. M.; Bandurski, R. S.
1988-01-01
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.
Control of autogenous activation of Herbaspirillum seropedicae nifA promoter by the IHF protein.
Wassem, Roseli; Pedrosa, Fábio O; Yates, Marshall G; Rego, Fabiane G M; Chubatsu, Leda S; Rigo, Liu U; Souza, Emanuel M
2002-07-02
Analysis of the expression of the Herbaspirillum seropedicae nifA promoter in Escherichia coli and Herbaspirillum seropedicae, showed that nifA expression is primarily dependent on NtrC but also required NifA for maximal expression under nitrogen-fixing conditions. Deletion of the IHF (integration host factor)-binding site produced a promoter with two-fold higher activity than the native promoter in the H. seropedicae wild-type strain but not in a nifA strain, indicating that IHF controls NifA auto-activation. IHF is apparently required to prevent overexpression of the NifA protein via auto-activation under nitrogen-fixing conditions in H. seropedicae.
Cytokine profile in severe gram-positive and gram-negative abdominal sepsis
Surbatovic, Maja; Popovic, Nada; Vojvodic, Danilo; Milosevic, Ivan; Acimovic, Gordana; Stojicic, Milan; Veljovic, Milic; Jevdjic, Jasna; Djordjevic, Dragan; Radakovic, Sonja
2015-01-01
Sepsis is a principal cause of death in critical care units worldwide and consumes considerable healthcare resources. The aim of our study was to determine whether the early cytokine profile can discriminate between Gram-positive and Gram-negative bacteraemia (GPB and GNB, respectively) and to assess the prognostic value regarding outcome in critically ill patients with severe abdominal sepsis. The outcome measure was hospital mortality. Blood samples were obtained from 165 adult patients with confirmed severe abdominal sepsis. Levels of the proinflammatory mediators TNF-α, IL-8, IL-12 and IFN-γ and the anti-inflammatory mediators IL-1ra, IL-4, IL-10 and TGF-β1 were determined and correlated with the nature of the bacteria isolated from the blood culture and outcome. The cytokine profile in our study indicated that the TNF-α levels were 2-fold, IL-8 were 3.3-fold, IFN-γ were 13-fold, IL-1ra were 1.05-fold, IL-4 were 1.4-fold and IL-10 were 1.83-fold higher in the GNB group compared with the GPB group. The TNF-α levels were 4.7-fold, IL-8 were 4.6-fold, IL-1ra were 1.5-fold and IL-10 were 3.3-fold higher in the non-survivors compared with the survivors. PMID:26079127
Zhang, Ru; Zhang, Bian-Ling; Li, Gu-Cai; Xie, Tao; Hu, Teng; Luo, Zhi-Yong
2015-10-01
To improve the production of ginsenoside Rg1 in Panax ginseng. The α-L-rhamnosidase gene from Bifidobacterium breve (BbRha) was overexpressed into hairy root culture system using Agrobacterium rhizogenes A4. Ginsenoside Rg1 in hairy roots was obtained following transformation via overexpressed gene representing 2.2-fold higher than those of control lines. Several overexpression transgenic hairy root lines were obtained exhibiting markedly increased levels of the corresponding α-L-rhamnosidase enzymatic activity relative to control. Ginsenoside Rg1 levels in the transgenic lines were higher (2.2-fold) than those of control after following 30 days culturing, while ginsenoside Re contents in tested transgenic lines were found to be lower. The transgenic hairy roots harboring α-L-rhamnosidase gene improved the accumulation of ginsenoside Rg1 up to 3.6 mg g(-1) dry weight. BbRha gene selectively enhances the production of ginsenoside Rg1 in P. ginseng hairy roots.
Liu, Yan; He, Zhangxiu; Zhang, Yan; Dong, Zengxiang; Bi, Yayan; Kou, Junjie; Zhou, Jin; Shi, Jialan
2016-08-01
We evaluated cellular origin, numbers, and procoagulant activity of phosphatidylserine-positive microparticles (MPs) among subgroups in acute coronary syndromes (ACS). Parameters were measured on admission, days 1 (within 24 h of admission), 2, 3, and 7. All ST-elevated myocardial infarction (STEMI) patients presented more than 3 h from symptom onset and received fibrinolysis treatment; controls included unstable angina and non-STEMI patients as well as healthy controls. Phosphatidylserine-positive MPs were detected by flow cytometry, whereas procoagulant activity was assessed by coagulation time, purified coagulation complex assays, and fibrin formation. MP-induced fibrins were visualized by confocal microscopy. On admission, the total MP count was ∼2.5-fold higher in the ACS groups compared with the healthy controls (P<0.05), primarily originating from platelets and endothelial cells, and there were no significant differences among ACS subgroups. Specifically, leukocyte-derived and erythrocyte-derived MPs were higher in the STEMI group compared with unstable angina and non-STEMI groups (both P<0.05). Further, MPs from the ACS groups reduced coagulation time by 27.5% and induced intrinsic and extrinsic FXase, prothrombinase, and fibrin formation by 2.8-, 2.3-, 2.5-, and 1.7-fold, respectively (P<0.05 for all), whereas blocking phosphatidylserine with lactadherin inhibited ∼70% of procoagulant activity. MP number and concomitant coagulation decreased significantly by day 2 and continued to decrease gradually during the recovery period. This study shows that MP characteristics from circulating blood may be used as prognostic indicators to reflect the origin cell of activation and thrombophilic states found in ACS subgroups.
Tian, Ye; Puganen, Anna; Alakomi, Hanna-Leena; Uusitupa, Aleksi; Saarela, Maria; Yang, Baoru
2018-04-01
Phenolic compounds were extracted with food grade solvent of acidified aqueous ethanol from leaves, berries, berry press cakes, and branches of Finnish berry plants and analyzed with HPLC-DAD, UPLC-DAD-ESI-MS and NMR. In addition, press cakes from two berry species and branches from one species were also extracted and analyzed with the same methods. The antioxidant activities of the extracts were evaluated using Folin-Ciocalteau, oxygen radical absorbance capacity (ORAC), DPPH free radical scavenging, and total radical trapping antioxidant parameter (TRAP) assays. The antibacterial activities were investigated against various Gram-negative and Gram-positive foodborne pathogens. The leaf extracts showed higher antioxidative activities (3-20 fold in ORAC assay, 10-20 fold in TRAP) than the berry extracts, in association with the higher contents of phenolic compounds in the leaf extracts; Strongest anti-bacterial effects was observed in the leaf extracts of lingonberry (Vaccinium vitis-idaea), sea buckthorn (Hippophaë rhamnoides ssp. rhamnoides) and saskatoon (Amelanchier alnifolia) on Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus. However, the antibacterial efficacy varied with bacterial species and strains. The Folin-Ciocalteu, ORAC, and TRAP values was strongly correlated with the total content of flavonoids with less association shown with the content of total phenolics and flavonol glycosides. The results suggest a major contribution of pranthocyanidins and flavan-3-ols to the antioxidative activities of the extracts. The growth inhibition on Staphylococcus aureus and Bacillus cereus was clearly associated with the content of total phenolics and ellagitannins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Sheng-Yin; Zhou, Xian-Hong; Zhang, An-Sheng; Li, Li-Li; Men, Xing-Yuan; Zhang, Si-Cong; Liu, Yong-Jie; Yu, Yi
2012-07-01
To understand the resistance risks of Frankliniella occidentalis Pergande against phoxim, this paper studied the resistance mechanisms of phoxim-resistant F. occidentalis population against phoxim and the cross-resistance of the population against other insecticides. The phoxim-resistant population had medium level cross-resistance to chlorpyrifos, lambda-cyhalothrin, and methomyl, low level cross-resistance to chlorfenapyr, imidacloprid, emamectin-benzoate, and spinosad, but no cross-resistance to acetamiprid and abamectin. The synergists piperonyl butoxide (PBO), s, s, s-tributyl phosphorotrithioate (DEF), and triphenyl phosphate (TPP) had significant synergism (P < 0.05) on the toxicity of phoxim to the resistant (XK), field (BJ), and susceptible (S) populations, while diethyl maleate (DEM) had no significant synergism to XK and S populations but had significant synergism to BJ population. As compared with S population, the XK and BJ populations had significantly increased activities of mixed-functional oxidases P450 (2.79-fold and 1.48-fold), b, (2.88-fold and 1.88-fold), O-demethylase (2.60-fold and 1.68-fold), and carboxylesterase (2.02-fold and 1.61-fold, respectively), and XK population had a significantly increased acetylcholine esterase activity (3.10-fold). Both XK and BJ population had an increased activity of glutathione S-transferases (1.11-fold and 1.20-fold, respectively), but the increment was not significant. The increased detoxification enzymes activities in F. occidentalis could play an important role in the resistance of the plant against phoxim.
Salivary lactate dehydrogenase and aminotransferases in diabetic patients
Malicka, Barbara; Skoskiewicz-Malinowska, Katarzyna; Kaczmarek, Urszula
2016-01-01
Abstract Diabetes mellitus (DM) is a group of metabolic diseases resulting from impaired insulin secretion and/or action. DM is characterized by hyperglycemia that can lead to the dysfunction or damage of organs, including the salivary glands. The aim of this study was to compare the levels of salivary lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in diabetic patients. The study was approved by the Bioethics Committee of Wroclaw Medical University (Poland). The study comprised 90 adults of both sexes, aged 21 to 57 years. The patients were divided into 3 groups: type 1 diabetics (D1), type 2 diabetics (D2), and a healthy control group (C). Each group consisted of 30 age- and sex-matched subjects. Total protein (P, by Lowry method), LDH, AST, ALT (with Alpha Diagnostics kits), and salivary flow rate were measured in unstimulated mixed saliva. The level of glycosylated hemoglobin (HbA1c) was measured with DCA 2000 Reagent Kit. The obtained data were analyzed using the Mann–Whitney U test and the Spearman rank at a significance level of P < 0.05 with the use of STATISTICA 9.0 software. In comparison with C, D1 presented a significantly higher activity of LDH (P < 0.001), AST (P < 0.001), and ALT (P < 0.01), whereas D2 indicated higher levels of LDH (P < 0.001) and ALT (P < 0.05) compared with C. Comparing D1 to D2, approximately 3-fold higher activity of AST (P < 0.01) and approximately 4.5-fold higher activity of ALT (P < 0.01) was observed. Higher levels of salivary LDH, AST, and ALT in D1 compared with D2 and C confirm that salivary glands of D1 might be attributed to autoimmunological damage associated with the pathomechanism of DM. PMID:27893660
Salivary lactate dehydrogenase and aminotransferases in diabetic patients.
Malicka, Barbara; Skoskiewicz-Malinowska, Katarzyna; Kaczmarek, Urszula
2016-11-01
Diabetes mellitus (DM) is a group of metabolic diseases resulting from impaired insulin secretion and/or action. DM is characterized by hyperglycemia that can lead to the dysfunction or damage of organs, including the salivary glands.The aim of this study was to compare the levels of salivary lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in diabetic patients.The study was approved by the Bioethics Committee of Wroclaw Medical University (Poland). The study comprised 90 adults of both sexes, aged 21 to 57 years. The patients were divided into 3 groups: type 1 diabetics (D1), type 2 diabetics (D2), and a healthy control group (C). Each group consisted of 30 age- and sex-matched subjects. Total protein (P, by Lowry method), LDH, AST, ALT (with Alpha Diagnostics kits), and salivary flow rate were measured in unstimulated mixed saliva. The level of glycosylated hemoglobin (HbA1c) was measured with DCA 2000 Reagent Kit. The obtained data were analyzed using the Mann-Whitney U test and the Spearman rank at a significance level of P < 0.05 with the use of STATISTICA 9.0 software.In comparison with C, D1 presented a significantly higher activity of LDH (P < 0.001), AST (P < 0.001), and ALT (P < 0.01), whereas D2 indicated higher levels of LDH (P < 0.001) and ALT (P < 0.05) compared with C. Comparing D1 to D2, approximately 3-fold higher activity of AST (P < 0.01) and approximately 4.5-fold higher activity of ALT (P < 0.01) was observed.Higher levels of salivary LDH, AST, and ALT in D1 compared with D2 and C confirm that salivary glands of D1 might be attributed to autoimmunological damage associated with the pathomechanism of DM.
Food supplement 20070721-GX may increase CD34+ stem cells and telomerase activity.
Lin, Po-Cheng; Chiou, Tzyy-Wen; Liu, Po-Yen; Chen, Shee-Ping; Wang, Hsin-I; Huang, Pi-Chun; Lin, Shinn-Zong; Harn, Horng-Jyh
2012-01-01
Few rejuvenation and antiaging markers are used to evaluate food supplements. We measured three markers in peripheral blood to evaluate the antiaging effects of a food supplement containing placental extract. Samples were evaluated for CD34(+) cells, insulin-like growth factor 1 (IGF1), and telomerase activity, which are all markers related to aging. To control the quality of this food supplement, five active components were monitored. In total, we examined 44 individuals who took the food supplement from 1.2 months to 23 months; the average number of CD34(+) cells was almost 6-fold higher in the experimental group compared with the control group. Food supplement intake did not change serum IGF1 levels significantly. Finally, the average telomerase activity was 30% higher in the subjects taking this food supplement. In summary, our results suggest that the placental extract in the food supplement might contribute to rejuvenation and antiaging.
Budiman, Cahyo; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori
2011-01-01
Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins. PMID:21954357
Wang, Jun; Chen, Baoliang; Xing, Baoshan
2016-04-05
To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.
Maccani, Andreas; Landes, Nils; Stadlmayr, Gerhard; Maresch, Daniel; Leitner, Christian; Maurer, Michael; Gasser, Brigitte; Ernst, Wolfgang; Kunert, Renate; Mattanovich, Diethard
2014-01-01
Chinese hamster ovary (CHO) cells are currently the workhorse of the biopharmaceutical industry. However, yeasts such as Pichia pastoris are about to enter this field. To compare their capability for recombinant protein secretion, P. pastoris strains and CHO cell lines producing human serum albumin (HSA) and the 3D6 single chain Fv-Fc anti-HIV-1 antibody (3D6scFv-Fc) were cultivated in comparable fed batch processes. In P. pastoris, the mean biomass-specific secretion rate (qp) was 40-fold lower for 3D6scFv-Fc compared to HSA. On the contrary, qp was similar for both proteins in CHO cells. When comparing both organisms, the mean qp of the CHO cell lines was 1011-fold higher for 3D6scFv-Fc and 26-fold higher for HSA. Due to the low qp of the 3D6scFv-Fc producing strain, the space-time yield (STY) was 9.6-fold lower for P. pastoris. In contrast, the STY of the HSA producer was 9.2-fold higher compared to CHO cells because of the shorter process time and higher biomass density. The results indicate that the protein secretion machinery of P. pastoris is much less efficient and the secretion rate strongly depends on the complexity of the recombinant protein. However, process efficiency of the yeast system allows higher STYs for less complex proteins. PMID:24390926
Mendoza, Jason A; Watson, Kathy; Chen, Tzu-An; Baranowski, Tom; Nicklas, Theresa A; Uscanga, Doris K; Hanfling, Marcus J
2012-01-01
Walking school buses (WSB) increased children's physical activity, but impact on pedestrian safety behaviors (PSB) is unknown. We tested the feasibility of a protocol evaluating changes to PSB during a WSB program. Outcomes were school-level street crossing PSB prior to (Time 1) and during weeks 4-5 (Time 2) of the WSB. The protocol collected 1252 observations at Time 1 and 2548 at Time 2. Mixed model analyses yielded: intervention schoolchildren had 5-fold higher odds (p<0.01) of crossing at the corner/crosswalk but 5-fold lower odds (p<0.01) of stopping at the curb. The protocol appears feasible for documenting changes to school-level PSB. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kuo; Williams, C. David; McGill, Mitchell R.
Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. Thismore » faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical in females.« less
Manicourt, Daniel-Henri; Devogelaer, Jean-Pierre
2008-10-01
By absorbing sunlight UVB and thereby reducing cutaneous vitamin D photosynthesis, ozone, a common urban pollutant, could cause hypovitaminosis D. The objective of the study was to establish the characteristics and percentage of subjects with serum 25-hydroxyvitamin D [25(OH)D] less than 75 nmol/liter among postmenopausal women engaging in outdoor activities in either Brussels or the countryside. This was a cross-sectional study conducted in a university research hospital. Among 249 women consulting for either shoulder tendonitis or lumbar spine osteoarthritis, 121 free of conditions and drugs affecting bone and calcium metabolism completed two food-frequency questionnaires within 15 d and we selected the 85 subjects with retest scores within the +/- 15% of test scores. Other parameters included sun exposure index (SEI), PTH levels, and femoral neck T-score. Urban residents (n = 38) and rural residents (n = 47) did not differ in mean ages, body mass indices, and vitamin D intakes. When compared with rural inhabitants, urban inhabitants were exposed to ozone levels 3 times higher, and despite a higher mean SEI (113 vs. 87; P < 0.001), they had a higher prevalence of 25(OH)D less than 75 nmol/liter (84 vs. 38%). After adjusting for SEI, 25(OH)D was 2-fold higher in rural residents, and after adjusting for 25(OH)D, SEI was 3-fold higher in urban residents. Femoral neck T-scores correlated positively with 25(OH)D and negatively with PTH levels. Air pollution may be a neglected risk factor for hypovitaminosis D, which is known to compromise several health outcomes. As long as 25(OH)D is greater than 75 nmol/liter, calcium intakes greater than 17.5 mmol/d are unnecessary to prevent elevations in PTH levels.
Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice.
Noratto, Giuliana D; Chew, Boon P; Atienza, Liezl M
2017-07-15
Red raspberry fruit intake was investigated on obese diabetic (db/db) mice for 8weeks. Animals fed isocaloric diets (5.3% freeze-dried raspberry, or control) were assessed for obesity-diabetes-disease risk biomarkers. Results showed that raspberry intake improved antioxidant status and lessened plasma interleukin (IL)-6 (0.3-fold of control, p<0.1); most likely through enhancing glutathione peroxidase (GPx) activity in liver (4.3-fold of control), and in blood (2.1-fold of control). Other disease-risk biomarkers were similar between groups (p>0.05). Plasma levels of total cholesterol (T-CHL), low density lipoprotein-cholesterol (LDL-CHL), and resistin were higher in the raspberry group. Overall, the enhanced detoxifying cell defenses exerted by raspberry intake might be due to its polyphenolics and fibre. This study demonstrates in vivo that raspberry intake, at a dose that can be achieved by human consumption, might protect against diabetes-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien, E-mail: julien.fonsart@lrb.aphp.f; CNRS, UMR 7157, Paris F-75006; INSERM, U705, Paris F-75006
The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC{sub last} and C{sub max} were 1.6- tomore » 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C{sub max} and AUC{sub last} were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC{sub last} and t{sub 1/2} were 50% higher in females given MDMA (1 mg/kg iv). MDA C{sub max} and AUC{sub last} were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC{sub last} of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.« less
The fast-folding HP35 double mutant has a substantially reduced primary folding free energy barrier
NASA Astrophysics Data System (ADS)
Lei, Hongxing; Deng, Xiaojian; Wang, Zhixiang; Duan, Yong
2008-10-01
The LYS24/29NLE double mutant of villin headpiece subdomain (HP35) is the fastest folding protein known so far with a folding time constant of 0.6μs. In this work, the folding mechanism of the mutant has been investigated by both conventional and replica exchange molecular dynamics (CMD and REMD) simulations with AMBER FF03 force field and a generalized-Born solvation model. Direct comparison to the ab initio folding of the wild type HP35 enabled a close examination on the mutational effect on the folding process. The mutant folded to the native state, as demonstrated by the 0.50Å Cα-root mean square deviation (RMSD) sampled in both CMD and REMD simulations and the high population of the folded conformation compared with the denatured conformations. Consistent with experiments, the significantly reduced primary folding free energy barrier makes the mutant closer to a downhill folder than the wild type HP35 that directly leads to the faster transition and higher melting temperature. However, unlike the proposed downhill folding which envisages a smooth shift between unfolded and folded states without transition barrier, we observed a well-defined folding transition that was consistent with experiments. Further examination of the secondary structures revealed that the two mutated residues have higher intrinsic helical preference that facilitated the formation of both helix III and the intermediate state which contains the folded segment helix II/III. Other factors contributing to the faster folding include the more favorable electrostatic interactions in the transition state with the removal of the charged NH3+ groups from LYS. In addition, both transition state ensemble and denatured state ensemble are shifted in the mutant.
Chen, Shuangxi; Guo, Feng; Deng, Tiantian; Zhu, Siqi; Liu, Wenyu; Zhong, Haijun; Yu, Hua; Luo, Rong; Deng, Zeyuan
2017-05-01
In order to improve oral absorption of insulin, especially the absorption at the colon, Eudragit S100® (ES)-coated chitosan nanoparticles loading insulin and a trans-activating transcriptional peptide (Tat) were employed as the vehicle. In vitro releases of insulin and Tat from ES-coated chitosan nanoparticles had a pH-dependant characteristic. A small amount of the contents was released from the coated nanoparticles at pH 1.2 simulated gastric fluid, while a fairly fast and complete release was observed in pH 7.4 medium. Caco-2 cell was used as the model of cellular transport and uptake studies. The results showed that the cellular transport and uptake of insulin for ES-coated chitosan nanoparticles co-loading insulin and Tat (ES-Tat-cNPs) were about 3-fold and 4-fold higher than those for the nanoparticles loading only insulin (ES-cNPs), respectively. The evaluations in vivo of ES-Tat-cNPs were conducted on diabetic rats and normal minipigs, respectively. The experimental results on rats revealed that the pharmacodynamical bioavailability of ES-Tat-cNPs had 2.16-fold increase compared with ES-cNPs. After oral administration of nanoparticle suspensions to the minipigs, insulin bioavailability of ES-Tat-cNPs was 1.73-fold higher than that of ES-cNPs, and the main absorption site of insulin was probably located in the colon for the two nanoparticles. In summary, this report provided an exploratory means for the improvement of oral absorption of insulin.
Skliar, M I; Fernandez, M C; Faienza, H; Orsatti, M B; Puche, R C; Boland, R L; Skliar, M I
1980-12-01
The erythrocytes of rats treated with 1, 25-dihydroxycholecalciferol or 1, 25-dihydroxycholecalciferol glycoside showed decreased levels of 2, 3-diphosphoglycerate. The same result has been obtained in vitro, indicating a direct effect of the sterol on the red cell. The glycoside is less active than the free sterol in vivo and more active in vitro. The decreased levels of diphosphoglycerate induced tissue hypoxia as shown by a higher plasma lactate/pyruvate ratio and a three fold increase in plasma erythropoietin concentration.
