Sample records for fold vibratory patterns

  1. Vocal Fold Vibration Following Surgical Intervention in Three Vocal Pathologies: A Preliminary Study.

    PubMed

    Chen, Wenli; Woo, Peak; Murry, Thomas

    2017-09-01

    High-speed videoendoscopy captures the cycle-to-cycle vibratory motion of each individual vocal fold in normal and severely disordered phonation. Therefore, it provides a direct method to examine the specific vibratory changes following vocal fold surgery. The purpose of this study was to examine the vocal fold vibratory pattern changes in the surgically treated pathologic vocal fold and the contralateral vocal fold in three vocal pathologies: vocal polyp (n = 3), paresis or paralysis (n = 3), and scar (n = 3). Digital kymography was used to extract high-speed kymographic vocal fold images at the mid-membranous region of the vocal fold. Spectral analysis was subsequently applied to the digital kymography to quantify the cycle-to-cycle movements of each vocal fold, expressed as a spectrum. Surgical modification resulted in significantly improved spectral power of the treated pathologic vocal fold. Furthermore, the contralateral vocal fold also presented with improved spectral power irrespective of vocal pathology. In comparison with normal vocal fold spectrum, postsurgical vocal fold vibrations continued to demonstrate decreased vibratory amplitude in both vocal folds. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. Electroglottographic parameterization of the effects of gender, vowel and phonatory registers on vocal fold vibratory patterns: an Indian perspective.

    PubMed

    Paul, Nilanjan; Kumar, Suman; Chatterjee, Indranil; Mukherjee, Biswarup

    2011-01-01

    In-depth study on laryngeal biomechanics and vocal fold vibratory patterns reveal that a single vibratory cycle can be divided into two major phases, the closed and open phase, which is subdivided into opening and closing phases. Studies reveal that the relative time course of abduction and adduction, which in turn is dependent on the relative relaxing and tensing of the vocal fold cover and body, to be the determining factor in production of a particular vocal register like the modal (or chest), falsetto, glottal fry registers. Studies further point out Electroglottography to be particularly suitable for the study of vocal vibratory patterns during register changes. However, to date, there has been limited study on quantitative parameterization of EGG wave form in vocal fry register. Moreover, contradictory findings abound in literature regarding effects of gender and vowel types on vocal vibratory patterns, especially during phonation at different registers. The present study endeavors to find out the effects of vowel and gender differences on the vocal fold vibratory patterns in different registers and how these would be reflected in standard EGG parameters of Contact Quotient (CQ) and Contact Index (CI), taking into consideration the Indian sociolinguistic context. Electroglottographic recordings of 10 young adults (5 males and 5 females) were taken while the subjects phonated the three vowels /a/,/i/,/u/ each in two vocal registers, modal and vocal fry. Obtained raw EGG were further normalized using the Derived EGG algorithm and theCQ and CI values were derived. Obtained data were subject to statistical analysis using the 3-way ANOVA with gender, vowel and vocal register as the three variables. Post-hoc Dunnett C multiple comparison analysis were also performed. Results reveal that CQ values are significantly higher in vocal fry than modal phonation for both males and females, indicating a relatively hyperconstricted vocal system during vocal fry. The males have significantly greater CQ values than females both at modal and vocal fry phonations which indicate that the males are predisposed to greater vocal fold constriction. Females demonstrated no significant increase in CI values in vocal fry state; and in some cases actually decrease in the CI values which suggest an inherently distinct vocal fold physiological adjustment from that in males. No vowel effects were found in any conditions. Perturbation values (CQP and CIP) are significantly more in vocal fry register than in modal register, and the increase was more in case of females than males. The findings give strong evidence to certain hypotheses in literature regarding effects of vowel, gender and phonatory register on vocal fold vibratory patterns.

  3. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  4. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Evolving role of mitomycin-C laryngology

    NASA Astrophysics Data System (ADS)

    Richards, Steven V.; Garrett, C. Gaelyn

    2001-05-01

    Topical mitomycin-C, a chemotherapeutic agent and a fibroblast inhibitor, has been successfully used in larynx, primarily to treat stenosis. Subglottic, tracheal, and anterior glottic stenosis have all shown promising results in a canine model. Less favorable results have been obtained when topical mitomycin-C is used on the vocal folds following surgical excision of mucosa. In the vocal fold studies, laryngeal videostroboscopy revealed diminished mucosal wave vibration in the vocal folds treated with mitomycin-C as well as a more atrophic appearance to the vibratory surface. The tissue treated with mitomycin-C showed fewer fibroblasts and less collagen. However, inflammatory infiltrate was not significantly different between the treated and untreated tissue. These results are consistent with the known suppression of fibroblast proliferation by mitomycin-C. In contrast to the positive effects of mitomycin-C on stenosis, the observed decrease in the healing response in the vocal fold had negative consequences on vocal fold vibratory pattern.

  6. A method for assessing the regional vibratory pattern of vocal folds by analysing the video recording of stroboscopy.

    PubMed

    Lee, J S; Kim, E; Sung, M W; Kim, K H; Sung, M Y; Park, K S

    2001-05-01

    Stroboscopy and kymography have been used to examine the motional abnormality of vocal folds and to visualise their regional vibratory pattern. In a previous study (Laryngoscope, 1999), we introduced the conceptual idea of videostrobokymography, in which we applied the concept of kymography on the pre-recorded video images using stroboscopy, and showed its possible clinical application to various disorders in vocal folds. However, a more detailed description about the software and the mathematical formulation used in this system is needed for the reproduction of similar systems. The composition of hardwares, user-interface and detail procedures including mathematical equations in videostrobokymography software is presented in this study. As an initial clinical trial, videostrobokymography was applied to the preoperative and postoperative videostroboscopic images of 15 patients with Reinke's edema. On preoperative examination, videostrobokymograms showed irregular pattern of mucosal wave and, in some patients, a relatively constant glottic gap during phonation. After the operation, the voice quality of all patients was improved in acoustic and aerodynamic assessments, and videostrobokymography showed clearly improved mucosal waves (change in open quotient: mean +/- SD= 0.11 +/- 0.05).

  7. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  8. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.

    PubMed

    Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E

    2011-02-01

    In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.

  9. Complex vibratory patterns in an elephant larynx.

    PubMed

    Herbst, Christian T; Svec, Jan G; Lohscheller, Jörg; Frey, Roland; Gumpenberger, Michaela; Stoeger, Angela S; Fitch, W Tecumseh

    2013-11-01

    Elephants' low-frequency vocalizations are produced by flow-induced self-sustaining oscillations of laryngeal tissue. To date, little is known in detail about the vibratory phenomena in the elephant larynx. Here, we provide a first descriptive report of the complex oscillatory features found in the excised larynx of a 25 year old female African elephant (Loxodonta africana), the largest animal sound generator ever studied experimentally. Sound production was documented with high-speed video, acoustic measurements, air flow and sound pressure level recordings. The anatomy of the larynx was studied with computed tomography (CT) and dissections. Elephant CT vocal anatomy data were further compared with the anatomy of an adult human male. We observed numerous unusual phenomena, not typically reported in human vocal fold vibrations. Phase delays along both the inferior-superior and anterior-posterior (A-P) dimension were commonly observed, as well as transverse travelling wave patterns along the A-P dimension, previously not documented in the literature. Acoustic energy was mainly created during the instant of glottal opening. The vestibular folds, when adducted, participated in tissue vibration, effectively increasing the generated sound pressure level by 12 dB. The complexity of the observed phenomena is partly attributed to the distinct laryngeal anatomy of the elephant larynx, which is not simply a large-scale version of its human counterpart. Travelling waves may be facilitated by low fundamental frequencies and increased vocal fold tension. A travelling wave model is proposed, to account for three types of phenomena: A-P travelling waves, 'conventional' standing wave patterns, and irregular vocal fold vibration.

  10. Dynamic Vibration Cooperates with Connective Tissue Growth Factor to Modulate Stem Cell Behaviors

    PubMed Central

    Tong, Zhixiang; Zerdoum, Aidan B.; Duncan, Randall L.

    2014-01-01

    Vocal fold disorders affect 3–9% of the U.S. population. Tissue engineering offers an alternative strategy for vocal fold repair. Successful engineering of vocal fold tissues requires a strategic combination of therapeutic cells, biomimetic scaffolds, and physiologically relevant mechanical and biochemical factors. Specifically, we aim to create a vocal fold-like microenvironment to coax stem cells to adopt the phenotype of vocal fold fibroblasts (VFFs). Herein, high frequency vibratory stimulations and soluble connective tissue growth factor (CTGF) were sequentially introduced to mesenchymal stem cells (MSCs) cultured on a poly(ɛ-caprolactone) (PCL)-derived microfibrous scaffold for a total of 6 days. The initial 3-day vibratory culture resulted in an increased production of hyaluronic acids (HA), tenascin-C (TNC), decorin (DCN), and matrix metalloproteinase-1 (MMP1). The subsequent 3-day CTGF treatment further enhanced the cellular production of TNC and DCN, whereas CTGF treatment alone without the vibratory preconditioning significantly promoted the synthesis of collagen I (Col 1) and sulfated glycosaminoglycans (sGAGs). The highest level of MMP1, TNC, Col III, and DCN production was found for cells being exposed to the combined vibration and CTGF treatment. Noteworthy, the vibration and CTGF elicited a differential stimulatory effect on elastin (ELN), HA synthase 1 (HAS1), and fibroblast-specific protein-1 (FSP-1). The mitogenic activity of CTGF was only elicited in naïve cells without the vibratory preconditioning. The combined treatment had profound, but opposite effects on mitogen-activated protein kinase (MAPK) pathways, Erk1/2 and p38, and the Erk1/2 pathway was critical for the observed mechano-biochemical responses. Collectively, vibratory stresses and CTGF signals cooperatively coaxed MSCs toward a VFF-like phenotype and accelerated the synthesis and remodeling of vocal fold matrices. PMID:24456068

  11. Vocal fold contact patterns based on normal modes of vibration.

    PubMed

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen

    2013-01-01

    Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542

  13. Microvascular lesions of the true vocal fold.

    PubMed

    Postma, G N; Courey, M S; Ossoff, R H

    1998-06-01

    Microvascular lesions, also called varices or capillary ectasias, in contrast to vocal fold polyps with telangiectatic vessels, are relatively small lesions arising from the microcirculation of the vocal fold. Varices are most commonly seen in female professional vocalists and may be secondary to repetitive trauma, hormonal variations, or repeated inflammation. Microvascular lesions may either be asymptomatic or cause frank dysphonia by interrupting the normal vibratory pattern, mass, or closure of the vocal folds. They may also lead to vocal fold hemorrhage, scarring, or polyp formation. Laryngovideostroboscopy is the key in determining the functional significance of vocal fold varices. Management of patients with a varix includes medical therapy, speech therapy, and occasionally surgical vaporization. Indications for surgery are recurrent hemorrhage, enlargement of the varix, development of a mass in conjunction with the varix or hemorrhage, and unacceptable dysphonia after maximal medical and speech therapy due to a functionally significant varix.

  14. Viscoelastic properties of rabbit vocal folds after augmentation.

    PubMed

    Hertegård, Stellan; Dahlqvist, Ake; Laurent, Claude; Borzacchiello, Assunta; Ambrosio, Luigi

    2003-03-01

    Vocal fold function is closely related to tissue viscoelasticity. Augmentation substances may alter the viscoelastic properties of vocal fold tissues and hence their vibratory capacity. We sought to investigate the viscoelastic properties of rabbit vocal folds in vitro after injections of various augmentation substances. Polytetrafluoroethylene (Teflon), cross-linked collagen (Zyplast), and cross-linked hyaluronan, hylan b gel (Hylaform) were injected into the lamina propria and the thyroarytenoid muscle of rabbit vocal folds. Dynamic viscosity of the injected vocal fold as a function of frequency was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Vocal fold samples injected with hylan b gel showed the lowest dynamic viscosity, quite close to noninjected control samples. Vocal folds injected with polytetrafluoroethylene showed the highest dynamic viscosity followed by the collagen samples. The data indicated that hylan b gel in short-term renders the most natural viscoelastic properties to the vocal fold among the substances tested. This is of importance to restore/preserve the vibratory capacity of the vocal folds when glottal insufficiency is treated with injections.

  15. Repairing the vibratory vocal fold.

    PubMed

    Long, Jennifer L

    2018-01-01

    A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. Translational research. Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. NA. Laryngoscope, 128:153-159, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Asymmetric spatiotemporal chaos induced by a polypoid mass in the excised larynx

    PubMed Central

    Zhang, Yu; Jiang, Jack J.

    2008-01-01

    In this paper, asymmetric spatiotemporal chaos induced by a polypoid mass simulating the laryngeal pathology of a vocal polyp is experimentally observed using high-speed imaging in an excised larynx. Spatiotemporal analysis reveals that the normal vocal folds show spatiotemporal correlation and symmetry. Normal vocal fold vibrations are dominated mainly by the first vibratory eigenmode. However, pathological vocal folds with a polypoid mass show broken symmetry and spatiotemporal irregularity. The spatial correlation is decreased. The pathological vocal folds spread vibratory energy across a large number of eigenmodes and induce asymmetric spatiotemporal chaos. High-order eigenmodes show complicated dynamics. Spatiotemporal analysis provides a valuable biomedical application for investigating the spatiotemporal chaotic dynamics of pathological vocal fold systems with a polypoid mass and may represent a valuable clinical tool for the detection of laryngeal mass lesion using high-speed imaging. PMID:19123612

  17. Effects of Vocal Fold Nodules on Glottal Cycle Measurements Derived from High-Speed Videoendoscopy in Children

    PubMed Central

    2016-01-01

    The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5–11 years) and 20 age and gender matched typically developing children (5–11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability) of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules. PMID:27124157

  18. A Rat Excised Larynx Model of Vocal Fold Scar

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  19. Tissue engineering therapies for the vocal fold lamina propria.

    PubMed

    Kutty, Jaishankar K; Webb, Ken

    2009-09-01

    The vocal folds are laryngeal connective tissues with complex matrix composition/organization that provide the viscoelastic mechanical properties required for voice production. Vocal fold injury results in alterations in tissue structure and corresponding changes in tissue biomechanics that reduce vocal quality. Recent work has begun to elucidate the biochemical changes underlying injury-induced pathology and to apply tissue engineering principles to the prevention and reversal of vocal fold scarring. Based on the extensive history of injectable biomaterials in laryngeal surgery, a major focus of regenerative therapies has been the development of novel scaffolds with controlled in vivo residence time and viscoelastic properties approximating the native tissue. Additional strategies have included cell transplantation and delivery of the antifibrotic cytokine hepatocyte growth factor, as well as investigation of the effects of the unique vocal fold vibratory microenvironment using in vitro dynamic culture systems. Recent achievements of significant reductions in fibrosis and improved recovery of native tissue viscoelasticity and vibratory/functional performance in animal models are rapidly moving vocal fold tissue engineering toward clinical application.

  20. Quantitative Study of Vibrational Symmetry of Injured Vocal Folds via Digital Kymography in Excised Canine Larynges

    ERIC Educational Resources Information Center

    Krausert, Christopher R.; Ying, Di; Zhang, Yu; Jiang, Jack J.

    2011-01-01

    Purpose: Digital kymography and vocal fold curve fitting are blended with detailed symmetry analysis of kymograms to provide a comprehensive characterization of the vibratory properties of injured vocal folds. Method: Vocal fold vibration of 12 excised canine larynges was recorded under uninjured, unilaterally injured, and bilaterally injured…

  1. Characterizing Vibratory Kinematics in Children and Adults with High-Speed Digital Imaging

    ERIC Educational Resources Information Center

    Patel, Rita; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Purpose: The aim of this study is to quantify and identify characteristic vibratory motion in typically developing prepubertal children and young adults using high-speed digital imaging. Method: The vibrations of the vocal folds were recorded from 27 children (ages 5-9 years) and 35 adults (ages 21-45 years), with high speed at 4,000 frames per…

  2. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts.

    PubMed

    Kutty, Jaishankar K; Webb, Ken

    2010-01-01

    The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high-frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulphated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture, relative to static controls. Cellular remodelling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition and improving vocal quality. 2009 John Wiley & Sons, Ltd.

  3. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  4. Quantitative Analysis of Vocal Fold Vibration in Vocal Fold Paralysis With the Use of High-speed Digital Imaging.

    PubMed

    Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro

    2016-11-01

    The goal of this work was to objectively elucidate the vibratory characteristics of vocal fold paralysis (VFP) using high-speed digital imaging (HSDI). HSDI was performed in 29 vocally healthy subjects (12 women and 17 men) and in 107 patients with VFP (40 women and 67 men). Then, the HSDI data were evaluated by visual-perceptual rating, single-line kymography, multiline kymography, laryngotopography, and glottal area waveform analysis. Patients with VFP compared with vocally healthy subjects revealed more frequent incomplete glottal closure, greater asymmetry in amplitude, mucosal wave, frequency, and phase, as well as larger open quotient, smaller speed index, larger maximal and minimal glottal area, and smaller glottal area difference. Paralyzed vocal folds in VFP revealed reduced mucosal wave than nonparalyzed vocal folds in VFP or in intact vocal folds in vocally healthy subjects. HSDI was effective in documenting the characteristics of vocal fold vibrations in patients with VFP and in exploring the vibratory disturbance for estimating the severity of dysphonia. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: Experiment and simulation

    PubMed Central

    Zhang, Zhaoyan; Hieu Luu, Trung

    2012-01-01

    Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891

  6. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.

    PubMed

    Zhang, Zhaoyan; Luu, Trung Hieu

    2012-09-01

    Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.

  7. Spatiotemporal Quantification of Vocal Fold Vibration After Exposure to Superficial Laryngeal Dehydration: A Preliminary Study.

    PubMed

    Patel, Rita R; Walker, Reuben; Sivasankar, Preeti M

    2016-07-01

    The aim of the study was to evaluate the effects of a superficial laryngeal dehydration challenge on vocal fold vibration in young healthy adults using high-speed video imaging. In this prospective study, the effects of a 60-minute superficial laryngeal dehydration challenge on spatial (speed quotient, amplitude quotient) and temporal measures (jitter percentage, vibratory onset time) of vocal fold vibration and phonation threshold pressure (PTP) were evaluated in 10 (male = 4, female = 6) vocally normal adults (21-29 years). All measures except the vibratory onset time were measured at the 10 (low) and 80 (high) percent level of their pitch range. The vibratory onset time was obtained at habitual pitch and loudness level. Superficial laryngeal dehydration was induced by oral breathing in low ambient humidity. Prechallenge and postchallenge differences were statistically investigated using t tests with Bonferroni correction. The speed quotient at low-pitch phonation significantly decreased after oral breathing of low ambient humidity. Other spatiotemporal measures and PTP at low and high pitch were not significant after challenge. Results from this initial study have implications for the use of high-speed video imaging to detect and quantify the subtle changes in vocal fold vibrations after superficial dehydration in healthy individuals. Preliminary findings indicate that superficial dehydration in healthy individuals results in spatial deviations at low pitch. However, further studies are warranted to identify additional spatiotemporal changes in vocal fold vibration after superficial dehydration in normal and disordered populations. Published by Elsevier Inc.

  8. Influence of Left-Right Asymmetries on Voice Quality in Simulated Paramedian Vocal Fold Paralysis

    ERIC Educational Resources Information Center

    Samlan, Robin A.; Story, Brad H.

    2017-01-01

    Purpose: The purpose of this study was to determine the vocal fold structural and vibratory symmetries that are important to vocal function and voice quality in a simulated paramedian vocal fold paralysis. Method: A computational kinematic speech production model was used to simulate an exemplar "voice" on the basis of asymmetric…

  9. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.

    PubMed

    Moisik, Scott R; Esling, John H

    2014-04-01

    PURPOSE Physiological and phonetic studies suggest that, at moderate levels of epilaryngeal stricture, the ventricular folds impinge upon the vocal folds and influence their dynamical behavior, which is thought to be responsible for constricted laryngeal sounds. In this work, the authors examine this hypothesis through biomechanical modeling. METHOD The dynamical response of a low-dimensional, lumped-element model of the vocal folds under the influence of vocal-ventricular fold coupling was evaluated. The model was assessed for F0 and cover-mass phase difference. Case studies of simulations of different constricted phonation types and of glottal stop illustrate various additional aspects of model performance. RESULTS Simulated vocal-ventricular fold coupling lowers F0 and perturbs the mucosal wave. It also appears to reinforce irregular patterns of oscillation, and it can enhance laryngeal closure in glottal stop production. CONCLUSION The effects of simulated vocal-ventricular fold coupling are consistent with sounds, such as creaky voice, harsh voice, and glottal stop, that have been observed to involve epilaryngeal stricture and apparent contact between the vocal folds and ventricular folds. This supports the view that vocal-ventricular fold coupling is important in the vibratory dynamics of such sounds and, furthermore, suggests that these sounds may intrinsically require epilaryngeal stricture.

  10. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    ERIC Educational Resources Information Center

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  11. Vocal Fold Phase Asymmetries in Patients with Voice Disorders: A Study across Visualization Techniques

    ERIC Educational Resources Information Center

    Bonilha, Heather Shaw; Deliyski, Dimitar D.; Whiteside, Joanna Piasecki; Gerlach, Terri Treman

    2012-01-01

    Purpose: To examine differences in vocal fold vibratory phase asymmetry judged from stroboscopy, high-speed videoendoscopy (HSV), and the HSV-derived playbacks of mucosal wave kymography, digital kymography, and a static medial digital kymography image of persons with hypofunctional and hyperfunctional voice disorders. Differences between the…

  12. Experimental Investigation on Minimum Frame Rate Requirements of High-Speed Videoendoscopy for Clinical Voice Assessment

    PubMed Central

    Deliyski, Dimitar D; Powell, Maria EG; Zacharias, Stephanie RC; Gerlach, Terri Treman; de Alarcon, Alessandro

    2015-01-01

    This study investigated the impact of high-speed videoendoscopy (HSV) frame rates on the assessment of nine clinically-relevant vocal-fold vibratory features. Fourteen adult patients with voice disorder and 14 adult normal controls were recorded using monochromatic rigid HSV at a rate of 16000 frames per second (fps) and spatial resolution of 639×639 pixels. The 16000-fps data were downsampled to 16 other rate denominations. Using paired comparisons design, nine common clinical vibratory features were visually compared between the downsampled and the original images. Three raters reported the thresholds at which: (1) a detectable difference between the two videos was first noticed, and (2) differences between the two videos would result in a change of clinical rating. Results indicated that glottal edge, mucosal wave magnitude and extent, aperiodicity, contact and loss of contact of the vocal folds were the vibratory features most sensitive to frame rate. Of these vibratory features, the glottal edge was selected for further analysis, due to its higher rating reliability, universal prevalence and consistent definition. Rates of 8000 fps were found to be free from visually-perceivable feature degradation, and for rates of 5333 fps, degradation was minimal. For rates of 4000 fps and higher, clinical assessments of glottal edge were not affected. Rates of 2000 fps changed the clinical ratings in over 16% of the samples, which could lead to inaccurate functional assessment. PMID:28989342

  13. Viscoelasticity of rabbit vocal folds after injection augmentation.

    PubMed

    Dahlqvist, Ake; Gärskog, Ola; Laurent, Claude; Hertegård, Stellan; Ambrosio, Luigi; Borzacchiello, Assunta

    2004-01-01

    Vocal fold function is related to the viscoelasticity of the vocal fold tissue. Augmentation substances used for injection treatment of voice insufficiency may alter the viscoelastic properties of vocal folds and their vibratory capacity. The objective was to compare the mechanical properties (viscoelasticity) of various injectable substances and the viscoelasticity of rabbit vocal folds, 6 months after injection with one of these substances. Animal model. Cross-linked collagen (Zyplast), double cross-linked hyaluronan (hylan B gel), dextranomers in hyaluronan (DHIA), and polytetrafluoroethylene (Teflon) were injected into rabbit vocal folds. Six months after the injection, the animals were killed and the right- and left-side vocal folds were removed. Dynamic viscosity of the injected substances and the vocal folds was measured with a Bohlin parallel-plate rheometer during small-amplitude oscillation. All injected vocal folds showed a decreasing dynamic viscosity with increasing frequency. Hylan B gel and DiHA showed the lowest dynamic viscosity values, and vocal folds injected with these substances also showed the lowest dynamic viscosity (similar to noninjected control samples). Teflon (and vocal folds injected with Teflon) showed the highest dynamic viscosity values, followed by the collagen samples. Substances with low viscoelasticity alter the mechanical properties of the vocal fold to a lesser degree than substances with a high viscoelasticity. The data indicated that hylan B gel and DiHA render the most natural viscoelastic properties to the vocal folds. These substances seem to be appropriate for preserving or restoring the vibratory capacity of the vocal folds when glottal insufficiency is treated with augmentative injections.

  14. Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling

    PubMed Central

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose To relate vocal fold structure and kinematics to two acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method A computational, kinematic model of the medial surfaces of the vocal folds was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow and acoustic waveforms and related to the underlying vocal fold kinematics. Results CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1–1.5 mm and decreased with separation > 1.5 mm. Conclusions CPP is generally a function of vocal process separation. H1*-H2* will increase or decrease with vocal process separation based on vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures. PMID:21498582

  15. Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds

    PubMed Central

    Tong, Zhixiang; Duncan, Randall L.

    2013-01-01

    We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues. PMID:23516973

  16. The Effects of the Menstrual Cycle on Vibratory Characteristics of the Vocal Folds Investigated With High-Speed Digital Imaging.

    PubMed

    Kunduk, Melda; Vansant, Mathew B; Ikuma, Takeshi; McWhorter, Andrew

    2017-03-01

    This study investigated the effect of menstrual cycle on vocal fold vibratory characteristics in young women using high-speed digital imaging. This study examined the menstrual phase effect on five objective high-speed imaging parameters and two self-rated perceptual parameters. The effects of oral birth control use were also investigated. Thirteen subjects with no prior voice complaints were included in this study. All data were collected at three different time periods (premenses, postmenses, ovulation) over the course of one menstrual cycle. For five of the 13 subjects, data were collected for two consecutive cycles. Six of 13 subjects were oral birth control users. From high-speed imaging data, five objective parameters were computed: fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, and ratio of first and second harmonics. They were supplemented by two self-rated parameters: Reflux Severity Index and perceptual voice quality rating. Analysis included mixed model linear analysis with repeated measures. Results indicated no significant main effects for menstrual phase, between-cycle, or birth control use in the analysis for mean fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, first and second harmonics, Reflux Severity Index, and perceptual voice quality rating. Additionally, there were no interaction effects. Hormone fluctuations observed across the menstrual cycle do not appear to have direct effect on vocal fold vibratory characteristics in young women with no voice concerns. Birth control use, on the other hand, may have influence on spectral richness of vocal fold vibration. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.

    PubMed

    Samlan, Robin A; Story, Brad H

    2011-10-01

    To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: degree of vocal fold adduction, surface bulging, vibratory nodal point, and supraglottal constriction. CPP and H1-H2 were measured from simulated glottal area, glottal flow, and acoustic waveforms and were related to the underlying vocal fold kinematics. CPP decreased with increased separation of the vocal processes, whereas the nodal point location had little effect. H1-H2 increased as a function of separation of the vocal processes in the range of 1.0 mm to 1.5 mm and decreased with separation > 1.5 mm. CPP is generally a function of vocal process separation. H1*-H2* (see paragraph 6 of article text for an explanation of the asterisks) will increase or decrease with vocal process separation on the basis of vocal fold shape, pivot point for the rotational mode, and supraglottal vocal tract shape, limiting its utility as an indicator of breathy voice. Future work will relate the perception of breathiness to vocal fold kinematics and acoustic measures.

  18. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model

    PubMed Central

    Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel

    2015-01-01

    Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637

  19. A bioreactor for the dynamic mechanical stimulation of vocal-fold fibroblasts based on vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.; Rodriguez, Maritza

    2005-09-01

    During voice production, the vocal folds undergo airflow-induced self-sustained oscillation at a fundamental frequency of around 100-1000 Hz, with an amplitude of around 1-3 mm. The vocal-fold extracellular matrix (ECM), with appropriate tissue viscoelastic properties, is optimally tuned for such vibration. Vocal-fold fibroblasts regulate the gene expressions for key ECM proteins (e.g., collagen, fibronectin, fibromodulin, and hyaluronic acid), and these expressions are affected by the stress fields experi- enced by the fibroblasts. This study attempts to develop a bioreactor for cultivating cells under a micromechanical environment similar to that in vivo, based on the principle of vibro-acoustography. Vocal-fold fibroblasts from primary culture were grown in 3D, biodegradable scaffolds, and were excited dynamically by the radiation force generated by amplitude modulation of two confocal ultrasound beams of slightly different frequencies. Low-frequency acoustic radiation force was applied to the scaffold surface, and its vibratory response was imaged by videostroboscopy. A phantom tissue (standard viscoelastic material) with known elastic modulus was also excited and its vibratory frequency and amplitude were measured by videostroboscopy. Results showed that the bioreactor was capable of delivering mechanical stimuli to the tissue constructs in a physiological frequency range (100-1000 Hz), supporting its potential for vocal-fold tissue engineering applications. [Work supported by NIH Grant R01 DC006101.

  20. Relationships between CSID and vocal fold vibratory function

    NASA Astrophysics Data System (ADS)

    Cooke, Melissa L.

    High correlations have been reported between the acoustic-based Cepstral/Spectral Index of Dysphonia (CSID) and perceptual judgments of dysphonia. This study explores whether CSID provides additional insight and explains more of the variance in HSV-based properties of vocal fold vibratory function than has been reported for other acoustic measures. Using the Analysis of Dysphonia in Speech and Voice (ADSV) program, CSID and its component variables were correlated with HSV-based measures of glottal cycle aperiodicity and glottal area for 20 subjects who underwent phonomicrosurgery. Results indicate CSID is only marginally correlated with glottal cycle aperiodicity in pre- and post-surgical conditions and does not correlate as highly as the cepstral peak prominence alone. Additionally, results reveal higher correlations when examining within-subject change from pre-surgical to post-surgical assessments rather than correlating measures across subjects. Future directions are discussed that aim at improving our understanding of the relationships between acoustic parameters and underlying phonatory function.

  1. A Preliminary Quantitative Comparison of Vibratory Amplitude Using Rigid and Flexible Stroboscopic Assessment.

    PubMed

    Hosbach-Cannon, Carly J; Lowell, Soren Y; Kelley, Richard T; Colton, Raymond H

    2016-07-01

    The purpose of this study was to establish preliminary, quantitative data on amplitude of vibration during stroboscopic assessment in healthy speakers with normal voice characteristics. Amplitude of vocal fold vibration is a core physiological parameter used in diagnosing voice disorders, yet quantitative data are lacking to guide the determination of what constitutes normal vibratory amplitude. Eleven participants were assessed during sustained vowel production using rigid and flexible endoscopy with stroboscopy. Still images were extracted from digital recordings of a sustained /i/ produced at a comfortable pitch and loudness, with F0 controlled so that levels were within ±15% of each participant's comfortable mean level as determined from connected speech. Glottal width (GW), true vocal fold (TVF) length, and TVF width were measured from still frames representing the maximum open phase of the vibratory cycle. To control for anatomic and magnification differences across participants, GW was normalized to TVF length. GW as a ratio of TVF width was also computed for comparison with prior studies. Mean values and standard deviations were computed for the normalized measures. Paired t tests showed no significant differences between rigid and flexible endoscopy methods. Interrater and intrarater reliability values for raw measurements were found to be high (0.89-0.99). These preliminary quantitative data may be helpful in determining normality or abnormality of vocal fold vibration. Results indicate that quantified amplitude of vibration is similar between endoscopic methods, a clinically relevant finding for individuals performing and interpreting stroboscopic assessments. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  2. In Vivo Measurement of Pediatric Vocal Fold Motion Using Structured Light Laser Projection

    PubMed Central

    Patel, Rita R.; Donohue, Kevin D.; Lau, Daniel; Unnikrishnan, Harikrishnan

    2013-01-01

    Summary Objective The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging. Study Design The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6–9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation. Results Independent measurements made on the glottal length of a vocal fold phantom demonstrated a 0.13 mm bias error with a standard deviation of 0.23 mm, indicating adequate precision and accuracy for measuring vocal fold structures and displacement. First, in vivo measurements of amplitude-to-length ratio, peak closing velocity, and impact velocity during phonation in pediatric population and a child with vocal fold nodules are reported. Conclusion The proposed laser projection system can be used to obtain in vivo measurements of absolute length and vibratory features in children and adults. Children have large amplitude-to-length ratio compared with typically developing adults, whereas nodules result in larger peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity compared with typically developing children. PMID:23809569

  3. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to carefully synthesize frequency and acceleration patterns of unknown events within the Excel database into a new file to determine whether or not certain information that is received i s considered a real vibratory source. Once considered as a vibratory source, further analysis is carried out. The resulting information is used to retrain the MEMS to recognize them as known patterns. These different vibratory disturbances are being constantly monitored to observe if, in any way, the disturbances have an effect on the microgravity environment that research experiments are exposed to. If the disturbance has little or no effect on the experiments, then research is continued. However, if the disturbance is harmful to the experiment, scientists act accordingly by either minimizing the source or terminating the research and neither NASA's time nor money is wasted.

  4. Construction and Characterization of a Novel Vocal Fold Bioreactor

    PubMed Central

    Zerdoum, Aidan B.; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-01-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues. PMID:25145349

  5. Construction and characterization of a novel vocal fold bioreactor.

    PubMed

    Zerdoum, Aidan B; Tong, Zhixiang; Bachman, Brendan; Jia, Xinqiao

    2014-08-01

    In vitro engineering of mechanically active tissues requires the presentation of physiologically relevant mechanical conditions to cultured cells. To emulate the dynamic environment of vocal folds, a novel vocal fold bioreactor capable of producing vibratory stimulations at fundamental phonation frequencies is constructed and characterized. The device is composed of a function generator, a power amplifier, a speaker selector and parallel vibration chambers. Individual vibration chambers are created by sandwiching a custom-made silicone membrane between a pair of acrylic blocks. The silicone membrane not only serves as the bottom of the chamber but also provides a mechanism for securing the cell-laden scaffold. Vibration signals, generated by a speaker mounted underneath the bottom acrylic block, are transmitted to the membrane aerodynamically by the oscillating air. Eight identical vibration modules, fixed on two stationary metal bars, are housed in an anti-humidity chamber for long-term operation in a cell culture incubator. The vibration characteristics of the vocal fold bioreactor are analyzed non-destructively using a Laser Doppler Vibrometer (LDV). The utility of the dynamic culture device is demonstrated by culturing cellular constructs in the presence of 200-Hz sinusoidal vibrations with a mid-membrane displacement of 40 µm. Mesenchymal stem cells cultured in the bioreactor respond to the vibratory signals by altering the synthesis and degradation of vocal fold-relevant, extracellular matrix components. The novel bioreactor system presented herein offers an excellent in vitro platform for studying vibration-induced mechanotransduction and for the engineering of functional vocal fold tissues.

  6. Assessment of canine vocal fold function after injection of a new biomaterial designed to treat phonatory mucosal scarring.

    PubMed

    Karajanagi, Sandeep S; Lopez-Guerra, Gerardo; Park, Hyoungshin; Kobler, James B; Galindo, Marilyn; Aanestad, Jon; Mehta, Daryush D; Kumai, Yoshihiko; Giordano, Nicholas; d'Almeida, Anthony; Heaton, James T; Langer, Robert; Herrera, Victoria L M; Faquin, William; Hillman, Robert E; Zeitels, Steven M

    2011-03-01

    Most cases of irresolvable hoarseness are due to deficiencies in the pliability and volume of the superficial lamina propria of the phonatory mucosa. By using a US Food and Drug Administration-approved polymer, polyethylene glycol (PEG), we created a novel hydrogel (PEG30) and investigated its effects on multiple vocal fold structural and functional parameters. We injected PEG30 unilaterally into 16 normal canine vocal folds with survival times of 1 to 4 months. High-speed videos of vocal fold vibration, induced by intratracheal airflow, and phonation threshold pressures were recorded at 4 time points per subject. Three-dimensional reconstruction analysis of 11.7 T magnetic resonance images and histologic analysis identified 3 cases wherein PEG30 injections were the most superficial, so as to maximally impact vibratory function. These cases were subjected to in-depth analyses. High-speed video analysis of the 3 selected cases showed minimal to no reduction in the maximum vibratory amplitudes of vocal folds injected with PEG30 compared to the non-injected, contralateral vocal fold. All PEG30-injected vocal folds displayed mucosal wave activity with low average phonation threshold pressures. No significant inflammation was observed on microlaryngoscopic examination. Magnetic resonance imaging and histologic analyses revealed time-dependent resorption of the PEG30 hydrogel by phagocytosis with minimal tissue reaction or fibrosis. The PEG30 hydrogel is a promising biocompatible candidate biomaterial to restore form and function to deficient phonatory mucosa, while not mechanically impeding residual endogenous superficial lamina propria.

  7. Vibratory onset and offset times in children: A laryngeal imaging study

    PubMed Central

    Patel, Rita R.

    2016-01-01

    Objectives The aim of the study was to evaluate the differences in vibratory onset and offset times across age (adult males, adult females, and children) and waveform types (total glottal area waveform, left glottal area waveform, and right glottal area waveform) using high-speed videoendoscopy. Methods In this prospective study, vibratory onset and offset times were evaluated in a total of 86 participants. Forty-three children (23 girls, 18 boys) between 5–11 years and 43 gender matched vocally normal young adults (23 females and 18 males) in the age range (21–45 years) were recruited. Vibratory onset and offset times were calculated in milliseconds from the total, left, and right Glottal Area Waveform (GAW). A two-factor analysis of variance was used to compare the means among the subject groups (children, adult male, and adult female) and waveform type (total GAW, left GAW, right GAW) for onset and offset variables. Post hoc analyses were performed using the Fishers Least Significant Different test with Bonferroni correction for multiple comparisons. Results Children exhibited significantly shorter vibratory onset and offset times compared to adult males and females. Differences in vibratory onset and offset times were not statistically significant between adult males and females. Across all waveform types (i.e. total GAW, left GAW, and right GAW), no statistical significance was observed among the subject groups. Conclusion This is the first study reporting vibratory onset and offset times in the pediatric population. The study findings lay the foundation for the development of a large age- and gender- based database of the pediatric population to aid the study of the effects of maturation of vocal fold vibration in adulthood. The findings from this study may also provide the basis for evaluating the impact of numerous lesions on tissue pliability, and thereby has potential utility for the clinical differentiation of various lesions. PMID:27368436

  8. Relation of perceived breathiness to laryngeal kinematics and acoustic measures based on computational modeling

    PubMed Central

    Samlan, Robin A.; Story, Brad H.; Bunton, Kate

    2014-01-01

    Purpose To determine 1) how specific vocal fold structural and vibratory features relate to breathy voice quality and 2) the relation of perceived breathiness to four acoustic correlates of breathiness. Method A computational, kinematic model of the vocal fold medial surfaces was used to specify features of vocal fold structure and vibration in a manner consistent with breathy voice. Four model parameters were altered: vocal process separation, surface bulging, vibratory nodal point, and epilaryngeal constriction. Twelve naïve listeners rated breathiness of 364 samples relative to a reference. The degree of breathiness was then compared to 1) the underlying kinematic profile and 2) four acoustic measures: cepstral peak prominence (CPP), harmonics-to-noise ratio, and two measures of spectral slope. Results Vocal process separation alone accounted for 61.4% of the variance in perceptual rating. Adding nodal point ratio and bulging to the equation increased the explained variance to 88.7%. The acoustic measure CPP accounted for 86.7% of the variance in perceived breathiness, and explained variance increased to 92.6% with the addition of one spectral slope measure. Conclusions Breathiness ratings were best explained kinematically by the degree of vocal process separation and acoustically by CPP. PMID:23785184

  9. In Vivo measurement of pediatric vocal fold motion using structured light laser projection.

    PubMed

    Patel, Rita R; Donohue, Kevin D; Lau, Daniel; Unnikrishnan, Harikrishnan

    2013-07-01

    The aim of the study was to present the development of a miniature structured light laser projection endoscope and to quantify vocal fold length and vibratory features related to impact stress of the pediatric glottis using high-speed imaging. The custom-developed laser projection system consists of a green laser with a 4-mm diameter optics module at the tip of the endoscope, projecting 20 vertical laser lines on the glottis. Measurements of absolute phonatory vocal fold length, membranous vocal fold length, peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity were obtained in five children (6-9 years), two adult male and three adult female participants without voice disorders, and one child (10 years) with bilateral vocal fold nodules during modal phonation. Independent measurements made on the glottal length of a vocal fold phantom demonstrated a 0.13mm bias error with a standard deviation of 0.23mm, indicating adequate precision and accuracy for measuring vocal fold structures and displacement. First, in vivo measurements of amplitude-to-length ratio, peak closing velocity, and impact velocity during phonation in pediatric population and a child with vocal fold nodules are reported. The proposed laser projection system can be used to obtain in vivo measurements of absolute length and vibratory features in children and adults. Children have large amplitude-to-length ratio compared with typically developing adults, whereas nodules result in larger peak amplitude, amplitude-to-length ratio, average closing velocity, and impact velocity compared with typically developing children. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  10. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  11. Clinical Investigation Program: Annual Progress Report

    DTIC Science & Technology

    1992-09-30

    Academy of Surgical Research, Chicago, Illinois; Yucatan Miniature Swine as a Model System for the Studyt of Vocal Fold Vibratory Function; 6th Annual...34(14)e". (15) Study Objective: Compare two enteral formulas in respect to nutritional aspects. (16) Technical Approach: Protocol will take place in

  12. Laryngeal videostroboscopy in the dog model: a simplified technique and applications

    NASA Astrophysics Data System (ADS)

    Coleman, John R., Jr.; Reinisch, Lou; Smith, Shane; Deriso, Walter; Ossoff, Jacob; Huang, Shan; Garrett, C. Gaelyn

    1998-07-01

    Laryngeal videostroboscopy (LVS) allows the physician to examine the vibratory free edge of the vocal fold providing direct visualization of the vocal fold surface and indirect visualization of the substance of the vocal fold. Previously in dog LVS, electrical stimulation of the superior and recurrent laryngeal nerves or painful stimuli in the lightly anesthetized animal provided the impetus for glottic closure. In this paper we present a new technique for LVS in the dog model that involves mechanical traction on arytenoid adduction sutures to achieve vocal fold adduction. This method is safe, effective, and reproducible, and the potential applications are numerous.

  13. Quantification of Vocal Fold Vibration in Various Laryngeal Disorders Using High-Speed Digital Imaging.

    PubMed

    Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro; Yamasoba, Tatsuya

    2016-03-01

    To quantify vibratory characteristics of various laryngeal disorders seen by high-speed digital imaging (HSDI). HSDI was performed on 78 patients with various laryngeal disorders (20 with polyp, 16 with carcinoma, 13 with leukoplakia, 6 with vocal fold nodule, and 33 with others) and 29 vocally healthy subjects. Obtained data were quantitatively evaluated by frame-by-frame analysis, laryngotopography, digital kymography, and glottal area waveform. Overall, patients with laryngeal pathologies showed greater asymmetry in amplitude, mucosal wave and phase, smaller mucosal wave, and poorer glottal closure than vocally healthy subjects. Furthermore, disease-specific vibratory disturbances that generally agreed with the findings in the literature were quantified: comparing polyp with nodule, differences were noted in longitudinal phase difference, amplitude, and mucosal wave. In comparison with leukoplakia and cancer, nonvibrating area was more frequently noted in cancer. The HSDI analysis of various voice disorders using multiple methods can help phonosurgeons to properly diagnose various laryngeal pathologies and to estimate the degree of their vocal disturbances. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Scaled vibratory feedback can bias muscle use in children with dystonia during a redundant, one-dimensional myocontrol task

    PubMed Central

    Liyanagamage, Shanie A.; Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2016-01-01

    Vibratory feedback can be a useful tool for rehabilitation. We examined its use in children with dystonia to understand how it affects muscle activity in a population that does not respond well to standard rehabilitation. We predicted scaled vibration (i.e. vibration that was directly or inversely proportional to muscle activity) would increase use of the vibrated muscle because of task-relevant sensory information, while non-scaled vibration would not change muscle use. The study was conducted on 11 subjects with dystonia and 14 controls. Each subject underwent 4 different types of vibration on the more dystonic biceps muscle (or non-dominant arm in controls) in a one-dimensional, bimanual myocontrol task. Our results showed that only scaled vibratory feedback could bias muscle use without changing overall performance in children with dystonia. We believe there may be a role in rehabilitation for scaled vibratory feedback to retrain abnormal muscle patterns. PMID:27798370

  15. Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production

    PubMed Central

    Jiang, Weili; Zheng, Xudong; Xue, Qian

    2017-01-01

    The paper presented a three-dimensional, first-principle based fluid–structure–acoustics interaction computer model of voice production, which employed a more realistic human laryngeal and vocal tract geometries. Self-sustained vibrations, important convergent–divergent vibration pattern of the vocal folds, and entrainment of the two dominant vibratory modes were captured. Voice quality-associated parameters including the frequency, open quotient, skewness quotient, and flow rate of the glottal flow waveform were found to be well within the normal physiological ranges. The analogy between the vocal tract and a quarter-wave resonator was demonstrated. The acoustic perturbed flux and pressure inside the glottis were found to be at the same order with their incompressible counterparts, suggesting strong source–filter interactions during voice production. Such high fidelity computational model will be useful for investigating a variety of pathological conditions that involve complex vibrations, such as vocal fold paralysis, vocal nodules, and vocal polyps. The model is also an important step toward a patient-specific surgical planning tool that can serve as a no-risk trial and error platform for different procedures, such as injection of biomaterials and thyroplastic medialization. PMID:28243588

  16. Mucosal wave characteristics in three voice modes (fry, hiss & overpressure) produced by a female speaker: a preliminary study using stroboscopy, HSDI and analyzed by kymography, P-FFT & Nyquist plots

    NASA Astrophysics Data System (ADS)

    Izdebski, Krzysztof; Ward, Ronald R.; Yan, Yuling

    2012-02-01

    HSDI provides a whole new way to investigate visually intra-laryngeal behavior and posturing during phonation by providing detailed real-time information about laryngeal biomechanics that include observations about mucosal wave, wave motion directionality, glottic area wave form, asymmetry of vibrations within and across vocal folds and contact area of the glottis including posterior commissure closure. These observations are fundamental to our understanding and modeling of both normal and disordered phonation. In this preliminary report we focus on direct HSDI in vivo observations of not only the glottic region, but also on the entire supraglottic laryngeal posturing during fry, breathy/hiss and over-pressured phonation modes produced in a non-pathological settings. Analysis included spatio-temporal vibration patterns of vocal folds, multi-line kymograms, spectral PFFT analysis, and Nyquist spatio-temporal plots. The presented examples reveal that supraglottic contraction assists in prolonged closed phase of the vibratory cycle, and that prolonged closed phase is longest in fry and overpressure and shortest albeit complex in hiss. Hiss also allows for vocal fold vibration despite glottis separation. These findings need to be compared to pathologic phonation representing the three voice modes to derive at better differential diagnosis.

  17. Extension and Application of High-Speed Digital Imaging Analysis Via Spatiotemporal Correlation and Eigenmode Analysis of Vocal Fold Vibration Before and After Polyp Excision.

    PubMed

    Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J

    2016-08-01

    To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.

  18. Evaluation of injection augmentation treatment of hyaluronic acid based materials on rabbit vocal folds viscoelasticity.

    PubMed

    Borzacchiello, A; Mayol, L; Gärskog, O; Dahlqvist, A; Ambrosio, L

    2005-06-01

    The viscoelastic properties of vocal folds after injection of hyaluronic acid (hyaluronan, HA) based materials have been studied in an animal model (rabbit) six months after injection. The results indicate that the viscoelastic properties of the vocal folds injected with the HA based materials are similar to the healthy vocal folds (non-injected samples) used as control. Histological analysis has been also performed to investigate on the fate of the injected materials after six months from the implant. The HA based materials remain up to six months and they recruited fibroblasts that induce the ingrowth of new connective tissue resulting in an endogenous soft tissue augmentation. The HA based compounds are good candidate for further studies aimed at restoring/preserving the vibratory capacity of the vocal folds with injection treatment in glottal insufficiency.

