Science.gov

Sample records for folding problem kinetics

  1. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    PubMed

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  2. Fast protein folding kinetics.

    PubMed

    Gelman, Hannah; Gruebele, Martin

    2014-05-01

    Fast-folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast-folding proteins has provided insight into the mechanisms, which allow some proteins to find their native conformation well <1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even 'slow' folding processes: fast folders are small; relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast-folding proteins and provides an overview of the major findings of fast-folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general, as well as some work that is left to do.

  3. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  4. The Protein Folding Problem

    PubMed Central

    Dill, Ken A.; Ozkan, S. Banu; Shell, M. Scott; Weikl, Thomas R.

    2008-01-01

    The “protein folding problem” consists of three closely related puzzles: (a) What is the folding code? (b) What is the folding mechanism? (c) Can we predict the native structure of a protein from its amino acid sequence? Once regarded as a grand challenge, protein folding has seen great progress in recent years. Now, foldable proteins and nonbiological polymers are being designed routinely and moving toward successful applications. The structures of small proteins are now often well predicted by computer methods. And, there is now a testable explanation for how a protein can fold so quickly: A protein solves its large global optimization problem as a series of smaller local optimization problems, growing and assembling the native structure from peptide fragments, local structures first. PMID:18573083

  5. Kinetic Intermediates in RNA Folding

    NASA Astrophysics Data System (ADS)

    Zarrinkar, Patrick P.; Williamson, James R.

    1994-08-01

    The folding pathways of large, highly structured RNA molecules are largely unexplored. Insight into both the kinetics of folding and the presence of intermediates was provided in a study of the Mg2+-induced folding of the Tetrahymena ribozyme by hybridization of complementary oligodeoxynucleotide probes. This RNA folds via a complex mechanism involving both Mg2+-dependent and Mg2+-independent steps. A hierarchical model for the folding pathway is proposed in which formation of one helical domain (P4-P6) precedes that of a second helical domain (P3-P7). The overall rate-limiting step is formation of P3-P7, and takes place with an observed rate constant of 0.72 ± 0.14 minute-1. The folding mechanism of large RNAs appears similar to that of many multidomain proteins in that formation of independently stable substructures precedes their association into the final conformation.

  6. Simple Model of Protein Folding Kinetics

    NASA Astrophysics Data System (ADS)

    Zwanzig, Robert

    1995-10-01

    A simple model of the kinetics of protein folding is presented. The reaction coordinate is the "correctness" of a configuration compared with the native state. The model has a gap in the energy spectrum, a large configurational entropy, a free energy barrier between folded and partially folded states, and a good thermodynamic folding transition. Folding kinetics is described by a master equation. The folding time is estimated by means of a local thermodynamic equilibrium assumption and then is calculated both numerically and analytically by solving the master equation. The folding time has a maximum near the folding transition temperature and can have a minimum at a lower temperature.

  7. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  8. Sampling Kinetic Protein Folding Pathways using All-Atom Models

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.

    This chapter summarizes several computational strategies to study the kinetics of two-state protein folding using all atom models. After explaining the background of two state folding using energy landscapes I introduce common protein models and computational tools to study folding thermodynamics and kinetics. Free energy landscapes are able to capture the thermodynamics of two-state protein folding, and several methods for efficient sampling of these landscapes are presented. An accurate estimate of folding kinetics, the main topic of this chapter, is more difficult to achieve. I argue that path sampling methods are well suited to overcome the problems connected to the sampling of folding kinetics. Some of the major issues are illustrated in the case study on the folding of the GB1 hairpin.

  9. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  10. Kinetic partitioning mechanism of HDV ribozyme folding.

    PubMed

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  11. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  12. The early folding kinetics of apomyoglobin.

    PubMed Central

    Pappu, R. V.; Weaver, D. L.

    1998-01-01

    The folding pathway of apomyoglobin has been experimentally shown to have early kinetic intermediates involving the A, B, G, and H helices. The earliest detected kinetic events occur on a ns to micros time scale. We show that the early folding kinetics of apomyoglobin may be understood as the association of nascent helices through a network of diffusion-collision-coalescence steps G + H <--> GH + A <--> AGH + B <--> ABGH obtained by solving the diffusion-collision model in a chemical kinetics approximation. Our reproduction of the experimental results indicates that the model is a useful way to analyze folding data. One prediction from our fit is that the nascent A and H helices should be relatively more helix-like before coalescence than the other apomyoglobin helices. PMID:9521125

  13. Thermodynamics and kinetics of protein folding: an evolutionary perspective.

    PubMed

    Demetrius, Lloyd

    2002-08-07

    This article appeals to an evolutionary model which postulates that primordial proteins were described by small polypeptide chains which (i) lack disulfide bridges, and (ii) display slow folding rates with multi-state kinetics, to determine relations between structural properties of proteins and their folding kinetics. We parameterize the energy landscape of proteins in terms of thermodynamic activation variables. The model studies evolutionary changes in these thermodynamic parameters, and we invoke relations between these activation variables and structural properties of the protein to predict the following correspondence between protein structure and folding kinetics. 1. Proteins with inter- and intra-chain disulfide bridges: large variability in both folding rates and stability of intermediates, multi-state kinetics. 2. Proteins which lack inter and intra-chain disulfide bridges. 2.1 Single-domain chains: fast folding rates; unstable intermediates; two-state kinetics. 2.2 Multi-domain monomers: intermediate rates; metastable intermediates; multi-state kinetics. 2.3 Multi-domain oligomers: slow rates; metastable intermediates; multi-state kinetics. The evolutionary model thus provides a kinetic characterization of one important subfamily of proteins which we describe by the following properties: Folding dynamics of single-domain proteins which lack disulfide bridges are described by two-state kinetics. Folding rate of this class of proteins is positively correlated with the thermodynamic stability of the folded state.

  14. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory.

    PubMed

    Buchner, Ginka S; Murphy, Ronan D; Buchete, Nicolae-Viorel; Kubelka, Jan

    2011-08-01

    The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at

  15. Cotranscriptional folding kinetics of ribonucleic acid secondary structures

    NASA Astrophysics Data System (ADS)

    Zhao, Peinan; Zhang, Wenbing; Chen, Shi-Jie

    2011-12-01

    We develop a systematic helix-based computational method to predict RNA folding kinetics during transcription. In our method, the transcription is modeled as stepwise process, where each step is the transcription of a nucleotide. For each step, the kinetics algorithm predicts the population kinetics, transition pathways, folding intermediates, and the transcriptional folding products. The folding pathways, rate constants, and the conformational populations for cotranscription folding show contrastingly different features than the refolding kinetics for a fully transcribed chain. The competition between the transcription speed and rate constants for the transitions between the different nascent structures determines the RNA folding pathway and the end product of folding. For example, fast transcription favors the formation of branch-like structures than rod-like structures and chain elongation in the folding process may reduce the probability of the formation of misfolded structures. Furthermore, good theory-experiment agreements suggest that our method may provide a reliable tool for quantitative prediction for cotranscriptional RNA folding, including the kinetics for the population distribution for the whole conformational ensemble.

  16. Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.

    PubMed

    Chakraborty, Debayan; Collepardo-Guevara, Rosana; Wales, David J

    2014-12-31

    RNA hairpins play a pivotal role in a diverse range of cellular functions, and are integral components of ribozymes, mRNA, and riboswitches. However, the mechanistic and kinetic details of RNA hairpin folding, which are key determinants of most of its biological functions, are poorly understood. In this work, we use the discrete path sampling (DPS) approach to explore the energy landscapes of two RNA tetraloop hairpins, and provide insights into their folding mechanisms and kinetics in atomistic detail. Our results show that the potential energy landscapes have a distinct funnel-like bias toward the folded hairpin state, consistent with efficient structure-seeking properties. Mechanistic and kinetic information is analyzed in terms of kinetic transition networks. We find microsecond folding times, consistent with temperature jump experiments, for hairpin folding initiated from relatively compact unfolded states. This process is essentially driven by an initial collapse, followed by rapid zippering of the helix stem in the final phase. Much lower folding rates are predicted when the folding is initiated from extended chains, which undergo longer excursions on the energy landscape before nucleation events can occur. Our work therefore explains recent experiments and coarse-grained simulations, where the folding kinetics exhibit precisely this dependency on the initial conditions.

  17. Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity

    PubMed Central

    Cao, Song; Chen, Shi-Jie

    2007-01-01

    Using a combined master equation and kinetic cluster approach, we investigate RNA pseudoknot folding and unfolding kinetics. The energetic parameters are computed from a recently developed Vfold model for RNA secondary structure and pseudoknot folding thermodynamics. The folding kinetics theory is based on the complete conformational ensemble, including all the native-like and non-native states. The predicted folding and unfolding pathways, activation barriers, Arrhenius plots, and rate-limiting steps lead to several findings. First, for the PK5 pseudoknot, a misfolded 5′ hairpin emerges as a stable kinetic trap in the folding process, and the detrapping from this misfolded state is the rate-limiting step for the overall folding process. The calculated rate constant and activation barrier agree well with the experimental data. Second, as an application of the model, we investigate the kinetic folding pathways for hTR (human Telomerase RNA) pseudoknot. The predicted folding and unfolding pathways not only support the proposed role of conformational switch between hairpin and pseudoknot in hTR activity, but also reveal molecular mechanism for the conformational switch. Furthermore, for an experimentally studied hTR mutation, whose hairpin intermediate is destabilized, the model predicts a long-lived transient hairpin structure, and the switch between the transient hairpin intermediate and the native pseudoknot may be responsible for the observed hTR activity. Such finding would help resolve the apparent contradiction between the observed hTR activity and the absence of a stable hairpin. PMID:17276459

  18. Predicting Secondary Structural Folding Kinetics for Nucleic Acids

    PubMed Central

    Zhao, Peinan; Zhang, Wen-Bing; Chen, Shi-Jie

    2010-01-01

    Abstract We report a new computational approach to the prediction of RNA secondary structure folding kinetics. In this approach, each elementary kinetic step is represented as the transformation between two secondary structures that differ by a helix. Based on the free energy landscape analysis, we identify three types of dominant pathways and the rate constants for the kinetic steps: 1), formation; 2), disruption of a helix stem; and 3), helix formation with concomitant partial melting of a competing (incompatible) helix. The third pathway, termed the tunneling pathway, is the low-barrier dominant pathway for the conversion between two incompatible helices. Comparisons with experimental data indicate that this new method is quite reliable in predicting the kinetics for RNA secondary structural folding and structural rearrangements. The approach presented here may provide a robust first step for further systematic development of a predictive theory for the folding kinetics for large RNAs. PMID:20409482

  19. Ligand-Promoted Protein Folding by Biased Kinetic Partitioning

    PubMed Central

    Hingorani, Karan S.; Metcalf, Matthew C.; Deming, Derrick T.; Garman, Scott C.; Powers, Evan T.; Gierasch, Lila M.

    2017-01-01

    Protein folding in cells occurs in the presence of high concentrations of endogenous binding partners, and exogenous binding partners have been exploited as pharmacological chaperones. A combined mathematical modeling and experimental approach shows that a ligand improves the folding of a destabilized protein by biasing the kinetic partitioning between folding and alternative fates (aggregation or degradation). Computationally predicted inhibition of test protein aggregation and degradation as a function of ligand concentration are validated by experiments in two disparate cellular systems. PMID:28218913

  20. Enhanced protein folding by removal of kinetic traps

    NASA Astrophysics Data System (ADS)

    Liu, Yanxin; Chapagain, Prem; Parra, Jose; Gerstman, Bernard

    2007-03-01

    The presence of non-native kinetic traps along the free energy landscape of a protein may significantly lengthen the overall folding time so that the folding process becomes unreliable. We used a computational 3-D lattice model to investigate the free energy landscape of a model alpha helical hairpin peptide. We used two slightly different sequences and show that strategic substitutions of only a few amino acid residues greatly enhance the folding process. These strategic substitutions prevent the formation of long-lived misfolded configurations which not only lengthen the folding time but also may cause unwanted aggregation. Detailed kinetic and thermodynamic analysis was carried out for the folding of these two sequences and the results are consistent with the experimental and molecular dynamics simulations of small helical bundle proteins.

  1. Computational Solutions to the Protein Folding Problem,

    DTIC Science & Technology

    1994-05-19

    A TRIDENT SCHOLAR oN PROJECT REPORT 0 NO. 223 "Computational Solutions to the Protein Folding Problem" L T -’ ’r i SEP 2 7 1994 ýV UNITED STATES...potential energy function (Chapter II), 25 1 2 2 U = X• k( l 1 -lo) 2+ X.ko (8,-8o) 2+X.-[1l + cos (Pip + )] Equation 4.1 xei (C ¶±~12.4 a where ri, is...iterative process, a set of k >_ 2"t+ l distinct local minima are computed. This can be done with rela- tive ease by using an efficient unconstrained

  2. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies*

    PubMed Central

    Crabtree, Michael D.; Dahal, Liza; Wicky, Basile I. M.; Clarke, Jane

    2016-01-01

    Intrinsically disordered proteins (IDPs) are characterized by a lack of persistent structure. Since their identification more than a decade ago, many questions regarding their functional relevance and interaction mechanisms remain unanswered. Although most experiments have taken equilibrium and structural perspectives, fewer studies have investigated the kinetics of their interactions. Here we review and highlight the type of information that can be gained from kinetic studies. In particular, we show how kinetic studies of coupled folding and binding reactions, an important class of signaling event, are needed to determine mechanisms. PMID:26851275

  3. Oxidative folding of peptides with cystine-knot architectures: kinetic studies and optimization of folding conditions.

    PubMed

    Reinwarth, Michael; Glotzbach, Bernhard; Tomaszowski, Michael; Fabritz, Sebastian; Avrutina, Olga; Kolmar, Harald

    2013-01-02

    Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine-knot peptides-commonly named "knottins"-make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide-based pharmaceuticals. Although cystine-knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease-inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation-prone peptides in concentrated solutions.

  4. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.

    PubMed

    Pauwels, Kris; Sanchez del Pino, Manuel M; Feller, Georges; Van Gelder, Patrick

    2012-01-01

    The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier.

  5. Decoding the Folding of Burkholderia glumae Lipase: Folding Intermediates En Route to Kinetic Stability

    PubMed Central

    Pauwels, Kris; Sanchez del Pino, Manuel M.; Feller, Georges; Van Gelder, Patrick

    2012-01-01

    The lipase produced by Burkholderia glumae folds spontaneously into an inactive near-native state and requires a periplasmic chaperone to reach its final active and secretion-competent fold. The B. glumae lipase-specific foldase (Lif) is classified as a member of the steric-chaperone family of which the propeptides of α-lytic protease and subtilisin are the best known representatives. Steric chaperones play a key role in conferring kinetic stability to proteins. However, until present there was no solid experimental evidence that Lif-dependent lipases are kinetically trapped enzymes. By combining thermal denaturation studies with proteolytic resistance experiments and the description of distinct folding intermediates, we demonstrate that the native lipase has a kinetically stable conformation. We show that a newly discovered molten globule-like conformation has distinct properties that clearly differ from those of the near-native intermediate state. The folding fingerprint of Lif-dependent lipases is put in the context of the protease-prodomain system and the comparison reveals clear differences that render the lipase-Lif systems unique. Limited proteolysis unveils structural differences between the near-native intermediate and the native conformation and sets the stage to shed light onto the nature of the kinetic barrier. PMID:22615867

  6. Ion specificity in α-helical folding kinetics.

    PubMed

    von Hansen, Yann; Kalcher, Immanuel; Dzubiella, Joachim

    2010-11-04

    The influence of the salts KCl, NaCl, and NaI at molar concentrations on the α-helical folding kinetics of the alanine-based oligopeptide Ace-AEAAAKEAAAKA-Nme is investigated by means of (explicit-water) molecular dynamics simulations and a diffusional analysis. The mean first passage times for folding and unfolding are found to be highly salt-specific. In particular, the folding times increase about 1 order of magnitude for the sodium salts. The drastic slowing can be traced to long-lived, compact configurations of the partially folded peptide, in which sodium ions are tightly bound by several carbonyl and carboxylate groups. This multiple trapping leads to a nonexponential residence time distribution of the cations in the first solvation shell of the peptide. The analysis of α-helical folding in the framework of diffusion in a reduced (one-dimensional) free energy landscape further shows that the salt not only specifically modifies equilibrium properties but also induces kinetic barriers due to individual ion binding. In the sodium salts, for instance, the peptide's configurational mobility (or "diffusivity") can decrease about 1 order of magnitude. This study demonstrates the highly specific action of ions and highlights the intimate coupling of intramolecular friction and solvent effects in protein folding.

  7. Periodic and stochastic thermal modulation of protein folding kinetics

    SciTech Connect

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  8. Periodic and stochastic thermal modulation of protein folding kinetics.

    PubMed

    Platkov, Max; Gruebele, Martin

    2014-07-21

    Chemical reactions are usually observed either by relaxation of a bulk sample after applying a sudden external perturbation, or by intrinsic fluctuations of a few molecules. Here we show that the two ideas can be combined to measure protein folding kinetics, either by periodic thermal modulation, or by creating artificial thermal noise that greatly exceeds natural thermal fluctuations. We study the folding reaction of the enzyme phosphoglycerate kinase driven by periodic temperature waveforms. As the temperature waveform unfolds and refolds the protein, its fluorescence color changes due to FRET (Förster resonant Energy Transfer) of two donor/acceptor fluorophores labeling the protein. We adapt a simple model of periodically driven kinetics that nicely fits the data at all temperatures and driving frequencies: The phase shifts of the periodic donor and acceptor fluorescence signals as a function of driving frequency reveal reaction rates. We also drive the reaction with stochastic temperature waveforms that produce thermal fluctuations much greater than natural fluctuations in the bulk. Such artificial thermal noise allows the recovery of weak underlying signals due to protein folding kinetics. This opens up the possibility for future detection of a stochastic resonance for protein folding subject to noise with controllable amplitude.

  9. Kinetic Monte Carlo method applied to nucleic acid hairpin folding.

    PubMed

    Sauerwine, Ben; Widom, Michael

    2011-12-01

    Kinetic Monte Carlo on coarse-grained systems, such as nucleic acid secondary structure, is advantageous for being able to access behavior at long time scales, even minutes or hours. Transition rates between coarse-grained states depend upon intermediate barriers, which are not directly simulated. We propose an Arrhenius rate model and an intermediate energy model that incorporates the effects of the barrier between simulated states without enlarging the state space itself. Applying our Arrhenius rate model to DNA hairpin folding, we demonstrate improved agreement with experiment compared to the usual kinetic Monte Carlo model. Further improvement results from including rigidity of single-stranded stacking.

  10. Antibody-detected folding: kinetics of surface epitope formation are distinct from other folding phases.

    PubMed Central

    Raman, C. S.; Jemmerson, R.; Nall, B. T.