Oda, Shinobu; Michihata, Sayumi; Sakamoto, Naoki; Horibe, Hideo; Kono, Akihiko; Ohashi, Shinichi
2012-12-01
The addition of anion-exchange resin microparticles into a polyacrylonitrile (PAN) ballooned microsphere layer drastically enhanced the fermentative activity of Trichoderma atroviride AG2755-5NM398 in an extractive liquid-surface immobilization (Ext-LSI) system. The production of 6-pentyl-α-pyrone (6PP), a fungicidal secondary metabolite, was 1.92-fold higher than the control (PAN alone). Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Shear properties of vocal fold mucosal tissues and their effect on vocal fold oscillation
NASA Astrophysics Data System (ADS)
Chan, Roger Wai Kai
Viscoelastic shear properties of vocal fold mucosal tissues and phonosurgical biomaterials were measured with a parallel-plate rotational rheometer. Elastic, viscous and damping properties were quantified as a function of frequency (0.01 Hz to 15 Hz) for human vocal fold mucosal tissues (N = 15), implantable biomaterials commonly used in the treatment of vocal fold paralysis (Teflon, gelatin, and collagen) (the non-mucosal group), and biomaterials currently or potentially useful in the treatment of vocal fold mucosal defects (adipose tissue or fat, hyaluronic acid, and fibronectin) (the mucosal group). It was found that intersubject differences as large as an order of magnitude were often observed for the shear properties of vocal fold mucosal tissues, part of which may be age- and gender-related. Shear properties of the non-mucosal group biomaterials were often much higher than those of the mucosal group biomaterials, which were relatively close to the shear properties of mucosal tissues. Viscoelastic and rheological modeling showed that shear properties of human vocal fold mucosa may be described by a quasi-linear viscoelastic theory and a statistical network theory, based upon which extrapolations to audio frequencies were possible. A theory of small-amplitude vocal fold oscillation was revisited to describe the effects of tissue shear properties on vocal fold oscillation and phonation threshold pressure, a measure of the 'ease' of phonation and an objective indication of vocal function. It was found that phonation threshold pressure is directly related to the viscous shear modulus or the 'effective damping modulus', a concept proposed to quantify the effective amount of damping in vocal fold oscillation. The mucosal group biomaterials were incorporated into the artificial vocal fold mucosa of a physical model in order to empirically assess their effects on phonation threshold pressure. Results showed that higher threshold pressures were consistently observed for higher concentrations of hyaluronic acid and for hyaluronic acid mixed with fibronectin, in correlation with their differences in viscous shear modulus and effective damping modulus. Implications for phonosurgery were discussed in terms of the choice of optimal biomaterials for the surgical management of vocal fold mucosal defects and lamina propria deficiencies.
Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke
2018-05-01
Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.
Larsen, K; Najle, R; Lifschitz, A; Virkel, G
2012-11-01
Glyphosate (GLP), the active ingredient of many weed killing formulations, is a broad spectrum herbicide compound. Wistar rats were exposed during 30 or 90 days to the highest level (0.7 mg/L) of GLP allowed in water for human consumption (US EPA, 2011) and a 10-fold higher concentration (7 mg/L). The low levels of exposure to the herbicide did not produce histomorphological changes. The production of TBARS was similar or tended to be lower compared to control animals not exposed to the herbicide. In rats exposed to GLP, increased levels of reduced glutathione (GSH) and enhanced glutathione peroxidase (GPx) activity may act as a protective mechanism against possible detrimental effects of the herbicide. Overall, this work showed certain biochemical modifications, even at 3-20-fold lower doses of GLP than the oral reference dose of 2mg/kg/day (US EPA, 1993). The toxicological significance of these findings remains to be clarified. Copyright © 2012 Elsevier B.V. All rights reserved.
Qi, Kai; Xia, Xiao-Xia; Zhong, Jian-Jiang
2015-01-01
Commercialization of lignocellulosic ethanol fermentation requires its high titer, but the reactive oxygen species (ROS) accumulation during the bioprocess damaged the cells and compromised this goal. To improve the cellular anti-oxidative activity during non-detoxified corncob residue hydrolysate fermentation, seed cells were prepared to possess a higher level of intracellular biotin pool (IBP), which facilitated the biosyntheses of catalase and porphyrin. As a result, the catalase activity increased by 1.3-folds compared to control while the ROS level reduced by 50%. Cell viability in high-IBP cells was 1.7-folds of control and the final ethanol titer increased from 31.2 to 41.8 g L(-1) in batch fermentation. The high-IBP cells were further used for repeated-batch fermentation in the non-detoxified lignocellulosic hydrolysate, and the highest titer and average productivity of ethanol reached 63.7 g L(-1) and 1.2 g L(-1)h(-1). The results were favorable to future industrial application of this lignocellulosic bioethanol process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mallegol, Julia; Fernandes, Prabhavathi; Melano, Roberto G; Guyard, Cyril
2014-01-01
The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 μg/ml and a MIC90 of 0.031 μg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 μg/ml and 1 μg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 μg/ml to 0.031 μg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 μg/ml to 0.25 μg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 μg/ml to 2 μg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis.
Mallegol, Julia; Fernandes, Prabhavathi
2014-01-01
The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 μg/ml and a MIC90 of 0.031 μg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 μg/ml and 1 μg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 μg/ml to 0.031 μg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 μg/ml to 0.25 μg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 μg/ml to 2 μg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis. PMID:24277019
Jiménez, Juan J; Diep, Dzung B; Borrero, Juan; Gútiez, Loreto; Arbulu, Sara; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E
2015-10-15
Bacteriocins produced by lactic acid bacteria (LAB) attract considerable interest as natural and nontoxic food preservatives and as therapeutics whereas the bacteriocin-producing LAB are considered potential probiotics for food, human and veterinary applications, and in the animal production field. Within LAB the lactobacilli are increasingly used as starter cultures for food preservation and as probiotics. The lactobacilli are also natural inhabitants of the gastrointestinal (GI) tract and attractive vectors for delivery of therapeutic peptides and proteins, and for production of bioactive peptides. Research efforts for production of bacteriocins in heterologous hosts should be performed if the use of bacteriocins and the LAB bacteriocin-producers is ever to meet the high expectations deposited in these antimicrobial peptides. The recombinant production and functional expression of bacteriocins by lactobacilli would have an additive effect on their probiotic functionality. The heterologous production of the bacteriocin enterocin A (EntA) was evaluated in different Lactobacillus spp. after fusion of the versatile Sec-dependent signal peptide (SP usp45 ) to mature EntA plus the EntA immunity gene (entA + entiA) (fragment UAI), and their cloning into plasmid vectors that permitted their inducible (pSIP409 and pSIP411) or constitutive (pMG36c) production. The amount, antimicrobial activity (AA) and specific antimicrobial activity (SAA) of the EntA produced by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475 transformed with the recombinant plasmids pSIP409UAI, pSIP411UAI and pMGUAI varied depending of the expression vector and the host strain. The Lb. casei CECT475 recombinant strains produced the largest amounts of EntA, with the highest AA and SAA. Supernatants from Lb. casei CECT (pSIP411UAI) showed a 4.9-fold higher production of EntA with a 22.8-fold higher AA and 4.7-fold higher SAA than those from Enterococcus faecium T136, the natural producer of EntA. Moreover, supernatants from Lb. casei CECT475 (pSIP411UAI) showed a 15.7- to 59.2-fold higher AA against Listeria spp. than those from E. faecium T136. Lb. casei CECT457 (pSIP411UAI) may be considered a promising recombinant host and cell factory for the production and functional expression of the antilisterial bacteriocin EntA.
Kopyl'chuk, G P; Buchkovskaia, I M
2014-01-01
The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.
Shazly, Ahmed Behdal; He, Zhiyong; El-Aziz, Mahmoud Abd; Zeng, Maomao; Zhang, Shuang; Qin, Fang; Chen, Jie
2017-10-01
Buffalo and bovine caseins were hydrolysed by alcalase and trypsin to produce novel antioxidant peptides. The casein hydrolysates were purified using ultrafiltration (UF) and further characterized by RP-HPLC. The fractions produced higher antioxidant activities were identified for their peptides using LC MS/MS. All UF-VI (MW<1kDa) fractions showed higher antioxidant activity. Hydrolysate produced by alcalase for buffalo casein (UF-VI with 54.84-fold purification) showed higher antioxidant activity than that obtained by trypsin. Trypsin hydrolysate contained high amount of hydrophobic amino acids while alcalase hydrolysate consisted mainly of Ser, Arg, Ala and Leu. The antioxidant peptides identified by LC MS/MS were RELEE, MEDNKQ and TVA, EQL in buffalo casein hydrolysates produced by trypsin and alcalase, respectively. Mechanism and reaction pathways of selected antioxidant peptides with ABTS were proposed. Conclusively, buffalo casein provided antioxidant peptides similar to bovine, suggesting that buffalo casein is a novel source of antioxidant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju
2017-01-11
Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.
Stoop, JMH.; Pharr, D. M.
1993-01-01
Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures. PMID:12231996
Bassi, G S; Murchie, A I; Lilley, D M
1996-01-01
The hammerhead ribozyme undergoes an ion-dependent folding process into the active conformation. We find that the folding can be blocked at specific stages by changes of sequence or functionality within the core. In the the absence of added metal ions, the global structure of the hammerhead is extended, with a large angle subtended between stems I and II. No core sequence changes appear to alter this geometry, consistent with an unstructured core under these conditions. Upon addition of low concentrations of magnesium ions, the hammerhead folds by an association of stems II and III, to include a large angle between them. This stage is inhibited or altered by mutations within the oligopurine sequence lying between stems II and III, and folding is completely prevented by an A14G mutation. Further increase in magnesium ion concentration brings about a second stage of folding in the natural sequence hammerhead, involving a reorientation of stem I, which rotates around into the same direction of stem II. Because this transition occurs over the same range of magnesium ion concentration over which the hammerhead ribozyme becomes active, it is likely that the final conformation is most closely related to the active form of the structure. Magnesium ion-dependent folding into this conformation is prevented by changes at G5, notably removal of the 2'-hydroxyl group and replacement of the base by cytidine. The ability to dissect the folding process by means of sequence changes suggests that two separate ion-dependent stages are involved in the folding of the hammerhead ribozyme into the active conformation. PMID:8752086
Makia, Ngome L.; Bojang, Pasano; Falkner, K. Cameron; Conklin, Daniel J.; Prough, Russell A.
2015-01-01
Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer’s and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (Vmax/Km = 23). However, Aldh1a1 exhibits far higher affinity for acrolein (Km = 23.2 μM) compared to Aldh3a1 (Km = 464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈ 3 fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1 mM NAD+ was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies. PMID:21256123
Obrador, Elena; Carretero, Julian; Ortega, Angel; Medina, Ignacio; Rodilla, Vicente; Pellicer, José A; Estrela, José M
2002-01-01
B16 melanoma (B16M) cells with high glutathione (GSH) content show rapid proliferation in vitro and high metastatic activity in the liver in vivo. gamma-Glutamyl transpeptidase (GGT)-mediated extracellular GSH cleavage and intracellular GSH synthesis were studied in vitro in B16M cells with high (F10) and low (F1) metastatic potential. GGT activity was modified by transfection with the human GGT gene (B16MF1/Tet-GGT cells) or by acivicin-induced inhibition. B16MF1/Tet-GGT and B16MF10 cells exhibited higher GSH content (35 +/- 6 and 40 +/- 5 nmol/10(6) cells, respectively) and GGT activity (89 +/- 9 and 37 +/- 7 mU/10(6) cells, respectively) as compared (P <.05) with B16MF1 cells (10 +/- 3 nmol GSH and 4 mU GGT/10(6) cells). Metastasis (number of foci/100 mm(3) of liver) increased in B16MF1 cells pretreated with GSH ester ( approximately 3-fold, P <.01), and decreased in B16MF1/Tet-GGT and B16MF10 cells pretreated with the GSH synthesis inhibitor L-buthionine (S,R)-sulphoximine ( approximately 5-fold and 2-fold, respectively, P <.01). Liver, kidney, brain, lung, and erythrocyte GSH content in B16MF1/Tet-GGT- or B16MF10-bearing mice decreased as compared with B16MF1- and non-tumor-bearing mice. Organic anion transporting polypeptide 1-independent sinusoidal GSH efflux from hepatocytes increased in B16MF1/Tet-GGT- or B16MF10-bearing mice ( approximately 2-fold, P <.01) as compared with non-tumor-bearing mice. Our results indicate that tumor GGT activity and an intertissue flow of GSH can regulate GSH content of melanoma cells and their metastatic growth in the liver.
Wang, Xinzhe; Ge, Huihua; Zhang, Dandan; Wu, Shuyu; Zhang, Guangya
2017-07-03
Effective and simple methods that lead to higher enzymatic efficiencies are highly sough. Here we proposed a foldon-triggered trimerization of the target enzymes with significantly improved catalytic performances by fusing a foldon domain at the C-terminus of the enzymes via elastin-like polypeptides (ELPs). The foldon domain comprises 27 residues and can forms trimers with high stability. Lichenase and xylanase can hydrolyze lichenan and xylan to produce value added products and biofuels, and they have great potentials as biotechnological tools in various industrial applications. We took them as the examples and compared the kinetic parameters of the engineered trimeric enzymes to those of the monomeric and wild type ones. When compared with the monomeric ones, the catalytic efficiency (k cat /K m ) of the trimeric lichenase and xylanase increased 4.2- and 3.9- fold. The catalytic constant (k cat ) of the trimeric lichenase and xylanase increased 1.8- fold and 5.0- fold than their corresponding wild-type counterparts. Also, the specific activities of trimeric lichenase and xylanase increased by 149% and 94% than those of the monomeric ones. Besides, the recovery of the lichenase and xylanase activities increased by 12.4% and 6.1% during the purification process using ELPs as the non-chromatographic tag. The possible reason is the foldon domain can reduce the transition temperature of the ELPs. The trimeric lichenase and xylanase induced by foldon have advantages in the catalytic performances. Besides, they were easier to purify with increased purification fold and decreased the loss of activities compared to their corresponding monomeric ones. Trimerizing of the target enzymes triggered by the foldon domain could improve their activities and facilitate the purification, which represents a simple and effective enzyme-engineering tool. It should have exciting potentials both in industrial and laboratory scales.
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F Peter
2016-09-30
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn 2+ than Mg 2+ The human germline R96G variant impairs both Mn 2+ -dependent and Mg 2+ -dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg 2+ -dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn 2+ (0.15 mm) instead of Mg 2+ (2 mm) caused a 770-fold increase in efficiency (k pol /K d ,dCTP ) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in K d ,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in k pol /K d ,dCTP for dCTP insertion opposite G with Mg 2+ when compared with wild type, substantially attenuated by substitution with Mn 2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg 2+ or Mn 2+ , revealed that Mn 2+ achieves more optimal octahedral coordination geometry than Mg 2+ , with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι*
Choi, Jeong-Yun; Patra, Amritaj; Yeom, Mina; Lee, Young-Sam; Zhang, Qianqian; Egli, Martin; Guengerich, F. Peter
2016-01-01
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+. The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1–25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1–445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP. The R96G and Δ1–25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+. Crystal structures of pol ι ternary complexes, including the primer terminus 3′-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation. PMID:27555320
Jackson, Kristy L; Marques, Francine Z; Watson, Anna M D; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Morris, Brian J; Charchar, Fadi J; Davern, Pamela J; Head, Geoffrey A
2013-10-01
Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.
Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y
2009-10-01
This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.
Sutiono, Samuel; Carsten, Jörg; Sieber, Volker
2018-06-28
Branched chain keto acid decarboxylases (KDCs) are a class of enzymes that catalyze the decarboxylation of α-keto acids. It is a key enzyme for production of higher alcohols in vivo and in vitro. However, the two most active KDCs (KivD and KdcA) have only moderate thermostability (<55 °C) hindering the production of the alcohols at high temperatures. In this study, structure-guided engineering toward improved thermostability of KdcA is outlined. Several strategies such as, stabilization of the catalytic center, surface engineering, and optimization of dimer interactions were applied. With 7 point mutations, our mutant (7M.D) showed an increase of T501h by 14.8 °C without compromising its substrate specificity. 7M.D exhibited >400-fold improvement of half-life at 70 °C and >600-fold increase in process stability in the presence of 4 % isobutanol at 50 °C. 7M.D is more promising for the production of higher alcohols in thermophiles (>65 °C) as well as in cell-free applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The synthesis of acetylcholine by plants.
Smallman, B N; Maneckjee, A
1981-01-15
Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms.
Zhu, Jianwei; Zhang, Haicang; Li, Shuai Cheng; Wang, Chao; Kong, Lupeng; Sun, Shiwei; Zheng, Wei-Mou; Bu, Dongbo
2017-12-01
Accurate recognition of protein fold types is a key step for template-based prediction of protein structures. The existing approaches to fold recognition mainly exploit the features derived from alignments of query protein against templates. These approaches have been shown to be successful for fold recognition at family level, but usually failed at superfamily/fold levels. To overcome this limitation, one of the key points is to explore more structurally informative features of proteins. Although residue-residue contacts carry abundant structural information, how to thoroughly exploit these information for fold recognition still remains a challenge. In this study, we present an approach (called DeepFR) to improve fold recognition at superfamily/fold levels. The basic idea of our approach is to extract fold-specific features from predicted residue-residue contacts of proteins using deep convolutional neural network (DCNN) technique. Based on these fold-specific features, we calculated similarity between query protein and templates, and then assigned query protein with fold type of the most similar template. DCNN has showed excellent performance in image feature extraction and image recognition; the rational underlying the application of DCNN for fold recognition is that contact likelihood maps are essentially analogy to images, as they both display compositional hierarchy. Experimental results on the LINDAHL dataset suggest that even using the extracted fold-specific features alone, our approach achieved success rate comparable to the state-of-the-art approaches. When further combining these features with traditional alignment-related features, the success rate of our approach increased to 92.3%, 82.5% and 78.8% at family, superfamily and fold levels, respectively, which is about 18% higher than the state-of-the-art approach at fold level, 6% higher at superfamily level and 1% higher at family level. An independent assessment on SCOP_TEST dataset showed consistent performance improvement, indicating robustness of our approach. Furthermore, bi-clustering results of the extracted features are compatible with fold hierarchy of proteins, implying that these features are fold-specific. Together, these results suggest that the features extracted from predicted contacts are orthogonal to alignment-related features, and the combination of them could greatly facilitate fold recognition at superfamily/fold levels and template-based prediction of protein structures. Source code of DeepFR is freely available through https://github.com/zhujianwei31415/deepfr, and a web server is available through http://protein.ict.ac.cn/deepfr. zheng@itp.ac.cn or dbu@ict.ac.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Enayati, Mohammad Saied; Behzad, Tayebeh; Sajkiewicz, Pawel; Rafienia, Mohammad; Bagheri, Rouhollah; Ghasemi-Mobarakeh, Laleh; Kolbuk, Dorota; Pahlevanneshan, Zari; Bonakdar, Shahin H
2018-04-01
The article is focused on the role of nanohydroxy apatite (nHAp) and cellulose nanofibers (CNFs) as fillers in the electrospun poly (vinyl alcohol) (ES-PVA) nanofibers for bone tissue engineering (TE). Fibrous scaffolds of PVA, PVA/nHAp (10 wt.%), and PVA/nHAp(10 wt.%)/CNF(3 wt.%) were successfully fabricated and characterized. Tensile test on electrospun PVA/nHAp10 and PVA/nHAp10/CNF3 revealed a three-fold and seven-fold increase in modulus compared with pure ES-PVA (45.45 ± 4.77). Although, nanofiller loading slightly reduced the porosity percentage, all scaffolds had porosity higher than 70%. In addition, contact angle test proved the great hydrophilicity of scaffolds. The presence of fillers reduced in vitro biodegradation rate in PBS while accelerates biomineralization in simulated body fluid (SBF). Furthermore, cell viability, cell attachment, and functional activity of osteoblast MG-63 cells were studied on scaffolds showing higher cellular activity for scaffolds with nanofillers. Generally, the obtained results confirm that the 3-componemnt fibrous scaffold of PVA/nHAp/CNF has promising potential in hard TE. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1111-1120, 2018. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A.; Jiménez, M. Consuelo
2018-06-01
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α1-acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222.
Zheng, Dan; Shuai, Xiao; Li, Yanping; Zhou, Peng; Gong, Tao; Sun, Xun; Zhang, Zhirong
2016-09-01
Tarenflurbil (R-flurbiprofen) was acknowledged as a promising candidate in Alzheimer's disease (AD) therapy. However, the Phase III study of tarenflurbil was extremely restricted by its poor delivery efficiency to the brain. To tackle this problem, the novel carriers for tarenflurbil, racemic flurbiprofen (FLU) derivatives (FLU-D1 and FLU-D2) modified by N,N-dimethylethanolamine-related structures were synthesized and characterized. These derivatives showed good safety level in vitro and they possessed much higher cellular uptake efficiency in brain endothelial cells than FLU did. More importantly, the uptake experiments suggested that they were internalized via active transport mechanisms. Biodistribution studies in rats also illustrated a remarkably enhanced accumulation of these derivatives in the brain. FLU-D2, the ester linkage form of these derivatives, achieved a higher brain-targeting efficiency. Its C max and AUC 0- t were enhanced by 12.09-fold and 4.61-fold, respectively compared with those of FLU. Additionally, it could be hydrolyzed by esterase in the brain to release the parent FLU, which might facilitate its therapeutic effect. These in vitro and in vivo results highlighted the improvement of the brain-targeted delivery of FLU by making use of N,N-dimethylethanolamine ligand, with which an active transport mechanism was involved.
Mitochondrial metabolic regulation by GRP78
Prasad, Manoj; Pawlak, Kevin J.; Burak, William E.; Perry, Elizabeth E.; Marshall, Brendan; Whittal, Randy M.; Bose, Himangshu S.
2017-01-01
Steroids, essential for mammalian survival, are initiated by cholesterol transport by steroidogenic acute regulatory protein (StAR). Appropriate protein folding is an essential requirement of activity. Endoplasmic reticulum (ER) chaperones assist in folding of cytoplasmic proteins, whereas mitochondrial chaperones fold only mitochondrial proteins. We show that glucose regulatory protein 78 (GRP78), a master ER chaperone, is also present at the mitochondria-associated ER membrane (MAM), where it folds StAR for delivery to the outer mitochondrial membrane. StAR expression and activity are drastically reduced following GRP78 knockdown. StAR folding starts at the MAM region; thus, its cholesterol fostering capacity is regulated by GRP78 long before StAR reaches the mitochondria. In summary, GRP78 is an acute regulator of steroidogenesis at the MAM, regulating the intermediate folding of StAR that is crucial for its activity. PMID:28275724
Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karanth, Subramanya; Liu, Jing; Mirajkar, Nikita
2006-10-01
This study examined the acute effects of chlorpyrifos (CPF) on cholinesterase inhibition and acetylcholine levels in the striatum of freely moving rats using in vivo microdialysis. Adult, male Sprague-Dawley rats were treated with vehicle (peanut oil, 2 ml/kg) or CPF (84, 156 or 279 mg/kg, sc) and functional signs of toxicity, body weight and motor activity recorded. Microdialysis was conducted at 1, 4 and 7 days after CPF exposure for measurement of acetylcholine levels in striatum. Rats were then sacrificed and the contralateral striatum and diaphragm were collected for biochemical measurements. Few overt signs of cholinergic toxicity were noted inmore » any rats. Body weight gain was significantly affected in the high-dose (279 mg/kg) group only, while motor activity (nocturnal rearing) was significantly reduced in all CPF-treated groups at one day (84 mg/kg) or from 1-4 days (156 and 279 mg/kg) after dosing. Cholinesterase activities in both diaphragm and striatum were markedly inhibited (50-92%) in a time-dependent manner, but there were relatively minimal dose-related changes. In contrast, time- and dose-dependent changes in striatal acetylcholine levels were noted, with significantly higher levels noted in the high-dose group compared to other groups. Maximal increases in striatal acetylcholine levels were observed at 4-7 days after dosing (84 mg/kg, 7-9-fold; 156 mg/kg, 10-13-fold; 279 mg/kg, 35-57-fold). Substantially higher acetylcholine levels were noted when an exogenous cholinesterase inhibitor was included in the perfusion buffer, but CPF treatment-related differences were substantially lower in magnitude under those conditions. The results suggest that marked differences in acetylcholine accumulation can occur with dosages of CPF eliciting relatively similar degrees of cholinesterase inhibition. Furthermore, the minimal expression of classic signs of cholinergic toxicity in the presence of extensive brain acetylcholine accumulation suggests that some compensatory process(es) downstream from synaptic neurotransmitter accumulation limits the expression of toxicity following acute CPF exposure.« less
Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan
2016-06-01
A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.
Anjaneyulu, Ediga; Reddy, Palle Surender; Sunita, Merla Srilakshmi; Kishor, Polavarapu B Kavi; Meriga, Balaji
2014-06-15
A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80-90% homology at the nucleotide and 85-95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50-70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25-100% in transgenics, while malondialdehyde (MDA) showed a 2-4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5-2.5-fold higher Na(+) and 0.4-0.8-fold higher K(+) levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress. Copyright © 2014 Elsevier GmbH. All rights reserved.
Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bush, Ronald A; Sieving, Paul A
2012-09-19
Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1-KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1-KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1-KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1-KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1-KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1-KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1-KO mice at P21 but not at P60. Expression of transducin was 15-30% lower in P21 Rs1-KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1-KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1-KO photoreceptors.
Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold
Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabaté, Raimon; Loquet, Antoine; Saupe, Sven J.
2015-01-01
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553
Radioactivity in three species of eastern Mediterranean jellyfish.
Mamish, S; Al-Masri, M S; Durgham, H
2015-11-01
Activity concentrations of (137)Cs, (40)K, (210)Po, (210)Pb, (234)U and (238)U were determined in umbrella and oral arms of three widely distributed jellyfish species; namely Rhopilema nomadica Galil, 1990, Aurelia aurita Linne, 1758 and Aequorea forskalea Péron & Lesueur, 1810 collected from February 2011 to January 2012 in four sampling locations along the Syrian coast (Eastern Mediterranean Sea). The results have shown significant variations in radionuclides activity concentrations amongst the species. The average activity concentrations of (40)K, (210)Po, (210)Pb, (234)U and (238)U in the umbrella of R. nomadica species were higher than the average activity concentrations in the umbrella of A. aurita species by about 3.2, 1.4, 1.8, 3.2 and 3.2 folds, and A. forskalea species by about 45.5, 15.4, 19, 7.4 and 7.6 folds, respectively. The average activity concentrations of (40)K, (210)Po, (210)Pb, (234)U and (238)U in oral arms of R. nomadica species were higher than the average activity concentrations in oral arms of A. aurita species by about 3.8, 1.7, 1.9, 2.8 and 2.9 folds, respectively. (137)Cs activity concentrations were below the detection limit in all measured samples. In addition, activity concentrations of (137)Cs, (40)K, (210)Po, (210)Pb, (234)U and (238)U were also determined in 44 surface seawater samples and the activity concentrations ranged between 10.6 and 11.9 Bq l(-1) for (40)K, 1.1 and 1.4 mBq l(-1) for (210)Po, 0.5 and 0.7 mBq l(-1) for (210)Pb, 40.8 and 44.5 mBq l(-1) for (234)U, and 36.9 and 38.4 mBq l(-1) for (238)U, while (137)Cs activity concentrations were below the detection limit in all measured samples. Moreover, the umbrella and oral arms readily accumulated (40)K, (210)Po, (210)Pb, (234)U and (238)U above ambient seawater levels in the sequence of (210)Po > (210)Pb > (4) K > (234)U and (238)U. Concentration ratio (CR) values were relatively high for (210)Po and (210)Pb and reached 10(3) and 10(2), respectively for the jellyfish R. nomadica species compared to A. aurita and A. forskalea species. Therefore, R. nomadica can be used as biomonitor for these two radionuclides in the Eastern Mediterranean Sea. However, the obtained data can be considered the first reported baseline values for radioactivity in jellyfish. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello
2013-01-01
Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335
Adiponectin regulates thermal nociception in a mouse model of neuropathic pain.
Sun, L; Li, H; Tai, L W; Gu, P; Cheung, C W
2018-06-01
Adiponectin, a cytokine secreted by adipocytes, plays an important role in regulating glucose and lipid metabolism. However, the role of adiponectin in pain conditions is largely unknown. This study aimed to identify the role and mechanism of adiponectin in nociceptive sensitivity under physiological and pathological states utilising adiponectin knockout (KO) mice. Wild type (WT) and adiponectin KO mice were subjected to partial sciatic nerve ligation (pSNL) or sham operation. Pain-like behavioural tests, including thermal allodynia, hyperalgesia, and mechanical allodynia, were performed before and after pSNL from Day 3-21. Dorsal root ganglions (DRGs), lumbar spinal segments at L3-5, and somatosensory cortex were collected for protein measurement via western blotting and immunofluorescence staining. Compared with WT mice, KO mice had significantly lower (40-50%) paw withdrawal latency to innocuous and noxious stimuli before and after pSNL. In DRG neurones from KO mice, where adiponectin receptor (AdipoR) 2 is located, phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) and heat-sensitive transient receptor potential cation channel subfamily V member 1 (TRPV1) were significantly higher (by two- to three-fold) than from WT mice. In spinal microglia and somatosensory cortical neurones, where AdipoR1 is mainly located, p-p38 MAPK and TRPV1 were also higher (by two- to three-fold) in KO compared with WT mice, and altered signalling of these molecules was exacerbated (1.2- to 1.3-fold) by pSNL. Our results show that adiponectin regulates thermal nociceptive sensitivity by inhibiting activation of DRG neurones, spinal microglia, and somatosensory cortical neurones in physiological and neuropathic pain states. This study has relevance for patients with adiponectin disorders, such as obesity and diabetes. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Robin, Gaëlle; López, José R; Espinal, Glenda M; Hulsizer, Susan; Hagerman, Paul J; Pessah, Isaac N
2017-07-15
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurological disorder that affects premutation carriers with 55-200 CGG-expansion repeats (preCGG) in FMR1, presenting with early alterations in neuronal network formation and function that precede neurodegeneration. Whether intranuclear inclusions containing DNA damage response (DDR) proteins are causally linked to abnormal synaptic function, neuronal growth and survival are unknown. In a mouse that harbors a premutation CGG expansion (preCGG), cortical and hippocampal FMRP expression is moderately reduced from birth through adulthood, with greater FMRP reductions in the soma than in the neurite, despite several-fold elevation of Fmr1 mRNA levels. Resting cytoplasmic calcium concentration ([Ca2+]i) in cultured preCGG hippocampal neurons is chronically elevated, 3-fold compared to Wt; elevated ROS and abnormal glutamatergic responses are detected at 14 DIV. Elevated µ-calpain activity and a higher p25/p35 ratio in the cortex of preCGG young adult mice indicate abnormal Cdk5 regulation. In support, the Cdk5 substrate, ATM, is upregulated by 1.5- to 2-fold at P0 and 6 months in preCGG brain, as is p-Ser1981-ATM. Bax:Bcl-2 is 30% higher in preCGG brain, indicating a greater vulnerability to apoptotic activation. Elevated [Ca2+]i, ROS, and DDR signals are normalized with dantrolene. Chronic [Ca2+]i dysregulation amplifies Cdk5-ATM signaling, possibly linking impaired glutamatergic signaling and DDR to neurodegeneration in preCGG brain. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lin, Sheng-Tsai; Tu, Shih-Hsin; Yang, Po-Sheng; Hsu, Sung-Po; Lee, Wei-Hwa; Ho, Chi-Tang; Wu, Chih-Hsiung; Lai, Yu-Hsin; Chen, Ming-Yao; Chen, Li-Ching
2016-09-14
Glucose transporters (GLUTs) are required for glucose uptake in malignant cells, and they can be used as molecular targets for cancer therapy. An RT-PCR analysis was performed to investigate the mRNA levels of 14 subtypes of GLUTs in human colorectal cancer (COLO 205 and HT-29) and normal (FHC) cells. RT-PCR (n = 27) was used to assess the differences in paired tissue samples (tumor vs normal) isolated from colorectal cancer patients. GLUT2 was detected in all tested cells. The average GLUT2 mRNA level in 12 of 27 (44.4%) cases was 2.4-fold higher in tumor compared to normal tissues (*, p = 0.027). Higher GLUT2 mRNA expression was preferentially detected in advanced-stage tumors (stage 0 vs 3 = 16.38-fold, 95% CI = 9.22-26.54-fold; *, p = 0.029). The apple polyphenol phloretin (Ph) and siRNA methods were used to inhibit GLUT2 protein expression. Ph (0-100 μM, for 24 h) induced COLO 205 cell growth cycle arrest in a p53-dependent manner, which was confirmed by pretreatment of the cells with a p53-specific dominant negative expression vector. Hepatocyte nuclear factor 6 (HNF6), which was previously reported to be a transcription factor that activates GLUT2 and p53, was also induced by Ph (0-100 μM, for 24 h). The antitumor effect of Ph (25 mg/kg or DMSO twice a week for 6 weeks) was demonstrated in vivo using BALB/c nude mice bearing COLO 205 tumor xenografts. In conclusion, targeting GLUT2 could potentially suppress colorectal tumor cell invasiveness.
Zhuang, An-Xiang; Zhang, Yi-Xi; Zhang, Hui; Liu, Ze-Wen
2016-10-01
Neonicotinoids, such as imidacloprid, are key insecticides extensively used for control of Nilaparvata lugens. However, imidacloprid resistance has been reported in many Asian countries in recent years. To understand the roles of the chlorine atom of pyridyl group on insecticidal activity and resistance, the atom was removed to generate an imidacloprid analogue DC-Imi (DesChlorine Imidacloprid). DC-Imi showed significantly higher toxicity than imidacloprid in the susceptible strain of N. lugens, but had medium level cross-resistance in an imidacloprid-resistant strain. In Xenopus oocyte expressed nicotinic acetylcholine receptors (nAChRs) Nlα1/rβ2, the inward currents evoked by DC-Imi were detected and could be blocked by typical nAChRs antagonist dihydro-β-erythroidine (DHβE), which demonstrated that DC-Imi acted as an agonist on insect nAChRs. The efficacy of DC-Imi on Nlα1/rβ2 was 1.8-fold higher than that of imidacloprid. In addition, the influence of an imidacloprid resistance associated mutation (Y151S) on agonist potencies was evaluated. Compared with the wild-type receptor, the mutation reduced maximal inward current of DC-Imi to 55.6% and increased half maximal effective concentration (EC50 ) to 3.53-fold. Compared with imidacloprid (increasing EC50 to 2.38-fold of wild-type receptor), Y151S mutation decreased DC-Imi potency more significantly. The results indicated that the selective and possibly high toxicities could be achieved through the modification of 6-chloro-3-pyridyl group in imidacloprid and other neonicotinoids. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D.; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G.
2013-01-01
Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.—Kanasaki, K., Yu, W., von Bodungen, M., Larigakis, J. D., Kanasaki, M., Ayala de la Pena, F., Kalluri, R., Hill, W.G. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. PMID:23395910
Ong, Z. Y.; Muhlhausler, B. S.
2011-01-01
Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal “junk-food” diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16±0.6 vs. 11±0.8 g/kg/d; females: 19±1.3 vs. 13±0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.—Ong, Z. Y., Muhlhausler, B. S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. PMID:21427213
Lemaire, Sandrine; Tulkens, Paul M.; Van Bambeke, Françoise
2011-01-01
In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log2 dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log2 dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections. PMID:21135179
Lemaire, Sandrine; Tulkens, Paul M; Van Bambeke, Françoise
2011-02-01
In contrast to currently marketed fluoroquinolones, which are zwitterionic, delafloxacin is an investigational fluoroquinolone with an anionic character that is highly active against Gram-positive bacteria. We have examined the effect of acidic pH on its accumulation in Staphylococcus aureus and in human THP-1 cells, in parallel with its activity against extracellular and intracellular S. aureus. Moxifloxacin was used as a comparator. Delafloxacin showed MICs 3 to 5 log(2) dilutions lower than those of moxifloxacin for a collection of 35 strains with relevant resistance mechanisms and also proved to be 10-fold more potent against intracellular S. aureus ATCC 25923. In medium at pH 5.5, this difference was further enhanced, with the MIC decreasing by 5 log(2) dilutions. In infected cells incubated in acidic medium, the relative potency was 10-fold higher than that at neutral pH and the maximal relative efficacy reached a bactericidal effect at 24 h. These results can be explained by a 10-fold increase in delafloxacin accumulation in both bacteria and cells at acidic pH, making delafloxacin one of the most efficient drugs tested in this model. Opposite effects were seen for moxifloxacin with respect to both activity and accumulation. As reported for zwitterionic fluoroquinolones, delafloxacin was found associated with the soluble fraction in homogenates of eukaryotic cells. Taken together, these properties may confer to delafloxacin an advantage for the eradication of S. aureus in acidic environments, including intracellular infections.
Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain.
Sinha, Manish; Dola, Vasanth R; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B
2014-07-15
Emergence and spread of multidrug resistant strains of Plasmodium falciparum has severely limited the antimalarial chemotherapeutic options. In order to overcome the obstacle, a set of new side-chain modified 4-aminoquinolines were synthesized and screened against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of P. falciparum. The key feature of the designed molecules is the use of methylpiperazine linked α, β(3)- and γ-amino acids to generate novel side chain modified 4-aminoquinoline analogues. Among the evaluated compounds, 20c and 30 were found more potent than CQ against K1 and displayed a four-fold and a three-fold higher activity respectively, with a good selectivity index (SI=5846 and 11,350). All synthesized compounds had resistance index between 1.06 and >14.13 as against 47.2 for chloroquine. Biophysical studies suggested that this series of compounds act on heme polymerization target. Copyright © 2014 Elsevier Ltd. All rights reserved.
Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich
2012-01-01
The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158
Tedesco, Idolo; Carbone, Virginia; Spagnuolo, Carmela; Minasi, Paola; Russo, Gian Luigi
2015-06-03
Onions (Allium cepa) are consumed worldwide and represent an important source of dietary phytochemicals with proven antioxidant properties, such as phenolic acids, flavonoids, thiosulfinates, and anthocyanins. Epidemiological and experimental data suggest that regular consumption of onions is associated with a reduced risk of degenerative disorders. Therefore, it is of interest to investigate the biological properties of different varieties of onions. Here, we characterized for the first time a variety of onion, called Ramata di Montoro (coppery onion from Montoro), grown in a niche area in southern Italy, and compared its phenolic profile and antioxidant properties to a commercial ecotype of red onion, Tropea, also present in southern Italy. An analytical method based on high-performance liquid chromatography coupled with UV detection and mass spectrometry was used to separate and characterize the phenolic fraction (anthocyanins and flavonols) extracted from both coppery and red types. The main compounds detected in the two ecotypes were quercetin and quercetin glucosides, isorhamnetin glucosides, kaempferol glucoside, and, among anthocyanins, cyanidin glucosides. Tropea ecotype onion showed a higher content of flavonols (632.82 mg/kg fresh weight) than Montoro type onion (252.91 mg/kg fresh weight). Accordingly, the antioxidant activity of the former was 2.8-fold higher compared to the latter. More pronounced were the differences existing between the four anthocyanins detected in the two ecotypes, with those in the Tropea ecotype onion present at concentrations 20-230-fold higher than in the Montoro type onion. Both extracts reduced LDL oxidation about 6-fold and protected human erythrocytes from oxidative damage induced by HClO by about 40%. In addition, as a consequence of HClO treatment, glutathione concentration in erythrocytes was reduced about 50% and pretreatment with onion extracts induced a recovery of glutathione level by about 15-22%. Qualitative differences highlighted in the chemical composition of the two phenolic extracts, especially the total content of anthocyanins, which was 30-fold higher in Montoro type onion compared to Tropea ecotype, can be associated with the protective effects measured against oxidative damage induced in human erythrocytes.
IB-11PSEUDO-PROGRESSION (PsdPg) IS A HARBINGER OF A MORE EFFECTIVE ANTI-TUMOR RESPONSE
Sturla, Lisa; Donahue, John; Machan, Jason; Delamonte, Suzanne; Jeyapalan, Suriya
2014-01-01
BACKGROUND: PsdPg is the increased contrast enhancement, high choline/creatine ratio and increased perfusion observed in the residual tumor bed of high-grade glioma patients after completion of temozolomide/radiation. It resolves within 3-6 months and incidence ranges from 10 - 31%. Though correlated with longer patient survival, its pathological basis is unclear. We used a cytokine/chemokine focused approach to compare the tumor microenvironment in pre- and post-treatment tumor tissue from patients with PsdPg to patients with true progression (TP). METHODS: We obtained pre-treatment formalin fixed paraffin embedded (FFPE) tissue from 35 GBM patients and post-treatment FFPE tissue from five patients with PsdPg and TP. A quantitative PCR array and custom Quantigene 2.0 multiplex was used to quantify gene expression corresponding to major cytokines/chemokines. An 18-gene signature was used to determine the macrophage polarization score (cumulative M2-associated cytokine expression - cumulative M1-associated cytokine expression). Immunohistochemistry (IHC) was used to confirm significantly different targets at the protein level. RESULTS: IHC revealed 7-fold higher B-cell infiltration in TP patients as compared to patients with PsdPg (p = 0.003). Macrophage and T-cell infiltration were not significantly different between the two groups. Nevertheless, the cytokines associated with macrophage polarization indicated pro-tumorigenic (M2) polarization in TP patients while PsdPg patients exhibited classical anti-tumorigenic (M1) polarization. TP patients had a 10-fold higher M2 score (p = 0.03) compared to PsdPg patients. The M1 score of tissue from PsdPg patients post-treatment was 25-fold higher than their pre-treatment tissue (p = 0.01). Analysis of a 7-gene signature associated with natural killer (NK) cell recruitment and activation showed a 8-fold higher expression in pre-treatment tissue from PsdPg patients compared to TP patients (p = 0.009) suggesting that NK cells, which are mediators of anti-tumor immunity, play an important role in pseudo-progression. CONCLUSIONS: These data suggest a more effective anti-tumor immune response in PsdPg patients, which may explain their longer overall survival.
Zhang, Yun-Long; Zhang, Hai-Long; Wang, Ling-Yu; Gu, Bei-Yi; Fan, Qi-Xue
2017-04-01
The Paramisgurnus dabryanus was exposed to 30 mmol L -1 NH 4 Cl solution and air to assessing the change of body ammonia and urea contents and the activities of alanine aminotransferase (ALT) and aspartate transaminase (AST). After 48 h of ammonia exposure, ammonia concentration in the plasma, brain, liver and muscle were 3.3-fold, 5.6-fold, 3.5-fold and 4.2-fold, respectively, those of the control values. Plasma, brain, liver and muscle ammonia concentrations increased to 2.2-fold, 3.3-fold, 2.5-fold and 2.9-fold, respectively, those of control values in response to 48 h of aerial exposure. Within the given treatment (ammonia or aerial exposure), there was no change in plasma, brain and liver urea concentrations between exposure durations. The plasma ALT activity was significantly affected by exposure time during aerial exposure, while the liver ALT activity was not affected by ammonia or aerial exposure. Exposure to NH 4 Cl or air had no effect on either plasma or liver AST activity. Our results suggested that P. dabryanus could accumulate quite high level of internal ammonia because of the high ammonia tolerance in its cells and tissues, and NH 3 volatilization would be a possible ammonia detoxification strategy in P. dabryanus. Urea synthesis was not an effective mechanism to deal with environmental or internal ammonia problem. The significant increase of ALT activity in plasma during aerial exposure, indicating that alanine synthesis through certain amino acid catabolism may be subsistent in P. dabryanus.
NASA Astrophysics Data System (ADS)
Cruciani, F.; Barchi, M. R.; Koyi, H. A.; Porreca, M.
2017-08-01
The deepwater fold-and-thrust belts (DWFTBs) are geological structures recently explored thanks to advances in offshore seismic imaging by oil industry. In this study we present a kinematic analysis based on three balanced cross-sections of depth-converted, 2-D seismic profiles along the offshore Lamu Basin (East African passive margin). This margin is characterized by a regional-scale DWFTB (> 450 km long), which is the product of gravity-driven contraction on the shelf that exhibits complex structural styles and differing amount of shortening along strike. Net shortening is up to 48 km in the northern wider part of the fold-and-thrust belt (≈ 180 km), diminishing to < 15 km toward the south, where the belt is markedly narrower (≈ 50 km). The three balanced profiles show a shortening percentage around 20% (comparable with the maximum values documented in other gravity-driven DWFTBs), with a significant variability along dip: higher values are achieved in the outer (i.e. down-dip) portion of the system, dominated by basinward-verging, imbricate thrust sheets. Fold wavelength increases landward, where doubly-verging structures and symmetric detachment folds accommodate a lower amount of shortening. Similar to other cases, a linear and systematic relationship between sedimentary thickness and fold wavelength is observed. Reconstruction of the rate of shortening through time within a fold-and-thrust belt shows that after an early phase of slow activation (Late Cretaceous), > 95% of net shortening was produced in < 10 Myr (during Paleocene). During this acme phase, which followed a period of high sedimentation rate, thrusts were largely synchronous and the shortening rate reached a maximum value of 5 mm/yr. The kinematic evolution reconstructed in this study suggests that the structural evolution of gravity-driven fold-and-thrust belts differs from the accretionary wedges and the collisional fold-and-thrust belts, where thrusts propagate in-sequence and shortening is uniformly accommodated along dip.
High-rotational symmetry lattices fabricated by moiré nanolithography.
Lubin, Steven M; Zhou, Wei; Hryn, Alexander J; Huntington, Mark D; Odom, Teri W
2012-09-12
This paper describes a new nanofabrication method, moiré nanolithography, that can fabricate subwavelength lattices with high-rotational symmetries. By exposing elastomeric photomasks sequentially at multiple offset angles, we created arrays with rotational symmetries as high as 36-fold, which is three times higher than quasiperiodic lattices (≤12-fold) and six times higher than two-dimensional periodic lattices (≤6-fold). Because these moiré nanopatterns can be generated over wafer-scale areas, they are promising for a range of photonic applications, especially those that require broadband, omnidirectional absorption of visible light.
Cao, Lin-Ying; Ren, Xiao-Min; Li, Chuan-Hai; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong
2017-10-03
Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.
Yu, Xiang; Erzinger, Melanie M; Pietsch, Kathryn E; Cervoni-Curet, Frances N; Whang, John; Niederhuber, John; Sturla, Shana J
2012-11-01
Prostaglandin reductase 1 (PTGR1) is a highly inducible enzyme with enone reductase activity. Previous studies demonstrated the role of rat PTGR1 in the activation of acylfulvene analogs, a class of antitumor natural product derivatives. Of these, hydroxymethylacylfulvene (HMAF) was in advanced clinical development for the treatment of advanced solid tumors, including prostate, ovarian, and pancreatic cancers. However, the efficiency of human PTGR1 in activating acylfulvenes and its potential to enhance therapeutic efficacy have remained uncharacterized. In this study, human PTGR1 was polymerase chain reaction-cloned and purified. Conversion of HMAF to its cellular metabolite by the purified enzyme proceeded at a 20-fold higher rate than with the rat variant of the enzyme. The Km was 4.9 μM, which was 40-fold lower than for the rat variant and similar to the therapeutic dose. Human cell lines, including colon cancer lines, were transfected with a vector containing rat PTGR1 or human PTGR1, and cell viability was examined after dosing with HMAF. New data obtained in this study suggest that transfection with human PTGR1, or its induction in colon and liver cancer cell lines with 1,2-dithiol-3-thione, enhances susceptibility to the cytotoxic influences of HMAF by 2- to 10-fold. Furthermore, similar or enhanced enzyme induction and HMAF toxicity results from preconditioning cancer cells with the bioactive food components curcumin and resveratrol. The functional impact of PTGR1 induction in human cells and chemical-based strategies for its activation can provide important knowledge for the design of clinical strategies involving reductively activated cytotoxic chemotherapeutics.