  19. Analysis Of Laryngeal Biomechanics Of Deaf Speakers Utilizing High-Speed Cinematography

    NASA Astrophysics Data System (ADS)

    Metz, Dale E.; Whitehead, Robert L.

    1982-02-01

    Since the formalization of the myoelastic-aerodynamic theory of vocal fold vibration, it has been generally accepted that biomechanical and aerodynamic forces determine the nature of vocal fold vibration patterns, speaking fundamental frequency and vocal intensity. The speech of the deaf is frequently characterized by abnormal voice qualities and aberrant frequency and intensity variations suggesting mismanagement of the biomechanical and aerodynamic forces acting on the larynx. Unfortunately, efforts to remediate these abnormal laryngeal activities are frequently ineffective. It is reasonable to suggest that more effective remedial strategies could be developed if we had a better understanding of the underlying nature of the problems deaf persons experience when trying to control laryngeal functioning for speech purposes. Toward this end, we are employing high speed laryngeal filming procedures in conjunction with glottal impedance, respiratory kinematic and acous-tical measurement procedures to assess abnormal laryngeal functioning of deaf speakers. All data are collected simultaneously and are time-locked to facilitate analysis of specific laryngeal events. This unique combination of instrumentation has provided important insights regarding laryngeal functioning of the deaf. For example, we have observed that deaf speakers may assume abnormal glottal configurations during phonation that pro-hibit normal laryngeal functioning and disturb upper airway dynamics. Also, normal vibratory patterns are frequently disturbed. Instrumentation, data collection protocols, analysis procedures and selected findings will be discussed.

  20. Sampling of Stochastic Input Parameters for Rockfall Calculations and for Structural Response Calculations Under Vibratory Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Gross

    2004-09-01

    The purpose of this scientific analysis is to define the sampled values of stochastic (random) input parameters for (1) rockfall calculations in the lithophysal and nonlithophysal zones under vibratory ground motions, and (2) structural response calculations for the drip shield and waste package under vibratory ground motions. This analysis supplies: (1) Sampled values of ground motion time history and synthetic fracture pattern for analysis of rockfall in emplacement drifts in nonlithophysal rock (Section 6.3 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (2) Sampled values of ground motion time history and rock mechanical properties category for analysis of rockfall inmore » emplacement drifts in lithophysal rock (Section 6.4 of ''Drift Degradation Analysis'', BSC 2004 [DIRS 166107]); (3) Sampled values of ground motion time history and metal to metal and metal to rock friction coefficient for analysis of waste package and drip shield damage to vibratory motion in ''Structural Calculations of Waste Package Exposed to Vibratory Ground Motion'' (BSC 2004 [DIRS 167083]) and in ''Structural Calculations of Drip Shield Exposed to Vibratory Ground Motion'' (BSC 2003 [DIRS 163425]). The sampled values are indices representing the number of ground motion time histories, number of fracture patterns and rock mass properties categories. These indices are translated into actual values within the respective analysis and model reports or calculations. This report identifies the uncertain parameters and documents the sampled values for these parameters. The sampled values are determined by GoldSim V6.04.007 [DIRS 151202] calculations using appropriate distribution types and parameter ranges. No software development or model development was required for these calculations. The calculation of the sampled values allows parameter uncertainty to be incorporated into the rockfall and structural response calculations that support development of the seismic scenario for the Total System Performance Assessment for the License Application (TSPA-LA). The results from this scientific analysis also address project requirements related to parameter uncertainty, as specified in the acceptance criteria in ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]). This document was prepared under the direction of ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 170528]) which directed the work identified in work package ARTM05. This document was prepared under procedure AP-SIII.9Q, ''Scientific Analyses''. There are no specific known limitations to this analysis.« less

  1. Delayed recovery of nerve conduction and vibratory sensibility after ischaemic block in patients with diabetes mellitus

    PubMed Central

    Lindstrom, P; Lindblom, U; Brismar, T

    1997-01-01

    OBJECTIVES—To determine if the recovery of nerve function after ischaemic block is impaired in patients with diabetes mellitus relative to healthy controls.
METHODS—Median nerve impulse conduction and vibratory thresholds in the same innervation territory were studied in patients with diabetes mellitus (n = 16) and age matched controls (n = 10) during and after 30 minutes of cuffing of the forearm.
RESULTS—Cuffing caused a 50% reduction of the compound nerve action potential (CNAP) after 21.9 (SEM 1.6) minutes in patients with diabetes mellitus and after 10.6 (0.7) minutes in controls. After release of the cuff the half life for CNAP recovery was 5.13 (0.45) minutes in patients with diabetes mellitus and <1 minute in controls. At seven minutes after release of the cuff CNAP was fully restored in the controls whereas in patients with diabetes mellitus CNAP had only reached 75.1 (4.1)% of its original amplitude. After onset of ischaemia it took 14.6 (1.9) minutes in patients with diabetes mellitus before the vibratory threshold was doubled, whereas this took 5.8 (0.8) minutes in controls. After release of the cuff half time for recovery of vibratory threshold was 8.8 (1.0) minutes in patients with diabetes mellitus and 2.6 (0.3) minutes in controls. Ten minutes after the cuff was released the threshold was still raised (2.0 (0.3)-fold) in the diabetes mellitus group, whereas it was normalised in controls. Among patients with diabetes mellitus the impaired recovery correlated with older age, higher HbA1c, and signs of neuropathy, but not with blood glucose.
CONCLUSION—After ischaemia there is a delayed recovery of nerve conduction and the vibratory sensibility in patients with diabetes mellitus. Impaired recovery after ischaemic insults may contribute to the high frequency of entrapment neuropathy in patients with diabetes mellitus.

 PMID:9328252

  2. Delayed recovery of nerve conduction and vibratory sensibility after ischaemic block in patients with diabetes mellitus.

    PubMed

    Lindström, P; Lindblom, U; Brismar, T

    1997-09-01

    To determine if the recovery of nerve function after ischaemic block is impaired in patients with diabetes mellitus relative to healthy controls. Median nerve impulse conduction and vibratory thresholds in the same innervation territory were studied in patients with diabetes mellitus (n = 16) and age matched controls (n = 10) during and after 30 minutes of cuffing of the forearm. Cuffing caused a 50% reduction of the compound nerve action potential (CNAP) after 21.9 (SEM 1.6) minutes in patients with diabetes mellitus and after 10.6 (0.7) minutes in controls. After release of the cuff the half life for CNAP recovery was 5.13 (0.45) minutes in patients with diabetes mellitus and <1 minute in controls. At seven minutes after release of the cuff CNAP was fully restored in the controls whereas in patients with diabetes mellitus CNAP had only reached 75.1 (4.1)% of its original amplitude. After onset of ischaemia it took 14.6 (1.9) minutes in patients with diabetes mellitus before the vibratory threshold was doubled, whereas this took 5.8 (0.8) minutes in controls. After release of the cuff half time for recovery of vibratory threshold was 8.8 (1.0) minutes in patients with diabetes mellitus and 2.6 (0.3) minutes in controls. Ten minutes after the cuff was released the threshold was still raised (2.0 (0.3)-fold) in the diabetes mellitus group, whereas it was normalised in controls. Among patients with diabetes mellitus the impaired recovery correlated with older age, higher HbA1c, and signs of neuropathy, but not with blood glucose. After ischaemia there is a delayed recovery of nerve conduction and the vibratory sensibility in patients with diabetes mellitus. Impaired recovery after ischaemic insults may contribute to the high frequency of entrapment neuropathy in patients with diabetes mellitus.

  3. Objective Quantification of Pre-and Postphonosurgery Vocal Fold Vibratory Characteristics Using High-Speed Videoendoscopy and a Harmonic Waveform Model

    ERIC Educational Resources Information Center

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J.

    2014-01-01

    Purpose: The model-based quantitative analysis of high-speed videoendoscopy (HSV) data at a low frame rate of 2,000 frames per second was assessed for its clinical adequacy. Stepwise regression was employed to evaluate the HSV parameters using harmonic models and their relationships to the Voice Handicap Index (VHI). Also, the model-based HSV…

  4. Insights Into the Role of Collagen in Vocal Fold Health and Disease.

    PubMed

    Tang, Sharon S; Mohad, Vidisha; Gowda, Madhu; Thibeault, Susan L

    2017-09-01

    As one of the key fibrous proteins in the extracellular matrix, collagen plays a significant role in the structural and biomechanical characteristics of the vocal fold. Anchored fibrils of collagen create secure structural regions within the vocal folds and are strong enough to sustain vibratory impact and stretch during phonation. This contributes tensile strength, density, and organization to the vocal folds and influences health and pathogenesis. This review offers a comprehensive summary for a current understanding of collagen within normal vocal fold tissues throughout the life span as well as vocal pathology and wound repair. Further, collagen's molecular structure and biosynthesis are discussed. Finally, collagen alterations in tissue injury and repair and the incorporation of collagen-based biomaterials as a method of treating voice disorders are reviewed. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography.

    PubMed

    Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi

    2016-12-01

    Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: A case studya

    PubMed Central

    Zañartu, Matías; Mehta, Daryush D.; Ho, Julio C.; Wodicka, George R.; Hillman, Robert E.

    2011-01-01

    Different source-related factors can lead to vocal fold instabilities and bifurcations referred to as voice breaks. Nonlinear coupling in phonation suggests that changes in acoustic loading can also be responsible for this unstable behavior. However, no in vivo visualization of tissue motion during these acoustically induced instabilities has been reported. Simultaneous recordings of laryngeal high-speed videoendoscopy, acoustics, aerodynamics, electroglottography, and neck skin acceleration are obtained from a participant consistently exhibiting voice breaks during pitch glide maneuvers. Results suggest that acoustically induced and source-induced instabilities can be distinguished at the tissue level. Differences in vibratory patterns are described through kymography and phonovibrography; measures of glottal area, open∕speed quotient, and amplitude∕phase asymmetry; and empirical orthogonal function decomposition. Acoustically induced tissue instabilities appear abruptly and exhibit irregular vocal fold motion after the bifurcation point, whereas source-induced ones show a smoother transition. These observations are also reflected in the acoustic and acceleration signals. Added aperiodicity is observed after the acoustically induced break, and harmonic changes appear prior to the bifurcation for the source-induced break. Both types of breaks appear to be subcritical bifurcations due to the presence of hysteresis and amplitude changes after the frequency jumps. These results are consistent with previous studies and the nonlinear source-filter coupling theory. PMID:21303014

  7. Stem Cell Therapy in Injured Vocal Folds: A Three-Month Xenograft Analysis of Human Embryonic Stem Cells

    PubMed Central

    Svensson, Bengt; Nagubothu, Srinivasa R.; Nord, Christoffer; Cedervall, Jessica; Hultman, Isabell; Ährlund-Richter, Lars; Tolf, Anna; Hertegård, Stellan

    2015-01-01

    We have previously shown that human embryonic stem cell (hESC) therapy to injured rabbit vocal folds (VFs) induces human tissue generation with regained VF vibratory capacity. The aims of this study were to test the sustainability of such effect and to what extent derivatives of the transplanted hESCs are propagated in the VFs. The VFs of 14 New Zealand rabbits were injured by a localized resection. HESCs were transplanted to 22 VFs which were analyzed for persistence of hESCs after six weeks and after three months. At three months, the VFs were also analyzed for viscoelasticity, measured as dynamic viscosity and elastic modulus, for the lamina propria (Lp) thickness and relative content of collagen type I. Three months after hESC cell therapy, the dynamic viscosity and elastic modulus of the hESC treated VFs were similar to normal controls and lower than untreated VFs (p ≤ 0.011). A normalized VF architecture, reduction in collagen type I, and Lp thickness were found compared with untreated VFs (p ≤ 0.031). At three months, no derivatives of hESCs were detected. HESCs transplanted to injured rabbit VFs restored the vibratory characteristics of the VFs, with maintained restored function for three months without remaining hESCs or derivatives. PMID:26557696

  8. Stem Cell Therapy in Injured Vocal Folds: A Three-Month Xenograft Analysis of Human Embryonic Stem Cells.

    PubMed

    Svensson, Bengt; Nagubothu, Srinivasa R; Nord, Christoffer; Cedervall, Jessica; Hultman, Isabell; Ährlund-Richter, Lars; Tolf, Anna; Hertegård, Stellan

    2015-01-01

    We have previously shown that human embryonic stem cell (hESC) therapy to injured rabbit vocal folds (VFs) induces human tissue generation with regained VF vibratory capacity. The aims of this study were to test the sustainability of such effect and to what extent derivatives of the transplanted hESCs are propagated in the VFs. The VFs of 14 New Zealand rabbits were injured by a localized resection. HESCs were transplanted to 22 VFs which were analyzed for persistence of hESCs after six weeks and after three months. At three months, the VFs were also analyzed for viscoelasticity, measured as dynamic viscosity and elastic modulus, for the lamina propria (Lp) thickness and relative content of collagen type I. Three months after hESC cell therapy, the dynamic viscosity and elastic modulus of the hESC treated VFs were similar to normal controls and lower than untreated VFs (p ≤ 0.011). A normalized VF architecture, reduction in collagen type I, and Lp thickness were found compared with untreated VFs (p ≤ 0.031). At three months, no derivatives of hESCs were detected. HESCs transplanted to injured rabbit VFs restored the vibratory characteristics of the VFs, with maintained restored function for three months without remaining hESCs or derivatives.

  9. Automated Electroglottographic Inflection Events Detection. A Pilot Study.

    PubMed

    Codino, Juliana; Torres, María Eugenia; Rubin, Adam; Jackson-Menaldi, Cristina

    2016-11-01

    Vocal-fold vibration can be analyzed in a noninvasive way by registering impedance changes within the glottis, through electroglottography. The morphology of the electroglottographic (EGG) signal is related to different vibratory patterns. In the literature, a characteristic knee in the descending portion of the signal has been reported. Some EGG signals do not exhibit this particular knee and have other types of events (inflection events) throughout the ascending and/or descending portion of the vibratory cycle. The goal of this work is to propose an automatic method to identify and classify these events. A computational algorithm was developed based on the mathematical properties of the EGG signal, which detects and reports events throughout the contact phase. Retrospective analysis of EGG signals obtained during routine voice evaluation of adult individuals with a variety of voice disorders was performed using the algorithm as well as human raters. Two judges, both experts in clinical voice analysis, and three general speech pathologists performed manual and visual evaluation of the sample set. The results obtained by the automatic method were compared with those of the human raters. Statistical analysis revealed a significant level of agreement. This automatic tool could allow professionals in the clinical setting to obtain an automatic quantitative and qualitative report of such events present in a voice sample, without having to manually analyze the whole EGG signal. In addition, it might provide the speech pathologist with more information that would complement the standard voice evaluation. It could also be a valuable tool in voice research. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Registers in Infant Phonation.

    PubMed

    Buder, Eugene H; McDaniel, Valerie F; Bene, Edina R; Ladmirault, Jennifer; Oller, D Kimbrough

    2018-04-09

    The primary vocal registers of modal, falsetto, and fry have been studied in adults but not per se in infancy. The vocal ligament is thought to play a critical role in the modal-falsetto contrast but is still developing during infancy (Tateya and Tateya, 2015). 41 Cover tissues are also implicated in the modal-fry contrast, but the low fundamental frequency (f o ) cutoff of 70 Hz, shared between genders, suggests a psychoacoustic basis for the contrast. Buder, Chorna, Oller, and Robinson (2008) 6 used the labels of "loft," "modal," and "pulse" for distinct vibratory regimes that appear to be identifiable based on spectrographic inspection of harmonic structure and auditory judgments in infants, but this work did not supply acoustic measurements to verify which of these nominally labeled regimes resembled adult registers. In this report, we identify clear transitions between registers within infant vocalizations and measure these registers and their transitions for f o and relative harmonic amplitudes (H1-H2). By selectively sampling first-year vocalizations, this manuscript quantifies acoustic patterns that correspond to vocal fold vibration types not previously cataloged in infancy. Results support a developmental basis for vocal registers, revealing that a well-developed ligament is not needed for loft-modal quality shifts as seen in harmonic amplitude measures. Results also reveal that a distinctively pulsatile register can occur in infants at a much higher f o than expected on psychoacoustic grounds. Overall results are consistent with cover tissues in infancy that are, for vibratory purposes, highly compliant and readily detached. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Unsteady flow motions in the supraglottal region during phonation

    NASA Astrophysics Data System (ADS)

    Luo, Haoxiang; Dai, Hu

    2008-11-01

    The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.

  12. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics.

    PubMed

    Herbst, Christian T; Hertegard, Stellan; Zangger-Borch, Daniel; Lindestad, Per-Åke

    2017-04-01

    Freddie Mercury was one of the twentieth century's best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.

  13. Vibratory regime classification of infant phonation.

    PubMed

    Buder, Eugene H; Chorna, Lesya B; Oller, D Kimbrough; Robinson, Rebecca B

    2008-09-01

    Infant phonation is highly variable in many respects, including the basic vibratory patterns by which the vocal tissues create acoustic signals. Previous studies have identified the regular occurrence of nonmodal phonation types in normal infant phonation. The glottis is like many oscillating systems that, because of nonlinear relationships among the elements, may vibrate in ways representing the deterministic patterns classified theoretically within the mathematical framework of nonlinear dynamics. The infant's preverbal vocal explorations present such a variety of phonations that it may be possible to find effectively all the classes of vibration predicted by nonlinear dynamic theory. The current report defines acoustic criteria for an important subset of such vibratory regimes, and demonstrates that analysts can be trained to reliably use these criteria for a classification that includes all instances of infant phonation in the recorded corpora. The method is thus internally comprehensive in the sense that all phonations are classified, but it is not exhaustive in the sense that all vocal qualities are thereby represented. Using the methods thus developed, this study also demonstrates that the distributions of these phonation types vary significantly across sessions of recording in the first year of life, suggesting developmental changes. The method of regime classification is thus capable of tracking changes that may be indicative of maturation of the mechanism, the learning of categories of phonatory control, and the possibly varying use of vocalizations across social contexts.

  14. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling.

    PubMed

    Weiß, S; Thomson, S L; Lerch, R; Döllinger, M; Sutor, A

    2013-01-01

    The etiology and treatment of voice disorders are still not completely understood. Since the vibratory characteristics of vocal folds are strongly influenced by both anatomy and mechanical material properties, measurement methods to analyze the material behavior of vocal fold tissue are required. Due to the limited life time of real tissue in the laboratory, synthetic models are often used to study vocal fold vibrations. In this paper we focus on two topics related to synthetic and real vocal fold materials. First, because certain tissues within the human vocal folds are transversely isotropic, a fabrication process for introducing this characteristic in commonly used vocal fold modeling materials is presented. Second, the pipette aspiration technique is applied to the characterization of these materials. By measuring the displacement profiles of stretched specimens that exhibit varying degrees of transverse isotropy, it is shown that local anisotropy can be quantified using a parameter describing the deviation from an axisymmetric profile. The potential for this technique to characterize homogeneous, anisotropic materials, including soft biological tissues such as those found in the human vocal folds, is supplemented by a computational study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Vocal fold vibrations: high-speed imaging, kymography, and acoustic analysis: a preliminary report.

    PubMed

    Larsson, H; Hertegård, S; Lindestad, P A; Hammarberg, B

    2000-12-01

    To evaluate a new analysis system, High-Speed Tool Box (H. Larsson, custom-made program for image analysis, version 1.1, Department of Logopedics and Phoniatrics, Huddinge University Hospital, Huddinge, Sweden, 1998) for studying vocal fold vibrations using a high-speed camera and to relate findings from these analyses to sound characteristics. A Weinberger Speedcam + 500 system (Weinberger AG, Dietikon, Switzerland) was used with a frame rate of 1,904 frames per second. Images were stored and analyzed digitally. Analysis included automatic glottal edge detection and calculation of glottal area variations, as well as kymography. These signals were compared with acoustic waveforms using the Soundswell program (Hitech Development AB, Stockholm, Sweden). The High-Speed Tool Box was applied on two types of high-speed recordings: a diplophonic phonation and a tremor voice. Relations between glottal vibratory patterns and the sound waveform were analyzed. In the diplophonic phonation, the glottal area waveform, as well as the kymogram, showed a specific pattern of repetitive glottal closures, which was also seen in the acoustic waveform. In the tremor voice, fundamental frequency (F0) fluctuations in the acoustic waveform were reflected in slow variations in amplitude in the glottal area waveform. For studying details of mucosal movements during these kinds of abnormal vibrations, the glottal area waveform was particularly useful. Our results suggest that this combined high-speed acoustic-kymographic analysis package is a promising aid for separating and specifying different voice qualities such as diplophonia and voice tremor. Apart from clinical use, this finding should be of help for specification of the terminology of different voice qualities.

  16. Vocal Fold Epithelial Barrier in Health and Injury A Research Review

    PubMed Central

    Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.

    2015-01-01

    Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981

  17. Presbiphonya.

    PubMed

    Bruzzi, Caterina; Salsi, Daria; Minghetti, Domenico; Negri, Maurizio; Casolino, Delfo; Sessa, Michele

    2017-04-28

    This article attempts to describe the aging process of the vocal folds and the main features of the aged voice. In the world ageing population era, aging diseases and aging disorders are crucial. Voice disorders (presbyphonia) are common in the elderly and have a significant impact on communication and quality of life. Some of these disorders depend on the vocal folds, which consist of an extracellular matrix (ECM), fibrous proteins, interstitial proteins, and glycosaminoglycans. The density and spatial arrangement of these elements are important, as changes in their deposition can alter the biomechanical properties and vibratory function of the vocal folds. The aging voice process is analyzed in detail from mechanical factors like pulmonary bellows alteration, to hormonal factors and life style. The elderly people undergoe mechanical, anatomical and functional changes: alterations of the pulmonary bellows, systemic changes like hormonal disregulation, and laryngeal changes, that resulting in hoarseness, which is difficult to treat.

  18. Vibratory Regime Classification of Infant Phonation

    PubMed Central

    Buder, Eugene H.; Chorna, Lesya B.; Oller, D. Kimbrough; Robinson, Rebecca B.

    2008-01-01

    Infant phonation is highly variable in many respects, including the basic vibratory patterns by which the vocal tissues create acoustic signals. Previous studies have identified the regular occurrence of non-modal phonation types in normal infant phonation. The glottis is like many oscillating systems that, because of non-linear relationships among the elements, may vibrate in ways representing the deterministic patterns classified theoretically within the mathematical framework of non-linear dynamics. The infant’s pre-verbal vocal explorations present such a variety of phonations that it may be possible to find effectively all the classes of vibration predicted by non-linear dynamic theory. The current report defines acoustic criteria for an important subset of such vibratory regimes, and demonstrates that analysts can be trained to reliably use these criteria for a classification that includes all instances of infant phonation in the recorded corpora. The method is thus internally comprehensive in the sense that all phonations are classified, but it is not exhaustive in the sense that all vocal qualities are thereby represented. Using the methods thus developed, this study also demonstrates that the distributions of these phonation types vary significantly across sessions of recording in the first year of life, suggesting developmental changes. The method of regime classification is thus capable of tracking changes that may be indicative of maturation of the mechanism, the learning of categories of phonatory control, and the possibly varying use of vocalizations across social contexts. PMID:17509829

  19. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.

    PubMed

    Murray, Preston R; Thomson, Scott L

    2011-12-02

    Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry, clinical instrument development, laryngeal aerodynamics, vocal fold contact pressure, and subglottal acoustics (a more comprehensive list can be found in Kniesburges et al.) Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.

  20. High-speed digital phonoscopy images analyzed by Nyquist plots

    NASA Astrophysics Data System (ADS)

    Yan, Yuling

    2012-02-01

    Vocal-fold vibration is a key dynamic event in voice production, and the vibratory characteristics of the vocal fold correlate closely with voice quality and health condition. Laryngeal imaging provides direct means to observe the vocal fold vibration; in the past, however, available modalities were either too slow or impractical to resolve the actual vocal fold vibrations. This limitation has now been overcome by high-speed digital imaging (HSDI) (or high-speed digital phonoscopy), which records images of the vibrating vocal folds at a rate of 2000 frames per second or higher- fast enough to resolve a specific, sustained phonatory vocal fold vibration. The subsequent image-based functional analysis of voice is essential to better understanding the mechanism underlying voice production, as well as assisting the clinical diagnosis of voice disorders. Our primary objective is to develop a comprehensive analytical platform for voice analysis using the HSDI recordings. So far, we have developed various analytical approaches for the HSDI-based voice analyses. These include Nyquist plots and associated analysese that are used along with FFT and Spectrogram in the analysis of the HSDI data representing normal voice and specific voice pathologies.

  1. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  2. Jean-Martin Charcot and his vibratory chair for Parkinson disease.

    PubMed

    Goetz, Christopher G

    2009-08-11

    Vibration therapy is currently used in diverse medical specialties ranging from orthopedics to urology to sports medicine. The celebrated 19th-century neurologist, J.-M. Charcot, used vibratory therapy to treat Parkinson disease (PD). This study analyzed printed writings by Charcot and other writers on vibratory therapy and accessed unpublished notes from the Salpêtrière Hospital, Paris. Charcot lectured on several occasions on vibratory therapy and its neurologic applications. He developed a vibration chair for patients with PD after he observed that patients were more comfortable and slept better after a train or carriage ride. He replicated this experience by having patients undergo daily 30-minute sessions in the automated vibratory chair (fauteuil trépidant). His junior colleague, Gilles de la Tourette, extended these observations and developed a helmet that vibrated the head on the premise that the brain responded directly to the pulsations. Although after Charcot's death vibratory therapy was not widely pursued, vibratory appliances are reemerging in 21st century medicine and can be retested using adaptations of Charcot's neurologic protocols.

  3. Vibratory roller evaluation study : final report.

    DOT National Transportation Integrated Search

    1976-03-01

    The Louisiana Department of Highways has recently completed a program to evaluate the use of vibratory rollers in the compaction of asphaltic concrete pavements. In all, a total of nine different vibratory rollers was tested along with conventional s...

  4. Current treatment of vocal fold scarring.

    PubMed

    Hirano, Shigeru

    2005-06-01

    Vocal fold scarring still remains a therapeutic challenge, with the most problematic issue being the histologic changes that are primarily responsible for altering the viscoelasticity of the vocal fold mucosa. Optimal treatment for vocal fold scarring has not yet been established. To restore or regenerate damaged vocal folds, it is important to investigate the changes to the layer structure of the lamina propria. Tissue engineering and regenerative medicine may provide new strategies for the prevention and treatment of vocal fold scarring. Recent developments in this field are reviewed in the present article. Histologic studies have revealed that hyaluronic acid, fibronectin, decorin, and various other extracellular matrix components, as well as collagen, may contribute to determining the vibratory properties of the vocal fold mucosa. Changes of these molecules are thought to affect the viscoelasticity of the scarred vocal folds. Based on such histologic findings, innovative approaches have been developed, including administration of hyaluronic acid into injured or scarred vocal folds. Other strategies that have recently shown advances include growth factor therapy and cell therapy using stem cells or mature fibroblasts. The effects of these new treatments have not fully been confirmed clinically, but there seems to be great therapeutic potential in such regenerative medical strategies. Recent research has revealed the detailed histologic and rheologic changes related to vocal fold scarring. Based on these findings, various new therapeutic strategies have been developed in animal models using tissue engineering and regenerative medicine. However, no clinical trials have been performed, and more studies are necessary to establish the optimum modality.

  5. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  6. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    PubMed Central

    Manfredi, Louise R.; Baker, Andrew T.; Elias, Damian O.; Dammann, John F.; Zielinski, Mark C.; Polashock, Vicky S.; Bensmaia, Sliman J.

    2012-01-01

    Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin. PMID:22348055

  7. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  8. Relationship of Various Open Quotients With Acoustic Property, Phonation Types, Fundamental Frequency, and Intensity.

    PubMed

    Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Yamauchi, Akihito; Nito, Takaharu; Yamasoba, Tatsuya; Tayama, Niro

    2016-03-01

    In the present study, we examined the relationship between various open quotients (Oqs) and phonation types, fundamental frequency (F0), and intensity by multivariate linear regression analysis (MVA) to determine which Oq best reflects vocal fold vibratory characteristics. Using high-speed digital imaging (HSDI), a sustained vowel /e/ at different phonation types, F0s, and intensities was recorded from six vocally healthy male volunteers: the types of phonation included modal, falsetto, modal breathy, and modal pressed phonations; and each phonation was performed at different F0s and intensities. Electroglottography (EGG) and sound signals were simultaneously recorded with HSDI. From the obtained data, 10 conventional Oqs (four Oqs from the glottal area function, four kymographic Oqs, and two EGG-derived Oqs) and two newly introduced Oqs (Oq(edge)+ and Oq(edge)) were evaluated. And, relationships between various Oqs and phonation types, F0, and intensity were evaluated by MVA. Among the various Oqs, Oq(edge)+ and Oq(edge) revealed the strongest correlations with an acoustic property and could best describe changes in phonation types: Oq(edge) was found to be better than Oq(edge)¯. Oq(MLK), the average of five Oqs from five-line multiline kymography was a very good alternative to Oq(edge)¯. EGG-derived Oqs were able to differentiate between modal phonation and falsetto phonation, but it was necessary to consider the change of F0 simultaneously. MVA showed the changes in Oq values between modal and other phonation types, the degree of involvement of intensity, and no relationship between F0 and Oqs. Among Oqs evaluated in this study, Oq(edge)+ and Oq(edge) were considered to best reflect the vocal fold vibratory characteristics. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  10. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    PubMed

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  11. A new approach to geometrical measurements in an animal model of vocal fold scar.

    PubMed

    Jabbour, Noel; Krishna, Priya D; Osborne, James; Rosen, Clark A

    2009-01-01

    A standard method for quantifying the geometric properties of vocal folds has not been widely adopted. An ideal method of geometrical measurement should effectively quantify the dimensions of the medial vibratory portion of the vocal fold, should be easily performed, should yield consistent results, and should be readily available at little to no cost. We have developed a new approach for geometrical measurements to meet these goals. The objective of this study is to describe this new approach and to assess its effectiveness in a canine model of vocal fold scar. One hundred thirty-five mid-membranous coronal sections of vocal folds from 10 canines (five with unilateral surgical scarring) were examined by light microscopy; digital images were captured. ImageJ was used to measure a variety of described parameters. Comparison between scarred vocal folds and control vocal folds was made. At least 20% of the slides for each vocal fold were randomly selected (n=42) for repeat measurements of interrater and intrarater reliability. A statistically significant difference between scarred and control vocal folds was obtained for horizontal distance (P<0.001), vertical distance (P=0.005), area (P<0.001), mean optical density (OD) (P<0.001), and OD at defined points along the length of the vocal fold (P< or =0.009). Reliability calculations for intrarater and interrater measurements ranged from r=0.845 to r=0.994 and from r=0.734 to r=0.976, respectively. The proposed approach for geometrical measurements meets the intended objectives in a canine model of vocal fold scar. Future work is needed to apply this approach to other model systems.

  12. Effects of vibratory stimulation on sexual response in women with spinal cord injury.

    PubMed

    Sipski, Marca L; Alexander, Craig J; Gomez-Marin, Orlando; Grossbard, Marissa; Rosen, Raymond

    2005-01-01

    Women with spinal cord injuries (SCIs) have predictable alterations in sexual responses. They commonly have a decreased ability to achieve genital sexual arousal. This study determined whether the use of vibratory stimulation would result in increased genital arousal as measured by vaginal pulse amplitude in women with SCIs. Subjects included 46 women with SCIs and 11 nondisabled control subjects. Results revealed vibratory clitoral stimulation resulted in increased vaginal pulse amplitude as compared with manual clitoral stimulation in both SCI and nondisabled subjects; however, these differences were not statistically significant. Subjective levels of arousal were also compared between SCI and nondisabled control subjects. Both vibratory and manual clitoral stimulation resulted in significantly increased arousal levels in both groups of subjects; however, statistically significant differences between the two conditions were only noted in nondisabled subjects. Further studies of the effects of repetitive vibratory stimulation are underway.

  13. Apparatus and methods for determining at least one characteristic of a proximate environment

    DOEpatents

    Novascone, Stephen R.; West, Phillip B.; Anderson, Michael J.

    2008-04-15

    Methods and an apparatus for determining at least one characteristic of an environment are disclosed. A vibrational energy may be imparted into an environment and a magnitude of damping of the vibrational energy may be measured and at least one characteristic of the environment may be determined. Particularly, a vibratory source may be operated and coupled to an environment. At least one characteristic of the environment may be determined based on a shift in at least one steady-state frequency of oscillation of the vibratory source. An apparatus may include at least one vibratory source and a structure for positioning the at least one vibratory source proximate to an environment. Further, the apparatus may include an analysis device for determining at least one characteristic of the environment based at least partially upon shift in a steady-state oscillation frequency of the vibratory source for the given impetus.

  14. Fluorine-Based DRIE of Fused Silica

    NASA Technical Reports Server (NTRS)

    Yee, Karl; Shcheglov, Kirill; Li, Jian; Choi, Daniel

    2007-01-01

    A process of deep reactive-ion etching (DRIE) using a fluorine-based gas mixture enhanced by induction-coupled plasma (ICP) has been demonstrated to be effective in forming high-aspect-ratio three-dimensional patterns in fused silica. The patterns are defined in part by an etch mask in the form of a thick, high-quality aluminum film. The process was developed to satisfy a need to fabricate high-aspect-ratio fused-silica resonators for vibratory microgyroscopes, and could be used to satisfy similar requirements for fabricating other fused-silica components.

  15. 75 FR 2067 - Airworthiness Directives; Turbomeca S.A. Model Arriel 1B, 1D, and 1D1 Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... originated at the pinion teeth root due to increased vibratory stresses. This increase in vibratory stresses... reduce the level of vibratory stresses and improve tooth resistance, Turbom[eacute]ca modification... estimate that it would take about 6 work-hours per product to comply with this AD. The average labor rate...

  16. Non-inertial calibration of vibratory gyroscopes

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The electrostatic elements already present in a vibratory gyroscope are used to simulate the Coriolis forces. An artificial electrostatic rotation signal is added to the closed-loop force rebalance system. Because the Coriolis force is at the same frequency as the artificial electrostatic force, the simulated force may be introduced into the system to perform an inertial test on MEMS vibratory gyroscopes without the use of a rotation table.

  17. Maximum imaging depth comparison in porcine vocal folds using 776-nm vs. 1552-nm excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Yildirim, Murat; Ferhanoglu, Onur; Kobler, James B.; Zeitels, Steven M.; Ben-Yakar, Adela

    2013-02-01

    Vocal fold scarring is one of the major causes of voice disorders and may arise from overuse or post-surgical wound healing. One promising treatment utilizes the injection of soft biomaterials aimed at restoring viscoelasticity of the outermost vibratory layer of the vocal fold, superficial lamina propria (SLP). However, the density of the tissue and the required injection pressure impair proper localization of the injected biomaterial in SLP. To enhance treatment effectiveness, we are investigating a technique to image and ablate sub-epithelial planar voids in vocal folds using ultrafast laser pulses to better localize the injected biomaterial. It is challenging to optimize the excitation wavelength to perform imaging and ablation at depths suitable for clinical use. Here, we compare maximum imaging depth using two photon autofluorescence and second harmonic generation with third-harmonic generation imaging modalities for healthy porcine vocal folds. We used a home-built inverted nonlinear scanning microscope together with a high repetition rate (2 MHz) ultrafast fiber laser (Raydiance Inc.). We acquired both two-photon autofluorescence and second harmonic generation signals using 776 nm wavelength and third harmonic generation signals using 1552 nm excitation wavelength. We observed that maximum imaging depth with 776 nm wavelength is significantly improved from 114 μm to 205 μm when third harmonic generation is employed using 1552 nm wavelength, without any observable damage in the tissue.

  18. Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads

    NASA Technical Reports Server (NTRS)

    Amer, K. B.; Neff, J. R.

    1974-01-01

    The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.

  19. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review

    PubMed Central

    MATOBA, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud’s phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools. PMID:26460379

  20. Human response to vibration stress in Japanese workers: lessons from our 35-year studies A narrative review.

    PubMed

    Matoba, Tsunetaka

    2015-01-01

    The occupational uses with vibratory tools or vehicles provoked health disorders of users. We reviewed narratively our articles of 35 yr studies and their related literatures, and considered the pathophysiology of the hand-arm vibration disorders. Concerning the risk factors of health impairments in workers with vibratory tools, there are two conflicting schools of the researchers: The peripheral school emphasizes that vibration only makes predominant impairments on hands and arms, showing typically Raynaud's phenomenon in the fingers. In the systemic school, the health disorders are produced by combination with vibration, noise and working environment, namely vibratory work itself, leading to diversified symptoms and signs in relation to systemic impairments. Our 35 yr studies have evidently supported the systemic school, including disorders of the central and autonomic nervous systems. The genesis is vibratory work itself, including vibration, noise, cold working environment, ergonomic and biodynamic conditions, and emotional stress in work. Because the health disorders yield in the whole body, the following measures would contribute to the prevention of health impairments: the attenuation of vibration and noise generated form vibratory machines and the regulations on operating tool hours. In conclusion, this occupational disease results from systemic impairments due to long-term occupational work with vibratory tools.

  1. Vibratory Stimuli: A Novel Rehabilitation Method for Preventing Post-Traumatic Knee Osteoarthritis

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0287 TITLE: Vibratory Stimuli, A Novel Rehabilitation Method for Preventing Post – Traumatic Knee Osteoarthritis ...August 2015 – 31 July 2016 4. TITLE AND SUBTITLE Vibratory Stimuli, A Novel Rehabilitation Method for Preventing Post – Traumatic Knee Osteoarthritis ... osteoarthritis . While the specific aims will not be realized and cannot be analyzed until the study’s completion in Year 3 due to the single-blind

  2. Intraoperative handheld probe for 3D imaging of pediatric benign vocal fold lesions using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Benboujja, Fouzi; Garcia, Jordan; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline

    2016-02-01

    Excessive and repetitive force applied on vocal fold tissue can induce benign vocal fold lesions. Children affected suffer from chronic hoarseness. In this instance, the vibratory ability of the folds, a complex layered microanatomy, becomes impaired. Histological findings have shown that lesions produce a remodeling of sup-epithelial vocal fold layers. However, our understanding of lesion features and development is still limited. Indeed, conventional imaging techniques do not allow a non-invasive assessment of sub-epithelial integrity of the vocal fold. Furthermore, it remains challenging to differentiate these sub-epithelial lesions (such as bilateral nodules, polyps and cysts) from a clinical perspective, as their outer surfaces are relatively similar. As treatment strategy differs for each lesion type, it is critical to efficiently differentiate sub-epithelial alterations involved in benign lesions. In this study, we developed an optical coherence tomography (OCT) based handheld probe suitable for pediatric laryngological imaging. The probe allows for rapid three-dimensional imaging of vocal fold lesions. The system is adapted to allow for high-resolution intra-operative imaging. We imaged 20 patients undergoing direct laryngoscopy during which we looked at different benign pediatric pathologies such as bilateral nodules, cysts and laryngeal papillomatosis and compared them to healthy tissue. We qualitatively and quantitatively characterized laryngeal pathologies and demonstrated the added advantage of using 3D OCT imaging for lesion discrimination and margin assessment. OCT evaluation of the integrity of the vocal cord could yield to a better pediatric management of laryngeal diseases.

  3. Dynamically tuned vibratory micromechanical gyroscope accelerometer

    NASA Astrophysics Data System (ADS)

    Lee, Byeungleul; Oh, Yong-Soo; Park, Kyu-Yeon; Ha, Byeoungju; Ko, Younil; Kim, Jeong-gon; Kang, Seokjin; Choi, Sangon; Song, Ci M.

    1997-11-01

    A comb driving vibratory micro-gyroscope, which utilizes the dynamically tunable resonant modes for a higher rate- sensitivity without an accelerational error, has been developed and analyzed. The surface micromachining technology is used to fabricate the gyroscope having a vibrating part of 400 X 600 micrometers with 6 mask process, and the poly-silicon structural layer is deposited by LPCVD at 625 degrees C. The gyroscope and the interface electronics housed in a hermetically sealed vacuum package for low vibrational damping condition. This gyroscope is designed to be driven in parallel to the substrate by electrostatic forces and subject to coriolis forces along vertically, with a folded beam structure. In this scheme, the resonant frequency of the driving mode is located below than that of the sensing mode, so it is possible to adjust the sensing mode with a negative stiffness effect by applying inter-plate voltage to tune the vibration modes for a higher rate-sensitivity. Unfortunately, this micromechanical vibratory gyroscope is also sensitive to vertical acceleration force, especially in the case of a low stiffness of the vibrating structure for detecting a very small coriolis force. In this study, we distinguished the rate output and the accelerational error by phase sensitivity synchronous demodulator and devised a feedback loop to maintain resonant frequency of the vertical sensing mode by varying the inter-plate tuning voltage according to the accelerational output. Therefore, this gyroscope has a high rate-sensitivity without an acceleration error, and also can be used for a resonant accelerometer. This gyroscope was tested on the rotational rate table at the separation of 50(Hz) resonant frequencies by dynamically tuning feedback loop. Also self-sustained oscillating loop is used to apply dc 2(V) + ac 30(mVpk) driving voltage to the drive electrodes. The characteristics of the gyroscope at 0.1 (deg/sec) resolution, 50 (Hz) bandwidth, and 1.3 (mV/deg/sec) sensitivity.

  4. Bioengineered vocal fold mucosa for voice restoration*

    PubMed Central

    Ling, Changying; Li, Qiyao; Brown, Matthew E.; Kishimoto, Yo; Toya, Yutaka; Devine, Erin E.; Choi, Kyeong-Ok; Nishimoto, Kohei; Norman, Ian G.; Tsegyal, Tenzin; Jiang, Jack J.; Burlingham, William J.; Gunasekaran, Sundaram; Smith, Lloyd M.; Frey, Brian L.; Welham, Nathan V.

    2015-01-01

    Patients with voice impairment caused by advanced vocal fold (VF) fibrosis or tissue loss have few treatment options. A transplantable, bioengineered VF mucosa would address the individual and societal costs of voice-related communication loss. Such a tissue must be biomechanically capable of aerodynamic-to-acoustic energy transfer and high-frequency vibration, and physiologically capable of maintaining a barrier against the airway lumen. Here, we isolated primary human VF fibroblasts and epithelial cells and cocultured them under organotypic conditions. The resulting engineered mucosae showed morphologic features of native tissue, proteome-level evidence of mucosal morphogenesis and emerging extracellular matrix complexity, and rudimentary barrier function in vitro. When grafted into canine larynges ex vivo, the mucosae generated vibratory behavior and acoustic output that were indistinguishable from those of native VF tissue. When grafted into humanized mice in vivo, the mucosae survived and were well tolerated by the human adaptive immune system. This tissue engineering approach has the potential to restore voice function in patients with otherwise untreatable VF mucosal disease. PMID:26582902

  5. Numerical investigation of soil plugging effect inside sleeve of cast-in-place piles driven by vibratory hammers in clays.

    PubMed

    Xiao, Yong Jie; Chen, Fu Quan; Dong, Yi Zhi

    2016-01-01

    During driving sleeve of cast-in-place piles by vibratory hammers, soils were squeezed into sleeve and then soil plugging was formed. The physic-mechanical properties of the soil plug have direct influence on the load transmission between the sleeve wall and soil plug. Nevertheless, the researches on this issue are insufficient. In this study, finite element and infinite element coupling model was introduced, through the commercial code ABAQUS, to simulate the full penetration process of the sleeve driven from the ground surface to the desired depth by applying vibratory hammers. The research results indicated that the cyclic shearing action decreases both in soil shear strength and in granular cementation force when the sleeve is driven by vibratory hammers, which leads to a partially plugged mode of the soil plug inside the sleeve. Accordingly, the penetration resistance of sleeve driven by vibratory hammers is the smallest compared to those by other installation methods. When driving the sleeve, the annular soil arches forming in the soil plug at sleeve end induce a significant rise in the internal shaft resistance. Moreover, the influence of vibration frequencies, sleeve diameters, and soil layer properties on the soil plug was investigated in detail, and at the same time improved formulas were brought forward to describe the soil plug resistance inside vibratory driven sleeve.

  6. Deceptive vibratory communication: pupae of a beetle exploit the freeze response of larvae to protect themselves.

    PubMed

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-10-23

    It is argued that animal signals may have evolved so as to manipulate the response of receivers in a way that increases the fitness of the signallers. In deceptive communication, receivers incur costs by responding to false signals. Recently, we reported that pupae of the soil-inhabiting Japanese rhinoceros beetle Trypoxylus dichotoma produce vibratory signals to deter burrowing larvae, thereby protecting themselves. In the present study, monitoring of vibrations associated with larval movement revealed that T. dichotoma larvae remained motionless for ca 10 min when pupal vibratory signals were played back transiently (freeze response). Furthermore, pupal signals of T. dichotoma elicited a freeze response in three other scarabaeid species, whose pupae do not produce vibratory signals. This indicates that the freeze response to certain types of vibration evolved before the divergence of these species and has been evolutionarily conserved, presumably because of the fitness advantage in avoiding predators. Pupae of T. dichotoma have probably exploited pre-existing anti-predator responses of conspecific larvae to protect themselves by emitting deceptive vibratory signals.

  7. Multi-tunable microelectromechanical system (MEMS) resonators

    DOEpatents

    Stalford, Harold L [Norman, OK; Butler, Michael A [Andover, MA; Schubert, W Kent [Albuquerque, NM

    2006-08-22

    A method for tuning a vibratory device including a cantilevered resonator comprising the steps of increasing a voltage V.sub.0 supplied to the vibratory device to thereby increase the bandwidth of the vibratory device; and keeping the resonant frequency of the vibratory device at substantially that natural frequency of the cantilevered resonator, wherein the vibratory device comprises: a capacitor including a movable plate and a fixed plate spaced from each other, the movable plate being part of the cantilevered resonator; a voltage source connected to the capacitor for providing voltage V.sub.0 across the capacitor to produce an attractive force between movable plate and fixed plate; a circuit connecting the voltage source to the capacitor; and a load resistor in said circuit having a resistance R.sub.L satisfying the following equation: .mu..omega..times..times..lamda. ##EQU00001## where: .mu. is at least 10; .omega..sub.0 is the beam constant for the cantilevered resonator; c.sub.0 is the capacitance for the capacitor; and .lamda. is the voltage dependent coupling parameter for voltage V.sub.0.

  8. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss?

    PubMed

    Rusaw, David; Hagberg, Kerstin; Nolan, Lee; Ramstrand, Nerrolyn

    2012-01-01

    The use of vibration as a feedback modality to convey motion of the body has been shown to improve measures of postural stability in some groups of patients. Because individuals using transtibial prostheses lack sensation distal to the amputation, vibratory feedback could possibly be used to improve their postural stability. The current investigation provided transtibial prosthesis users (n = 24, mean age 48 yr) with vibratory feedback proportional to the signal received from force transducers located under the prosthetic foot. Postural stability was evaluated by measuring center of pressure (CoP) movement, limits of stability, and rhythmic weight shift while participants stood on a force platform capable of rotations in the pitch plane (toes up/toes down). The results showed that the vibratory feedback increased the mediolateral displacement amplitude of CoP in standing balance and reduced the response time to rapid voluntary movements of the center of gravity. The results suggest that the use of vibratory feedback in an experimental setting leads to improvements in fast open-loop mechanisms of postural control in transtibial prosthesis users.

  9. Pupal vibratory signals of a group-living beetle that deter larvae

    PubMed Central

    Kojima, Wataru; Ishikawa, Yukio; Takanashi, Takuma

    2012-01-01

    Pupae of some insects produce sounds or vibrations, but the function of the sounds/vibrations has not been clarified in most cases. Recently, we found vibratory communication between pupae and larvae of a group-living beetle Trypoxylus dichotoma, which live in humus soil. The vibratory signals produced by pupae were shown to deter approaching larvae, thereby protecting themselves. In the present study, we tested our hypothesis that pupal signals are mimics of vibratory noises associated with foraging of moles, the most common predators of T. dichotoma. Mole vibrations played back in laboratory experiments deterred larval approaches in the same way as pupal signals. These findings suggest that to deter conspecific larvae, pupae of T. dichotoma may have exploited a preexisting response of larvae to predator vibrations by emitting deceptive signals. PMID:22896788

  10. Analysis of material particle motion and optimizing parameters of vibration of two-mass GZS vibratory feeder

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Xo; Golikov, N. S.