    2000-01-01

    The rate of macromolecular surface formation in yeast iso-2 cytochrome c and its site-specific mutant, N52I iso-2, has been studied using a monoclonal antibody that recognizes a tertiary epitope including K58 and H39. The results indicate that epitope refolding occurs after fast folding but prior to slow folding, in contrast to horse cytochrome c where surface formation occurs early. The antibody-detected (ad) kinetic phase accompanying epitope formation has k(ad) = 0.2 s(-1) and is approximately 40-fold slower than the fastest detectable event in the folding of yeast iso-2 cytochrome c (k2f approximately 8 s(-1)), but occurs prior to the absorbance- and fluorescence-detected slow folding steps (k1a approximately 0.06 s(-1); k1b approximately 0.09 s(-1)). N5I iso-2 cytochrome c exhibits similar kinetic behavior with respect to epitope formation. A detailed dissection of the mechanistic differences between the folding pathways of horse and yeast cytochromes c identifies possible reasons for the slow surface formation in the latter. Our results suggest that non-native ligation involving H33 or H39 during refolding may slow down the formation of the tertiary epitope in iso-2 cytochrome c. This study illustrates that surface formation can be coupled to early events in protein folding. Thus, the rate of macromolecular surface formation is fine tuned by the residues that make up the surface and the interactions they entertain during refolding. PMID:10739255

  11. Kinetics of chain motions within a protein-folding intermediate

    PubMed Central

    Neuweiler, Hannes; Banachewicz, Wiktor; Fersht, Alan R.

    2010-01-01

    Small proteins can fold remarkably rapidly, even in μs. What limits their rate of folding? The Engrailed homeodomain is a particularly well-characterized example, which folds ultrafast via an intermediate, I, of solved structure. It is a puzzle that the helix2-turn-helix3 motif of the 3-helix bundle forms in approximately 2 μs, but the final docking of preformed helix1 in I requires approximately 20 μs. Simulation and structural data suggest that nonnative interactions may slow down helix docking. Here we report the direct measurement of chain motions in I by using photoinduced electron transfer fluorescence-quenching correlation spectroscopy (PET-FCS). We use a mutant that traps I at physiological ionic strength but refolds at higher ionic strength. A single Trp in helix3 quenches the fluorescence of an extrinsic label on contact with it. We placed the label along the sequence to probe segmental chain motions. At high ionic strength, we found two relaxations for all probed positions on the 2- and 20-μs time scale, corresponding to the known folding processes, and a 200-ns phase attributable to loop closure kinetics in the unfolded state. At low ionic strength, we found only the 2-μs and 200-ns phase for labels in the helix2-turn-helix3 motif of I, because the native state is not significantly populated. But for labels in helix1 we observed an additional approximately 10-μs phase showing that it was moving slowly, with a rate constant similar to that for overall folding under native conditions. Folding was rate-limited by chain motions on a rough energy surface where nonnative interactions constrain motion. PMID:21135210

  12. Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding

    PubMed Central

    Hertzog, David E.; Michalet, Xavier; Jäger, Marcus; Kong, Xiangxu; Santiago, Juan G.; Weiss, Shimon; Bakajin, Olgica

    2005-01-01

    We have developed a microfluidic mixer for studying protein folding and other reactions with a mixing time of 8 μs and sample consumption of femtomoles. This device enables us to access conformational changes under conditions far from equilibrium and at previously inaccessible time scales. In this paper, we discuss the design and optimization of the mixer using modeling of convective diffusion phenomena and a characterization of the mixer performance using microparticle image velocimetry, dye quenching, and Förster resonance energy-transfer (FRET) measurements of single-stranded DNA. We also demonstrate the feasibility of measuring fast protein folding kinetics using FRET with acyl-CoA binding protein. PMID:15595857

  13. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2005-02-10

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  14. Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics

    SciTech Connect

    Hertzog, D E; Santiago, J G; Bakajin, O

    2003-06-25

    We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

  15. A kinetic folding intermediate probed by native state hydrogen exchange.

    PubMed

    Parker, M J; Marqusee, S

    2001-01-19

    Stopped-flow fluorescence studies on the N-terminal domain of rat CD2 (CD2.d1) have demonstrated that folding from the fully denatured state (U) proceeds via the transient accumulation of an apparent intermediate (I) in a so-called burst phase that precedes the rate-limiting transition leading to the native state (N). A previous pH-dependent equilibrium hydrogen exchange (HX) study identified a subset of amides in CD2.d1 which, under EX2 conditions, exchange from N with free energies greater than or equal to the free energy difference between the N and I states calculated from the stopped-flow data. Under EX1 conditions the rates of HX for these amides tend towards an asymptote that matches the global unfolding rate calculated from the stopped-flow data, suggesting that exchange for these amides requires traversing the N-to-I transition state barrier. Exchange for these amides presumably occurs from exchange-competent forms comprising the kinetic burst phase therefore. To explore this idea further, native state HX (NHX) data have been collected for CD2.d1 under EX2 conditions using denaturant concentrations which span either side of the denaturant concentration where, according to the stopped-flow data, the apparent U and I states are iso-energetic. The data fit to a two-component, sub-global (sg)/global (g) NHX mechanism, yielding Delta G and m value parameters (where the m value is a measure of hydrocarbon solvation). Regression analysis demonstrates that the (m(sg), Delta G(sg)) and (m(g), Delta G(g)) values calculated for this subset of amides correspond with those describing the kinetic burst phase transition. This result confirms the ability of the NHX technique to explore the structural and energetic properties of kinetic folding intermediates. Copyright 2001 Academic Press.

  16. Folding thermodynamics and kinetics of imprinted renaturable heteropolymers

    NASA Astrophysics Data System (ADS)

    Pande, V. S.; Grosberg, A. Yu.; Tanaka, T.

    1994-11-01

    Recently, a procedure was suggested to synthesize polymers with characteristics similar to those observed in globular proteins: renaturability and the existence of an ``active site'' capable of specifically recognizing a given target molecule. This procedure was originally studied using a computer simulation of the thermodynamics of lattice 27-mers. This analysis is extended to the thermodynamic study of longer chains (36-mers) and different types of short range interactions. We found, in the best conditions, a 50% success rate of creating renaturable heteropolymers, thus confirming the original results. Folding kinetics as examined by Monte Carlo simulation show that the imprinted sequences can reach the ground state reliably and quickly. Finally, we compare the correlations found in the imprinted sequences with those found in natural proteins. We interpret these results as the confirmation of the efficacy of the polymerization procedure.

  17. Modelling proteins: conformational sampling and reconstruction of folding kinetics.

    PubMed

    Klenin, Konstantin; Strodel, Birgit; Wales, David J; Wenzel, Wolfgang

    2011-08-01

    In the last decades biomolecular simulation has made tremendous inroads to help elucidate biomolecular processes in-silico. Despite enormous advances in molecular dynamics techniques and the available computational power, many problems involve long time scales and large-scale molecular rearrangements that are still difficult to sample adequately. In this review we therefore summarise recent efforts to fundamentally improve this situation by decoupling the sampling of the energy landscape from the description of the kinetics of the process. Recent years have seen the emergence of many advanced sampling techniques, which permit efficient characterisation of the relevant family of molecular conformations by dispensing with the details of the short-term kinetics of the process. Because these methods generate thermodynamic information at best, they must be complemented by techniques to reconstruct the kinetics of the process using the ensemble of relevant conformations. Here we review recent advances for both types of methods and discuss their perspectives to permit efficient and accurate modelling of large-scale conformational changes in biomolecules. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. RNA folding pathways and kinetics using 2D energy landscapes.

    PubMed

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  19. Kinetic evidence of an on-pathway intermediate in the folding of lysozyme.

    PubMed Central

    Bai, Y.

    2000-01-01

    By means of a kinetic test, it was demonstrated that one of the folding intermediates (Ialpha) of hen lysozyme with alpha-domain folded and beta-domain unfolded is on the folding pathway under the classical definition. Ialpha folds to the native (N) state directly (unfolded (U) <==> Ialpha <==> N) without having to unfold to U and then refold to N through alternative folding pathways as in Ialpha <==> U <==> N. PMID:10739262

  20. Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments

    PubMed Central

    Naganathan, Athi N.; Doshi, Urmi; Muñoz, Victor

    2008-01-01

    Recent experimental work on fast protein folding brings about an intriguing paradox. Microsecond-folding proteins are supposed to fold near or at the folding speed limit (downhill folding), but yet their folding behavior seems to comply with classical two-state analyses, which imply the crossing of high free energy barriers. However, close inspection of chemical and thermal denaturation kinetic experiments in fast-folding proteins reveals systematic deviations from two-state behavior. Using a simple one-dimensional free energy surface approach we find that such deviations are indeed diagnostic of marginal folding barriers. Furthermore, the quantitative analysis of available fast-kinetic data indicates that many microsecond-folding proteins fold downhill in native conditions. All of these proteins are then promising candidates for an atom-by-atom analysis of protein folding using nuclear magnetic resonance1. We also find that the diffusion coefficient for protein folding is strongly temperature dependent, corresponding to an activation energy of ~1 kJ.mol−1 per protein residue. As a consequence, the folding speed limit at room temperature is about an order of magnitude slower than the ~ 1μs estimates from high temperature T-jump experiments. Our analysis is quantitatively consistent with the available thermodynamic and kinetic data on two-state folding proteins, and provides a straightforward explanation for the apparent fast-folding paradox. PMID:17419630

  1. Heuristic algorithm for off-lattice protein folding problem*

    PubMed Central

    Chen, Mao; Huang, Wen-qi

    2006-01-01

    Enlightened by the law of interactions among objects in the physical world, we propose a heuristic algorithm for solving the three-dimensional (3D) off-lattice protein folding problem. Based on a physical model, the problem is converted from a nonlinear constraint-satisfied problem to an unconstrained optimization problem which can be solved by the well-known gradient method. To improve the efficiency of our algorithm, a strategy was introduced to generate initial configuration. Computational results showed that this algorithm could find states with lower energy than previously proposed ground states obtained by nPERM algorithm for all chains with length ranging from 13 to 55. PMID:16365919

  2. Protein folding: Vexing debates on a fundamental problem.

    PubMed

    Gianni, Stefano; Jemth, Per

    2016-05-01

    The folding of proteins has been at the heart of protein chemistry and biophysics ever since the pioneering experiments by the labs of Fred Richards and Christian Anfinsen. But, despite nearly 60 years of intense research, there are unresolved issues and a lively debate regarding some aspects of this fundamental problem. In this review we give a personal account on some key topics in the field: (i) the nature of the denatured state of a protein, (ii) nucleation sites in the folding reaction, and (iii) the time it takes for individual molecules to traverse the transition state.

  3. Protein folding funnels: a kinetic approach to the sequence-structure relationship.

    PubMed

    Leopold, P E; Montal, M; Onuchic, J N

    1992-09-15

    A lattice model of protein folding is developed to distinguish between amino acid sequences that do and do not fold into unique conformations. Although Monte Carlo simulations provide insights into the long-time processes involved in protein folding, these simulations cannot systematically chart the conformational energy surface that enables folding. By assuming that protein folding occurs after chain collapse, a kinetic map of important pathways on this surface is constructed through the use of an analytical theory of probability flow. Convergent kinetic pathways, or "folding funnels," guide folding to a unique, stable, native conformation. Solution of the probability flow equations is facilitated by limiting treatment to diffusion between geometrically similar collapsed conformers. Similarity is measured in terms of a reconfigurational distance. Two specific amino acid sequences are deemed foldable and nonfoldable because one gives rise to a single, large folding funnel leading to a native conformation and the other has multiple pathways leading to several stable conformers. Monte Carlo simulations demonstrate that folding funnel calculations accurately predict the fact of and the pathways involved in folding-specific sequences. The existence of folding funnels for specific sequences suggests that geometrically related families of stable, collapsed conformers fulfill kinetic and thermodynamic requirements of protein folding.

  4. Combined approach to the inverse protein folding problem. Final report

    SciTech Connect

    Ruben A. Abagyan

    2000-06-01

    The main scientific contribution of the project ''Combined approach to the inverse protein folding problem'' submitted in 1996 and funded by the Department of Energy in 1997 is the formulation and development of the idea of the multilink recognition method for identification of functional and structural homologues of newly discovered genes. This idea became very popular after they first announced it and used it in prediction of the threading targets for the CASP2 competition (Critical Assessment of Structure Prediction).

  5. Effects of monovalent cations on folding kinetics of G-quadruplexes.

    PubMed

    You, Jing; Li, Hui; Lu, Xi-Ming; Li, Wei; Wang, Peng-Ye; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-08-31

    G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na(+)- and K(+)-induced G-quadruplex folding, and for its structural transition from the basket-type Na(+) form to the hybrid-type K(+) form. More interestingly, although Li(+) was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li(+) can actually influence the folding kinetics of both Na(+)- and K(+)-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na(+)-induced G-quadruplexes and greatly increasing the folding rates of K(+)-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism. © 2017 The Author(s).

  6. Effects of monovalent cations on folding kinetics of G-quadruplexes

    PubMed Central

    You, Jing; Lu, Xi-Ming; Li, Wei; Wang, Peng-Ye; Xi, Xu-Guang

    2017-01-01

    G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na+- and K+-induced G-quadruplex folding, and for its structural transition from the basket-type Na+ form to the hybrid-type K+ form. More interestingly, although Li+ was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li+ can actually influence the folding kinetics of both Na+- and K+-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na+-induced G-quadruplexes and greatly increasing the folding rates of K+-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism. PMID:28588052

  7. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.

    PubMed

    Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander

    2014-03-06

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu(-) and Arg(+) are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.

  8. Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding

    PubMed Central

    2014-01-01

    Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu– and Arg+ are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function. PMID:24634715

  9. Single-domain protein folding: a multi-faceted problem

    NASA Astrophysics Data System (ADS)

    Junier, Ivan; Ritort, Felix

    2006-08-01

    We review theoretical approaches, experiments and numerical simulations that have been recently proposed to investigate the folding problem in single-domain proteins. From a theoretical point of view, we emphasize the energy landscape approach. As far as experiments are concerned, we focus on the recent development of single-molecule techniques. In particular, we compare the results obtained with two main techniques: single protein force measurements with optical tweezers and single-molecule fluorescence in studies on the same protein (RNase H). This allows us to point out some controversial issues such as the nature of the denatured and intermediate states and possible folding pathways. After reviewing the various numerical simulation techniques, we show that on-lattice protein-like models can help to understand many controversial issues.

  10. Monitoring the folding kinetics of a β-hairpin by time-resolved IR spectroscopy in silico.

    PubMed

    Daidone, Isabella; Thukral, Lipi; Smith, Jeremy C; Amadei, Andrea

    2015-04-09

    Protein folding is one of the most fundamental problems in modern biochemistry. Time-resolved infrared (IR) spectroscopy in the amide I region is commonly used to monitor folding kinetics. However, associated atomic detail information on the folding mechanism requires simulations. In atomistic simulations structural order parameters are typically used to follow the folding process along the simulated trajectories. However, a rigorous test of the reliability of the mechanisms found in the simulations requires calculation of the time-dependent experimental observable, i.e., in the present case the IR signal in the amide I region. Here, we combine molecular dynamics simulation with a mixed quantum mechanics/molecular mechanics theoretical methodology, the Perturbed Matrix Method, in order to characterize the folding of a β-hairpin peptide, through modeling the time-dependence of the amide I IR signal. The kinetic and thermodynamic data (folding and unfolding rate constants, and equilibrium folded- and unfolded-state probabilities) obtained from the fit of the calculated signal are in good agreement with the available experimental data [Xu et al. J. Am. Chem. Soc. 2003, 125, 15388-15394]. To the best of our knowledge, this is the first report of the simulation of the time-resolved IR signal of a complex process occurring on a long (microsecond) time scale.

  11. Mapping the kinetic barriers of a Large RNA molecule's folding landscape.

    PubMed

    Schlatterer, Jörg C; Martin, Joshua S; Laederach, Alain; Brenowitz, Michael

    2014-01-01

    The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic) that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH) footprinting kinetics progress curves collected at eight temperature from 21.5 °C to 51 °C to characterize the thermodynamic nature of folding intermediate formation for the Mg(2+)-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast) transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes.

  12. Mapping the Kinetic Barriers of a Large RNA Molecule's Folding Landscape

    PubMed Central

    Schlatterer, Jörg C.; Martin, Joshua S.; Laederach, Alain; Brenowitz, Michael

    2014-01-01

    The folding of linear polymers into discrete three-dimensional structures is often required for biological function. The formation of long-lived intermediates is a hallmark of the folding of large RNA molecules due to the ruggedness of their energy landscapes. The precise thermodynamic nature of the barriers (whether enthalpic or entropic) that leads to intermediate formation is still poorly characterized in large structured RNA molecules. A classic approach to analyzing kinetic barriers are temperature dependent studies analyzed with Eyring's transition state theory. We applied Eyring's theory to time-resolved hydroxyl radical (•OH) footprinting kinetics progress curves collected at eight temperature from 21.5°C to 51°C to characterize the thermodynamic nature of folding intermediate formation for the Mg2+-mediated folding of the Tetrahymena thermophila group I ribozyme. A common kinetic model configuration describes this RNA folding reaction over the entire temperature range studied consisting of primary (fast) transitions to misfolded intermediates followed by much slower secondary transitions, consistent with previous studies. Eyring analysis reveals that the primary transitions are moderate in magnitude and primarily enthalpic in nature. In contrast, the secondary transitions are daunting in magnitude and entropic in nature. The entropic character of the secondary transitions is consistent with structural rearrangement of the intermediate species to the final folded form. This segregation of kinetic control reveals distinctly different molecular mechanisms during the two stages of RNA folding and documents the importance of entropic barriers to defining rugged RNA folding landscapes. PMID:24586236

  13. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation.

    PubMed

    Shimada, J; Kussell, E L; Shakhnovich, E I

    2001-04-20

    We present a novel Monte Carlo simulation of protein folding, in which all heavy atoms are represented as interacting hard spheres. This model includes all degrees of freedom relevant to folding, all side-chain and backbone torsions, and uses a Go potential. In this study, we focus on the 46 residue alpha/beta protein crambin and two of its structural components, the helix and helix hairpin. For a wide range of temperatures, we recorded multiple folding events of these three structures from random coils to native conformations that differ by less than 1 A C(alpha) dRMS from their crystal structure coordinates. The thermodynamics and kinetic mechanism of the helix-coil transition obtained from our simulation shows excellent agreement with currently available experimental and molecular dynamics data. Based on insights obtained from folding its smaller structural components, a possible folding mechanism for crambin is proposed. We observed that the folding occurs via a cooperative, first order-like process, and that many folding pathways to the native state exist. One particular sequence of events constitutes a "fast-folding" pathway where kinetic traps are avoided. At very low temperatures, a kinetic trap arising from the incorrect packing of side-chains was observed. These results demonstrate that folding to the native state can be observed in a reasonable amount of time on desktop computers even when an all-atom representation is used, provided the energetics sufficiently stabilize the native state.