Wang, Chang-Lin; Qiu, Ting-Ting; Yang, Dai-Jun; Yuan, Bi-Yu; Han, Feng-Tong; Li, Li; Gu, Ning
2017-04-01
C-terminal esterification of opioid peptides may change their opioid activities due to the modified physicochemical properties. In the present study, the pharmacological activities of C-terminal esterified endomorphin-2 (EM-2) analogs 1-3 were characterized by in vitro metabolic stability and octanol/buffer distribution assays. Also, the antinociceptive profiles in the radiant heat paw withdrawal test and related side effects of these analogs were determined. Our results showed that all three analogs significantly increased the metabolic stability and lipophilicity. Moreover, analogs 1-3 displayed potent antinociceptive activities after intracerebroventricular (i.c.v.) administration. Analogs 1 and 3 exhibited about 2-fold higher antinociception than EM-2, and differential opioid mechanisms were involved. In addition, EM-2 at 50 μmol/kg failed to produce any significant antinociceptive activity after subcutaneous (s.c.) administration, whereas equimolar dose of analogs 1-3 produced significant analgesic effects. Analog 3 showed the highest antinociceptive activity after systemic administration, which was consistent with its in vitro stability and lipophilicity. We further evaluated the antinociceptive tolerance of analogs 1-3. In acute tolerance test, analogs 1-3 shifted the dose-response curves rightward by only 1.4-3.2 fold as determined by tolerance ratio, whereas EM-2 by 5.6-fold, demonstrating reduced antinociceptive tolerance. Also, analogs 1 and 2 decreased chronic antinociceptive tolerance by central and peripheral administration of drugs. In particular, analogs 3 displayed insignificant chronic antinociceptive tolerance. Furthermore, analogs 1-3 were less prone to induce gastrointestinal side effects at analgesic doses. The present investigation gave the evidence that C-terminal esterified modifications of EM-2 will facilitate the development of novel opioid analgesics with reduced side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kozuka, Takuyo; Aoki, Yukimasa; Nakagawa, Keiichi; Ohtomo, Kuni; Yoshikawa, Hiroyuki; Matsumoto, Koji; Yoshiike, Kunito
2000-01-01
Expression of human papillomavirus 16 (HPV‐16) oncogenes is markedly higher in cervical cancer cells than in precancerous cells, and the elevated expression is believed to be required for the malignant phenotypes. We compared cancer cell lines CaSki (with 200 to 400 copies of HPV‐16 DNA per cell) and SiHa (with one to two copies of HPV‐16 DNA per cell) for the E7 expression in cells and the enhancer‐promoter activity of the isolated viral long control region (LCR). Although these parameters per cell were 10‐fold higher in CaSki than in SiHa, the levels of the E7 mRNA and protein per HPV DNA copy were 10‐ to 20‐fold higher in SiHa than in CaSki. Characterization of the isolated LCRs showed that, whereas the LCR from CaSki resembled the prototype in structure and activity, the LCR from SiHa, with a deletion of 38 base pairs, enhanced transcription from P97 as assayed by using a plasmid capable of expressing luciferase. The upregulation appeared to be due to removal of one of the silencer YY1‐binding sites. Furthermore, we isolated and characterized LCRs from 51 cervical cancer patients’ biopsies. Among them, one with a deletion including YY1‐binding sites and the other with a substitution in a YY1‐motif were found to enhance the transcription. These findings suggest that mutation affecting YY1‐motifs in the LCR is one of the mechanisms enhancing the viral oncogene expression in the course of progression of cancer cells. PMID:10760685
Shakeel, Tabinda; Gupta, Mayank; Fatma, Zia; Kumar, Rakesh; Kumar, Raubins; Singh, Rahul; Sharma, Medha; Jade, Dhananjay; Gupta, Dinesh; Fatma, Tasneem; Yazdani, Syed Shams
2018-06-15
Aldehyde-deformylating oxygenase (ADO) is an essential enzyme for production of long-chain alkanes as drop-in biofuels, which are compatible with existing fuel systems. The most active ADOs are present in mesophilic cyanobacteria, especially Nostoc punctiforme Given the potential applications of thermostable enzymes in biorefineries, here we generated a thermostable (Cts)-ADO based on a consensus of ADO sequences from several thermophilic cyanobacterial strains. Using an in silico design pipeline and a metagenome library containing 41 hot-spring microbial communities, we created Cts-ADO. Cts-ADO displayed a 3.8-fold increase in pentadecane production on raising the temperature from 30 to 42 °C, whereas ADO from N. punctiforme (Np-ADO) exhibited a 1.7-fold decline. 3D structure modeling and molecular dynamics simulations of Cts- and Np-ADO at different temperatures revealed differences between the two enzymes in residues clustered on exposed loops of these variants, which affected the conformation of helices involved in forming the ADO catalytic core. In Cts-ADO, this conformational change promoted ligand binding to its preferred iron, Fe2, in the di-iron cluster at higher temperature, but the reverse was observed in Np-ADO. Detailed mapping of residues conferring Cts-ADO thermostability identified four amino acids, which we substituted individually and together in Np-ADO. Among these substitution variants, A161E was remarkably similar to Cts-ADO in terms of activity optima, kinetic parameters, and structure at higher temperature. A161E was located in loop L6, which connects helices H5 and H6, and supported ligand binding to Fe2 at higher temperatures, thereby promoting optimal activity at these temperatures and explaining the increased thermostability of Cts-ADO. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Frank, Jan; Schiborr, Christina; Kocher, Alexa; Meins, Jürgen; Behnam, Dariush; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona
2017-03-01
Curcumin, the active constituent of Curcuma longa L. (family Zingiberaceae), has gained increasing interest because of its anti-cancer, anti-inflammatory, anti-diabetic, and anti-rheumatic properties associated with good tolerability and safety up to very high doses of 12 g. Nanoscaled micellar formulations on the base of Tween 80 represent a promising strategy to overcome its low oral bioavailability. We therefore aimed to investigate the uptake and transepithelial transport of native curcumin (CUR) vs. a nanoscaled micellar formulation (Sol-CUR) in a Caco-2 cell model. Sol-CUR afforded a higher flux than CUR (39.23 vs. 4.98 μg min -1 cm -2 , respectively). This resulted in a higher P app value of 2.11 × 10 -6 cm/s for Sol-CUR compared to a P app value of 0.56 × 10 -6 cm/s for CUR. Accordingly a nearly 9.5 fold higher amount of curcumin was detected on the basolateral side at the end of the transport experiments after 180 min with Sol-CUR compared to CUR. The determined 3.8-fold improvement in the permeability of curcumin is in agreement with an up to 185-fold increase in the AUC of curcumin observed in humans following the oral administration of the nanoscaled micellar formulation compared to native curcumin. The present study demonstrates that the enhanced oral bioavailability of micellar curcumin formulations is likely a result of enhanced absorption into and increased transport through small intestinal epithelial cells.
Wukirsari, Tuti; Nishiwaki, Hisashi; Hasebe, Ayaka; Shuto, Yoshihiro; Yamauchi, Satoshi
2013-05-08
The insecticidal activity of (-)-(8R,8'R)-3,3'-dimethoxy-9,9'-epoxylignane-4,4'-diol (1) against houseflies was clarified for the first time. The activities of other stereoisomers were weaker than that of the (8R,8'R)-stereoisomer. In the course of research into structure-activity relationships involving 30 newly synthesized (8R,8'R)-derivatives, 5-fold higher activity (ED50 = 0.91 nmol/fly) was observed for (-)-(8R,8'R)-3,3',4-trimethoxy-9,9'-epoxylignan-4'-ol (21) than for the naturally occurring compound (1). The activity of 1 was weaker than that of (-)-(8R,8'R)-dihydroguaiaretic acid ((-)-DGA) (4); however, compound 21 showed almost the same level of activity as 4.
Li, Z X; Wang, X H; Zhao, J H; Yang, J F; Wang, X
2000-12-01
To evaluate the antibacterial activity of Forsythia suspensa in vitro with different media. MIC determination of Forsythia suspensa against Staphylococci was performed by the agar dilution method. MIC90 of decoction of Forsythia suspensa against Staphylococcus epidermidis in M-H agar was 1:640, but in nutrient agar 1:40, the antibacterial activity with M-H agar being 16 fold higher than nutrient agar. The M-H agar should be recommended to replace nutrient agar as medium in the antibacterial experiment of Traditional Chinese medicine, and it is better to use multipoint inoculating device in the sensitivity test.
Nielsen, Stine N; Frandsen, Thomas L; Nersting, Jacob; Hjalgrim, Lisa L; Schmiegelow, Kjeld
2015-04-01
Methotrexate/6-mercaptopurine maintenance therapy of childhood acute lymphoblastic leukemia is challenged by treatment-related hepatotoxicity, failure to achieve the myelosuppressive target, and lack of direct parameters for monitoring treatment efficacy or even intensity. Patients with low thiopurine methyltransferase (TPMT) activity have lower levels of hepatotoxic methylated thiopurine metabolites (MeMPs), higher levels of thioguanine nucleotides (TGNs), and reduced relapse rates. Addition of 6-thioguanine to maintenance therapy of a child with ALL and high TPMT activity increased the TGN/MeMP index in erythrocytes 5.5-fold, mimicking the more favorable thiopurine metabolism seen in patients with low TPMT activity.
Novel Potent Metallocenes against Liver Stage Malaria
Matos, Joana; da Cruz, Filipa P.; Cabrita, Élia; Gut, Jiri; Nogueira, Fátima; do Rosário, Virgílio E.; Moreira, Rui; Rosenthal, Philip J.; Prudêncio, Miguel
2012-01-01
Novel conjugates of the antimalarial drug primaquine (compound 1) with ferrocene, named primacenes, have been synthesized and screened for their activities against blood stage and liver stage malaria in vitro and host-vector transmission in vivo. Both transmission-blocking and blood-schizontocidal activities of the parent drug were conserved only in primacenes bearing a basic aliphatic amine group. Liver stage activity did not require this structural feature, and all metallocenes tested were comparable to or better than primaquine in this regard. Remarkably, the replacement of primaquine's aliphatic chain by hexylferrocene, as in compound 7, led to a ∼45-fold-higher level activity against liver stage parasitemia than that of primaquine. PMID:22155838
The octahaem MccA is a haem c-copper sulfite reductase.
Hermann, Bianca; Kern, Melanie; La Pietra, Luigi; Simon, Jörg; Einsle, Oliver
2015-04-30
The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA.
Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity
Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.
2011-01-01
Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity. PMID:21394213
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Mueller, Karl; Sato, Hiroshi; Togo, Masami
2007-03-01
We use high-resolution seismic reflection profiles, boring transects, and mapping of fold scarps that deform late Quaternary and Holocene sediments to define the kinematic evolution, subsurface geometry, coseismic behavior, and fault slip rates for an active, basement-involved blind thrust system in central Japan. Coseismic fold scarps on the Yoro basement-involved fold are defined by narrow fold limbs and angular hinges on seismic profiles, suggesting that at least 3.9 km of fault slip is consumed by wedge thrust folding in the upper 10 km of the crust. The close coincidence and kinematic link between folded horizons and the underlying thrust geometry indicate that the Yoro basement-involved fold has accommodated slip at an average rate of 3.2 ± 0.1 mm/yr on a shallowly west dipping thrust fault since early Pleistocene time. Past large-magnitude earthquakes, including an historic M˜7.7 event in A.D. 1586 that occurred on the Yoro blind thrust, are shown to have produced discrete folding by curved hinge kink band migration above the eastward propagating tip of the wedge thrust. Coseismic fold scarps formed during the A.D. 1586 earthquake can be traced along the en echelon active folds that extend for at least 60 km, in spite of different styles of folding along the apparently hard-linked Nobi-Ise blind thrust system. We thus emphasize the importance of this multisegment earthquake rupture across these structures and the potential risk for similar future events in en echelon active fold and thrust belts.
NASA Astrophysics Data System (ADS)
Martinez, S.
2016-12-01
The island of Puerto Rico in the northern Caribbean covers an area of about 14,000 km2 and is 180 km long and 65 km wide and is densely populated by 3.4 million persons. The island is mountainous with an east-west-trending, central mountain range with its highest point of 1338 m in the geographic center of the island. Previous workers have suggested that the origin of this east-west, Central Cordillera is active uplift and folding of a large, east-west-trending anticline whose fold axis is coincident with the topographic crest of the Cordillera Central. The folding mechanism has been attributed by previous workers to obliquely-subducting slabs of the North American and Caribbean plates beneath the island. To test the hypothesis that this topographic and structural axis is also the axis of active topographic uplift, I created a knickpoint density map for the island based on over 50 different river systems to reveal areas of active uplift. The knickpoint map shows an excellent correlation with the proposed arch both in width and trend of the axis and supports the conclusion that the arch is the main axis of active uplift on the Island. I also calculated geomorphic indices for 21 different watersheds of the island that include the Hypsometric Integral and a Stream Length Gradient Index that both assess tectonic activity based on stream and watershed behaviors. The Hack index and Hypsometric Integral show that the most active area of uplift is located in the central and north-central parts of the island that include about one half of the length of the proposed, east-west-trending arch. The two topographically-elevated ends of the arch in the western and eastern parts of the island are less active, according to the indices. Lower values in these areas may be influenced by higher amounts of precipitations in these areas.
Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*
Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro
2012-01-01
We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736
Celluclast 1.5L pretreatment enhanced aroma of palm kernels and oil after kernel roasting.
Zhang, Wencan; Zhao, Fangju; Yang, Tiankui; Zhao, Feifei; Liu, Shaoquan
2017-12-01
The aroma of palm kernel oil (PKO) affects its applications. Little information is available on how enzymatic modification of palm kernels (PK) affects PK and PKO aroma after kernel roasting. Celluclast (cellulase) pretreatment of PK resulted in a 2.4-fold increment in the concentration of soluble sugars, with glucose being increased by 6.0-fold. Higher levels of 1.7-, 1.8- and 1.9-fold of O-heterocyclic volatile compounds were found in the treated PK after roasting at 180 °C for 8, 14 and 20 min respectively relative to the corresponding control, with furfural, 5-methyl-2-furancarboxaldehyde, 2-furanmethanol and maltol in particularly higher amounts. Volatile differences between PKOs from control and treated PK were also found, though less obvious owing to the aqueous extraction process. Principal component analysis based on aroma-active compounds revealed that upon the proceeding of roasting, the differentiation between control and treated PK was enlarged while that of corresponding PKOs was less clear-cut. Celluclast pretreatment enabled the medium roasted PK to impart more nutty, roasty and caramelic odor and the corresponding PKO to impart more caramelic but less roasty and burnt notes. Celluclast pretreatment of PK followed by roasting may be a promising new way of improving PKO aroma. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.
2016-01-01
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287
Lin, Yuanqing; Jin, Wenhui; Wang, Jindan; Cai, Zhengwen; Wu, Shuyu; Zhang, Guangya
2018-08-01
We generated a bifunctional enzyme chimera containing the xylanase and lichenase coupled with SpyTag between them. Meanwhile, we generated another chimera containing SpyCatcher and elastin-like polypeptides (ELPs). As ELPs could bond to the xylanase-lichenase chimera through SpyTag/SpyCatcher spontaneous reaction in mild condition, which would lead to the formation of a 3-arm star multifunctional chimera. We purified the xylanase-lichenase by the non-chromatographic purification tag of ELPs. Interestingly, 57.5% of the xylanase and 47.2% of the lichenase in chimera self-assembled into insoluble active particles during the process of purification, which could serve as immobilized bifunctional enzymes. Notably, the immobilized chimera xylanase-lichenase showed a remarkable stability even after 10 reaction cycles, which retained around 56% (lichenase) and 44% (xylanase) of their initial activities, respectively. Moreover, the enhanced thermostability of the immobilized enzymes was also achieved. After incubating at 60 °C for 60 min, the residual activity of the immobilized lichenase was 35%, while the free one was only 24%. Unexpectedly, the free xylanase almost lost its activity when incubated at 55 °C for 60 min, whereas the immobilized xylanase retained 10% of its activity. However, the catalytic efficiency (k cat /K m ) of the free xylanase was 1.7-fold higher than the immobilized one, while the free lichenase was 1.1-fold higher than the immobilized one. This is among the first known reports that two enzymes are purified and immobilized in one-step. This novel strategy is easy to scale up and may meet the demands of biofuel industry. It would have great potentials in other biotechnological fields, such as the multifunctional biomaterials systems. Copyright © 2018 Elsevier Inc. All rights reserved.
Stability of Curcuma longa rhizome lectin: Role of N-linked glycosylation.
Biswas, Himadri; Chattopadhyaya, Rajagopal
2016-04-01
Curcuma longa rhizome lectin, a mannose-binding protein of non-seed portions of turmeric, is known to have antifungal, antibacterial and α-glucosidase inhibitory activities. We studied the role of complex-type glycans attached to asparagine (Asn) 66 and Asn 110 to elucidate the role of carbohydrates in lectin activity and stability. Apart from the native lectin, the characteristics of a deglycosylated Escherichia coli expressed lectin, high-mannose oligosaccharides at both asparagines and its glycosylation mutants N66Q and N110Q expressed in Pichia pastoris, were compared to understand the relationship between glycosylation and activity. Far UV circular dichroism (CD) spectra, fluorescence emission maximum, hemagglutination assay show no change in secondary or tertiary structures or sugar-binding properties between wild-type and aforementioned recombinant lectins under physiological pH. But reduced agglutination activity and loss of tertiary structure are observed in the acidic pH range for the deglycosylated and the N110Q protein. In thermal and guanidine hydrochloride (GdnCl)-induced unfolding, the wild-type and high-mannose lectins possess higher stability compared with the deglycosylated recombinant lectin and both mutants, as measured by a higher Tm of denaturation or a greater free energy change, respectively. Reversibility experiments after thermal denaturation reveal that deglycosylated proteins tend to aggregate during thermal inactivation but the wild type shows a much greater recovery to the native state upon refolding. These results suggest that N-glycosylation in turmeric lectin is important for the maintenance of its proper folding upon changes in pH, and that the oligosaccharides help in maintaining the active conformation and prevent aggregation in unfolded or partially folded molecules. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Van Hecke, Thomas; Jakobsen, Louise M A; Vossen, Els; Guéraud, Françoise; De Vos, Filip; Pierre, Fabrice; Bertram, Hanne C S; De Smet, Stefaan
2016-09-14
A high consumption of red and/or processed meat is associated with a higher risk to develop several chronic diseases in which oxidative stress, trimethylamine-N-oxide (TMAO) and/or inflammation are involved. We aimed to elucidate the effect of white (chicken) vs. red (beef) meat consumption in a low vs. high dietary fat context (2 × 2 factorial design) on oxidative stress, TMAO and inflammation in Sprague-Dawley rats. Higher malondialdehyde (MDA) concentrations were found in gastrointestinal contents (up to 96% higher) and colonic tissues (+8.8%) of rats fed the beef diets (all P < 0.05). The lean beef diet resulted in lower blood glutathione, higher urinary excretion of the major 4-hydroxy-nonenal metabolite, and higher plasma C-reactive protein, compared to the other dietary treatments (all P < 0.05). Rats on the fat beef diet had higher renal MDA (+24.4% compared to all other diets) and heart MDA (+12.9% compared to lean chicken) and lower liver vitamin E (-26.2% compared to lean chicken) (all P < 0.05). Rats on the fat diets had lower plasma vitamin E (-23.8%), lower brain MDA (-6.8%) and higher plasma superoxide dismutase activity (+38.6%), higher blood glutathione (+16.9%) (all P < 0.05) and tendency to higher ventral prostate MDA (+14.5%, P = 0.078) and prostate weight (+18.9%, P = 0.073), compared to rats on the lean diets. Consumption of the beef diets resulted in higher urinary trimethylamine (4.5-fold) and TMAO (3.7-fold) concentrations (P < 0.001), compared to the chicken diets. In conclusion, consumption of a high beef diet may stimulate gastrointestinal and/or systemic oxidative stress, TMAO formation and inflammation, depending on the dietary fat content and composition.
Khersonsky, Olga; Röthlisberger, Daniela; Wollacott, Andrew M.; Murphy, Paul; Dym, Orly; Albeck, Shira; Kiss, Gert; Houk, K. N.; Baker, David; Tawfik, Dan S.
2013-01-01
Although de novo computational enzyme design has been shown to be feasible, the field is still in its infancy: the kinetic parameters of designed enzymes are still orders of magnitude lower than those of naturally occurring ones. Nonetheless, designed enzymes can be improved by directed evolution, as recently exemplified for the designed Kemp eliminase KE07. Random mutagenesis and screening resulted in variants with >200-fold higher catalytic efficiency, and provided insights about features missing in the designed enzyme. Here we describe the optimization of KE70, another designed Kemp eliminase. Amino acid substitutions predicted to improve catalysis in design calculations involving extensive backbone sampling were individually tested. Those proven beneficial were combinatorially incorporated into the originally designed KE70 along with random mutations, and the resulting libraries were screened for improved eliminase activity. Nine rounds of mutation and selection resulted in >400-fold improvement in the catalytic efficiency of the original KE70 design, reflected in both higher kcat and lower KM values, with the best variants exhibiting kcat/KM values of >5x104 s−1M−1. The optimized KE70 variants were characterized structurally and biochemically providing insights into the origins of the improvements in catalysis. Three primary contributions were identified: first, the reshaping of the active site cavity to achieve tighter substrate binding; second, the fine-tuning of the electrostatics around the catalytic His-Asp dyad; and third, stabilization of the active-site dyad in a conformation optimal for catalysis. PMID:21277311
Sagare, Abhay P.; Bell, Robert D.; Srivastava, Alaka; Sengillo, Jesse D.; Singh, Itender; Nishida, Yoichiro; Chow, Nienwen; Zlokovic, Berislav V.
2013-01-01
Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy. PMID:23580652
NASA Astrophysics Data System (ADS)
Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul
2016-03-01
Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00346j
Wong, Janice Siu Chong; Chu, Wai Kit; Li, Benjamin Fuk-Loi; Pang, Chi-Pui; Chong, Kelvin Kam-Lung
2018-04-17
Thyroid-associated orbitopathy (TAO) causes inflammatory fibroproliferation of periocular connective tissues. We compared adipose tissue-derived stem/stromal cells (ADSCs) from three adipose depots of each patient with TAO on mesenchymal, myofibrogenic, adipogenic properties and associated hyaluronan (HA) synthesis. ADSCs were generated from periocular (eyelid, orbital) and subcutaneous (abdominal) adipose tissues of three patients with TAO. Mesenchymal markers were characterised by reverse transcription-PCR and immunofluorescent staining. A 3-week adipogenic induction was evaluated by Nile red staining and quantitative PCR (qPCR) of peroxisome proliferator-activated receptor (PPARγ), adiponectin and hyaluronan synthase (HAS)-2. A 7-day myofibrogenic induction was assayed by immunofluorescent staining and qPCR of α-smooth muscle actin (α-SMA). ADSCs from all depots expressed similar levels of mesenchymal markers CD44, CD90 and CD105 (p=0.288, p=0.43 and p=0.837, respectively). After adipogenic induction, intracellular lipid increased for more than 32% and PPARγ mRNA showed more than twofold increase from all three depots. However, adiponectin and HAS-2 mRNA levels were significantly higher in the eyelid and orbital ADSCs than those from the subcutaneous ADSCs after induction (2.4×10 7 , 3.9×10 6 folds vs below detection limit; 63.3-fold, 26.1-fold, vs 33% reduction, respectively; all p=0.002). Significantly more myofibroblasts and higher mRNA level of α-SMA were obtained from the orbital and eyelid compared with the subcutaneous ADSCs during myofibrogenic induction (80.2%, 70.6% vs 29.3%; 30.2-fold, 24.2-fold vs 1.7-fold, respectively; all p=0.002). ADSCs from different adipose depots of the same donors exhibited similar mesenchymal phenotypes but differed significantly in adipogenic, myofibrogenic potentials and associated HA synthesis. These depot-specific characteristics of ADSCs may contribute to site-specific adipose tissue involvement in TAO. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yao; Zhao, Hong-Ye; Jiang, Du
The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT asmore » a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.« less
Semevolos, Stacy A; Youngblood, Cori D; Grissom, Stephanie K; Gorman, M Elena; Larson, Maureen K
2016-11-01
OBJECTIVE To evaluate 2 processing methods (commercial kit vs conical tube centrifugation) for preparing platelet rich plasma (PRP) for use in llamas and alpacas. SAMPLES Blood samples (30 mL each) aseptically collected from 6 healthy llamas and 6 healthy alpacas. PROCEDURES PRP was prepared from blood samples by use of a commercial kit and by double-step conical tube centrifugation. A CBC was performed for blood and PRP samples. Platelets in PRP samples were activated by means of a freeze-thaw method with or without 23mM CaCl 2 , and concentrations of platelet-derived growth factor-BB and transforming growth factor-β 1 were measured. Values were compared between processing methods and camelid species. RESULTS Blood CBC values for llamas and alpacas were similar. The commercial kit yielded a significantly greater degree of platelet enrichment (mean increase, 8.5 fold vs 2.8 fold) and WBC enrichment (mean increase, 3.7 fold vs 1.9 fold) than did conical tube centrifugation. Llamas had a significantly greater degree of platelet enrichment than alpacas by either processing method. No difference in WBC enrichment was identified between species. Concentrations of both growth factors were significantly greater in PRP samples obtained by use of the commercial kit versus those obtained by conical tube centrifugation. CONCLUSIONS AND CLINICAL RELEVANCE For blood samples from camelids, the commercial kit yielded a PRP product with a higher platelet and WBC concentration than achieved by conical tube centrifugation. Optimal PRP platelet and WBC concentrations for various applications need to be determined for llamas and alpacas.
Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S
1997-10-01
The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.
Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji
2016-01-01
We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.
Zhang, Yueliang; Han, Yangchun; Yang, Qiong; Wang, Lihua; He, Peng; Liu, Zewen; Li, Zhong; Guo, Huifang; Fang, Jichao
2018-04-01
Cycloxaprid is a new oxabridged cis-configuration neonicotinoid insecticide, the resistance development potential and underlying resistance mechanism of which were investigated in the small brown planthopper, Laodelphax striatellus (Fallén), an important agricultural pest of rice. A cycloxaprid-resistant strain (YN-CPD) only achieved 10-fold higher resistance, in contrast to 106-fold higher resistance to buprofezin and 332-fold higher resistance to chlorpyrifos achieved after exposure to similar selection pressure, and the cycloxaprid selected line showed no cross-resistance to the buprofezin and chlorpyrifos-selected resistance strains. Moreover, we identified 10 nicotinic acetylcholine receptor (nAChR) subunits from the transcriptome of L. striatellus, and six segments had open reading frames (ORFs). While we did not find mutations in the nAChR genes of L. striatellus, subunits Lsα1 and Lsβ1 exhibited, respectively, 9.60-fold and 3.36-fold higher expression in the resistant strain, while Lsα8 exhibited 0.44-fold lower expression. Suppression of Lsα1 through ingestion of dsLsα1 led to an increase in susceptibility to cycloxaprid. The findings indicate that resistance to cycloxaprid develops slowly compared with resistance to other chemicals and without cross-resistance to chlorpyrifos or buprofezin; over-expressed Lsα1 is associated with low cycloxaprid resistance levels, but the importance of over-expressed Lsβ1 and reduced expression of Lsα8 could not be excluded. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Meghraoui, Mustapha; Maouche, Said; Timoulali, Youssef; Bouhadad, Youcef; Bouaziz, Samir
2013-04-01
Large earthquakes in the Atlas Mountains of North Africa are often generated on thrust or reverse faults. For inland faults, surface ruptures and long-term active tectonics appear as a thrust escarpment and fold-related faulting visible in the field and using remote sensing images, or measured using space-borne geodesy (GPS or INSAR). For coastal faults, major uplifts of late Quaternary marine terraces and folding with steplike morphology are exposed indicating the incremental development of coastal active deformation. We have investigated the similarities and differences between different active fault-related folding along the Africa - Eurasia convergent plate boundary. These active structures are seismogenic and the striking case studies are the 1960 Agadir (Mw 5.9), the 1954 Orleansville (Mw 6.7), the 1980 El Asnam (Mw 7.3), the 1992 Gafsa (Mw 5.3), the 1999 Ain Temouchent (Mw 6.0), and the 2003 Zemmouri (Mw 6.8) earthquakes. From paleoseismic investigations the El Asnam active fold shows 0.6 to 1.0 mm/yr uplift rate. West of Algiers on the Sahel anticline, the levelling of uplifted successive coastal benches and notches document the incremental folding uplift with ~ 0.84 - 1.2 mm/yr uplift rate in the last 120-140 ka. The relatively fast folding growth during late Pleistocene and Holocene in the Atlas Mountains attests for the significance of earthquake activity and the importance of convergent movements between Africa and Eurasia in the Western Mediterranean. This work is prepared in the framework of the UNESCO (SIDA) - IGCP Project 601 "Seismotectonics and Seismic Hazards in Africa".
How Fast is Collapse of Proteins During Folding?
NASA Astrophysics Data System (ADS)
Chahine, J.; Onuchic, J. N.; Socci, N. D.
1998-03-01
Recent experiments in fast folding proteins are now starting to address the question of how fast is collapse relative to the total folding time. Using minimalist models, we are able to investigate the way in which different scenarios of folding can arise depending on the interplay between the collapse order parameter and the order parameter sensitive to specific tertiary contacts. Most of our earlier studies have focused on the limit that collapse is very fast compared to the total folding time. In this work we focus on the opposite limit, i.e., at the folding temperature, collapse and folding occurs simultaneously. The folding mechanism becomes very different in this limit. Particularly, the non-specific collapse transition, that occurs at temperatures higher than the folding temperature for the fast collapse limit, now occurs between the folding and the glass temperature. We show how this transition can be identified and its consequences for the folding kinetics.
Puri, Sarita; Chaudhuri, Tapan K
2017-03-01
The conformation and thermodynamic stability of monomeric GroEL were studied by CD and fluorescence spectroscopy. GroEL denaturation with urea and dilution in buffer leads to formation of a folded GroEL monomer. The monomeric nature of this protein was verified by size-exclusion chromatography and native PAGE. It has a well-defined secondary and tertiary structure, folding activity (prevention of aggregation) for substrate protein and is resistant to proteolysis. Being a properly folded and reversibly refoldable, monomeric GroEL is amenable for the study of thermodynamic stability by unfolding transition methods. We present the equilibrium unfolding of monomeric GroEL as studied by urea and heat mediated unfolding processes. The urea mediated unfolding shows two transitions and a single transition in the heat mediated unfolding process. In the case of thermal unfolding, some residual structure unfolds at a higher temperature (70-75°C). The process of folding/unfolding is reversible in both cases. Analysis of folding/unfolding data provides a measure of ΔG NU H 2 O , T m , ΔH van and ΔS van of monomeric GroEL. The thermodynamic stability parameter ΔG NU H 2 O is similar with both CD and intrinsic fluorescence i.e. 7.10±1.0kcal/mol. The calculated T m , ΔH van and ΔS van from the thermal unfolding transition is 46±0.5°C, 43.3±0.1kcal/mol and 143.9±0.1cal/mol/k respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
The synthesis of acetylcholine by plants.
Smallman, B N; Maneckjee, A
1981-01-01
Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms. PMID:6796060
Lavado, Ramon; Schlenk, Daniel
2011-01-17
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophosphate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, (chlorpyrifos, parathion and fenthion), microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-dependent cleavage of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. Copyright © 2010 Elsevier B.V. All rights reserved.
Lavado, Ramon
2010-01-01
Rainbow trout often serve as a surrogate species evaluating xenobiotic toxicity in cold-water species including other salmonids of the same genus, which are listed as threatened or endangered. Biotransformation tends to show species-specific patterns that influence susceptibility to xenobiotic toxicity, particularly organophoshpate insecticides (OPs). To evaluate the contribution of biotransformation in the mechanism of toxicity of three organophosphate (phosphorothionate) insecticides, chlorpyrifos, parathion and fenthion, microsomal bioactivation and detoxification pathways were measured in gills, liver and olfactory tissues in juvenile rainbow trout (Oncorhynchus mykiss) and compared to juvenile coho salmon (Oncorhynchus kisutch). Consistent with species differences in acute toxicity, significantly higher chlorpyrifos bioactivation was found in liver microsomes of rainbow trout (up to 2-fold) when compared with coho salmon. Although bioactivation to the oxon was observed, the catalytic efficiency towards chlorpyrifos dearylation (detoxification) was significantly higher in liver for both species (1.82 and 0.79 for trout and salmon, respectively) when compared to desulfuration (bioactivation). Bioactivation of parathion to paraoxon was significantly higher (up to 2.2-fold) than detoxification to p-nitrophenol in all tissues of both species with rates of conversion in rainbow trout, again significantly higher than coho salmon. Production of fenoxon and fenthion sulfoxides from fenthion was detected only in liver and gills of both species with activities in rainbow trout significantly higher than coho salmon. NADPH-Dependent hydrolysis of fenthion was observed in all tissues, and was the only activity detected in olfactory tissues. These results indicate rainbow trout are more sensitive than coho salmon to the acute toxicity of OP pesticides because trout have higher catalytic rates of oxon formation. Thus, rainbow trout may serve as a conservative surrogate species for the evaluation of OP pesticides in coho salmon. PMID:20947181
Kraft, John C; McConnachie, Lisa A; Koehn, Josefin; Kinman, Loren; Collins, Carol; Shen, Danny D; Collier, Ann C; Ho, Rodney J Y
2017-03-27
The aim of the present study was to determine whether a combination of anti-HIV drugs - tenofovir (TFV), lopinavir (LPV) and ritonavir (RTV) - in a lipid-stabilized nanosuspension (called TLC-ART101) could enhance and sustain intracellular drug levels and exposures in lymph node and blood cells above those in plasma. Four macaques were given a single dose of TLC-ART101 subcutaneously. Drug concentrations in plasma and mononuclear cells of the blood (PBMCs) and lymph nodes (LNMCs) were analysed using a validated combination LC-MS/MS assay. For the two active drugs (TFV, LPV), plasma and PBMC intracellular drug levels persisted for over 2 weeks; PBMC drug exposures were three- to four-fold higher than those in plasma. Apparent terminal half-lives (t1/2) of TFV and LPV were 65.3 and 476.9 h in plasma, and 169.1 and 151.2 h in PBMCs. At 24 and 192 h, TFV and LPV drug levels in LNMCs were up to 79-fold higher than those in PBMCs. Analysis of PBMC intracellular TFV and its active metabolite TFV-diphosphate (TFV-DP) indicated that intracellular exposures of total TFV and TFV-DP were markedly higher and persisted longer than in humans and macaques dosed with oral TFV prodrugs, tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF). A simple, scalable three-drug combination, lipid-stabilized nanosuspension exhibited persistent drug levels in cells of lymph nodes and the blood (HIV host cells) and in plasma. With appropriate dose adjustment, TLC-ART101 may be a useful HIV treatment with a potential to impact residual virus in lymph nodes.
Prediction of mode of death in heart failure: the Seattle Heart Failure Model.
Mozaffarian, Dariush; Anker, Stefan D; Anand, Inder; Linker, David T; Sullivan, Mark D; Cleland, John G F; Carson, Peter E; Maggioni, Aldo P; Mann, Douglas L; Pitt, Bertram; Poole-Wilson, Philip A; Levy, Wayne C
2007-07-24
Prognosis and mode of death in heart failure patients are highly variable in that some patients die suddenly (often from ventricular arrhythmia) and others die of progressive failure of cardiac function (pump failure). Prediction of mode of death may facilitate decisions about specific medications or devices. We used the Seattle Heart Failure Model (SHFM), a validated prediction model for total mortality in heart failure, to assess the mode of death in 10,538 ambulatory patients with New York Heart Association class II to IV heart failure and predominantly systolic dysfunction enrolled in 6 randomized trials or registries. During 16,735 person-years of follow-up, 2014 deaths occurred, which included 1014 sudden deaths and 684 pump-failure deaths. Compared with a SHFM score of 0, patients with a score of 1 had a 50% higher risk of sudden death, patients with a score of 2 had a nearly 3-fold higher risk, and patients with a score of 3 or 4 had a nearly 7-fold higher risk (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.68). Stratification of risk of pump-failure death was even more pronounced, with a 4-fold higher risk with a score of 1, a 15-fold higher risk with a score of 2, a 38-fold higher risk with a score of 3, and an 88-fold higher risk with a score of 4 (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.85). The proportion of deaths caused by sudden death versus pump-failure death decreased from a ratio of 7:1 with a SHFM score of 0 to a ratio of 1:2 with a SHFM score of 4 (P trend <0.001). The SHFM score provides information about the likely mode of death among ambulatory heart failure patients. Investigation is warranted to determine whether such information might predict responses to or cost-effectiveness of specific medications or devices in heart failure patients.
Predicting origami-inspired programmable self-folding of hydrogel trilayers
NASA Astrophysics Data System (ADS)
An, Ning; Li, Meie; Zhou, Jinxiong
2016-11-01
Imitating origami principles in active or programmable materials opens the door for development of origami-inspired self-folding structures for not only aesthetic but also functional purposes. A variety of programmable materials enabled self-folding structures have been demonstrated across various fields and scales. These folding structures have finite thickness and the mechanical properties of the active materials dictate the folding process. Yet formalizing the use of origami rules for use in computer modeling has been challenging, owing to the zero-thickness theory and the exclusion of mechanical properties in current models. Here, we describe a physics-based finite element simulation scheme to predict programmable self-folding of temperature-sensitive hydrogel trilayers. Patterning crease and assigning mountain or valley folds are highlighted for complex origami such as folding of the Randlett’s flapping bird and the crane. Our efforts enhance the understanding and facilitate the design of origami-inspired self-folding structures, broadening the realization and application of reconfigurable structures.
Mo, SangJoon; Lee, Sung-Kwon; Jin, Ying-Yu; Oh, Chung-Hun; Suh, Joo-Won
2013-04-01
FK506 production by a mutant strain (Streptomyces sp. RM7011) induced by N-methyl-N'-nitro-N-nitrosoguanidine and ultraviolet mutagenesis was improved by 11.63-fold (94.24 mg/l) compared to that of the wild-type strain. Among three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA, only expression of propionyl-CoA carboxylase (PCC) pathway led to a 1.75-fold and 2.5-fold increase in FK506 production and the methylmalonyl-CoA pool, respectively, compared to those of the RM7011 strain. Lipase activity of the high FK506 producer mutant increased in direct proportion to the increase in FK506 yield, from low detection level up to 43.1 U/ml (12.6-fold). The level of specific FK506 production and lipase activity was improved by enhancing the supply of lipase inducers. This improvement was approximately 1.88-fold (71.5 mg/g) with the supplementation of 5 mM Tween 80, which is the probable effective stimulator in lipase production, to the R2YE medium. When 5 mM vinyl propionate was added as a precursor for PCC pathway to R2YE medium, the specific production of FK506 increased approximately 1.9-fold (71.61 mg/g) compared to that under the non-supplemented condition. Moreover, in the presence of 5 mM Tween 80, the specific FK506 production was approximately 2.2-fold (157.44 mg/g) higher than that when only vinyl propionate was added to the R2YE medium. In particular, PCC expression in Streptomyces sp. RM7011 (RM7011/pSJ1003) together with vinyl propionate feeding resulted in an increase in the FK506 titer to as much as 1.6-fold (251.9 mg/g) compared with that in RM7011/pSE34 in R2YE medium with 5 mM Tween 80 supplementation, indicating that the vinyl propionate is more catabolized to propionate by stimulated lipase activity on Tween 80, that propionyl-CoA yielded from propionate generates methylmalonyl-CoA, and that the PCC pathway plays a key role in increasing the methylmalonyl-CoA pool for FK506 biosynthesis in RM7011 strain. Overall, these results show that a combined approach involving classical random mutation and metabolic engineering can be applied to supply the limiting factor for FK506 biosynthesis, and vinyl propionate could be successfully used as a precursor of important methylmalonyl-CoA building blocks.
Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin
2015-03-01
Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P < 0.05), PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.
Dey, Prabuddha; Mall, Nikunj; Chattopadhyay, Atrayee; Chakraborty, Monami; Maiti, Mrinal K.
2014-01-01
Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW) upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT) from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW) was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW) due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization. PMID:25375973
Repa, J J; Lund, E G; Horton, J D; Leitersdorf, E; Russell, D W; Dietschy, J M; Turley, S D
2000-12-15
Sterol 27-hydroxylase (CYP27) participates in the conversion of cholesterol to bile acids. We examined lipid metabolism in mice lacking the Cyp27 gene. On normal rodent chow, Cyp27(-/-) mice have 40% larger livers, 45% larger adrenals, 2-fold higher hepatic and plasma triacylglycerol concentrations, a 70% higher rate of hepatic fatty acid synthesis, and a 70% increase in the ratio of oleic to stearic acid in the liver versus Cyp27(+/+) controls. In Cyp27(-/-) mice, cholesterol 7alpha-hydroxylase activity is increased 5-fold, but bile acid synthesis and pool size are 47 and 27%, respectively, of those in Cyp27(+/+) mice. Intestinal cholesterol absorption decreases from 54 to 4% in knockout mice, while fecal neutral sterol excretion increases 2.5-fold. A compensatory 2.5-fold increase in whole body cholesterol synthesis occurs in Cyp27(-/-) mice, principally in liver, adrenal, small intestine, lung, and spleen. The mRNA for the cholesterogenic transcription factor sterol regulatory element-binding protein-2 (SREBP-2) and mRNAs for SREBP-2-regulated cholesterol biosynthetic genes are elevated in livers of mutant mice. In addition, the mRNAs encoding the lipogenic transcription factor SREBP-1 and SREBP-1-regulated monounsaturated fatty acid biosynthetic enzymes are also increased. Hepatic synthesis of fatty acids and accumulation of triacylglycerols increases in Cyp27(-/-) mice and is associated with hypertriglyceridemia. Cholic acid feeding reverses hepatomegaly and hypertriglyceridemia but not adrenomegaly in Cyp27(-/-) mice. These studies confirm the importance of CYP27 in bile acid synthesis and they reveal an unexpected function of the enzyme in triacylglycerol metabolism.
Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan
2008-11-01
Recent work has shown that trehalose can facilitate and inhibit protein folding, but little is known about the molecular basis of these effects. Molecular-level insights into how the osmolyte affects protein folding are of significance for the rational design of small molecular additives for enhancing or hindering the folding of proteins. To investigate the molecular mechanisms of the facilitation and inhibition effects of trehalose on protein folding, molecular dynamics (MD) simulation of a beta-hairpin peptide (Trp-Arg-Tyr-Tyr-Glu-Ser-Ser-Leu-Glu-Pro-Glu-Pro-Asp) in different trehalose concentrations (0-0.26 mol/L) is performed using an all-atom model. It is found that at a proper trehalose concentration (0.065 mol/L), the peptide folds faster than that in water, but it cannot fold to the beta-hairpin at higher trehalose concentrations. Free energy landscape analysis indicates the presence of three intermediate states in both pure water and in 0.065 mol/L trehalose, but the potential energy barriers in the folding pathway decrease greatly in 0.065 mol/L trehalose, so the peptide folding is facilitated. Moreover, at this trehalose concentration, there is a favorable balance between the peptide backbone hydrogen bonds (H-bonds) and the peptide-trehalose H-bonds, leading to the stabilization of the folded peptide. At higher trehalose concentrations, however, trehalose molecules cluster in the peptide region and interact with the peptide via many H-bonds that prevent the peptide from folding to its native structure. The energy landscape analysis indicates that the potential energy barriers increase so greatly that the peptide cannot overcome it, getting trapped in a local free energy basin. The work reported herein has elucidated the molecular mechanism of the peptide folding in the presence of trehalose.
Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K
2016-01-01
Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p < 0.05); while vibration induced FOXK2 (2.36 fold change; p < 0.05). Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05), but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05) while heat stress repressed PGC-1α (0.74 fold) and ANKRD1 genes (0.51 fold; p < 0.05). These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.
NASA Astrophysics Data System (ADS)
Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.
2016-12-01
Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions. Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen conditions, but inverted in gram positives. The results confirm that catabolic and anabolic processes continue under frozen conditions, but, mechanisms differ with temperature. This information is not only useful in modelling C dynamics in permafrost, but also in food industry where shelf-life depends on frozen conditions.
Panwar, Priyankar; Dubey, Ashutosh; Verma, A K
2016-06-01
Five elite varieties of barnyard (Echinochloa frumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, α-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of biological functions were analyzed and found that barnyard millet contained the higher amount of polyphenols, tannins and ortho-dihydroxy phenol content compared to finger millet. Among antinutitional compounds barnyard millet contained lower phytic acid content compare to finger millet whereas no significant difference in trypsin inhibition activity of barnyard millet and finger millet varieties were found. Barnyard millet contained higher acid phosphatase, α-galactosidase and α-amylase inhibitor activity compared to finger millet. Finger millet seeds contained about 10-13 folds higher calcium content and double amount of manganese content in comparison to barnyard millet seeds. Present study suggests that barnyard millet varieties studied under present investigation were found nutritionally superior compared to finger millet varieties.
APPALACHIAN FOLDS, LATERAL RAMPS, AND BASEMENT FAULTS: A MODERN ENGINEERING PROBLEM?
Pohn, Howard A.
1987-01-01
Field studies and analysis of radar data have shown that cross-strike faulting in the central and southern Appalachians has affected geologic structures at the surface. These basement faults appear to have been active through much of geologic time. Indeed, more than 45 percent of modern earthquakes occur along these narrow zones here termed 'lateral ramps. ' Because of this seismic activity, these lateral ramps are likely to be zones that are prone to slope failure. The engineer should be aware of the presence of such zones and the higher landslide potential along them.
Actomyosin-based tissue folding requires a multicellular myosin gradient
Miller, Pearson W.; Chanet, Soline; Stoop, Norbert; Dunkel, Jörn
2017-01-01
Tissue folding promotes three-dimensional (3D) form during development. In many cases, folding is associated with myosin accumulation at the apical surface of epithelial cells, as seen in the vertebrate neural tube and the Drosophila ventral furrow. This type of folding is characterized by constriction of apical cell surfaces, and the resulting cell shape change is thought to cause tissue folding. Here, we use quantitative microscopy to measure the pattern of transcription, signaling, myosin activation and cell shape in the Drosophila mesoderm. We found that cells within the ventral domain accumulate different amounts of active apical non-muscle myosin 2 depending on the distance from the ventral midline. This gradient in active myosin depends on a newly quantified gradient in upstream signaling proteins. A 3D continuum model of the embryo with induced contractility demonstrates that contractility gradients, but not contractility per se, promote changes to surface curvature and folding. As predicted by the model, experimental broadening of the myosin domain in vivo disrupts tissue curvature where myosin is uniform. Our data argue that apical contractility gradients are important for tissue folding. PMID:28432215
Chern, M K; Wu, T C; Hsieh, C H; Chou, C C; Liu, L F; Kuan, I C; Yeh, Y H; Hsiao, C D; Tam, M F
2000-07-28
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested. We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively. Copyright 2000 Academic Press.
Hydrogenase in N/sub 2/-fixing cyanobacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tel-or, E.; Luijk, L.W.; Packer, L.
Hydrogenase has been examined in two species of aerobically grown cyanobacteria (blue-green algae), Nostoc muscorum and Anabaena cylindrica, with respect to H/sub 2/ production and consumption. These activities are found both in heterocysts and in vegetative cell preparations, but the characteristics of the enzyme in the two cell types differ. H/sub 2/ production requires an artificial electron mediator such as methylviologen, and it can be driven by artificial electron donors with and without light and by a wide variety of organic substrates for which enzymes exist for NADP and methylviologen reduction. This activity is similar in heterocysts and vegetative cellsmore » of both species and is mainly found in the soluble rather than membrane fraction. H/sub 2/ consumption, however, occurs without added mediators or acceptors at 10-fold higher rates than H/sub 2/ production and 10-fold greater activity in heterocysts. H/sub 2/ consumption activity is membrane bound, has a high affinity for H/sub 2/ (K/sub m/ = 50 ..mu..M), and is augmented by light and low concentrations of oxygen. This activity of hydrogenase is mainly found in heterocysts and is poised unidirectionally toward H/sub 2/ consumption. Since nitrogenase activity is localized in heterocysts, it suggests that H/sub 2/ leaked by nitrogenase during N/sub 2/ fixation can be recycled by hydrogenase.« less
Xia, Zhen Wei; Cui, Wen Jun; Zhou, Wen Pu; Zhang, Xue Hong; Shen, Qing Xiang; Li, Yun Zhu; Yu, Shan Chang
2004-10-01
Human Heme Oxygenase-1 (hHO-1) is the rate-limiting enzyme in the catabolism reaction of heme, which directly regulates the concentration of bilirubin in human body. The mutant structure was simulated by Swiss-pdbviewer procedure, which showed that the structure of active pocket was changed distinctly after Ala25 substituted for His25 in active domain, but the mutated enzyme still binded with heme. On the basis of the results, the expression vectors, pBHO-1 and pBHO-1(M), were constructed, induced by IPTG and expressed in E. coli DH5alpha strain. The expression products were purified with 30%-60% saturation (NH4)2SO4 and Q-Sepharose Fast Flow column chromatography. The concentration of hHO-1 in 30%-60% saturation (NH4)2SO4 components and in fractions through twice column chromatography was 3.6-fold and 30-fold higher than that in initial product, respectively. The activity of wild hHO-1 (whHO-1) and mutant hHO-1 (deltahHO-1) showed that the activity of deltahHO-1 was reduced 91.21% compared with that of whHO-1. The study shows that His25 is of importance for the mechanism of hHO-1, and provides the possibility for effectively regulating the activity to exert biological function.