    2018-05-01

    The structure and kinematics of the two-mass GZS vibratory feeder operation are considered. It is established that the movement of the material's particles on the feeder surface determines its capacity. The development and analysis of the mathematical model of material's particle movement on the two-mass GZS vibratory feeder surface are shown. The results of Matlab optimization of material particles velocity function are given that allows setting rational kinematics of the feeder.

  11. Measurement of glottal cycle characteristics between children and adults: Physiological Variations

    PubMed Central

    Patel, Rita R.; Dubrovskiy, Denis; Döllinger, Michael

    2014-01-01

    Objective The aim of this study is to quantify phases of the vibratory cycle using measurements of glottal cycle quotients and glottal cycle derivatives, in typically developing pre-pubertal children and young adults with use of high speed digital imaging (HSDI). Method Vocal fold vibrations were recorded from 27 children (age range 5–9 years) and 35 adults (age range 21–45 years), with HSDI at 4000 frames per second for sustained phonation. Glottal area waveform (GAW) measures of Open Quotient (OQ), Closing Quotient (CQ), Speed Index (SI), Rate Quotient (RQ) and Asymmetry Quotient (AsyQ) were computed. Glottal cycle derivatives of Amplitude Quotient (AQ) and Maximum Area Declination Rate (MADR) were also computed. Group differences (adult females, adult males, and children) were statistically investigated for mean and standard deviation values of the glottal cycle quotients and glottal cycle derivatives. Results Children exhibited higher values of Speed Index, Asymmetry Quotient and lower MADR compared to adult males. Children exhibited the highest mean value and lowest variability in Amplitude Quotient compared to adult males and females. Adult males showed lower values of Speed Index, Asymmetry Quotient, Amplitude Quotient and higher values of MADR compared to adult females. Conclusion Glottal cycle vibratory motion in children is functionally different compared to adult males and females; suggesting the need for development of children specific norms for both normal and disordered voice qualities. PMID:24629646

  12. Vibratory roller study.

    DOT National Transportation Integrated Search

    1984-01-01

    Recently, much criticism has been directed toward the use of vibratory rollers to compact bituminous concrete. The results of the study reported here indicate that when these rollers are operated properly they can produce dense, strong, smooth riding...

  13. Effect of angular inflow on the vibratory response of a counter-rotating propeller

    NASA Technical Reports Server (NTRS)

    Turnberg, J. E.; Brown, P. C.

    1985-01-01

    This report presents the results of a propeller vibratory stress survey on the Fairey Gannet aircraft aimed at giving an assessment of the difference in vibratory response between single and counter-rotating propeller operation in angular inflow. The survey showed that counter-rotating operation of the propeller had the effect of increasing the IP response of the rear propeller by approximately 25 percent over comparable single-rotation operation while counter-rotating operation did not significantly influence the IP response of the front propeller.

  14. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise.

    PubMed

    Takahashi, Yukio

    2011-01-01

    To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL) tone and a 50-Hz, 100-dB(SPL) tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL) and that of another one was either 90, 95, or 100 dB(SPL). Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL) of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen), the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  15. Noninterference Systems Developed for Measuring and Monitoring Rotor Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    2003-01-01

    In the noninterference measurement of blade vibrations, a laser light beam is transmitted to the rotor blade tips through a single optical fiber, and the reflected light from the blade tips is collected by a receiving fiber-optic bundle and conducted to a photodetector. Transmitting and receiving fibers are integrated in an optical probe that is enclosed in a metal tube which also houses a miniature lens that focuses light on the blade tips. Vibratory blade amplitudes can be deduced from the measurement of the instantaneous time of arrival of the blades and the knowledge of the rotor speed. The in-house noninterference blade-vibration measurement system was developed in response to requirements to monitor blade vibrations in several tests where conventional strain gauges could not be installed or where there was a need to back up strain gauges should critical gauges fail during the test. These types of measurements are also performed in the aircraft engine industry using proprietary in-house technology. Two methods of measurement were developed for vibrations that are synchronous with a rotor shaft. One method requires only one sensor; however, it is necessary to continuously record the data while the rotor is being swept through the resonance. In the other method, typically four sensors are employed and the vibratory amplitude is deduced from the data by performing a least square fit to a harmonic function. This method does not require continuous recording of data through the resonance and, therefore, is better suited for monitoring. The single-probe method was tested in the Carl facility at the Wright- Patterson Air Force Base, and the multiple-probe method was tested in NASA Glenn Research Center's Spin Rig facility, which uses permanent magnets to excite synchronous vibrations. Representative results from this test are illustrated in the bar chart. Nonsynchronous vibrations were measured online during testing of the Quiet High Speed Fan in Glenn s 9- by 15-Foot Low-Speed Wind Tunnel. Three sensors were employed, enabling a reconstruction of the vibratory patterns at the leading and trailing edges at the tip span, as well as a determination of vibratory amplitudes for every blade.

  16. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  17. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  18. VIBRATORY SPIRAL BLANCHER-COOLER

    EPA Science Inventory

    The objective of the demonstration project was to test the commercial feasibility of the vibratory spiral blancher-cooler, a newly designed steam blancher and air cooler that previous small scale tests showed could reduce the wasteload and energy consumption of preparing vegetabl...

  19. Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints

    NASA Astrophysics Data System (ADS)

    Cassidy, Ian L.

    Over the past decade, a significant amount of research activity has been devoted to developing electromechanical systems that can convert ambient mechanical vibrations into usable electric power. Such systems, referred to as vibratory energy harvesters, have a number of useful of applications, ranging in scale from self-powered wireless sensors for structural health monitoring in bridges and buildings to energy harvesting from ocean waves. One of the most challenging aspects of this technology concerns the efficient extraction and transmission of power from transducer to storage. Maximizing the rate of power extraction from vibratory energy harvesters is further complicated by the stochastic nature of the disturbance. The primary purpose of this dissertation is to develop feedback control algorithms which optimize the average power generated from stochastically-excited vibratory energy harvesters. This dissertation will illustrate the performance of various controllers using two vibratory energy harvesting systems: an electromagnetic transducer embedded within a flexible structure, and a piezoelectric bimorph cantilever beam. Compared with piezoelectric systems, large-scale electromagnetic systems have received much less attention in the literature despite their ability to generate power at the watt--kilowatt scale. Motivated by this observation, the first part of this dissertation focuses on developing an experimentally validated predictive model of an actively controlled electromagnetic transducer. Following this experimental analysis, linear-quadratic-Gaussian control theory is used to compute unconstrained state feedback controllers for two ideal vibratory energy harvesting systems. This theory is then augmented to account for competing objectives, nonlinearities in the harvester dynamics, and non-quadratic transmission loss models in the electronics. In many vibratory energy harvesting applications, employing a bi-directional power electronic drive to actively control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.

  20. Vibratory roller evaluation study : interim report No. 1.

    DOT National Transportation Integrated Search

    1974-08-01

    The Louisiana Department of Highways has in progress a two phase program to evaluate the use of vibratory rollers in the compaction of asphaltic concrete pavements. Phase one on the first construction project is now complete with eight different vibr...

  1. [Effect of vibratory stimulation of foot support areas in rats on the functional state of leg muscles and the content of N2A titin isoforms in gravity relief].

    PubMed

    Baltina, Y V; Kuznetsov, M V; Yeremeev, A A; Baltin, M E

    2014-01-01

    In this work, we studied the effect of vibratory stimulation of the foot support zones on the functional state of the leg muscles and the content of N2A titin isoforms in rats under simulated microgravity (hanging model). The results of this study showed that vibratory support zones of the rat foot in a gravity discharge may reduce the incidence in amplitude of the leg muscle motor response and undesirable reduction of the titin content.

  2. Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa

    PubMed Central

    Stölting, Heiko; Moore, Thomas E.; Lakes-Harlan, Reinhard

    2002-01-01

    Males of the North American cicada Okanagana rimosa (Homoptera: Cicadidae, Tibicininae) emit loud airborne acoustic signals for intraspecific communication. Specialised vibratory signals could not be detected; however, the airborne signal induced substrate vibrations. Both auditory and vibratory spectra peak in the range from 7–10 kHz. Thus, the vibrations show similar frequency components to the sound spectrum within biologically relevant distances. These vibratory signals could be important as signals involved in mate localization and perhaps even as the context for the evolution of the ear in a group of parasitoid flies. PMID:15455036

  3. Particle size reduction of Si3N4 with Si3N4 milling hardware

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Freedman, M. R.; Kiser, J. D.

    1986-01-01

    The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.

  4. Assessment of penile vibratory stimulation as a management strategy in men with secondary retarded orgasm.

    PubMed

    Nelson, Christian J; Ahmed, Absaar; Valenzuela, Rolando; Parker, Marilyn; Mulhall, John P

    2007-03-01

    To evaluate the effectiveness of penile vibratory stimulation for the management of retarded orgasm. Retarded orgasm, a condition characterized by difficulty achieving orgasm and ejaculation, is one of the most recalcitrant of the male sexual dysfunctions. Currently, no evidence-based treatments have been proven to ameliorate this condition. Men who had a complete inability to achieve an orgasm during sexual relations in the previous 3 months were instructed in the use of penile vibratory stimulation. The men's responses were measured by self-report of orgasm function and using the orgasm and satisfaction domains of the International Index of Erectile Function. The responses were assessed at baseline (admission into the study) and at 3 and 6 months. A total of 36 men met the inclusion criteria, and 72% reported the restoration of orgasm. These responders reported that orgasm during sexual relations occurred 62% of the time. A statistically and clinically significant increase occurred in the orgasm and satisfaction domains of the International Index of Erectile Function between the baseline visit and the 3-month follow-up visit. These gains were sustained at 6 months. Penile vibratory stimulation is an effective treatment for retarded orgasm. Penile vibratory stimulation should be integrated into current cognitive-behavioral sex therapy techniques to achieve maximal effectiveness and satisfaction.

  5. Advances in our understanding of the Reinke space.

    PubMed

    Thibeault, Susan L

    2005-06-01

    Normal vocal fold vibration depends critically upon the composition of the Reinke space or the lamina propria extracellular matrix. Alterations in the normal composition of the extracellular matrix result in a loss of normal vibratory function. In this article, the present literature on the Reinke space in normal and disease states is reviewed including publications in the multidisciplinary fields of biomechanics, histology, molecular biology, and tissue engineering. With recent technology advances, the etiology for benign lesions has been investigated with computer models and bioreactors. Particular extracellular matrix constituents in various benign vocal fold lesions--fibronectin, fibromodulin and hyaluronan--appear to be involved in altering the viscoelastic properties of the Reinke space. Significant basic science approaches to the investigation of the characterization of the Reinke space in vocal fold scarring has produced several potential future treatment avenues. Tissue-engineering approaches for regeneration of the Reinke space are the most recent addition to the literature showing promising research directions. Voice disorders represent a significant clinical problem. Research attempting to discover the underlying molecular and genetic regulation and homeostasis of the extracellular matrix of the Reinke space are essential. Effective future clinical interventions must be based upon the knowledge of how genetic and biologic features are disturbed in vocal diseases and how they relate to vocal symptoms.

  6. Vibratory compaction of bituminous concrete -- where does it stand?.

    DOT National Transportation Integrated Search

    1974-01-01

    A questionnaire concerning the specifications on the use of vibratory rollers on bituminous concrete was sent to the 50 state highway agencies. All 50 agencies replied, and many indicated that their specs were in a state of change. The report present...

  7. Impact of Perioperative Voice Therapy on Outcomes in the Surgical Management of Vocal Fold Cysts.

    PubMed

    Tibbetts, Kathleen M; Dominguez, Laura M; Simpson, C Blake

    2018-05-01

    Vocal fold cysts are benign mid-membranous lesions of the true vocal fold, classified as mucus retention or epidermal inclusion cysts. Treatment is surgical excision with or without postoperative voice therapy. A retrospective review was performed of the demographics, treatment approach, and outcomes of patients treated for vocal fold cysts between 2009 and 2014. Voice Handicap Index (VHI)-10 scores before and after treatment were compared using the Wilcoxon Rank-Sum test and the two-tailed Student's t test. Videostroboscopy examinations were reviewed for posttreatment changes in vibratory characteristics of the vocal folds. Twenty-five patients were identified, and one was excluded for incomplete records. Mean age was 41.9 years (66.7% female), and mean follow-up time was 5.58 months. Microflap excision was pursued by 21/24 (87.5%) patients, with 14 patients (58.3%) undergoing perioperative voice therapy. One cyst recurred. Two patients elected for observation, and their cysts persisted. VHI-10 decreased from 23.8 to 6.6 (P < 0.001) overall. There was a statistically significant reduction in VHI-10 in patients undergoing surgery with and without postoperative voice therapy (P < 0.004 and 0.001), but there was no significant difference between these two groups. Mucosal wave was classified as normal or improved in the majority. Cysts were characterized as mucus retention cysts in 19/21 (90%) and as epidermal inclusion cysts in 2/21 (10%). Vocal fold cysts impact mucosal wave and glottic closure. Surgical excision resulted in low rates of recurrence, and in improvement in the mucosal wave and VHI-10. Perioperative voice therapy did not offer a significant benefit. Mucus retention cysts were the majority, in contrast to other published studies. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. A portable high-speed camera system for vocal fold examinations.

    PubMed

    Hertegård, Stellan; Larsson, Hans

    2014-11-01

    In this article, we present a new portable low-cost system for high-speed examinations of the vocal folds. Analysis of glottal vibratory parameters from the high-speed recordings is compared with videostroboscopic recordings. The high-speed system is built around a Fastec 1 monochrome camera, which is used with newly developed software, High-Speed Studio (HSS). The HSS has options for video/image recording, contains a database, and has a set of analysis options. The Fastec/HSS system has been used clinically since 2011 in more than 2000 patient examinations and recordings. The Fastec 1 camera has sufficient time resolution (≥4000 frames/s) and light sensitivity (ISO 3200) to produce images for detailed analyses of parameters pertinent to vocal fold function. The camera can be used with both rigid and flexible endoscopes. The HSS software includes options for analyses of glottal vibrations, such as kymogram, phase asymmetry, glottal area variation, open and closed phase, and angle of vocal fold abduction. It can also be used for separate analysis of the left and vocal fold movements, including maximum speed during opening and closing, a parameter possibly related to vocal fold elasticity. A blinded analysis of 32 patients with various voice disorders examined with both the Fastec/HSS system and videostroboscopy showed that the high-speed recordings were significantly better for the analysis of glottal parameters (eg, mucosal wave and vibration asymmetry). The monochrome high-speed system can be used in daily clinical work within normal clinical time limits for patient examinations. A detailed analysis can be made of voice disorders and laryngeal pathology at a relatively low cost. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  9. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements

    PubMed Central

    Liu, Yu; Denton, John M.; Nelson, Randall J.

    2009-01-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents. PMID:18288475

  10. Analysis and comparison of focused ion beam milling and vibratory polishing sample surface preparation methods for porosity study of U-Mo plate fuel for research and test reactors.

    PubMed

    Westman, Bjorn; Miller, Brandon; Jue, Jan-Fong; Aitkaliyeva, Assel; Keiser, Dennis; Madden, James; Tucker, Julie D

    2018-07-01

    Uranium-Molybdenum (U-Mo) low enriched uranium (LEU) fuels are a promising candidate for the replacement of high enriched uranium (HEU) fuels currently in use in a high power research and test reactors around the world. Contemporary U-Mo fuel sample preparation uses focused ion beam (FIB) methods for analysis of fission gas porosity. However, FIB possess several drawbacks, including reduced area of analysis, curtaining effects, and increased FIB operation time and cost. Vibratory polishing is a well understood method for preparing large sample surfaces with very high surface quality. In this research, fission gas porosity image analysis results are compared between samples prepared using vibratory polishing and FIB milling to assess the effectiveness of vibratory polishing for irradiated fuel sample preparation. Scanning electron microscopy (SEM) imaging was performed on sections of irradiated U-Mo fuel plates and the micrographs were analyzed using a fission gas pore identification and measurement script written in MatLab. Results showed that the vibratory polishing method is preferentially removing material around the edges of the pores, causing the pores to become larger and more rounded, leading to overestimation of the fission gas porosity size. Whereas, FIB preparation tends to underestimate due to poor micrograph quality and surface damage leading to inaccurate segmentations. Despite the aforementioned drawbacks, vibratory polishing remains a valid method for porosity analysis sample preparation, however, improvements should be made to reduce the preferential removal of material surrounding pores in order to minimize the error in the porosity measurements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements.

    PubMed

    Liu, Yu; Denton, John M; Nelson, Randall J

    2008-05-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents.

  12. Development of a glottal area index that integrates glottal gap size and open quotient

    PubMed Central

    Chen, Gang; Kreiman, Jody; Gerratt, Bruce R.; Neubauer, Juergen; Shue, Yen-Liang; Alwan, Abeer

    2013-01-01

    Because voice signals result from vocal fold vibration, perceptually meaningful vibratory measures should quantify those aspects of vibration that correspond to differences in voice quality. In this study, glottal area waveforms were extracted from high-speed videoendoscopy of the vocal folds. Principal component analysis was applied to these waveforms to investigate the factors that vary with voice quality. Results showed that the first principal component derived from tokens without glottal gaps was significantly (p < 0.01) associated with the open quotient (OQ). The alternating-current (AC) measure had a significant effect (p < 0.01) on the first principal component among tokens exhibiting glottal gaps. A measure AC/OQ, defined as the ratio of AC to OQ, was proposed to combine both amplitude and temporal characteristics of the glottal area waveform for both complete and incomplete glottal closures. Analyses of “glide” phonations in which quality varied continuously from breathy to pressed showed that the AC/OQ measure was able to characterize the corresponding continuum of glottal area waveform variation, regardless of the presence or absence of glottal gaps. PMID:23464035

  13. Effect of pneumotach on measurement of vocal function

    NASA Astrophysics Data System (ADS)

    Walters, Gage; McPhail, Michael; Krane, Michael

    2017-11-01

    Aerodynamic and acoustic measurements of vocal function were performed in a physical model of the human airway with and without a pneumotach (Rothenberg mask), used by clinicians to measure vocal volume flow. The purpose of these experiments was to assess whether the device alters acoustic and aerodynamic conditions sufficiently to change phonation behavior. The airway model, which mimics acoustic behavior of an adult human airway from trachea to mouth, consists of a 31.5cm long straight duct with a 2.54cm square cross section. Model vocal folds comprised of molded silicone rubber were set into vibration by introducing airflow from a compressed air source. Measurements included transglottal pressure difference, mean volume flow, vocal fold vibratory motion, and sound pressure measured at the mouth. The experiments show that while the pneumotach imparted measurable aerodynamic and acoustic loads on the system, measurement of mean glottal resistance was not affected. Acoustic pressure levels were attenuated, however, suggesting clinical acoustic measurements of vocal function need correction when performed in conjunction with a pneumotach Acknowledge support from NIH DC R01005642-11.

  14. Experimental Analysis of Steady-State Maneuvering Effects on Transmission Vibration Patterns Recorded in an AH-1 Cobra Helicopter

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)

    2000-01-01

    Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.

  15. Utility of Vibratory Stimulation for Reducing Intraoral Injection Pain.

    PubMed

    Erdogan, Ozgur; Sinsawat, Anatachai; Pawa, Sudeep; Rintanalert, Duangtawan; Vuddhakanok, Suchada

    2018-01-01

    Intraoral local anesthesia injection is often perceived as a painful and anxiety-causing dental procedure. Vibration stimulus is one of the nonpharmacologic methods used to reduce unwanted sensations of local anesthesia injection. This clinical study evaluated the effectiveness of a recently introduced vibratory stimulation device in intraoral local anesthesia administration. Thirty-two subjects underwent 2 maxillary local anesthesia injections in 2 different sessions: 1 with conventional techniques and 1 with the aid of a vibratory stimulation device (DentalVibe). The pain levels were evaluated with a visual analog scale and the Wong-Baker FACES Pain Rating Scale. The subjects were asked to choose the preferred method for future injections. The data were evaluated statistically. There were no significant differences between the 2 injection methods with regard to either pain evaluation method. The preference of the subjects regarding future injection technique was evenly distributed between the groups. The vibratory stimulation device used in this study did not provide any reduction in pain level associated with maxillary infiltration local anesthesia administration.

  16. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  17. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life.

    PubMed

    Melani, Federico; Mei, Davide; Pisano, Tiziana; Savasta, Salvatore; Franzoni, Emilio; Ferrari, Anna Rita; Marini, Carla; Guerrini, Renzo

    2011-04-01

    Cyclin-dependent kinase-like 5 (CDKL5) gene abnormalities cause an early-onset epileptic encephalopathy. We performed video-electroencephalography (video-EEG) monitoring early in the course of CDKL5-related epileptic encephalopathy in order to examine the early electroclinical characteristics of the condition. We used video-EEG to monitor six infants (five females, one male) with CDKL5-related epileptic encephalopathy (five mutations; one deletion), at ages 45 days to 12 months and followed them up to the ages of 14 months to 5 years (mean age 23 mo). We focused our analysis on the first year of life. The results were evaluated against those of a comparison group of nine infants (aged below 1y) with epileptic encephalography who had tested negative for CDKL5 mutations and deletions. One infant exhibited normal background activity, three exhibited moderate slowing, and two exhibited a suppression burst pattern. Two participants had epileptic spasms and four had a stereotyped complex seizure pattern, which we defined as a 'prolonged' generalized tonic-clonic event consisting of a tonic-tonic/vibratory contraction, followed by a clonic phase with series of spasms, gradually translating into repetitive distal myoclonic jerks. Seizure duration ranged from 2 to 4 minutes. The EEG correlate of each clinical phase included an initial electrodecremental event (tonic vibratory phase), irregular series of sharp waves and spike slow waves (clonic phase with series of spasms), and bilateral rhythmic sharp waves (time locked with myoclonus). Infants with CDKL5-related early epileptic encephalopathy can present in the first year of life with an unusual electroclinical pattern of 'prolonged' generalized tonic-clonic seizures. © The Authors. Journal compilation © Mac Keith Press 2011.

  18. Particle-size reduction of Si3N4 powder with Si3N4 milling hardware

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Freedman, M. R.; Kiser, J. D.

    1986-01-01

    The grinding of Si3N4 powder using reaction bonded Si3N4 attrition, vibratory, and ball mills with Si3N4 media was examined. The rate of particle size reduction and the change in the chemical composition of the powder were determined in order to compare the grinding efficiency and the increase in impurity content resulting from mill and media wear for each technique. Attrition and vibratory milling exhibited rates of specific surface area increase that were approximately eight times that observed in ball milling. Vibratory milling introduced the greatest impurity pickup.

  19. Advanced ESPI-based medical instruments for otolaryngology

    NASA Astrophysics Data System (ADS)

    Castracane, James; Conerty, M.; Cacace, Anthony T.; Gardner, Glendon M.; Miller, Mitchell B.; Parnes, Steven M.

    1993-05-01

    Optical fibers have long been used for visual inspection inside the human body for medical diagnoses and treatment. By making use of sophisticated optical interferometric and ultra- small imaging techniques, combined with automated image processing, it is possible to extract significantly increased information for more accurate medical diagnoses. With support from NIH under the SBIR program, we have been developing a range of such instruments. One of these supported by the NIDCD is capable of providing detailed spatial information on the vibratory response of the tympanic membrane (TM). This instrument involves the examination of the TM by means of high speed electronic speckle pattern interferometry (ESPI). This provides a real time view of the vibration patterns of the TM for clinical diagnosis. This Interferometric Otoscope consists of mode conserving fiber optics, miniature diode lasers and high speed solid state detector arrays. We present the current status of the research including holography and ESPI of TM models and excised temporal bone preparations. A second instrument, also developed with support from NIDCD, is for application to the larynx. This system is also ESPI based but will incorporate features for direct vocal cord (VC) examination. By careful examination of the vibratory response of the VC during phonation, the characteristics of the mucosal wave may be examined. Adynamic regions of the cords can signal the start of lesions or cysts. Results of surgery can be evaluated in a quantitative manner. The design of a clinical prototype and preliminary electro-optic experiments on excised larynges and VC models will be presented.

  20. Assessment of Penile Vibratory Stimulation as a Management Strategy in Men with Secondary Retarded Orgasm

    PubMed Central

    Nelson, Christian J.; Ahmed, Absaar; Valenzuela, Rolando; Parker, Marilyn; Mulhall, John P.

    2016-01-01

    OBJECTIVES To evaluate the effectiveness of penile vibratory stimulation for the management of retarded orgasm. Retarded orgasm, a condition characterized by difficulty achieving orgasm and ejaculation, is one of the most recalcitrant of the male sexual dysfunctions. Currently, no evidence-based treatments have been proven to ameliorate this condition. METHODS Men who had a complete inability to achieve an orgasm during sexual relations in the previous 3 months were instructed in the use of penile vibratory stimulation. The men’s responses were measured by self-report of orgasm function and using the orgasm and satisfaction domains of the International Index of Erectile Function. The responses were assessed at baseline (admission into the study) and at 3 and 6 months. RESULTS A total of 36 men met the inclusion criteria, and 72% reported the restoration of orgasm. These responders reported that orgasm during sexual relations occurred 62% of the time. A statistically and clinically significant increase occurred in the orgasm and satisfaction domains of the International Index of Erectile Function between the baseline visit and the 3-month follow-up visit. These gains were sustained at 6 months. CONCLUSIONS Penile vibratory stimulation is an effective treatment for retarded orgasm. Penile vibratory stimulation should be integrated into current cognitive-behavioral sex therapy techniques to achieve maximal effectiveness and satisfaction. PMID:17382163

  1. On the Power Spectrum of Motor Unit Action Potential Trains Synchronized With Mechanical Vibration.

    PubMed

    Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; Cesarelli, Mario; Iuppariello, Luigi; Bifulco, Paolo

    2018-03-01

    This study provides a definitive analysis of the spectrum of a motor unit action potential train (MUAPT) elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that MUAPs are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Synchronized action potential train was represented as a quasi-periodic sequence of a given MU waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to the previous experimental studies. A mathematical expression for power spectrum of a synchronized MUAPT has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization the more relevant is the continuous spectrum. Electromyography (EMG) rectification enhances the discrete components. The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. This paper definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggest to avoid EMG rectification that significantly alters the spectrum characteristics.

  2. 75 FR 67951 - Takes of Marine Mammals Incidental to Specified Activities; Piling and Structure Removal in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ...), and if the permissible methods of taking and requirements pertaining to the mitigation, monitoring and... vibratory hammer extraction methods and structures will be removed via cable lifting. In addition... be removed via vibratory hammer extraction methods. Operations will begin on the pilings and...

  3. A higher harmonic control test in the DNW to reduce impulsive BVI noise

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1994-01-01

    A model rotor acoustic test was performed to examine the benefit of higher control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulse noise. A 40-percent dynamically scaled, four-bladed model of a BO-105 main rotor was tested in the German-Dutch Wind Tunnel (DNW). Acoustic measurements were made in a large plane underneath the rotor employing a traversing in-flow microphone array in the anechoic environment of the open test section. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules (different modes, amplitudes, phases) were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with HHC phase variations are found. Compared to the baseline conditions (without HHD), significant mid-frequency noise reductions of as much as 6 dB are obtained for low speed descent conditions where BVI is most intensive. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. Low frequency loading noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  4. 75 FR 48941 - Takes of Marine Mammals Incidental to Specified Activities; Piling and Structure Removal in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... subsistence uses (where relevant), and if the permissible methods of taking and requirements pertaining to the... mouth of Chapman Bay. Pilings would be removed by vibratory hammer extraction methods and structures... day would be removed via vibratory hammer extraction methods. Typically the hammer vibrates for less...

  5. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals

    PubMed Central

    Cristaldo, Paulo F.; Jandák, Vojtĕch; Kutalová, Kateřina; Rodrigues, Vinícius B.; Brothánek, Marek; Jiříček, Ondřej; DeSouza, Og; Šobotník, Jan

    2015-01-01

    ABSTRACT Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone. PMID:26538635

  6. Symmetric waterbomb origami.

    PubMed

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  7. Quantitative Study for the Surface Dehydration of Vocal Folds Based on High-Speed Imaging.

    PubMed

    Li, Lin; Zhang, Yu; Maytag, Allison L; Jiang, Jack J

    2015-07-01

    From the perspective of the glottal area and mucosal wave, quantitatively estimate the differences of vocal fold on laryngeal activity during phonation at three different dehydration levels. Controlled three sets of tests. A dehydration experiment for 10 excised canine larynges was conducted at 16 cm H2O. According to the dehydration cycle time (H), dehydration levels were divided into three degrees (0% H, 50% H, 75% H). The glottal area and mucosal wave under three dehydration levels were extracted from high-speed images and digital videokymography (DKG) image sequences. Direct and non-direct amplitude components were derived from glottal areas. The amplitude and frequency of mucosal wave were calculated from DKG image sequences. These parameters in condition of three dehydration levels were compared for statistical analysis. The results showed a significant difference in direct (P = 0.001; P = 0.005) and non-direct (P = 0.005; P = 0.016) components of glottal areas between every two different dehydration levels. Considering the right-upper, right-lower, left-upper, and left-lower of vocal fold, the amplitudes of mucosal waves consistently decreased with increasing of dehydration levels. But, there was no significant difference in frequency. Surface dehydration could give rise to complex variation of vocal fold on tissues and vibratory mechanism, which should need analyzing from multiple perspectives. The results suggested that the combination of glottal area and mucosal wave could be better to research the change of vocal fold at different dehydrations. It would become a better crucial research tool for the clinical treatment of dehydration-induced laryngeal pathologies. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. A vibratory stimulation-based inhibition system for nocturnal bruxism: a clinical report.

    PubMed

    Watanabe, T; Baba, K; Yamagata, K; Ohyama, T; Clark, G T

    2001-03-01

    For the single subject tested to date, the bruxism-contingent vibratory-feedback system for occlusal appliances effectively inhibited bruxism without inducing substantial sleep disturbance. Whether the reduction in bruxism would continue if the device no longer provided feedback and whether the force levels applied are optimal to induce suppression remain to be determined.

  9. Design and Characterization of a Dynamic Vibrational Culture System

    PubMed Central

    Farran, Alexandra J. E.; Teller, Sean S.; Jia, Fang; Rodney, J. Clifton; Duncan, Randall L.; Jia, Xinqiao

    2014-01-01

    To engineer a functional vocal fold tissue, the mechanical environment of the native tissue needs to be emulated in vitro. We have created a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies. The novel device is composed of a function generator, a power amplifier, an enclosed loudspeaker and a circumferentially-anchored silicone membrane. The vibration signals are translated to the membrane aerodynamically by the oscillating air pressure underneath. The vibration profiles detected on the membrane were symmetrical relative to the center of the membrane as well as the resting position over the range of frequencies (60–300 Hz) and amplitudes tested (1–30 μm). The oscillatory motion of the membrane gave rise to two orthogonal, in-plane strain components that are similar in magnitude (0.47%), and are strong functions of membrane thickness. Neonatal foreskin fibroblasts (NFFs) attached to the membrane were subjected to a 1-h vibration at 60, 110 and 300 Hz, with the displacement at the center of the membrane varying from 1 to 30 μm, followed by a 6-h rest. These regimens did not cause morphological changes to the cells. An increase in cell proliferation was detected when NFFs were driven into oscillation at 110 Hz with a normal displacement of 30 μm. qPCR results showed that the expression of genes encoding some extracellular matrix proteins was altered in response to changes in vibratory frequency and amplitude. The dynamic culture device provides a potentially useful in vitro platform for evaluating cellular responses to vibration. PMID:22095782

  10. Documenting laryngeal change following prolonged loud reading. A videostroboscopic study.

    PubMed

    Gelfer, M P; Andrews, M L; Schmidt, C P

    1996-12-01

    This study investigated the effects of prolonged loud reading on trained and untrained subjects. Subjects were eight young women singers, and eight young women with limited musical experience. Each subject underwent videostroboscopic examination prior to and following 1 h of prolonged loud reading. The pretest and posttest videotaped samples were randomized and presented to three experienced judges, who evaluated various aspects of laryngeal appearance and vibratory characteristics. Analyses of group data revealed that untrained subjects showed a small but significant increase in amplitude of vocal fold excursion following the experimental task. No significant differences were noted in the trained singer group. When individual variation was analyzed, it was found that most subjects did not show many changes from pretest to posttest. It was concluded that a l-h loud-reading task was not sufficient to induce notable laryngeal alterations.

  11. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes.

    PubMed

    Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S

    2008-03-01

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.

  12. Experimental study of the effects of surface mucus viscosity on the glottic cycle.

    PubMed

    Ayache, Stéphane; Ouaknine, Maurice; Dejonkere, Philippe; Prindere, Pierre; Giovanni, Antoine

    2004-03-01

    Numerous clinical findings indicate that viscosity of laryngeal mucosa is a crucial factor in glottal perfomance. Experience using experimental test benches has shown the importance of humidifying air stream used to induce vibration in excised larynges. Nevertheless, there is a lack of knowledge particularly regarding the physicochemical properties of laryngeal mucus. The purpose of this study was to research vocal fold vibration in excised larynges using artificial mucus of precisely known viscosity. Eight freshly harvested porcine larynges were examined. Parameters measured were Fo and vocal fold contact time. Measurements were performed under three conditions: basal (no fluid application on vocal cord surface), after application of a fluid of 60cP viscosity (Visc60), and after application of a fluid of 100cP viscosity (Visc100). Electroglottographic measurements were performed at two different times for each condition: 1 s after airflow onset (T1) and 6 seconds after airflow onset (T2). Statistical analysis consisted of comparing data obtained under each condition at T1 and T2. The results showed a significant decrease in Fo after application of Visc60 and Visc100 fluids and a decrease in Fo at T2. Closure time was significantly higher under Visc60 conditions and under Visc100 conditions than under basal conditions. Application of artificial mucus to the mucosa of the vocal folds lowered vibratory frequency and prolonged the contact phase. Our interpretation of this data is that the presence of mucus on the surface of the vocal folds generated superficial tension and caused adhesion, which is a source of nonlinearity in vocal vibration.

  13. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    PubMed

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  14. Vibration of the organ of Corti within the cochlear apex in mice

    PubMed Central

    Gao, Simon S.; Wang, Rosalie; Raphael, Patrick D.; Moayedi, Yalda; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2014-01-01

    The tonotopic map of the mammalian cochlea is commonly thought to be determined by the passive mechanical properties of the basilar membrane. The other tissues and cells that make up the organ of Corti also have passive mechanical properties; however, their roles are less well understood. In addition, active forces produced by outer hair cells (OHCs) enhance the vibration of the basilar membrane, termed cochlear amplification. Here, we studied how these biomechanical components interact using optical coherence tomography, which permits vibratory measurements within tissue. We measured not only classical basilar membrane tuning curves, but also vibratory responses from the rest of the organ of Corti within the mouse cochlear apex in vivo. As expected, basilar membrane tuning was sharp in live mice and broad in dead mice. Interestingly, the vibratory response of the region lateral to the OHCs, the “lateral compartment,” demonstrated frequency-dependent phase differences relative to the basilar membrane. This was sharply tuned in both live and dead mice. We then measured basilar membrane and lateral compartment vibration in transgenic mice with targeted alterations in cochlear mechanics. Prestin499/499, Prestin−/−, and TectaC1509G/C1509G mice demonstrated no cochlear amplification but maintained the lateral compartment phase difference. In contrast, SfswapTg/Tg mice maintained cochlear amplification but did not demonstrate the lateral compartment phase difference. These data indicate that the organ of Corti has complex micromechanical vibratory characteristics, with passive, yet sharply tuned, vibratory characteristics associated with the supporting cells. These characteristics may tune OHC force generation to produce the sharp frequency selectivity of mammalian hearing. PMID:24920025

  15. Physiological changes in female genital sensation during sexual stimulation.

    PubMed

    Gruenwald, Ilan; Lowenstein, Lior; Gartman, Irena; Vardi, Yoram

    2007-03-01

    A normal sexual response in the female depends on the integrity of afferent sensory input from the genital region. So far genital sensation has been investigated only during a non-excitatory state, and the sensory physiological changes, which occur during the sexual cycle in this region, are still obscured. To investigate the sensory status of the female genital region during sexual arousal and orgasm. Genital sensory thresholds measured by Quantitative Sensory Testing (vibratory and thermal) were compared in a non-excitatory vs. excitatory state in normal sexually functioning females. Eleven healthy female volunteers were recruited and attended three separate visits. During each session only one anatomical site, either clitoris or vagina was tested for either vibratory or thermal stimuli. A psychophysical method of limits was employed for threshold determination of warm or vibratory stimuli. In each session, all women were tested at baseline, immediately after arousal, after orgasm and three more measurements - 5, 10, and 20 minutes during the recovery state. A significant decrease in clitoral vibratory sensation threshold was observed between the baseline and the arousal phases (P = 0.003). Comparison of vibratory sensation between baseline and following orgasm at the clitoral and vaginal region showed a significant difference (P < 0.001) for both regions. These changes were not significant for thermal threshold sensation at the clitoral region (P = 0.6). This is the first time that genital sensation has been measured during the excitatory phase of the female sexual cycle. This normative data may serve as a baseline for further investigations of the sensory input of the genital organs during intercourse in pathological states.

  16. Phase and speed synchronization control of four eccentric rotors driven by induction motors in a linear vibratory feeder with unknown time-varying load torques using adaptive sliding mode control algorithm

    NASA Astrophysics Data System (ADS)

    Kong, Xiangxi; Zhang, Xueliang; Chen, Xiaozhe; Wen, Bangchun; Wang, Bo

    2016-05-01

    In this paper, phase and speed synchronization control of four eccentric rotors (ERs) driven by induction motors in a linear vibratory feeder with unknown time-varying load torques is studied. Firstly, the electromechanical coupling model of the linear vibratory feeder is established by associating induction motor's model with the dynamic model of the system, which is a typical under actuated model. According to the characteristics of the linear vibratory feeder, the complex control problem of the under actuated electromechanical coupling model converts to phase and speed synchronization control of four ERs. In order to keep the four ERs operating synchronously with zero phase differences, phase and speed synchronization controllers are designed by employing adaptive sliding mode control (ASMC) algorithm via a modified master-slave structure. The stability of the controllers is proved by Lyapunov stability theorem. The proposed controllers are verified by simulation via Matlab/Simulink program and compared with the conventional sliding mode control (SMC) algorithm. The results show the proposed controllers can reject the time-varying load torques effectively and four ERs can operate synchronously with zero phase differences. Moreover, the control performance is better than the conventional SMC algorithm and the chattering phenomenon is attenuated. Furthermore, the effects of reference speed and parametric perturbations are discussed to show the strong robustness of the proposed controllers. Finally, experiments on a simple vibratory test bench are operated by using the proposed controllers and without control, respectively, to validate the effectiveness of the proposed controllers further.

  17. Self-folding origami at any energy scale

    NASA Astrophysics Data System (ADS)

    Pinson, Matthew B.; Stern, Menachem; Carruthers Ferrero, Alexandra; Witten, Thomas A.; Chen, Elizabeth; Murugan, Arvind

    2017-05-01

    Programmable stiff sheets with a single low-energy folding motion have been sought in fields ranging from the ancient art of origami to modern meta-materials research. Despite such attention, only two extreme classes of crease patterns are usually studied; special Miura-Ori-based zero-energy patterns, in which crease folding requires no sheet bending, and random patterns with high-energy folding, in which the sheet bends as much as creases fold. We present a physical approach that allows systematic exploration of the entire space of crease patterns as a function of the folding energy. Consequently, we uncover statistical results in origami, finding the entropy of crease patterns of given folding energy. Notably, we identify three classes of Mountain-Valley choices that have widely varying `typical' folding energies. Our work opens up a wealth of experimentally relevant self-folding origami designs not reliant on Miura-Ori, the Kawasaki condition or any special symmetry in space.

  18. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  19. Changes in Somatosensory Responsiveness in Behaving Primates

    DTIC Science & Technology

    1988-08-01

    visually vs. vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory...vibratory-triggered movements; 2) to record from the cerebral cortex of awake , behaving monkeys during the performance of these sensory-triggered...recording chamber was implanted over the forelimb * region of the left sensorimotor cortices following a craniotomy and secured with smaller bolts and the

  20. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    NASA Astrophysics Data System (ADS)

    Pawar, Prashant M.; Jung, Sung Nam

    2009-03-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.

  1. Using space and time to encode vibrotactile information: toward an estimate of the skin's achievable throughput.

    PubMed

    Novich, Scott D; Eagleman, David M

    2015-10-01

    Touch receptors in the skin can relay various forms of abstract information, such as words (Braille), haptic feedback (cell phones, game controllers, feedback for prosthetic control), and basic visual information such as edges and shape (sensory substitution devices). The skin can support such applications with ease: They are all low bandwidth and do not require a fine temporal acuity. But what of high-throughput applications? We use sound-to-touch conversion as a motivating example, though others abound (e.g., vision, stock market data). In the past, vibrotactile hearing aids have demonstrated improvement in speech perceptions in the deaf. However, a sound-to-touch sensory substitution device that works with high efficacy and without the aid of lipreading has yet to be developed. Is this because skin simply does not have the capacity to effectively relay high-throughput streams such as sound? Or is this because the spatial and temporal properties of skin have not been leveraged to full advantage? Here, we begin to address these questions with two experiments. First, we seek to determine the best method of relaying information through the skin using an identification task on the lower back. We find that vibrotactile patterns encoding information in both space and time yield the best overall information transfer estimate. Patterns encoded in space and time or "intensity" (the coupled coding of vibration frequency and force) both far exceed performance of only spatially encoded patterns. Next, we determine the vibrotactile two-tacton resolution on the lower back-the distance necessary for resolving two vibrotactile patterns. We find that our vibratory motors conservatively require at least 6 cm of separation to resolve two independent tactile patterns (>80 % correct), regardless of stimulus type (e.g., spatiotemporal "sweeps" versus single vibratory pulses). Six centimeter is a greater distance than the inter-motor distances used in Experiment 1 (2.5 cm), which explains the poor identification performance of spatially encoded patterns. Hence, when using an array of vibrational motors, spatiotemporal sweeps can overcome the limitations of vibrotactile two-tacton resolution. The results provide the first steps toward obtaining a realistic estimate of the skin's achievable throughput, illustrating the best ways to encode data to the skin (using as many dimensions as possible) and how far such interfaces would need to be separated if using multiple arrays in parallel.

  2. PROTERAN: animated terrain evolution for visual analysis of patterns in protein folding trajectory.

    PubMed

    Zhou, Ruhong; Parida, Laxmi; Kapila, Kush; Mudur, Sudhir

    2007-01-01

    The mechanism of protein folding remains largely a mystery in molecular biology, despite the enormous effort from many groups in the past decades. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates such as the fraction of native contacts, the radius of gyration and so on. In this paper, we present an integrated approach towards understanding the folding process via visual analysis of patterns of these reaction coordinates. The three disparate processes (1) protein folding simulation, (2) pattern elicitation and (3) visualization of patterns, work in tandem. Thus as the protein folds, the changing landscape in the pattern space can be viewed via the visualization tool, PROTERAN, a program we developed for this purpose. We first present an incremental (on-line) trie-based pattern discovery algorithm to elicit the patterns and then describe the terrain metaphor based visualization tool. Using two example small proteins, a beta-hairpin and a designed protein Trp-cage, we next demonstrate that this combined pattern discovery and visualization approach extracts crucial information about protein folding intermediates and mechanism.

  3. Mucus clearance from the pulmonary system by mechanical means: a dual-excitation approach.

    PubMed

    Ignagni, Mario; O'Dea, Thomas

    2013-01-01

    A dual-excitation approach to mechanical clearance of mucus from the pulmonary system is described. The approach employs independently controlled vibratory and constrictive pressure stimulations to the thorax. Patient cooperative efforts are integrated into the therapy regimen as a means of enhancing the efficacy of the treatment. An engineering model that demonstrates the capability to generate vibratory and constrictive pressure variations at specified levels is described.

  4. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke.

    PubMed

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls.

  5. Effects of vibratory stimulation-induced kinesthetic illusions on the neural activities of patients with stroke

    PubMed Central

    Kodama, Takayuki; Nakano, Hideki; Ohsugi, Hironori; Murata, Shin

    2016-01-01

    [Purpose] This study evaluated the influence of vibratory stimulation-induced kinesthetic illusion on brain function after stroke. [Subjects] Twelve healthy individuals and 13 stroke patients without motor or sensory loss participated. [Methods] Electroencephalograms were taken at rest and during vibratory stimulation. As a neurophysiological index of brain function, we measured the μ-rhythm, which is present mainly in the kinesthetic cortex and is attenuated by movement or motor imagery and compared the data using source localization analyses in the Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA) program. [Results] At rest, μ-rhythms appeared in the sensorimotor and supplementary motor cortices in both healthy controls and stroke patients. Under vibratory stimulation, no μ-rhythm appeared in the sensorimotor cortex of either group. Moreover, in the supplementary motor area, which stores the motor imagery required for kinesthetic illusions, the μ-rhythms of patients were significantly stronger than those of the controls, although the μ-rhythms of both groups were reduced. Thus, differences in neural activity in the supplementary motor area were apparent between the subject groups. [Conclusion] Kinesthetic illusions do occur in patients with motor deficits due to stroke. The neural basis of the supplementary motor area in stroke patients may be functionally different from that found in healthy controls. PMID:27065525

  6. An analytical theory for a three-dimensional thick-disc thin-plate vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Sedebo, G. T.; Joubert, S. V.; Shatalov, M. Y.

    2018-04-01

    We consider a cylindrical vibratory gyroscope comprising a not necessarliy thin-shelled annular disc with small-plate thickness, vibrating in the m -th vibration mode in-plane and in the (m + 1)st vibration mode out-of-plane. We derive the equations of motion for this contrivance in the “force-to-rebalance regime” and show how a slow (three-dimensional) inertial rotation rate of the gyroscope can be calculated in terms of amplitudes of vibration and other constants, all of which can be measured experimentally or calculated when the eigenfunctions and eigenvalues of the system are known. By means of a concrete example, a numerical experiment demonstrates how varying the inner radius of the annulus as well as the thickness of the plate allows us to “tune” the vibration frequencies of the in-plane and out-of-plane vibrations so that they coincide (for all practical purposes), eliminating any frequency split. Conventionally, an array of at least three thin-shelled hemispherical (or thin-ring) vibratory (resonator) gyroscopes is used to measure any three-dimensional rotation of the craft to which the gyroscopes are fixed. With the design proposed here, the array can be reduced to a solitary, tuned, annular thick-disc thin-plate vibratory gyroscope, reducing both size and cost.

  7. Reconstruction and separation of vibratory field using structural holography

    NASA Astrophysics Data System (ADS)

    Chesnais, C.; Totaro, N.; Thomas, J.-H.; Guyader, J.-L.

    2017-02-01

    A method for reconstructing and separating vibratory field on a plate-like structure is presented. The method, called "Structural Holography" is derived from classical Near-field Acoustic Holography (NAH) but in the vibratory domain. In this case, the plate displacement is measured on one-dimensional lines (the holograms) and used to reconstruct the entire two-dimensional displacement field. As a consequence, remote measurements on non directly accessible zones are possible with Structural Holography. Moreover, as it is based on the decomposition of the field into forth and back waves, Structural Holography permits to separate forces in the case of multi-sources excitation. The theoretical background of the Structural Holography method is described first. Then, to illustrate the process and the possibilities of Structural Holography, the academic test case of an infinite plate excited by few point forces is presented. With the principle of vibratory field separation, the displacement fields produced by each point force separately is reconstructed. However, the displacement field is not always meaningful and some additional treatments are mandatory to localize the position of point forces for example. From the simple example of an infinite plate, a post-processing based on the reconstruction of the structural intensity field is thus proposed. Finally, Structural Holography is generalized to finite plates and applied to real experimental measurements

  8. Piezoelectric Driving of Vibration Conveyors: An Experimental Assessment

    PubMed Central

    Rade, Domingos Alves; de Albuquerque, Emerson Bastos; Figueira, Leandro Chaves; Carvalho, João Carlos Mendes

    2013-01-01

    Vibratory feeders or vibratory conveyors have been widely used for the transport and orientation of individual parts and bulk materials in many branches of industrial activity. From the designer's standpoint, the current endeavor is to conceive efficient vibratory feeders, satisfying constraints of power consumption, vibration transmission and noise emission. Moreover, the interest in the reduction of maintenance cost is always present. In this context, this paper investigates experimentally the concept of vibratory conveying based on the use of piezoelectric materials for motion generation. A small-size prototype of a linear conveyor, in which lead-zirconate-titanate (PZT) patches are bonded to the resilient elements, is described. One of the main design goals is that the prototype is intended to be fed directly from the electric network, aiming at avoiding the use of electronic equipment for driving. To comply with this feature and, at the same time, enable to adjust the transport velocity, a mechanical device has been conceived in such a way that the first natural frequency of the conveyor can be changed. It is shown that the transport velocity is determined by the proximity between the excitation frequency and the first natural frequency of the conveyor. The experimental tests performed to characterize the dynamic behavior of the prototype are described and the range of transport velocities is determined. PMID:23867743

  9. Active Flap Control of the SMART Rotor for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  10. Perception of frequency, amplitude, and azimuth of a vibratory dipole source by the octavolateralis system of goldfish (Carassius auratus).