  14. DNA Origami Folding Pathways: Implications for Design, Thermodynamics, and Kinetics

    NASA Astrophysics Data System (ADS)

    Majikes, Jacob Michael

    DNA nanotechnology implements the predictable self-assembly rules of DNA, allowing the adaptation of DNA from a biological tool for storage of genetic information to a biomimetic structural nanomaterial. DNA has been employed to organize organic and inorganic materials, as well as to create both static and dynamic nanostructures. Aided by the low cost of arbitrary sequence DNA oligomer synthesis and robust conjugation chemistries, DNA has developed as a promising nanofabrication tool. While under biological conditions the formation and thermodynamics of DNA are well known, nanotechnology applications typically lie well outside of those conditions. This dissertation presents a new scaffold (miniM13) for DNA nanostructures and three new protocols to probe the folding and formation of DNA nanostructures. Development of these novel techniques improves the molecular assembly toolkit to enable new and exciting experimental systems. (Abstract shortened by ProQuest.).

  15. Evolutionary trend toward kinetic stability in the folding trajectory of RNases H

    PubMed Central

    Lim, Shion A.; Hart, Kathryn M.; Marqusee, Susan

    2016-01-01

    Proper folding of proteins is critical to producing the biological machinery essential for cellular function. The rates and energetics of a protein’s folding process, which is described by its energy landscape, are encoded in the amino acid sequence. Over the course of evolution, this landscape must be maintained such that the protein folds and remains folded over a biologically relevant time scale. How exactly a protein’s energy landscape is maintained or altered throughout evolution is unclear. To study how a protein’s energy landscape changed over time, we characterized the folding trajectories of ancestral proteins of the ribonuclease H (RNase H) family using ancestral sequence reconstruction to access the evolutionary history between RNases H from mesophilic and thermophilic bacteria. We found that despite large sequence divergence, the overall folding pathway is conserved over billions of years of evolution. There are robust trends in the rates of protein folding and unfolding; both modern RNases H evolved to be more kinetically stable than their most recent common ancestor. Finally, our study demonstrates how a partially folded intermediate provides a readily adaptable folding landscape by allowing the independent tuning of kinetics and thermodynamics. PMID:27799545

  16. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.

    PubMed

    Allen, S J; Kim, J M; Khorana, H G; Lu, H; Booth, P J

    2001-04-27

    The loops connecting the seven transmembrane helices of bacteriorhodopsin have each been replaced in turn by structureless linkers of Gly-Gly-Ser repeat sequences, and the effect on the protein folding kinetics has been determined. An SDS-denatured state of each loop mutant bacterio-opsin was folded in l-alpha-1,2-dihexanoylphosphatidylcholine/l-alpha-1,2-dimyristoylphosphatidylcholine micelles, containing retinal, to give functional bacteriorhodopsin. Stopped-flow mixing was used to initiate the folding reaction, giving a time resolution of milliseconds, and changes in protein fluorescence were used to monitor folding. All loop mutant proteins folded according to the same reaction scheme as wild-type protein. The folding kinetics of the AB, BC and DE loop mutants were the same as wild-type protein, despite the blue-shifted chromophore band of the BC loop mutant bR state. A partially folded apoprotein intermediate state of the AB loop mutant did however appear to decay in the absence of retinal. The most significant effects on the folding kinetics were seen for mutant protein with structureless linkers in place of the CD, EF and FG loops. The rate-limiting apoprotein folding step of the CD loop mutant was about ten times slower than wild-type, whilst that of the EF loop mutant was almost four times slower than wild-type. Wild-type behaviour was observed for the other folding and retinal binding events of the CD and EF loop mutant proteins. These effects of the CD and EF loop mutations on apoprotein folding correlate with the fact that these two loop mutants also have the least stable, partially folded apoprotein intermediate of all the loop mutants, and are the most affected by a decrease in lipid lateral pressure. In contrast, the FG loop mutant exhibited wild-type apoprotein folding, but altered covalent binding of retinal and final folding to bacteriorhodopsin. This correlates with the fact that the FG loop mutant bacteriorhodopsin is the most susceptible to

  17. The protein folding problem: global optimization of the force fields.

    PubMed

    Scheraga, H A; Liwo, A; Oldziej, S; Czaplewski, C; Pillardy, J; Ripoll, D R; Vila, J A; Kazmierkiewicz, R; Saunders, J A; Arnautova, Y A; Jagielska, A; Chinchio, M; Nanias, M

    2004-09-01

    The evolutionary development of a theoretical approach to the protein folding problem, in our laboratory, is traced. The theoretical foundations and the development of a suitable empirical all-atom potential energy function and a global optimization search are examined. Whereas the all-atom approach has thus far succeeded for relatively small molecules and for alpha-helical proteins containing up to 46 residues, it has been necessary to develop a hierarchical approach to treat larger proteins. In the hierarchical approach to single- and multiple-chain proteins, global optimization is carried out for a simplified united residue (UNRES) description of a polypeptide chain to locate the region in which the global minimum lies. Conversion of the UNRES structures in this region to all-atom structures is followed by a local search in this region. The performance of this approach in successive CASP blind tests for predicting protein structure by an ab initio physics-based method is described. Finally, a recent attempt to compute a folding pathway is discussed.

  18. Folding of a model three-helix bundle protein: a thermodynamic and kinetic analysis.

    PubMed

    Zhou, Y; Karplus, M

    1999-11-05

    The kinetics and thermodynamics of an off-lattice model for a three-helix bundle protein are investigated as a function of a bias gap parameter that determines the energy difference between native and non-native contacts. A simple dihedral potential is used to introduce the tendency to form right-handed helices. For each value of the bias parameter, 100 trajectories of up to one microsecond are performed. Such statistically valid sampling of the kinetics is made possible by the use of the discrete molecular dynamics method with square-well interactions. This permits much faster simulations for off-lattice models than do continuous potentials. It is found that major folding pathways can be defined, although ensembles with considerable structural variation are involved. The large gap models generally fold faster than those with a smaller gap. For the large gap models, the kinetic intermediates are non-obligatory, while both obligatory and non-obligatory intermediates are present for small gap models. Certain large gap intermediates have a two-helix microdomain with one helix extended outward (as in domain-swapped dimers); the small gap intermediates have more diverse structures. The importance of studying the kinetic, as well as the thermodynamics, of folding for an understanding of the mechanism is discussed and the relation between kinetic and equilibrium intermediates is examined. It is found that the behavior of this model system has aspects that encompass both the "new" view and the "old" view of protein folding.

  19. The prosegment catalyzes pepsin folding to a kinetically trapped native state.

    PubMed

    Dee, Derek R; Yada, Rickey Y

    2010-01-19

    Investigations of irreversible protein unfolding often assume that alterations to the unfolded state, rather than the nature of the native state itself, are the cause of the irreversibility. However, the present study describes a less common explanation for the irreversible denaturation of pepsin, a zymogen-derived aspartic peptidase. The presence of a large folding barrier combined with the thermodynamically metastable nature of the native state, the formation of which depends on a separate prosegment (PS) domain, is the source of the irreversibility. Pepsin is unable to refold to the native state upon return from denaturing conditions due to a large folding barrier (24.6 kcal/mol) and instead forms a thermodynamically stable, yet inactive, refolded state. The native state is kinetically stabilized by an unfolding activation energy of 24.5 kcal/mol, comparable to the folding barrier, indicating that native pepsin exists as a thermodynamically metastable state. However, in the presence of the PS, the native state becomes thermodynamically stable, and the PS catalyzes pepsin folding by stabilizing the folding transition state by 14.7 kcal/mol. Once folded, the PS is removed, and the native conformation exists as a kinetically trapped state. Thus, while PS-guided folding is thermodynamically driven, without the PS the pepsin energy landscape is dominated by kinetic barriers rather than by free energy differences between native and denatured states. As pepsin is the archetype of a broad class of aspartic peptidases of similar structure and function, and many require their PS for correct folding, these results suggest that the occurrence of native states optimized for kinetic rather than thermodynamic stability may be a common feature of protein design.

  20. Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations

    PubMed Central

    Nivón, Lucas G.; Shakhnovich, Eugene I.

    2011-01-01

    We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a monte carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here we introduce a simple model of tertiary structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition state ensemble (TSE) of the RNA during folding to its active “docked” conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters we introduce a novel method to benchmark monte carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential which discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures. PMID:21740912

  1. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics.

    PubMed

    Dupuis, Nicholas F; Holmstrom, Erik D; Nesbitt, David J

    2014-06-10

    The effects of "molecular crowding" on elementary biochemical processes due to high solute concentrations are poorly understood and yet clearly essential to the folding of nucleic acids and proteins into correct, native structures. The present work presents, to our knowledge, first results on the single-molecule kinetics of solute molecular crowding, specifically focusing on GAAA tetraloop-receptor folding to isolate a single RNA tertiary interaction using time-correlated single-photon counting and confocal single-molecule FRET microscopy. The impact of crowding by high-molecular-weight polyethylene glycol on the RNA folding thermodynamics is dramatic, with up to ΔΔG° ∼ -2.5 kcal/mol changes in free energy and thus >60-fold increase in the folding equilibrium constant (Keq) for excluded volume fractions of 15%. Most importantly, time-correlated single-molecule methods permit crowding effects on the kinetics of RNA folding/unfolding to be explored for the first time (to our knowledge), which reveal that this large jump in Keq is dominated by a 35-fold increase in tetraloop-receptor folding rate, with only a modest decrease in the corresponding unfolding rate. This is further explored with temperature-dependent single-molecule RNA folding measurements, which identify that crowding effects are dominated by entropic rather than enthalpic contributions to the overall free energy change. Finally, a simple "hard-sphere" treatment of the solute excluded volume is invoked to model the observed kinetic trends, and which predict ΔΔG° ∼ -5 kcal/mol free-energy stabilization at excluded volume fractions of 30%.

  2. PFD: a database for the investigation of protein folding kinetics and stability.

    PubMed

    Fulton, Kate F; Devlin, Glyn L; Jodun, Rachel A; Silvestri, Linda; Bottomley, Stephen P; Fersht, Alan R; Buckle, Ashley M

    2005-01-01

    We have developed a new database that collects all protein folding data into a single, easily accessible public resource. The Protein Folding Database (PFD) contains annotated structural, methodological, kinetic and thermodynamic data for more than 50 proteins, from 39 families. A user-friendly web interface has been developed that allows powerful searching, browsing and information retrieval, whilst providing links to other protein databases. The database structure allows visualization of folding data in a useful and novel way, with a long-term aim of facilitating data mining and bioinformatics approaches. PFD can be accessed freely at http://pfd.med.monash.edu.au.

  3. Kinetics methods for clinical epidemiology problems

    PubMed Central

    Corlan, Alexandru Dan; Ross, John

    2015-01-01

    Calculating the probability of each possible outcome for a patient at any time in the future is currently possible only in the simplest cases: short-term prediction in acute diseases of otherwise healthy persons. This problem is to some extent analogous to predicting the concentrations of species in a reactor when knowing initial concentrations and after examining reaction rates at the individual molecule level. The existing theoretical framework behind predicting contagion and the immediate outcome of acute diseases in previously healthy individuals is largely analogous to deterministic kinetics of chemical systems consisting of one or a few reactions. We show that current statistical models commonly used in chronic disease epidemiology correspond to simple stochastic treatment of single reaction systems. The general problem corresponds to stochastic kinetics of complex reaction systems. We attempt to formulate epidemiologic problems related to chronic diseases in chemical kinetics terms. We review methods that may be adapted for use in epidemiology. We show that some reactions cannot fit into the mass-action law paradigm and solutions to these systems would frequently exhibit an antiportfolio effect. We provide a complete example application of stochastic kinetics modeling for a deductive meta-analysis of two papers on atrial fibrillation incidence, prevalence, and mortality. PMID:26578757

  4. Kinetics methods for clinical epidemiology problems.

    PubMed

    Corlan, Alexandru Dan; Ross, John

    2015-11-17

    Calculating the probability of each possible outcome for a patient at any time in the future is currently possible only in the simplest cases: short-term prediction in acute diseases of otherwise healthy persons. This problem is to some extent analogous to predicting the concentrations of species in a reactor when knowing initial concentrations and after examining reaction rates at the individual molecule level. The existing theoretical framework behind predicting contagion and the immediate outcome of acute diseases in previously healthy individuals is largely analogous to deterministic kinetics of chemical systems consisting of one or a few reactions. We show that current statistical models commonly used in chronic disease epidemiology correspond to simple stochastic treatment of single reaction systems. The general problem corresponds to stochastic kinetics of complex reaction systems. We attempt to formulate epidemiologic problems related to chronic diseases in chemical kinetics terms. We review methods that may be adapted for use in epidemiology. We show that some reactions cannot fit into the mass-action law paradigm and solutions to these systems would frequently exhibit an antiportfolio effect. We provide a complete example application of stochastic kinetics modeling for a deductive meta-analysis of two papers on atrial fibrillation incidence, prevalence, and mortality.

  5. Kinetic role of helix caps in protein folding is context-dependent.

    PubMed

    Kapp, Gregory T; Richardson, Jane S; Oas, Terrence G

    2004-04-06

    Secondary structure punctuation through specific backbone and side chain interactions at the beginning and end of alpha-helices has been proposed to play a key role in hierarchical protein folding mechanisms [Baldwin, R. L., and Rose, G. D. (1999) Trends Biochem. Sci. 24, 26-33; Presta, L. G., and Rose, G. D. (1988) Science 240, 1632-1641]. We have made site-specific substitutions in the N- and C-cap motifs of the 5-helix protein monomeric lambda repressor (lambda(6-85)) and have measured the rate constants for folding and unfolding of each variant. The consequences of C-cap changes are strongly context-dependent. When the C-cap was located at the chain terminus, changes had little energetic and no kinetic effect. However, substitutions in a C-cap at the boundary between helix 4 and the subsequent interhelical loop resulted in large changes to the stability and rate constants of the variant, showing a substantial kinetic role for this interior C-cap and suggesting a general kinetic role for interior helix C-caps. Statistical preferences tabulated separately for internal and terminal C-caps also show only weak residue preferences in terminal C-caps. This kinetic distinction between interior and terminal C-caps can explain the discrepancy between the near-absence of stability and kinetic effects seen for C-caps of isolated peptides versus the very strong C-cap effects seen for proteins in statistical sequence preferences and mutational energetics. Introduction of consensus, in-register N-capping motifs resulted in increased stability, accelerated folding, and slower unfolding. The kinetic measurements indicate that some of the new native-state capping interactions remain unformed in the transition state. The accelerated folding rates could result from helix stabilization without invoking a specific role for N-caps in the folding reaction.

  6. A comprehensive database of verified experimental data on protein folding kinetics

    PubMed Central

    Wagaman, Amy S; Coburn, Aaron; Brand-Thomas, Itai; Dash, Barnali; Jaswal, Sheila S

    2014-01-01

    Insights into protein folding rely increasingly on the synergy between experimental and theoretical approaches. Developing successful computational models requires access to experimental data of sufficient quantity and high quality. We compiled folding rate constants for what initially appeared to be 184 proteins from 15 published collections/web databases. To generate the highest confidence in the dataset, we verified the reported lnkf value and exact experimental construct and conditions from the original experimental report(s). The resulting comprehensive database of 126 verified entries, ACPro, will serve as a freely accessible resource (https://www.ats. amherst.edu/protein/) for the protein folding community to enable confident testing of predictive models. In addition, we provide a streamlined submission form for researchers to add new folding kinetics results, requiring specification of all the relevant experimental information according to the standards proposed in 2005 by the protein folding consortium organized by Plaxco. As the number and diversity of proteins whose folding kinetics are studied expands, our curated database will enable efficient and confident incorporation of new experimental results into a standardized collection. This database will support a more robust symbiosis between experiment and theory, leading ultimately to more rapid and accurate insights into protein folding, stability, and dynamics. PMID:25229122

  7. Prediction of folding pathway and kinetics among plant hemoglobins using an average distance map method.

    PubMed

    Nakajima, Shunsuke; Alvarez-Salgado, Emma; Kikuchi, Takeshi; Arredondo-Peter, Raúl

    2005-11-15

    Computational methods, such as the ADM (average distance map) method, have been developed to predict folding of homologous proteins. In this work we used the ADM method to predict the folding pathway and kinetics among selected plant nonsymbiotic (nsHb), symbiotic (Lb), and truncated (tHb) hemoglobins (Hbs). Results predicted that (1) folding of plant Hbs occurs throughout the formation of compact folding modules mostly formed by helices A, B, and C, and E, F, G, and H (folding modules A/C and E/H, respectively), and (2) primitive (moss) nsHbs fold in the C-->N direction, evolved (monocot and dicot) nsHbs fold either in the C-->N or N-->C direction, and Lbs and plant tHbs fold in the C-->N direction. We also predicted relative folding rates of plant Hbs from qualitative analyses of the stability of subdomains and classified plant Hbs into fast and moderate folding. ADM analysis of nsHbs predicted that prehelix A plays a role during folding of the N-terminal domain of Ceratodon nsHb, and that CD-loop plays a role in folding of primitive (Physcomitrella and Ceratodon) but not evolved nsHbs. Modeling of the rice Hb1 A/C and E/H modules showed that module E/H overlaps to the Mycobacterium tuberculosis HbO two-on-two folding. This observation suggests that module E/H is an ancient tertiary structure in plant Hbs.

  8. Microfluidic mixers for the investigation of rapid protein folding kinetics using synchrotron radiation circular dichroism spectroscopy.

    PubMed

    Kane, Avinash S; Hoffmann, Armin; Baumgärtel, Peter; Seckler, Robert; Reichardt, Gerd; Horsley, David A; Schuler, Benjamin; Bakajin, Olgica

    2008-12-15

    We have developed a microfluidic mixer optimized for rapid measurements of protein folding kinetics using synchrotron radiation circular dichroism (SRCD) spectroscopy. The combination of fabrication in fused silica and synchrotron radiation allows measurements at wavelengths below 220 nm, the typical limit of commercial instrumentation. At these wavelengths, the discrimination between the different types of protein secondary structure increases sharply. The device was optimized for rapid mixing at moderate sample consumption by employing a serpentine channel design, resulting in a dead time of less than 200 micros. Here, we discuss the design and fabrication of the mixer and quantify the mixing efficiency using wide-field and confocal epi-fluorescence microscopy. We demonstrate the performance of the device in SRCD measurements of the folding kinetics of cytochrome c, a small, fast-folding protein. Our results show that the combination of SRCD with microfluidic mixing opens new possibilities for investigating rapid conformational changes in biological macromolecules that have previously been inaccessible.