Gutefeldt, Kerstin; Hedman, Christina A; Thyberg, Ingrid S M; Bachrach-Lindström, Margareta; Arnqvist, Hans J; Spångeus, Anna
2017-11-05
To investigate the prevalence, activity limitations and potential risk factors of upper extremity impairments in type 1 diabetes in comparison to controls. In a cross-sectional population-based study in the southeast of Sweden, patients with type 1 diabetes <35 years at onset, duration ≥20 years, <67 years old and matched controls were invited to answer a questionnaire on upper extremity impairments and activity limitations and to take blood samples. Seven hundred and seventy-three patients (ages 50 ± 10 years, diabetes duration 35 ± 10 years) and 708 controls (ages 54 ± 9 years) were included. Shoulder pain and stiffness, hand paraesthesia and finger impairments were common in patients with a prevalence of 28-48%, which was 2-4-folds higher than in controls. Compared to controls, the patients had more bilateral impairments, often had coexistence of several upper extremity impairments, and in the presence of impairments, reported more pronounced activity limitations. Female gender (1.72 (1.066-2.272), p = 0.014), longer duration (1.046 (1.015-1.077), p = 0.003), higher body mass index (1.08 (1.017-1.147), p = 0.013) and HbA1c (1.029 (1.008-1.05), p = 0.007) were associated with upper extremity impairments. Compared to controls, patients with type 1 diabetes have a high prevalence of upper extremity impairments, often bilateral, which are strongly associated with activity limitations. Recognising these in clinical practise is crucial, and improved preventative, therapeutic and rehabilitative interventions are needed. Implications for rehabilitation Upper extremity impairments affecting the shoulder, hand and fingers are common in patients with type 1 diabetes, the prevalence being 2-4-fold higher compared to non-diabetic persons. Patients with diabetes type 1 with upper extremity impairments have more pronounced limitations in daily activities compared to controls with similar impairments. Recognising upper extremity impairments and activity limitations are important and improved preventive, therapeutic and rehabilitation methods are needed.
Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, JaeSeon; Nam, PilWon; Lee, YongChan
2009-04-24
Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fabmore » fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.« less
Dey, Tapati Bhanja; Banerjee, Rintu
2014-01-01
Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T(660 nm) = 97.0%) of juice was attained after 2 h of incubation at 50 °C in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.
Richter, Ute; Rothe, Grit; Fabian, Anne-Katrin; Rahfeld, Bettina; Dräger, Birgit
2005-02-01
The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In this study, two tropinone reductases forming a branching point in the tropane alkaloid biosynthesis were overexpressed in A. belladonna. Root culture lines with strong overexpression of the transcripts contained more enzyme activity of the respective reductase and enhanced enzyme products, tropine or pseudotropine. High pseudotropine led to an increased accumulation of calystegines in the roots. Strong expression of the tropine-forming reductase was accompanied by 3-fold more hyoscyamine and 5-fold more scopolamine compared with control roots, and calystegine levels were decreased by 30-90% of control. In some of the transformed root cultures, an increase of total tropane alkaloids was observed. Thus, transformation with cDNA of tropinone reductases successfully altered the ratio of tropine-derived alkaloids versus pseudotropine-derived alkaloids.
Dey, Tapati Bhanja; Banerjee, Rintu
2014-01-01
Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T660nm = 97.0%) of juice was attained after 2 h of incubation at 50 °C in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property. PMID:24948919
Yasuda, Kazuto; Ranade, Aarati; Venkataramanan, Raman; Strom, Stephen; Chupka, Jonathan; Ekins, Sean; Schuetz, Erin; Bachmann, Kenneth
2015-01-01
We have investigated several in silico and in vitro methods in order to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate PXR and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative PCR, immunoblotting and testosterone 6β-hydroxylation in primary human hepatocytes and LS180 cells. We found that in HepG2 cells CYP3A4 transcription was activated strongly (>10-fold) by rifampin and troleandomycin; moderately (> 7-fold) by dicloxacillin, tetracycline, clindamycin, griseofulvin and (> 4-fold) by erythromycin; weakly (>2.4-fold) by nafcillin, cefaclor and sulfisoxazole; and (>2-fold) by cefadroxil and penicillin V. Similar though not identical results were obtained in DPX-2 cells. CYP3A4 mRNA and protein expression were induced by these antibiotics to differing extents in both liver and intestinal cells. CYP3A4 activity was significantly increased by rifampin (9.7-fold), nafcillin and dicloxacillin (5.9-fold), and weakly induced (2-fold) by tetracycline, sufisoxazole, troleandomycin and clindamycin. Multiple pharmacophore models and docking indicated a good fit for dicloxacillin and nafcillin in PXR. These results suggest that in vitro and in silico methods can help to prioritize and identify antibiotics that are most likely to reduce exposures of medications (such as oral contraceptive agents) which interact with enzymes and transporters regulated by PXR. In summary, nafcillin, dicloxacillin, cephradine, tetracycline, sulfixoxazole, erythromycin, clindamycin, and griseofulvin exhibit a clear propensity to induce CYP3A4 and warrant further clinical investigation. PMID:18505790
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.
Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB
Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena
2009-01-01
Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313
Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming
2010-01-01
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (Vmax/Km), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1’-hydroxylase activities (R² = 0.98; p < 0.0001) and CYP2D6 contents (R² = 0.77; p = 0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20 mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pre-treatment of harmaline (5 mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2 mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. PMID:20206139
Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming
2010-07-01
5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. (c) 2010 Elsevier Inc. All rights reserved.
The work of titin protein folding as a major driver in muscle contraction
Eckels, Edward C.; Tapia-Rojo, Rafael; Rivas-Pardo, Jamie Andrés; Fernández, Julio M.
2018-01-01
Single molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin Ig domains are capable of folding against a pulling force, generating mechanical work which exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin crossbridges reduces the force on titin causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4–15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil, and occurs at forces which exceed the maximum stalling force of single myosin motors. Thus titin operates like a mechanical battery storing elastic energy efficiently by unfolding Ig domains, and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. PMID:29433413
Pathiratne, A; Chandrasekera, L W H U; Pathiratne, K A S
2009-09-01
The present study reports the first analysis of water pollutants in Sri Lankan waters using a suite of biomarkers in Nile tilapia (Oreochromis niloticus) residing in Bolgoda Lake which receives urban, industrial and domestic wastes from multiple sources. The fish were collected from the lake in the dry period (April 2005) and wet periods (September 2005, October 2006) and the levels of biomarkers viz. hepatic ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST), metallothioneins, biliary fluorescent aromatic compounds, brain and muscle cholinesterases (ChE) were compared with those of the laboratory reared control fish and the fish obtained from a less polluted water body, Bathalagoda reservoir (reference site). The results revealed that biomarker levels of the fish collected from the reference site were not significantly different from the controls. Hepatic EROD and GST activities in fish from Bolgoda Lake were induced 4.2-16.6 folds and 1.4-3.3 folds respectively compared with the control fish. Analysis of bile in the lake fish revealed recent uptake of naphthalene, pyrene and benzo(a)pyrene type polycyclic aromatic hydrocarbons (PAHs). The induction of EROD activities in feral fish reflects the exposure of fish to aryl hydrocarbon receptor agonists including PAHs present as pollutants in the Bolgoda Lake. Cholinesterase activity in the fish inhabiting one sampling site of Bolgoda Lake was lower (22-40% inhibition) than the activity measured in the control fish indicating the presence of anticholinesterase pollutants in the area. Hepatic metallothionein levels in the lake fish were higher (1.9-3.2 folds) in comparison to the controls indicating metal exposure. The results support the potential use of these biomarkers in Nile tilapia in assessing pollution in tropical water bodies.
Ganesh, Sangita; Bristow, Laura A; Larsen, Morten; Sarode, Neha; Thamdrup, Bo; Stewart, Frank J
2015-12-01
The genetic composition of marine microbial communities varies at the microscale between particle-associated (PA; >1.6 μm) and free-living (FL; 0.2-1.6 μm) niches. It remains unclear, however, how metabolic activities differ between PA and FL fractions. We combined rate measurements with metatranscriptomics to quantify PA and FL microbial activity in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific, focusing on dissimilatory processes of the nitrogen (N) cycle. Bacterial gene counts were 8- to 15-fold higher in the FL compared with the PA fraction. However, rates of all measured N cycle processes, excluding ammonia oxidation, declined significantly following particle (>1.6 μm) removal. Without particles, rates of nitrate reduction to nitrite (1.5-9.4nMNd(-1)) fell to zero and N2 production by denitrification (0.5-1.7nMNd(-1)) and anammox (0.3-1.9nMNd(-1)) declined by 53-85%. The proportional representation of major microbial taxa and N cycle gene transcripts in metatranscriptomes followed fraction-specific trends. Transcripts encoding nitrate reductase were uniform among PA and FL fractions, whereas anammox-associated transcripts were proportionately enriched up to 15-fold in the FL fraction. In contrast, transcripts encoding enzymes for N2O and N2 production by denitrification were enriched up to 28-fold in PA samples. These patterns suggest that the majority of N cycle activity, excluding N2O and N2 production by denitrification, is confined to a FL majority that is critically dependent on access to particles, likely as a source of organic carbon and inorganic N. Variable particle distributions may drive heterogeneity in N cycle activity and gene expression in OMZs.
Ganesh, Sangita; Bristow, Laura A; Larsen, Morten; Sarode, Neha; Thamdrup, Bo; Stewart, Frank J
2015-01-01
The genetic composition of marine microbial communities varies at the microscale between particle-associated (PA; >1.6 μm) and free-living (FL; 0.2–1.6 μm) niches. It remains unclear, however, how metabolic activities differ between PA and FL fractions. We combined rate measurements with metatranscriptomics to quantify PA and FL microbial activity in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific, focusing on dissimilatory processes of the nitrogen (N) cycle. Bacterial gene counts were 8- to 15-fold higher in the FL compared with the PA fraction. However, rates of all measured N cycle processes, excluding ammonia oxidation, declined significantly following particle (>1.6 μm) removal. Without particles, rates of nitrate reduction to nitrite (1.5–9.4nMNd−1) fell to zero and N2 production by denitrification (0.5–1.7nMNd−1) and anammox (0.3–1.9nMNd−1) declined by 53–85%. The proportional representation of major microbial taxa and N cycle gene transcripts in metatranscriptomes followed fraction-specific trends. Transcripts encoding nitrate reductase were uniform among PA and FL fractions, whereas anammox-associated transcripts were proportionately enriched up to 15-fold in the FL fraction. In contrast, transcripts encoding enzymes for N2O and N2 production by denitrification were enriched up to 28-fold in PA samples. These patterns suggest that the majority of N cycle activity, excluding N2O and N2 production by denitrification, is confined to a FL majority that is critically dependent on access to particles, likely as a source of organic carbon and inorganic N. Variable particle distributions may drive heterogeneity in N cycle activity and gene expression in OMZs. PMID:25848875
El Mehdawi, Ali F; Quinn, Colin F; Pilon-Smits, Elizabeth A H
2011-09-13
Soil surrounding selenium (Se) hyperaccumulator plants was shown earlier to be enriched in Se, impairing the growth of Se-sensitive plant species. Because Se levels in neighbors of hyperaccumulators were higher and Se has been shown to protect plants from herbivory, we investigate here the potential facilitating effect of Se hyperaccumulators on Se-tolerant neighboring species in the field. We measured growth and herbivory of Artemisia ludoviciana and Symphyotrichum ericoides as a function of their Se concentration and proximity to hyperaccumulators Astragalus bisulcatus and Stanleya pinnata. When growing next to hyperaccumulators, A. ludoviciana and S. ericoides contained 10- to 20-fold higher Se levels (800-2,000 mg kg(-1) DW) than when growing next to nonaccumulators. The roots of both species were predominantly (70%-90%) directed toward hyperaccumulator neighbors, not toward other neighbors. Moreover, neighbors of hyperaccumulators were 2-fold bigger, showed 2-fold less herbivory damage, and harbored 3- to 4-fold fewer arthropods. When used in laboratory choice and nonchoice grasshopper herbivory experiments, Se-rich neighbors of hyperaccumulators experienced less herbivory and caused higher grasshopper Se accumulation (10-fold) and mortality (4-fold). Enhanced soil Se levels around hyperaccumulators can facilitate growth of Se-tolerant plant species through reduced herbivory and enhanced growth. This study is the first to show facilitation via enrichment with a nonessential element. It is interesting that Se enrichment of hyperaccumulator neighbors may affect competition in two ways, by reducing growth of Se-sensitive neighbors while facilitating Se-tolerant neighbors. Via these competitive and facilitating effects, Se hyperaccumulators may affect plant community composition and, consequently, higher trophic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.
2016-01-01
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768
Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
Downs, W D; Cech, T R
1996-01-01
The kinetics of RNA folding were examined in the L-21 ribozyme, an RNA enzyme derived from the self-splicing Tetrahymena intron. Three UV-inducible crosslinks were mapped, characterized, and used as indicators for the folded state of the ribozyme. Together these data suggest that final structures are adopted first by the P4-P6 independently folding domain and only later in a region that positions the P1 helix (including the 5' splice site), a region whose folding is linked to that of a portion of the catalytic core. At intermediate times, a non-native structure forms in the region of the triple helical scaffold, which connects the major folding domains. At 30 degrees C, the unfolded ribozyme passes through these stages with a half-life of 2 min from the time magnesium cations are provided. At higher temperatures, the half-life is shortened but the order of events is unchanged. Thermal melting of the fully folded ribozyme also revealed a multi-stage process in which the steps of folding are reversed: the kinetically slowest structure is the least stable and melts first. These structures of the ribozyme also bind Mg2+ cooperatively and their relative affinity for binding seems to be a major determinant in the order of events during folding. Na+ can also substitute for Mg2+ to give rise to the same crosslinkable structures, but only at much higher concentrations. Specific binding sites for Mg2+ may make this cation particularly efficient at electrostatic stabilization during folding of these ribozyme structures. PMID:8756414
Rheometric properties of canine vocal fold tissues: Variation with anatomic location
Kimura, Miwako; Mau, Ted; Chan, Roger W.
2010-01-01
Objective To evaluate the in vitro rheometric properties of the canine vocal fold lamina propria and muscle at phonatory frequencies, and their changes with anatomic location. Methods Six canine larynges were harvested immediately postmortem. Viscoelastic shear properties of anterior, middle, and posterior portions of the vocal fold cover (lamina propria) as well as those of the medial thyroarytenoid (TA) muscle (vocalis muscle) were quantified by a linear, controlled-strain simple-shear rheometer. Measurements of elastic shear modulus (G’) and dynamic viscosity (η’) of the specimens were conducted with small-amplitude sinusoidal shear deformation over a frequency range of 1 Hz to 250 Hz. Results All specimens showed similar frequency dependence of the viscoelastic functions, with G’ gradually increasing with frequency and η’ decreasing with frequency monotonically. G’ and η’ of the canine vocalis muscle were significantly higher than those of the canine vocal fold cover, and η’ of the canine vocal fold cover was significantly higher than that of the human vocal fold cover. There were no significant differences in G’ and in η’ between different portions of the canine vocal fold cover. Conclusion These preliminary data based on the canine model suggested that the vocalis muscle, while in a relaxed state in vitro, is significantly stiffer and more viscous than the vocal fold cover during vibration at phonatory frequencies. For large-amplitude vocal fold vibration involving the medial portion of the TA muscle, such distinct differences in viscoelastic properties of different layers of the vocal fold should be taken into account in multi-layered biomechanical models of phonation. PMID:21035291
Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D.; Kolattukudy, Pappachan E; Daniell, Henry
2009-01-01
Summary It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in E. coli or tobacco chloroplasts. A PCR based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10,751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3,100-fold and pectate lyase is 1,057 or 1,480 fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3,625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails. PMID:20070870
Dhibi, Madiha; Mechri, Beligh; Brahmi, Faten; Skhiri, Fathia; Alsaif, Mohammed A; Hammami, Mohamed
2012-06-01
Pinus halepensis (Aleppo pine) is a widespread tree that can be found in both natural and urban environments. A discrimination study based on the antioxidant compounds, antioxidant capacity and fatty acid (FA) profile of P. halepensis cones (PHC) and seeds (PHS) was performed. The total amount of phenols was about 72-fold higher in PHC extract than in PHS extract (P < 0.001). Anthocyanin and carotenoid contents were 10- and 12-fold higher respectively in PHC extract. PHC and PHS extracts at a concentration of 1 mg mL(-1) differed significantly in free radical-scavenging activity on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)) (86.65 vs 16.97%). PHC had higher antioxidant ability on 2,2'-azino-bis(3-ethylbenzothialozine-6-sulfonic acid) radical cation (ABTS(•+)) than PHS (EC(50) 0.368 vs 2.345 mg mL(-1)). The FA profile of PHC oil revealed its richness in saturated FAs (41.5%) and high levels of trans FA isomers, with a predominance of trans,trans-linoleic acid (4.74%). However, polyunsaturated FAs in PHS oil represented more than 64% of total FAs. PHC showed important antioxidant activities as well as high levels of bioactive compounds. Thus PHC is a potential source of natural antioxidants that may afford several health benefits. However, the lipid extract of PHS seems to have more nutritional value as a polyunsaturated oil than that of PHC, which is high in saturated and trans FAs. Copyright © 2011 Society of Chemical Industry.
[Synergistic effects of lysozyme with EDTA-2Na on antibacterial activity].
Li, Xiao-man; Wang, Xiao-yan; Gao, Xue-jun
2015-02-18
To evaluate the synergistic antibacterial effects of lysozyme with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on Enterococcus faecalis (E. faecalis) and Porphyromonas endodontalis (P. endodontalis). E. faecalis and P. endodontalis were cultured and adjusted to 10(8) CFU/mL. Then 0.3, 0.5, 1, 2, 5, 10, 50, 100, 150 and 300 g/L of lysozyme were prepared with deionized water; and the lysozyme solutions were mixed with 0.5, 1.0, 2.0 g/L of EDTA-2Na, respectively. The bacteria and lysosome with/without EDTA-2Na interacted for 15 min, then water-soluble tetrazolium (WST) working solution was added and the activity of the bacteria was calculated by measuring optical densities at 450 nm and 630 nm with microplate spectrophotometer. Regarding the pure lysozyme from 0.5 g/L to 150 g/L, more E. faecalis and P. endodontalis were inhibited when the concentration of lysozyme was higher, especially for E. faecalis. There was synergistic effect of lysozyme with EDTA-2Na on antibacterial activity, which was related to the concentration of lysozyme. On E. faecalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.2-3.7 folds than the pure lysozyme when the concentration of lysozyme was 0.5-50 g/L (P<0.05), and on P. endodontalis, the antibacterial activity of lysozyme with EDTA-2Na was 1.3-3.5 folds than the pure lysozyme when the concentration of lysozyme was 0.5-10 g/L (P<0.05). When the concentration of lysozyme was higher than 100 g/L, EDTA-2Na did not show synergistic effect on the antibacterial activity (P>0.05). For E. faecalis and P. endodontalis, a low concentration of lysozyme with EDTA-2Na showed significant synergistic antibacterial activity, while a high concentration of lysozyme with EDTA-2Na did not.
Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening
NASA Astrophysics Data System (ADS)
Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch
2010-12-01
Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.
Effects of arginine on rabbit muscle creatine kinase and salt-induced molten globule-like state.
Ou, Wen-bin; Wang, Ri-Sheng; Lu, Jie; Zhou, Hai-Meng
2003-11-03
The arginine (Arg)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, native polyacrylamide gel electrophoresis and size exclusion chromatography (SEC). The results showed that Arg caused inactivation and unfolding of CK, but there was no aggregation during CK denaturation. The kinetics of CK unfolding followed a one-phase process. At higher concentrations of Arg (>160 mM), the CK dimers were fully dissociated, the alkali characteristic of Arg mainly led to the dissociation of dimers, but not denaturation effect of Arg's guanidine groups on CK. The inactivation of CK occurred before noticeable conformational changes of the whole molecules. KCl induced monomeric and dimeric molten globule-like states of CK denatured by Arg. These results suggest that as a protein denaturant, the effect of Arg on CK differed from that of guanidine and alkali, its denaturation for protein contains the double effects, which acts not only as guanidine hydrochloride but also as alkali. The active sites of CK have more flexibility than the whole enzyme conformation. Monomeric and dimeric molten globule-like states of CK were formed by the salt inducing in 160 and 500 mM Arg H(2)O solutions, respectively. The molten globule-like states indicate that monomeric and dimeric intermediates exist during CK folding. Furthermore, these results also proved the orderly folding model of CK.
Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.).
Kim, Hyun-Jin; Chen, Feng; Wang, Xi; Rajapakse, Nihal C
2006-03-22
The effect of methyl jasmonate (MeJA) in terms of its induction of inherent bioactive chemicals in sweet basil (Ocimum basilicum L.) was evaluated after MeJA was sprayed on healthy basil plants. The total phenolic content of the sweet basil significantly increased after 0.1 and 0.5 mM MeJA treatments compared with the control not subjected to MeJA. Two phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA), were identified as strong antioxidant constituents of the sweet basil. Their amounts also significantly increased after the MeJA treatment. In addition, eugenol and linalool increased 56 and 43%, respectively, by the 0.5 mM MeJA treatment. Due to the accumulation of RA, CA, and eugenol, which possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH*) free radical scavenging activities, the antioxidant activity of the sweet basil extract was 2.3-fold greater than that of the control after the 0.5 mM MeJA treatment. In the DPPH* assay, the EC50 values of RA, CA, and eugenol were determined as 23, 46, and 59 microM, respectively, which indicated they were 6-, 3-, and 2.4-fold more efficient than BHT (140 microM). Besides, an unidentified HPLC peak in the methanolic extract of the sweet basil was 4.3-fold higher than that of the control after the 0.5 mM MeJA treatment.