    PubMed

    Dailey, Deena D; Braun, Christopher B

    2011-08-01

    Goldfish (Carassius auratus) were conditioned to suppress respiration to a 40-Hz vibratory source and subsequently tested for stimulus generalization to frequency, stimulus amplitude, and position (azimuth). Animals completely failed to generalize to frequencies separated by octave intervals both lesser and greater than the CS. However, they did appear to generalize weakly to an aerial loudspeaker stimulus of the same frequency (40 Hz) after conditioning with an underwater vibratory source. Animals had a gradually decreasing amount of generalization to amplitude changes, suggesting a perceptual dimension of loudness. Animals generalized largely or completely to the same underwater source presented at a range of source azimuths. When these azimuths were presented at a transect of 3 cm, some animals did show decrements in generalization, while others did not. This suggests that although azimuth may be perceived more saliently at distances closer to a dipole source, perception of position is not immediately salient in conditioned vibratory source detection. Differential responding to test stimuli located toward the head or tail suggests the presence of perceptual differences between sources that are rostral or caudal with respect to the position of the animal or perhaps the head. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  11. Identification and experimental validation of damping ratios of different human body segments through anthropometric vibratory model in standing posture.

    PubMed

    Gupta, T C

    2007-08-01

    A 15 degrees of freedom lumped parameter vibratory model of human body is developed, for vertical mode vibrations, using anthropometric data of the 50th percentile US male. The mass and stiffness of various segments are determined from the elastic modulii of bones and tissues and from the anthropometric data available, assuming the shape of all the segments is ellipsoidal. The damping ratio of each segment is estimated on the basis of the physical structure of the body in a particular posture. Damping constants of various segments are calculated from these damping ratios. The human body is modeled as a linear spring-mass-damper system. The optimal values of the damping ratios of the body segments are estimated, for the 15 degrees of freedom model of the 50th percentile US male, by comparing the response of the model with the experimental response. Formulating a similar vibratory model of the 50th percentile Indian male and comparing the frequency response of the model with the experimental response of the same group of subjects validate the modeling procedure. A range of damping ratios has been considered to develop a vibratory model, which can predict the vertical harmonic response of the human body.

  12. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau

    PubMed Central

    King, Terrence L.; Ali, Heba; Sidker, Nehan; Cameron, Timothy M.

    2016-01-01

    Despite rapid damping, fish swimbladders have been modelled as underwater resonant bubbles. Recent data suggest that swimbladders of sound-producing fishes use a forced rather than a resonant response to produce sound. The reason for this discrepancy has not been formally addressed, and we demonstrate, for the first time, that the structure of the swimbladder wall will affect vibratory behaviour. Using the oyster toadfish Opsanus tau, we find regional differences in bladder thickness, directionality of collagen layers (anisotropic bladder wall structure), material properties that differ between circular and longitudinal directions (stress, strain and Young's modulus), high water content (80%) of the bladder wall and a 300-fold increase in the modulus of dried tissue. Therefore, the swimbladder wall is a viscoelastic structure that serves to damp vibrations and impart directionality, preventing the expression of resonance. PMID:27798293

  13. Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami

    NASA Astrophysics Data System (ADS)

    Nojima, Taketoshi

    This paper describes folding methods of thin flat sheets as well as cylindrical shells by modelling folding patterns through Japanese traditional Origami technique. New folding patterns have been devised in thin flat squared or circular membrane by modifying so called Miura-Ori in Japan (one node with 4 folding lines). Some folding patterns in cylindrical shells have newly been developed including spiral configurations. Devised foldable cylindrical shells were made by using polymer sheets, and it has been assured that they can be folded quite well. The devised models will make it possible to construct foldable/deployable space structures as well as to manufacture foldable industrial products and living goods, e. g., bottles for soft drinks.

  14. Development of Vibrational Culture Model Mimicking Vocal Fold Tissues.

    PubMed

    Kim, Dongjoo; Lim, Jae-Yol; Kwon, Soonjo

    2016-10-01

    The vocal folds (VFs) are connective tissues with complex matrix structures that provide the required mechanical properties for voice generation. VF injury leads to changes in tissue structure and properties, resulting in reduced voice quality. However, injury-induced biochemical changes and repair in scarred VF tissues have not been well characterized to date. To treat scarred VFs, it is essential to understand how physiological characteristics of VFs tissue change in response to external perturbation. In this study, we designed a simple vibrational culture model to mimic vibratory microenvironments observed in vivo. This model consists of a flexible culture plate, three linear actuators, a stereo splitter, and a function generator. Human vocal fold fibroblast (hVFF) monolayers were established on the flexible membrane, to which normal phonatory vibrations were delivered from linear actuators and a function generator. The hVFF monolayers were exposed to the vibrational stresses at a frequency of 205 Hz for 2, 6, and 10 h with maximum displacement of 47.1 μm, followed by a 6 h rest. We then observed the changes in cell morphology, cell viability, and gene expression related to extracellular matrix components. In our dynamic culture device mimicking normal phonatory frequencies, cell proliferation increased and expression of hyaluronic acid synthase 2 was downregulated in response to vibrational stresses. The results presented herein will be useful for evaluating cellular responses following VF injuries in the presence or absence of vibrational stresses.

  15. On pitch jumps between chest and falsetto registers in voice: data from living and excised human larynges.

    PubMed

    Svec, J G; Schutte, H K; Miller, D G

    1999-09-01

    The paper offers a new concept of studying abrupt chest-falsetto register transitions (jumps) based on the theory of nonlinear dynamics. The jumps were studied in an excised human larynx and in three living subjects (one female and two male). Data from the excised larynx revealed that a small and gradual change in tension of the vocal folds can cause an abrupt change of register and pitch. This gives evidence that the register jumps are manifestations of bifurcations in the vocal-fold vibratory mechanism. A hysteresis was observed; the upward register jump occurred at higher pitches and tensions than the downward jump. Due to the hysteresis, the chest and falsetto registers can be produced with practically identical laryngeal adjustments within a certain range of longitudinal tensions. The magnitude of the frequency jump was measured as the "leap ratio" F0F:F0C (fundamental frequency of the falsetto related to that of the chest register) and alternatively expressed as a corresponding musical interval, termed the "leap interval." Ranges of this leap interval were found to be different for the three living subjects (0-5 semitones for the female, 5-10 and 10-17 for the two males, respectively). These differences are considered to reflect different biomechanical properties of the vocal folds of the examined subjects. A small magnitude of the leap interval was associated with a smooth chest-falsetto transition in the female subject.

  16. Component Fixturing Method

    NASA Technical Reports Server (NTRS)

    Kling, Daniel (Inventor)

    2014-01-01

    An end-configuration of components to be moved or positioned is first obtained. This end-configuration determines the relative positioning and orientation of the components with respect to each other when in a final, desired configuration. A folding pattern is then obtained that is formed by interior vertices defining corresponding tessellation facets. The folding pattern can be induced to transition from a first folded configuration to a second folded configuration. When in the second folded configuration mounting facets, which are a subset of the tessellation facets, are arranged by the geometry of the folding pattern into positions and orientations with respect to each other that correspond to the end-configuration of the components. A foldable structure is then obtained that folds in accordance with the folding pattern, and the components are affixed to their respective mounting facets.

  17. Vibratory pumping of a free fluid stream

    DOEpatents

    Merrigan, M.A.; Woloshun, K.A.

    1990-11-13

    A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

  18. [Change in laryngeal vibratory mechanism: a physiological entity].

    PubMed

    Roubeau, B; Chevrie-Muller, C; Arabia, C; Arragon, C

    1993-01-01

    The purpose of this paper is to examine the change of laryngeal vibratory mechanism in 10 males and 9 females trained and untrained singers. The electroglottographic (E.G.G.) data analysis demonstrated strong evidence to support the view that such event could be considered as a whole physiological entity. In fact findings clearly indicated biomechanical, neuromuscular and central levels in the control of the laryngeal vibration involved in the change of mechanism.

  19. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  20. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  1. Seismic wave generation systems and methods for cased wells

    DOEpatents

    Minto, James [Houston, TX; Sorrells, Martin H [Huffman, TX; Owen, Thomas E [Helotes, TX; Schroeder, Edgar C [San Antonio, TX

    2011-03-29

    A vibration source (10) includes an armature bar (12) having a major length dimension, and a driver (20A) positioned about the armature bar. The driver (20A) is movably coupled to the armature bar (12), and includes an electromagnet (40). During operation the electromagnet (40) is activated such that the driver (20A) moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar. A described method for generating a vibratory signal in an object includes positioning the vibration source (10) in an opening of the object, coupling the armature bar (12) to a surface of the object within the opening, and activating the electromagnet (40) of the driver (20A) such that the driver moves with respect to the armature bar (12) and a vibratory signal is generated in the armature bar and the object.

  2. Loading and concurrent synchronous whole-body vibration interaction increases oxygen consumption during resistance exercise.

    PubMed

    Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F

    2013-01-01

    Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat.While the application of synchronous whole body vibration had no effect on recovery oxygen, under bot vibratory and non-vibratory conditions, the heavier the external load the greater the recovery oxygen consumption levels.Regardless of vibratory condition, during the squatting exercise bout 40% BW produced higher heart rates than 20%BW or 0% BW, and 20% BW produced higher heart rates than 0% BW.There were strong trends toward higher heart rates in both vibratory conditions (50 Hz, 5-6mm; 35 Hz, 2-3 mm) than in the non-vibratory condition regardless of external loading.

  3. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  4. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting from folding instabilities in constriction is largely oversimplified. The fold patterns resulting in this setting are curved, elongated folds with random orientation. Reference Fletcher, R. C. 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds Cylindrical, and, If So, Do We Understand Why. Tectonophysics 147(1-4), 65-83.

  5. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  6. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  7. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.

    PubMed

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.

  8. A computational model of cerebral cortex folding.

    PubMed

    Nie, Jingxin; Guo, Lei; Li, Gang; Faraco, Carlos; Stephen Miller, L; Liu, Tianming

    2010-05-21

    The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    PubMed Central

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-01-01

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements. PMID:23966183

  10. Characterization of the bell-shaped vibratory angular rate gyro.

    PubMed

    Liu, Ning; Su, Zhong; Li, Qing; Fu, MengYin; Liu, Hong; Fan, JunFang

    2013-08-07

    The bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  11. Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.

    1976-01-01

    An experimental investigation determined that the psychophysical relationships between subjective discomfort evaluations to vibratory stimuli and subjective evaluations of the intensity of vibratory stimuli can be expressed in a linear fashion. Furthermore, significant differences were found to exist between discomfort and intensity subjective response for several but not all discrete frequencies investigated. The implication of these results is that ride quality criteria based upon subjective evaluation of vibration intensity should be applied cautiously in the development of criteria for human comfort.

  12. Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.

    PubMed

    Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven

    2014-07-01

    The present study explores the use of a continuum-based computational model to investigate the effect of left-right tension imbalance on vocal fold (VF) vibrations and glottal aerodynamics, as well as its implication on phonation. The study allows us to gain new insights into the underlying physical mechanism of irregularities induced by VF tension imbalance associated with unilateral cricothyroid muscle paralysis. A three-dimensional simulation of glottal flow and VF dynamics in a tubular laryngeal model with tension imbalance was conducted by using a coupled flow-structure interaction computational model. Tension imbalance was modeled by reducing by 20% the Young's modulus of one of the VFs, while holding VF length constant. Effects of tension imbalance on vibratory characteristic of the VFs and on the time-varying properties of glottal airflow as well as the aerodynamic energy transfer are comprehensively analyzed. The analysis demonstrates that the continuum-based biomechanical model can provide a good description of phonatory dynamics in tension imbalance conditions. It is found that although 20% tension imbalance does not have noticeable effects on the fundamental frequency, it does lead to a larger glottal flow leakage and asymmetric vibrations of the two VFs. A detailed analysis of the energy transfer suggests that the majority of the energy is consumed by the lateral motion of the VFs and the net energy transferred to the softer fold is less than the one transferred to the normal fold. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  13. Vibratory tactile display for textures

    NASA Technical Reports Server (NTRS)

    Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi

    1994-01-01

    We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.

  14. Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Inta, R; Evans, T A; Lai, J C S

    2009-02-01

    Termite soldiers produce a vibratory alarm signal to warn conspecific workers. This study recorded and characterized the alarm signals of Coptotermes acinaciformis (Froggatt) (Isoptera: Rhinotermitidae) and then investigated the effect of playing these recorded alarm signals on C. acinaciformis feeding activity. Foraging groups of termites were offered paired wooden blocks: either one block, continuously stimulated with a vibratory alarm signal, paired with a nonstimulated block (the alarm treatment), continuously stimulated with a pink noise signal, paired with a nonstimulated block (control for nonspecific vibrations) or two nonstimulated blocks (control for environmental effects), for 4 wk. The amount of wood eaten in the blocks stimulated by the alarm signals was significantly less than the paired nonstimulated blocks, while there seemed to be no preference in the case of the pink noise playback or control for direction. Importantly, the termites seemed not to have adapted to the recorded alarm signal over the 4-wk duration of the experiment, unlike previous studies using nonbiologically derived signals.

  15. Propriomuscular coding of kinaesthetic sensation. Experimental approach and mathematical modelling.

    PubMed

    Gilhodes, J C; Coiton, Y; Roll, J P; Ans, B

    1993-01-01

    The role of propriomuscular information in kinaesthetic sensation was studied. Experiments were carried out on human subjects in whom kinaesthetic illusions were induced by applying tendon vibration with a variable frequency. Six patterns of frequency modulation were used, four of which had an arbitrary form and the other two mimicked natural Ia discharges. The results show that the shape of the illusory movements recorded depended on the type of vibratory pattern used. A mathematical model for the propriomuscular information decoding process is proposed. It takes into account both the agonist and antagonist muscle spindle populations as sources of kinaesthetic information and is based on the assumption that position and velocity information are additively combined. The experimental data show a good fit with the theoretical data obtained by means of model simulation, thus validating our initial hypothesis. Various aspects of the experimental results and the hypotheses involved in the model are discussed.

  16. Laryngeal vibratory mechanisms: the notion of vocal register revisited.

    PubMed

    Roubeau, Bernard; Henrich, Nathalie; Castellengo, Michèle

    2009-07-01

    This study, focused on the laryngeal source level, introduces the concept of laryngeal vibratory mechanism. Human phonation is characterized by the use of four laryngeal mechanisms, labeled M0-M3, as evidenced by the electroglottographic (EGG) study of the transition phenomena between mechanisms with a population of men and women, trained and untrained singers. Macroscopic and local descriptions of the EGG signal are analyzed during the production of glissandos and held notes with different mechanisms. The transition from one mechanism to another of higher rank is characterized by a jump in frequency, a reduction of EGG amplitude, and a change in the shape of the derivative of the EGG (which may correspond to a reduction of the vibratory mass). These characteristics are used to identify a transition between two mechanisms, in complement with acoustic spectrographic analyses. The pitches of transitions between the two main mechanisms M1 and M2 and the range of the frequency-overlap region are described in detail. The notion of vocal register is revisited in the light of these concepts of laryngeal mechanism. The literature on vocal registers is reviewed, and it is shown that the confusion often cited with respect to this notion may be related to the heterogeneity of the approaches and methods used to describe the phenomena and to the multiplicity of descriptors. Therefore, the terminology of the registers is organized depending on their relation to the four laryngeal vibratory mechanisms.

  17. Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-Scale Dataset

    PubMed Central

    Meng, Yu; Li, Gang; Wang, Li; Lin, Weili; Gilmore, John H.

    2017-01-01

    The cortical folding of the human brain is highly complex and variable across individuals. Mining the major patterns of cortical folding from modern large-scale neuroimaging datasets is of great importance in advancing techniques for neuroimaging analysis and understanding the inter-individual variations of cortical folding and its relationship with cognitive function and disorders. As the primary cortical folding is genetically influenced and has been established at term birth, neonates with the minimal exposure to the complicated postnatal environmental influence are the ideal candidates for understanding the major patterns of cortical folding. In this paper, for the first time, we propose a novel method for discovering the major patterns of cortical folding in a large-scale dataset of neonatal brain MR images (N = 677). In our method, first, cortical folding is characterized by the distribution of sulcal pits, which are the locally deepest points in cortical sulci. Because deep sulcal pits are genetically related, relatively consistent across individuals, and also stable during brain development, they are well suitable for representing and characterizing cortical folding. Then, the similarities between sulcal pit distributions of any two subjects are measured from spatial, geometrical, and topological points of view. Next, these different measurements are adaptively fused together using a similarity network fusion technique, to preserve their common information and also catch their complementary information. Finally, leveraging the fused similarity measurements, a hierarchical affinity propagation algorithm is used to group similar sulcal folding patterns together. The proposed method has been applied to 677 neonatal brains (the largest neonatal dataset to our knowledge) in the central sulcus, superior temporal sulcus, and cingulate sulcus, and revealed multiple distinct and meaningful folding patterns in each region. PMID:28229131

  18. STS-107 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckhart, Timothy

    2005-01-01

    This summary report presents the results of the processed acceleration data measured aboard the Columbia orbiter during the STS-107 microgravity mission from January 16 to February 1, 2003. Two accelerometer systems were used to measure the acceleration levels due to vehicle and science operations activities that took place during the 16-day mission. Due to lack of precise timeline information regarding some payload's operations, not all of the activities were analyzed for this report. However, a general characterization of the microgravity environment of the Columbia Space Shuttle during the 16-day mission is presented followed by a more specific characterization of the environment for some designated payloads during their operations. Some specific quasi-steady and vibratory microgravity environment characterization analyses were performed for the following payloads: Structure of Flame Balls at Low Lewis-number-2, Laminar Soot Processes-2, Mechanics of Granular Materials-3 and Water Mist Fire-Suppression Experiment. The Physical Science Division of the National Aeronautics and Space Administration sponsors the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer to support microgravity science experiments, which require microgravity acceleration measurements. On January 16, 2003, both the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System for Free Flyer accelerometer systems were launched on the Columbia Space Transportation System-107 from the Kennedy Space Center. The Orbital Acceleration Research Experiment supported science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System for Free Flyer unit supported experiments requiring vibratory acceleration measurement. The Columbia reduced gravity environment analysis presented in this report uses acceleration data collected by these two sets of accelerometer systems: The Orbital Acceleration Research Experiment is a low frequency sensor, which measures acceleration up to 1 Hz, but the 1 Hz acceleration data is trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to other locations for characterizing the quasi-steady environment for payloads and the vehicle. The Space Acceleration Measurement System for Free Flyer measures vibratory acceleration in the range of 0.01 to 200 Hz at multiple measurement locations. The vibratory acceleration data measured by this system is used to assess the local vibratory environment for payloads as well as to measure the disturbance causes by the vehicle systems, crew exercise devices and payloads operation disturbances. This summary report presents analysis of selected quasi-steady and vibratory activities measured by these two accelerometers during the Columbia 16-day microgravity mission from January 16 to February 1, 2003.

  19. Optimization of Training Sets For Neural-Net Processing of Characteristic Patterns From Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J. (Inventor)

    2006-01-01

    An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.

  20. Disc resonator gyroscope fabrication process requiring no bonding alignment

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor)

    2010-01-01

    A method of fabricating a resonant vibratory sensor, such as a disc resonator gyro. A silicon baseplate wafer for a disc resonator gyro is provided with one or more locating marks. The disc resonator gyro is fabricated by bonding a blank resonator wafer, such as an SOI wafer, to the fabricated baseplate, and fabricating the resonator structure according to a pattern based at least in part upon the location of the at least one locating mark of the fabricated baseplate. MEMS-based processing is used for the fabrication processing. In some embodiments, the locating mark is visualized using optical and/or infrared viewing methods. A disc resonator gyroscope manufactured according to these methods is described.

  1. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  2. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  3. Detection of laryngeal function using speech and electroglottographic data.

    PubMed

    Childers, D G; Bae, K S

    1992-01-01

    The purpose of this research was to develop quantitative measures for the assessment of laryngeal function using speech and electroglottographic (EGG) data. We developed two procedures for the detection of laryngeal pathology: 1) a spectral distortion measure using pitch synchronous and asynchronous methods with linear predictive coding (LPC) vectors and vector quantization (VQ) and 2) analysis of the EGG signal using time interval and amplitude difference measures. The VQ procedure was conjectured to offer the possibility of circumventing the need to estimate the glottal volume velocity wave-form by inverse filtering techniques. The EGG procedure was to evaluate data that was "nearly" a direct measure of vocal fold vibratory motion and thus was conjectured to offer the potential for providing an excellent assessment of laryngeal function. A threshold based procedure gave 75.9 and 69.0% probability of pathological detection using procedures 1) and 2), respectively, for 29 patients with pathological voices and 52 normal subjects. The false alarm probability was 9.6% for the normal subjects.

  4. Vibratory Adaptation of Cutaneous Mechanoreceptive Afferents

    PubMed Central

    Bensmaïa, S. J.; Leung, Y. Y.; Hsiao, S. S.; Johnson, K. O.

    2007-01-01

    The objective of this study was to investigate the effects of extended suprathreshold vibratory stimulation on the sensitivity of slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. To that end, an algorithm was developed to track afferent absolute (I0) and entrainment (I1) thresholds as they change over time. We recorded afferent responses to periliminal vibratory test stimuli, which were interleaved with intense vibratory conditioning stimuli during the adaptation period of each experimental run. From these measurements, the algorithm allowed us to infer changes in the afferents’ sensitivity. We investigated the stimulus parameters that affect adaptation by assessing the degree to which adaptation depends on the amplitude and frequency of the adapting stimulus. For all three afferent types, I0 and I1 increased with increasing adaptation frequency and amplitude. The degree of adaptation seems to be independent of the firing rate evoked in the afferent by the conditioning stimulus. In the analysis, we distinguished between additive adaptation (in which I0 and I1 shift equally) and multiplicative effects (in which the ratio I1/I0 remains constant). RA threshold shifts are almost perfectly additive. SA1 threshold shifts are close to additive and far from multiplicative (I1 threshold shifts are twice the shifts). PC shifts are more difficult to classify. We used an I0 integrate-and-fire model to study the possible neural mechanisms. A change in transducer gain predicts a multiplicative change in I0 and I1 and is thus ruled out as a mechanism underlying SA1 and RA adaptation. A change in the resting action potential threshold predicts equal, additive change in I0 and I1 and thus accounts well for RA adaptation. A change in the degree of refractoriness during the relative refractory period predicts an additional change in I1 such as that observed for SA1 fibers. We infer that adaptation is caused by an increase in spiking thresholds produced by ion flow through transducer channels in the receptor membrane. In a companion paper, we describe the time-course of vibratory adaptation and recovery for SA1, RA, and PC fibers. PMID:16014802

  5. A Universal Crease Pattern for Folding Orthogonal Shapes

    DTIC Science & Technology

    2009-09-29

    We present a universal crease pattern--known in geometry as the tetrakis tiling and in origami as box pleating--that can fold into any object made up...to be folded. This result contrasts previous universality results for origami , which require a different crease pattern for each target object, and...confirms intuition in the origami community that box pleating is a powerful design technique.

  6. Assessment of vocal cord nodules: a case study in speech processing by using Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    Civera, M.; Filosi, C. M.; Pugno, N. M.; Silvestrini, M.; Surace, C.; Worden, K.

    2017-05-01

    Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords’ overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients’ voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice.

  7. Do Talkativeness and Vocal Loudness Correlate With Laryngeal Pathology? A Study of the Vocal Overdoer/Underdoer Continuum.

    PubMed

    Bastian, Robert W; Thomas, James P

    2016-09-01

    Assess the correlation between self-rating scales of talkativeness and loudness with various types of voice disorders. This is a retrospective study. A total of 974 patients were analyzed. The cohort study included 430 consecutive patients presenting to the senior author with voice complaints from December 1995 to December 1998. The case-control study added 544 consecutive patients referred to the same examiner from January 1988 to December 1998 for vocal fold examination before thyroid, parathyroid, and carotid surgery. Patient responses on seven-point Likert self-rating scales of talkativeness and loudness were compared with laryngeal disease. Mucosal lesions clearly associated with vibratory trauma are strongly associated with a high self-rating of talkativeness. Laryngeal deconditioning disorders were associated with a low self-rating of talkativeness. Use of a simple self-rating scale of vocal loudness and talkativeness during history taking can reliably orient the examiner to the types of voice disorders likely to be diagnosed subsequently during vocal capability testing and visual laryngeal examination. The high degree of talkativeness and loudness seen in vocal overdoers correlates well with mucosal disorders such as nodules, polyps, capillary ectasia, epidermoid inclusion cysts, and hemorrhage. A lower degree of talkativeness correlates with muscle deconditioning disorders such as vocal fold bowing, atrophy, presbyphonia, and vocal fatigue syndrome. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    NASA Astrophysics Data System (ADS)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  9. Research on Bell-Shaped Vibratory Angular Rate Gyro's Character of Resonator

    PubMed Central

    Su, Zhong; Fu, Mengyin; Li, Qing; Liu, Ning; Liu, Hong

    2013-01-01

    Bell-shaped vibratory angular rate gyro (abbreviated as BVG) is a new type Coriolis vibratory gyro that was inspired by Chinese traditional clocks. The resonator fuses based on a variable thickness axisymmetric multicurved surface shell. Its characteristics can directly influence the performance of BVG. The BVG structure not only has capabilities of bearing high overload, high impact and, compared with the tuning fork, vibrating beam, shell and a comb structure, but also a higher frequency to overcome the influence of the disturbance of the exterior environment than the same sized hemispherical resonator gyroscope (HRG) and the traditional cylinder vibratory gyroscope. It can be widely applied in high dynamic low precision angular rate measurement occasions. The main work is as follows: the issue mainly analyzes the structure and basic principle, and investigates the bell-shaped resonator's mathematical model. The reasonable structural parameters are obtained from finite element analysis and an intelligent platform. Using the current solid vibration gyro theory analyzes the structural characteristics and principles of BVG. The bell-shaped resonator is simplified as a paraboloid of the revolution mechanical model, which has a fixed closed end and a free opened end. It obtains the natural frequency and vibration modes based on the theory of elasticity. The structural parameters are obtained from the orthogonal method by the research on the structural parameters of the resonator analysis. It obtains the modal analysis, stress analysis and impact analysis with the chosen parameters. Finally, using the turntable experiment verifies the gyro effect of the BVG. PMID:23575033

  10. Influence of stimulus frequency and probe size on vibration-induced alleviation of acute orofacial pain.

    PubMed

    Hansson, P; Ekblom, A

    1986-01-01

    The pain-relieving effect of vibratory stimulation, using different stimulus parameters, and placebo stimulation in acute orofacial pain is reported. The influence of 10-, 100-, and 200-Hz vibrations on pain reduction was studied in 96 patients; two different probe sizes were used. 54 out of 76 patients, receiving vibrations at any of the above frequencies, reported relief of pain to some extent, while only 6 out of 20 patients receiving placebo treatment experienced pain alleviation. No significant differences were found between the different frequencies and probe sizes used regarding the pain-relieving effect. However, placebo stimulation was significantly less effective than any kind of vibratory stimulation. Induction time for pain relief was significantly shorter using the larger probe as compared to using the smaller probe, regardless of frequency. The results indicate that the vibratory frequency (10-200 Hz) for activation of pain-inhibitory mechanisms is not critical in acute orofacial pain. Also, spatial summation from vibration-sensitive afferents seems to be of importance for a fast activation of the inhibitory systems.

  11. Reliability of automatic vibratory equipment for ultrasonic strain measurement of the median nerve.

    PubMed

    Yoshii, Yuichi; Ishii, Tomoo; Etou, Fumihiko; Sakai, Shinsuke; Tanaka, Toshikazu; Ochiai, Naoyuki

    2014-10-01

    The objective of this study was to test the reliability of ultrasonic median nerve strain measurements using automatic vibratory equipment. Strain ratios of the median nerve in the carpal tunnel model and the reference coupler were measured at three different settings of the transducer: 0, +2 and +4 mm (+ = compressing the model down 2-4 mm initially). After measurement of the carpal tunnel model, a +4-mm setting was chosen for in vivo measurement. The median nerve strains of 30 wrists were measured by two examiners using the equipment. Intra- and inter-examiner correlation coefficients (CCs) for the strain ratios were calculated. The closest ratio was found in the +4-mm placement (strain ratio: 0.73, Young's modulus ratio: 0.79). The intra-examiner CC was 0.91 (p < 0.01), and the inter-examiner CCs were 0.72-0.78 (p < 0.01). The automatic vibratory equipment was useful in quantifying median nerve strain at the wrist. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Phasegram Analysis of Vocal Fold Vibration Documented With Laryngeal High-speed Video Endoscopy.

    PubMed

    Herbst, Christian T; Unger, Jakob; Herzel, Hanspeter; Švec, Jan G; Lohscheller, Jörg

    2016-11-01

    In a recent publication, the phasegram, a bifurcation diagram over time, has been introduced as an intuitive visualization tool for assessing the vibratory states of oscillating systems. Here, this nonlinear dynamics approach is augmented with quantitative analysis parameters, and it is applied to clinical laryngeal high-speed video (HSV) endoscopic recordings of healthy and pathological phonations. HSV data from a total of 73 females diagnosed as healthy (n = 42), or with functional dysphonia (n = 15) or with unilateral vocal fold paralysis (n = 16), were quantitatively analyzed. Glottal area waveforms (GAW) and left and right hemi-GAWs (hGAW) were extracted from the HSV recordings. Based on Poincaré sections through phase space-embedded signals, two novel quantitative parameters were computed: the phasegram entropy (PE) and the phasegram complexity estimate (PCE), inspired by signal entropy and correlation dimension computation, respectively. Both PE and PCE assumed higher average values (suggesting more irregular vibrations) for the pathological as compared with the healthy participants, thus significantly discriminating healthy group from the paralysis group (P = 0.02 for both PE and PCE). Comparisons of individual PE or PCE data for the left and the right hGAW within each subject resulted in asymmetry measures for the regularity of vocal fold vibration. The PCE-based asymmetry measure revealed significant differences between the healthy group and the paralysis group (P = 0.03). Quantitative phasegram analysis of GAW and hGAW data is a promising tool for the automated processing of HSV data in research and in clinical practice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  13. Process for forming integral edge seals in porous gas distribution plates utilizing a vibratory means

    NASA Technical Reports Server (NTRS)

    Feigenbaum, Haim (Inventor); Pudick, Sheldon (Inventor)

    1988-01-01

    A process for forming an integral edge seal in a gas distribution plate for use in a fuel cell. A seal layer is formed along an edge of a porous gas distribution plate by impregnating the pores in the layer with a material adapted to provide a seal which is operative dry or when wetted by an electrolyte of a fuel cell. Vibratory energy is supplied to the sealing material during the step of impregnating the pores to provide a more uniform seal throughout the cross section of the plate.

  14. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  15. Quantification of a Helical Origami Fold

    NASA Astrophysics Data System (ADS)

    Dai, Eric; Han, Xiaomin; Chen, Zi

    2015-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has served as a source of inspiration for innovations in science and engineering. Here, we present the geometric and mechanical properties of a twisting origami fold. The origami structure created by the fold exhibits several interesting properties, including rigid foldibility, local bistability and finely tunable helical coiling, with control over pitch, radius and handedness of the helix. In addition, the pattern generated by the fold closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. We use six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. Finally, we present a mathematical model of the local bistability of the twisting origami fold. Our study elucidates the mechanisms behind the helical coiling and local bistability of the twisting origami fold, with potential applications in robotics and deployable structures. Acknowledgment to Branco Weiss Fellowship for funding.

  16. Mining sequential patterns for protein fold recognition.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2008-02-01

    Protein data contain discriminative patterns that can be used in many beneficial applications if they are defined correctly. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. Protein classification in terms of fold recognition plays an important role in computational protein analysis, since it can contribute to the determination of the function of a protein whose structure is unknown. Specifically, one of the most efficient SPM algorithms, cSPADE, is employed for the analysis of protein sequence. A classifier uses the extracted sequential patterns to classify proteins in the appropriate fold category. For training and evaluating the proposed method we used the protein sequences from the Protein Data Bank and the annotation of the SCOP database. The method exhibited an overall accuracy of 25% in a classification problem with 36 candidate categories. The classification performance reaches up to 56% when the five most probable protein folds are considered.

  17. Protein classification using sequential pattern mining.

    PubMed

    Exarchos, Themis P; Papaloukas, Costas; Lampros, Christos; Fotiadis, Dimitrios I

    2006-01-01

    Protein classification in terms of fold recognition can be employed to determine the structural and functional properties of a newly discovered protein. In this work sequential pattern mining (SPM) is utilized for sequence-based fold recognition. One of the most efficient SPM algorithms, cSPADE, is employed for protein primary structure analysis. Then a classifier uses the extracted sequential patterns for classifying proteins of unknown structure in the appropriate fold category. The proposed methodology exhibited an overall accuracy of 36% in a multi-class problem of 17 candidate categories. The classification performance reaches up to 65% when the three most probable protein folds are considered.

  18. Acceleration Environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Kelly, Eric; Keller, Jennifer

    2009-01-01

    Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.

  19. Double Neimark Sacker bifurcation and torus bifurcation of a class of vibratory systems with symmetrical rigid stops

    NASA Astrophysics Data System (ADS)

    Luo, G. W.; Chu, Y. D.; Zhang, Y. L.; Zhang, J. G.

    2006-11-01

    A multidegree-of-freedom system having symmetrically placed rigid stops and subjected to periodic excitation is considered. The system consists of linear components, but the maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Repeated impacts usually occur in the vibratory system due to the rigid amplitude constraints. Such models play an important role in the studies of mechanical systems with clearances or gaps. Double Neimark-Sacker bifurcation of the system is analyzed by using the center manifold and normal form method of maps. The period-one double-impact symmetrical motion and homologous disturbed map of the system are derived analytically. A center manifold theorem technique is applied to reduce the Poincaré map to a four-dimensional one, and the normal form map associated with double Neimark-Sacker bifurcation is obtained. The bifurcation sets for the normal-form map are illustrated in detail. Local behavior of the vibratory systems with symmetrical rigid stops, near the points of double Neimark-Sacker bifurcations, is reported by the presentation of results for a three-degree-of-freedom vibratory system with symmetrical stops. The existence and stability of period-one double-impact symmetrical motion are analyzed explicitly. Also, local bifurcations at the points of change in stability are analyzed, thus giving some information on dynamical behavior near the points of double Neimark-Sacker bifurcations. Near the value of double Neimark-Sacker bifurcation there exist period-one double-impact symmetrical motion and quasi-periodic impact motions. The quasi-periodic impact motions are represented by the closed circle and "tire-like" attractor in projected Poincaré sections. With change of system parameters, the quasi-periodic impact motions usually lead to chaos via "tire-like" torus doubling.

  20. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia-Siang, E-mail: andy304312003@yahoo.com.tw; Hsieh, Chih-Chun, E-mail: jeromehsieh@gmail.com; Lai, Hsuan-Han, E-mail: g099066020@mail.nchu.edu.tw

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residualmore » stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.« less

  1. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  2. Designing and testing a laser-based vibratory sensor

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  3. Sidetone generator flowmeter

    DOEpatents

    Fritz, Robert J.

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  4. Sidetone generator flowmeter

    DOEpatents

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  5. Inhibition of the spider heartbeat by gravity and vibration

    NASA Technical Reports Server (NTRS)

    Finck, A.

    1984-01-01

    The rate and vigor of the spider heartbeat is controlled by an external pacemaker. A mechanical feature of the spider cardio-vascular system is the production of high serum pressure in the prosoma and the legs. This appears to be the source for leg extension. The lyriform organ on the patella of the leg is sensitive to vibratory and kinesthetic stimuli. This sensitivity depends upon the degree of leg extension. Thus the activity of the heart and the response characteristics of the sense receptor are related. The effect of a supra-threshold vibratory or gravitational stimulus is to produce an inhibition and a tachycardia of the spider heartbeat.

  6. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  7. The effects of vibratory stimulation employed to forearm and arm flexor muscles on upper limb function in patients with chronic stroke.

    PubMed

    Jung, Sang-Mi

    2017-09-01

    [Purpose] The purpose of this study was to investigate not only the effects of stimulatory vibration but also the retained effects 2 weeks after the last session of the intervention. [Subjects and Methods] Ten subjects with post-stroke hemiplegia were recruited in this study. The experimental group (EG) received vibratory stimulation for 30 minutes in each session, three times a week for 2 weeks. Grip strength (GS), box-and-block test (BBT), and Weinstein monofilament were used to assess hand strength, dexterity, and sensory in the affected hand, respectively. [Results] A significant difference was found between the pre- and post-follow-up BBT. Significant differences were found among the pre-posttest, post-follow-up test, and pre-follow-up test results for GS and BBT. [Conclusion] This study was conducted with 10 subjects, without a control group, to verify the pure effect of the intervention. As a result, significant positive effects were observed in the post-test and follow-up test of GS and BBT. Therefore, repeated vibratory stimulation influenced GS and BBT after the 2-week intervention and retained the effect for 2 more weeks.

  8. Pacinian Signals Determine the Direction and Magnitude of the Effect of Vibration on Pain.

    PubMed

    Hollins, Mark; Corsi, Christopher; Sloan, Page

    2017-08-01

    Although the ability of vibration to reduce pain has been extensively documented, an occasional participant reports that vibration increases pain. For pain patients, such reports may reflect pathophysiology, but this is unlikely in studies of experimental pain in healthy participants. In the present series of experiments on 27 pain-free individuals, we manipulated both the frequency (12, 50, and 80 Hz) and amplitude of vibration to more fully characterize vibratory pain modulation. The noxious stimulus was pressure applied to a finger, and vibration was delivered to the fleshy palmar pad at the base of the same finger. Subjects continuously reported pain on a Visual Analog Scale. Intermittent vibration was used to minimize peripheral vibratory adaptation. Pain records at 12 and 50 Hz were similar; pooling them revealed significant hypoalgesia at the highest amplitude. At 80 Hz, in contrast, the middle amplitude produced hypoalgesia, but a significant shift toward hyperalgesia occurred at the highest amplitude. The strong correlation ( r = .81) between the Pacinian-weighted power of a vibration and the absolute value of the pain modulation it produces indicates that the Pacinian system plays a key role in vibratory hypoalgesia or hyperalgesia.

  9. The efficacy of 95-Hz topical vibration in pain reduction for trigger finger injection: a placebo-controlled, prospective, randomized trial.

    PubMed

    Park, Kevin W; Boyer, Martin I; Calfee, Ryan P; Goldfarb, Charles A; Osei, Daniel A

    2014-11-01

    To determine whether vibratory stimulation would decrease pain experienced by patients during corticosteroid injection for trigger finger. A total of 90 trigger finger injections were randomized to 1 of 3 cohorts. With the injection, patients received no vibration (control group), ultrasound vibration (sham control group), or vibration (experimental group). We used a commercial handheld massaging device to provide a vibratory stimulus for the experimental group. We obtained visual analog scale (VAS) pain scores before and after injection to assess anticipated pain and actual pain experienced. Anticipated pain and actual pain did not differ significantly among groups. Anticipated VAS pain scores were 45, 48, and 50 and actual VAS pain scores were 56, 56, and 63 for the vibration, control, and sham control groups, respectively. When normalized using anchoring VAS pain scores for "stubbing a toe" or "paper cut," no between-group differences remained in injection pain scores. Concomitant vibratory stimulation does not reduce pain experienced during corticosteroid injections for trigger finger. Therapeutic I. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Higher harmonic control analysis for vibration reduction of helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh Q.

    1994-01-01

    An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.

  11. Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson's disease.

    PubMed

    De Nunzio, Alessandro M; Grasso, Margherita; Nardone, Antonio; Godi, Marco; Schieppati, Marco

    2010-02-01

    During the administration of timed bilateral alternate vibration to homonymous leg or trunk muscles during quiet upright stance, Parkinsonian (PD) patients undergo cyclic antero-posterior and medio-lateral transfers of the centre of foot pressure. This event might be potentially exploited for improving gait in these patients. Here, we tested this hypothesis by applying alternate muscle vibration during walking in PD. Fifteen patients and 15 healthy subjects walked on an instrumented walkway under four conditions: no vibration (no-Vib), and vibration of tibialis anterior (TA-Vib), soleus (Sol-Vib) and erector spinae (ES-Vib) muscles of both sides. Trains of vibration (internal frequency 100 Hz) were delivered to right and left side at alternating frequency of 10% above preferred step cadence. During vibration, stride length, cadence and velocity increased in both patients and healthy subjects, significantly so for ES-Vib. Stance and swing time tended to decrease. Width of support base increased with Sol-Vib or TA-Vib, but was unaffected by ES-Vib. Alternate ES vibration enhances gait velocity in PD. The stronger effect of ES over leg muscle vibration might depend on the relevance of the proprioceptive inflow from the trunk muscles and on the absence of adverse effects on the support base width. Trunk control is defective in PD. The effect of timed vibratory stimulation on gait suggests the potential use of trunk proprioceptive stimulation for tuning the central pattern generators for locomotion in PD. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Folding pattern in the Fars province, Zagros folded belt: case study on the Karbasi and Khaftar anticlines, interior Fars, Iran

    NASA Astrophysics Data System (ADS)

    Maleki, Z.; Arian, M.; Solgi, A.

    2015-08-01

    The anticlines in Fars region, which are located in Zagros fold-thrust belt, are valuable because they possess several hydrocarbons and this area is easily recognized by the NW-SE trending parallel anticlines that verge to the SW. According to the geological classification, the study area is located in Interior Fars region. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. The Karbasi and Khaftar anticlines are case study anticlines in the interior Fars sub-basin (Fassa area). These anticlines have an asymmetric structure and some faults with large strike separation are observed in these structures. Due to increasing complication of structural geometry in Fars region and necessity to explore activities for deeper horizons especially the Paleozoic ones, the analysis of fold style elements, which is known as one of the main parts in structural studies, seems necessary. Description of fold geometry is important because it allows comparisons within and between folds and also allows us to recognize patterns in the occurrence and distribution of fold systems. The main aim of this paper is to determine fold style elements and folding pattern in the study area. This paper presents a part of the results of a regional study of Fars province in the Zagros Simply folded belt, based on satellite images, geological maps, and well data. In the Interior Fars area, it seems that folding pattern is controlled by structural elements such as the Nezamabad basement fault and Dashtak formation. In fact, as a middle detachment unit, Dashtak formation plays an important role regarding folding geometry and fold in style in the study area.

  13. Aerodynamic and acoustic effects of ventricular gap.

    PubMed

    Alipour, Fariborz; Karnell, Michael

    2014-03-01

    Supraglottic compression is frequently observed in individuals with dysphonia. It is commonly interpreted as an indication of excessive circumlaryngeal muscular tension and ventricular medialization. The purpose of this study was to describe the aerodynamic and acoustic impact of varying ventricular medialization in a canine model. Subglottal air pressure, glottal airflow, electroglottograph, acoustic signals, and high-speed video images were recorded in seven excised canine larynges mounted in vitro for laryngeal vibratory experimentation. The degree of gap between the ventricular folds was adjusted and measured using sutures and weights. Data were recorded during phonation when the ventricular gap was narrow, neutral, and large. Glottal resistance was estimated by measures of subglottal pressure and glottal flow. Glottal resistance increased systematically as ventricular gap became smaller. Wide ventricular gaps were associated with increases in fundamental frequency and decreases in glottal resistance. Sound pressure level did not appear to be impacted by the adjustments in ventricular gap used in this research. Increases in supraglottic compression and associated reduced ventricular width may be observed in a variety of disorders that affect voice quality. Ventricular compression may interact with true vocal fold posture and vibration resulting in predictable changes in aerodynamic, physiological, acoustic, and perceptual measures of phonation. The data from this report supports the theory that narrow ventricular gaps may be associated with disordered phonation. In vitro and in vivo human data are needed to further test this association. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  14. Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Wada, Hiroshi; Ando, Masayoshi; Takeuchi, Masataka; Sugawara, Hironori; Koike, Takuji; Kobayashi, Toshimitsu; Hozawa, Koji; Gemma, Takashi; Nara, Makoto

    2002-05-01

    ``Time-averaged holography'' and ``holographic interferometry'' enable recording of the complete vibration pattern of a surface within several seconds. The results appear in the form of fringes. Vibration amplitudes smaller than 100 nm are not readily measurable by these techniques, because such small amplitudes produce variations in gray level, but not fringes. In practice, to obtain clear fringes in these measurements, stimulus sound pressures higher than 100 dB SPL must be used. The phase of motion is also not obtainable from such fringe techniques. In this study, a sinusoidal phase modulation technique is described, which allows detection of both small amplitudes of motion and their phase from time-averaged speckle pattern interferometry. In this technique, the laser injection current is modulated and digital image processing is used to analyze the measured patterns. When the sound-pressure level of stimuli is between 70 and 85 dB SPL, this system is applied to measure the vibratory response of the tympanic membrane (TM) of guinea pig temporal bones at frequencies up to 4 kHz where complicated vibration modes are observed. The effect of the bulla on TM displacements is also quantified. Results indicate that this system is capable of measuring the nanometer displacements of the TM, produced by stimuli of 70 dB SPL.

  15. Glottal open quotient in singing: Measurements and correlation with laryngeal mechanisms, vocal intensity, and fundamental frequency

    NASA Astrophysics Data System (ADS)

    Henrich, Nathalie; D'Alessandro, Christophe; Doval, Boris; Castellengo, Michèle

    2005-03-01

    This article presents the results of glottal open-quotient measurements in the case of singing voice production. It explores the relationship between open quotient and laryngeal mechanisms, vocal intensity, and fundamental frequency. The audio and electroglottographic signals of 18 classically trained male and female singers were recorded and analyzed with regard to vocal intensity, fundamental frequency, and open quotient. Fundamental frequency and open quotient are derived from the differentiated electroglottographic signal, using the DECOM (DEgg Correlation-based Open quotient Measurement) method. As male and female phonation may differ in respect to vocal-fold vibratory properties, a distinction is made between two different glottal configurations, which are called laryngeal mechanisms: mechanism 1 (related to chest, modal, and male head register) and mechanism 2 (related to falsetto for male and head register for female). The results show that open quotient depends on the laryngeal mechanisms. It ranges from 0.3 to 0.8 in mechanism 1 and from 0.5 to 0.95 in mechanism 2. The open quotient is strongly related to vocal intensity in mechanism 1 and to fundamental frequency in mechanism 2. .

  16. Patterns of folding and fold interference in oblique contraction of layered rocks of the inverted Cobar Basin, Australia

    NASA Astrophysics Data System (ADS)

    Smith, J. V.; Marshall, B.