  9. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.

    PubMed Central

    Downs, W D; Cech, T R

    1996-01-01

    The kinetics of RNA folding were examined in the L-21 ribozyme, an RNA enzyme derived from the self-splicing Tetrahymena intron. Three UV-inducible crosslinks were mapped, characterized, and used as indicators for the folded state of the ribozyme. Together these data suggest that final structures are adopted first by the P4-P6 independently folding domain and only later in a region that positions the P1 helix (including the 5' splice site), a region whose folding is linked to that of a portion of the catalytic core. At intermediate times, a non-native structure forms in the region of the triple helical scaffold, which connects the major folding domains. At 30 degrees C, the unfolded ribozyme passes through these stages with a half-life of 2 min from the time magnesium cations are provided. At higher temperatures, the half-life is shortened but the order of events is unchanged. Thermal melting of the fully folded ribozyme also revealed a multi-stage process in which the steps of folding are reversed: the kinetically slowest structure is the least stable and melts first. These structures of the ribozyme also bind Mg2+ cooperatively and their relative affinity for binding seems to be a major determinant in the order of events during folding. Na+ can also substitute for Mg2+ to give rise to the same crosslinkable structures, but only at much higher concentrations. Specific binding sites for Mg2+ may make this cation particularly efficient at electrostatic stabilization during folding of these ribozyme structures. PMID:8756414

  10. Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding

    PubMed Central

    Wang, Jin; Oliveira, Ronaldo J.; Chu, Xiakun; Whitford, Paul C.; Chahine, Jorge; Han, Wei; Wang, Erkang; Onuchic, José N.; Leite, Vitor B.P.

    2012-01-01

    The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles δE, the energetic roughness ΔE, and the scale of landscape measured by the entropy S. We show that the dimensionless ratio between the gap, roughness, and entropy of the system accurately predicts the thermodynamics, as well as the kinetics of folding. Large Λ implies that the energy gap (or landscape slope towards the native state) is dominant, leading to more funneled landscapes. We investigate the role of topological and energetic roughness for proteins of different sizes and for proteins of the same size, but with different structural topologies. The landscape topography ratio Λ is shown to be monotonically correlated with the thermodynamic stability against trapping, as characterized by the ratio of folding temperature versus trapping temperature. Furthermore, Λ also monotonically correlates with the folding kinetic rates. These results provide the quantitative bridge between the landscape topography and experimental folding measurements. PMID:23019359

  11. The energy landscape, folding pathways and the kinetics of a knotted protein.

    PubMed

    Prentiss, Michael C; Wales, David J; Wolynes, Peter G

    2010-07-01

    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N or C terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N terminus portion of the knot and a rate-determining step where the C terminus is incorporated. The low-lying minima with the N terminus knotted and the C terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N and C termini into the knot occurs late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.

  12. Impact of Ion Binding on Poly-L-Lysine (Un)folding Energy Landscape and Kinetics

    PubMed Central

    Xiong, Kan; Asher, Sanford A.

    2012-01-01

    We utilize T-jump UV resonance Raman spectroscopy to study the impact of ion binding on the equilibrium energy landscape and on (un)folding kinetics of poly-L-lysine (PLL). We observe that the relaxation rates of the folded conformations (including π-helix (bulge), pure α-helix and turns) of PLL are slower than those of short alanine based peptides. The PLL pure α-helix folding time is similar to that of short alanine based peptides. We, for the first time have directly observed that turn conformations are α-helix and π-helix (bulge) unfolding intermediates. ClO4− binding to the lys side chain –NH3+ groups and the peptide backbone slows the α-helix unfolding rate compared to that in pure water, but little impacts the folding rate, resulting in an increased α-helix stability. ClO4− binding significantly increases the PLL unfolding activation barrier but little impacts the folding barrier. Thus, the PLL folding coordinate differs from the unfolding coordinate. The π-helix (bulge) unfolding and folding coordinates do not directly go through the α-helix energy well. Our results clearly demonstrate that PLL (un)folding is not a two-state process. PMID:22612556

  13. Asymmetric effect of domain interactions on the kinetics of folding in yeast phosphoglycerate kinase.

    PubMed

    Osváth, Szabolcs; Köhler, Gottfried; Závodszky, Péter; Fidy, Judit

    2005-06-01

    The aim of this work is to shed more light on the effect of domain-domain interactions on the kinetics and the pathway of protein folding. A model protein system consisting of several single-tryptophan variants of the two-domain yeast phosphoglycerate kinase (PGK) and its individual domains was studied. Refolding was initiated from the guanidine-unfolded state by stopped-flow or manual mixing and monitored by tryptophan fluorescence from 1 msec to 1000 sec. Denaturant titrations of both individual domains showed apparent two-state unfolding transitions. Refolding kinetics of the individual domains from different denaturant concentrations, however, revealed the presence of intermediate structures during titration for both domains. Refolding of the same domains within the complete protein showed that domain-domain interactions direct the folding of both domains, but in an asymmetric way. Folding of the N domain was already altered within 1 msec, while detectable changes in the folding of the C domain occurred only 60-100 msec after initiating refolding. All mutants showed a hyperfluorescent kinetic intermediate. Both the disappearance of this intermediate and the completion of the folding were significantly faster in the individual N domain than in the complete protein. On the contrary, folding of the individual C domain was slower than in the complete protein. The presence of the C domain directs the refolding of the N domain along a completely different pathway than that of the individual N domain, while folding of the individual C domain follows the same path as within the complete protein.

  14. Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    PubMed Central

    Romero-Romero, M. Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2011-01-01

    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584

  15. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.

    PubMed

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Mabuchi, Hideo; Herschlag, Daniel

    2017-09-12

    Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔGalign, the probability of aligning tertiary contact partners, and ΔGtert, the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔGHJH) or from changes in the electrostatic environment (ΔG+/-) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔGtert). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔGtert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.

  16. The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Shimada, Jun; Shakhnovich, Eugene I.

    2002-08-01

    Protein G is folded with an all-atom Monte Carlo simulation by using a G potential. When folding is monitored by using burial of the lone tryptophan in protein G as the reaction coordinate, the ensemble kinetics is single exponential. Other experimental observations, such as the burst phase and mutational data, are also reproduced. However, more detailed analysis reveals that folding occurs over three distinct, three-state pathways. We show that, because of this tryptophan's asymmetric location in the tertiary fold, its burial (i) does not detect certain intermediates and (ii) may not correspond to the folding event. This finding demonstrates that ensemble averaging can disguise the presence of multiple pathways and intermediates when a non-ideal reaction coordinate is used. Finally, all observed folding pathways eventually converge to a common rate-limiting step, which is the formation of a specific nucleus involving hydrophobic core residues. These residues are conserved in the ubiquitin superfamily and in a phage display experiment, suggesting that fold topology is a strong determinant of the transition state.

  17. Pressure-Jump-Induced Kinetics Reveals a Hydration Dependent Folding/Unfolding Mechanism of Ribonuclease A

    PubMed Central

    Font, J.; Torrent, J.; Ribó, M.; Laurents, D. V.; Balny, C.; Vilanova, M.; Lange, R.

    2006-01-01

    Pressure-jump (p-jump)-induced relaxation kinetics was used to explore the energy landscape of protein folding/unfolding of Y115W, a fluorescent variant of ribonuclease A. Pressure-jumps of 40 MPa amplitude (5 ms dead-time) were conducted both to higher (unfolding) and to lower (folding) pressure, in the range from 100 to 500 MPa, between 30 and 50°C. Significant deviations from the expected symmetrical protein relaxation kinetics were observed. Whereas downward p-jumps resulted always in single exponential kinetics, the kinetics induced by upward p-jumps were biphasic in the low pressure range and monophasic at higher pressures. The relative amplitude of the slow phase decreased as a function of both pressure and temperature. At 50°C, only the fast phase remained. These results can be interpreted within the framework of a two-dimensional energy surface containing a pressure- and temperature-dependent barrier between two unfolded states differing in the isomeric state of the Asn-113–Pro-114 bond. Analysis of the activation volume of the fast kinetic phase revealed a temperature-dependent shift of the unfolding transition state to a larger volume. The observed compensation of this effect by glycerol offers an explanation for its protein stabilizing effect. PMID:16798802

  18. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Gao, Ying; Zhang, Yongli

    2015-06-02

    HIV-1 glycoprotein 41 (gp41) mediates viral entry into host cells by coupling its folding energy to membrane fusion. Gp41 folding is blocked by fusion inhibitors, including the commercial drug T20, to treat HIV/AIDS. However, gp41 folding intermediates, energy, and kinetics are poorly understood. Here, we identified the folding intermediates of a single gp41 trimer-of-hairpins and measured their associated energy and kinetics using high-resolution optical tweezers. We found that folding of gp41 hairpins was energetically independent but kinetically coupled: Each hairpin contributed a folding energy of ∼-23 kBT, but folding of one hairpin successively accelerated the folding rate of the next one by ∼20-fold. Membrane-mimicking micelles slowed down gp41 folding and reduced the stability of the six-helix bundle. However, the stability was restored by cooperative folding of the membrane-proximal external region. Surprisingly, T20 strongly inhibited gp41 folding by actively displacing the C-terminal hairpin strand in a force-dependent manner. The inhibition was abolished by a T20-resistant gp41 mutation. The energetics and kinetics of gp41 folding established by us provides a basis to understand viral membrane fusion, infection, and therapeutic intervention.

  19. Perturbations of the denatured state ensemble: modeling their effects on protein stability and folding kinetics.

    PubMed Central

    Wrabl, J. O.; Shortle, D.

    1996-01-01

    By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability. PMID:8931153

  20. Thermal stability and folding kinetics analysis of intrinsically disordered protein, securin

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ching; Chu, Hsueh-Liang; Ho, Li-Ping

    2014-03-01

    Lacking a stable tertiary structure, intrinsically disordered proteins (IDPs) possess particular functions in cell regulation, signaling, and controlling pathways. The study of their unique structure features, thermal stabilities, and folding kinetics is intriguing. In this study, an identified IDP, securin, was used as a model protein. By using a quasi-static five-step (on-path) folding process, the function of securin was restored and analyzed by isothermal titration calorimetry. Fluorescence spectroscopy and particle size analysis indicated that securin possessed a compact hydrophobic core and particle size. The glass transition of securin was characterized using differential scanning microcalorimetry. Furthermore, the folding/unfolding rates (kobs) of securin were undetectable, implying that the folding/unfolding rate is very fast and that the conformation of securin is sensitive to solvent environment change. Therefore, securin may fold properly under specific physiological conditions. In summary, the thermal glass transition behavior and undetectable kobs of folding/unfolding reactions may be two of the indices of IDP. This study was supported in part by grants NSC 97-2112-M-009-009-YM3 and NSC 100-2112-M-009-004-MY3, Taiwan, R.O.C.

  1. The precursor of beta-lactamase: purification, properties and folding kinetics.

    PubMed

    Laminet, A A; Plückthun, A

    1989-05-01

    The precursor of Escherichia coli RTEM beta-lactamase was purified to homogeneity on a milligram scale by a procedure independent of the binding properties of the protein and refolded to an active, reduced form. For comparing the folding kinetics, the wild-type enzyme was reduced and a mutant was constructed, in which the two cysteines that form a very stable disulfide bond in the RTEM enzyme were both changed into alanines. The rate of folding was determined by directly measuring the increase in enzymatic activity. The reduced precursor folds at least 15 times more slowly than either the reduced mature enzyme or the mature Cys----Ala double mutant under identical conditions. The wild-type enzyme, the Cys----Ala double mutant and the precursor protein all had similar KM values, demonstrating a very similar native state. The slow folding of the precursor compared with the mature form may be an essential and general feature to secure a transport competent conformation necessary for the translocation through a membrane in protein export. This folding assay of a precursor by directly following its enzymatic activity may facilitate the characterization of putative folding modulators in bacterial membrane transport.

  2. Coupled folding and binding kinetics in the intrinsically disordered peptide IA3

    NASA Astrophysics Data System (ADS)

    Narayanan, Ranjani; Ganesh, Omjoy; Edison, Arthur; Hagen, Stephen

    2008-03-01

    IA3 is an intrinsically disordered 68 residue peptide and is an endogenous inhibitor of yeast proteinase A (YPrA). X-ray crystallography of the IA3.YPrA complex [Li et al, Nat. Struct. Biol. (7), 113-117 (2000)] indicates that the N-terminus of IA3 adopts an alpha-helical fold when it is bound to the YPrA active site. We have used equilibrium circular dichroism and multi-wavelength, nanosecond time-resolved laser temperature-jump spectroscopy to study the coupled folding and binding interaction of IA3 with YPrA. Our initial measurements of the rate of helix formation in free IA3 indicate mono-exponential folding kinetics that extrapolate to kF˜ 10^5/s at room temperature in aqueous solutions. By comparing this rate to the kinetics we observe for IA3 interacting with YPrA, we can assess possible mechanisms for the coupled folding and binding of IA3.

  3. Coarse semiempirical solution to the protein folding problem

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Colubri, Andrés; Appignanesi, Gustavo; Burastero, Teresita

    2001-04-01

    We introduce a semiempirical theory leading to the ab initio prediction of conducive folding pathways and coarsely resolved native backbone geometries of proteins suddenly exposed to in vitro renaturation conditions. The underlying model incorporates a discrete codification of local steric hindrances of the peptide backbone. We first determine a time-evolving finite set of local torsional constraints upon which large-scale organization is built. Thus, the torsional state of the chain is topologically represented by viewing the ( Φ, Ψ)-state of each residue modulo the basin of attraction to which it belongs in the Ramachandran plot. A grammar to combine such coarsely defined torsional states (topologies) and translate them into meaningful patterns of long-range interactions is developed. An algorithm for structure prediction is shown to emerge once this grammar is combined with prescriptions for the time evolution of topological patterns. This algorithm is rooted in the fact that local contributions to the potential energy may be subsumed into time-evolving conformational constraints coarsely defining sets of restricted backbone geometries responsible for framing the patterns of nonbonded interactions. The predictive power of the algorithm is established by obtaining stable topologies of small proteins, which prove to be compatible with their native folds, and computing ab-initio folding pathways for mammalian ubiquitin that ultimately yield a stable structural pattern reproducing its native features.

  4. An Alternative Approach to the Problem of Biomolecular Folding

    NASA Astrophysics Data System (ADS)

    Carbajal-Tinoco, Mauricio D.

    2008-11-01

    After a brief overview that is focused on the importance of biological molecules like RNA and proteins, we present a model that can be used to predict the three-dimensional structure of RNA sequences. An appropriate version of our model was first used in the description of polypeptide folding. These coarse-graining models are based on a set of effective pair potentials that were extracted from experimental data. Such interaction potentials are then used as the main input of Monte Carlo simulations which are characterized by requiring a reasonable computer time, in comparison with other approaches. The resulting structures obtained from our method are clearly similar to the experimental ones.

  5. Kinetic barriers to the folding of horse cytochrome C in the reduced state.

    PubMed

    Bhuyan, Abani K; Kumar, Rajesh

    2002-10-22

    To determine the kinetic barrier in the folding of horse cytochrome c, a CO-liganded derivative of cytochrome c, called carbonmonoxycytochrome c, has been prepared by exploiting the thermodynamic reversibility of ferrocytochrome c unfolding induced by guanidinium hydrochloride (GdnHCl), pH 7. The CO binding properties of unfolded ferrocytochrome c, studied by 13C NMR and optical spectroscopy, are remarkably similar to those of native myoglobin and isolated chains of human hemoglobin. Equilibrium unfolding transitions of ferrocytochrome c in the presence and the absence of CO observed by both excitation energy transfer from the lone tryptophan to the ferrous heme and far-UV circular dichroism (CD) indicate no accumulation of structural intermediates to a detectable level. Values of thermodynamic parameters obtained by two-state analysis of fluorescence transitions are DeltaG(H2O) = 11.65(+/-1.13) kcal x mol(-1) and C(m) = 3.9(+/-0.1) M GdnHCl in the presence of CO, and DeltaG(H2O)=19.3(+/-0.5) kcal x mol(-1) and C(m) = 5.1(+/-0.1) M GdnHCl in the absence of CO, indicating destabilization of ferrocytochrome c by approximately 7.65 kcal x mol(-1) due to CO binding. The native states of ferrocytochrome c and carbonmonoxycytochrome c are nearly identical in terms of structure and conformation except for the Fe2+-M80 --> Fe2+-CO replacement. Folding and unfolding kinetics as a function of GdnHCl, studied by stopped-flow fluorescence, are significantly different for the two proteins. Both refold fast, but carbonmonoxycytochrome c refolds 2-fold faster (tau = 1092 micros at 10 degrees C) than ferrocytochrome c. Linear extrapolation of the folding rates to the ordinate of the chevron plot projects this value of tau to 407 micros. The unfolding rate of the former in water, estimated by extrapolation, is faster by more than 10 orders of magnitude. Significant differences are also observed in rate-denaturant gradients in the chevron. Formation and disruption of the Fe2+-M80

  6. Prediction of protein structure: the problem of fold multiplicity.

    PubMed

    Lomize, A L; Pogozheva, I D; Mosberg, H I

    1999-01-01

    Three-dimensional (3D) models of four CASP3 targets were calculated using a simple modeling procedure that includes prediction of regular secondary structure, analysis of possible beta-sheet topologies, assembly of amphiphilic helices and beta-sheets to bury their nonpolar surfaces, and adjustment of side-chain conformers and loops to provide close packing and saturation of the "hydrogen bond potential" (exposure of all polar groups to water or their involvement in intramolecular hydrogen bonds). It has been found that this approach allows construction of 3D models that, in some cases, properly reproduce the structural class of the protein (such as beta-barrel or beta-sandwich of definite shape and size) and details of tertiary structure (such as pairing of beta-strands), although all four models were more or less incorrect. Remarkably, some models had fewer water-exposed nonpolar side-chains, more hydrogen bonds, and smaller holes than the corresponding native structures (although the models had a larger water-accessible nonpolar surface). The results obtained indicate that hydrophobicity patterns do not unequivocally determine protein folds, and that any ab initio or fold recognition methods that operate with imprecise potential energy functions, or use crude geometrical approximations of the peptide chain, will probably produce many different nonnative structures.