Xia, Zhi-Jun; Liu, Zhen; Kong, Fan-Zhi; Fan, Liu-Yin; Xiao, Hua; Cao, Cheng-Xi
2017-12-01
Antimicrobial peptides (AMPs) are usually small and cationic biomolecules with broad-spectrum antimicrobial activities against pathogens. Purifying them from complex samples is essential to study their physiochemical properties. In this work, free-flow zone electrophoresis (FFZE) was utilized to purify AMPs from yeast fermentation broth. Meanwhile, gel filtration chromatography (GFC) was conducted for comparison. The separation efficiency was evaluated by SDS-PAGE analysis of the fractions from both methods. Our results demonstrated as follows: (i) FFZE had more than 30-fold higher processing capacity as compared with GFC; (ii) FFZE could achieve 87% purity and 89% recovery rate while in GFC these parameters were about 93 and 82%, respectively; (iii) the former had ∼2-fold dilution but the latter had ∼13-fold dilution. Furthermore, Tricine-SDS-PAGE, Native-PAGE, and gel IEF were carried out to characterize the purified AMPs. We found that two peptides existed as a pair with the molecular mass of ∼5.5 and 7.0 kDa, while the same pI 7.8. These two peptides were proved to have the antimicrobial activity through the standardized agar diffusion method. Therefore, FFZE could be used to continuously purify AMPs with high bioactivity, which will lead to its wide application in the clinical and pharmaceutical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bonifacio, Massimiliano; Rigo, Antonella; Guardalben, Emanuele; Bergamini, Christian; Cavalieri, Elisabetta; Fato, Romana; Pizzolo, Giovanni; Vinante, Fabrizio
2012-01-01
We showed that α-bisabolol is active against primary acute leukemia cells, including BCR-ABL+ acute lymphoblastic leukemias (ALL). Here we studied the activity of α-bisabolol against BCR-ABL+ cells using 3 cell lines (K562, LAMA-84, CML-T1) and 10 primary BCR-ABL+ ALL samples. We found that: (a) α-bisabolol was effective in reducing BCR-ABL+ cell viabilty at concentrations ranging from 53 to 73 µM; (b) α-bisabolol concentrations in BCR-ABL+ cellular compartments were 4- to 12-fold higher than in normal cells, thus indicating a preferential intake in neoplastic cells; (c) α-bisabolol displayed a slight to strong synergism with the Tyrosine Kinase Inhibitors (TKI) imatinib and nilotinib: the combination of α-bisabolol+imatinib allowed a dose reduction of each compound up to 7.2 and 9.4-fold respectively, while the combination of α-bisabolol+nilotinib up to 6.7 and 5-fold respectively; (d) α-bisabolol-induced apoptosis was associated with loss of plasma membrane integrity, irreversible opening of mitochondrial transition pore, disruption of mitochondrial potential, inhibition of oxygen consumption and increase of intracellular reactive oxygen species. These data indicate α-bisabolol as a candidate for treatment of BCR-ABL+ leukemias to overcome resistance to TKI alone and to target leukemic cells through BCR-ABL-independent pathways. PMID:23056396
Hyperthermophilic archaeal prefoldin shows refolding activity at low temperature.
Zako, Tamotsu; Banba, Shinya; Sahlan, Muhamad; Sakono, Masafumi; Terada, Naofumi; Yohda, Masafumi; Maeda, Mizuo
2010-01-01
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak. Copyright 2009 Elsevier Inc. All rights reserved.
BiP clustering facilitates protein folding in the endoplasmic reticulum.
Griesemer, Marc; Young, Carissa; Robinson, Anne S; Petzold, Linda
2014-07-01
The chaperone BiP participates in several regulatory processes within the endoplasmic reticulum (ER): translocation, protein folding, and ER-associated degradation. To facilitate protein folding, a cooperative mechanism known as entropic pulling has been proposed to demonstrate the molecular-level understanding of how multiple BiP molecules bind to nascent and unfolded proteins. Recently, experimental evidence revealed the spatial heterogeneity of BiP within the nuclear and peripheral ER of S. cerevisiae (commonly referred to as 'clusters'). Here, we developed a model to evaluate the potential advantages of accounting for multiple BiP molecules binding to peptides, while proposing that BiP's spatial heterogeneity may enhance protein folding and maturation. Scenarios were simulated to gauge the effectiveness of binding multiple chaperone molecules to peptides. Using two metrics: folding efficiency and chaperone cost, we determined that the single binding site model achieves a higher efficiency than models characterized by multiple binding sites, in the absence of cooperativity. Due to entropic pulling, however, multiple chaperones perform in concert to facilitate the resolubilization and ultimate yield of folded proteins. As a result of cooperativity, multiple binding site models used fewer BiP molecules and maintained a higher folding efficiency than the single binding site model. These insilico investigations reveal that clusters of BiP molecules bound to unfolded proteins may enhance folding efficiency through cooperative action via entropic pulling.
Namkung, Wan; Thiagarajah, Jay R; Phuan, Puay-Wah; Verkman, A S
2010-11-01
TMEM16A was found recently to be a calcium-activated Cl(-) channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC(50) ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl(-) channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl(-) secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.
Mohan Kumar, N S; Kishore, Vijay; Manonmani, H K
2014-01-01
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.
Cruz, Hans G.; Krause, Andreas; Ulč, Ivan; Halabi, Atef; Dingemanse, Jasper
2016-01-01
Aim The aim of the present study was to explore the effect of hepatic or renal dysfunction on the pharmacokinetics (PK), tolerability and safety of selexipag, an orally active prostacyclin receptor agonist. Methods Two prospective, open‐label studies evaluated the PK of selexipag and its active metabolite ACT‐333679 in healthy subjects and in subjects with mild, moderate and severe hepatic impairment or severe renal function impairment (SRFI). A single dose of 200 μg or 400 μg was administered. The PK parameters were derived from plasma concentration–time profiles. Results Exposure increased with the severity of hepatic impairment. Geometric mean ratios and 90% confidence intervals of the area under the concentration–time curve from time zero to infinity (AUC0–∞) for selexipag and ACT‐333679 increased 2.1‐fold (1.7–2.6) and 1.2‐fold (0.9–1.6) in subjects with mild hepatic impairment, and 4.5‐fold (3.4–5.8) and 2.2‐fold (1.7–2.8) in subjects with moderate hepatic impairment when compared with healthy subjects. The two subjects with severe hepatic impairment showed similar dose‐normalized exposure to that of subjects with moderate hepatic impairment. A 1.7‐fold increase in the AUC0–∞ of selexipag and ACT‐333679 was observed with SRFI compared with healthy subjects. Although exposure to selexipag and/or ACT‐333679 was higher in subjects with mild or moderate hepatic impairment or SRFI vs. healthy subjects, no safety concerns were raised in these groups. Conclusions Based on these observations, the PK data suggest that the clinically used starting dose needs no adjustments in patients with mild or moderate hepatic impairment or SRFI. However, doses should be up‐titrated with caution in these patients. The small number of subjects limits the interpretation of selexipag PK in subjects with severe hepatic impairment. PMID:27062188
Yu, Xianming; Mertz, Janet E.
2003-01-01
To study the effects of the nuclear receptors (NRs) HNF4α and COUP-TF1 on the life cycle of hepatitis B virus (HBV), the human hepatoma cell line Huh7 was transiently cotransfected with plasmids containing the HBV genome and encoding these two NRs. Overexpression of HNF4α and COUP-TF1 led to a 9-fold increase and a 7- to 10-fold decrease, respectively, in viral DNA synthesis. These two NRs also exhibited distinct modes of regulation of viral transcription. Overexpression of HNF4α led to a more-than-10-fold increase in synthesis of the pregenomic RNA but to only a 2- to 3-fold increase in synthesis of the pre-C and S RNAs. Moreover, the NR response element within the pre-C promoter, NRREpreC, played the major role in activation of pregenomic RNA synthesis by HNF4α. On the other hand, overexpression of COUP-TF1 led to an over-10-fold repression of synthesis of both pre-C and pregenomic RNAs mediated through either NRREpreC or NRREenhI. HNF4α and COUP-TF1 antagonized each other's effects on synthesis of pregenomic RNA and viral DNA when they were co-overexpressed. A naturally occurring HBV variant which allows for binding by HNF4α but not COUP-TF1 in its NRREpreC exhibited significantly higher levels of synthesis of pregenomic RNA and viral DNA than wild-type HBV in coexpression experiments. Last, deletion analysis revealed that non-NRRE sequences located within both the C and pre-S1 regions are also essential for maximum activation of the pregenomic promoter by HNF4α but not for repression by COUP-TF1. Thus, HNF4α and COUP-TF1 function through different mechanisms to regulate expression of the HBV genes. PMID:12551987
Yu, Xianming; Mertz, Janet E
2003-02-01
To study the effects of the nuclear receptors (NRs) HNF4alpha and COUP-TF1 on the life cycle of hepatitis B virus (HBV), the human hepatoma cell line Huh7 was transiently cotransfected with plasmids containing the HBV genome and encoding these two NRs. Overexpression of HNF4alpha and COUP-TF1 led to a 9-fold increase and a 7- to 10-fold decrease, respectively, in viral DNA synthesis. These two NRs also exhibited distinct modes of regulation of viral transcription. Overexpression of HNF4alpha led to a more-than-10-fold increase in synthesis of the pregenomic RNA but to only a 2- to 3-fold increase in synthesis of the pre-C and S RNAs. Moreover, the NR response element within the pre-C promoter, NRRE(preC,) played the major role in activation of pregenomic RNA synthesis by HNF4alpha. On the other hand, overexpression of COUP-TF1 led to an over-10-fold repression of synthesis of both pre-C and pregenomic RNAs mediated through either NRRE(preC) or NRRE(enhI). HNF4alpha and COUP-TF1 antagonized each other's effects on synthesis of pregenomic RNA and viral DNA when they were co-overexpressed. A naturally occurring HBV variant which allows for binding by HNF4alpha but not COUP-TF1 in its NRRE(preC) exhibited significantly higher levels of synthesis of pregenomic RNA and viral DNA than wild-type HBV in coexpression experiments. Last, deletion analysis revealed that non-NRRE sequences located within both the C and pre-S1 regions are also essential for maximum activation of the pregenomic promoter by HNF4alpha but not for repression by COUP-TF1. Thus, HNF4alpha and COUP-TF1 function through different mechanisms to regulate expression of the HBV genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagino, Ko; Yokozawa, Junji; Sasaki, Yu
Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligationmore » of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of {beta}-cell area/acinar cell area and {beta}-cell area/islet area, and also {beta}-cell proliferation, were significantly higher in the ligation group than in the sham group (p < 0.05, p < 0.01 and p < 0.01, respectively). The insulin content per unit wet weight of pancreas was also significantly increased in the ligation group (p < 0.05). Conclusions: In rats with ligation of the mesenteric lymph duct, insulin secretion during the OGTT or IVGTT was higher, and the insulin content and {beta}-cell proliferation in the pancreas were also increased. Our data show that mesenteric lymph duct flow has a role in glucose metabolism.« less
Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa
2011-03-01
Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.
In Vivo Imaging of Branched Chain Amino Acid Metabolism in Prostate Cancer
2013-08-01
model more closely mimicking human metabolism by assessing four prostate cancer cell lines: PC-3, DU-145, LNCaP and LAPC-4. The PC-3 cells had...Although the xenograph BCAT activity was 2.5 fold higher than cells alone (approaching human levels), the tumors grew very poorly (volumes ≤ 0.2 cc...assessment of prostate cancer (see Appendix 1: Revised Statement of Work). Specifically, as part of these cell - culture and xenograph experiments we
Overexpression of a glutamine synthetase gene affects growth and development in sorghum.
Urriola, Jazmina; Rathore, Keerti S
2015-06-01
Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.
NASA Astrophysics Data System (ADS)
Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin
2015-12-01
Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2018-06-15
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.
Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model
NASA Astrophysics Data System (ADS)
Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell
2014-07-01
Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.
Joseph, Prem Raj B.; Poluri, Krishna Mohan; Gangavarapu, Pavani; Rajagopalan, Lavanya; Raghuwanshi, Sandeep; Richardson, Ricardo M.; Garofalo, Roberto P.; Rajarathnam, Krishna
2013-01-01
Proteins that exist in monomer-dimer equilibrium can be found in all organisms ranging from bacteria to humans; this facilitates fine-tuning of activities from signaling to catalysis. However, studying the structural basis of monomer function that naturally exists in monomer-dimer equilibrium is challenging, and most studies to date on designing monomers have focused on disrupting packing or electrostatic interactions that stabilize the dimer interface. In this study, we show that disrupting backbone H-bonding interactions by substituting dimer interface β-strand residues with proline (Pro) results in fully folded and functional monomers, by exploiting proline’s unique feature, the lack of a backbone amide proton. In interleukin-8, we substituted Pro for each of the three residues that form H-bonds across the dimer interface β-strands. We characterized the structures, dynamics, stability, dimerization state, and activity using NMR, molecular dynamics simulations, fluorescence, and functional assays. Our studies show that a single Pro substitution at the middle of the dimer interface β-strand is sufficient to generate a fully functional monomer. Interestingly, double Pro substitutions, compared to single Pro substitution, resulted in higher stability without compromising native monomer fold or function. We propose that Pro substitution of interface β-strand residues is a viable strategy for generating functional monomers of dimeric, and potentially tetrameric and higher-order oligomeric proteins. PMID:24048001
Nomachi, Wataru; Urago, Ken-Ichi; Oka, Takuji; Ekino, Keisuke; Matsuda, Minoru; Goto, Masatoshi; Furukawa, Kensuke
2002-01-01
In order to improve fermentation of barley without addition of commercial cellulase, a white koji mold, Aspergillus kawachii IFO4308, was transformed with the egl1 gene encoding endoglucanase I (EGI) of Trichoderma viride and the endogenous cekA gene encoding endoglucanase (CekA). Transformants with egl1 under the control of the strong glaA promoter produced EGI in both submerged and solid-state cultures. However, the EGI produced in solid-state culture was unstable due to the acidic condition of this culture. A transformant N10 with two additional copies of the cekA gene exhibited endoglucanase activities against carboxymethyl-cellulose, which are 21- and 1.8-fold higher than that of the wild-type (wt) strain when the cells were cultivated in submerged and solid-state cultures, respectively. Cultivation of strain N10 in steamed barley for preparing koji followed by fermentation with Saccharomyces cerevisiae resulted in improved fermentation assessed based on higher productions of ethanol, amino acids, and organic acids, the reduction of residual sugar, and the low viscosity of barley mash. The overall fermentation result for the transformant carrying cekA was comparable with that for the wt strain using commercial cellulase. These results demonstrate that acquisition of only two-fold CekA activity by A. kawachii in the solid-state culture allows us to improve the brewing of barley shochu.
Varamini, Pegah; Rafiee, Amirreza; Giddam, Ashwini Kumar; Mansfeld, Friederike M; Steyn, Frederik; Toth, Istvan
2017-10-26
Gonadotropin-releasing hormone (GnRH) agonists (e.g., triptorelin) are used for androgen suppression therapy. They possess improved stability as compared to the natural GnRH, yet they suffer from a poor pharmacokinetic profile. To address this, we used a GnRH peptide-modified dendrimer platform with and without lipidation strategy. Dendrimers were synthesized on a polylysine core and bore either native GnRH (1, 2, and 5) or lipid-modified GnRH (3 and 4). Compound 3, which bore a lipidic moiety in a branched tetramer structure, showed approximately 10-fold higher permeability and metabolic stability and 39 times higher antitumor activity against hormone-resistant prostate cancer cells (DU145) relative to triptorelin. In gonadotropin-release experiments, dendrimer 3 was shown to be the most potent construct. Dendrimer 3 showed similar luteinizing hormone (LH)-release activity to triptorelin in mice. Our findings indicate that dendrimer 3 is a promising analog with higher potency for the treatment of hormone-resistant prostate cancer than the currently available GnRH agonists.
Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements
PENEDO, J. CARLOS; WILSON, TIMOTHY J.; JAYASENA, SUMEDHA D.; KHVOROVA, ANASTASIA; LILLEY, DAVID M.J.
2004-01-01
It has been shown that the activity of the hammerhead ribozyme at μM magnesium ion concentrations is markedly increased by the inclusion of loops in helices I and II. We have studied the effect of such loops on the magnesium ion-induced folding of the ribozyme, using fluorescence resonance energy transfer. We find that with the loops in place, folding into the active conformation occurs in a single step, in the μM range of magnesium ion concentration. Disruption of the loop–loop interaction leads to a reversion to two-step folding, with the second stage requiring mM concentrations of magnesium ion. Sodium ions also promote the folding of the natural form of the ribozyme at high concentrations, but the folding occurs as a two-stage process. The loops clearly act as important auxiliary elements in the function of the ribozyme, permitting folding to occur efficiently under physiological conditions. PMID:15100442
Fluid Shear Stress-Induced JNK Activity Leads to Actin Remodeling for Cell Alignment
Mengistu, Meron; Brotzman, Hannah; Ghadiali, Samir; Lowe-Krentz, Linda
2012-01-01
Fluid shear stress (FSS) exerted on endothelial cell surfaces induces actin cytoskeleton remodeling through mechanotransduction. This study was designed to determine whether FSS activates Jun N-terminal kinase (JNK), to examine the spatial and temporal distribution of active JNK relative to the actin cytoskeleton in endothelial cells exposed to different FSS conditions, and to evaluate the effects of active JNK on actin realignment. Exposure to 15 and 20 dyn/cm2 FSS induced higher activity levels of JNK than the lower 2 and 4 dyn/cm2 flow conditions. At the higher FSS treatments, JNK activity increased with increasing exposure time, peaking 30 minutes after flow onset with an 8-fold activity increase compared to cells in static culture. FSS-induced phospho-JNK co-localized with actin filaments at cell peripheries, as well as with stress fibers. Pharmacologically blocking JNK activity altered FSS-induced actin structure and distribution as a response to FSS. Our results indicate that FSS-induced actin remodeling occurs in three phases, and that JNK plays a role in at least one, suggesting that this kinase activity is involved in mechanotransduction from the apical surface to the actin cytoskeleton in endothelial cells. PMID:20626006
Pifer, Matthew A; Maerz, Tristan; Baker, Kevin C; Anderson, Kyle
2014-05-01
Recent work has shown the presence of catabolic cytokines in platelet-rich plasma (PRP), but little is known about endogenous catabolic proteases such as matrix metalloproteinases (MMPs). Hypothesis/ To quantify MMP content in 2 commercially available PRP preparation systems: Arthrex Double Syringe System autologous conditioned plasma (ACP) and Biomet GPS (GPS). The hypothesis was that MMPs are actively secreted from PRP immediately after preparation. Controlled laboratory study. PRP was prepared using either ACP (low platelet, low leukocyte) or GPS (high platelet, high leukocyte). MMP-2, MMP-3, and MMP-9 concentrations were measured using multiplex enzyme-linked immunosorbent assays for up to 6 days in 2 donors, and MMP activity was measured in 3 donors using kinetic activity kits able to detect the enzymatic cleavage of a fluorogenic peptide. Human ligament fibroblasts were cultured and exposed to both ACP and GPS from 1 donor each. MMP-2, -3, and -9 concentrations were assayed in culture media at 24 and 48 hours after exposure. GPS exhibited higher total MMP-2, -3, and -9 concentrations for up to 144 hours of release, while ACP had higher platelet-normalized MMP-2 and MMP-3 concentrations. GPS had significantly higher total and endogenous MMP-2 activity (P = .004 and .014, respectively), MMP-3 activity (P = .020 and .015, respectively), and MMP-9 activity (P = .004 and .002, respectively) compared with ACP. Once normalized to platelet count, differences in MMP activity were not significant between ACP and GPS. Compared with controls, cells stimulated with interleukin-1 beta (IL-1β) and treated with ACP showed significantly higher fold changes of MMP-2 (P = .001) and MMP-3 (P = .003) concentrations at 24 hours than did cells treated with GPS. Total MMP-9 content was higher in the media of GPS-treated, IL-1β-stimulated cells compared with ACP-treated cells (P = .001). At 48 hours, IL-1β-stimulated cells treated with GPS exhibited higher fold changes of MMP-2 concentration (P = .002) compared with controls, but no difference in MMP-3 concentration was found. At 48 hours, there was a significantly higher concentration of MMP-9 in the cell culture media of ACP-treated cells compared with GPS-treated cells (P = .003). PRP prepared as both ACP and GPS contains MMP-2, -3, and -9, which is released over a period of at least 6 days. Furthermore, a large proportion of these MMPs are in their active form, and MMP activity is dependent on platelet count within the PRP preparation. Once exposed to ligament fibroblasts, both ACP and GPS cause the fibroblasts to release MMPs, most notably 24 hours after PRP exposure, and this release is dependent on prior IL-1β stimulation. The results of this study demonstrate that PRP therapy delivers ng/mL-range concentrations of catabolic proteases, which could perpetuate inflammation and inhibit tissue healing.
Wei, Chuan-Chuan; Wu, Kun; Gao, Yan; Zhang, Li-Han; Li, Dan-Dan; Luo, Zhi
2017-06-01
Background: Magnesium influences hepatic lipid deposition in vertebrates, but the underlying mechanism is unknown. Objective: We used yellow catfish and their isolated hepatocytes to test the hypothesis that magnesium influences lipid deposition by modulating lipogenesis and lipolysis. Methods: Juvenile yellow catfish (mean ± SEM weight: 3.43 ± 0.02 g, 3 mo old, mixed sex) were fed a 0.14- (low), 0.87- (intermediate) or 2.11- (high) g Mg/kg diet for 56 d. Primary hepatocytes were incubated for 48 h in control or MgSO 4 -containing medium with or without 2-h pretreatment with an inhibitor (AG490, GW6471, or Compound C). Growth performance, cell viability, triglyceride (TG) concentrations, and expression of enzymes and genes involved in lipid metabolism were measured. Results: Compared with fish fed low magnesium, those fed intermediate or high magnesium had lower hepatic lipids (18%, 22%) and 6-phosphogluconate dehydrogenase (6PGD; 3.7%, 3.8%) and malic enzyme (ME; 35%, 48%) activities and greater mRNA levels of the lipolytic genes adipose triacylglyceride lipase ( atgl ; 82% and 1.7-fold) and peroxisome proliferator-activated receptor ( ppara ; 18% and 1.0-fold), respectively ( P < 0.05). Relative mRNA levels of AMP-activated protein kinase ( ampk ) a1 , ampka2 , ampkb1 , ampkb2 , ampkg1a , ampkg1b , Janus kinase (jak) 2a , jak2b, and signal transducers and activators of transcription ( stat ) 3 in fish fed high magnesium were higher (24% to 3.1-fold, P < 0.05) than in those fed low or intermediate magnesium. Compared with cells incubated with MgSO 4 alone, those incubated with MgSO 4 and pretreated with AG490, GW6471, or Compound C had greater TG concentrations (42%, 31%, or 56%), g6pd (98%, 59%, or 51%), 6pgd (68%, 73%, or 32%) mRNA expression, and activities of G6PD (35%, 45%, or 16%) and ME (1.5-fold, 1.3-fold, or 13%), and reduced upregulation (61%, 25%, or 45%) of the lipolytic gene, atgl ( P < 0.05). Conclusions: Magnesium reduced hepatic lipid accumulation in yellow catfish and the variation might be attributed to inhibited lipogenesis and increased lipolysis. PPARA, JAK-STAT, and AMPK pathways mediated the magnesium-induced changes in lipid deposition and metabolism. These results offer new insight into magnesium nutrition in vertebrates. © 2017 American Society for Nutrition.
Cross, Sheree E; Thompson, Melanie J; Roberts, Michael S
2003-02-01
As reductions in dermal clearance increase the residence time of solutes in the skin and underlying tissues we compared the topical penetration of potentially useful vasoconstrictors (VCs) through human epidermis as both free bases and ion-pairs with salicylic acid (SA). We determined the in vitro epidermal flux of ephedrine, naphazoline, oxymetazoline, phenylephrine, and xylometazoline applied as saturated solutions in propylene glycol:water (1:1) and of ephedrine, naphazoline and tetrahydrozoline as 10% solutions of 1:1 molar ratio ion-pairs with SA in liquid paraffin. As free bases, ephedrine had the highest maximal flux, Jmax = 77.4 +/- 11.7 microg/cm2/h, being 4-fold higher than tetrahydrozoline and xylometazoline, 6-fold higher than phenylephrine, 10-fold higher than naphazoline and 100-fold higher than oxymetazoline. Stepwise regression of solute physicochemical properties identified melting point as the most significant predictor of flux. As ion-pairs with SA, ephedrine and naphazoline had similar fluxes (11.5 +/- 2.3 and 12.0 +/- 1.6 microg/cm2/h respectively), whereas tetrahydrozoline was approximately 3-fold slower. Corresponding fluxes of SA from the ion-pairs were 18.6 +/- 0.6, 7.8+/- 0.8 and 1.1 +/- 0.1 respectively. Transdermal transport of VC's is discussed. Epidermal retention of VCs and SA did not correspond to their molar ratio on application and confirmed that following partitioning into the stratum corneum, ion-pairs separate and further penetration is governed by individual solute characteristics.