    1992-12-01

    The inverted Cobar Basin, within the Lachlan Fold Belt of New South Wales, Australia, comprises a mid-Palaeozoic cover sequence, originally deposited in a NNW-trending basin. The pattern of F 1 folding in the layered cover rocks changes from east to west; from tight well-cleaved folds parallel to the NNW-trending basin margin on the east, to open poorly cleaved en echelon folds at about 35° to the margin, further to the west. The change in fold trend and strain intensity has been repeatedly ascribed to the differing behaviour of discrete zones, decoupled across a north-trending strike-slip fault boundary. New field data show that the changes in orientation and strain intensity of F 1 structures are progressively developed, that an abrupt boundary between discrete zones cannot be substantiated, and that interpretations involving decoupled blocks are not supported by the evidence. Conversely, the data require coherent behaviour across the basin, such that the overall pattern of F 1 folding must be explained by strain compatible processes. This new interpretation of the F 1 deformation pattern has been modelled and quantitatively analysed. Theoretical predictions of the orientation of structures in unlayered isotropic material undergoing oblique contraction are inapplicable to layered anisotropic material. The style of deformation in layered material will reflect the interaction of the bulk strain pattern due to convergence together with the influence of the layering anisotropy. The orientations of the finite strain axes inferred from the folding need not match those of the bulk deformation; the amount of strain recorded by folding may be unrepresentative of that developed in the deformed tract. Oblique contraction at a range of convergence angles was simulated by models employing layers of wet tissue paper. Quantitative analysis of the strain patterns in this layered anisotropic material showed consistent departures from the theoretical predictions for isotropic material. The orientations of the principal finite horizontal extension proximal to the margin yielded higher convergence angles than those which were imposed; the orientations distal from the margin yielded substantially lower apparent convergence angles. This is because the layering anisotropy results in tight folds dissipating the normal component of the oblique convergence vector close to the margin. Whereas more open structures further from the margin show orientations controlled by the progressively more dominant shear component of the vergence vector. Modelling of D 1 the Cobar Basin shows that the F 1 pattern is consistent with dextral oblique convergence at 60° to the eastern margin of the basin. The deformation patterns, in both the model and the Cobar Basin, yield higher proximal and substantially lower distal apparent convergence angles. This is as expected from theoretical considerations and quantitative analysis of oblique contraction over a range of convergence angles. The rheological anisotropy of the cover sequence of the basin is replicated by that of the layered wet tissue paper. Wet-tissue modelling of the superposition of the second period of deformation (D 2) on F 1 demonstrates the way in which the tightness and orientation of early folds influence the type of fold interference pattern. At the eastern margin of the Cobar Basin, where D 1 was most intense, this resulted in major swings of the strike of bedding and cleavage, and of the trend of F 1 folds. Further west, open basin and dome patterns developed where D 1 was least intense. Principles developed in relation to the inversion of the Cobar Basin, are equally applicable to other basins in which layered cover rocks have undergone inversion by oblique contraction. Many basins in the Lachlan Fold Belt and in general would fall within this category.

  17. Optically transduced MEMS gyro device

    DOEpatents

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  18. Apparatus and method of inserting a microelectrode in body tissue or the like using vibration means

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Crawford, D. W.; Kanabus, E. W. (Inventor)

    1979-01-01

    An arrangement for and method of inserting a glass microelectrode having a tip in the micron range into body tissue is presented. The arrangement includes a microelectrode. The top of the microelectrode is attached to the diaphragm center of a first speaker. The microelectrode tip is brought into contact with the tissue by controlling a micromanipulator. Thereafter, an audio signal is applied to the speaker to cause the microelectrode to vibrate and thereby pierce the tissue surface without breaking the microelectrode tip. Thereafter, the tip is inserted into the tissue to the desired depth by operating the micromanipulator with the microelectrode in a vibratory or non-vibratory state.

  19. Dynamically Tuned Blade Pitch Links for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Milgram, Judah; Chopra, Inderjit; Kottapalli, Sesi

    1994-01-01

    A passive vibration reduction device in which the conventional main rotor blade pitch link is replaced by a spring/damper element is investigated using a comprehensive rotorcraft analysis code. A case study is conducted for a modern articulated helicopter main rotor. Correlation of vibratory pitch link loads with wind tunnel test data is satisfactory for lower harmonics. Inclusion of unsteady aerodynamics had little effect on the correlation. In the absence of pushrod damping, reduction in pushrod stiffness from the baseline value had an adverse effect on vibratory hub loads in forward flight. However, pushrod damping in combination with reduced pushrod stiffness resulted in modest improvements in fixed and rotating system hub loads.

  20. Orbitofrontal sulcogyral patterns are related to temperamental risk for psychopathology.

    PubMed

    Whittle, Sarah; Bartholomeusz, Cali; Yücel, Murat; Dennison, Meg; Vijayakumar, Nandita; Allen, Nicholas B

    2014-02-01

    There are marked individual differences in the pattern of cortical (sulcogyral) folding in the orbitofrontal cortex (OFC), and there is a growing literature suggesting that these individual differences are associated with risk for psychotic disorders. To date, however, no study has investigated whether OFC folding patterns are associated with broader risk factors relevant to a range of psychopathology. This study helps address this knowledge gap by examining whether OFC sulcogyral folding patterns are associated with putative risk factors, specifically affective temperament and psychiatric symptoms, in a large community sample (N = 152) of adolescents. Results showed that the most common pattern of folding ('Type I', marked by discontinuity of the medial orbital sulcus and continuity of the lateral orbital sulcus) was associated with low levels of Surgency, high levels of Negative Affectivity (in girls) and higher depressive symptoms. This pattern was also associated with reduced thickness of OFC gray matter. Overall, the findings, combined with previous work, suggest some specificity of neurodevelopmental risk for different types of psychopathology. Thus, these results have the potential to inform the early identification of at-risk individuals.

  1. Fold interference pattern in thick-skinned tectonics; a case study from the external Variscan belt of Eastern Anti-Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.

    2016-07-01

    Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.

  2. Combinatorial pattern discovery approach for the folding trajectory analysis of a beta-hairpin.

    PubMed

    Parida, Laxmi; Zhou, Ruhong

    2005-06-01

    The study of protein folding mechanisms continues to be one of the most challenging problems in computational biology. Currently, the protein folding mechanism is often characterized by calculating the free energy landscape versus various reaction coordinates, such as the fraction of native contacts, the radius of gyration, RMSD from the native structure, and so on. In this paper, we present a combinatorial pattern discovery approach toward understanding the global state changes during the folding process. This is a first step toward an unsupervised (and perhaps eventually automated) approach toward identification of global states. The approach is based on computing biclusters (or patterned clusters)-each cluster is a combination of various reaction coordinates, and its signature pattern facilitates the computation of the Z-score for the cluster. For this discovery process, we present an algorithm of time complexity c in RO((N + nm) log n), where N is the size of the output patterns and (n x m) is the size of the input with n time frames and m reaction coordinates. To date, this is the best time complexity for this problem. We next apply this to a beta-hairpin folding trajectory and demonstrate that this approach extracts crucial information about protein folding intermediate states and mechanism. We make three observations about the approach: (1) The method recovers states previously obtained by visually analyzing free energy surfaces. (2) It also succeeds in extracting meaningful patterns and structures that had been overlooked in previous works, which provides a better understanding of the folding mechanism of the beta-hairpin. These new patterns also interconnect various states in existing free energy surfaces versus different reaction coordinates. (3) The approach does not require calculating the free energy values, yet it offers an analysis comparable to, and sometimes better than, the methods that use free energy landscapes, thus validating the choice of reaction coordinates. (An abstract version of this work was presented at the 2005 Asia Pacific Bioinformatics Conference [1].).

  3. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae).

    PubMed

    Stritih, Natasa

    2009-10-20

    Vibratory interneurons were investigated in a primitive nonhearing ensiferan (orthopteran) species (Troglophilus neglectus, Rhaphidophoridae), using intracellular recording and staining technique. The study included 26 morphologically and/or physiologically distinct types of neurons from the prothoracic ganglion responding to vibration of the front legs. Most of these neurons are tuned to frequencies below 400 Hz. The morphology, anatomical position in the ganglion, and physiological responses are described in particular for a set of these low-frequency-tuned elements, including one local neuron, two T-shaped fibers, and five descending neurons, for which no putative homologues are known from the hearing Orthoptera. Their lowest thresholds are between about 0.01 and 0.4 m/second(2) at frequencies of 50-400 Hz, and the shortest latencies between 10 and 16 msec, suggesting that they are first- or second-order interneurons. Six interneurons have dendritic arborizations in the neuropile region that contains projections of tibial organ vibratory receptors, but their sensitivity suggests predominating inputs from vibrational sensilla of another origin. Responses of most neurons are composed of frequency-specific excitatory and inhibitory synaptic potentials, most of the latter being received in the high-frequency range. The function of these neurons in predator detection and intraspecific communication is discussed.

  4. Experimental and analytical evaluation of the effects of simulated engine inlets on the blade vibratory stresses of the SR-3 model prop-fan

    NASA Technical Reports Server (NTRS)

    Bansal, Prem N.

    1985-01-01

    A cooperative wind tunnel test program, referred to as GUN-3, had been conducted previously to assess the effect of inlet configuration and location on the inlet face pressure recovery and inlet drag in the presence of a high-speed advanced turboprop. These tests were conducted with the inlets located just downstream of the SR-3 model Prop-Fan, a moderately swept, eight-bladed 62.2 cm (24.5 inch) diameter advanced, high-speed turboprop model fabricated from titanium. During these tests, two blades of the SR-3 model Prop-Fan were strain gaged to measure the vibratory blade stresses occurring during the inlet aerodynamic test program. The purpose of the effort reported herein was to reduce and analyze the test results related to the vibratory strain gage measurements obtained. Three inlet configurations had been tested. These were: (1) single scoop, (2) twin scoop, and (3) annular. Each of the three inlets was tested at a position just behind the rotor. The single scoop inlet was also tested at a position further aft. Tests were also done without an inlet. These results emphasize the importance of avoiding critical speeds in the continuous operating range.

  5. Vibration transmission through sheet webs of hobo spiders (Eratigena agrestis) and tangle webs of western black widow spiders (Latrodectus hesperus).

    PubMed

    Vibert, Samantha; Scott, Catherine; Gries, Gerhard

    2016-11-01

    Web-building spiders construct their own vibratory signaling environments. Web architecture should affect signal design, and vice versa, such that vibratory signals are transmitted with a minimum of attenuation and degradation. However, the web is the medium through which a spider senses both vibratory signals from courting males and cues produced by captured prey. Moreover, webs function not only in vibration transmission, but also in defense from predators and the elements. These multiple functions may impose conflicting selection pressures on web design. We investigated vibration transmission efficiency and accuracy through two web types with contrasting architectures: sheet webs of Eratigena agrestis (Agelenidae) and tangle webs of Latrodectus hesperus (Theridiidae). We measured vibration transmission efficiencies by playing frequency sweeps through webs with a piezoelectric vibrator and a loudspeaker, recording the resulting web vibrations at several locations on each web using a laser Doppler vibrometer. Transmission efficiencies through both web types were highly variable, with within-web variation greater than among-web variation. There was little difference in transmission efficiencies of longitudinal and transverse vibrations. The inconsistent transmission of specific frequencies through webs suggests that parameters other than frequency are most important in allowing these spiders to distinguish between vibrations of prey and courting males.

  6. A comparison of different vibration exercise techniques on neuromuscular performance.

    PubMed

    García-Gutiérrez, M T; Rhea, M R; Marín, P J

    2014-09-01

    The first purpose of this study was to determine the effects of whole-body vibration (WBV) exercise during an isometric hand-grip exercise. The second purpose was to evaluate whether more than one vibratory focus would evoke an increase in the effects evoked by only one vibratory focus. The present study investigated whether WBV exposure during 10 repetitions of a handgrip dynamometer while standing on a WBV platform. Twenty-eight recreationally active university students completed 3 different test conditions, in random order: 1) grip dynamometer exercise with superimposed WBV and contralateral arm vibration (WBV+AV); 2) superimposed arm vibration only (AV); 3) grip dynamometer exercise without vibration (Control). The hand grip strength was slightly higher in the WBV condition as compared to the Control and AV conditions (1.1% and 3.6%, p>0.05, respectively). A main effect of the EMGrms of extensor digitorum muscle (ED) was observed indicating that the WBV+AV condition produced a lower co-activation of ED during a flexor digital task than the Control and AV (p<0.05) conditions. The application of WBV+AV may acutely increase muscle coordination and decreases the coactivation of ED. Furthermore, the muscle EMGrms showed increases in activation near the vibratory focus in both upper- and lower-body.

  7. Vibration influence on control of single motor unit activity.

    PubMed

    Malouin, F; Simard, T

    1978-03-01

    Effects of vibratory stimulation and maximal isometric contraction on a fine motor control task were evaluated in 17 human subjects. Electromyographic audiovisual feedback cues derived from two fine-wire bipolar electrodes, inserted to a depth of 12 and 6 mm respectively, were used to train the subjects to isolate a motor unit in the extensor carpi radialis brevis muscle. A specially designed compressed air driven vibrator providing vibratory stimulation with an amplitude of 2 mm and a frequency range of 120-160 cycles per second was applied to the muscle tendon. A significant decrease was found in the subjects; ability to isolate the pretest motor unit during and after continuous and interrupted periods of vibration and following a maximal isometric contraction of the extensor carpi radials brevis muscle. Individual variations in the subjects' responses to the forms of application of the vibratory stimulus, electrode preference and feedback specificity were observed. Results suggest that marked spatial recruitment of motor units, brought into action by the vibration stimulus or by the maximal isometric contraction, interfered with inhibitory mechanisms necessary to achieve isolation and control of a single motor unit. A therapeutic application of vibration, based on the marked spatial recruitment observed during and after vibration, is proposed for muscle reeducation.

  8. Structural classification of small, disulfide-rich protein domains.

    PubMed

    Cheek, Sara; Krishna, S Sri; Grishin, Nick V

    2006-05-26

    Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.

  9. The dynamics of folding instability in a constrained Cosserat medium

    NASA Astrophysics Data System (ADS)

    Gourgiotis, Panos A.; Bigoni, Davide

    2017-04-01

    Different from Cauchy elastic materials, generalized continua, and in particular constrained Cosserat materials, can be designed to possess extreme (near a failure of ellipticity) orthotropy properties and in this way to model folding in a three-dimensional solid. Following this approach, folding, which is a narrow zone of highly localized bending, spontaneously emerges as a deformation pattern occurring in a strongly anisotropic solid. How this peculiar pattern interacts with wave propagation in the time-harmonic domain is revealed through the derivation of an antiplane, infinite-body Green's function, which opens the way to integral techniques for anisotropic constrained Cosserat continua. Viewed as a perturbing agent, the Green's function shows that folding, emerging near a steadily pulsating source in the limit of failure of ellipticity, is transformed into a disturbance with wavefronts parallel to the folding itself. The results of the presented study introduce the possibility of exploiting constrained Cosserat solids for propagating waves in materials displaying origami patterns of deformation. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  10. Accuracy of clinical techniques for evaluating lower limb sensorimotor functions associated with increased fall risk

    PubMed Central

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K.

    2015-01-01

    Background In prior work laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. Objective To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (HipRTD) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Design Prospective, observational study. Setting Biomechanical research laboratory. Participants Forty-one older subjects (age 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Assessments Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time (LPT), defined as the number seconds the laterally lying subject could lift hips from the support surface. Foot/ankle evaluation included Achilles reflex, and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Main Outcome Measures HipRTD, abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Results Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with HipRTD (r/p = .61/<.001 and .67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/p = .31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of < 12 seconds yielded a sensitivity/specificity of 91%/80% for identifying HipRTD < .25 (body size in Newton-meters), and vibratory perception of < 8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO > 1.0 degree. Conclusions LPT is a more effective measure of HipRTD than MMT. Similarly, clinical vibratory sense and monofilament testing are effective measures of AnkPRO, whereas clinical proprioceptive sense is not. PMID:26409195

  11. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement System measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-6/8 from November 2002 to April 2004.

  12. Mating Behaviour and Vibratory Signalling in Non-Hearing Cave Crickets Reflect Primitive Communication of Ensifera

    PubMed Central

    Stritih, Nataša; Čokl, Andrej

    2012-01-01

    In Ensifera, the lack of well-supported phylogeny and the focus on acoustic communication of the terminal taxa hinders understanding of the evolutionary history of their signalling behaviour and the related sensory structures. For Rhaphidophoridae, the most relic of ensiferans following morphology-based phylogenies, the signalling modes are still unknown. Together with a detailed description of their mating process, we provide evidence on vibratory signalling for the sympatric European species Troglophilus neglectus and T. cavicola. Despite their temporal shift in reproduction, the species’ behaviours differ significantly. Signalling by abdominal vibration constitutes an obligatory part of courtship in T. neglectus, while it is absent in T. cavicola. Whole-body vibration is expressed after copulation in both species. While courtship signalling appears to stimulate females for mating, the function of post-copulation signals remains unclear. Mating and signalling of both species were found to take place in most cases on bark, and less frequently on other available substrates, like moss and rock. The signals’ frequency spectra were substrate dependent, but with the dominant peak always expressed below 120 Hz. On rock, the intensity of T. neglectus courtship signals was below the species’ physiological detection range, presumably constraining the evolution of such signalling in caves. The species’ behavioural divergence appears to reflect their divergent mating habitats, in and outside caves. We propose that short-range tremulation signalling in courtship, such as is expressed by T. neglectus, represents the primitive mode and context of mechanical signalling in Ensifera. The absence of high-frequency components in the signals may be related to the absence of the crista acoustica homologue (CAH) in the vibratory tibial organ of Rhaphidophoridae. This indirectly supports the hypothesis proposing that the CAH, as an evolutionary precursor of the ear, evolved in Ensifera along the (more) complex vibratory communication, also associated with signals of higher carrier frequency. PMID:23094071

  13. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 300 Hz. This summary report presents analysis of some selected quasisteady and vibratory activities measured by these accelerometers during Increment-2 from May to August 20, 2001.

  14. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is a high frequency sensor, measures vibratory acceleration data in the range of 0.01 to 400 Hz. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment-3 from August to December, 2001.

  15. Folding kinematics expressed in fracture patterns: An example from the Anti-Atlas fold belt, Morocco

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2008-11-01

    The Anti-Atlas fold belt, Morocco, formed during the same Variscan collisional event that produced the Valley-and-Ridge fold-thrust belt of the Appalachian mountains. Both are external belts of the Appalachian-Ouachita-Mauritanides chain and at the map scale have very similar topographic expressions. The Anti-Atlas, however, consists of map-scale folds that are buckle-related, detachment folds, whereas the Valley-and-Ridge folds developed in response to imbricate thrusting. For this reason, the Anti-Atlas is referred to as a fold belt rather than a fold-thrust belt. This paper examines Variscan folding processes in the Anti-Atlas Mountains. Folding in some layers occurred by sliding along a penetrative network of mesoscale fractures, i.e. cataclastic flow, during buckling. Layer-parallel shortening fractures were reactivated in the later stages of folding to accommodate limb rotation. Although 'boutonnieres', i.e. basement uplifts, punctuate the fold belt, the fracture patterns indicate that the uplifts failed to provide any 'bending' component. Folding is also interpreted to occur under low to moderate confining pressures because the fracture network includes conjugate shear fractures with very small (˜20°) dihedral angles.

  16. Programming curvature using origami tessellations

    NASA Astrophysics Data System (ADS)

    Dudte, Levi H.; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L.

    2016-05-01

    Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures--we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

  17. 10 CFR 100.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... input at the oscillators' supports. Safe Shutdown Earthquake Ground Motion is the vibratory ground... forces. Tectonic surface deformation is associated with earthquake processes. Testing reactor means a...

  18. 10 CFR 100.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... input at the oscillators' supports. Safe Shutdown Earthquake Ground Motion is the vibratory ground... forces. Tectonic surface deformation is associated with earthquake processes. Testing reactor means a...

  19. Every Heavenly Body When Created Will Have No Motion, Linear, Rotational and/or Vibratory Motion, Singly or in Some Combination

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-02-01

    Each galaxy, star and planet is in a state of no motion, linear, rotational and/or vibratory motion. Orbital motion is linear motion in a force field such as gravity. These motions were created in the formation of the galaxy, star or planet unless modified by external events such as colliding galaxies or impacts such as meteors. Some motions, such as rotations and vibrations may be differential such as in the cases of our sun and the Milky Way galaxy. The basic equation for each heavenly body is as follows. E = mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2Kx^2 + WG+ WE+ WM. )

  20. Application of vibratory-percussion crusher for disintegration of supertough materials

    NASA Astrophysics Data System (ADS)

    Shishkin, E. V.; Kazakov, S. V.

    2017-10-01

    This article describes the results of theoretical and experimental studies of a vibratory-percussion crusher, which is driven from a pair of self-synchronizing vibration exciters, attached to the shell symmetrically about its vertical axis. In addition to that, crusher’s dynamic model is symmetrical and balanced. Forced oscillation laws for crusher working members and their amplitude-frequency characteristics have been inducted. Domains of existence of synchronous opposite-phase oscillations of crusher working members (crusher’s operating mode) and crusher capabilities have been identified. The results of mechanical and technological tests of a pilot crusher presented in the article show that this crusher may be viewed as an advanced machine for disintegration of supertough materials with minimum regrinding of finished products.

  1. Optimal Draft requirement for vibratory tillage equipment using Genetic Algorithm Technique

    NASA Astrophysics Data System (ADS)

    Rao, Gowripathi; Chaudhary, Himanshu; Singh, Prem

    2018-03-01

    Agriculture is an important sector of Indian economy. Primary and secondary tillage operations are required for any land preparation process. Conventionally different tractor-drawn implements such as mouldboard plough, disc plough, subsoiler, cultivator and disc harrow, etc. are used for primary and secondary manipulations of soils. Among them, oscillatory tillage equipment is one such type which uses vibratory motion for tillage purpose. Several investigators have reported that the requirement for draft consumption in primary tillage implements is more as compared to oscillating one because they are always in contact with soil. Therefore in this paper, an attempt is made to find out the optimal parameters from the experimental data available in the literature to obtain minimum draft consumption through genetic algorithm technique.

  2. Changes in apparent body orientation and sensory localization induced by vibration of postural muscles - Vibratory myesthetic illusions

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Levine, M. S.

    1979-01-01

    Human experiments are carried out which support the observation of Goodwin (1973) and Goodwin et al. (1972) that vibration of skeletal muscles can elicit illusory limb motion. These experiments extend the class of possible myesthetic illusions by showing that vibration of the appropriate muscles can produce illusory body motion in nearly any desired direction. Such illusory changes in posture occur only when visual information about body orientation is absent; these changes in apparent posture are sometimes accompanied by a slow-phase nystagmus that compensates for the direction of apparent body motion. During illusory body motion a stationary target light that is fixated will appear to move with the body at the same apparent velocity. However, this pattern of apparent body motion and conjoint visual - defined as propriogyral illusion - is suppressed if the subject is in a fully illuminated environment providing cues about true body orientation. Persuasive evidence is thus provided for the contribution of both muscle afferent and touch-pressure information to the supraspinal mechanisms that determine apparent orientation on the basis of ongoing patterns of interoceptive and exteroceptive activity.

  3. Design and simulation of origami structures with smooth folds

    PubMed Central

    Peraza Hernandez, E. A.; Lagoudas, D. C.

    2017-01-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322

  4. Design and simulation of origami structures with smooth folds.

    PubMed

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  5. Photograph of the month

    NASA Astrophysics Data System (ADS)

    2016-10-01

    Complex fold pattern superposition in the migmatite core of the Archean Yalgoo Dome, Yilgarn Craton, WA (Myers, J.S. et al., 1985. Geology 13, 778). East-trending F1 axial traces are folded around N-trending F2 axial traces, and truncated by S2, filled with axial planar leucosome. Note that most D2 leucosomes are subparallel to F2 axial traces, but not exactly located along them. Fold interference pattern types 1, 2 and 3 (Ramsay, J. G., 1967) seem to coexist in different portions of this platform. The transition between interference types is likely due to the highly non-cylindrical character of F1 folds. Furthermore, the "dome and basin" pattern, highlighted by ring-shaped layers, results from a subhorizontal cut through the culmination of F1 sheath folds. Such interpretation is supported by: (i) existence of F1 sheath folds in areas unaffected by F2 folds, and (ii) subhorizontal F2 axes, rather than the vertical observed, would be required in order to generate "dome and basin" pattern by fold superposition. The tonalite protolith of the migmatite was emplaced at c. 2.95Ga, and then deformed together with host greenstones (D1 event). Layering in the migmatite is due to alternating biotite-rich melanosomes, leucosomes bearing thin selvages, mesocratic tonalite gneiss and pegmatite to aplite veins. The pervasive, E-W trending S1 is associated with subvertical stretching lineation and is axial planar to subvertical, m- to km-scale highly sheath folds. At c. 2.75Ga, the tonalite-greenstone complex recorded a second episode of syndeformational melting (D2), accompanied by the emplacement of granites surrounding the tonalite. In migmatites, S2 occurs as N-trending, subvertical leucosomes and dykes, that are axial planar to N-trending, open to isoclinal vertical folds. 28°42‧S, 116°39‧E. Photograph© Ivan Zibra and Roberto Weinberg.

  6. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model

    PubMed Central

    Devine, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.

    2016-01-01

    Objective Type II thyroplasty is an alternative treatment for spasmodic dysphonia, addressing hyperadduction by incising and lateralizing the thyroid cartilage. We quantified the effect of lateralization width on phonatory physiology using excised canine larynges. Methods Normal closure, hyperadduction, and type II thyroplasty (lateralized up to 5mm at 1mm increments with hyperadducted arytenoids) were simulated in excised larynges (N=7). Aerodynamic, acoustic, and videokymographic data were recorded at three subglottal pressures relative to phonation threshold pressure (PTP). One-way repeated measures ANOVA assessed effect of condition on aerodynamic parameters. Random intercepts linear mixed effects models assessed effects of condition and subglottal pressure on acoustic and videokymographic parameters. Results PTP differed across conditions (p<0.001). Condition affected percent shimmer (p<0.005) but not percent jitter. Both pressure (p<0.03) and condition (p<0.001) affected fundamental frequency. Pressure affected vibratory amplitude (p<0.05) and intra-fold phase difference (p<0.05). Condition affected phase difference between the vocal folds (p<0.001). Conclusions Hyperadduction increased PTP and worsened perturbation compared to normal, with near normal physiology restored with 1mm lateralization. Further lateralization deteriorated voice quality and increased PTP. Acoustic and videokymographic results indicate that normal physiologic relationships between subglottal pressure and vibration are preserved at optimal lateralization width, but then degrade with further lateralization. The 1mm optimal width observed here is due to the small canine larynx size. Future human trials would likely demonstrate a greater optimal width, with patient-specific value potentially determined based on larynx size and symptom severity. PMID:27223665

  7. Concorde noise-induced building vibrations, Sully Plantation - Report no. 2, Chantilly, Virginia

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Noise-induced building vibrations associated with Concorde operations were studied. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles International Airport. Representative data are presented which were recorded at Sully Plantation, Chantilly, Virginia during the periods of May 20 through May 28, 1976, and June 14 through June 17, 1976. Recorded data provide relationships between the vibration levels of windows, walls, floors, and the noise associated with Concorde operations, other aircraft, and nonaircraft events. The results presented are drawn from the combined May-June data base which is considerably larger than the May data base covered. The levels of window, wall and floor vibratory response resulting from Concorde operations are higher than the vibratory levels associated with conventional aircraft. Furthermore, the vibratory responses of the windows are considerably higher than those of the walls and floors. The window response is higher for aircraft than recorded nonaircraft events and exhibits a linear response relationship with the overall sound pressure level. For a given sound pressure level, the Concorde may cause more vibration than a conventional aircraft due to spectral or other differences. However, the responses associated with Concorde appear to be much more dependent upon sound pressure level than spectral or other characteristics of the noise.

  8. Limb segment vibration modulates spinal reflex excitability and muscle mRNA expression after spinal cord injury

    PubMed Central

    Chang, Shuo-Hsiu; Tseng, Shih-Chiao; McHenry, Colleen L.; Littmann, Andrew E.; Suneja, Manish; Shields, Richard K.

    2012-01-01

    Objective We investigated the effect of various doses of vertical oscillation (vibration) on soleus H-reflex amplitude and post-activation depression in individuals with and without SCI. We also explored the acute effect of short-term limb vibration on skeletal muscle mRNA expression of genes associated with spinal plasticity. Methods Six healthy adults and five chronic complete SCI subjects received vibratory stimulation of their tibia over three different gravitational accelerations (0.3g, 0.6g, and 1.2g) at a fixed frequency (30 Hz). Soleus H-reflexes were measured before, during, and after vibration. Two additional chronic complete SCI subjects had soleus muscle biopsies 3 h following a single bout of vibration. Results H-reflex amplitude was depressed over 83% in both groups during vibration. This vibratory-induced inhibition lasted over 2 min in the control group, but not in the SCI group. Post-activation depression was modulated during the long-lasting vibratory inhibition. A single bout of mechanical oscillation altered mRNA expression from selected genes associated with synaptic plasticity. Conclusions Vibration of the lower leg inhibits the H-reflex amplitude, influences post-activation depression, and alters skeletal muscle mRNA expression of genes associated with synaptic plasticity. Significance Limb segment vibration may offer a long term method to reduce spinal reflex excitability after SCI. PMID:21963319

  9. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement

    PubMed Central

    Kalajzic, Zana; Peluso, Elizabeth Blake; Utreja, Achint; Dyment, Nathaniel; Nihara, Jun; Xu, Manshan; Chen, Jing; Uribe, Flavio; Wadhwa, Sunil

    2014-01-01

    Objective To investigate the effect of externally applied cyclical (vibratory) forces on the rate of tooth movement, the structural integrity of the periodontal ligament, and alveolar bone remodeling. Methods Twenty-six female Sprague-Dawley rats (7 weeks old) were divided into four groups: CTRL (unloaded), VBO (molars receiving a vibratory stimulus only), TMO (molars receiving an orthodontic spring only), and TMO+VB (molars receiving an orthodontic spring and the additional vibratory stimulus). In TMO and TMO+VB groups, the rat first molars were moved mesially for 2 weeks using Nickel-Titanium coil spring delivering 25 g of force. In VBO and TMO+VB groups, cyclical forces at 0.4 N and 30 Hz were applied occlusally twice a week for 10 minutes. Microfocus X-ray computed tomography analysis and tooth movement measurements were performed on the dissected rat maxillae. Tartrate-resistant acid phosphatase staining and collagen fiber assessment were performed on histological sections. Results Cyclical forces significantly inhibited the amount of tooth movement. Histological analysis showed marked disorganization of the collagen fibril structure of the periodontal ligament during tooth movement. Tooth movement caused a significant increase in osteoclast parameters on the compression side of alveolar bone and a significant decrease in bone volume fraction in the molar region compared to controls. Conclusions Tooth movement was significantly inhibited by application of cyclical forces. PMID:23937517

  10. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, T.C.

    1984-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems to separate them from each other, or to maintain the bellows in unsupported relationship between these systems. In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement, the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube in surrounding relationship about a bellows to suppress vibration and displacement thereof. A method for isolating first and second systems from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows between the systems, surrounding the bellows with an inflatable tube, and maintaining a predetermined pressure in the tube to urge the tube in flexible contact with at least some of the convolutions of the bellows.

  11. Background matters: Minor vibratory stimulation during motor skill acquisition selectively reduces off-line memory consolidation.

    PubMed

    Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi

    2017-04-01

    Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ground Deployment Demonstration and Material Testing for Solar Sail

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li

    2016-07-01

    Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.

  13. Morphoelastic control of gastro-intestinal organogenesis: Theoretical predictions and numerical insights

    NASA Astrophysics Data System (ADS)

    Balbi, V.; Kuhl, E.; Ciarletta, P.

    2015-05-01

    With nine meters in length, the gastrointestinal tract is not only our longest, but also our structurally most diverse organ. During embryonic development, it evolves as a bilayered tube with an inner endodermal lining and an outer mesodermal layer. Its inner surface displays a wide variety of morphological patterns, which are closely correlated to digestive function. However, the evolution of these intestinal patterns remains poorly understood. Here we show that geometric and mechanical factors can explain intestinal pattern formation. Using the nonlinear field theories of mechanics, we model surface morphogenesis as the instability problem of constrained differential growth. To allow for internal and external expansion, we model the gastrointestinal tract with homogeneous Neumann boundary conditions. To establish estimates for the folding pattern at the onset of folding, we perform a linear stability analysis supplemented by the perturbation theory. To predict pattern evolution in the post-buckling regime, we perform a series of nonlinear finite element simulations. Our model explains why longitudinal folds emerge in the esophagus with a thick and stiff outer layer, whereas circumferential folds emerge in the jejunum with a thinner and softer outer layer. In intermediate regions like the feline esophagus, longitudinal and circumferential folds emerge simultaneously. Our model could serve as a valuable tool to explain and predict alterations in esophageal morphology as a result of developmental disorders or certain digestive pathologies including food allergies.

  14. Engineering applications and analysis of vibratory motion fourth order fluid film over the time dependent heated flat plate

    NASA Astrophysics Data System (ADS)

    Mohmand, Muhammad Ismail; Mamat, Mustafa Bin; Shah, Qayyum

    2017-07-01

    This article deals with the time dependent analysis of thermally conducting and Magneto-hydrodynamic (MHD) liquid film flow of a fourth order fluid past a vertical and vibratory plate. In this article have been developed for higher order complex nature fluids. The governing-equations have been modeled in the terms of nonlinear partial differential equations with the help of physical boundary circumstances. Two different analytical approaches i.e. Adomian decomposition method (ADM) and the optimal homotopy asymptotic method (OHAM), have been used for discoveryof the series clarification of the problems. Solutions obtained via two diversemethods have been compared using the graphs, tables and found an excellent contract. Variants of the embedded flow parameters in the solution have been analysed through the graphical diagrams.

  15. Extended aeroelastic analysis for helicopter rotors with prescribed hub motion and blade appended penduluum vibration absorbers

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1984-01-01

    The mathematical development for the expanded capabilities of the G400 rotor aeroelastic analysis was examined. The G400PA expanded analysis simulates the dynamics of all conventional rotors, blade pendulum vibration absorbers, and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. The methodology for modeling the unsteady stalled airloads of two dimensional airfoils is discussed. Formulations for calculating the rotor impedance matrix appropriate to the higher harmonic blade excitations are outlined. This impedance matrix, and the associated vibratory hub loads, are the rotor dynamic characteristic elements for use in the simplified coupled rotor/fuselage vibration analysis (SIMVIB). Updates to the development of the original G400 theory, program documentation, user instructions and information are presented.

  16. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  17. Clinical assessment of ossicular mobility by a ceramic vibrator designed for implantable hearing aids.

    PubMed

    Gyo, K; Yanagihara, N

    1986-01-01

    Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.

  18. Vibrating Optical Fibers to Make Laser Speckle Disappear

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Scott, V. Stanley

    2005-01-01

    In optical systems in which laser illumination is delivered via multimode optical fibers, laser speckle can be rendered incoherent by a simple but highly effective technique. The need to eliminate speckle arises because speckle can make it difficult to observe edges and other sharp features, thereby making it difficult to perform precision alignment of optical components. The basic ideas of the technique is to vibrate the optical fiber(s) to cause shifting of electromagnetic modes within the fiber(s) and consequent shifting of the speckle pattern in the light emerging from the fiber(s). If the frequency of vibration is high enough, a human eye cannot follow the shifting speckle pattern, so that instead of speckle, a human observer sees a smoothed pattern of light corresponding to a mixture of many electromagnetic modes. If necessary, the optical fiber(s) could be vibrated manually. However, in a typical laboratory situation, it would be more practical to attach a vibrating mechanism to the fiber(s) for routine use as part of the fiber-optic illuminator. In experiments, a commercially available small, gentle, quiet, variable- speed vibratory device was used in this way, with the result that the appearance of speckle was eliminated, as expected. Figures 1 and 2 illustrate the difference.

  19. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  20. Low-Contamination Vibrating Feeder for Silicon Chips

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1984-01-01

    Vibratory feeding is method of controlling flow of small oddly shaped particles. Technique applied to other materials that require contamination control by feeding material through vibrating troughs topped by particular material.

  1. Accuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk.

    PubMed

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K

    2016-04-01

    In prior work, laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (Hip(RTD)) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Prospective, observational study. Biomechanical research laboratory. A total of 41 older subjects (aged 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time, defined as the number of seconds that the laterally lying subject could lift the hips from the support surface. Foot/ankle evaluation included Achilles reflex and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Hip(RTD), abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with Hip(RTD) (r/P = 0.61/<.001 and 0.67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/P = 0.31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of <12 seconds yielded a sensitivity/specificity of 91%/80% for identifying Hip(RTD) < 0.25 (body size in Newton-meters), and vibratory perception of <8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO >1.0°. LPT is a more effective measure of Hip(RTD) than MMT. Similarly, clinical vibratory sense and monofilament testing are effective measures of AnkPRO, whereas clinical proprioceptive sense is not. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  2. Plantar flexion force induced by amplitude-modulated tendon vibration and associated soleus V/F-waves as an evidence of a centrally-mediated mechanism contributing to extra torque generation in humans

    PubMed Central

    2013-01-01

    Background High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms. Methods Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training. PMID:23531240

  3. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  4. Patterns of cetacean vaginal folds yield insights into functionality

    PubMed Central

    Orbach, Dara N.; Marshall, Christopher D.; Mesnick, Sarah L.; Würsig, Bernd

    2017-01-01

    Complex foldings of the vaginal wall are unique to some cetaceans and artiodactyls and are of unknown function(s). The patterns of vaginal length and cumulative vaginal fold length were assessed in relation to body length and to each other in a phylogenetic context to derive insights into functionality. The reproductive tracts of 59 female cetaceans (20 species, 6 families) were dissected. Phylogenetically-controlled reduced major axis regressions were used to establish a scaling trend for the female genitalia of cetaceans. An unparalleled level of vaginal diversity within a mammalian order was found. Vaginal folds varied in number and size across species, and vaginal fold length was positively allometric with body length. Vaginal length was not a significant predictor of vaginal fold length. Functional hypotheses regarding the role of vaginal folds and the potential selection pressures that could lead to evolution of these structures are discussed. Vaginal folds may present physical barriers, which obscure the pathway of seawater and/or sperm travelling through the vagina. This study contributes broad insights to the evolution of reproductive morphology and aquatic adaptations and lays the foundation for future functional morphology analyses. PMID:28362830

  5. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall.

    PubMed

    Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W

    2007-01-01

    The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.

  6. Genetics Home Reference: vibratory urticaria

    MedlinePlus

    ... exposing the skin to vibration, repetitive stretching, or friction results in allergy symptoms such as hives (urticaria), ... fragile connection can be more easily broken; vibration, friction, or stretching of the skin can disrupt the ...

  7. Development of a directivity-controlled piezoelectric transducer for sound reproduction

    NASA Astrophysics Data System (ADS)

    Bédard, Magella; Berry, Alain

    2008-04-01

    Present sound reproduction systems do not attempt to simulate the spatial radiation of musical instruments, or sound sources in general, even though the spatial directivity has a strong impact on the psychoacoustic experience. A transducer consisting of 4 piezoelectric elemental sources made from curved PVDF films is used to generate a target directivity pattern in the horizontal plane, in the frequency range of 5-20 kHz. The vibratory and acoustical response of an elemental source is addressed, both theoretically and experimentally. Two approaches to synthesize the input signals to apply to each elemental source are developed in order to create a prescribed, frequency-dependent acoustic directivity. The circumferential Fourier decomposition of the target directivity provides a compromise between the magnitude and the phase reconstruction, whereas the minimization of a quadratic error criterion provides a best magnitude reconstruction. This transducer can improve sound reproduction by introducing the spatial radiation aspect of the original source at high frequency.

  8. Cavitation occurrence around ultrasonic dental scalers.

    PubMed

    Felver, Bernhard; King, David C; Lea, Simon C; Price, Gareth J; Damien Walmsley, A

    2009-06-01

    Ultrasonic scalers are used in dentistry to remove calculus and other contaminants from teeth. One mechanism which may assist in the cleaning is cavitation generated in cooling water around the scaler. The vibratory motion of three designs of scaler tip in a water bath has been characterised by laser vibrometry, and compared with the spatial distribution of cavitation around the scaler tips observed using sonochemiluminescence from a luminol solution. The type of cavitation was confirmed by acoustic emission analysed by a 'Cavimeter' supplied by NPL. A node/antinode vibration pattern was observed, with the maximum displacement of each type of tip occurring at the free end. High levels of cavitation activity occurred in areas surrounding the vibration antinodes, although minimal levels were observed at the free end of the tip. There was also good correlation between vibration amplitude and sonochemiluminescence at other points along the scaler tip. 'Cavimeter' analysis correlated well with luminol observations, suggesting the presence of primarily transient cavitation.

  9. Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer.

    PubMed

    Glugla, David J; Alim, Marvin D; Byars, Keaton D; Nair, Devatha P; Bowman, Christopher N; Maute, Kurt K; McLeod, Robert R

    2016-11-02

    We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.

  10. Every Mass or Mass Group When Created Will have No Motion, Linear, Rotational or Vibratory Motion, Singly or in Some Combination, Which May Be Later Modified by External Forces--A Natural Law

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2010-03-01

    Every mass or mass group, from atoms and molecules to stars and galaxies,has no motion, is vibrating, rotating,or moving linearly, singularly or in some combination. When created, the excess energy of creation will generate a vibration, rotation and/or linear motion besides the mass or mass group. Curvilinear or orbital motion is linear motion in an external force field. External forces, such as photon, molecular or stellar collisions may over time modify the inital rotational, vibratory or linear motions of the mass of mass group. The energy equation for each mass or mass group is E=mc^2 + 1/2mv^2 + 1/2I2̂+ 1/2kx0^2 + WG+ WE+ WM.

  11. Isolated post resonator mesogyroscope

    NASA Technical Reports Server (NTRS)

    Challoner, Dorian; Peay, Chris; Wellman, Joanne; Shcheglov, Kirill; Hayworth, Ken; Wiberg, Dean; Yee, Karl; Sipppola, Clayton

    2004-01-01

    A new symmetric vibratory gyroscope principle has been devised in which a central post proof mass is counter-rocked against an outer sensing plate such that the motion is isolated from the gyroscope case. Prototype gyroscopes have been designed and fabricated with micromachined silicon at mesoscale (20-cm resonator width), vs. microscale (e.g., 2-mm resonator width) to achieve higher sensitivity and machined precision. This novel mesogyro design arose out of an ongoing technical cooperation between JPL and Boeing begun in 1997 to advance the design of micro-inertial sensors for low-cost space applications. This paper describes the theory of operation of the mesogyro and relationships with other vibratory gyroscopes, the mechanical design, closed loop electronics design, bulk silicon fabrication and packaged gyroscope assembly and test methods. The initial packaged prototype test results are reported for what is believed to be the first silicon mesogyroscope.

  12. On the use of temperature for online condition monitoring of geared systems - A review

    NASA Astrophysics Data System (ADS)

    Touret, T.; Changenet, C.; Ville, F.; Lalmi, M.; Becquerelle, S.

    2018-02-01

    Gear unit condition monitoring is a key factor for mechanical system reliability management. When they are subjected to failure, gears and bearings may generate excessive vibration, debris and heat. Vibratory, acoustic or debris analyses are proven approaches to perform condition monitoring. An alternative to those methods is to use temperature as a condition indicator to detect gearbox failure. The review focuses on condition monitoring studies which use this thermal approach. According to the failure type and the measurement method, it exists a distinction whether it is contact (e.g. thermocouple) or non-contact temperature sensor (e.g. thermography). Capabilities and limitations of this approach are discussed. It is shown that the use of temperature for condition monitoring has a clear potential as an alternative to vibratory or acoustic health monitoring.

  13. An Overview of A Perturbation Analysis for Uni-directionally Coupled Vibratory Gyroscopes

    NASA Astrophysics Data System (ADS)

    Vu, Huy; Palacios, Antonio; In, Visarath; Longhini, Patrick; Neff, Joseph

    2011-04-01

    The complex behaviours of gyroscope systems have been scientifically researched and thoroughly studied for decades. Most of scientific research involving gyroscopes specifically concentrates on studying the designs and fabrications at the circuitry level. Although gaining a recent popularity with the low cost of MEMS device that offers an attractive approach for gyroscope fabrications, its performance is far from meeting the requirements for an inertial grade guidance system. To improve the performance, our current research is theoretically focusing upon investigating the dynamics of vibratory gyroscopes coupled in a ring configuration. Particularly, a certain topology of arrangements among coupled gyroscopes can be designed and studied to enhance robustness. The main operation depends mostly on an external source for a stable oscillation in the drive axis, while an oscillatory motion in the sense axis, which is used to detect an angular rate of rotation, is enabled through the transfers of energy from the drive via the Coriolis force. With the mathematical model depicted as Duffing oscillators, however, by adding a certain coupling among gyroscopes, a similar behavior to a Duffing oscillator is expected, only with more complicated dynamics at a higher dimension. A number of Perturbation methods have popularly been carried out, to seek for a general asymptotic solution of typical Duffing oscillators. In this work as an overview, the two-time scale Perturbation expansion is asymptotically applied on the uni-directionally coupled vibratory gyroscopes to find an analytical solution which is then compared to the numerical one.

  14. Basilar membrane vibration after targeted removal of the third row of OHCs and Deiters cells

    NASA Astrophysics Data System (ADS)

    Xia, Anping; Udagawa, Tomokatsu; Raphael, Patrick D.; Cheng, Alan G.; Steele, Charles R.; Applegate, Brian E.; Oghalai, John S.

    2018-05-01

    The mammalian cochlea has three rows of outer hair cells (OHCs) that amplify the basilar membrane (BM) traveling wave with high gain and exquisite sharpness. However, it is unclear why three rows of OHCs are needed to achieve this. We used a novel transgenic mouse with the diphtheria toxin receptor in Lgr5-positive cells (Lgr5DTR-EGFP/+ mouse) that allowed us to ablate the third row of OHCs and Deiters cells (D) in adulthood via DT injection, after normal cochlear function had developed. We then used volumetric optical coherence tomography (VOCTV) to investigate the impacts of this manipulation of cochlear amplification in the apical turn. As expected, Lgr5DTR-EGFP/+ control mice had sharply-tuned vibratory responses. However, Lgr5DTR-EGFP/+ mice had broad tuning with a 20 dB increase in vibratory thresholds. The Q10dB was ˜1 in Lgr5DTR-EGFP/+ mice, whereas it was ˜3 in control mice. The characteristic frequency was lower in Lgr5DTR-EGFP/+ mice compared to controls (7.5 vs. 9.0 kHz). The gain of cochlear amplification was substantially lower in Lgr5DTR-EGFP/+ mice compared to controls (22 vs. 50). In the post-mortem period, the vibratory responses in Lgr5DTR-EGFP/+ mice were identical to controls. Together, these results demonstrate the substantial importance of the third row of OHCs and Deiters cells to normal cochlear amplification.

  15. Apparatus and method for suppressing vibration and displacement of a bellows

    DOEpatents

    Kuklo, Thomas C.

    1985-01-01

    Flexible bellows are utilized between two systems, such as a pumping system and a process station, to partially absorb system vibrations and to compensate for misalignment between the systems. It is common practice to either clamp a rigid spacer between flanges of the two systems (FIG. 3B) to separate them from each other, or to maintain the bellows in unsupported relationship between these systems (FIG. 4B). In the former bellows arrangement, the rigid spacer transmits vibratory energy between the two systems and the bellows tends to function as an undamped or underdamped unit that resonates at its own frequency to create additional vibratory energy, transmitted to the systems. In the latter, unsupported bellows arrangement (FIG. 4B), the pressure differential prevalent between the fluid flowing through the bellows and ambient normally causes extension or retraction of the bellows and resulting misalignment problems. The present invention substantially solves the above vibration and misalignment problems by providing an inflatable tube (20) in surrounding relationship about a bellows (14) to suppress vibration and displacement thereof. A method for isolating first and second systems (11,12) from each other to prevent the transmission of vibratory energy therebetween comprises the steps of attaching at least one flexible bellows (14) between the systems (11,12), surrounding the bellows with an inflatable tube (20), and maintaining a predetermined pressure in the tube (20) to urge the tube in flexible contact with at least some of the convolutions of the bellows (14).

  16. Vibratory noise to the fingertip enhances balance improvement associated with light touch.

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-03-01

    Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject's body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.

  17. Cross-modal integration of multimodal courtship signals in a wolf spider.

    PubMed

    Kozak, Elizabeth C; Uetz, George W

    2016-11-01

    Cross-modal integration, i.e., cognitive binding of information transmitted in more than one signal mode, is important in animal communication, especially in complex, noisy environments in which signals of many individuals may overlap. Males of the brush-legged wolf spider Schizocosa ocreata (Hentz) use multimodal communication (visual and vibratory signals) in courtship. Because females may be courted by multiple males at the same time, they must evaluate co-occurring male signals originating from separate locations. Moreover, due to environmental complexity, individual components of male signals may be occluded, altering detection of sensory modes by females. We used digital multimodal playback to investigate the effect of spatial and temporal disparity of visual and vibratory components of male courtship signals on female mate choice. Females were presented with male courtship signals with components that varied in spatial location or temporal synchrony. Females responded to spatially disparate signal components separated by ≥90° as though they were separate sources, but responded to disparate signals separated by ≤45° as though they originated from a single source. Responses were seen as evidence for cross-modal integration. Temporal disparity (asynchrony) in signal modes also affected female receptivity. Females responded more to male signals when visual and vibratory modes were in synchrony than either out-of-synch or interleaved/alternated. These findings are consistent with those seen in both humans and other vertebrates and provide insight into how animals overcome communication challenges inherent in a complex environment.