  7. Folding Kinetics of Staphylococcal Nuclease Studied by Tryptophan Engineering and Rapid Mixing Methods

    PubMed Central

    Maki, Kosuke; Cheng, Hong; Dolgikh, Dimitry A.; Roder, Heinrich

    2007-01-01

    To monitor the development of tertiary structural contacts during folding, a unique tryptophan residue was introduced at seven partially buried locations (residues 15, 27, 61, 76, 91, 102 and 121) of a tryptophan-free variant of staphylococcal nuclease (P47G/P117G/H124L/W140H). Thermal unfolding measurements by circular dichroism indicate that the variants are destabilized, but maintain the ability to fold into a native-like structure. For the variants with Trp at positions 15, 27 and 61, the intrinsic fluorescence is significantly quenched in the native state due to close contact with polar side chains that act as intramolecular quenchers. All other variants exhibit enhanced fluorescence under native conditions consistent with burial of the tryptophans in an apolar environment. The kinetics of folding was observed by continuous- and stopped-flow fluorescence measurements over refolding times ranging from 100 μs to 10 s. The folding kinetics of all variants is quantitatively described by a mechanism involving a major pathway with a series of intermediate states and a minor parallel channel. The engineered tryptophans in the β-barrel and the N-terminal part of the α-helical domain become partially shielded from the solvent at an early stage (< 1 ms), indicating that this region of the protein undergoes a rapid specific collapse and remains uncoupled from the rest of the α-helical domain until the late stages of folding. For several variants, a major increase in fluorescence coincides with the rate-limiting step of folding on the 100 ms time scale, indicating that these tryptophans reach their buried native environment only during the late stages of folding. Other variants show more complex behavior with a transient increase in fluorescence during the 10 ms phase followed by a decrease during the rate-limiting phase. These observations are consistent with burial of these probes in a collapsed, but loosely packed intermediate, followed by the rate

  8. Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models

    PubMed Central

    2014-01-01

    We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels–Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg2+ concentrations. Structures generally tend to become more compact upon addition of Mg2+. Some compact structures are observed to significantly depend on Mg2+ concentration, suggesting a tertiary fold stabilized by Mg2+ ions. One compact structure was observed to be Mg2+-independent, consistent with stabilization by tertiary Watson–Crick base pairing found in the folded Diels–Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding. PMID:24568646

  9. Single-molecule kinetics under force: probing protein folding and enzymatic activity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley

    2010-03-01

    Weak non-covalent bonds between and within single molecules govern many aspects of biological structure and function (e.g. DNA base-paring, receptor-ligand binding, protein folding, etc.) In living systems, these interactions are often subject to mechanical forces, which can greatly alter their kinetics and activity. My group develops and applies novel single-molecule manipulation techniques to explore and quantify these force-dependent kinetics. Using optical tweezers, we have quantified the force-dependent unfolding and refolding kinetics of different proteins, including the cytoskeletal protein spectrin in collaboration with E. Evans's group [1], and the A2 domain of the von Willebrand factor blood clotting protein in collaboration with T. Springer's group [2]. Furthermore, we have studied the kinetics of the ADAMTS13 enzyme acting on a single A2 domain, and have shown that physiolgical forces in the circulation can act as a cofactor for enzymatic cleavage, regulating hemostatic activity [2]. References: 1. E. Evans, K. Halvorsen, K. Kinoshita, and W.P. Wong, Handbook of Single Molecule Biophysics, P. Hinterdorfer, ed., Springer (2009). 2. X. Zhang, K. Halvorsen, C.-Z. Zhang, W.P. Wong, and T.A. Springer, Science 324 (5932), 1330-1334 (2009).

  10. Is the unfolded state the Rosetta Stone of the protein folding problem?

    PubMed

    Hammarström, P; Carlsson, U

    2000-09-24

    Solving the protein folding problem is one of the most challenging tasks in the post genomic era. Identification of folding-initiation sites is very important in order to understand the protein folding mechanism. Detection of residual structure in unfolded proteins can yield important clues to the initiation sites in protein folding. A substantial number of studied proteins possess residual structure in hydrophobic regions clustered together in the protein core. These stable structures can work as seeds in the folding process. In addition, local preferences for secondary structure in the form of turns for beta-sheet initiation and helical turns for alpha-helix formation can guide the folding reaction. In this respect the unfolded states, studied at increasing structural resolution, can be the Rosetta Stone of the protein folding problem.

  11. The folding kinetics of the SDS-induced molten globule form of reduced cytochrome c.

    PubMed

    Chen, Eefei; Van Vranken, Vanessa; Kliger, David S

    2008-05-13

    The folding of reduced cytochrome c (redcyt c) is increasingly being recognized as undergoing a mechanism that deviates from a two-state process. In previous far-UV TRORD studies of redcyt c folding, a rapidly forming intermediate was attributed to the appearance of a molten-globule-like (MG) state [Chen, E., Goldbeck, R. A., and Kliger, D. S. (2003) J. Phys. Chem. A 107, 8149-8155]. A slow folding phase (>1 ms) was identified with the formation of native (N) secondary structure from that MG form. Here, using 0.65 mM SDS to induce the MG state in oxidized cytochrome c, folding of redcyt c was triggered with fast photoreduction and probed from early microseconds to milliseconds using far-UV TRORD spectroscopy. The kinetics of the reaction are described with a time constant of 50 +/- 16 ms, which corresponds to 1 +/- 0.6 ms upon extrapolation of the data to zero SDS concentration. The latter folding time is about 5 times faster than the calculated GuHCl-free time constant of 5.5 +/- 1.4 ms for slow-phase folding obtained in our previous study. This ratio of rates would be consistent with a scenario in which 20-30% MG that is suggested to form in the fast phase of redcyt c folding in GuHCl is an obligatory intermediate. The native state forms from this obligatory intermediate with an observed rate, k(f) = fk(G-->N) where f is the fractional population of MG and k(G-->N) is the microscopic rate for MG --> N. Calculation and comparison of the m(#)/m values show agreement within the uncertainties between the SDS ( approximately 0.5) and GuHCl ( approximately 0.3) based redcyt c folding experiments, suggesting that the two experiments report on comparable intermediates. The m values were obtained from far-UV CD SDS titration experiments, from which calculated thermodynamic parameters allowed estimation of the reduction potential for the MG state to be approximately 155 mV (-15 kJ/mol) vs NHE which, like the reduction potential for the native state, is more favorable than

  12. Local Kinetic Measures of Macromolecular Structure Reveal Partitioning Among Multiple Parallel Pathways from the Earliest Steps in the Folding of a Large RNA Molecule

    SciTech Connect

    Laederach,A.; Shcherbakova, I.; Liang, M.; Brenowitz, M.; Altman, R.

    2006-01-01

    At the heart of the RNA folding problem is the number, structures, and relationships among the intermediates that populate the folding pathways of most large RNA molecules. Unique insight into the structural dynamics of these intermediates can be gleaned from the time-dependent changes in local probes of macromolecular conformation (e.g. reports on individual nucleotide solvent accessibility offered by hydroxyl radical ({center_dot}OH) footprinting). Local measures distributed around a macromolecule individually illuminate the ensemble of separate changes that constitute a folding reaction. Folding pathway reconstruction from a multitude of these individual measures is daunting due to the combinatorial explosion of possible kinetic models as the number of independent local measures increases. Fortunately, clustering of time progress curves sufficiently reduces the dimensionality of the data so as to make reconstruction computationally tractable. The most likely folding topology and intermediates can then be identified by exhaustively enumerating all possible kinetic models on a super-computer grid. The folding pathways and measures of the relative flux through them were determined for Mg{sup 2+} and Na{sup +}-mediated folding of the Tetrahymena thermophila group I intron using this combined experimental and computational approach. The flux during Mg{sup 2+}-mediated folding is divided among numerous parallel pathways. In contrast, the flux during the Na{sup +}-mediated reaction is predominantly restricted through three pathways, one of which is without detectable passage through intermediates. Under both conditions, the folding reaction is highly parallel with no single pathway accounting for more than 50% of the molecular flux. This suggests that RNA folding is non-sequential under a variety of different experimental conditions even at the earliest stages of folding. This study provides a template for the systematic analysis of the time-evolution of RNA structure

  13. Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold*

    PubMed Central

    Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico

    2015-01-01

    Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877

  14. Integral and differential form of the protein folding problem

    NASA Astrophysics Data System (ADS)

    Tramontano, Anna

    2004-07-01

    The availability of the complete genomic sequences of many species, including human, has raised enormous expectations in medicine, pharmacology, ecology, biotechnology and forensic sciences. However, knowledge is only a first step toward understanding, and we are only at the early stage of a scientific process that might lead us to satisfy all the expectations raised by the genomic projects. In this review I will discuss the present status of computational methods that attempt to infer the unique three-dimensional structure of proteins from their amino acid sequences. Although this problem has been defined as the “holy grail” of biology, it represents only one of the many hurdles in our path towards the understanding of life at a molecular level.

  15. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    PubMed

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  16. Buffed energy landscapes: another solution to the kinetic paradoxes of protein folding.

    PubMed

    Plotkin, Steven S; Wolynes, Peter G

    2003-04-15

    The energy landscapes of proteins have evolved to be different from most random heteropolymers. Many studies have concluded that evolutionary selection for rapid and reliable folding to a given structure that is stable at biological temperatures leads to energy landscapes having a single dominant basin and an overall funnel topography. We show here that, although such a landscape topography is indeed a sufficient condition for folding, another possibility also exists, giving a previously undescribed class of foldable sequences. These sequences have landscapes that are only weakly funneled in the conventional thermodynamic sense but have unusually low kinetic barriers for reconfigurational motion. Traps have been specifically removed by selection. Here we examine the possibility of folding on these "buffed" landscapes by mapping the determination of statistics of pathways for the heterogeneous nucleation processes involved in escaping from traps to the solution of an imaginary time Schroedinger equation. This equation is solved analytically in adiabatic and "soft-wall" approximations, and numerical results are shown for the general case. The fraction of funneled vs. buffed proteins in sequence space is estimated, suggesting the statistical dominance of the funneling mechanism for achieving foldability.

  17. Concordant Exploration of the Kinetics of RNA Folding from Global and Local Perspectives

    SciTech Connect

    Kwok,L.; Scherbakova, I.; Lamb, J.; Park, H.; Andresen, K.; Smith, H.; Brenowitz, M.; Pollack, L.

    2006-01-01

    Time-resolved small-angle X-ray scattering (SAXS) with millisecond time-resolution reveals two discrete phases of global compaction upon Mg{sup 2+}-mediated folding of the Tetrahymena thermophila ribozyme. Electrostatic relaxation of the RNA occurs rapidly and dominates the first phase of compaction during which the observed radius of gyration (R{sub g}) decreases from 75 Angstroms to 55 Angstroms. A further decrease in R{sub g} to 45 Angstroms occurs in a well-defined second phase. An analysis of mutant ribozymes shows that the latter phase depends upon the formation of long-range tertiary contacts within the P4-P6 domain of the ribozyme; disruption of the three remaining long-range contacts linking the peripheral helices has no effect on the 55-45 Angstroms compaction transition. A better understanding of the role of specific tertiary contacts in compaction was obtained by concordant time-resolved hydroxyl radical ({center_dot}OH) analyses that report local changes in the solvent accessibility of the RNA backbone. Comparison of the global and local measures of folding shows that formation of a subset of native tertiary contacts (i.e. those defining the ribozyme core) can occur within a highly compact ensemble whose R{sub g} is close to that of the fully folded ribozyme. Analyses of additional ribozyme mutants and reaction conditions establish the generality of the rapid formation of a partially collapsed state with little to no detectable tertiary structure. These studies directly link global RNA compaction with formation of tertiary structure as the molecule acquires its biologically active structure, and underscore the strong dependence on salt of both local and global measures of folding kinetics.

  18. Kinetics of folding and association of differently glycosylated variants of invertase from Saccharomyces cerevisiae.

    PubMed Central

    Kern, G.; Kern, D.; Jaenicke, R.; Seckler, R.

    1993-01-01

    A core-glycosylated form of the dimeric enzyme invertase has been isolated from secretion mutants of Saccharomyces cerevisiae blocked in transport to the Golgi apparatus. This glycosylation variant corresponds to the form that folds and associates during biosynthesis of the protein in vivo. In the present work, its largely homogeneous subunit size and well-defined quaternary structure were utilized to characterize the folding and association pathway of this highly glycosylated protein in comparison with the nonglycosylated cytoplasmic and the high-mannose-glycosylated periplasmic forms of the same enzyme encoded by the suc2 gene. Renaturation of core-glycosylated invertase upon dilution from guanidinium-chloride solutions follows a unibimolecular reaction scheme with consecutive first-order subunit folding and second-order association reactions. The rate constant of the rate-limiting step of subunit folding, as detected by fluorescence increase, is k1 = 1.6 +/- 0.4 x 10(-3) s-1 at 20 degrees C; it is characterized by an activation enthalpy of delta H++ = 65 kJ/mol. The reaction is not catalyzed by peptidyl-prolyl cis-trans isomerase of the cyclophilin type. Reactivation of the enzyme depends on protein concentration and coincides with subunit association, as monitored by size-exclusion high-pressure liquid chromatography. The association rate constant, estimated by numerical simulation of reactivation kinetics, increases from 5 x 10(3) M-1 s-1 to 7 x 10(4) M-1 s-1 between 5 and 30 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8268797

  19. In vitro refolding of human proinsulin. Kinetic intermediates, putative disulfide-forming pathway folding initiation site, and potential role of C-peptide in folding process.

    PubMed

    Qiao, Zhi-Song; Min, Cheng-Yin; Hua, Qing-Xin; Weiss, Michael A; Feng, You-Min

    2003-05-16

    Human insulin is a double-chain peptide that is synthesized in vivo as a single-chain human proinsulin (HPI). We have investigated the disulfide-forming pathway of a single-chain porcine insulin precursor (PIP). Here we further studied the folding pathway of HPI in vitro. While the oxidized refolding process of HPI was quenched, four obvious intermediates (namely P1, P2, P3, and P4, respectively) with three disulfide bridges were isolated and characterized. Contrary to the folding pathway of PIP, no intermediates with one- or two-disulfide bonds could be captured under different refolding conditions. CD analysis showed that P1, P2, and P3 retained partially structural conformations, whereas P4 contained little secondary structure. Based on the time-dependent distribution, disulfide pair analysis, and disulfide-reshuffling process of the intermediates, we have proposed that the folding pathway of HPI is significantly different from that of PIP. These differences reveal that the C-peptide not only facilitates the folding of HPI but also governs its kinetic folding pathway of HPI. Detailed analysis of the molecular folding process reveals that there are some similar folding mechanisms between PIP and HPI. These similarities imply that the initiation site for the folding of PIP/HPI may reside in the central alpha-helix of the B-chain. The formation of disulfide A20-B19 may guide the transfer of the folding information from the B-chain template to the unstructured A-chain. Furthermore, the implications of this in vitro refolding study on the in vivo folding process of HPI have been discussed.

  20. Improvements in Mixing Time and Mixing Uniformity in Devices Designed for Studies of Protein Folding Kinetics

    SciTech Connect

    Yao, Shuhuai; Bakajin, Olgica

    2007-08-01

    Using a microfluidic laminar flow mixer designed for studies of protein folding kinetics, we demonstrate a mixing time of 1 +/- 1 micros with sample consumption on the order of femtomoles. We recognize two limitations of previously proposed designs: (1) size and shape of the mixing region, which limits mixing uniformity and (2) the formation of Dean vortices at high flow rates, which limits the mixing time. We address these limitations by using a narrow shape-optimized nozzle and by reducing the bend of the side channel streamlines. The final design, which combines both of these features, achieves the best performance. We quantified the mixing performance of the different designs by numerical simulation of coupled Navier-Stokes and convection-diffusion equations and experiments using fluorescence resonance energy-transfer (FRET)-labeled DNA.

  1. Entanglement in correlated random spin chains, RNA folding and kinetic roughening

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.; Ramírez, Giovanni; Sierra, Germán

    2016-07-01

    Average block entanglement in the 1D XX-model with uncorrelated random couplings is known to grow as the logarithm of the block size, in similarity to conformal systems. In this work we study random spin chains whose couplings present long range correlations, generated as gaussian fields with a power-law spectral function. Ground states are always planar valence bond states, and their statistical ensembles are characterized in terms of their block entropy and their bond-length distribution, which follow power-laws. We conjecture the existence of a critical value for the spectral exponent, below which the system behavior is identical to the case of uncorrelated couplings. Above that critical value, the entanglement entropy violates the area law and grows as a power law of the block size, with an exponent which increases from zero to one. Interestingly, we show that XXZ models with positive anisotropy present the opposite behavior, and strong correlations in the couplings lead to lower entropies. Similar planar bond structures are also found in statistical models of RNA folding and kinetic roughening, and we trace an analogy between them and quantum valence bond states. Using an inverse renormalization procedure we determine the optimal spin-chain couplings which give rise to a given planar bond structure, and study the statistical properties of the couplings whose bond structures mimic those found in RNA folding.

  2. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward P.; Vendruscolo, Michele; Dobson, Christopher M.

    2014-01-01

    It has been observed for several proteins that slowing down the rate at which individual codons are translated can increase their probability of cotranslational protein folding, while speeding up codon translation can decrease it. Here we investigate whether or not this inverse relationship between translation speed and the cotranslational folding probability is a general phenomenon or if other scenarios are possible. We first derive chemical kinetic equations that relate individual codon translation rates to the probability that a domain will fold, populate an intermediate or misfold, and examine the cotranslational folding scenarios that are possible within these models. We find that speeding up codon translation through misfolding-prone segments can, in some cases, increase the folding probability of a domain immediately before the nascent protein is released from the ribosome and decrease its chances of misfolding. Thus, for some proteins fast-translating codons could be as important as slow-translating codons in coordinating cotranslational protein folding.

  3. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.

    PubMed

    Madan, Bharat; Sokalingam, Sriram; Raghunathan, Govindan; Lee, Sun-Gu

    2014-10-01

    Both Type I' and Type II' β-turns have the same sense of the β-turn twist that is compatible with the β-sheet twist. They occur predominantly in two residue β-hairpins, but the occurrence of Type I' β-turns is two times higher than Type II' β-turns. This suggests that Type I' β-turns may be more stable than Type II' β-turns, and Type I' β-turn sequence and structure can be more favorable for protein folding than Type II' β-turns. Here, we redesigned the native Type II' β-turn in GFP to Type I' β-turn, and investigated its effect on protein folding and stability. The Type I' β-turns were designed based on the statistical analysis of residues in natural Type I' β-turns. The substitution of the native "GD" sequence of i+1 and i+2 residues with Type I' preferred "(N/D)G" sequence motif increased the folding rate by 50% and slightly improved the thermodynamic stability. Despite the enhancement of in vitro refolding kinetics and stability of the redesigned mutants, they showed poor soluble expression level compared to wild type. To overcome this problem, i and i + 3 residues of the designed Type I' β-turn were further engineered. The mutation of Thr to Lys at i + 3 could restore the in vivo soluble expression of the Type I' mutant. This study indicates that Type II' β-turns in natural β-hairpins can be further optimized by converting the sequence to Type I'.