Toulouse, Jacynthe L; Abraham, Sarah M J; Kadnikova, Natalia; Bastien, Dominic; Gauchot, Vincent; Schmitzer, Andreea R; Pelletier, Joelle N
Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.
Street, Christina M; Zhu, Zhaohui; Finel, Moshe; Court, Michael H
2017-01-01
1. Bisphenol-A is a ubiquitous environmental contaminant that is primarily metabolized by glucuronidation and associated with various human diseases including breast cancer. Here we identified UDP-glucuronosyltransferases (UGTs) and genetic polymorphisms responsible for interindividual variability in bisphenol-A glucuronidation in human liver and breast. 2. Hepatic UGTs showing the highest bisphenol-A glucuronidation activity included UGT2B15 and UGT1A9. Relative activity factor normalization indicated that UGT2B15 contributes >80% of activity at bisphenol-A concentrations under 5 μM, while UGT1A9 contributes up to 50% of activity at higher concentrations. 3. Bisphenol-A glucuronidation by liver microsomes (46 donors) ranged from 0.25 to 4.3 nmoles/min/mg protein. Two-fold higher glucuronidation (p = 0.018) was observed in UGT1A9 *22/*22 livers compared with *1/*1 and *1/*22 livers. However, no associations were observed for UGT2B15*2 or UGT1A1*28 genotypes. 4. Bisphenol-A glucuronidation by breast microsomes (15 donors) ranged from <0.2 to 56 fmoles/min/mg protein. Breast mRNA expression of UGTs capable of glucuronidating bisphenol-A was highest for UGT1A1, followed by UGT2B4, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. Bisphenol-A glucuronidation was over 10-fold lower in breast tissues with the UGT1A1*28 allele compared with tissues without this allele (p = 0.006). 5. UGT2B15 and UGT1A9 contribute to glucuronidation variability in liver, while UGT1A1 is important in breast.
Bour, Sandy; Daviaud, Danièle; Gres, Sandra; Lefort, Corinne; Prévot, Danielle; Zorzano, Antonio; Wabitsch, Martin; Saulnier-Blache, Jean-Sébastien; Valet, Philippe; Carpéné, Christian
2007-08-01
A strong induction of semicarbazide-sensitive amine oxidase (SSAO) has previously been reported during murine preadipocyte lineage differentiation but it remains unknown whether this emergence also occurs during adipogenesis in man. Our aim was to compare SSAO and monoamine oxidase (MAO) expression during in vitro differentiation of human preadipocytes and in adipose and stroma-vascular fractions of human fat depots. A human preadipocyte cell strain from a patient with Simpson-Golabi-Behmel syndrome was first used to follow amine oxidase expression during in vitro differentiation. Then, human preadipocytes isolated from subcutaneous adipose tissues were cultured under conditions promoting ex vivo adipose differentiation and tested for MAO and SSAO expression. Lastly, human adipose tissue was separated into mature adipocyte and stroma-vascular fractions for analyses of MAO and SSAO at mRNA, protein and activity levels. Both SSAO and MAO were increased from undifferentiated preadipocytes to lipid-laden cells in all the models: 3T3-F442A and 3T3-L1 murine lineages, human SGBS cell strain or human preadipocytes in primary culture. In human subcutaneous adipose tissue, the adipocyte-enriched fraction exhibited seven-fold higher amine oxidase activity and contained three- to seven-fold higher levels of mRNAs encoded by MAO-A, MAO-B, AOC3 and AOC2 genes than the stroma-vascular fraction. MAO-A and AOC3 genes accounted for the majority of their respective MAO and SSAO activities in human adipose tissue. Most of the SSAO and MAO found in adipose tissue originated from mature adipocytes. Although the mechanism and role of adipogenesis-related increase in amine oxidase expression remain to be established, the resulting elevated levels of amine oxidase activities found in human adipocytes may be of potential interest for therapeutic intervention in obesity.
DC-159a Shows Inhibitory Activity against DNA Gyrases of Mycobacterium leprae.
Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko
2016-09-01
Fluoroquinolones are a class of antibacterial agents used for leprosy treatment. Some new fluoroquinolones have been attracting interest due to their remarkable potency that is reportedly better than that of ofloxacin, the fluoroquinolone currently recommended for treatment of leprosy. For example, DC-159a, a recently developed 8-methoxy fluoroquinolone, has been found to be highly potent against various bacterial species. Nonetheless, the efficacy of DC-159a against Mycobacterium leprae is yet to be examined. To gather data that can support highly effective fluoroquinolones as candidates for new remedies for leprosy treatment, we conducted in vitro assays to assess and compare the inhibitory activities of DC-159a and two fluoroquinolones that are already known to be more effective against M. leprae than ofloxacin. The fluoroquinolone-inhibited DNA supercoiling assay using recombinant DNA gyrases of wild type and ofloxacin-resistant M. leprae revealed that inhibitory activities of DC-159a and sitafloxacin were at most 9.8- and 11.9-fold higher than moxifloxacin. Also the fluoroquinolone-mediated cleavage assay showed that potencies of those drugs were at most 13.5- and 9.8-fold higher than moxifloxacin. In addition, these two drugs retained their inhibitory activities even against DNA gyrases of ofloxacin-resistant M. leprae. The results indicated that DC-159a and sitafloxacin are more effective against wild type and mutant M. leprae DNA gyrases than moxifloxacin, suggesting that these antibacterial drugs can be good candidates that may supersede current fluoroquinolone remedies. DC-159a in particular is very promising because it is classified in a subgroup of fluoroquinolones that is known to be less likely to cause adverse effects. Our results implied that DC-159a is well worth further investigation to ascertain its in vivo effectiveness and clinical safety for humans.
Glutathione maintenance mitigates age-related susceptibility to redox cycling agents.
Thomas, Nicholas O; Shay, Kate P; Kelley, Amanda R; Butler, Judy A; Hagen, Tory M
2016-12-01
Isolated hepatocytes from young (4-6mo) and old (24-26mo) F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC 50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC 50 for young: 405μM; LC 50 for old: 275μM). Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(P)H: quinone oxido-reductase 1 (NQO1) protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3), but glutathione peroxidase 4 (GPX4) declined by 70% (p=0.0043; N=3). These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300µM menadione (p<0.05 and p≤0.01 respectively; N=3). We therefore provided 400µMN-acetyl-cysteine (NAC) to hepatocytes from old rats before menadione exposure to alleviate limits in cysteine substrate availability for GSH synthesis during challenge. NAC pretreatment resulted in a >2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Differential uplift and incision of the Yakima River terraces, central Washington State
Bender, Adrian M.; Amos, Colin B.; Bierman, Paul R.; Rood, Dylan; Staisch, Lydia; Kelsey, Harvey M.; Sherrod, Brian
2016-01-01
The fault-related Yakima folds deform Miocene basalts and younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 mm/yr of NNE directed shortening across the folds, but until now the distribution and rates of Quaternary deformation among individual structures has been unclear. South of Ellensburg, Washington, the Yakima River cuts a ~600 m deep canyon across several Yakima folds, preserving gravel-mantled strath terraces that record progressive bedrock incision and related rock uplift. Here we integrate cosmogenic isochron burial dating of the strath terrace gravels with lidar analysis and field mapping to quantify rates of Quaternary differential incision and rock uplift across two folds transected by the Yakima River: Manastash and Umtanum Ridge. Isochron burial ages from in situ produced 26Al and 10Be at seven sites across the folds date episodes of strath terrace formation over the past ~2.9 Ma. Average bedrock incision rates across the Manastash (~88 m/Myr) and Umtanum Ridge (~46 m/Myr) anticlines are roughly 4 to 8 times higher than rates in the intervening syncline (~14 m/Myr) and outside the canyon (~10 m/Myr). These contrasting rates demonstrate differential bedrock incision driven by ongoing Quaternary rock uplift across the folds at rates corresponding to ~0.13 and ~0.06 mm/yr shortening across postulated master faults dipping 30 ± 10°S beneath the Manastash and Umtanum Ridge anticlines, respectively. The reported Quaternary shortening across the anticlines accounts for ~10% of the ~2 mm/yr geodetic budget, suggesting that other Yakima structures actively accommodate the remaining contemporary deformation.
Jain, Neha; Knowles, Timothy J; Lund, Peter A; Chaudhuri, Tapan K
2018-06-02
The isolated apical domain of GroEL consisting of residues 191-345 (known as "minichaperone") binds and assists the folding of a wide variety of client proteins without GroES and ATP, but the mechanism of its action is still unknown. In order to probe into the matter, we have examined minichaperone-mediated folding of a large aggregation prone protein Maltodextrin-glucosidase (MalZ). The key objective was to identify whether MalZ exists free in solution, or remains bound to, or cycling on and off the minichaperone during the refolding process. When GroES was introduced during refolding process, production of the native MalZ was inhibited. We also observed the same findings with a trap mutant of GroEL, which stably captures a predominantly non-native MalZ released from minichaperone during refolding process, but does not release it. Tryptophan and ANS fluorescence measurements indicated that refolded MalZ has the same structure as the native MalZ, but that its structure when bound to minichaperone is different. Surface plasmon resonance measurements provide an estimate for the equilibrium dissociation constant KD for the MalZ-minichaperone complex of 0.21 ± 0.04 μM, which are significantly higher than for most GroEL clients. This showed that minichaperone interacts loosely with MalZ to allow the protein to change its conformation and fold while bound during the refolding process. These observations suggest that the minichaperone works by carrying out repeated cycles of binding aggregation-prone protein MalZ in a relatively compact conformation and in a partially folded but active state, and releasing them to attempt to fold in solution. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un
2014-10-17
To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.
Morphotectonic aspects of active folding in Zagros Mountains (Fin, SE of Iran)
NASA Astrophysics Data System (ADS)
Roustaei, M.; Abbasi, M.
2008-05-01
Active deformation in Iran, structural province of Zagros is a result of the convergence between the Arabian & Eurasian plates. The Zagros Mountains in southern Iran are one of the seismically active region & is introduced as fold-thrust belt trending NW-SE within the Arabian plate. Fin lies in Hormozgan province; the south of Iran. The vastness is surrounded by central Iran in the north, High Zagros in the North West and west, Folded Zagros in the east, Makran in the south east and Persian Gulf in the south. The study area is determined by complex structures, alternation of folding, salt diapers and faulting. The surface geology mainly comprises Neogene; Marls, Conglomerate, Sandstones (Mishan, Aghajari, Bakhtiyari formations), old fans and alluvium as syncline that Shur River cuts its north limb and passes from the middle of core .The older formations( Ghachsaran, Rzak and Guri member) folded into prominent anticlines. The fold axes mostly follow the parallel trends .Folds trending are NW-SE (Tashkend anticline), NE-SW (Khur anticline), E-W (Guniz & Handun anticline) and the trend of axes Baz fold in the main part is E-W. Hormoz salt also outcrops in the cores of many whaleback anticlines. Thus, anticlines may be cored with evaporates, even though no salt is currently exposed at the surface. Reason of selecting this area as an example referred to active seismcity. Release of energy is gradually in every events, this seismic character cusses that there was not earthquake with high magnitude in the area but it can not be a role. Answer to the question concerning relationship between folding of the crust layer and faulting at depth is more difficult. There is 2 terms to describe this relationship; "detachment folds" and" forced folds". In this paper, we try to analysis of different satellite imagery; Aster, spot and digital elevation model with high resolution (10 m) in order to detect geomorphic indicators which can help us to find a relationship between faulting and folding in the Fin area and interprate the seismcity.
Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R
2011-05-25
HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.
Pan, Tai-Long; Wang, Pei-Wen; Al-Suwayeh, Saleh A; Huang, Yi-Ju; Fang, Jia-You
2012-11-01
Nanobubbles with acoustical activity are used as both diagnostic and therapeutic carriers for detecting and treating diseases. We aimed to prepare nanobubbles and assess toxic responses to them in the liver and kidneys. The cytotoxicity of nanobubbles was determined by examining the viability of liver (HepG2) and kidney (293T) cell lines after a 24-h treatment at various concentrations (0.01-2%). Toxic effects of different formulations were compared by determining functional markers such as γ-glutamyl transferase (γ-GT) and blood urea nitrogen (BUN) after intravenous administration of nanobubbles. Cationic nanobubbles caused concentration-dependent cytotoxicity against cultured cells with a more significant effect in the liver than in the kidneys. A significant reduction of viability was revealed at a concentration as low as 0.1%. Cational systems with soyaethyl morpholinium ethosulfate (SME) exhibited the greatest γ-GT level at 6-fold higher than the control. Immunohistochemistry detected liver fibrosis and inflammation with nanobubbles treatment, especially SME-containing ones at higher doses. According to plasma proteomic profiles, gelsolin and fetuin-B were significantly downregulated 3-fold in the high-dose SME-treated group. Transthyretin decreased by 6-fold in this group. The fibrinogen gamma chain expression was highly elevated. The results suggest that these protein biomarkers are sensitive for assessing the risk of nanobubble exposure. This study is the first to systematically evaluate the possible toxicity of nanobubbles in the liver and kidneys. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ho, Tin-Yun; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Hsiang, Chien-Yun
2017-02-01
Bioactive peptides derived from foods have shown beneficial anti-inflammatory potential. Inhibitory κB kinase-β (IKKβ) plays a crucial role in the activation of nuclear factor-κB (NF-κB), a transcription factor involved in inflammation. Here we applied proteomic and bioinformatics approaches to identify anti-inflammatory peptides that target IKKβ from corn silk. Corn silk extract significantly suppressed lipopolysaccharide (LPS)-induced NF-κB activities [(1.7 ± 0.2)-fold vs (3.0 ± 0.6)-fold, p < 0.05] in cells. Trypsin hydrolysate of corn silk also suppressed LPS-induced NF-κB activities [(1.1 ± 0.3)-fold vs 3.3 ± 0.5 fold, p < 0.01]. In addition, both corn silk extract and trypsin hydrolysate significantly inhibited LPS-induced interleukin-1β (IL-1β) production by 58.3 ± 4.5 and 55.1 ± 7.4%, respectively. A novel peptide, FK2, docked into the ATP-binding pocket of IKKβ, was further identified from trypsin hydrolysis of corn silk. FK2 inhibited IKKβ activities, IκB phosphorylation, and subsequent NF-κB activation [(2.3 ± 0.4)-fold vs (5.5 ± 0.4)-fold, p < 0.001]. Moreover, FK2 significantly reduced NF-κB-driven luminescent signals in organs by 5-11-fold and suppressed LPS-induced NF-κB activities and IL-β production in tissues. In conclusion, our findings indicated that corn silk displayed anti-inflammatory abilities. In addition, we first identified an anti-inflammatory peptide FK2 from corn silk. Moreover, the anti-inflammatory effect of FK2 might be through IKKβ-NF-κB signaling pathways.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Mueller, K.; Togo, M.
2004-12-01
We present structural models constrained by tectonic geomorphology, surface geologic mapping, shallow borehole transects and a high-resolution S-wave seismic reflection profile to define the kinematic evolution of a coseismic fold scarp along the Nobi-Ise fault zone (NIFZ). The NIFZ is an active intraplate fault system in central Japan, and consists of a 110-km-long array of active, east-verging reverse faults. Fold scarps along the Yoro fault are interpreted as produced during a large historic blind-thrust earthquake. The Yoro Mountains form the stripped core of the largest structure in the NIFZ and expose Triassic-Jurassic basement that are thrust eastward over a 2-km-thick sequence of Pliocene-Pleistocene strata deposited in the Nobi basin. This basement-cored fold is underlain by an active blind thrust that is expressed as late Holocene fold scarps along its eastern flank. Drilling investigations across the fold scarp at a site near Shizu identified at least three episodes of active folding associated with large earthquakes on the Yoro fault. Radiocarbon ages constrain the latest event as having occurred in a period that contains historical evidence for a large earthquake in A.D. 1586. A high resolution, S-wave seismic reflection profile at the same site shows that the topographic fold scarp coincides with the projected surface trace of the synclinal axis, across which the buried, early Holocene to historic sedimentary units are folded. This is interpreted to indicate that the structure accommodated coseismic fault-propagation folding during the A.D. 1586 blind thrust earthquake. Flexural-slip folding associated with secondary bedding-parallel thrusts may also deform late Holocene strata and act to consume slip on the primary blind thrust across the synclinal axial surfaces. The best-fitting trishear model for folded ca. 13 ka gravels deposited across the forelimb requires a 28\\deg east-dipping thrust fault. This solution suggests that a 4.2 mm/yr of slip rate has been accommodated on the Yoro fault during the late Holocene, with an average vertical rate of 1.9 mm/yr. This is consistent with longer-term slip rates calculated by a structural relief across a ca. 7.3 ka volcanic ash horizon (1.6 mm/yr), and ca. 110 ka innerbay clays (1.3 mm/yr) deposited across the forelimb. Our trishear model is thus able to account for the bulk of the folding history accommodated at shorter millennial timescales, suggesting that this technique may be used to adequately define slip rates on blind thrust faults.
Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein
2005-01-01
The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561
Texidó, Laura; Romero, Claudia; García-Valero, José; Fernández Montoli, M. Eulalia; Baixeras, Núria; Condom, Enric; Ponce, Jordi; García-Tejedor, Amparo; Martín-Satué, Mireia
2014-01-01
Endometriosis, defined as the growth of endometrial tissue outside the uterus, is a common gynecologic condition affecting millions of women worldwide. It is an inflammatory, estrogen-dependent complex disorder, with broad symptomatic variability, pelvic pain, and infertility being the main characteristics. Ovarian endometriomas are frequently developed in women with endometriosis. Late diagnosis is one of the main problems of endometriosis; thus, it is important to identify biomarkers for early diagnosis. The aim of the present work is to evaluate the ecto-nucleotidases activities in the contents of endometriomas. These enzymes, through the regulation of extracellular ATP and adenosine levels, are key enzymes in inflammatory processes, and their expression has been previously characterized in human endometrium. To achieve our objective, the echo-guided aspirated fluids of endometriomas were analyzed by evaluating the ecto-nucleotidases activities and compared with simple cysts. Our results show that enzyme activities are quantifiable in the ovarian cysts aspirates and that endometriomas show significantly higher ecto-nucleotidases activities than simple cysts (5.5-fold increase for ATPase and 20-fold for ADPase), thus being possible candidates for new endometriosis biomarkers. Moreover, we demonstrate the presence of ecto-nucleotidases bearing exosomes in these fluids. These results add up to the knowledge of the physiopathologic mechanisms underlying endometriosis and, open up a promising new field of study. PMID:25276049
Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E
2015-01-01
Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462–484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake–metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities. PMID:26678364
Dauchy, Robert T; Hoffman, Aaron E; Wren-Dail, Melissa A; Hanifin, John P; Warfield, Benjamin; Brainard, George C; Xiang, Shulin; Yuan, Lin; Hill, Steven M; Belancio, Victoria P; Dauchy, Erin M; Smith, Kara; Blask, David E
2015-12-01
Light controls pineal melatonin production and temporally coordinates circadian rhythms of metabolism and physiology in normal and neoplastic tissues. We previously showed that peak circulating nocturnal melatonin levels were 7-fold higher after daytime spectral transmittance of white light through blue-tinted (compared with clear) rodent cages. Here, we tested the hypothesis that daytime blue-light amplification of nocturnal melatonin enhances the inhibition of metabolism, signaling activity, and growth of prostate cancer xenografts. Compared with male nude rats housed in clear cages under a 12:12-h light:dark cycle, rats in blue-tinted cages (with increased transmittance of 462-484 nm and decreased red light greater than 640 nm) evinced over 6-fold higher peak plasma melatonin levels at middark phase (time, 2400), whereas midlight-phase levels (1200) were low (less than 3 pg/mL) in both groups. Circadian rhythms of arterial plasma levels of linoleic acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were disrupted in rats in blue cages as compared with the corresponding entrained rhythms in clear-caged rats. After implantation with tissue-isolated PC3 human prostate cancer xenografts, tumor latency-to-onset of growth and growth rates were markedly delayed, and tumor cAMP levels, uptake-metabolism of linoleic acid, aerobic glycolysis (Warburg effect), and growth signaling activities were reduced in rats in blue compared with clear cages. These data show that the amplification of nighttime melatonin levels by exposing nude rats to blue light during the daytime significantly reduces human prostate cancer metabolic, signaling, and proliferative activities.
Waste vinegar residue as substrate for phytase production.
Wang, Zhi-Hong; Dong, Xiao-Fang; Zhang, Guo-Qing; Tong, Jian-Ming; Zhang, Qi; Xu, Shang-Zhong
2011-12-01
Waste vinegar residue, the by-product of vinegar processing, was used as substrate for phytase production from Aspergillus ficuum NTG-23 in solid-state fermentation to investigate the potential for the efficient re-utilization or recycling of waste vinegar residue. Statistical designs were applied in the processing of phytase production. First, a Plackett-Burman (PB) design was used to evaluate eleven parameters: glucose, starch, wheat bran, (NH(4))(2)SO(4), NH(4)NO(3), tryptone, soybean meal, MgSO(4)·7H(2)O, CaCl(2)·7H(2)O, FeSO(4)·7H(2)O, incubation time. The PB experiments showed that there were three significant factors: glucose, soybean meal and incubation time. The closest values to the optimum point were then derived by steepest ascent path. Finally, a mathematical model was created and validated to explain the behavioural process after these three significant factors were optimized using response surface methodology (RSM). The best phytase activity was attained using the following conditions: glucose (7.2%), soybean meal (5.1%), and incubation time (271 h). The phytase activity was 7.34-fold higher due to optimization by PB design, steepest ascent path design and RSM. The phytase activity was enhanced 0.26-fold in comparison with the results by the second step of steepest ascent path design. The results indicate that with waste vinegar residue as a substrate higher production of phytase from Aspergillus ficuum NTG-23 could be obtained through an optimization process and that this method might be applied to an integrated system for recycling of the waste vinegar residue.
Fluoroquinolone treatment and susceptibility of isolates from bacterial keratitis.
Ray, Kathryn J; Prajna, Lalitha; Srinivasan, Muthiah; Geetha, Manoharan; Karpagam, Rajarathinam; Glidden, David; Oldenburg, Catherine E; Sun, Catherine Q; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M
2013-03-01
To analyze the relationship between fluoroquinolone use at presentation and minimum inhibitory concentration in bacterial keratitis. The Steroids for Corneal Ulcers Trial was a randomized, double-masked, placebo-controlled trial assessing the effect of adjunctive topical corticosteroid treatment on outcomes in bacterial keratitis. After presentation, all patients were treated with moxifloxacin hydrochloride, 0.5%. We compare antibiotic use at presentation with minimum inhibitory concentration against moxifloxacin for all isolates. Separate analyses accounted for organism species and fluoroquinolone generation. Topical fluoroquinolone use at presentation was reported in 92 of 480 cases (19.2%). Causative organisms in the 480 cases included Streptococcus pneumoniae (247 cases [51.5%]), Pseudomonas aeruginosa (109 cases [22.7%]), and Nocardia species (55 cases [11.5%]). Isolates from patients who reported fluoroquinolone use at presentation had a 2.01-fold-higher minimum inhibitory concentration (95% CI, 1.39-fold to 2.91-fold; P < .001). Fourth-generation fluoroquinolones were associated with a 3.48-fold-higher minimum inhibitory concentration than those isolates that were not exposed to pretreatment at enrollment (95% CI, 1.99-fold to 6.06-fold; P < .001). This study provides evidence that prior use of fluoroquinolones is associated with antibiotic resistance. clinicaltrials.gov Identifier: NCT00324168.