  18. Kinematics, structural mechanics, and design of origami structures with smooth folds

    NASA Astrophysics Data System (ADS)

    Peraza Hernandez, Edwin Alexander

    Origami provides novel approaches to the fabrication, assembly, and functionality of engineering structures in various fields such as aerospace, robotics, etc. With the increase in complexity of the geometry and materials for origami structures that provide engineering utility, computational models and design methods for such structures have become essential. Currently available models and design methods for origami structures are generally limited to the idealization of the folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures having non-negligible thickness or maximum curvature at the folds restricted by material limitations. Thus, for general structures, creased folds of merely zeroth-order geometric continuity are not appropriate representations of structural response and a new approach is needed. The first contribution of this dissertation is a model for the kinematics of origami structures having realistic folds of non-zero surface area and exhibiting higher-order geometric continuity, here termed smooth folds. The geometry of the smooth folds and the constraints on their associated kinematic variables are presented. A numerical implementation of the model allowing for kinematic simulation of structures having arbitrary fold patterns is also described. Examples illustrating the capability of the model to capture realistic structural folding response are provided. Subsequently, a method for solving the origami design problem of determining the geometry of a single planar sheet and its pattern of smooth folds that morphs into a given three-dimensional goal shape, discretized as a polygonal mesh, is presented. The design parameterization of the planar sheet and the constraints that allow for a valid pattern of smooth folds and approximation of the goal shape in a known folded configuration are presented. Various testing examples considering goal shapes of diverse geometries are provided. Afterwards, a model for the structural mechanics of origami continuum bodies with smooth folds is presented. Such a model entails the integration of the presented kinematic model and existing plate theories in order to obtain a structural representation for folds having non-zero thickness and comprised of arbitrary materials. The model is validated against finite element analysis. The last contribution addresses the design and analysis of active material-based self-folding structures that morph via simultaneous folding towards a given three-dimensional goal shape starting from a planar configuration. Implementation examples including shape memory alloy (SMA)-based self-folding structures are provided.

  19. Self-folding polymeric containers for encapsulation and delivery of drugs.

    PubMed

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar.

    PubMed

    Jørgensen, Katarina M; Solberg, Monica F; Besnier, Francois; Thorsen, Anders; Fjelldal, Per Gunnar; Skaala, Øystein; Malde, Ketil; Glover, Kevin A

    2018-04-12

    In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.

  1. Multi-scale Fracture Patterns Associated with a Complex Anticline Structure: Insights from Field Outcrop Analogues of the Jebel Hafit Pericline, Al Ain-UAE

    NASA Astrophysics Data System (ADS)

    Kokkalas, S.; Jones, R. R.; Long, J. J.; Zampos, M.; Wilkinson, M. W.; Gilment, S.

    2017-12-01

    The formation of folds and their associated fracture patterns plays an important role in controlling the migration and concentration of fluids within the upper crust. Prediction of fracture patterns from various fold shapes and kinematics still remains poorly understood in terms of spatial and temporal distribution of fracture sets. Thus, a more detailed field-based multi scale approach is required to better constrain 3D models of fold-fracture relationships, which are critical for reservoir characterization studies. In order to generate reservoir-scale fracture models representative fracture properties across a wider range of scales are needed. For this reason we applied modern geospatial technologies, including terrestrial LiDAR, photogrammetry and satellite images in the asymmetric, east verging, four-way closure Jebel Hafit anticline, in the eastern part of the United Arab Emirates. The excellent surface outcrops allowed the rapid acquisition of extensive areas of fracture data from both limbs and fold hinge area of the anticline, even from large areas of steep exposure that are practically inaccessible on foot. The digital outcrops provide longer 1D transects, and 2D or 3D surface datasets and give more robust data, particularly for fracture heights, lengths, spacing, clustering, termination and connectivity. The fracture patterns across the folded structure are more complex than those predicted from conceptual models and geomechanical fracture modeling. Mechanical layering, pre-existing structures and sedimentation during fold growth seem to exert a critical influence in the development of fracture systems within Jebel Hafit anticline and directly affect fracture orientations, spacing/intensity, segmentation and connectivity. Seismic and borehole data provide additional constraints on the sub-surface fold geometry and existence of large-scale thrusting in the core of the anticline. The complexity of the relationship between fold geometry and fracture intensity is presented and the implications for prediction of fracture networks in naturally fractured reservoirs are discussed.

  2. A crawling robot driven by multi-stable origami

    NASA Astrophysics Data System (ADS)

    Pagano, Alexander; Yan, Tongxi; Chien, Brian; Wissa, A.; Tawfick, S.

    2017-09-01

    Using origami folding to construct and actuate mechanisms and machines offers attractive opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper. The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with a polygonal base, which expands and contracts through coupled longitudinal and rotational motion similar to a screw. We design the origami to have multi-stable structural equilibria which can be tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and hinges at fold lines precludes the shape transformation associated with the bistability of the physical models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged, rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow, and connected by 3D printed end plates. DC motors are used to actuate the expansion and contraction of the internal origami structures to achieve forward locomotion and steering. Beyond locomotion, this simple design can find applications in manipulators, booms, and active structures.

  3. 34 CFR 361.49 - Scope of vocational rehabilitation services for groups of individuals with disabilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... developing appropriate programming to meet the particular needs of individuals with disabilities, including... through tactile, vibratory, auditory, and visual media. (4) Technical assistance and support services to...

  4. True katydids (Pseudophyllinae) from Guadeloupe: acoustic signals and functional considerations of song production.

    PubMed

    Stumpner, Andreas; Dann, Angela; Schink, Matthias; Gubert, Silvia; Hugel, Sylvain

    2013-01-01

    Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4-6 syllables, each comprising 10-20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8-10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2-3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song.

  5. Comparing Chalk With Cheese-The EGG Contact Quotient Is Only a Limited Surrogate of the Closed Quotient.

    PubMed

    Herbst, Christian T; Schutte, Harm K; Bowling, Daniel L; Svec, Jan G

    2017-07-01

    The electroglottographic (EGG) contact quotient (CQegg), an estimate of the relative duration of vocal fold contact per vibratory cycle, is the most commonly used quantitative analysis parameter in EGG. The purpose of this study is to quantify the CQegg's relation to the closed quotient, a measure more directly related to glottal width changes during vocal fold vibration and the respective sound generation events. Thirteen singers (six females) phonated in four extreme phonation types while independently varying the degree of breathiness and vocal register. EGG recordings were complemented by simultaneous videokymographic (VKG) endoscopy, which allows for calculation of the VKG closed quotient (CQvkg). The CQegg was computed with five different algorithms, all used in previous research. All CQegg algorithms produced CQegg values that clearly differed from the respective CQvkg, with standard deviations around 20% of cycle duration. The difference between CQvkg and CQegg was generally greater for phonations with lower CQvkg. The largest differences were found for low-quality EGG signals with a signal-to-noise ratio below 10 dB, typically stemming from phonations with incomplete glottal closure. Disregarding those low-quality signals, we found the best match between CQegg and CQvkg for a CQegg algorithm operating on the first derivative of the EGG signal. These results show that the terms "closed quotient" and "contact quotient" should not be used interchangeably. They relate to different physiological phenomena. Phonations with incomplete glottal closure having an EGG signal-to-noise ratio below 10 dB are not suited for CQegg analysis. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force.

    PubMed

    Kuribayashi-Shigetomi, Kaori; Onoe, Hiroaki; Takeuchi, Shoji

    2012-01-01

    This paper describes a method of generating three-dimensional (3D) cell-laden microstructures by applying the principle of origami folding technique and cell traction force (CTF). We harness the CTF as a biological driving force to fold the microstructures. Cells stretch and adhere across multiple microplates. Upon detaching the microplates from a substrate, CTF causes the plates to lift and fold according to a prescribed pattern. This self-folding technique using cells is highly biocompatible and does not involve special material requirements for the microplates and hinges to induce folding. We successfully produced various 3D cell-laden microstructures by just changing the geometry of the patterned 2D plates. We also achieved mass-production of the 3D cell-laden microstructures without causing damage to the cells. We believe that our methods will be useful for biotechnology applications that require analysis of cells in 3D configurations and for self-assembly of cell-based micro-medical devices.

  7. Preliminary results of real-time in-vitro electronic speckle pattern interferometry (ESPI) measurements in otolaryngology

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Cacace, Anthony T.; Parnes, Steven M.; Gardner, Glendon M.; Miller, Mitchell B.

    1995-05-01

    Electronic Speckle Pattern Interferometry (ESPI) is a nondestructive optical evaluation technique that is capable of determining surface and subsurface integrity through the quantitative evaluation of static or vibratory motion. By utilizing state of the art developments in the areas of lasers, fiber optics and solid state detector technology, this technique has become applicable in medical research and diagnostics. Based on initial support from NIDCD and continued support from InterScience, Inc., we have been developing a range of instruments for improved diagnostic evaluation in otolaryngological applications based on the technique of ESPI. These compact fiber optic instruments are capable of making real time interferometric measurements of the target tissue. Ongoing development of image post- processing software is currently capable of extracting the desired quantitative results from the acquired interferometric images. The goal of the research is to develop a fully automated system in which the image processing and quantification will be performed in hardware in near real-time. Subsurface details of both the tympanic membrane and vocal cord dynamics could speed the diagnosis of otosclerosis, laryngeal tumors, and aid in the evaluation of surgical procedures.

  8. The temporal representation of speech in a nonlinear model of the guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Holmes, Stephen D.; Sumner, Christian J.; O'Mard, Lowel P.; Meddis, Ray

    2004-12-01

    The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired. .

  9. Bryan's effect and anisotropic nonlinear damping

    NASA Astrophysics Data System (ADS)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  10. Unraveling metamaterial properties in zigzag-base folded sheets.

    PubMed

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  11. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Li, Z.; Tanner, S.; Conroy, B.; Owens, F.; Tran, M. M.; Boekema, C.

    2014-03-01

    By means of computer modeling, we are studying frustration in condensed matter and protein folding, including the influence of temperature and Thomson-figure formation. Frustration is due to competing interactions in a disordered state. The key issue is how the particles interact to reach the lowest frustration. The relaxation for frustration is mostly a power function (randomly assigned pattern) or an exponential function (regular patterns like Thomson figures). For the atomic Thomson model, frustration is predicted to decrease with the formation of Thomson figures at zero kelvin. We attempt to apply our frustration modeling to protein folding and dynamics. We investigate the homogeneous protein frustration that would cause the speed of the protein folding to increase. Increase of protein frustration (where frustration and hydrophobicity interplay with protein folding) may lead to a protein mutation. Research is supported by WiSE@SJSU and AFC San Jose.

  12. Frustration in Condensed Matter and Protein Folding

    NASA Astrophysics Data System (ADS)

    Lorelli, S.; Cabot, A.; Sundarprasad, N.; Boekema, C.

    Using computer modeling we study frustration in condensed matter and protein folding. Frustration is due to random and/or competing interactions. One definition of frustration is the sum of squares of the differences between actual and expected distances between characters. If this sum is non-zero, then the system is said to have frustration. A simulation tracks the movement of characters to lower their frustration. Our research is conducted on frustration as a function of temperature using a logarithmic scale. At absolute zero, the relaxation for frustration is a power function for randomly assigned patterns or an exponential function for regular patterns like Thomson figures. These findings have implications for protein folding; we attempt to apply our frustration modeling to protein folding and dynamics. We use coding in Python to simulate different ways a protein can fold. An algorithm is being developed to find the lowest frustration (and thus energy) states possible. Research supported by SJSU & AFC.

  13. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    NASA Astrophysics Data System (ADS)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  14. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    NASA Astrophysics Data System (ADS)

    Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  15. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags.

    PubMed

    Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  16. Operational experience with VAWT blades. [structural performance

    NASA Technical Reports Server (NTRS)

    Sullivan, W. N.

    1979-01-01

    The structural performance of 17 meter diameter wind turbine rotors is discussed. Test results for typical steady and vibratory stress measurements are summarized along with predicted values of stress based on a quasi-static finite element model.

  17. Roller-compacted concrete pavements.

    DOT National Transportation Integrated Search

    2010-09-01

    Roller-compacted concrete (RCC) gets its name from the heavy vibratory steel drum and rubber-tired rollers used to help compact it into its final form. RCC has similar strength properties and consists of the same basic ingredients as conventional con...

  18. Specific modes of vibratory technological machines: mathematical models, peculiarities of interaction of system elements

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Sitov, I. S.; Eliseev, S. V.

    2018-03-01

    The methodological basis of constructing mathematical models of vibratory technological machines is developed in the article. An approach is proposed that makes it possible to introduce a vibration table in a specific mode that provides conditions for the dynamic damping of oscillations for the zone of placement of a vibration exciter while providing specified vibration parameters in the working zone of the vibration table. The aim of the work is to develop methods of mathematical modeling, oriented to technological processes with long cycles. The technologies of structural mathematical modeling are used with structural schemes, transfer functions and amplitude-frequency characteristics. The concept of the work is to test the possibilities of combining the conditions for reducing loads with working components of a vibration exciter while simultaneously maintaining sufficiently wide limits in variating the parameters of the vibrational field.

  19. Accuracy of micro powder dosing via a vibratory sieve-chute system.

    PubMed

    Besenhard, M O; Faulhammer, E; Fathollahi, S; Reif, G; Calzolari, V; Biserni, S; Ferrari, A; Lawrence, S M; Llusa, M; Khinast, J G

    2015-08-01

    This paper describes a powder dosing system with a vibratory sieve mounted on a chute that doses particles into a capsule. Vertical vibration occurred with a broad range of frequencies and amplitudes. During dosing events, the fill weight was accurately recorded via a capacitance sensor, covering the capsules and making it possible to analyze filling characteristics, that is, the fill rates and their robustness. The range of frequencies and amplitudes was screened for settings that facilitated reasonable (no blocking, no spilling) fill rates for three lactose powders. The filling characteristics were studied within this operating space. The results reveal similar operating spaces for all investigated powders. The fill rate robustness varied distinctly in the operating space, which is of prime importance for selecting the settings for continuous feeding applications. In addition, we present accurate dosing studies utilizing the knowledge about the filling characteristics of each powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability

    NASA Technical Reports Server (NTRS)

    Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Lemkin, Mark A. (Inventor); Roessig, Allen W. (Inventor)

    2001-01-01

    A microfabricated vibratory rate gyroscope to measure rotation includes two proof-masses mounted in a suspension system anchored to a substrate. The suspension has two principal modes of compliance, one of which is driven into oscillation. The driven oscillation combined with rotation of the substrate about an axis perpendicular to the substrate results in Coriolis acceleration along the other mode of compliance, the sense-mode. The sense-mode is designed to respond to Coriolis accelerationwhile suppressing the response to translational acceleration. This is accomplished using one or more rigid levers connecting the two proof-masses. The lever allows the proof-masses to move in opposite directions in response to Coriolis acceleration. The invention includes a means for canceling errors, termed quadrature error, due to imperfections in implementation of the sensor. Quadrature-error cancellation utilizes electrostatic forces to cancel out undesired sense-axis motion in phase with drive-mode position.

  1. Application of a movable active vibration control system on a floating raft

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mak, Cheuk Ming

    2018-02-01

    This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.

  2. Slide Conveying of Granular Materials-Thinking Out of the Glovebox

    NASA Technical Reports Server (NTRS)

    Goddard, J. D.; Didwania, A. K.; Nott, P. R.

    2000-01-01

    The vibratory conveyor, routinely employed for normal-gravity transport of granular materials, usually consists of a continuous open trough vibrated sinusoidally to induce axial movement of a granular material. Motivated in part by a hypothetical application in zero gravity, we propose a novel modification of the vibratory conveyor based on a closed 2d trough operating in a "slide-conveying" mode, with the granular mass remaining permanently in contact with the trough walls. We present a detailed analysis of the mechanics of transport, based on a rigid-slab model for the granular mass with frictional (Coulomb) slip at the upper and lower walls. The form of the vibration cycle plays a crucial role, and the optimal conveying cycle is not the commonly assumed rectilinear sinusoidal motion. The conveying efficiency for the novel slide conveyor will be presented for several simple vibration cycles, including one believed to represent the theoretical optimum.

  3. GEC Ferranti piezo vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Nuttall, J. D.

    1993-01-01

    Prototypes of a piezo-electric vibratory angular rate transducer (gyroscope) (PVG) have been constructed and evaluated. The construction is on the lines suggested by Burdess. The sensitive element is a cylinder of radially poled piezo-electric ceramic. The cylinder is metallized inside and out, and the outer metallization is divided into eight electrodes. The metallization on the inside is earthed. A phase locked loop, using pairs of the electrodes, causes the cylinder to vibrate in one of its two fundamental, degenerate modes. In the presence of rotation, some of the vibration is coupled into the outer mode. This can be detected, or suppressed with a closed-up technique and provides a measure of rotation rate. The gyroscope provides a number of advantages over rotating mass and optical instruments: low size and mass, lower power consumption, potentially high reliability, potentially good dormancy, low cost and high maximum rate.

  4. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  5. Study on the Effect of Steel Wheel and Ground on Single Steel Vibratory Roller

    NASA Astrophysics Data System (ADS)

    Li, Jiabo; You, Guanghui; Qiao, Jiabin; Ye, Min; Guo, Jin; Zhang, Hongyang

    2018-03-01

    In the compacting operation of single drum vibratory roller, the forces acting on the foundation of drum include the weight of the drum, the weight of the frame, the exciting force and so on. Based on the theoretical study of ground mechanics, this paper analyzes and calculates the forces acting on the steel wheel and the ground, and obtains the distribution of the laminar stress in the ground when the working plane vibrates. Derive the formula of dynamic compressive stress and static compressive stress in the foundation during vibration compaction. Through the compaction test of the soil trough of 20T single drum roller, the compressive stress data of the soil hydraulic field are obtained. The data of the dynamic compressive stress and the static compressive stress of each layer during the third compaction are obtained, and the theoretical research is verified.

  6. Evaluation of graphite composite materials for bearingless helicopter rotor application

    NASA Technical Reports Server (NTRS)

    Ulitchny, M. G.; Lucas, J. J.

    1974-01-01

    Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced.

  7. [Transverse folding and the evolution of hind wings in beetles (Insecta, Coleoptera)].

    PubMed

    Fedorenko, D N

    2013-01-01

    Strong intensification of the protective function of the fore wing in Coleoptera has made their flight apparatus a posteromotoric one and invited an apparatus responsible for folding the hindwings beneath the elytra to develop. Folding apparatus could hardly develop without higher deformability of veins or their parts, which diminished strength properties of the wing support. The effect was stressed by folds that intersected veins. Organization of the folds into a system confined this negative influence to a few wing regions and some veinal sections. This having happened, wing support and folding pattern evolved interrelated, the former into being more flexible, with no or minimum loss of rigidity, and the latter towards being less harmful for the supporting elements, especially axial ones. Monofunctionality, together with very simple structure and little specialization of constituent parts, made the folding pattern very labile during evolution. The folding pattern evolved more rapidly than wing venation, thus defining transformations of the latter. Evolutionary conservatism of wing venation stemmed from that many veins were strongly specialized in performing two conflicting functions. An adaptive compromise was necessary for the conflict to be solved, which determined the wing to orthogenetic development. The main evolutionary trends for wing venation and folding pattern were those towards simplification and a higher complexity, respectively. The beetle wing has passed through two main evolutionary stages. Among them, the first resulted in the development of the "Archostemata" wing type, the second started from the "cantharoid" structural plan. The main evolutionary factors were the infancies of wing posteromotorism at the first stage while the wing strongly influenced by size evolution, with the main trend towards miniaturization, at the second. The archostematan and "cantharoid" morphofunctional wing types differ fundamentally. In the wing of the former kind, folding and flight apparatus, because of considerably overlapping supporting systems, constitute a lasting coadaptive ensemble, with only minor deviations from the ground-plan occurring through evolution. The uprise of the "cantharoid" wing type was an upgrade of morpho-functional organization. The region of maximum transverse deformations having been extruded from the remigium basal part, chief supporting axes of the wing increased their rigid properties. The supporting systems of the two wing apparatus became more autonomous, having been separated. This expanded the adaptive zone for the wing strongly, which a great variety of derived wing types have emerged from.

  8. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions.

    PubMed

    Li, Meng; Zhang, Lu; Davé, Rajesh N; Bilgili, Ecevit

    2016-04-01

    As a drug-sparing approach in early development, vibratory milling has been used for the preparation of nanosuspensions of poorly water-soluble drugs. The aim of this study was to intensify this process through a systematic increase in vibration intensity and bead loading with the optimal bead size for faster production. Griseofulvin, a poorly water-soluble drug, was wet-milled using yttrium-stabilized zirconia beads with sizes ranging from 50 to 1500 μm at low power density (0.87 W/g). Then, this process was intensified with the optimal bead size by sequentially increasing vibration intensity and bead loading. Additional experiments with several bead sizes were performed at high power density (16 W/g), and the results were compared to those from wet stirred media milling. Laser diffraction, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and dissolution tests were used for characterization. Results for the low power density indicated 800 μm as the optimal bead size which led to a median size of 545 nm with more than 10% of the drug particles greater than 1.8 μm albeit the fastest breakage. An increase in either vibration intensity or bead loading resulted in faster breakage. The most intensified process led to 90% of the particles being smaller than 300 nm. At the high power intensity, 400 μm beads were optimal, which enhanced griseofulvin dissolution significantly and signified the importance of bead size in view of the power density. Only the optimally intensified vibratory milling led to a comparable nanosuspension to that prepared by the stirred media milling.

  9. Initial characterization of the microgravity environment of the international space station: increments 2 through 4

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric

    2004-01-01

    The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark. Published by Elsevier Ltd.

  10. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  11. A model of growth restraints to explain the development and evolution of tooth shapes in mammals.

    PubMed

    Osborn, Jeffrey W

    2008-12-07

    The problem investigated here is control of the development of tooth shape. Cells at the growing soft tissue interface between the ectoderm and mesoderm in a tooth anlage are observed to buckle and fold into a template for the shape of the tooth crown. The final shape is created by enamel secreted onto the folds. The pattern in which the folds develop is generally explained as a response to the pattern in which genes are locally expressed at the interface. This congruence leaves the problem of control unanswered because it does not explain how either pattern is controlled. Obviously, cells are subject to Newton's laws of motion so that mechanical forces and constraints must ultimately cause the movements of cells during tooth morphogenesis. A computer model is used to test the hypothesis that directional resistances to growth of the epithelial part of the interface could account for the shape into which the interface folds. The model starts with a single epithelial cell whose growth is constrained by 4 constant directional resistances (anterior, posterior, medial and lateral). The constraints force the growing epithelium to buckle and fold. By entering into the model different values for these constraints the modeled epithelium is induced to buckle and fold into the different shapes associated with the evolution of a human upper molar from that of a reptilian ancestor. The patterns and sizes of cusps and the sequences in which they develop are all correctly reproduced. The model predicts the changes in the 4 directional constraints necessary to develop and evolve from one tooth shape into another. I conclude more generally expressed genes that control directional resistances to growth, not locally expressed genes, may provide the information for the shape into which a tooth develops.

  12. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    NASA Astrophysics Data System (ADS)

    Farran, Alexandra J. E.

    Vocal fold (VF) diseases and disorders are difficult to treat surgically or therapeutically. Tissue engineering offers an alternative strategy for the restoration of functional VF. In this work, we have developed tissue engineering methodologies for the functional reconstruction of VF. As a first step, the structure, composition and mechanical properties of native VF tissues have been investigated. In pigs ranging from fetal to 2+ years old, the VF structure and viscoelastic properties were found to be age-dependent. Adult tissues were more organized, displaying a denser lamina propria, and mature elastin fibers compared to fetal tissues, resulting in higher storage moduli. Secondly, biomimetic scaffolds which recaptured the mechanical properties of the native VF were developed. Chemically-defined collagen-hyaluronic acid (HA) composite hydrogels, and elastin-mimetic hybrid polymers (EMHPs) were successfully used as conducive 3D matrices, and 2D elastic scaffolds respectively, to in vitro static culture of fibroblasts. While the collagen-HA hydrogels allowed for in situ cell encapsulation and supported cell attachment and proliferation in 3D, the integrin-binding domain RGDSP was needed for cell proliferation on EMHPs. To emulate in vitro the mechanical environment of the native VF tissue, a dynamic culture system capable of generating vibratory stimulations at human phonation frequencies was successfully created and characterized. Gene expression analysis of fibroblasts subjected to 1 hour vibrations in 2D revealed that the expression of ECM-related genes was altered in response to changes in vibratory frequency and amplitude. Finally, expanding on our previous studies, the dynamic culture system was modified to accommodate for the long-term dynamic culture of cell-laden hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in a collagen/HA-based hydrogel, cultured in presence of connective tissue growth factor (CTGF), and subjected to high frequency vibrations were shown to respond to all three type of external factors. In summary, microenvironments such as biomimetic scaffolds, soluble factors, and mechanical stimuli are important modulator of cellular function. The strategic combination of those microenvironments into a biomimicking VF tissue engineering 3D system did not only provide an in vitro platform for the investigation of VF diseases, but also have the potential to offer alternative treatments for VF disorders.

  13. Roller Compacted Concrete over Soil Cement under Accelerated Loading : Research Project Capsule

    DOT National Transportation Integrated Search

    2012-09-01

    Roller compacted concrete (RCC) is a stiff , zero-slump concrete mixture placed with modifi ed : asphalt paving equipment and compacted by vibratory rollers. Properly designed RCC mixes : can achieve outstanding compressive strengths similar to those...

  14. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.

  15. Comparison of two barium suspensions for dedicated small-bowel series.

    PubMed

    Davidson, J C; Einstein, D M; Herts, B R; Balfe, D M; Koehler, R E; Morgan, D E; Lieber, M; Baker, M E

    1999-02-01

    The in vivo radiographic features of two commercially available formulations of barium used as contrast media in dedicated small-bowel series were compared. Fifty-six consecutive outpatients referred for a dedicated small-bowel series were randomly administered either E-Z-Paque or Entrobar. Representative survey radiographs from each examination were randomized and reviewed by six gastrointestinal radiologists from three institutions. Each observer assigned a numeric score (1 = poor, 2 = fair, 3 = good, and 4 = excellent) that rated the quality of the radiograph with respect to these characteristics: definition of fold pattern, translucency, distention, and integrity of the barium column. Statistical analysis was performed for each characteristic using Wilcoxon's two-sample rank sum test. All six observers found a statistically significant difference between the two barium formulations for mean scores for definition of fold pattern and translucency. Mean scores for fold pattern were 3.3, 3.0, 3.2, 3.6, 3.3, and 3.4 for Entrobar and 2.1, 2.3, 2.4, 3.2, 2.6, and 2.7 for E-Z-Paque. Mean scores for translucency were 2.5, 2.7, 2.8, 3.1, 2.7, and 3.3 for Entrobar and 1.6, 1.7, 2.1, 2.3, 1.9, and 2.7 for E-Z-Paque. No statistically significant difference was found for mean score for distention or integrity of the barium column. On radiographs, Entrobar was found to have superior characteristics for visualization of fold pattern and translucency but offered no advantages for distention or integrity of the barium column. Improved translucency and definition of fold pattern may translate into improved sensitivity and confidence in diagnosing small-bowel abnormality.

  16. Fabrication and characterization of self-folding thermoplastic sheets using unbalanced thermal shrinkage.

    PubMed

    Danielson, Christian; Mehrnezhad, Ali; YekrangSafakar, Ashkan; Park, Kidong

    2017-06-14

    Self-folding or micro-origami technologies are actively investigated as a novel manufacturing process to fabricate three-dimensional macro/micro-structures. In this paper, we present a simple process to produce a self-folding structure with a biaxially oriented polystyrene sheet (BOPS) or Shrinky Dinks. A BOPS sheet is known to shrink to one-third of its original size in plane, when it is heated above 160 °C. A grid pattern is engraved on one side of the BOPS film with a laser engraver to decrease the thermal shrinkage of the engraved side. The thermal shrinkage of the non-engraved side remains the same and this unbalanced thermal shrinkage causes folding of the structure as the structure shrinks at high temperature. We investigated the self-folding mechanism and characterized how the grid geometry, the grid size, and the power of the laser engraver affect the bending curvature. The developed fabrication process to locally modulate thermomechanical properties of the material by engraving the grid pattern and the demonstrated design methodology to harness the unbalanced thermal shrinkage can be applied to develop complicated self-folding macro/micro structures.

  17. Swelling-Induced Folding in Confined Nanoscale Responsive Polymer Gels

    DTIC Science & Technology

    2010-03-16

    transformations leading to micrometer scale lenticular surface structures due to strong shear forces at the filmsubstrate interface. The growth of the...observed here. To further understand the origin of the observed lenticular folding patterns, we considered how the con- ditions for buckling patterns in...periodic- ity of 900 nm) exhibited organized lenticular structures popping up from nanoimprinted film similar to that ob- served in a uniform flat

  18. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... runs of from 1 to 5 minutes duration each at 60 to 80 percent of maximum continuous speed. (2... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  19. Evaluation and Tests

    MedlinePlus

    ... may also ask if your bladder control and sexual function are normal. You will also be asked if you are suffering from any other illnesses and if you are taking medications. The physician will then perform a physical exam to test for loss of vibratory sensation. ...

  20. Effect of stimulus intensity on spike-LFP relationship in Secondary Somatosensory cortex

    PubMed Central

    Hsiao, Steven S.; Crone, Nathan E.; Franaszczuk, Piotr J.; Niebur, Ernst

    2008-01-01

    Neuronal oscillations in the gamma frequency range have been reported in many cortical areas, but the role they play in cortical processing remains unclear. We tested a recently proposed hypothesis that the intensity of sensory input is coded in the timing of action potentials relative to the phase of gamma oscillations, thus converting amplitude information to a temporal code. We recorded spikes and local field potential (LFP) from secondary somatosensory (SII) cortex in awake monkeys while presenting a vibratory stimulus at different amplitudes. We developed a novel technique based on matching pursuit to study the interaction between the highly transient gamma oscillations and spikes with high time-frequency resolution. We found that spikes were weakly coupled to LFP oscillations in the gamma frequency range (40−80 Hz), and strongly coupled to oscillations in higher gamma frequencies. However, the phase relationship of neither low-gamma nor high-gamma oscillations changed with stimulus intensity, even with a ten-fold increase. We conclude that, in SII, gamma oscillations are synchronized with spikes, but their phase does not vary with stimulus intensity. Furthermore, high-gamma oscillations (>60 Hz) appear to be closely linked to the occurrence of action potentials, suggesting that LFP high-gamma power could be a sensitive index of the population firing rate near the microelectrode. PMID:18632937

  1. Origins of Folding Instabilities on Polycrystalline Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.

    2014-12-01

    Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.

  2. Implications of heterogeneous fracture distribution on reservoir quality; an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland

    NASA Astrophysics Data System (ADS)

    Watkins, Hannah; Healy, David; Bond, Clare E.; Butler, Robert W. H.

    2018-03-01

    Understanding fracture network variation is fundamental in characterising fractured reservoirs. Simple relationships between fractures, stress and strain are commonly assumed in fold-thrust structures, inferring relatively homogeneous fracture patterns. In reality fractures are more complex, commonly appearing as heterogeneous networks at outcrop. We use the Achnashellach Culmination (NW Scotland) as an outcrop analogue to a folded tight sandstone reservoir in a thrust belt. We present fracture data is collected from four fold-thrust structures to determine how fracture connectivity, orientation, permeability anisotropy and fill vary at different structural positions. We use a 3D model of the field area, constructed using field observations and bedding data, and geomechanically restored using Move software, to determine how factors such as fold curvature and strain influence fracture variation. Fracture patterns in the Torridon Group are consistent and predictable in high strain forelimbs, however in low strain backlimbs fracture patterns are inconsistent. Heterogeneities in fracture connectivity and orientation in low strain regions do not correspond to fluctuations in strain or fold curvature. We infer that where strain is low, other factors such as lithology have a greater control on fracture formation. Despite unpredictable fracture attributes in low strain regions, fractured reservoir quality would be highest here because fractures in high strain forelimbs are infilled with quartz. Heterogeneities in fracture attribute data on fold backlimbs mean that fractured reservoir quality and reservoir potential is difficult to predict.

  3. Understanding the role of nonlinearities in the transduction of vibratory energy harvesters

    NASA Astrophysics Data System (ADS)

    Masana, Ravindra Shiva Charan

    The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the purpose of scavenging energy from low-frequency excitations. As a platform to achieve the Thesis objectives, a piezoelectric energy harvester consisting of an axially loaded clamped-clamped beam bi-morph is considered. The harvester can operate with mono- (pre-buckling) and bi-stable (post-buckling) characteristics with minimal alterations to the design. Theoretical and experimental studies performed on the proposed harvester are presented to delineate the influence of the nonlinearity on its performance, in particular, and nonlinear vibratory energy harvesters in general. It is demonstrated that the intentional inclusion of nonlinearities in energy harvesters makes these devices more tolerant to variations in the excitation and design parameters around their nominal values as compared to a linear device. However, the Thesis also pointed out many issues that can result from the complexity and non-uniqueness of solutions associated with nonlinear systems. It became apparent that the performance of a nonlinear energy harvester is very much dependent on the level and nature of the excitation in conjunction with the potential shape of the harvester. This makes developing direct performance metrics, similar to what has been done for linear harvesters, a challenging problem which should constitute a major avenue of future research efforts.

  4. Unravelling Origami Metamaterial Behavior

    NASA Astrophysics Data System (ADS)

    Eidini, Maryam; Paulino, Glaucio

    2015-03-01

    Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.

  5. Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer’s Aβ Three-fold Symmetric Fibril

    PubMed Central

    McDonald, Michele; Box, Hayden; Bian, Wen; Kendall, Amy; Tycko, Robert; Stubbs, Gerald

    2012-01-01

    Amyloid β protein (Aβ), the principal component of the extracellular plaques found in the brains of Alzheimer’s disease patients, forms fibrils well suited to structural study by X-ray fiber diffraction. Fiber diffraction patterns from the 40-residue form Aβ(1–40) confirm a number of features of a three-fold symmetric Aβ model from solid state NMR, but suggest that the fibrils have a hollow core, not present in the original ssNMR models. Diffraction patterns calculated from a revised hollow three-fold model with a more regular β-sheet structure are in much better agreement with the observed diffraction data than patterns calculated from the original ssNMR model. Refinement of a hollow-core model against ssNMR data led to a revised ssNMR model, similar to the fiber diffraction model. PMID:22903058

  6. Non-Native α-Helices in the Initial Folding Intermediate Facilitate the Ordered Assembly of the β-Barrel in β-Lactoglobulin.

    PubMed

    Sakurai, Kazumasa; Yagi, Masanori; Konuma, Tsuyoshi; Takahashi, Satoshi; Nishimura, Chiaki; Goto, Yuji

    2017-09-12

    The roles of non-native α-helices frequently observed in the initial folding stage of β-sheet proteins have been examined for many years. We herein investigated the residue-level structures of several mutants of bovine β-lactoglobulin (βLG) in quenched-flow pH-pulse labeling experiments. βLG assumes a collapsed intermediate with a non-native α-helical structure (I 0 ) in the early stage of folding, although its native form is predominantly composed of β-structures. The protection profile in I 0 of pseudo-wild type (WT*) βLG was found to deviate from the pattern of the "average area buried upon folding" (AABUF). In particular, the level of protection at the region of strand A, at which non-native α-helices form in the I 0 state, was significantly low compared to AABUF. G17E, the mutant with an increased helical propensity, showed a similar protection pattern. In contrast, the protection pattern for I 0 of E44L, the mutant with an increased β-sheet propensity, was distinct from that of WT* and resembled the AABUF pattern. Transverse relaxation measurements demonstrated that the positions of the residual structures in the unfolded states of these mutants were consistent with those of the protected residues in the respective I 0 states. On the basis of the slower conversion of I 0 to the native state for E44L to that for WT*, non-native α-helices facilitate the ordered assembly of the β-barrel by preventing interactions that trap folding.

  7. Folding mechanism of β-hairpin trpzip2: heterogeneity, transition state and folding pathways.

    PubMed

    Xiao, Yi; Chen, Changjun; He, Yi

    2009-06-22

    We review the studies on the folding mechanism of the beta-hairpin tryptophan zipper 2 (trpzip2) and present some additional computational results to refine the picture of folding heterogeneity and pathways. We show that trpzip2 can have a two-state or a multi-state folding pattern, depending on whether it folds within the native basin or through local state basins on the high-dimensional free energy surface; Trpzip2 can fold along different pathways according to the packing order of tryptophan pairs. We also point out some important problems related to the folding mechanism of trpzip2 that still need clarification, e.g., a wide distribution of the computed conformations for the transition state ensemble.

  8. Landscape maturity, fold growth sequence and structural style in the Kirkuk Embayment of the Zagros, northern Iraq

    NASA Astrophysics Data System (ADS)

    Obaid, Ahmed K.; Allen, Mark B.

    2017-10-01

    The Kirkuk Embayment is located in the southwest of the Zagros fold-and-thrust belt of Iraq. Like fold-and-thrust belts worldwide, the Zagros is conventionally understood to have grown sequentially towards the foreland. Here we use landscape maturity analysis to understand anticline growth in the embayment. Digital Elevation Model (DEM)-based geomorphic indices Hypsometric Integral (HI), Surface Roughness (SR) and their combination Surface Index (SI) have been applied to quantify landscape maturity. The results inform new ideas for the sequence of anticline growth. Maturity indices are highest for the QaraChauq Anticline in the center of the Embayment, then Makhool/Himreen to the south and lastly, the Kirkuk Anticline to the north. The pattern suggests the growth sequence is not classical 'piggy back' thrusting. This result fits the exhumation record, which is loosely constrained by the stratigraphic exposure level. Favored hypotheses for fold growth order are either i) the folds have grown at different times and out of sequence (QaraChauq first, then Makhool/Himreen, and Kirkuk last), or, ii) the growth occurred with different rates of exhumation but at broadly the same time. There are few constraints from available data on syn-tectonic sedimentation patterns. Fold growth across much of the Embayment might have begun within a limited timeframe in the late Miocene-Pliocene, during the deposition of the Mukdadiyah Formation. Another hypothesis is that folds grew in sequence towards the foreland with different rates of exhumation, but we consider this less likely. We also construct a new cross-section for the Embayment, which indicates limited Cenozoic strain: 5% shortening. Analysis of topography and drainage patterns shows two previously-undescribed anticlines with hydrocarbon trap potential, between the Makhool and QaraChauq anticlines.

  9. Snoring-Induced Vibratory Angioedema

    PubMed Central

    Kalathoor, Ipe

    2015-01-01

    Patient: Female, 70 Final Diagnosis: Snoring induced vibratory angioedema Symptoms: Swelling of tongue • roof of mouth and throat • multiple episodes at night Medication: — Clinical Procedure: Continuous positive airway pressure therapy Specialty: Allergology Objective: Rare disease Background: Vibratory angioedema (VA) is a rare physical urticaria, with symptoms of itching and swelling of the skin or mucosa when it is exposed to vibration. Avoidance of vibration is the best way to manage this condition. This case report will assist physicians to diagnose this rare condition. Here, a previously unpublished potential successful treatment modality is being presented, with good symptom control, along with some photographs taken during an acute attack. A literature review points towards potential undiagnosed cases. Case Report: A 70-year-old woman had multiple emergency department visits for tongue and throat swelling over 3 years. The episodes always happened at night. Detailed history elicited some episodes of itching and swelling of hands when driving as well as significant snoring while sleeping. Physical examination was unremarkable except for morbid obesity. Complement factor 4 and C1esterase inhibitor level were within normal limits. A tentative diagnosis of angioedema induced by oropharyngeal vibration from snoring was made. A sleep study confirmed sleep apnea with severe snoring. After CPAP (continuous positive airway pressure) treatment, she had successful symptom control. Conclusions: Snoring-induced VA is very likely an under-diagnosed condition in the community. The typical history is the key to the diagnosis. This condition could be confirmed by vibration test or by the resolution of symptoms with elimination of vibration. Effective symptom control is possible by avoidance of oropharyngeal vibration from snoring with the administration of CPAP therapy, making it a potential novel indication for this condition. PMID:26437464

  10. Toward a better understanding of the lignin isolation process from wood.

    PubMed

    Guerra, Anderson; Filpponen, Ilari; Lucia, Lucian A; Saquing, Carl; Baumberger, Stephanie; Argyropoulos, Dimitris S

    2006-08-09

    The recently developed protocol for isolating enzymatic mild acidolysis lignins (EMAL) coupled with the novel combination of derivatization followed by reductive cleavage (DFRC) and quantitative (31)P NMR spectroscopy were used to better understand the lignin isolation process from wood. The EMAL protocol is shown to offer access at lignin samples that are more representative of the overall lignin present in milled wood. The combination of DFRC/(31)P NMR provided a detailed picture on the effects of the isolation conditions on the lignin structure. More specifically, we have used vibratory and ball milling as the two methods of wood pulverization and have compared their effects on the lignin structures and molecular weights. Vibratory-milling conditions cause substantial lignin depolymerization. Lignin depolymerization occurs via the cleavage of uncondensed beta-aryl ether linkages, while condensed beta-aryl ethers and dibenzodioxocins were found to be resistant to such mechanical action. Condensation and side chain oxidations were induced mechanochemically under vibratory-milling conditions as evidenced by the increased amounts of condensed phenolic hydroxyl and carboxylic acid groups. Alternatively, the mild mechanical treatment offered by ball milling was found not to affect the isolated lignin macromolecular structure. However, the overall lignin yields were found to be compromised when the mechanical action was less intense, necessitating longer milling times under ball-milling conditions. As compared to other lignin preparations isolated from the same batch of milled wood, the yield of EMAL was about four times greater than the corresponding milled wood lignin (MWL) and about two times greater as compared to cellulolytic enzyme lignin (CEL). Molecular weight distribution analyses also pointed out that the EMAL protocol allows the isolation of lignin fractions that are not accessed by any other lignin isolation procedures.

  11. Termites live in a material world: exploration of their ability to differentiate between food sources.

    PubMed

    Inta, Ra; Lai, Joseph C S; Fu, Eugene W; Evans, Theodore A

    2007-08-22

    Drywood termites are able to assess wood size using vibratory signals, although the exact mechanism behind this assessment ability is not known. Important vibratory characteristics such as the modal frequencies of a wooden block depend on its geometry and boundary conditions; however, they are also dependent on the material characteristics of the block, such as mass, density and internal damping. We report here on choice experiments that tested the ability of the drywood termite Cryptotermes secundus to assess wooden block size using a solid wooden block paired with a composite block, the latter made of either wood and aluminium or wood and rubber. Each composite block was constructed to match mass or low-frequency vibratory modes (i.e. fundamental frequency) of the solid wooden block. The termites always chose the blocks with more wood; they moved to the solid wooden blocks usually within a day and then tunnelled further into the solid wooden block by the end of the experiment. Termites offered composite blocks of wood and rubber matched for mass were the slowest to show a preference for the solid wooden block and this preference was the least definitive of any treatment, which indicated that mass and/or damping may play a role in food assessment. This result clearly shows that the termites were not fooled by composite blocks matched for mass or frequency, which implies that they probably employ more than a single simple measure in their food assessment strategy. This implies a degree of sophistication in their ability to assess their environment hitherto unknown. The potential importance of alternative features in the vibrational signals is discussed.

  12. Meta-analysis of published transcriptional and translational fold changes reveals a preference for low-fold inductions.

    PubMed

    Wren, Jonathan D; Conway, Tyrrell

    2006-01-01

    The goals of this study were to gain a better quantitative understanding of the dynamic range of transcriptional and translational response observed in biological systems and to examine the reporting of regulatory events for trends and biases. A straightforward pattern-matching routine extracted 3,408 independent observations regarding transcriptional fold-changes and 1,125 regarding translational fold-changes from over 15 million MEDLINE abstracts. Approximately 95% of reported changes were > or =2-fold. Further, the historical trend of reporting individual fold-changes is declining in favor of high-throughput methods for transcription but not translation. Where it was possible to compare the average fold-changes in transcription and translation for the same gene/product (203 examples), approximately 53% were a < or =2-fold difference, suggesting a loose tendency for the two to be coupled in magnitude. We found also that approximately three-fourths of reported regulatory events have been at the transcriptional level. The frequency distribution appears to be normally distributed and peaks near 2-fold, suggesting that nature selects for a low-energy solution to regulatory responses. Because high-throughput technologies ordinarily sacrifice measurement quality for quantity, this also suggests that many regulatory events may not be reliably detectable by such technologies. Text mining of regulatory events and responses provides additional information incorporable into microarray analysis, such as prior fold-change observations and flagging genes that are regulated post-transcription. All extracted regulation and response patterns can be downloaded at the following website: www.ou.edu/microarray/ oumcf/Meta_analysis.xls.

  13. The mechanics of fault-bend folding and tear-fault systems in the Niger Delta

    NASA Astrophysics Data System (ADS)

    Benesh, Nathan Philip

    This dissertation investigates the mechanics of fault-bend folding using the discrete element method (DEM) and explores the nature of tear-fault systems in the deep-water Niger Delta fold-and-thrust belt. In Chapter 1, we employ the DEM to investigate the development of growth structures in anticlinal fault-bend folds. This work was inspired by observations that growth strata in active folds show a pronounced upward decrease in bed dip, in contrast to traditional kinematic fault-bend fold models. Our analysis shows that the modeled folds grow largely by parallel folding as specified by the kinematic theory; however, the process of folding over a broad axial surface zone yields a component of fold growth by limb rotation that is consistent with the patterns observed in natural folds. This result has important implications for how growth structures can he used to constrain slip and paleo-earthquake ages on active blind-thrust faults. In Chapter 2, we expand our DEM study to investigate the development of a wider range of fault-bend folds. We examine the influence of mechanical stratigraphy and quantitatively compare our models with the relationships between fold and fault shape prescribed by the kinematic theory. While the synclinal fault-bend models closely match the kinematic theory, the modeled anticlinal fault-bend folds show robust behavior that is distinct from the kinematic theory. Specifically, we observe that modeled structures maintain a linear relationship between fold shape (gamma) and fault-horizon cutoff angle (theta), rather than expressing the non-linear relationship with two distinct modes of anticlinal folding that is prescribed by the kinematic theory. These observations lead to a revised quantitative relationship for fault-bend folds that can serve as a useful interpretation tool. Finally, in Chapter 3, we examine the 3D relationships of tear- and thrust-fault systems in the western, deep-water Niger Delta. Using 3D seismic reflection data and new map-based structural restoration techniques, we find that the tear faults have distinct displacement patterns that distinguish them from conventional strike-slip faults and reflect their roles in accommodating displacement gradients within the fold-and-thrust belt.

  14. Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly

    PubMed Central

    de Juan Romero, Camino; Bruder, Carl; Tomasello, Ugo; Sanz-Anquela, José Miguel; Borrell, Víctor

    2015-01-01

    Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. PMID:25916825

  15. Topological Mechanics of Origami and Kirigami

    NASA Astrophysics Data System (ADS)

    Chen, Bryan Gin-ge; Liu, Bin; Evans, Arthur A.; Paulose, Jayson; Cohen, Itai; Vitelli, Vincenzo; Santangelo, C. D.

    2016-04-01

    Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.

  16. Frustration Sculpts the Early Stages of Protein Folding.

    PubMed

    Di Silvio, Eva; Brunori, Maurizio; Gianni, Stefano

    2015-09-07

    The funneled energy landscape theory implies that protein structures are minimally frustrated. Yet, because of the divergent demands between folding and function, regions of frustrated patterns are present at the active site of proteins. To understand the effects of such local frustration in dictating the energy landscape of proteins, here we compare the folding mechanisms of the two alternative spliced forms of a PDZ domain (PDZ2 and PDZ2as) that share a nearly identical sequence and structure, while displaying different frustration patterns. The analysis, based on the kinetic characterization of a large number of site-directed mutants, reveals that although the late stages for folding are very robust and biased by native topology, the early stages are more malleable and dominated by local frustration. The results are briefly discussed in the context of the energy-landscape theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluating the methodology and performance of jetting and flooding of granular backfill materials.