  4. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation.

    PubMed

    LeMaster, David M; Tang, Jianzhong; Hernández, Griselda

    2004-10-01

    The striking kinetic stability of many proteins derived from hyperthermophilic organisms has led to the proposal that such stability may result from a heightened activation barrier for unfolding independent of a corresponding increase in the thermodynamic stability. This in turn implies a corresponding retardation of the folding reaction. A commonly cited model for kinetic thermal stabilization is the rubredoxin from Pyrococcus furiosus (Pf), which exhibits an irreversible denaturation lifetime at 100 degrees C of nearly a week. Utilizing protein resonances shifted well outside of the random coil chemical shift envelope, nuclear magnetic resonance (NMR) chemical exchange measurements on Pf rubredoxin as well as on the mesophile Clostridium pasteurianum (Cp) rubredoxin demonstrate reversible thermal transition temperatures of 144 degrees C (137 degrees C for the N-terminal modified A2K variant) and 104 degrees C, respectively, with similar (un)folding rates of approximately 25,000 s(-1), only modestly slower than the diffusion controlled rate. The absence of a substantial activation barrier to rubredoxin folding as well as the similar folding kinetics of the mesophile protein indicate that kinetic stabilization has not been utilized by the hyperthermophile rubredoxin in achieving its extreme thermal stability. The two-state folding kinetics observed for Pf rubredoxin contradict a previous assertion of multiphasic folding based on hydrogen exchange data extrapolated to an estimated midpoint of transition temperature (T(m)) of nearly 200 degrees C. This discrepancy is resolved by the observation that the base-catalyzed hydrogen exchange of the model dipeptide (N-acetyl-L-cysteine-N-methylamide)4-Cd2+ is 23-fold slower than that of the free cysteine model dipeptide used to normalize the Pf rubredoxin hydrogen exchange data.

  5. Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements

    PubMed Central

    Zhou, Rui; Maisuradze, Gia G.; Suñol, David; Todorovski, Toni; Macias, Maria J.; Xiao, Yi; Scheraga, Harold A.; Czaplewski, Cezary; Liwo, Adam

    2014-01-01

    To demonstrate the utility of the coarse-grained united-residue (UNRES) force field to compare experimental and computed kinetic data for folding proteins, we have performed long-time millisecond-timescale canonical Langevin molecular dynamics simulations of the triple β-strand from the Formin binding protein 28 WW domain and six nonnatural variants, using UNRES. The results have been compared with available experimental data in both a qualitative and a quantitative manner. Complexities of the folding pathways, which cannot be determined experimentally, were revealed. The folding mechanisms obtained from the simulated folding kinetics are in agreement with experimental results, with a few discrepancies for which we have accounted. The origins of single- and double-exponential kinetics and their correlations with two- and three-state folding scenarios are shown to be related to the relative barrier heights between the various states. The rate constants obtained from time profiles of the fractions of the native, intermediate, and unfolded structures, and the kinetic equations fitted to them, correlate with the experimental values; however, they are about three orders of magnitude larger than the experimental ones for most of the systems. These differences are in agreement with the timescale extension derived by scaling down the friction of water and averaging out the fast degrees of freedom when passing from all-atom to a coarse-grained representation. Our results indicate that the UNRES force field can provide accurate predictions of folding kinetics of these WW domains, often used as models for the study of the mechanisms of proein folding. PMID:25489078

  6. Integral kinetic equation in dechanneling problem

    NASA Astrophysics Data System (ADS)

    Ryabov, V.

    1989-11-01

    A version of dechanneling theory, based on using an integral kinetic equation in both the phase and transverse energy space, is described. It is derived from the binary collision model and it takes into account consistently the thermal multiple and single scattering of axial and planar channeled particles. The connection between the method developed and that of Oshiyama and of Gartner is discussed.

  7. Kinetic and thermodynamic origins of osmolyte-influenced nucleic acid folding.

    PubMed

    Holmstrom, Erik D; Dupuis, Nicholas F; Nesbitt, David J

    2015-03-05

    The influential role of monovalent and divalent metal cations in facilitating conformational transitions in both RNA and DNA has been a target of intense biophysical research efforts. However, organic neutrally charged cosolutes can also significantly alter nucleic acid conformational transitions. For example, highly soluble small molecules such as trimethylamine N-oxide (TMAO) and urea are occasionally utilized by organisms to regulate cellular osmotic pressure. Ensemble studies have revealed that these so-called osmolytes can substantially influence the thermodynamics of nucleic acid conformational transitions. In the present work, we exploit single-molecule FRET (smFRET) techniques to measure, for first time, the kinetic origins of these osmolyte-induced changes to the folding free energy. In particular, we focus on smFRET RNA and DNA constructs designed as model systems for secondary and tertiary structure formation. These findings reveal that TMAO preferentially stabilizes both secondary and tertiary interactions by increasing kfold and decreasing kunfold, whereas urea destabilizes both conformational transitions, resulting in the exact opposite shift in kinetic rate constants (i.e., decreasing kfold and increasing kunfold). Complementary temperature-dependent smFRET experiments highlight a thermodynamic distinction between the two different mechanisms responsible for TMAO-facilitated conformational transitions, while only a single mechanism is seen for the destabilizing osmolyte urea. Finally, these results are interpreted in the context of preferential interactions between osmolytes, and the solvent accessible surface area (SASA) associated with the (i) nucleobase, (ii) sugar, and (iii) phosphate groups of nucleic acids in order to map out structural changes that occur during the conformational transitions.

  8. The folding of spectrin domains I: wild-type domains have the same stability but very different kinetic properties.

    PubMed

    Scott, Kathryn A; Batey, Sarah; Hooton, Karen A; Clarke, Jane

    2004-11-12

    The study of proteins with the same architecture, but different sequence has proven to be a valuable tool in the protein folding field. As a prelude to studies on the folding mechanism of spectrin domains we present the kinetic characterisation of the wild-type forms of the 15th, 16th, and 17th domains of chicken brain alpha-spectrin (referred to as R15, R16 and R17, respectively). We show that the proteins all behave in a two-state manner, with different kinetic properties. The folding rate varies remarkably between different members, with a 5000-fold variation in folding rate and 3000-fold variation in unfolding rate seen for proteins differing only 1 kcal mol(-1) in stability. We show clear evidence for significant complexity in the energy landscape of R16, which shows a change in amplitude outside the stopped-flow timescale and curvature in the unfolding arm of the chevron plot. The accompanying paper describes the characterisation of the folding pathway of this domain.

  9. Kinetic barriers and the role of topology in protein and RNA folding

    PubMed Central

    Sosnick, Tobin R.

    2008-01-01

    This review compares the folding behavior of proteins and RNAs. Topics covered include the role of topology in the determination of folding rates, major folding events including collapse, properties of denatured states, pathway heterogeneity, and the influence of the mode of initiation on the folding pathway. PMID:18502978

  10. Analyzing complicated protein folding kinetics rapidly by analytical Laplace inversion using a Tikhonov regularization variant.

    PubMed

    Mulligan, Vikram Khipple; Hadley, Kevin Charles; Chakrabartty, Avijit

    2012-02-01

    Kinetic experiments provide much information about protein folding mechanisms. Time-resolved signals are often best described by expressions with many exponential terms, but this hinders the extraction of rate constants by nonlinear least squares (NLS) fitting. Numerical inverse Laplace transformation, which converts a time-resolved dataset into a spectrum of amplitudes as a function of rate constant, allows easy estimation of the rate constants, amplitudes, and number of processes underlying the data. Here, we present a Tikhonov regularization-based method that converts a dataset into a rate spectrum, subject to regularization constraints, without requiring an iterative search of parameter space. This allows more rapid generation of rate spectra as well as analysis of datasets too noisy to process by existing iterative search algorithms. This method's simplicity also permits highly objective, largely automatic analysis with minimal human guidance. We show that this regularization method reproduces results previously obtained by NLS fitting and that it is effective for analyzing datasets too complex for traditional fitting methods. This method's reliability and speed, as well as its potential for objective, model-free analysis, make it extremely useful as a first step in analysis of complicated noisy datasets and an excellent guide for subsequent NLS analysis. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering.

    PubMed

    Sparkman-Yager, David; Correa-Rojas, Rodrigo A; Carothers, James M

    2015-01-01

    Recent developments in the fields of synthetic biology and metabolic engineering have opened the doors for the microbial production of biofuels and other valuable organic compounds. There remain, however, significant metabolic hurdles to the production of these compounds in cost-effective quantities. This is due, in part, to mismatches between the metabolic engineer's desire for high yields and the microbe's desire to survive. Many valuable compounds, or the intermediates necessary for their biosynthesis, prove deleterious at the desired production concentrations. One potential solution to these toxicity-related issues is the implementation of nonnative dynamic genetic control mechanisms that sense excessively high concentrations of metabolic intermediates and respond accordingly to alleviate their impact. One potential class of dynamic regulator is the riboswitch: cis-acting RNA elements that regulate the expression of downstream genes based on the presence of an effector molecule. Here, we present combined methods for constructing aptazyme-regulated expression devices (aREDs) through computational cotranscriptional kinetic folding design and experimental validation. These approaches can be used to engineer aREDs within novel genetic contexts for the predictable, dynamic regulation of gene expression in vivo. © 2015 Elsevier Inc. All rights reserved.

  12. Approximate Solutions for a Self-Folding Problem of Carbon Nanotubes

    SciTech Connect

    Y Mikata

    2006-08-22

    This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations [1] that a carbon nanotube with a large aspect ratio can self-fold due to van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. An approximate mathematical model based on the force method is constructed for the self-folding problem of carbon nanotubes, and it is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.

  13. A hybrid approach to protein folding problem integrating constraint programming with local search

    PubMed Central

    2010-01-01

    Background The protein folding problem remains one of the most challenging open problems in computational biology. Simplified models in terms of lattice structure and energy function have been proposed to ease the computational hardness of this optimization problem. Heuristic search algorithms and constraint programming are two common techniques to approach this problem. The present study introduces a novel hybrid approach to simulate the protein folding problem using constraint programming technique integrated within local search. Results Using the face-centered-cubic lattice model and 20 amino acid pairwise interactions energy function for the protein folding problem, a constraint programming technique has been applied to generate the neighbourhood conformations that are to be used in generic local search procedure. Experiments have been conducted for a few small and medium sized proteins. Results have been compared with both pure constraint programming approach and local search using well-established local move set. Substantial improvements have been observed in terms of final energy values within acceptable runtime using the hybrid approach. Conclusion Constraint programming approaches usually provide optimal results but become slow as the problem size grows. Local search approaches are usually faster but do not guarantee optimal solutions and tend to stuck in local minima. The encouraging results obtained on the small proteins show that these two approaches can be combined efficiently to obtain better quality solutions within acceptable time. It also encourages future researchers on adopting hybrid techniques to solve other hard optimization problems. PMID:20122212

  14. The initial value problem in Lagrangian drift kinetic theory

    NASA Astrophysics Data System (ADS)

    Burby, J. W.

    2016-06-01

    > Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.

  15. Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding.

    PubMed

    Zhou, Guangfeng; Voelz, Vincent A

    2016-02-11

    Salt-bridge interactions play an important role in stabilizing many protein structures, and have been shown to be designable features for protein design. In this work, we study the effects of non-native salt bridges on the folding of a soluble alanine-based peptide (Fs peptide) using extensive all-atom molecular dynamics simulations performed on the Folding@home distributed computing platform. Using Markov State Models, we show how non-native salt-bridges affect the folding kinetics of Fs peptide by perturbing specific conformational states. Furthermore, we present methods for the automatic detection and analysis of such states. These results provide insight into helix folding mechanisms and useful information to guide simulation-based computational protein design.

  16. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.

    PubMed Central

    Mayr, L. M.; Willbold, D.; Landt, O.; Schmid, F. X.

    1994-01-01

    The Cys 2-Cys 10 disulfide bond in ribonuclease T1 was broken by substituting Cys 2 and Cys 10 by Ser and Asn, respectively, as present in ribonuclease F1. This C2S/C10N variant resembles the wild-type protein in structure and in catalytic activity. Minor structural changes were observed by 2-dimensional NMR in the local environment of the substituted amino acids only. The thermodynamic stability of ribonuclease T1 is strongly reduced by breaking the Cys 2-Cys 10 bond, and the free energy of denaturation is decreased by about 10 kJ/mol. The folding mechanism is not affected, and the trans to cis isomerizations of Pro 39 and Pro 55 are still the rate-limiting steps of the folding process. The differences in the time courses of unfolding and refolding are correlated with the decrease in stability: the folding kinetics of the wild-type protein and the C2S/C10N variant become indistinguishable when they are compared under conditions of identical stability. Apparently, the Cys 2-Cys 10 disulfide bond is important for the stability but not for the folding mechanism of ribonuclease T1. The breaking of this bond has the same effect on stability and folding kinetics as adding 1 M guanidinium chloride to the wild-type protein. PMID:8003959

  17. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    PubMed

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  18. Analysis of the kinetics of folding of proteins and peptides using circular dichroism

    PubMed Central

    Greenfield, Norma J.

    2009-01-01

    Circular dichroism (CD) is a useful spectroscopic technique for studying the secondary structure, folding and binding properties of proteins. This protocol covers how to use the intrinsic circular dichroic properties of proteins to follow their folding and unfolding as a function of time. Included will be methods of obtaining data and how to analyze the folding and unfolding data to determine the rate constants and the order of the folding/unfolding reactions. The protocol focuses on the use of CD to follow folding when it is relatively slow, on the order of minutes to days. The methods for analyzing the data, however, can also be applied to data collected with a CD machine equipped with stopped-flow accessories in the millisecond to second range and folding analyzed by other spectroscopic methods including changes in absorption or fluorescence spectra as a function of time. PMID:17406548

  19. Probing Protein Folding Kinetics with High-resolution, Stabilized Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Wong, Wesley; Halvorsen, Ken

    2009-03-01

    Single-molecule techniques provide a powerful means of exploring molecular transitions such as the unfolding and refolding of a protein. However, the quantification of bi-directional transitions and near-equilibrium phenomena poses unique challenges, and is often limited by the detection resolution and long-term stability of the instrument. We have developed unique optical tweezers methods that address these problems, including an interference-based method for high-resolution 3D bead tracking (˜1 nm laterally, ˜0.3 nm vertically, at > 100 Hz), and a continuous autofocus system that stabilizes the trap height to within 1-2 nm longterm [1,2]. We have used our instruments to quantify the force-dependent unfolding and refolding kinetics of single protein domains (e.g. spectrin in collaboration with E. Evans). These single-molecule studies are presented, together with the accompanying probabilistic analysis that we have developed. References: 1. W.P. Wong, V. Heinrich, E. Evans, Mat. Res. Soc. Symp. Proc., 790, P5.1-P5.10 (2004). 2. V. Heinrich, W.P. Wong, K. Halvorsen, E. Evans, Langmuir, 24, 1194-1203 (2008).

  20. How Kinetics within the Unfolded State Affects Protein Folding: an Analysis Based on Markov State Models and an Ultra-Long MD Trajectory

    PubMed Central

    Deng, Nan-jie; Dai, Wei

    2013-01-01

    Understanding how kinetics in the unfolded state affects protein folding is a fundamentally important yet less well-understood issue. Here we employ three different models to analyze the unfolded landscape and folding kinetics of the miniprotein Trp-cage. The first is a 208 μs explicit solvent molecular dynamics (MD) simulation from D. E. Shaw Research containing tens of folding events. The second is a Markov state model (MSM-MD) constructed from the same ultra-long MD simulation; MSM-MD can be used to generate thousands of folding events. The third is a Markov state model built from temperature replica exchange MD simulations in implicit solvent (MSM-REMD). All the models exhibit multiple folding pathways, and there is a good correspondence between the folding pathways from direct MD and those computed from the MSMs. The unfolded populations interconvert rapidly between extended and collapsed conformations on time scales ≤ 40 ns, compared with the folding time of ≈ 5 μs. The folding rates are independent of where the folding is initiated from within the unfolded ensemble. About 90 % of the unfolded states are sampled within the first 40 μs of the ultra-long MD trajectory, which on average explores ~27 % of the unfolded state ensemble between consecutive folding events. We clustered the folding pathways according to structural similarity into “tubes”, and kinetically partitioned the unfolded state into populations that fold along different tubes. From our analysis of the simulations and a simple kinetic model, we find that when the mixing within the unfolded state is comparable to or faster than folding, the folding waiting times for all the folding tubes are similar and the folding kinetics is essentially single exponential despite the presence of heterogeneous folding paths with non-uniform barriers. When the mixing is much slower than folding, different unfolded populations fold independently leading to non-exponential kinetics. A kinetic partition of

  1. Thermodynamics and kinetics of protein folding on the ribosome: Alteration in energy landscapes, denatured state, and transition state ensembles

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward; Vendruscolo, Michele; Dobson, Christopher

    2010-03-01

    In vitro experiments examining cotranslational folding utilize ribosome-nascent chain complexes (RNCs) in which the nascent chain is stalled at different points of its biosynthesis on the ribosome. We investigate the thermodynamics, kinetics, and structural properties of RNCs containing five different globular and repeat proteins stalled at ten different nascent chain lengths using coarse grained replica exchange simulations. We find that when the proteins are stalled near the ribosome exit tunnel opening they exhibit altered folding coopserativity, quantified by the van't Hoff enthalpy criterion; a significantly altered denatured state ensemble, in terms of Rg and shape parameters (Rg tensor); and the appearance of partially folded intermediates during cotranslation, evidenced by the appearance of a third basin in the free energy profile. These trends are due in part to excluded volume (crowding) interactions between the ribosome and nascent chain. We perform in silico temperature-jump experiments on the RNCs and examine nascent chain folding kinetics and structural changes in the transition state ensemble at various stall lengths.

  2. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy

    NASA Astrophysics Data System (ADS)

    Snow, Christopher D.; Qiu, Linlin; Du, Deguo; Gai, Feng; Hagen, Stephen J.; Pande, Vijay S.

    2004-03-01

    We studied the microsecond folding dynamics of three hairpins (Trp zippers 1-3, TZ1-TZ3) by using temperature-jump fluorescence and atomistic molecular dynamics in implicit solvent. In addition, we studied TZ2 by using time-resolved IR spectroscopy. By using distributed computing, we obtained an aggregate simulation time of 22 ms. The simulations included 150, 212, and 48 folding events at room temperature for TZ1, TZ2, and TZ3, respectively. The all-atom optimized potentials for liquid simulations (OPLSaa) potential set predicted TZ1 and TZ2 properties well; the estimated folding rates agreed with the experimentally determined folding rates and native conformations were the global potential-energy minimum. The simulations also predicted reasonable unfolding activation enthalpies. This work, directly comparing large simulated folding ensembles with multiple spectroscopic probes, revealed both the surprising predictive ability of current models as well as their shortcomings. Specifically, for TZ1-TZ3, OPLS for united atom models had a nonnative free-energy minimum, and the folding rate for OPLSaa TZ3 was sensitive to the initial conformation. Finally, we characterized the transition state; all TZs fold by means of similar, native-like transition-state conformations.

  3. Finessing filter scarcity problem in face recognition via multi-fold filter convolution

    NASA Astrophysics Data System (ADS)

    Low, Cheng-Yaw; Teoh, Andrew Beng-Jin

    2017-06-01

    The deep convolutional neural networks for face recognition, from DeepFace to the recent FaceNet, demand a sufficiently large volume of filters for feature extraction, in addition to being deep. The shallow filter-bank approaches, e.g., principal component analysis network (PCANet), binarized statistical image features (BSIF), and other analogous variants, endure the filter scarcity problem that not all PCA and ICA filters available are discriminative to abstract noise-free features. This paper extends our previous work on multi-fold filter convolution (ℳ-FFC), where the pre-learned PCA and ICA filter sets are exponentially diversified by ℳ folds to instantiate PCA, ICA, and PCA-ICA offspring. The experimental results unveil that the 2-FFC operation solves the filter scarcity state. The 2-FFC descriptors are also evidenced to be superior to that of PCANet, BSIF, and other face descriptors, in terms of rank-1 identification rate (%).

  4. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry.

    PubMed

    Vander Meulen, Kirk A; Butcher, Samuel E

    2012-03-01

    A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.

  5. Quantitative criteria for native energetic heterogeneity influences in the prediction of protein folding kinetics

    PubMed Central

    Cho, Samuel S.; Levy, Yaakov; Wolynes, Peter G.

    2009-01-01

    Energy landscape theory requires that the protein-folding mechanism is generally globally directed or funneled toward the native state. The collective nature of transition state ensembles further suggests that sufficient averaging of the native interactions can occur so that the knowledge of the native topology may suffice for predicting the mechanism. Nevertheless, while simple homogeneously weighted native topology-based models predict the folding mechanisms for many proteins, for other proteins knowledge of the native topology, by itself, seems not to suffice in determining the folding mechanism. Simulations of proteins with differing topologies reveal that the failure of homogeneously weighted topology-based models can, however, be completely understood within the framework of a funneled energy landscape and can be quantified by comparing the fluctuation of entropy cost for forming contacts to the expected fluctuations in contact energy. To be precise, we find the transition state ensembles of proteins with all-α topologies, which are more uniform in the specific entropy cost of contact formation, have transition state ensembles that are more readily perturbed by differences in energetic weights than are the transition state ensembles of proteins with significant amounts of β-structure, where the specific entropy costs of contact formation are more widely distributed. This behavior is consistent with a random-field Ising model analogy that follows from the free energy functional approach to folding. PMID:19075236

  6. Development of a Fast Microfluidic Mixer for Studies of Protein Folding KineticsFinal Report Cover Page

    SciTech Connect

    Bakajin, O

    2005-02-10

    We designed and fabricated mixing devices that will help us elucidate the mechanisms of protein folding through measurements of folding reaction rates. These devices can be used in studying of other biological systems and are compatible with various spectroscopic observation methods. The project involved development of fabrication processes and setup of a laboratory for assembly and characterization of microfluidic devices, as well as measurements of protein folding kinetics. We produced three variants of the mixer: (1) The ultra fast mixer for Foerster Resonance Energy Transfer measurements (described by Anal. Chem. Article UCRL-JRNL-206676) and MicroTAS Conference Proceedings article (UCRL-JC-153057 ) included in the report; (2) The ultra fast mixer for UV measurements (described by the poster presented at MicroTAS conference (UCRL-POST-207476) included in the report); and (3) The mixer for single molecule measurements (described by the Science article UCRL-JC-153057) included in the report. In these mixers, the channels are narrow, ranging from a few to hundreds of {micro}m, so that the flow is laminar and all of the mixing is achieved through diffusion. Our goal is to develop robust microfluidic mixer with at least 100 times lower consumption rate, shorter dead time and time resolution than commercially available mixers that would be compatible with most commonly used spectroscopic methods. We are also developing mixers that can be used in combination with single molecule spectroscopy. The mixers are used to study kinetics of fast protein folding reactions using bulk fluorescence and single molecule fluorescence resonance energy transfer techniques. Capabilities for microfluidic have been developed at BSNL that will be useful for studies of interactions of DNA with proteins and other projects such as the single molecule detector for detection of low concentration of toxins.

  7. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.

    PubMed

    Chen, Haorong; Weng, Te-Wei; Riccitelli, Molly M; Cui, Yi; Irudayaraj, Joseph; Choi, Jong Hyun

    2014-05-14

    DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.

  8. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics.

    PubMed

    Aliye, Naser; Fabbretti, Attilio; Lupidi, Giulio; Tsekoa, Tsepo; Spurio, Roberto

    2015-02-01

    A number of studies have been conducted to improve chromophore maturation, folding kinetics, thermostability, and other traits of green fluorescent protein (GFP). However, no specific work aimed at improving the thermostability of the yellow fluorescent protein (YFP) and of the pH-sensitive, yet thermostable color variants of GFP has so far been done. The protein variants reported in this study were improved through rational multiple site-directed mutagenesis of GFP (ASV) by introducing up to ten point mutations including the mutations near and at the chromophore region. Therefore, we report the development and characterization of fast folder and thermo-tolerant green variant (FF-GFP), and a fast folder thermostable yellow fluorescent protein (FFTS-YFP) endowed with remarkably improved thermostability and folding kinetics. We demonstrate that the fluorescence intensity of this yellow variant is not affected by heating at 75 °C. Moreover, we have developed a pH-unresponsive cyan variant AcS-CFP, which has potential use as part of in vivo imaging irrespective of intracellular pH. The combined improved properties make these fluorescent variants ideal tools to study protein expression and function under different pH environments, in mesophiles and thermophiles. Furthermore, coupling of the FFTS-YFP and AcS-CFP could potentially serve as an ideal tool to perform functional analysis of live cells by multicolor labeling.

  9. Modeling of the Kinetics of Metal Film Growth on 5-Fold Surfaces of Icosohedral Quasicrystals

    NASA Astrophysics Data System (ADS)

    Evans, J. W.; Unal, B.; Fournee, V.; Ghosh, C.; Liu, D.-J.; Jenks, C. J.; Thiel, P. A.

    2007-03-01

    During submonolayer deposition of metals on 5-f icosohedral Al- Pd-Mn and Al-Cu-Fe surfaces, experimental evidence for several system points to heterogeneous nucleation of islands at specific ``dark star'' trap sites. We model this phenomenon using a mean-field rate equation formulation for Ag on Al-Pd-Mn, where data is available for both the flux and temperature dependence of the island density. We also utilize a more sophisticated kinetic Monte Carlo simulation approach to analyze an atomistic lattice-gas model (for an appropriate ``disordered-bond-network'' of nearest-neighbor adsorption sites) describing nucleation of starfish islands observed by STM for Al on Al-Cu-Fe. Finally, we briefly describe multilayer growth morphologies (which can display kinetic roughening or quantum size effects), but which also generally reflect the submonolayer island distribution. B. Unal et al. PRB 75 (2007); C. Ghosh et al. Phil. Mag. 86 (2006) 831; Surf. Sci. 600 (2006) 1110; V. Fournee et al. PRL 95 (2005) 155504.

  10. Diffusion-collision of foldons elucidates the kinetic effects of point mutations and suggests control strategies of the folding process of helical proteins.

    PubMed

    Capriotti, Emidio; Compiani, Mario

    2006-07-01

    In this article we use mutation studies as a benchmark for a minimal model of the folding process of helical proteins. The model ascribes a pivotal role to the collisional dynamics of a few crucial residues (foldons) and predicts the folding rates by exploiting information drawn from the protein sequence. We show that our model rationalizes the effects of point mutations on the kinetics of folding. The folding times of two proteins and their mutants are predicted. Stability and location of foldons have a critical role as the determinants of protein folding. This allows us to elucidate two main mechanisms for the kinetic effects of mutations. First, it turns out that the mutations eliciting the most notable effects alter protein stability through stabilization or destabilization of the foldons. Secondly, the folding rate is affected via a modification of the foldon topology by those mutations that lead to the birth or death of foldons. The few mispredicted folding rates of some mutants hint at the limits of the current version of the folding model proposed in the present article. The performance of our folding model declines in case the mutated residues are subject to strong long-range forces. That foldons are the critical targets of mutation studies has notable implications for design strategies and is of particular interest to address the issue of the kinetic regulation of single proteins in the general context of the overall dynamics of the interactome.

  11. Infrared study of the stability and folding kinetics of a series of β-hairpin peptides with a common NPDG turn.

    PubMed

    Xu, Yao; Du, Deguo; Oyola, Rolando

    2011-12-29

    The thermal stability and folding kinetics of a series of 15-residue β-hairpins with a common Type I [3:5] NPDG turn were studied using Fourier transform infrared spectroscopy (FTIR) and laser-induced temperature jump (T-jump) with infrared detection, respectively. Mutations at positions 3, 5, or 13 in the peptide sequence SEXYXNPDGTWTXTE, where X represents the position of mutation, were performed to study the roles of hydrophobic interactions in determining the thermodynamic and kinetic properties of β-hairpin folding. The thermal stability studies show a broad thermal folding/unfolding transition for all the peptides. T-jump studies indicate that these β-hairpin peptides fold in less than 2 μs. In addition, both folding and unfolding rate constants decrease with increasing strength of hydrophobic interactions. Kinetically, the hydrophobic interactions have more significant influence on the unfolding rate than the folding rate. Φ-value analysis indicates that the hydrophobic interactions between the side chains are mainly formed at the latter part of the transition-state region during the folding process. In summary, the results suggest that the formation of the native structure of these β-hairpins depends on the correct topology of the hydrophobic cluster. Besides the formation of the turn region as a key process for folding as suggested by previous studies, a hydrophobic collapse process may also play a crucial role during β-hairpin folding.

  12. The multi-scale 3D-1D compatibility scoring for inverse protein folding problem

    SciTech Connect

    Oniuka, Kentaro; Asai, Kiyoshi

    1994-12-31

    The applicability of the Multi-Scale Structure Description (MSSD) scheme to the inverse-folding problems was investigated. An MSSD represents a 3D protein structure with multiple symbolic sequences, where fine structures are represented with the sequence at low levels, the middle scale structural motifs at middle levels, and global topology at high levels. Each symbol in the symbolic sequence denotes a type of local structure of the level scale. The structure fragments are classified at each scale level respectively according to the shape and the environment around the fragments: how the structure is exposed to the solvent or buried in the molecule. I modeled the propensity of an amino-acid sequence to the structure fragment type (i.e., primary constraint) at each scale level. The local propensity is, therefore, modeled at small scale (low) levels, while the global propensity modeled at large scale (high) levels. Thus, superposing all the primary constraints, a 3D protein structure yields an amino-acid sequence profile. Evaluating the fit of an amino acid sequence to the profile derived from the known 3D protein structure, we can identify which 3D structure the given amino-acid sequence would fold into. I checked whether a sequence identifies its own structure over two hundred protein sequences. In many cases, an amino acid sequence identified its own 3D protein structure.

  13. The natural history of recoverable vocal fold paralysis: Implications for kinetics of reinnervation.

    PubMed

    Mau, Ted; Pan, Hao-Min; Childs, Lesley F

    2017-06-13

    Patients with unilateral vocal fold paralysis (UVFP) are commonly told to wait 12 months for spontaneous recovery. This study aims to 1) determine the time to vocal recovery in UVFP, 2) use that data to develop a neurophysiologically plausible model for recovery, and 3) use the model to generate meaningful predictions for patient counseling. Case series with de novo mathematical modeling. Patients with UVFP who could pinpoint a discrete onset of vocal improvement were identified. The time-to-recovery data were modeled by assuming an "early" recovery group with neuropraxia and a "late" recovery group with more severe nerve injury. For the late group, a two-stage model was developed to explain the time to recovery: regenerating axons must cross the site of injury in stage 1 (probabilistic), followed by unimpeded regrowth to the larynx in stage 2 (deterministic). Of 727 cases of UVFP over a 7-year period, 44 reported spontaneous recovery with a discrete onset of vocal improvement. A hybrid distribution incorporating the two stages (exponentially modified Gaussian) accurately modeled the time-to-recovery data (R(2) = 0.918). The model predicts 86% of patients with recoverable UVFP will recover within 6 months, with 96% recovering within 9 months. Earlier vocal recovery is associated with recovery of vocal fold motion and younger age. Waiting 12 months for spontaneous recovery is probably too conservative. Repair across the site of injury, and not regrowth to larynx, is likely the rate-determining step in reinnervation, consistent with other works on peripheral nerve regeneration. 4. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  14. Temperature dependence of the folding and unfolding kinetics of the GCN4 leucine zipper via 13C(alpha)-NMR.

    PubMed Central

    Holtzer, M E; Bretthorst, G L; d'Avignon, D A; Angeletti, R H; Mints, L; Holtzer, A

    2001-01-01

    Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow

  15. Molecular Dynamics Simulation for the Dynamics and Kinetics of Folding Peptides in the Gas Phase.

    PubMed

    Litinas, Iraklis; Koutselos, Andreas D

    2015-12-31

    The conformations of flexible molecular species, such as oligomers and oligopeptides, and their interconversion in the gas phase have been probed by ion mobility spectrometry measurements. The ion motion is interpreted through the calculation of effective cross sections in the case of stable conformations of the macromolecules. However, when the molecular structures transform to each other as the ions collide with gas atoms during their flight through the drift tube, the introduction of an average cross section is required. To provide a direct way for the reproduction of the ion motion, we employ a nonequilibrium molecular dynamics simulation method and consider a molecular model that consists of two connected stiff cylindrical bodies interacting through an intramolecular model potential. With this procedure we have calculated the ion mobility as a function of temperature for a prototype peptide that converts between a helical and an extended globular form. The results are in good agreement with ion mobility spectrometry data confirming that an angular vibration coordinate can be used for the interpretation of the shifting of the drift-time distributions at high temperatures. The approach produces mean kinetic energies as well as various combined distributions of the ion degrees of freedom. It is easily applied to flexible macromolecular ions and can be extended to include additional degrees of freedom.

  16. Impact of Superparamagnetic Iron Oxide Nanoparticles on Vocal Fold Fibroblasts: Cell Behavior and Cellular Iron Kinetics.

    PubMed

    Pöttler, Marina; Fliedner, Anna; Schreiber, Eveline; Janko, Christina; Friedrich, Ralf Philipp; Bohr, Christopher; Döllinger, Michael; Alexiou, Christoph; Dürr, Stephan

    2017-12-01

    The voice is the most important instrument of communication. Tissue defects in the vocal fold (VF) area lead to serious reduction in quality of life, but thus far, no satisfactory VF implant exists. Therefore, we aim to establish a functional VF implant in a rabbit model by magnetic tissue engineering (MTE) using superparamagnetic iron oxide nanoparticles (SPION). Hence, iron quantification over time as well as cell behavior studies upon SPION treatment are of great importance. Rabbit VF fibroblasts (VFF) were treated with different concentrations of SPIONs (20, 40, and 80 μg/cm(2)), and iron content was examined for up to 40 days using microwave plasma-atom emission spectroscopy. The effects of SPION treatment on VFF (adhesion, spreading, and migration), which are important for the formation of 3D structures, were tested. Cellular SPION quantification revealed that there was no residual iron remaining in VFFs after 40 days. SPIONs had a dose-dependent effect on cell adhesion, with good tolerability observed up to 20 μg/cm(2). Migration and spreading were not significantly influenced by SPION treatment up to 80 μg/cm(2). To develop 3D structures, cell behavior should not be affected by SPION uptake. After 40 days, cells were free of iron as a result of metabolism or rarefication during cell division. Cell functions including adhesion, spreading, and migration were proven to be intact in a dose-dependent manner after SPION treatment, suggesting a safe usage of MTE for voice rehabilitation. Our results thus constitute a solid basis for a successful transfer of this technique into 3D constructs, in order to provide an individual and personalized human VF implant in the future.

  17. A problem in the teaching of reactor kinetics

    SciTech Connect

    Ruby, Lawrence

    1990-07-01

    All textbooks on reactors point out that the 1-equivalent-delayed-group approximation to the Point Kinetics Equations, produces results qualitatively similar to the behavior of a reactor with 6 delayed-neutron groups. Furthermore, they take pains to illustrate that the 1-equivalent-group equations are analytically soluble for certain simple forms of reactivity change. Unfortunately, all authors have slavishly followed the authors of the 1st such textbook (H. Soodak and E.C. Campbell) by always solving the same inappropriate problem which involves a step reactivity change in a system with no reactivity feedback and no steady neutron source. In this 'classic' problem, the system is initially perched precariously at a single point in k-space, i.e. k=1, and a change causes the neutron density either to diverge exponentially or to decay away to zero. Only 1 balanced bank of the control rods is predicted to produce a steady-state condition. Experimentally, the student soon finds that many combinations of balanced-bank settings lead to a steady state, and that a decrease of reactivity, starting from a steady state, leads only to a new steady state of lower power. Evidently, the classic model does not match experience, even qualitatively. However, the match is vastly improved if the steady source is incorporated into the Point Kinetic Equations. It is the plea of this author that future textbook writers discuss the more practical situation, i.e. that in which a source is present.

  18. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  19. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    PubMed Central

    Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J. Javier; González-Flores, Carlos

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA. PMID:27413369

  20. Protein folding, protein structure and the origin of life: Theoretical methods and solutions of dynamical problems

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Theoretical methods and solutions of the dynamics of protein folding, protein aggregation, protein structure, and the origin of life are discussed. The elements of a dynamic model representing the initial stages of protein folding are presented. The calculation and experimental determination of the model parameters are discussed. The use of computer simulation for modeling protein folding is considered.

  1. Integration of Inhibition Kinetics and Molecular Dynamics Simulations: A Urea-Mediated Folding Study on Acetaldehyde Dehydrogenase 1.

    PubMed

    Xu, Yingying; Lee, Jinhyuk; Lü, Zhi-Rong; Mu, Hang; Zhang, Qian; Park, Yong-Doo

    2016-07-01

    Understanding the mechanism of acetaldehyde dehydrogenase 1 (ALDH1) folding is important because this enzyme is directly involved in several types of cancers and other diseases. We investigated the urea-mediated unfolding of ALDH1 by integrating kinetic inhibition studies with computational molecular dynamics (MD) simulations. Conformational changes in the enzyme structure were also analyzed using intrinsic and 1-anilinonaphthalene-8-sulfonate (ANS)-binding fluorescence measurements. Kinetic studies revealed that the direct binding of urea to ALDH1 induces inactivation of ALDH1 in a manner of mixed-type inhibition. Tertiary structural changes associated with regional hydrophobic exposure of the active site were observed. The urea binding regions on ALDH1 were predicted by docking simulations and were partly shared with active site residues of ALDH1 and with interface residues of the oligomerization domain for tetramer formation. The docking results suggest that urea prevents formation of the ALDH1 normal shape for the tetramer state as well as entrance of the substrate into the active site. Our study provides insight into the structural changes that accompany urea-mediated unfolding of ALDH1 and the catalytic role associated with conformational changes.