    DOT National Transportation Integrated Search

    2014-11-01

    Compaction of backfill in confined spaces on highway projects is often performed with small vibratory plates, based : solely on the experience of the contractor, leading to inadequate compaction. As a result, the backfill is prone to : erosion and of...

  18. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  19. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  20. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  1. 14 CFR 27.927 - Additional tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Additional tests. 27.927 Section 27.927... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  2. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  3. 14 CFR 29.927 - Additional tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Additional tests. 29.927 Section 29.927... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.927 Additional tests. (a) Any additional dynamic, endurance, and operational tests, and vibratory investigations necessary to determine...

  4. Stridulation by Jadera haematoloma (Hemiptera: Rhopalidae): Production mechanism and associated behaviors

    USDA-ARS?s Scientific Manuscript database

    The Hemiptera displays a notable diversity of vibratory communication signals across its various families. Here we describe the substrate and airborne vibrations (sounds), the mechanism of production, and associated behaviors of Jadera haematoloma Herrich-Schaeffer, a member of the family, Rhopalida...

  5. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  6. Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-07-01

    The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.

  7. Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control

    NASA Astrophysics Data System (ADS)

    Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong

    2013-04-01

    In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.

  8. Vibration therapy of the plantar fascia improves spasticity of the lower limbs of a patient with fetal-type Minamata disease in the chronic stage.

    PubMed

    Usuki, Fusako; Tohyama, Satsuki

    2011-10-11

    The authors present a novel treatment for spasticity using a hand-held vibration massager. A fetal-type Minamata disease patient showing spasticity of lower limbs had direct application of vibratory stimuli to the right plantar fascia and to the left hamstring. After the treatment for 1 year, the Modified Ashworth Scale (MAS) of the lower limbs was improved from three (right > left) to two (right < left). After then, direct application of the same method with the left plantar fascia improved the MAS of the left lower limb to two (right = left). The increased deep tendon reflexes had diminished and markedly positive Babinski's sign had also decreased to slightly positive on both sides. This method is so simple that patients can treat themselves at home. The authors think that direct application of vibratory stimuli to the plantar fascia is valuable to patients with neurologic disorders, particularly those who cannot receive more invasive treatments.

  9. Vibration therapy of the plantar fascia improves spasticity of the lower limbs of a patient with fetal-type Minamata disease in the chronic stage

    PubMed Central

    Usuki, Fusako; Tohyama, Satsuki

    2011-01-01

    The authors present a novel treatment for spasticity using a hand-held vibration massager. A fetal-type Minamata disease patient showing spasticity of lower limbs had direct application of vibratory stimuli to the right plantar fascia and to the left hamstring. After the treatment for 1 year, the Modified Ashworth Scale (MAS) of the lower limbs was improved from three (right > left) to two (right < left). After then, direct application of the same method with the left plantar fascia improved the MAS of the left lower limb to two (right = left). The increased deep tendon reflexes had diminished and markedly positive Babinski’s sign had also decreased to slightly positive on both sides. This method is so simple that patients can treat themselves at home. The authors think that direct application of vibratory stimuli to the plantar fascia is valuable to patients with neurologic disorders, particularly those who cannot receive more invasive treatments. PMID:22675016

  10. Gain and frequency tuning within the mouse cochlear apex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided bymore » basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.« less

  11. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  12. More than a feeling: The bidirectional convergence of semantic visual object and somatosensory processing.

    PubMed

    Ekstrand, Chelsea; Neudorf, Josh; Lorentz, Eric; Gould, Layla; Mickleborough, Marla; Borowsky, Ron

    2017-11-01

    Prevalent theories of semantic processing assert that the sensorimotor system plays a functional role in the semantic processing of manipulable objects. While motor execution has been shown to impact object processing, involvement of the somatosensory system has remained relatively unexplored. Therefore, we developed two novel priming paradigms. In Experiment 1, participants received a vibratory hand prime (on half the trials) prior to viewing a picture of either an object interacted primarily with the hand (e.g., a cup) or the foot (e.g., a soccer ball) and reported how they would interact with it. In Experiment 2, the same objects became the prime and participants were required to identify whether the vibratory stimulation occurred to their hand or foot. In both experiments, somatosensory priming effects arose for the hand objects, while foot objects showed no priming benefits. These results suggest that object semantic knowledge bidirectionally converges with the somatosensory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Aeroelastic response and blade loads of a composite rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Smith, Edward C.; Chopra, Inderjit

    1992-01-01

    The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.

  14. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  15. An electrophysiological investigation of the receptor apparatus of the duck's bill

    PubMed Central

    Gregory, J. E.

    1973-01-01

    1. The properties of receptors in the duck's bill have been studied by recording from units isolated by dissecting fine filaments from the maxillary and ophthalmic nerves. 2. The units studied were divisible into three groups, phasic mechanoreceptors responsive to vibration, thermoreceptive units, and high threshold mechanoreceptors. 3. Vibration-sensitive mechanoreceptors (113 units) had small receptive fields, showed a rapidly adapting discharge to mechanical stimulation of the bill, were sensitive to vibratory but not to thermal stimuli and showed no background discharge. 4. Temperature receptors (twenty-one units) were insensitive to mechanical stimulation and showed a temperature-dependent background discharge. Sudden cooling produced a transient increase in discharge frequency. 5. High threshold mechanosensitive units (eight units) gave a slowly adapting discharge to strong mechanical stimulation and were insensitive to vibratory and thermal stimulation. 6. It is concluded that the low-threshold, vibration-sensitive responses come from Herbst corpuscles. No specific function can yet be assigned to the Grandry corpuscles. PMID:4689962

  16. Massage therapy of moderate and light pressure and vibrator effects on EEG and heart rate.

    PubMed

    Diego, Miguel A; Field, Tiffany; Sanders, Chris; Hernandez-Reif, Maria

    2004-01-01

    Three types of commonly used massage therapy techniques were assessed in a sample of 36 healthy adults, randomly assigned to: (1) moderate massage, (2) light massage, or (3) vibratory stimulation group (n = 12 per group). Changes in anxiety and stress were assessed, and EEG and EKG were recorded. Anxiety scores decreased for all groups, but the moderate pressure massage group reported the greatest decrease in stress. The moderate massage group also experienced a decrease in heart rate and EEG changes including an increase in delta and a decrease in alpha and beta activity, suggesting a relaxation response. Finally, this group showed increased positive affect, as indicated by a shift toward left frontal EEG activation. The light massage group showed increased arousal, as indicated by decreased delta and increased deta activity and increased heart rate. The vibratory stimulation group also showed increased arousal, as indicated by increased heart rate and increased theta, alpha, and beta activity.

  17. Design and application of quadrature compensation patterns in bulk silicon micro-gyroscopes.

    PubMed

    Ni, Yunfang; Li, Hongsheng; Huang, Libin

    2014-10-29

    This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four types of basic structure units were presented to obtain the basic compensation function. A novel layout design was proposed to eliminate the additional disturbing static forces and torques. Parameter optimization was carried out to maximize the available compensation capability in a limited layout area. Two types of voltage loading methods were presented. Their influences on the sense mode dynamics were analyzed. The proposed design was applied on a dual-mass silicon micro-gyroscope developed in our laboratory. The theoretical compensation capability of a quadrature equivalent angular rate no more than 412 °/s was designed. In experiments, an actual quadrature equivalent angular rate of 357 °/s was compensated successfully. The actual compensation voltages were a little larger than the theoretical ones. The correctness of the design and the theoretical analyses was verified. They can be commonly used in planar linear vibratory silicon micro-gyroscopes for quadrature compensation purpose.

  18. Flapping modes of three filaments placed side by side in a free stream

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Lu, Xi-Yun

    2010-11-01

    Flexible filaments flapping in a surrounding flow are useful models for understanding the flow-induced vibration and mimicking the schooling behavior of fish. In the present work, the coupled modes of three identical filaments in a side-by- side arrangement are studied using the linear stability analysis and also an immersed boundary--lattice Boltzmann method for low Reynolds numbers (Re on order of 100). The numerical simulations show that the system dynamics exhibits several patterns that depend on the spacing between the filaments. Among these patterns, three can be predicted by the linear analysis and have been reported before. These modes are: (1) the three filaments all flap in phase; (2) the two outer filaments are out of phase while the middle one is stable; (3) the two outer filaments are in phase while the middle one is out of phase. The simulations also identified two additional modes: (1) the outer two filaments are out of phase while the middle one flaps at a frequency reduced by half; (2) the outer two filaments are out of phase while the middle one flaps at a slightly different frequency. In addition to the vibratory modes, the drag force and the flapping amplitude are also computed, and the implication of the result will be discussed.

  19. Wrinkling and Folding on Patched Elastic Surfaces: Modulation of the Chemistry and Pattern Size of Microwrinkled Surfaces.

    PubMed

    Nogales, Aurora; Del Campo, Adolfo; Ezquerra, Tiberio A; Rodriguez-Hernández, Juan

    2017-06-14

    An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.

  20. Semiempirical prediction of protein folds

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Colubri, Andrés; Appignanesi, Gustavo

    2001-08-01

    We introduce a semiempirical approach to predict ab initio expeditious pathways and native backbone geometries of proteins that fold under in vitro renaturation conditions. The algorithm is engineered to incorporate a discrete codification of local steric hindrances that constrain the movements of the peptide backbone throughout the folding process. Thus, the torsional state of the chain is assumed to be conditioned by the fact that hopping from one basin of attraction to another in the Ramachandran map (local potential energy surface) of each residue is energetically more costly than the search for a specific (Φ, Ψ) torsional state within a single basin. A combinatorial procedure is introduced to evaluate coarsely defined torsional states of the chain defined ``modulo basins'' and translate them into meaningful patterns of long range interactions. Thus, an algorithm for structure prediction is designed based on the fact that local contributions to the potential energy may be subsumed into time-evolving conformational constraints defining sets of restricted backbone geometries whereupon the patterns of nonbonded interactions are constructed. The predictive power of the algorithm is assessed by (a) computing ab initio folding pathways for mammalian ubiquitin that ultimately yield a stable structural pattern reproducing all of its native features, (b) determining the nucleating event that triggers the hydrophobic collapse of the chain, and (c) comparing coarse predictions of the stable folds of moderately large proteins (N~100) with structural information extracted from the protein data bank.

  1. Interference of lithospheric folding in Central Asia by simultaneous Indian and Arabian plate indentation

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Cloetingh, S. A. P. L.; Burov, E.; Sokoutis, D.; Kaban, M.; Tesauro, M.; Burg, J.-P.

    2012-04-01

    Although large-scale folding of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented, the impact of continental collision between Arabia and Eurasia has been largely overlooked. The resulting Neogene shortening and uplift of the Zagros, Albors, Kopet Dagh and Kaukasus mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5 Ma. At the same time, the adjacent Caspian, Turan and Amu Darya basins underwent an acceleration in subsidence. It is common knowledge that waves with different orientations will interfere with each other. Folding, by its nature similar to a standing wave, is not likely to be an exception. We demonstrate that collision of the Eurasian plate with the Arabian and Indian plates generates folding of the Eurasian lithosphere in two different directions and that interaction between both generates characteristic interference patterns that can be recognised from the regional gravity signal. We present evidence for interference of lithospheric folding patterns induced by Arabian and Indian collision with Eurasia. Wavelengths (from 50 to 250 km) and spatial patterns are inferred from satellite-derived topography and gravity models and attest for rheologically stratified lithosphere with relatively strong mantle rheology (thickness of strong mechanical core on the order of 40-50 km) and less competent crust (thickness of the mechanical core on the order of 10-15 km). The observations are compared with inferences from numerical and analogue tectonic experiments for a quantitative assessment of factors such as lithosphere rheology and stratification, lateral variations in lithosphere strength, thermo-mechanical age and distance to the plate boundary on the activity of folding as a mechanism of intra-plate deformation in this area. The observed interference of the patterns of folding appears to be primarily the result of spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang-Tunka line.

  2. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ..., ``Geologic Characterization Information,'' (currently titled as ``Basic Geologic and Seismic Information''); Section 2.5.2, ``Vibratory Ground Motion''; Section 2.5.3, ``Surface Deformation'' (currently titled as... the following methods (unless this document describes a different method for submitting comments on a...

  3. Synthetic substrate-borne vibrational signals that elicit Asian citrus psyllid communicatory and search responses

    USDA-ARS?s Scientific Manuscript database

    The Asian Citrus Psyllid (ACP), Diaphorina citri Kuwayama, vectors a harmful bacterium, Candidatus Liberibacter asiaticus, that causes huanglongbing, an economically devastating disease of citrus. Adult male and female ACP transmit vibratory communication signals over 10-50-cm distances within their...

  4. Training Eye-Pointing Behavior in a Nonabulatory Profoundly Mentally Retarded Child Using Contingent Vibratory Stimulation.

    ERIC Educational Resources Information Center

    Zucker, Stanley H.; And Others

    1980-01-01

    Contingent vibration was used to train a precommunication response in a spastic/quadriplegic profoundly mentally retarded boy (age 11). The results indicated an increase in the S's eye pointing behavior subsequent to the administration of response contingent vibration. (Author)

  5. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.

    PubMed

    Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian

    2011-03-15

    Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.

  6. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  7. Virtual Design Method for Controlled Failure in Foldcore Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Sturm, Ralf; Fischer, S.

    2015-12-01

    For certification, novel fuselage concepts have to prove equivalent crashworthiness standards compared to the existing metal reference design. Due to the brittle failure behaviour of CFRP this requirement can only be fulfilled by a controlled progressive crash kinematics. Experiments showed that the failure of a twin-walled fuselage panel can be controlled by a local modification of the core through-thickness compression strength. For folded cores the required change in core properties can be integrated by a modification of the fold pattern. However, the complexity of folded cores requires a virtual design methodology for tailoring the fold pattern according to all static and crash relevant requirements. In this context a foldcore micromodel simulation method is presented to identify the structural response of a twin-walled fuselage panels with folded core under crash relevant loading condition. The simulations showed that a high degree of correlation is required before simulation can replace expensive testing. In the presented studies, the necessary correlation quality could only be obtained by including imperfections of the core material in the micromodel simulation approach.

  8. Folded Coplanar Waveguide Slot Antenna on Silicon Substrates With a Polyimide Interface Layer

    NASA Technical Reports Server (NTRS)

    Bacon, Andrew; Ponchak, George E.; Papapolymerou, John; Bushyager, Nathan; Tentzeris, Manos; Williams, W. D. (Technical Monitor)

    2002-01-01

    A novel mm-wave Coplanar Waveguide (CPW) folded slot antenna is characterized on low-resistivity Si substrate (1 omega-cm) and a high resistivity Si substrate with a polyimide interface layer for the first time. The antenna resonates around 30 GHz with a return loss greater than 14.6 dB. Measured radiation patterns indicate the existence of a main lobe, but the radiation pattern is affected by a strong surface wave mode, which is greater in the high resistivity Si wafer.

  9. Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model

    ERIC Educational Resources Information Center

    Xuan, Yue; Zhang, Zhaoyan

    2014-01-01

    Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…

  10. Adaptive Origami for Efficiently Folded Structures

    DTIC Science & Technology

    2016-02-01

    design optimization to find optimal origami patterns for in-plane compression. 3. Self-folding and programmable material systems were developed for...2014, 1st place in the Midwest and 2nd place in the National 2014 SAMPE student research symposium). • Design of self-folding and programmable ... material systems: Nafion SMP Programming: To integrate active materials into origami, mechanical analysis and optimization tools where applied to the

  11. Geometric Folding Algorithms: Bridging Theory to Practice

    DTIC Science & Technology

    2009-11-03

    orthogonal polyhedron can be folded from a single, universal crease pattern (box pleating). II. ORIGAMI DESIGN a.) Developed mathematical theory for what...happens in paper between creases, in particular for the case of circular creases. b.) Circular crease origami on permanent exhibition at MoMA in New...Developing mathematical theory of Robert Lang’s TreeMaker framework for efficiently folding tree-shaped origami bases.

  12. MR enterography in nonresponsive adult celiac disease: Correlation with endoscopic, pathologic, serologic, and genetic features.

    PubMed

    Radmard, Amir Reza; Hashemi Taheri, Amir Pejman; Salehian Nik, Elham; Kooraki, Soheil; Kolahdoozan, Shadi; Mirminachi, Babak; Sotoudeh, Masoud; Ekhlasi, Golnaz; Malekzadeh, Reza; Shahbazkhani, Bijan

    2017-10-01

    To assess small bowel abnormalities on magnetic resonance enterography (MRE) in adult patients with nonresponsive celiac disease (CD) and investigate their associations with endoscopic, histopathologic, serologic, and genetic features. This prospective study was carried out between September 2012 and August 2013. After approval by the Ethics Committee of our institution, informed consent was acquired from all participants. Forty consecutive patients with nonresponsive CD, aged 17-76 years, underwent MRE using a 1.5T unit. Sequences included T 2 -HASTE, True-FISP, pre- and postcontrast VIBE to assess the quantitative (number of ileal and jejunal folds) and qualitative (fold pattern abnormalities, mural thickening, increased enhancement, bowel dilatation, or intussusception) measures. Endoscopic manifestations were categorized as normal/mild vs. severe. Histopathological results were divided into mild and severe. Genotyping of HLA-DQ2 and DQ8 was performed. Serum levels of tissue-transglutaminase, endomysial, and gliadin antibodies were also determined. Logistic regression analysis and receiver operating characteristic (ROC) curve were used. Twenty-nine (72.5%) cases showed abnormal MRE. Reversed jejunoileal fold pattern had significant association with severe endoscopic (odds ratio [OR] = 8.38, 95% confidence interval [CI] 1.73-40.5) and pathologic features (OR = 7.36, 95% CI 1.33-40.54). An increased number of ileal folds/inch was significantly associated with severe MARSH score and positive HLA-DQ8. (P < 0.001 and P = 0.026, respectively). Ileal fold number had the highest areas under the curve for prediction of severe endoscopic (AUC: 0.75, P = 0.009) and pathologic (AUC: 0.84, P < 0.001) findings and positive anti-transglutaminase antibody (AUC: 0.85, P = 0.027). Fold pattern reversal on MRE is highly associated with endoscopic and pathologic features of refractory celiac disease (RCD). Increased ileal folds showed higher correlation with endoscopic-pathologic features, HLA-DQ8, and anti-transglutaminase level. MRE might be more sensitive for detection of increased ileal folds in CD rather than reduction of duodenal and jejunal folds due to better distension of ileal loops. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1096-1106. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

    PubMed

    Muthu Krishnan, S

    2018-05-14

    The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through the structural and sequence-based analysis, found various protein folds that are very close to the RAP folds. Remote homolog datasets were used potentially to develop a different support vector machine (SVM) methods to recognize the homologous RAP fold. This study helps in understanding the relationship of RAP homologs folds based on the structure, function and evolutionary history. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming

    NASA Astrophysics Data System (ADS)

    Amrouch, Khalid; Lacombe, Olivier; Bellahsen, Nicolas; Daniel, Jean-Marc; Callot, Jean-Paul

    2010-02-01

    In order to characterize and compare the stress-strain record prior to, during, and just after folding at the macroscopic and the microscopic scales and to provide insights into stress levels sustained by folded rocks, we investigate the relationship between the stress-strain distribution in folded strata derived from fractures, striated microfaults, and calcite twins and the development of the Laramide, basement-cored Sheep Mountain Anticline, Wyoming. Tectonic data were mainly collected in Lower Carboniferous to Permian carbonates and sandstones. In both rock matrix and veins, calcite twins recorded three different tectonic stages: the first stage is a pre-Laramide (Sevier) layer-parallel shortening (LPS) parallel to fold axis, the second one is a Laramide LPS perpendicular to the fold axis, and the third stage corresponds to Laramide late fold tightening with compression also perpendicular to the fold axis. Stress and strain orientations and regimes at the microscale agree with the polyphase stress evolution revealed by populations of fractures and striated microfaults, testifying for the homogeneity of stress record at different scales through time. Calcite twin analysis additionally reveals significant variations of differential stress magnitudes between fold limbs. Our results especially point to an increase of differential stress magnitudes related to Laramide LPS from the backlimb to the forelimb of the fold possibly in relation with motion of an underlying basement thrust fault that likely induced stress concentrations at its upper tip. This result is confirmed by a simple numerical model. Beyond regional implications, this study highlights the potential of calcite twin analyses to yield a representative quantitative picture of stress and strain patterns related to folding.

  15. The review on tessellation origami inspired folded structure

    NASA Astrophysics Data System (ADS)

    Chu, Chai Chen; Keong, Choong Kok

    2017-10-01

    Existence of folds enhances the load carrying capacity of a folded structure which makes it suitable to be used for application where large open space is required such as large span roof structures and façade. Folded structure is closely related to origami especially the tessellation origami. Tessellation origami provides a folded configuration with facetted surface as a result from repeated folding pattern. Besides that, tessellation origami has flexible folding mechanism that produced a variety of 3-dimensional folded configurations. Despite the direct relationship between fold in origami and folded structure, the idea of origami inspired folded structure is not properly reviewed in the relevant engineering field. Hence, this paper aims to present the current studies from related discipline which has direct relation with application of tessellation origami in folded structure. First, tessellation origami is properly introduced and defined. Then, the review covers the topic on the origami tessellation design suitable for folded structure, its modeling and simulation method, and existing studies and applications of origami as folded structure is presented. The paper also includes the discussion on the current issues related to each topic.

  16. The Complexity of Folding Self-Folding Origami

    NASA Astrophysics Data System (ADS)

    Stern, Menachem; Pinson, Matthew B.; Murugan, Arvind

    2017-10-01

    Why is it difficult to refold a previously folded sheet of paper? We show that even crease patterns with only one designed folding motion inevitably contain an exponential number of "distractor" folding branches accessible from a bifurcation at the flat state. Consequently, refolding a sheet requires finding the ground state in a glassy energy landscape with an exponential number of other attractors of higher energy, much like in models of protein folding (Levinthal's paradox) and other NP-hard satisfiability (SAT) problems. As in these problems, we find that refolding a sheet requires actuation at multiple carefully chosen creases. We show that seeding successful folding in this way can be understood in terms of subpatterns that fold when cut out ("folding islands"). Besides providing guidelines for the placement of active hinges in origami applications, our results point to fundamental limits on the programmability of energy landscapes in sheets.

  17. 78 FR 36527 - Taking of Marine Mammals Incidental to Specified Activities; Construction at Bremerton Ferry...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... Remote Sensing Network, a system of interconnected hydrophones installed in the marine environment of... stock(s) for subsistence uses (where relevant), and if the permissible methods of taking and... IHA, WSDOT's wingwalls replacement project at the Bremerton Ferry Terminal will only use vibratory...

  18. ARC Researchers at 2016 SAE Congress

    Science.gov Websites

    PFL580; Room 413 B Engine Block, Cylinder Heads, Oil & Water Pumps, Intake & Exhaust Systems This Systems (CRS) and other related areas. These papers could include several of the following: technology Life Estimation of Linear Vibratory Systems Vasiliki TSIANIKA; Monica T. Majcher; Zissimos Mourelatos

  19. Highly loaded multi-stage fan drive turbine: Plain blade configuration design

    NASA Technical Reports Server (NTRS)

    Evans, D. C.; Wolfmeyer, G. W.

    1972-01-01

    The constant-inside-diameter flowpath was scaled for testing in an existing turbine test facility. Blading detailed design is discussed, and design data are summarized. Predicted performance maps are presented. Steady-state stresses and vibratory behavior are discussed and the results of the mechanical design analysis are presented.

  20. Development of a Low-Cost Attitude Sensor for Agricultural Vehicles

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop a low-cost attitude sensor for agricultural vehicles. The attitude sensor was composed of three vibratory gyroscopes and two inclinometers. A sensor fusion algorithm was developed to estimate tilt angles (roll and pitch) by least-squares method. In the a...

  1. A pilot study of spatial patterns in referrals to a multicentre cancer genetics service.

    PubMed

    Tempest, Vanessa; Higgs, Gary; McDonald, Kevin; Iredale, Rachel; Bater, Tony; Gray, Jonathon

    2005-01-01

    To analyse spatial and temporal patterns in patients referred to a cancer genetics service in order to monitor service utilization and accessibility. Postcodes of patients during a 4-year period were used to examine spatial patterns using a Geographical Information System (GIS). Referral rates were compared visually and statistically to explore yearly variation for administrative areas in Wales. There has been a four-fold increase in actual referrals to the service over the period of study. The variance between unitary authority referral rates has decreased from the inception of the service from an almost ten-fold difference between lowest and highest in year 1 to less than a three-fold difference in year 4. This study shows the potential of GIS to highlight spatial variations in referral rates across Wales. Although the disparity in referral rates has decreased, trends in referral rates are not consistent. Ongoing research will examine those referral and referrer characteristics affecting uptake. Copyright 2005 S. Karger AG, Basel.

  2. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    NASA Astrophysics Data System (ADS)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  3. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains

    PubMed Central

    Jost, Daniel; Carrivain, Pascal; Cavalli, Giacomo; Vaillant, Cédric

    2014-01-01

    Genomes of eukaryotes are partitioned into domains of functionally distinct chromatin states. These domains are stably inherited across many cell generations and can be remodeled in response to developmental and external cues, hence contributing to the robustness and plasticity of expression patterns and cell phenotypes. Remarkably, recent studies indicate that these 1D epigenomic domains tend to fold into 3D topologically associated domains forming specialized nuclear chromatin compartments. However, the general mechanisms behind such compartmentalization including the contribution of epigenetic regulation remain unclear. Here, we address the question of the coupling between chromatin folding and epigenome. Using polymer physics, we analyze the properties of a block copolymer model that accounts for local epigenomic information. Considering copolymers build from the epigenomic landscape of Drosophila, we observe a very good agreement with the folding patterns observed in chromosome conformation capture experiments. Moreover, this model provides a physical basis for the existence of multistability in epigenome folding at sub-chromosomal scale. We show how experiments are fully consistent with multistable conformations where topologically associated domains of the same epigenomic state interact dynamically with each other. Our approach provides a general framework to improve our understanding of chromatin folding during cell cycle and differentiation and its relation to epigenetics. PMID:25092923

  4. The role of mechanics during brain development

    NASA Astrophysics Data System (ADS)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-12-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated with neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism.

  5. The role of mechanics during brain development

    PubMed Central

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2014-01-01

    Convolutions are a classical hallmark of most mammalian brains. Brain surface morphology is often associated with intelligence and closely correlated to neurological dysfunction. Yet, we know surprisingly little about the underlying mechanisms of cortical folding. Here we identify the role of the key anatomic players during the folding process: cortical thickness, stiffness, and growth. To establish estimates for the critical time, pressure, and the wavelength at the onset of folding, we derive an analytical model using the Föppl-von-Kármán theory. Analytical modeling provides a quick first insight into the critical conditions at the onset of folding, yet it fails to predict the evolution of complex instability patterns in the post-critical regime. To predict realistic surface morphologies, we establish a computational model using the continuum theory of finite growth. Computational modeling not only confirms our analytical estimates, but is also capable of predicting the formation of complex surface morphologies with asymmetric patterns and secondary folds. Taken together, our analytical and computational models explain why larger mammalian brains tend to be more convoluted than smaller brains. Both models provide mechanistic interpretations of the classical malformations of lissencephaly and polymicrogyria. Understanding the process of cortical folding in the mammalian brain has direct implications on the diagnostics of neurological disorders including severe retardation, epilepsy, schizophrenia, and autism. PMID:25202162

  6. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control

    NASA Astrophysics Data System (ADS)

    Lucero, Jorge C.; Koenig, Laura L.

    2005-03-01

    In this study we use a low-dimensional laryngeal model to reproduce temporal variations in oral airflow produced by speakers in the vicinity of an abduction gesture. It attempts to characterize these temporal patterns in terms of biomechanical parameters such as glottal area, vocal fold stiffness, subglottal pressure, and gender differences in laryngeal dimensions. A two-mass model of the vocal folds coupled to a two-tube approximation of the vocal tract is fitted to oral airflow records measured in men and women during the production of /aha/ utterances, using the subglottal pressure, glottal width, and Q factor as control parameters. The results show that the model is capable of reproducing the airflow records with good approximation. A nonlinear damping characteristics is needed, to reproduce the flow variation at glottal abduction. Devoicing is achieved by the combined action of vocal fold abduction, the decrease of subglottal pressure, and the increase of vocal fold tension. In general, the female larynx has a more restricted region of vocal fold oscillation than the male one. This would explain the more frequent devoicing in glottal abduction-adduction gestures for /h/ in running speech by women, compared to men. .

  7. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    PubMed

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  8. High-speed imaging of vocal fold vibrations and larynx movements within vocalizations of different vowels.

    PubMed

    Maurer, D; Hess, M; Gross, M

    1996-12-01

    Theoretic investigations of the "source-filter" model have indicated a pronounced acoustic interaction of glottal source and vocal tract. Empirical investigations of formant pattern variations apart from changes in vowel identity have demonstrated a direct relationship between the fundamental frequency and the patterns. As a consequence of both findings, independence of phonation and articulation may be limited in the speech process. Within the present study, possible interdependence of phonation and phoneme was investigated: vocal fold vibrations and larynx position for vocalizations of different vowels in a healthy man and woman were examined by high-speed light-intensified digital imaging. We found 1) different movements of the vocal folds for vocalizations of different vowel identities within one speaker and at similar fundamental frequency, and 2) constant larynx position within vocalization of one vowel identity, but different positions for vocalizations of different vowel identities. A possible relationship between the vocal fold vibrations and the phoneme is discussed.

  9. Bioinspired spring origami

    NASA Astrophysics Data System (ADS)

    Faber, Jakob A.; Arrieta, Andres F.; Studart, André R.

    2018-03-01

    Origami enables folding of objects into a variety of shapes in arts, engineering, and biological systems. In contrast to well-known paper-folded objects, the wing of the earwig has an exquisite natural folding system that cannot be sufficiently described by current origami models. Such an unusual biological system displays incompatible folding patterns, remains open by a bistable locking mechanism during flight, and self-folds rapidly without muscular actuation. We show that these notable functionalities arise from the protein-rich joints of the earwig wing, which work as extensional and rotational springs between facets. Inspired by this biological wing, we establish a spring origami model that broadens the folding design space of traditional origami and allows for the fabrication of precisely tunable, four-dimensional–printed objects with programmable bioinspired morphing functionalities.

  10. APPLIED ORIGAMI. Origami of thick panels.

    PubMed

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.

  11. True Katydids (Pseudophyllinae) from Guadeloupe: Acoustic Signals and Functional Considerations of Song Production

    PubMed Central

    Stumpner, Andreas; Dann, Angela; Schink, Matthias; Gubert, Silvia; Hugel, Sylvain

    2013-01-01

    Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4–6 syllables, each comprising 10–20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8–10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2–3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song. PMID:24785151

  12. Sex hormones and the female voice.

    PubMed

    Abitbol, J; Abitbol, P; Abitbol, B

    1999-09-01

    In the following, the authors examine the relationship between hormonal climate and the female voice through discussion of hormonal biochemistry and physiology and informal reporting on a study of 197 women with either premenstrual or menopausal voice syndrome. These facts are placed in a larger historical and cultural context, which is inextricably bound to the understanding of the female voice. The female voice evolves from childhood to menopause, under the varied influences of estrogens, progesterone, and testosterone. These hormones are the dominant factor in determining voice changes throughout life. For example, a woman's voice always develops masculine characteristics after an injection of testosterone. Such a change is irreversible. Conversely, male castrati had feminine voices because they lacked the physiologic changes associated with testosterone. The vocal instrument is comprised of the vibratory body, the respiratory power source and the oropharyngeal resonating chambers. Voice is characterized by its intensity, frequency, and harmonics. The harmonics are hormonally dependent. This is illustrated by the changes that occur during male and female puberty: In the female, the impact of estrogens at puberty, in concert with progesterone, produces the characteristics of the female voice, with a fundamental frequency one third lower than that of a child. In the male, androgens released at puberty are responsible for the male vocal frequency, an octave lower than that of a child. Premenstrual vocal syndrome is characterized by vocal fatigue, decreased range, a loss of power and loss of certain harmonics. The syndrome usually starts some 4-5 days before menstruation in some 33% of women. Vocal professionals are particularly affected. Dynamic vocal exploration by televideoendoscopy shows congestion, microvarices, edema of the posterior third of the vocal folds and a loss of its vibratory amplitude. The authors studied 97 premenstrual women who were prescribed a treatment of multivitamins, venous tone stimulants (phlebotonics), and anti-edematous drugs. We obtained symptomatic improvement in 84 patients. The menopausal vocal syndrome is characterized by lowered vocal intensity, vocal fatigue, a decreased range with loss of the high tones and a loss of vocal quality. In a study of 100 menopausal women, 17 presented with a menopausal vocal syndrome. To rehabilitate their voices, and thus their professional lives, patients were prescribed hormone replacement therapy and multi-vitamins. All 97 women showed signs of vocal muscle atrophy, reduction in the thickness of the mucosa and reduced mobility in the cricoarytenoid joint. Multi-factorial therapy (hormone replacement therapy and multi-vitamins) has to be individually adjusted to each case depending on body type, vocal needs, and other factors.

  13. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  14. Fold-and-thrust belt curvature in the Fars region, eastern Zagros, achieved by variable thrust slip vectors and fault block rotations

    NASA Astrophysics Data System (ADS)

    Edey, Alex; Allen, Mark B.

    2017-04-01

    Many fold-and-thrust belts are curved in plan view, but the origins of this curvature are debated. Understanding which mechanism(s) is appropriate is important to constrain the behaviour of the lithosphere during compressional deformation. Here we analyse the active deformation of the Fars Arc region in the eastern part of the Zagros, Iran, including slip vectors of 92 earthquakes, published GPS and palaeomagnetism data, and the distributions of young and/or active folds. The fold-and-thrust belt in the Fars Arc shows pronounced curvature, convex southwards. Folds trends vary from NW-SE in the west to ENE-WSW in the east. The GPS-derived velocity field shows NNE to SSW convergence, towards the foreland on the Arabian Plate, without dispersion. Earthquake slip vectors are highly variable, spanning a range of azimuths from SW to SSE in an Arabian Plate reference frame. The full variation of azimuths occurs within small (10s of km) sub-regions, but this variation is superimposed on a radial pattern, whereby slip vectors tend to be parallel to the regional topographic gradient. Given the lack of variation in the GPS vectors, we conclude that the Fars Arc is not curved as a result of gravitational spreading over the adjacent foreland, but as a result of deformation being restricted at tectonic boundaries at the eastern and western margins of the Arc. Fault blocks and folds within the Fars Arc, each 20-40 km long, rotate about vertical axes to achieve the overall curvature, predominantly clockwise in the west and counter-clockwise in the east. Active folds of different orientations may intersect and produce dome-and-basin interference patterns, without the need for a series of separate deformation phases of different stress orientations. The Fars Arc clearly contrasts with the Himalayas, where both GPS and earthquake slip vectors display radial patterns towards the foreland, and gravitational spreading is a viable mechanism for producing fold-and-thrust belt curvature.

  15. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    PubMed

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  16. Centrifugal dryers keep pace with the market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-03-15

    New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.

  17. Cryogenic liquid-level detector

    NASA Technical Reports Server (NTRS)

    Hamlet, J.

    1978-01-01

    Detector is designed for quick assembly, fast response, and good performance under vibratory stress. Its basic parallel-plate open configuration can be adapted to any length and allows its calibration scale factor to be predicted accurately. When compared with discrete level sensors, continuous reading sensor was found to be superior if there is sloshing, boiling, or other disturbance.

  18. Investigation of a rotor system incorporating a constant lift tip

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.; Rosenstein, H.; Bartie, K.; Mchugh, F. J.

    1981-01-01

    A wind tunnel test of a 16.8 ft. model of a rotor having passively controlled pivotable tips is described. Performance and vibratory hub load data are presented which compare the performance of the rotor with the tips free and fixed. A brief analysis of the experimental findings is included.

  19. Mammalian Auditory Hair Cell Bundle Stiffness Affects Frequency Tuning by Increasing Coupling along the Length of the Cochlea.

    PubMed

    Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S

    2018-06-05

    The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Sensing of Substrate Vibrations in the Adult Cicada Okanagana rimosa (Hemiptera: Cicadidae).

    PubMed

    Alt, Joscha A; Lakes-Harlan, Reinhard

    2018-05-01

    Detection of substrate vibrations is an evolutionarily old sensory modality and is important for predator detection as well as for intraspecific communication. In insects, substrate vibrations are detected mainly by scolopidial (chordotonal) sense organs found at different sites in the legs. Among these sense organs, the tibial subgenual organ (SGO) is one of the most sensitive sensors. The neuroanatomy and physiology of vibratory sense organs of cicadas is not well known. Here, we investigated the leg nerve by neuronal tracing and summed nerve recordings. Tracing with Neurobiotin revealed that the cicada Okanagana rimosa (Say) (Hemiptera: Cicadidae) has a femoral chordotonal organ with about 20 sensory cells and a tibial SGO with two sensory cells. Recordings from the leg nerve show that the vibrational response is broadly tuned with a threshold of about 1 m/s2 and a minimum latency of about 6 ms. The vibratory sense of cicadas might be used in predator avoidance and intraspecific communication, although no tuning to the peak frequency of the calling song (9 kHz) could be found.

  1. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    Prior to the full-scale wind tunnel test of the UH-60A Airloads rotor, a shake test was completed on the Large Rotor Test Apparatus. The goal of the shake test was to characterize the oscillatory response of the test rig and provide a dynamic calibration of the balance to accurately measure vibratory hub loads. This paper provides a summary of the shake test results, including balance, shaft bending gauge, and accelerometer measurements. Sensitivity to hub mass and angle of attack were investigated during the shake test. Hub mass was found to have an important impact on the vibratory forces and moments measured at the balance, especially near the UH-60A 4/rev frequency. Comparisons were made between the accelerometer data and an existing finite-element model, showing agreement on mode shapes, but not on natural frequencies. Finally, the results of a simple dynamic calibration are presented, showing the effects of changes in hub mass. The results show that the shake test data can be used to correct in-plane loads measurements up to 10 Hz and normal loads up to 30 Hz.

  2. Displacement and frequency analyses of vibratory systems

    NASA Astrophysics Data System (ADS)

    Low, K. H.

    1995-02-01

    This paper deals with the frequency and response studies of vibratory systems, which are represented by a set of n coupled second-order differential equations. The following numerical methods are used in the response analysis: central difference, fourth-order Runge-Kutta and modal methods. Data generated in the response analysis are processed to obtain the system frequencies by using the fast Fourier transform (FFT) or harmonic response methods. Two types of the windows are used in the FFT analysis: rectangular and Hanning windows. Examples of two, four and seven degrees of freedom systems are considered, to illustrate the proposed algorithms. Comparisons with those existing results confirm the validity of the proposed methods. The Hanning window attenuates the results that give a narrower bandwidth around the peak if compared with those using the rectangular window. It is also found that in free vibrations of a multi-mass system, the masses will vibrate in a manner that is the superposition of the natural frequencies of the system, while the system will vibrate at the driving frequency in forced vibrations.

  3. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  4. Relationship between paraspinal muscle cross-sectional area and relative proprioceptive weighting ratio of older persons with lumbar spondylosis.

    PubMed

    Ito, Tadashi; Sakai, Yoshihito; Nakamura, Eishi; Yamazaki, Kazunori; Yamada, Ayaka; Sato, Noritaka; Morita, Yoshifumi

    2015-07-01

    [Purpose] The purpose of this study was to examine the relationship between the paraspinal muscle cross-sectional area and the relative proprioceptive weighting ratio during local vibratory stimulation of older persons with lumbar spondylosis in an upright position. [Subjects] In all, 74 older persons hospitalized for lumbar spondylosis were included. [Methods] We measured the relative proprioceptive weighting ratio of postural sway using a Wii board while vibratory stimulations of 30, 60, or 240 Hz were applied to the subjects' paraspinal or gastrocnemius muscles. Back strength, abdominal muscle strength, and erector spinae muscle (L1/L2, L4/L5) and lumbar multifidus (L1/L2, L4/L5) cross-sectional areas were evaluated. [Results] The erector spinae muscle (L1/L2) cross-sectional area was associated with the relative proprioceptive weighting ratio during 60Hz stimulation. [Conclusion] These findings show that the relative proprioceptive weighting ratio compared to the erector spinae muscle (L1/L2) cross-sectional area under 60Hz proprioceptive stimulation might be a good indicator of trunk proprioceptive sensitivity.

  5. Optimum Design of a Helicopter Rotor for Low Vibration Using Aeroelastic Analysis and Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Ganguli, R.

    2002-11-01

    An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.

  6. Orogen-transverse tectonic window in the Eastern Himalayan fold belt: A superposed buckling model

    NASA Astrophysics Data System (ADS)

    Bose, Santanu; Mandal, Nibir; Acharyya, S. K.; Ghosh, Subhajit; Saha, Puspendu

    2014-09-01

    The Eastern Lesser Himalayan fold-thrust belt is punctuated by a row of orogen-transverse domal tectonic windows. To evaluate their origin, a variety of thrust-stack models have been proposed, assuming that the crustal shortening occurred dominantly by brittle deformations. However, the Rangit Window (RW) in the Darjeeling-Sikkim Himalaya (DSH) shows unequivocal structural imprints of ductile deformations of multiple episodes. Based on new structural maps, coupled with outcrop-scale field observations, we recognize at least four major episodes of folding in the litho-tectonic units of DSH. The last episode has produced regionally orogen-transverse upright folds (F4), the interference of which with the third-generation (F3) orogen-parallel folds has shaped the large-scale structural patterns in DSH. We propose a new genetic model for the RW, invoking the mechanics of superposed buckling in the mechanically stratified litho-tectonic systems. We substantiate this superposed buckling model with results obtained from analogue experiments. The model explains contrasting F3-F4 interferences in the Lesser Himalayan Sequence (LHS). The lower-order (terrain-scale) folds have undergone superposed buckling in Mode 1, producing large-scale domes and basins, whereas the RW occurs as a relatively higher-order dome nested in the first-order Tista Dome. The Gondwana and the Proterozoic rocks within the RW underwent superposed buckling in Modes 3 and 4, leading to Type 2 fold interferences, as evident from their structural patterns.

  7. Predicting origami-inspired programmable self-folding of hydrogel trilayers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-11-01

    Imitating origami principles in active or programmable materials opens the door for development of origami-inspired self-folding structures for not only aesthetic but also functional purposes. A variety of programmable materials enabled self-folding structures have been demonstrated across various fields and scales. These folding structures have finite thickness and the mechanical properties of the active materials dictate the folding process. Yet formalizing the use of origami rules for use in computer modeling has been challenging, owing to the zero-thickness theory and the exclusion of mechanical properties in current models. Here, we describe a physics-based finite element simulation scheme to predict programmable self-folding of temperature-sensitive hydrogel trilayers. Patterning crease and assigning mountain or valley folds are highlighted for complex origami such as folding of the Randlett’s flapping bird and the crane. Our efforts enhance the understanding and facilitate the design of origami-inspired self-folding structures, broadening the realization and application of reconfigurable structures.

  8. Discretized torsional dynamics and the folding of an RNA chain.

    PubMed

    Fernández, A; Salthú, R; Cendra, H

    1999-08-01

    The aim of this work is to implement a discrete coarse codification of local torsional states of the RNA chain backbone in order to explore the long-time limit dynamics and ultimately obtain a coarse solution to the RNA folding problem. A discrete representation of the soft-mode dynamics is turned into an algorithm for a rough structure prediction. The algorithm itself is inherently parallel, as it evaluates concurrent folding possibilities by pattern recognition, but it may be implemented in a personal computer as a chain of perturbation-translation-renormalization cycles performed on a binary matrix of local topological constraints. This requires suitable representational tools and a periodic quenching of the dynamics for system renormalization. A binary coding of local topological constraints associated with each structural motif is introduced, with each local topological constraint corresponding to a local torsional state. This treatment enables us to adopt a computation time step far larger than hydrodynamic drag time scales. Accordingly, the solvent is no longer treated as a hydrodynamic drag medium. Instead we incorporate its capacity for forming local conformation-dependent dielectric domains. Each translation of the matrix of local topological constraints (LTM's) depends on the conformation-dependent local dielectric created by a confined solvent. Folding pathways are resolved as transitions between patterns of locally encoded structural signals which change within the 1 ns-100 ms time scale range. These coarse folding pathways are generated by a search at regular intervals for structural patterns in the LTM. Each pattern is recorded as a base-pairing pattern (BPP) matrix, a consensus-evaluation operation subject to a renormalization feedback loop. Since several mutually conflicting consensus evaluations might occur at a given time, the need arises for a probabilistic approach appropriate for an ensemble of RNA molecules. Thus, a statistical dynamics of consensus formation is determined by the time evolution of the base pairing probability matrix. These dynamics are generated for a functional RNA molecule, a representative of the so-called group I ribozymes, in order to test the model. The resulting ensemble of conformations is sharply peaked and the most probable structure features the predominance of all phylogenetically conserved intrachain helices tantamount to ribozyme function. Furthermore, the magnesium-aided cooperativity that leads to the shaping of the catalytic core is elucidated. Once the predictive folding algorithm has been implemented, the validity of the so-called "adiabatic approximation" is tested. This approximation requires that conformational microstates be lumped up into BPP's which are treated as quasiequilibrium states, while folding pathways are coarsely represented as sequences of BPP transitions. To test the validity of this adiabatic ansatz, a computation of the coarse Shannon information entropy sigma associated to the specific partition of conformation space into BPP's is performed taking into account the LTM evolution and contrasted with the adiabatic computation. The results reveal a subordination of torsional microstate dynamics to BPP transitions within time scales relevant to folding. This adiabatic entrainment in the long-time limit is thus identified as responsible for the expediency of the folding process.

  9. The Moire Effect in Physics Teaching.

    ERIC Educational Resources Information Center

    Bernero, Bruce

    1989-01-01

    The Moire pattern is the shimmering pattern which looks like an odd interference pattern in window screens or folds of nylon shower curtain. Illustrates some of the ways the effect may be used, including demonstration of wave interference, detection of small displacement, persistence of vision, contour measurement, beats, and optical clearness.…

  10. Dynamic patterns of cortical expansion during folding of the preterm human brain.

    PubMed

    Garcia, Kara E; Robinson, Emma C; Alexopoulos, Dimitrios; Dierker, Donna L; Glasser, Matthew F; Coalson, Timothy S; Ortinau, Cynthia M; Rueckert, Daniel; Taber, Larry A; Van Essen, David C; Rogers, Cynthia E; Smyser, Christopher D; Bayly, Philip V

    2018-03-20

    During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.

  11. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times), respectively.

  12. Monitoring the Microgravity Environment Quality On-board the International Space Station Using Soft Computing Techniques. Part 2; Preliminary System Performance Results

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.; Weiss, Daniel S.

    2002-01-01

    This paper presents the preliminary performance results of the artificial intelligence monitoring system in full operational mode using near real time acceleration data downlinked from the International Space Station. Preliminary microgravity environment characterization analysis result for the International Space Station (Increment-2), using the monitoring system is presented. Also, comparison between the system predicted performance based on ground test data for the US laboratory "Destiny" module and actual on-orbit performance, using measured acceleration data from the U.S. laboratory module of the International Space Station is presented. Finally, preliminary on-orbit disturbance magnitude levels are presented for the Experiment of Physics of Colloids in Space, which are compared with on ground test data. The ground test data for the Experiment of Physics of Colloids in Space were acquired from the Microgravity Emission Laboratory, located at the NASA Glenn Research Center, Cleveland, Ohio. The artificial intelligence was developed by the NASA Glenn Principal Investigator Microgravity Services Project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment of time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a dynamic graphical display, implemented in Java, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, structural modes, etc., and decide whether or not to run their experiments, whenever that is an option, based on the acceleration magnitude and frequency sensitivity associated with that experiment. This monitoring system detects primarily the vibratory disturbance sources. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  13. The effect of condoms on penile vibrotactile sensitivity thresholds in young, heterosexual men

    PubMed Central

    Hill, Brandon J.; Janssen, Erick; Kvam, Peter; Amick, Erick E.; Sanders, Stephanie A.

    2013-01-01

    Introduction Investigating the ways in which barrier methods such as condoms may affect penile sensory thresholds has potential relevance to the development of interventions in men who experience negative effects of condoms on sexual response and sensation. A quantitative, psychophysiological investigation examining the degree to which sensations are altered by condoms has, to date, not been conducted. Aim The objective of this study was to examine penile vibrotactile sensitivity thresholds in both flaccid and erect penises with and without a condom, while comparing men who do and those who do not report condom-associated erection problems (CAEP). Methods Penile vibrotactile sensitivity thresholds were assessed among a total of 141 young, heterosexual men using biothesiometry. An incremental two-step staircase method was used and repeated three times for each of four conditions. Intra-class correlation coefficients (ICC) were calculated for all vibratory assessments. Penile vibratory thresholds were compared using a mixed-model Analysis of Variance (ANOVA). Main Outcome Measures Penile vibrotactile sensitivity thresholds with and without a condom, erectile function measured by International Index of Erectile Function Questionnaire (IIEF), and self-reported degree of erection. Results Significant main effects of condoms (yes/no) and erection (yes/no) were found. No main or interaction effects of CAEP were found. Condoms were associated with higher penile vibrotactile sensitivity thresholds (F(1, 124)=17.11, p<.001). Penile vibrotactile thresholds were higher with an erect than with a flaccid penis (F(1, 124)=4.21, p=.042). Conclusion The current study demonstrates the feasibility of measuring penile vibratory thresholds with and without a condom in both erect and flaccid experimental conditions. As might be expected, condoms increased penile vibrotactile sensitivity thresholds. Interestingly, erections were associated with the highest thresholds. Thus, this study was the first to document that erect penises are less sensitive to vibrotactile stimulation than flaccid penises. PMID:24168347

  14. Influence of aging on thermal and vibratory thresholds of quantitative sensory testing.

    PubMed

    Lin, Yea-Huey; Hsieh, Song-Chou; Chao, Chi-Chao; Chang, Yang-Chyuan; Hsieh, Sung-Tsang

    2005-09-01

    Quantitative sensory testing has become a common approach to evaluate thermal and vibratory thresholds in various types of neuropathies. To understand the effect of aging on sensory perception, we measured warm, cold, and vibratory thresholds by performing quantitative sensory testing on a population of 484 normal subjects (175 males and 309 females), aged 48.61 +/- 14.10 (range 20-86) years. Sensory thresholds of the hand and foot were measured with two algorithms: the method of limits (Limits) and the method of level (Level). Thresholds measured by Limits are reaction-time-dependent, while those measured by Level are independent of reaction time. In addition, we explored (1) the correlations of thresholds between these two algorithms, (2) the effect of age on differences in thresholds between algorithms, and (3) differences in sensory thresholds between the two test sites. Age was consistently and significantly correlated with sensory thresholds of all tested modalities measured by both algorithms on multivariate regression analysis compared with other factors, including gender, body height, body weight, and body mass index. When thresholds were plotted against age, slopes differed between sensory thresholds of the hand and those of the foot: for the foot, slopes were steeper compared with those for the hand for each sensory modality. Sensory thresholds of both test sites measured by Level were highly correlated with those measured by Limits, and thresholds measured by Limits were higher than those measured by Level. Differences in sensory thresholds between the two algorithms were also correlated with age: thresholds of the foot were higher than those of the hand for each sensory modality. This difference in thresholds (measured with both Level and Limits) between the hand and foot was also correlated with age. These findings suggest that age is the most significant factor in determining sensory thresholds compared with the other factors of gender and anthropometric parameters, and this provides a foundation for investigating the neurobiologic significance of aging on the processing of sensory stimuli.

  15. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    PubMed

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics

  16. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.

    PubMed

    Meng, Pan; Wang, Qingyun; Lu, Qishao

    2013-06-01

    Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.

  17. Self-folding micropatterned polymeric containers.

    PubMed

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  18. A status report on the characterization of the microgravity environment of the International Space Station

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2004-01-01

    A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6. c2004 Elsevier Ltd. All rights reserved.

  19. Capping spheres with scarry crystals: Organizing principles of multi-dislocation, ground-state patterns

    NASA Astrophysics Data System (ADS)

    Azadi, Amir; Grason, Gregory M.

    2014-03-01

    Predicting the ground state ordering of curved crystals remains an unsolved, century-old challenge, beginning with the classic Thomson problem to more recent studies of particle-coated droplets. We study the structural features and underlying principles of multi-dislocation ground states of a crystalline cap adhered to a spherical substrate. In the continuum limit, vanishing lattice spacing, a --> 0 , dislocations proliferate and we show that ground states approach a characteristic sequence of patterns of n-fold radial grain boundary ``scars,'' extending from the boundary and terminating in the bulk. A combination of numerical and asymptotic analysis reveals that energetic hierarchy gives rise to a structural hierarchy, whereby the number of dislocation and scars diverge as a --> 0 while the scar length and number of dislocations per scar become remarkably independent of lattice spacing. We show the that structural hierarchy remains intact when n-fold symmetry becomes unstable to polydispersed forked-scar morphologies. We expect this analysis to resolve previously open questions about the optimal symmetries of dislocation patterns in Thomson-like problems, both with and without excess 5-fold defects.

  20. Interference of lithospheric folding in western Central Asia by simultaneous Indian and Arabian plate indentation

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Cloetingh, S. A. P. L.; Burov, E.; Tesauro, M.; Sokoutis, D.; Kaban, M.

    2013-08-01

    Large-scale intraplate deformation of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented. In contrast, the impact of continental collision between Arabia and Eurasia on lithosphere tectonics in front of the main suture zone, has received much less attention. The resulting Neogene shortening and uplift of the external Zagros, Alborz, Kopeh Dagh and Caucasus Mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5 Ma. At the same time, subsidence accelerated in the adjacent Caspian, Turan and Amu Darya basins. We present evidence for interference of lithospheric folding patterns induced by the Arabian and Indian collision with Eurasia. Wavelengths and spatial patterns are inferred from satellite-derived topography and gravity models. The observed interference of the patterns of folding appears to be primarily the result of spatial orientation of the two indenters, differences in their convergence velocities and the thermo-mechanical structure of the lithosphere west and east of the Kugitang-Tunka Line.

  1. Ductile deformation history in Laibid metamorphic rocks, Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Aflaki, Mahtab; Mohajjel, Mohammad

    2010-05-01

    Sanandaj-Sirjan zone, in northeast of Zagros suture zone, is the metamorphic belt of the Zagros orogen which is metamorphosed during Late Mesozoic, as the active margin of the Neotethys subduction system. Since Late Cretaceous, oblique collision between Afro-Arabian continent and Central Iran micro continent resulted in dextral transpression and Poly-phase deformations of this zone. Laibid area, northwest of Esfahan province, is situated in complexly deformed sub zone of the Sanandaj-Sirjan zone in which structurally exposed Permian metamorphosed rocks are separated from the younger Triassic-Jurassic metamorphic rocks by faulted boundaries. Cretaceous unites do not exist in the study area, but in southern most parts un-metamorphosed Early Cretaceous rocks rest on Jurassic metamorphic units over an angular unconformity. Field observations reveal the existence of 3 folding patterns, folded dikes, semi-ductile to ductile shear zones and also sin-tectonic granite intrusion. Hassan-Robat Alkali-porphyritic-granite is exposed in the eastern part of the area with the possible ages between post-Early Cretaceous to pre-Eocene. In this research, the focus is on ductile structures and their deformation history in the Laibid area. Structural analysis of the folds reveals three deformation stages of a progressive deformation in this area. These folding patterns observed in all pre-Cretaceous metamorphosed unites, but not in Cretaceous rocks. The first stage includes tight to isoclinal folds, S0 || S1, with the aspect ratio changes respectively from tall and short. Although their axial plane and fold axis orientations change due to other two folding stages, but they mostly have moderately dipping to the NE axial plane and moderately plunging fold axis to NW or SE. In the eastern part of the area the trend of F1 foliation changes around the Hassan-Robat granite. The second folding stage includes open to close asymmetric folds which have broad aspect ratio. This folding stage resulted in a dominant axial plane foliation affected all rock units. These folds commonly have low to moderate plunge axis and NW-SE axial plane trends. Finally, the third stage includes gentle to open upright folds with wide aspect ratio, E-W axial plane trends and gently plunge axis. Superposition of these fold generations caused in coaxial interference patterns. Metamorphosed and metasomatized intermediate to basic dikes which cut thought the Permian metamorphic rocks are mostly outcropped in the central and eastern part of the Laibid area. Previous studies suggest post-Permian-pre-Late Triassic ages for them. Although these dikes have E-W to ENE-WSW trends, observation of their outcrops on the walls of Laibid marble mines indicates they are folded and boudined by the folding stages. Dikes are mostly parallel to axial plane foliations on these walls. Semi-ductile to ductile shear zones exist in central and eastern parts of the area. In the eastern part, their foliation turns around the Hassan-Robat granitic pluton. Study of the shear sense indicators on oriented thin sections such as mica fishes, stepped fragmented grains, s-c and s-c' fabrics illustrates they all have top to the northeast sense of shear. Field observation and thin sections studies indicate shear zones affected the first folding stages. It seems that during Late Jurassic, three folding stages consequently formed and passively rotated in a continuous deformation condition. Dikes are alternatively injected in to the extensional fractures and through the axial plane foliation and gradually deformed in to the folds, boudins, folded boudins, and boudined folds. Hassan-Robat granite intrusion and shearing events both must be occurred at least after first stage of folding.

  2. Mechanisms of flexural flow folding of competent single-layers as evidenced by folded fibrous dolomite veins

    NASA Astrophysics Data System (ADS)

    Torremans, Koen; Muchez, Philippe; Sintubin, Manuel

    2014-12-01

    Flexural flow is thought unlikely to occur in naturally deformed, competent isotropic single-layers. In this study we discuss a particular case of folded bedding-parallel fibrous dolomite veins in shale, in which the internal strain pattern and microstructural deformation features provide new insights in the mechanisms enabling flexural flow folding. Strain in the pre-folding veins is accommodated by two main mechanisms: intracrystalline deformation by bending and intergranular deformation with bookshelf rotation of dolomite fibres. The initially orthogonal dolomite fibres allowed a reconstruction of the strain distribution across the folded veins. This analysis shows that the planar mechanical anisotropy created by the fibres causes the veins to approximate flexural flow. During folding, synkinematic veins overgrow the pre-folding fibrous dolomite veins. Microstructures and dolomite growth morphologies reflect growth during progressive fold evolution, with evidence for flexural slip at fold lock-up. Homogeneous flattening, as evidenced by disjunctive axial-planar cleavage, subsequently modified these folds from class 1B to 1C folds. Our study shows that the internal vein fabric has a first-order influence on folding kinematics. Moreover, the fibrous dolomite veins show high viscosity contrasts with the shale matrix, essential in creating transient permeability for subsequent mineralising stages in the later synkinematic veins during progressive folding.

  3. 78 FR 23910 - Taking of Marine Mammals Incidental to Specified Activities; Construction at Orcas Island and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Remote Sensing Network, a system of interconnected hydrophones installed in the marine environment of... unmitigable adverse impact on the availability of the species or stock(s) for subsistence uses (where relevant... use vibratory pile hammer for pile driving. Marine mammals are not expected to be injured (Level A...

  4. Experimental evaluation of the effect of inlet distortion on compressor blade vibrations

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Compressor rotor strain gage data from an engine test conducted with an inlet screen distortion were reduced and analyzed. These data are compared to data obtained from the same engine without inlet pressure distortion to determine the net effect of the distortion on the vibratory response of the compressor blades. The results obtained are presented.

  5. Conditions of efficient vibrodischarge of rock materials in modern mining and processing technologies

    NASA Astrophysics Data System (ADS)

    Levenson, SYa; Gendlina, LI; Kulikova, EG

    2018-03-01

    The paper reviews vibration feeders used to discharge storage reservoirs in mineral mining. In spotlight are vibrofeeders equipped with an active member of low flexural rigidity developed at Chinakal Institute of Mining. The authors present the results of the physical and numerical studies on vibratory discharge of cohesive rocks from a bunker.

  6. The Path to Presence in Performance through Movement, Physiological Response, and Mood

    ERIC Educational Resources Information Center

    Preeshl, Artemis; George, Gwen; Hicks, Wendy

    2015-01-01

    Presence may occur when actors are alert and relaxed in performance. A positive mood is associated with physical activity, but little is known about how movement qualities affect mood and vital signs of actors. This study examined the effects of vibratory, pendular, abrupt, and sustained movement qualities on the Brief Mood Introspection Scale,…

  7. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  8. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  9. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  10. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  11. 46 CFR 38.05-10 - Installation of cargo tanks-general-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... prevent the tanks from shifting when subjected to external forces. Each tank shall be so supported as to prevent the concentration of excessive loads on the supporting portions of the shell or head as prescribed... consider the resonance of the cargo tank, or parts thereof, and the vibratory forces, found in the tank...

  12. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... range up to VD/MD, or VDF/MDF for jets; (2) The vibratory response of the structure during the test indicates freedom from flutter; (3) A proper margin of damping exists at VD/MD, or VDF/MDF for jets; and (4) As VD/MD (or VDF/MDF for jets) is approached, there is no large or rapid reduction in damping. (c...

  13. 14 CFR 23.629 - Flutter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... range up to VD/MD, or VDF/MDF for jets; (2) The vibratory response of the structure during the test indicates freedom from flutter; (3) A proper margin of damping exists at VD/MD, or VDF/MDF for jets; and (4) As VD/MD (or VDF/MDF for jets) is approached, there is no large or rapid reduction in damping. (c...

  14. Origami-Inspired Folding of Thick, Rigid Panels

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  15. Coarse-grained sequences for protein folding and design.

    PubMed

    Brown, Scott; Fawzi, Nicolas J; Head-Gordon, Teresa

    2003-09-16

    We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the alpha/beta ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design.

  16. Coarse-grained sequences for protein folding and design

    PubMed Central

    Brown, Scott; Fawzi, Nicolas J.; Head-Gordon, Teresa

    2003-01-01

    We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the α/β ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design. PMID:12963815

  17. Folding of a LysM Domain: Entropy-Enthalpy Compensation in the Transition State of an Ideal Two-state Folder

    PubMed Central

    Nickson, Adrian A.; Stoll, Kate E.; Clarke, Jane

    2008-01-01

    Protein-engineering methods (Φ-values) were used to investigate the folding transition state of a lysin motif (LysM) domain from Escherichia coli membrane-bound lytic murein transglycosylase D. This domain consists of just 48 structured residues in a symmetrical βααβ arrangement and is the smallest αβ protein yet investigated using these methods. An extensive mutational analysis revealed a highly robust folding pathway with no detectable transition state plasticity, indicating that LysM is an example of an ideal two-state folder. The pattern of Φ-values denotes a highly polarised transition state, with significant formation of the helices but no structure within the β-sheet. Remarkably, this transition state remains polarised after circularisation of the domain, and exhibits an identical Φ-value pattern; however, the interactions within the transition state are uniformly weaker in the circular variant. This observation is supported by results from an Eyring analysis of the folding rates of the two proteins. We propose that the folding pathway of LysM is dominated by enthalpic rather than entropic considerations, and suggest that the lower entropy cost of formation of the circular transition state is balanced, to some extent, by the lower enthalpy of contacts within this structure. PMID:18538343

  18. Pathogenesis of vocal fold nodules: new insights from a modelling approach.

    PubMed

    Dejonckere, Philippe H; Kob, Malte

    2009-01-01

    To give new insights into the pathogenesis of vocal fold nodules: (a) why the female/male ratio is so extreme, (b) how an hourglass-shaped vibration pattern - eliciting a localized microtrauma - originates, and (c) what the roles of muscular tension imbalance and of behavioral aspects are. Simulations with a 3-dimensional computer model of the vibrating vocal folds. (1) A slightly incomplete dorsal vocal fold adduction is a first condition for inducing an hourglass vibration pattern. (2) A limited collision zone is only possible with a small degree of curving of the rest position of the vocal fold edges in their ventral portion. This is an anatomical characteristic of the adult female larynx. Muscular fatigue and resulting hypotonia seem to enhance this curving. (3) If both these conditions are fulfilled, a sufficient vibration amplitude is required to achieve a localized impact. (4) This third condition can be obtained by an increased subglottal pressure and/or by a decrease in active stress of the tension forces between the neighboring vocalis masses. These last aspects incorporate muscular tension imbalance (dyskinesia) and behavioral aspects in the modelling process. Decrease in active stress is a possible effect of fatigue, and increase in subglottal pressure a result of effort compensation. Copyright 2009 S. Karger AG, Basel.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huntsman, J.R.

    Eastern slate belt lithologies in the central Flowers quadrangle consist of metavolcanic and metasedimentary rocks. Very fine-grained quartz-white mica phyllite containing narrow, discontinuous layers of thinly laminated chlorite-rich rock and fine-grained, thinly layered, feldspar crystal felsic metatuff comprise the dominant, mappable units consistent across the quadrangle. An increase in grain size accompanied by a replacement of chlorite-rich lithologies with biotite [+-] garnet assemblages suggest metamorphic grade increases towards the western half of the quadrangle (quartz-muscovite schist and biotite-quartz-muscovite-feldspar gneiss). An early, northeast-trending foliation (050[degree] to 060[degree]) dipping moderately to steeply southeast persists across the quadrangle and is axial planar tomore » tight to isoclinal, recumbent to moderately inclined folds. Later non-coaxial folding produced steeply plunging, northerly trending (000[degree] to 020[degree]), open, asymmetric structures verging towards the east/southeast. Shear zones formed locally along the axial trend of these later folds and produced protomylonitic to mylonitic ( ) fabrics. Map patterns and cross-sectional interpretations are best explained by modification of zig-zag fold interference patterns. Thin section examination reveals garnets growing across the early axial planar foliation. The observed increase in metamorphic grade across the quadrangle matches the regional Alleghanian prograde event and constrains relative timing of observed deformational fabrics. Noticeably absent are regional, late-stage upright folds.« less

  20. Computational Modeling of Shape Memory Polymer Origami that Responds to Light

    NASA Astrophysics Data System (ADS)

    Mailen, Russell William

    Shape memory polymers (SMPs) transform in response to external stimuli, such as infrared (IR) light. Although SMPs have many applications, this investigation focuses on their use as actuators in self-folding origami structures. Ink patterned on the surface of the SMP sheet absorbs thermal energy from the IR light, which produces localized heating. The material shrinks wherever the activation temperature is exceeded and can produce out-of-plane deformation. The time and temperature dependent response of these SMPs provides unique opportunities for developing complex three-dimensional (3D) structures from initially flat sheets through self-folding origami, but the application of this technique requires predicting accurately the final folded or deformed shape. Furthermore, current computational approaches for SMPs do not fully couple the thermo-mechanical response of the material. Hence, a proposed nonlinear, 3D, thermo-viscoelastic finite element framework was formulated to predict deformed shapes for different self-folding systems and compared to experimental results for self-folding origami structures. A detailed understanding of the shape memory response and the effect of controllable design parameters, such as the ink pattern, pre-strain conditions, and applied thermal and mechanical fields, allows for a predictive understanding and design of functional, 3D structures. The proposed modeling framework was used to obtain a fundamental understanding of the thermo-mechanical behavior of SMPs and the impact of the material behavior on hinged self-folding. These predictions indicated how the thermal and mechanical conditions during pre-strain significantly affect the shrinking and folding response of the SMP. Additionally, the externally applied thermal loads significantly influenced the folding rate and maximum bending angle. The computational framework was also adapted to understand the effects of fully coupling the thermal and mechanical response of the material. This updated framework accounted for external heat sources, such as ambient temperature and incident surface heat flux, as well as internal temperature changes due to conduction and viscous heat generation. Viscous heating during the pre-strain sequence affected the residual stresses after cooling due to accelerated viscoelastic relaxation. This resulted in a delayed shrinking and folding response. Other factors that affected the folding response include sheet thickness, hinge width, degree of pre-strain, and hinge temperature. The predicted results indicated that the maximum bending angle can be increased for a folded structure by increasing the hinge width, degree of pre-strain, and hinge surface temperature. Folding time can be reduced by decreasing the sheet thickness, increasing the hinge width, and increasing the hinge temperature. The coupled thermo-mechanical approach was also extended to investigate both curved and folded structures by varying the ink pattern and the substrate geometry. With this approach, two continuous curvature mechanisms were obtained. One was an indirect curvature mechanism which resulted from internal stresses that evolved from the shrinking of activated regions of the material relative to unactivated regions. The second was a direct curvature mechanism that resulted from ink distributed in gradients across the surface of the material. Furthermore, the effects of hinge orientation, proximity of multiple hinges, sheet aspect ratio, and axisymmetric ink patterns were characterized for other shapes, such as rectangles and discs. The findings of this investigation clearly indicate that this validated computational approach can be used to predict and understand the myriad mechanisms of self-folding origami structures. By varying the location of ink on the polymer surface and making changes to the substrate geometry, complex 3D structures can be obtained. The developed thermo-mechanical framework can be used to design optimized origami structures for biomedical devices, space telescopes, and functional, engineered origami devices.

  1. Improved method for predicting protein fold patterns with ensemble classifiers.

    PubMed

    Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C

    2012-01-27

    Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.

  2. Origami structures with a critical transition to bistability arising from hidden degrees of freedom

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse L.; Na, Jun-Hee; Evans, Arthur A.; Liu, Bin; Hull, Thomas C.; Santangelo, Christian D.; Lang, Robert J.; Hayward, Ryan C.; Cohen, Itai

    2015-04-01

    Origami is used beyond purely aesthetic pursuits to design responsive and customizable mechanical metamaterials. However, a generalized physical understanding of origami remains elusive, owing to the challenge of determining whether local kinematic constraints are globally compatible and to an incomplete understanding of how the folded sheet’s material properties contribute to the overall mechanical response. Here, we show that the traditional square twist, whose crease pattern has zero degrees of freedom (DOF) and therefore should not be foldable, can nevertheless be folded by accessing bending deformations that are not explicit in the crease pattern. These hidden bending DOF are separated from the crease DOF by an energy gap that gives rise to a geometrically driven critical bifurcation between mono- and bistability. Noting its potential utility for fabricating mechanical switches, we use a temperature-responsive polymer-gel version of the square twist to demonstrate hysteretic folding dynamics at the sub-millimetre scale.

  3. Developing guinea pig brain as a model for cortical folding.

    PubMed

    Hatakeyama, Jun; Sato, Haruka; Shimamura, Kenji

    2017-05-01

    The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding. © 2017 Japanese Society of Developmental Biologists.

  4. Fold growth and drainage evolution of the Perman - Bana Bawi Anticline (Northern Iraq)

    NASA Astrophysics Data System (ADS)

    Bretis, B.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    The Zagros fold- and thrust belt is a seismically active orogen, which is the result of the Cenozoic collision between the Eurasian and the Arabian plates. Kinematic models based on GPS networks suggest a north-south shortening between Arabia and Eurasia in the order of 2-2.5 cm/a. Most of this deformation is partitioned within the Zagros mountains in S-SW directed folding and thrusting as well as in NW-SE to N-S trending dextral strike slip faults. We investigate in this work the growth of the Perman - Bana Bawi anticlines (northeast of Erbil in Kurdistan region) by means of structural field work and tectonic geomorphology based on a geological map and ASTER remote sensing data (digital elevation model and satellite images). The Perman - Bana Bawi anticline forms a slightly S-shaped NW-SE striking fold chain over an exposed distance of more than 80 km. The dominant wavelength of the fold train is about 8 km. The backlimb dips with about 35° to the NE and the forelimb has a mean dip of about 45° towards SW. Hydrologically, there are few rivers with all-year flow conditions and therefore the dominant fluviatile erosion mainly takes place in the months with periodical precipitation, which varies between 700 and 3,000 mm/a (i.e. during the winter months). The presence of wind gaps and the pattern of deflected rivers suggest that the Perman and the Bana Bawi anticline initially developed as individual structures. The lateral growth directions are constrained by fanned drainage, which are especially in the cylindrical parts of the fold strongly overprinted by transverse rivers perpendicular to the fold axis. Although incising the same stratigraphic strata, the erosion pattern on backlimbs clearly differs from the tributary pattern on the forelimbs. The backlimbs are characterized by drainage parallel to the fold crest and asymmetric forked networks. Forelimbs are more strongly dissected by rivers with higher sinuosities with an older generation partly oblique to the slope. The southeastward and northwestward diverted river tributaries between the Perman and the Bana Bawi anticlines as well as their junction in a narrow outlet probably suggests that both anticlines started to amplify as individual segments and joined during lateral propagation.

  5. Demographic variations and clinical associations of episiotomy and severe perineal lacerations in vaginal delivery.

    PubMed

    Ogunyemi, Dotun; Manigat, Brandy; Marquis, Jesse; Bazargan, Mohsen

    2006-11-01

    Primiparity, birthweight, operative delivery and obstetrical complications contribute to episiotomy and severe perineal lacerations. Episiotomy correlates with Hispanics, while African Americans correlate with severe perineal lacerations. The purpose of this study was to identify risk factors for both episiotomy and severe perineal lacerations in a large population from a single institution. This was a review of 66,224 vaginal deliveries of African Americans or Hispanics delivering between 25-44 gestational weeks between 1981-2001. Univariate and multiple regression analysis were done as indicated. Independent predictors of episiotomy were: primiparity eight-fold, forceps delivery seven-fold, vacuum delivery five-fold, shoulder dystocia 3.6-fold, macrosomia 1.8-fold, epidural analgesia 1.6-fold, postdates 1.5-fold, Hispanics 1.4-fold. Independent predictors of severe perineal lacerations were; macrosomia seven-fold, episiotomy 4.5-fold, primiparity 4.4-fold, shoulder dystocia 3.6-fold, average birthweight 3.5-fold, forceps delivery 2.6-fold, vacuum delivery two-fold, epidural analgesia two-fold, African-American 1.5-fold. Nonreassuring fetal heart rate patterns, meconium and cord accidents appeared protective. Primiparous women with larger babies undergoing operative delivery with epidural analgesia are at risk for both episiotomy incisions and severe perineal lacerations. Though Hispanics are more likely to have an episiotomy, they are at significantly less risk for severe perineal lacerations compared to African Americans. Even though episiotomy is independently associated with severe perineal laceration, other factors such as macrosomia and primiparity are as important.

  6. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  7. Bioinspired spring origami.

    PubMed

    Faber, Jakob A; Arrieta, Andres F; Studart, André R

    2018-03-23

    Origami enables folding of objects into a variety of shapes in arts, engineering, and biological systems. In contrast to well-known paper-folded objects, the wing of the earwig has an exquisite natural folding system that cannot be sufficiently described by current origami models. Such an unusual biological system displays incompatible folding patterns, remains open by a bistable locking mechanism during flight, and self-folds rapidly without muscular actuation. We show that these notable functionalities arise from the protein-rich joints of the earwig wing, which work as extensional and rotational springs between facets. Inspired by this biological wing, we establish a spring origami model that broadens the folding design space of traditional origami and allows for the fabrication of precisely tunable, four-dimensional-printed objects with programmable bioinspired morphing functionalities. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Spherical images and inextensible curved folding

    NASA Astrophysics Data System (ADS)

    Seffen, Keith A.

    2018-02-01

    In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.

  9. Sonic CPT Probing in Support of DNAPL Characterization

    DTIC Science & Technology

    2000-11-21

    directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT

  10. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    USDA-ARS?s Scientific Manuscript database

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  11. Implementation of a Non-Metallic Barrier in an Electric Motor

    NASA Technical Reports Server (NTRS)

    M'Sadoques, George A. (Inventor); Carra, Michael R. (Inventor); Beringer, Durwood M. (Inventor)

    2013-01-01

    A motor for use in a volatile environment includes a rotor exposed to the volatile environment, electronics for rotating the rotor, an impervious ceramic barrier separating the electronics and the rotor, and a flexible seal for preventing the volatile environment from contacting the electronics and for minimizing vibratory and twisting loads upon the barrier to minimize damage to the barrier.

  12. Vibrations in a moving flexible robot arm

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  13. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  14. Male sexual dysfunction and infertility associated with neurological disorders

    PubMed Central

    Fode, Mikkel; Krogh-Jespersen, Sheila; Brackett, Nancy L; Ohl, Dana A; Lynne, Charles M; Sønksen, Jens

    2012-01-01

    Normal sexual and reproductive functions depend largely on neurological mechanisms. Neurological defects in men can cause infertility through erectile dysfunction, ejaculatory dysfunction and semen abnormalities. Among the major conditions contributing to these symptoms are pelvic and retroperitoneal surgery, diabetes, congenital spinal abnormalities, multiple sclerosis and spinal cord injury. Erectile dysfunction can be managed by an increasingly invasive range of treatments including medications, injection therapy and the surgical insertion of a penile implant. Retrograde ejaculation is managed by medications to reverse the condition in mild cases and in bladder harvest of semen after ejaculation in more severe cases. Anejaculation might also be managed by medication in mild cases while assisted ejaculatory techniques including penile vibratory stimulation and electroejaculation are used in more severe cases. If these measures fail, surgical sperm retrieval can be attempted. Ejaculation with penile vibratory stimulation can be done by some spinal cord injured men and their partners at home, followed by in-home insemination if circumstances and sperm quality are adequate. The other options always require assisted reproductive techniques including intrauterine insemination or in vitro fertilization with or without intracytoplasmic sperm injection. The method of choice depends largely on the number of motile sperm in the ejaculate. PMID:22138899

  15. Vibration-enhanced posture stabilization achieved by tactile supplementation: may blind individuals get extra benefits?

    PubMed

    Magalhães, Fernando Henrique; Kohn, André Fabio

    2011-08-01

    Diminished balance ability poses a serious health risk due to the increased likelihood of falling, and impaired postural stability is significantly associated with blindness and poor vision. Noise stimulation (by improving the detection of sub-threshold somatosensory information) and tactile supplementation (i.e., additional haptic information provided by an external contact surface) have been shown to improve the performance of the postural control system. Moreover, vibratory noise added to the source of tactile supplementation (e.g., applied to a surface that the fingertip touches) has been shown to enhance balance stability more effectively than tactile supplementation alone. In view of the above findings, in addition to the well established consensus that blind subjects show superior abilities in the use of tactile information, we hypothesized that blind subjects may take extra benefits from the vibratory noise added to the tactile supplementation and hence show greater improvements in postural stability than those observed for sighted subjects. If confirmed, this hypothesis may lay the foundation for the development of noise-based assistive devices (e.g., canes, walking sticks) for improving somatosensation and hence prevent falls in blind individuals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A wind-tunnel investigation of the effects of thrust-axis inclination on propeller first-order vibration

    NASA Technical Reports Server (NTRS)

    Gray, W H; Hallissy, J M , Jr

    1950-01-01

    Data on the aerodynamic excitation of first-order vibration occurring in a representative three-blade propeller having its thrust axis inclined to the air stream at angles of 0 degrees, 4.55 degrees, and 9.8 degrees are included in this paper. For several representative conditions the aerodynamic excitation has been computed and compared with the measured values. Blade stresses also were measured to permit the evaluation of the blade stress resulting from a given blade aerodynamic excitation. It was concluded that the section aerodynamic exciting force of a pitched propeller may be computed accurately at low rotational speeds. As section velocities approach the speed of sound, the accuracy of computation of section aerodynamic exciting force is not always so satisfactory. First-order blade vibratory stresses were computed with satisfactory accuracy from untilted-propeller loading data. A stress prediction which assumes a linear relation between first-order vibratory stress and the product of pitch angle and dynamic pressure and which is based on stresses at low rotational speeds will be conservative when the outer portions of the blade are in the transonic and low supersonic speed range.

  17. Aeroelastic simulation of higher harmonic control

    NASA Technical Reports Server (NTRS)

    Robinson, Lawson H.; Friedmann, Peretz P.

    1994-01-01

    This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.

  18. Effects of vibratory microscreening on proximate composition and recovery of poultry processing wastewater particulate matter.

    PubMed

    Kiepper, B H; Merka, W C; Fletcher, D L

    2008-12-01

    Experiments were conducted to compare the effects of tertiary microscreen gap size on the proximate composition and rate of recovery of particulate matter from poultry processing wastewater (PPW). A high-speed vibratory screen was installed within the wastewater treatment area of a southeast US broiler slaughter plant after the existing primary and secondary mechanical rotary screens. Microscreen panels with nominal gap size openings of 212, 106 and 45mum were investigated. The particulate matter samples recovered were subjected to proximate analysis to determine percent moisture, fat, protein, crude fiber and ash. The average percent wet weight moisture (%WW) content for all samples was 79.1. The average percent dry matter (%DM) fat, protein, crude fiber and ash were 63.5, 17.5, 4.8 and 1.5, respectively. The mean concentration of total solids (TS) recovered from all microscreen runs was 668mg/L, which represents a potential additional daily offal recovery rate of 12.1metric tons (MT) per 3.78 million L (1.0 million gallons US) of PPW. There was no significant difference in the performance of the three microscreen gap sizes with regard to proximate composition or mass of particulate matter recovered.

  19. What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function.

    PubMed

    Salisbury, C M; Gillespie, R B; Tan, H Z; Barbagli, F; Salisbury, J K

    2011-01-01

    In this paper, we extend the concept of the contrast sensitivity function - used to evaluate video projectors - to the evaluation of haptic devices. We propose using human observers to determine if vibrations rendered using a given haptic device are accompanied by artifacts detectable to humans. This determination produces a performance measure that carries particular relevance to applications involving texture rendering. For cases in which a device produces detectable artifacts, we have developed a protocol that localizes deficiencies in device design and/or hardware implementation. In this paper, we present results from human vibration detection experiments carried out using three commercial haptic devices and one high performance voice coil motor. We found that all three commercial devices produced perceptible artifacts when rendering vibrations near human detection thresholds. Our protocol allowed us to pinpoint the deficiencies, however, and we were able to show that minor modifications to the haptic hardware were sufficient to make these devices well suited for rendering vibrations, and by extension, the vibratory components of textures. We generalize our findings to provide quantitative design guidelines that ensure the ability of haptic devices to proficiently render the vibratory components of textures.

  20. EFFECT OF MECHANICAL VIBRATION GENERATED IN OSCILLATING/VIBRATORY PLATFORM ON THE CONCENTRATION OF PLASMA BIOMARKERS AND ON THE WEIGHT IN RATS.

    PubMed

    Frederico, Éric Heleno Freire Ferreira; de Sá-Caputo, Danúbia da Cunha; Moreira-Marconi, Eloá; Guimarães, Carlos Alberto Sampaio; Cardoso, André Luiz Bandeira Dionísio; Dionello, Carla da Fontoura; Morel, Danielle Soares; Sousa-Gonçalves, Cintia Renata; Paineiras-Domingos, Laisa Liana; Cavalcanti, Rebeca Graça Costa; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2017-01-01

    Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated in oscillating/vibratory platform (OVP) on the concentration of some plasma biomarkers and on the weight of rats. Wistar rats were divided into two groups. The animals of the Experimental Group (EG) were submitted to vibration (25 Hz) generated in an OVP with four bouts of 30 seconds with rest time of 60 seconds between the bouts. This procedure was performed daily for 12 days. The animals of the control group (CG) were not exposed to vibration. Our findings show that the WBV exercise at 25 Hz was not capable to alter significantly ( p <0.05) the weight of the rats. A significant alteration in the concentrations of amylase was found. Our results indicate a modulation of the WBV exercise with vibration of 25 Hz of frequency (i) in the pathways related to the weight and (ii) in the concentration of some biomarkers, such as amylase.

  1. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology

    NASA Astrophysics Data System (ADS)

    Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin

    2004-12-01

    The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.

  2. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  3. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    PubMed Central

    Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-01-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707

  4. High-Speed Imaging Analysis of Register Transitions in Classically and Jazz-Trained Male Voices.

    PubMed

    Dippold, Sebastian; Voigt, Daniel; Richter, Bernhard; Echternach, Matthias

    2015-01-01

    Little data are available concerning register functions in different styles of singing such as classically or jazz-trained voices. Differences between registers seem to be much more audible in jazz singing than classical singing, and so we hypothesized that classically trained singers exhibit a smoother register transition, stemming from more regular vocal fold oscillation patterns. High-speed digital imaging (HSDI) was used for 19 male singers (10 jazz-trained singers, 9 classically trained) who performed a glissando from modal to falsetto register across the register transition. Vocal fold oscillation patterns were analyzed in terms of different parameters of regularity such as relative average perturbation (RAP), correlation dimension (D2) and shimmer. HSDI observations showed more regular vocal fold oscillation patterns during the register transition for the classically trained singers. Additionally, the RAP and D2 values were generally lower and more consistent for the classically trained singers compared to the jazz singers. However, intergroup comparisons showed no statistically significant differences. Some of our results may support the hypothesis that classically trained singers exhibit a smoother register transition from modal to falsetto register. © 2015 S. Karger AG, Basel.

  5. Wrinkling instabilities in soft bilayered systems

    PubMed Central

    Budday, Silvia; Andres, Sebastian; Walter, Bastian

    2017-01-01

    Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385

  6. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  7. First record of plicidentine in Synapsida and patterns of tooth root shape change in Early Permian sphenacodontians.

    PubMed

    Brink, Kirstin S; LeBlanc, Aaron R H; Reisz, Robert R

    2014-11-01

    Recent histological studies have revealed a diversity of dental features in Permo-Carboniferous tetrapods. Here, we report on the occurrence of plicidentine (infolded dentine around the base of the tooth root) in Sphenacodontia, the first such documentation in Synapsida, the clade that includes mammals. Five taxa were examined histologically, Ianthodon schultzei, Sphenacodon ferocior, Dimetrodon limbatus, Dimetrodon grandis, and Secodontosaurus obtusidens. The tooth roots of Ianthodon possess multiple folds, which is generally viewed as the primitive condition for amniotes. Sphenacodon and D. limbatus have distinctive "four-leaf clover"-shaped roots in cross section, whereas Secodontosaurus has an elongate square shape with only subtle folding. The most derived and largest taxon examined in this study, D. grandis, has rounded roots in cross section and therefore no plicidentine. This pattern of a loss of plicidentine in sphenacodontids supports previous functional hypotheses of plicidentine, where teeth with shallow roots require folds to increase the area of attachment to the tooth-bearing element, whereas teeth with long roots do not. This pattern may also reflect differences in diet between co-occurring sphenacodontids as well as changes in feeding niche through time, specifically in the apex predator Dimetrodon.

  8. Fault and fracture patterns around a strike-slip influenced salt wall

    NASA Astrophysics Data System (ADS)

    Alsop, G. I.; Weinberger, R.; Marco, S.; Levi, T.

    2018-01-01

    The trends of faults and fractures in overburden next to a salt diapir are generally considered to be either parallel to the salt margin to form concentric patterns, or at right angles to the salt contact to create an overall radial distribution around the diapir. However, these simple diapir-related patterns may become more complex if regional tectonics influences the siting and growth of a diapir. Using the Sedom salt wall in the Dead Sea Fault system as our case study, we examine the influence of regional strike-slip faulting on fracture patterns around a salt diapir. This type of influence is important in general as the distribution and orientation of fractures on all scales may influence permeability and hence control fluid and hydrocarbon flow. Fractures adjacent to the N-S trending salt wall contain fibrous gypsum veins and injected clastic dykes, attesting to high fluid pressures adjacent to the diapir. Next to the western flank of the salt wall, broad (∼1000 m) zones of upturn or 'drape folds' are associated with NW-SE striking conjugate extensional fractures within the overburden. Within 300 m of the salt contact, fracture patterns in map view display a progressive ∼30°-35° clockwise rotation with more NNW-SSE strikes immediately adjacent to the salt wall. While some extensional faults display growth geometries, indicating that they were syn-depositional and initiated prior to tilting of beds associated with drape folding, other fractures display increasing dips towards the salt, suggesting that they have formed during upturn of bedding near the diapir. These observations collectively suggest that many fractures developed to accommodate rotation of beds during drape folding. Extensional fractures in the overburden define a mean strike that is ∼45° anticlockwise (counter-clockwise) of the N-S trending salt wall, and are therefore consistent with sinistral transtension along the N-S trending Sedom Fault that underlies the salt wall. Our outcrop analysis reveals fracture geometries that are related to both tilting of beds during drape folding, and regional strike-slip tectonics. The presence of faults and fractures that interact with drape folds suggests that deformation in overburden next to salt cannot be simply pigeon-holed into 'end-member' scenarios of purely brittle faulting or viscous flow.

  9. Role of mechanical factors in cortical folding development

    NASA Astrophysics Data System (ADS)

    Razavi, Mir Jalil; Zhang, Tuo; Li, Xiao; Liu, Tianming; Wang, Xianqiao

    2015-09-01

    Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the normal and pathological brain function. However, despite decades of speculation and endeavors the underlying mechanism of the brain folding process remains poorly understood. This paper focuses on the three-dimensional morphological patterns of a developing brain under different tissue specification assumptions via theoretical analyses, computational modeling, and experiment verifications. The living human brain is modeled with a soft structure having outer cortex and inner core to investigate the brain development. Analytical interpretations of differential growth of the brain model provide preliminary insight into the critical growth ratio for instability and crease formation of the developing brain followed by computational modeling as a way to offer clues for brain's postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of the cortex are explored as the most determinant parameters to control the morphogenesis of a growing brain model. As indicated in results, compressive residual stresses caused by the sufficient growth trigger instability and the brain forms highly convoluted patterns wherein its gyrification degree is specified with the cortex thickness. Morphological patterns of the developing brain predicted from the computational modeling are consistent with our neuroimaging observations, thereby clarifying, in part, the reason of some classical malformation in a developing brain.

  10. Surgical Considerations of the Cystic Duct and Heister Valves

    PubMed Central

    Pina, Lucas N.; Samoilovich, Franca; Urrutia, Sebastián; Rodríguez, Agustín; Alle, Lisandro; Ferreres, Alberto R.

    2015-01-01

    Objectives Heister valves are mucosal folds located on the endoluminal surface of the cystic duct (CD) and were first described by Lorenz Heister in 1732. Their presence could represent an obstacle that impedes transcystic exploration. It has been suggested that the distribution of Heister valves follows a steady rhythmic pattern in a spiral disposition; however, there is no conclusive data to support this claim. The aim of this study was to describe the main characteristics of the CD and Heister valves in adult human cadavers. Methods A descriptive cross-sectional study was performed on 46 extrahepatic biliary tracts. Results The CD has an average length of 25.37 mm and diameter of 4.53 mm. The most frequent level of junction was the middle union. Heister valves were present on 32 CDs; in most cases, they were distributed uniformly on the duct and presented an oblique disposition. A nonreticular pattern was the most frequent reticular pattern. The most frequent type of the nonreticular type was the B1 subtype. The most frequent type of distribution was the nonreticular type, particularly the B1 type. Conclusions The cystic fold could hinder transcystic exploration. The cysticotomy incision should not be determined by the distribution of the fold on the CD. The morphology of the Heister valves does not show evidence of a steady systematic pattern. PMID:28824966

  11. Eye and sheath folds in turbidite convolute lamination: Aberystwyth Grits Group, Wales

    NASA Astrophysics Data System (ADS)

    McClelland, H. L. O.; Woodcock, N. H.; Gladstone, C.

    2011-07-01

    Eye and sheath folds are described from the turbidites of the Aberystwyth Group, in the Silurian of west Wales. They have been studied at outcrop and on high resolution optical scans of cut surfaces. The folds are not tectonic in origin. They occur as part of the convolute-laminated interval of each sand-mud turbidite bed. The thickness of this interval is most commonly between 20 and 100 mm. Lamination patterns confirm previous interpretations that convolute lamination nucleated on ripples and grew during continued sedimentation of the bed. The folds amplified vertically and were sheared horizontally by continuing turbidity flow, but only to average values of about γ = 1. The strongly curvilinear fold hinges are due not to high shear strains, but to nucleation on sinuous or linguoid ripples. The Aberystwyth Group structures provide a warning that not all eye folds in sedimentary or metasedimentary rocks should be interpreted as sections through high shear strain sheath folds.

  12. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  13. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  14. Extreme Mechanics: Self-Folding Origami

    NASA Astrophysics Data System (ADS)

    Santangelo, Christian D.

    2017-03-01

    Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

  15. An optical flow-based state-space model of the vocal folds.

    PubMed

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  16. Viscosity of materials for laryngeal injection: a review of current knowledge and clinical implications.

    PubMed

    Lisi, Christopher; Hawkshaw, Mary J; Sataloff, Robert T

    2013-01-01

    Over the past several decades, researchers have sought the ideal substances for use in injection laryngoplasty. This search has inspired several basic science studies centering on the viscoelastic properties of popularly used injectables as well as of experimental substances. Unfortunately, these studies have used various techniques and different units for measuring viscosity. For clinical purposes, there has been a need for a concise compilation of these data, converted into consistent units, to permit easy comparison of the reported viscosities of various substances. The literature has been reviewed to address this need. Scholarly review. Comparable data are available for various substances, including vocal fold mucosa, subcutaneous fat, bovine dermal collagen, glutaraldehyde cross-linked collagen, polytetrafluoroethylene, and hyaluronic acid products. The values for difference substances vary widely. There appears to be a growing body of useful knowledge about viscosity of substances used for medial (vibratory margin) injection. However, decisions regarding viscosity of substances for lateral injection medialization appear to have been made without the benefit of evidence-based research. It is possible that the trend toward relatively low viscosity materials for lateral injection is based on ease of surgical use through a small needle, but that the low viscosity may adversely affect the control over the position of the injected substance. Research is needed comparing viscosity with predictability of surgical deposition of injected substances. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Development of an aeroelastic methodology for surface morphing rotors

    NASA Astrophysics Data System (ADS)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.

  18. Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life.

    PubMed

    Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-08-01

    Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.

  19. Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.).

    PubMed

    Gaitanaki, Catherine; Kefaloyianni, Erene; Marmari, Athina; Beis, Isidoros

    2004-05-01

    The stimulation of p38-MAPK signal transduction pathway by various stressful stimuli was investigated in the marine bivalve M. galloprovincialis. Oxidative stress (5 microM H2O2) induced a biphasic pattern of p38-MAPK phosphorylation with maximal values attained at 15 min (8.1-fold) and 1 h (8.0-fold) of treatment respectively. Furthermore, 1 microM SB203580 abolished the p38-MAPK phosphorylation induced by oxidative stress. Aerial exposure also induced a biphasic pattern of p38-MAPK phosphorylation, with maximal values attained at 1 h (6.8-fold) and 8 h (4.9-fold) respectively. Re-oxygenation following a 15 min of aerial exposure resulted in the progressive dephosphorylation of the kinase. Treatment with 0.5 M sorbitol (in normal seawater) induced the rapid kinase phosphorylation (9.2-fold) and this effect was reversible. Seawater salinities varying between 100-60% had no effect, whereas a salinity of 50% induced a significant p38-MAPK phosphorylation. Furthermore, hypertonicity (120% seawater) resulted in a moderate kinase phosphorylation. All the above results demonstrate for the first time in a marine invertebrate imposed to environmental and other forms of stress as an intact, living organism, that the p38-MAPK pathway is specifically activated by various stressful stimuli which this animal can often face and sustain in vivo.

  20. Quantitative evaluation of high-resolution features in images of negatively stained Tobacco Mosaic Virus.

    PubMed

    Chang, C F; Williams, R C; Grano, D A; Downing, K H; Glaeser, R M

    1983-01-01

    This study investigates the causes of the apparent differences between the optical diffraction pattern of a micrograph of a Tobacco Mosaic Virus (TMV) particle, the optical diffraction pattern of a ten-fold photographically averaged image, and the computed diffraction pattern of the original micrograph. Peak intensities along the layer lines in the transform of the averaged image appear to be quite unlike those in the diffraction pattern of the original micrograph, and the diffraction intensities for the averaged image extend to unexpectedly high resolution. A carefully controlled, quantitative comparison reveals, however, that the optical diffraction pattern of the original micrograph and that of the ten-fold averaged image are essentially equivalent. Using computer-based image processing, we discovered that the peak intensities on the 6th layer line have values very similar in magnitude to the neighboring noise, in contrast to what was expected from the optical diffraction pattern of the original micrograph. This discrepancy was resolved by recording a series of optical diffraction patterns when the original micrograph was immersed in oil. These patterns revealed the presence of a substantial phase grating effect, which exaggerated the peak intensities on the 6th layer line, causing an erroneous impression that the high resolution features possessed a good signal-to-noise ratio. This study thus reveals some pitfalls and misleading results that can be encountered when using optical diffraction patterns to evaluate image quality.

Top