  2. A new method for modeling and solving the protein fold recognition problem

    SciTech Connect

    Xu, Ying; Xu, Dong; Uberbacher, E.C.

    1998-12-31

    Computational recognition of native-like folds from a protein fold database is considered to be a promising alternative approach to the ab initio fold prediction. We present a new and effective method for protein fold recognition through optimally aligning (threading) an amino acid sequence and a protein fold (template). A protein fold, in our database, is represented as a series of core secondary structures, and the alignment quality is determined by three factors. They are (1) the fitness between each amino acid and the environment of its assigned (aligned) template position; (2) pairwise interaction preferences between amino acids that are spatially close; and (3) alignment gap penalties. Our threading algorithm constructs an optimum alignment between an amino acid sequence of size n and a protein fold template of size m in 0((m + n{sup 1+0.5C}-M log(n))n{sup C+1}) time and 0(nm + n{sup C+2}) space, where M is the number of core secondary structures in the fold, and C is a (small) nonnegative integer, determined by a mathematical property of the pairwise interactions in the fold. C is less than or equal to 3 for about 90% of the 296 unique folds in our database, when pairwise interactions are restricted to amino acids < 6{angstrom} apart (measured between their beta carbon atoms). An approximation scheme is developed for fold templates with C > 3, when threading requires too much memory and time to be practical on a typical workstation.

  3. Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator.

    PubMed

    Rabow, A A; Scheraga, H A

    1996-09-01

    We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints.

  4. Extreme Folding

    NASA Astrophysics Data System (ADS)

    Demaine, Erik

    2012-02-01

    Our understanding of the mathematics and algorithms behind paper folding, and geometric folding in general, has increased dramatically over the past several years. These developments have found a surprisingly broad range of applications. In the art of origami, it has helped spur the technical origami revolution. In engineering and science, it has helped solve problems in areas such as manufacturing, robotics, graphics, and protein folding. On the recreational side, it has led to new kinds of folding puzzles and magic. I will give an overview of the mathematics and algorithms of folding, with a focus on new mathematics and sculpture.

  5. Kinetic network study of the diversity and temperature dependence of Trp-Cage folding pathways: combining transition path theory with stochastic simulations.

    PubMed

    Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M

    2011-02-17

    We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, transition path theory (TPT) for constructing folding pathways, and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270 and 566 K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the weighted-histogram-analysis method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (P(fold)) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding "tubes", a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network, and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature

  6. Simulation of Vocal Folds: A Fluid-Induced Self-Oscillating Problem

    NASA Astrophysics Data System (ADS)

    Wang, Xingshi; Zhang, Lucy

    2009-11-01

    The goal of this study is to investigate the process of voice production by simulating the motion and deformation of human vocal folds. The vocal folds are oscillated by a constant lung pressure driven airflow in the throat. The system is modeled in 2-D using the immersed finite element method to simulate and study the fluid-structure interaction mechanism. From our numerical results, the glottal jets are identified. Several parameters such as the Reynolds number, Strouhal number, vocal folds stiffness, density ratio between the fluid and the structure are addressed and compared with experimental results. The frequency of the vocal folds vibration, fluid flow rate and pressure distribution are also investigated. In addition, the energy transfer between the fluid domain and the solid domain are analyzed to assist in explaining the underlying physical mechanism for this fluid-induced self-oscillating vocal folds.

  7. The structural basis for biphasic kinetics in the folding of the WW domain from a formin-binding protein: Lessons for protein design?

    PubMed Central

    Karanicolas, John; Brooks, Charles L.

    2003-01-01

    The mechanism of formation of β-sheets is of great importance because of the significant role of such structures in the initiation and propagation of amyloid diseases. In this study we examine the folding of a series of three-stranded antiparallel β-sheets known as WW domains. Whereas other WW domains have been shown to fold with single-exponential kinetics, the WW domain from murine formin-binding protein 28 has recently been shown to fold with biphasic kinetics. By using a combination of kinetics and thermodynamics to characterize a simple model for this protein, the origins of the biphasic kinetics is found to lie in the fact that most of the protein is able to fold without requiring one of the β-hairpins to be correctly registered. The correct register of this hairpin is enforced by a surface-exposed hydrophobic contact, which is not present in other WW domains. This finding suggests the use of judiciously chosen surface-exposed hydrophobic pairs as a protein design strategy for enforcing the desired strand registry. PMID:12655041

  8. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  9. Kinetic Transition Networks for the Thomson Problem and Smale's Seventh Problem

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Chen, Jianxu; Chen, Danny Z.; Kusumaatmaja, Halim; Wales, David J.

    2016-07-01

    The Thomson problem, arrangement of identical charges on the surface of a sphere, has found many applications in physics, chemistry and biology. Here, we show that the energy landscape of the Thomson problem for N particles with N =132 , 135, 138, 141, 144, 147, and 150 is single funneled, characteristic of a structure-seeking organization where the global minimum is easily accessible. Algorithmically, constructing starting points close to the global minimum of such a potential with spherical constraints is one of Smale's 18 unsolved problems in mathematics for the 21st century because it is important in the solution of univariate and bivariate random polynomial equations. By analyzing the kinetic transition networks, we show that a randomly chosen minimum is, in fact, always "close" to the global minimum in terms of the number of transition states that separate them, a characteristic of small world networks.

  10. A Computational Approach to Studying Protein Folding Problems Considering the Crucial Role of the Intracellular Environment.

    PubMed

    González-Pérez, Pedro P; Orta, Daniel J; Peña, Irving; Flores, Eduardo C; Ramírez, José U; Beltrán, Hiram I; Alas, Salomón J

    2017-10-01

    Intracellular protein folding (PF) is performed in a highly inhomogeneous, crowded, and correlated environment. Due to this inherent complexity, the study and understanding of PF phenomena is a fundamental issue in the field of computational systems biology. In particular, it is important to use a modeled medium that accurately reflects PF in natural systems. In the current study, we present a simulation wherein PF is carried out within an inhomogeneous modeled medium. Simulation resources included a two-dimensional hydrophobic-polar (HP) model, evolutionary algorithms, and the dual site-bond model. The dual site-bond model was used to develop an environment where HP beads could be folded. Our modeled medium included correlation lengths and fractal-like behavior, which were selected according to HP sequence lengths to induce folding in a crowded environment. Analysis of three benchmark HP sequences showed that the modeled inhomogeneous space played an important role in deeper energy folding and obtained better performance and convergence compared with homogeneous environments. Our computational approach also demonstrated that our correlated network provided a better space for PF. Thus, our approach represents a major advancement in PF simulations, not only for folding but also for understanding functional chemical structure and physicochemical properties of proteins in crowded molecular systems, which normally occur in nature.

  11. Two-state folding of horse ferrocytochrome c: analyses of linear free energy relationship, chevron curvature, and stopped-flow burst relaxation kinetics.

    PubMed

    Kumar, Rajesh; Bhuyan, Abani K

    2005-03-01

    Ferrocytchrome c is a classic two-state fast folder. This assurance comes from extensive equilibrium and kinetic folding studies carried out under strictly anaerobic conditions at 22 degrees C. Conventional guanidine hydrochloride (GdnHCl)-induced unfolding transitions monitored by the use of a sizable set of optical probes do not reveal the accumulation of any intermediate to a detectable level. The GdnHCl dependence of unfolding free energy (DeltaG(D)) is linear over the full range of the denaturant concentration. The GdnHCl folding chevron is characterized by curvatures in both folding and unfolding limbs. However, refolding rates as a function of urea in the presence of different concentrations of GdnHCl yield m(++)f values (the kinetic m-value) that are quantitatively identical. This result, analyzed in terms of the denaturant dependence of the difference in the extent of solvent exposure between a relatively fixed transition state and the preceding state involved in the transition, suggests that the chevron curvature is not related to differential accumulation of a folding intermediate with varying concentration of GdnHCl in the refolding medium. Denaturant dependence of stopped-flow burst signals recorded in normal refolding experiments (pH 7, 22 degrees C) is essentially identical with that recorded in simulating experiments in which the protein stays steadily unfolded even in the denaturant-diluted medium (pH 1.5-2, 22 or 43 degrees C depending on the use of urea or GdnHCl), and they match the denaturant dependence of equilibrium signals for the unfolded protein. The results demonstrate that the burst phase does not entail an early folding intermediate. Rather, the folding kinetics are essentially two-state. These results are central to the phenomenological description of protein folding.

  12. A Comparison of Stiff ODE Solvers for Astrochemical Kinetics Problems

    NASA Astrophysics Data System (ADS)

    Nejad, Lida A. M.

    2005-09-01

    The time dependent chemical rate equations arising from astrochemical kinetics problems are described by a system of stiff ordinary differential equations (ODEs). In this paper, using three astrochemical models of varying physical and computational complexity, and hence different degrees of stiffness, we present a comprehensive performance survey of a set of well-established ODE solver packages from the ODEPACK collection, namely LSODE, LSODES, VODE and VODPK. For completeness, we include results from the GEAR package in one of the test models. The results demonstrate that significant performance improvements can be obtained over GEAR which is still being used by many astrochemists by default. We show that a simple appropriate ordering of the species set results in a substantial improvement in the performance of the tested ODE solvers. The sparsity of the associated Jacobian matrix can be exploited and results using the sparse direct solver routine LSODES show an extensive reduction in CPU time without any loss in accuracy. We compare the performance and the computed abundances of one model with a 175 species set and a reduced set of 88 species, keeping all physical and chemical parameters identical with both sets.We found that the calculated abundances using two different size models agree quite well. However, with no extra computational effort and more reliable results, it is possible for the computation to be many times faster with the larger species set than the reduced set, depending on the use of solvers, the ordering and the chosen options. It is also shown that though a particular solver with certain chosen parameters may have severe difficulty or even fail to complete a run over the required integration time, another solver can easily complete the run with a wider range of control parameters and options. As a result of the superior performance of LSODES for the solution of astrochemical kinetics systems, we have tailor-made a sparse version of the VODE

  13. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem

    PubMed Central

    Shmygelska, Alena; Hoos, Holger H

    2005-01-01

    Background The protein folding problem is a fundamental problems in computational molecular biology and biochemical physics. Various optimisation methods have been applied to formulations of the ab-initio folding problem that are based on reduced models of protein structure, including Monte Carlo methods, Evolutionary Algorithms, Tabu Search and hybrid approaches. In our work, we have introduced an ant colony optimisation (ACO) algorithm to address the non-deterministic polynomial-time hard (NP-hard) combinatorial problem of predicting a protein's conformation from its amino acid sequence under a widely studied, conceptually simple model – the 2-dimensional (2D) and 3-dimensional (3D) hydrophobic-polar (HP) model. Results We present an improvement of our previous ACO algorithm for the 2D HP model and its extension to the 3D HP model. We show that this new algorithm, dubbed ACO-HPPFP-3, performs better than previous state-of-the-art algorithms on sequences whose native conformations do not contain structural nuclei (parts of the native fold that predominantly consist of local interactions) at the ends, but rather in the middle of the sequence, and that it generally finds a more diverse set of native conformations. Conclusions The application of ACO to this bioinformatics problem compares favourably with specialised, state-of-the-art methods for the 2D and 3D HP protein folding problem; our empirical results indicate that our rather simple ACO algorithm scales worse with sequence length but usually finds a more diverse ensemble of native states. Therefore the development of ACO algorithms for more complex and realistic models of protein structure holds significant promise. PMID:15710037

  14. Folding kinetics and thermodynamics of Pseudomonas syringae effector protein AvrPto provide insight into translocation via the type III secretion system.

    PubMed

    Dawson, Jennifer E; Nicholson, Linda K

    2008-07-01

    In order to infect their hosts, many Gram-negative bacteria translocate agents of infection, called effector proteins, through the type III secretion system (TTSS) into the host cytoplasm. This process is thought to require at least partial unfolding of these agents, raising the question of how an effector protein might unfold to enable its translocation and then refold once it reaches the host cytoplasm. AvrPto is a well-studied effector protein of Pseudomonas syringae pv tomato. The presence of a readily observed unfolded population of AvrPto in aqueous solution and the lack of a known secretion chaperone make it ideal for studying the kinetic and thermodynamic characteristics that facilitate translocation. Application of Nzz exchange spectroscopy revealed a global, two-state folding equilibrium with 16% unfolded population, a folding rate of 1.8 s(-1), and an unfolding rate of 0.33 s(-1) at pH 6.1. TrAvrPto stability increases with increasing pH, with only 2% unfolded population observed at pH 7.0. The R(1) relaxation of TrAvrPto, which is sensitive to both the global anisotropy of folded TrAvrPto and slow exchange between folded and unfolded conformations, provided independent verification of the global kinetic rate constants. Given the acidic apoplast in which the pathogen resides and the more basic host cytoplasm, these results offer an intriguing mechanism by which the pH dependence of stability and slow folding kinetics of AvrPto would allow efficient translocation of the unfolded form through the TTSS and refolding into its functional folded form once inside the host.

  15. Problems in hard and soft matter: From brain folds and Levy localization to active elasticity

    NASA Astrophysics Data System (ADS)

    Mayett, David

    This thesis presents a study of condensed matter systems at different length scales. The first part presents a study of elastic instabilities in biological systems ranging from the cerebral cortex in the brain to the lining of the intestines. Such instabilities lead to a zoo of morphologies ranging from primary folds to villi and crypts to secondary folds and are brought about by growth, mechanical stresses, or a combination of the two. We propose a novel model for the description of primary folds in the cerebral cortex. Motivated by the spatial structure of the cortex, we model its elasticity as a smectic liquid crystal. With this novel description we show that vertical pulling forces via axonal tension from the brain underlying white matter can lead to buckling, which initiates the primary folds. Moreover, we are able to obtain a reasonable estimate of the critical wavelength and strain for buckling. We also model the formation of secondary folds in the cortex to obtain a more comprehensive theory. We continue this study of elastic instabilities due to growth by studying a more general system comprised of two coupled elastic membranes, one of which undergoes growth and one that does not. We employ an active formulation of growth and compare it to the one due to Rodriguez (Rodriguez). We show that different morphologies corresponding to different systems, such as the cerebral cortex and the lining of the intestines, can be obtained from our model by choosing different active stress functional forms to begin to classify the zoo of morphologies observed in seemingly different biological systems. In the second part of this thesis, to work towards a more microscopic view of biological tissues such as the brain tissue, which is composed of neurons, glial cells, and progenitor cells, we model an experiment (Theveneau) studying the dynamic interaction between neural crest cells and placodal cells in which the placodal cells run away from the neural crest cells following

  16. Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations.

    PubMed

    Zhou, Hongyi; Zhang, Chi; Liu, Song; Zhou, Yaoqi

    2005-07-01

    We have developed the following web servers for protein structural modeling and analysis at http://theory.med.buffalo.edu: THUMBUP, UMDHMM(TMHP) and TUPS, predictors of transmembrane helical protein topology based on a mean-burial-propensity scale of amino acid residues (THUMBUP), hidden Markov model (UMDHMM(TMHP)) and their combinations (TUPS); SPARKS 2.0 and SP3, two profile-profile alignment methods, that match input query sequence(s) to structural templates by integrating sequence profile with knowledge-based structural score (SPARKS 2.0) and structure-derived profile (SP3); DFIRE, a knowledge-based potential for scoring free energy of monomers (DMONOMER), loop conformations (DLOOP), mutant stability (DMUTANT) and binding affinity of protein-protein/peptide/DNA complexes (DCOMPLEX & DDNA); TCD, a program for protein-folding rate and transition-state analysis of small globular proteins; and DOGMA, a web-server that allows comparative analysis of domain combinations between plant and other 55 organisms. These servers provide tools for prediction and/or analysis of proteins on the secondary structure, tertiary structure and interaction levels, respectively.

  17. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway

    PubMed Central

    Bisaria, Namita; Greenfeld, Max; Limouse, Charles; Pavlichin, Dmitri S.; Mabuchi, Hideo; Herschlag, Daniel

    2016-01-01

    The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations. PMID:27493222

  18. Protein roles in group I intron RNA folding: The tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics

    PubMed Central

    Chadee, Amanda B.; Bhaskaran, Hari; Russell, Rick

    2009-01-01

    The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally-similar misfolded conformation, which has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (EΔP5abc). Here we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of EΔP5abc toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, like P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by DMS footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structure, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native structure as it forms. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in

  19. Residual ordered structure in denatured proteins and the problem of protein folding.

    PubMed

    Basharov, Mahmud A

    2012-02-01

    Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.

  20. Rapid three-dimensional microfluidic mixer for high viscosity solutions to unravel earlier folding kinetics of G-quadruplex under molecular crowding conditions.

    PubMed

    Liu, Chao; Li, Ying; Li, Yiwei; Chen, Peng; Feng, Xiaojun; Du, Wei; Liu, Bi-Feng

    2016-01-01

    Rapid mixing of highly viscous solutions is a great challenge, which helps to analyze the reaction kinetics in viscous liquid phase, particularly to discover the folding kinetics of macromolecules under molecular crowding conditions mimicking the conditions inside cells. Here, we demonstrated a novel microfluidic mixer based on Dean flows with three-dimensional (3D) microchannel configuration for fast mixing of high-viscosity fluids. The main structure contained three consecutive subunits, each consisting of a "U"-type channel followed by a chamber with different width and height. Thus, the two solutions injected from the two inlets would undergo a mixing in the first "U"-type channel due to the Dean flow effect, and simultaneous vortices expansions in both horizontal and vertical directions in the following chamber. Numerical simulations and experimental characterizations confirmed that the micromixer could achieve a mixing time of 122.4μs for solutions with viscosities about 33.6 times that of pure water. It was the fastest micromixer for high viscosity solutions compared with previous reports. With this highly efficient 3D microfluidic mixer, we further characterized the early folding kinetics of human telomere G-quadruplex under molecular crowding conditions, and unravelled a new folding process within 550μs.

  1. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics.

    PubMed

    Holmstrom, Erik D; Nesbitt, David J

    2014-04-10

    The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a minimal version of the human telomerase RNA pseudoknot to study this hairpin-pseudoknot structural equilibrium using temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) experiments. The urea dependence of these experiments aids in determination of the folding kinetics and thermodynamics. The wild-type pseudoknot behavior is compared and contrasted to a mutant pseudoknot sequence implicated in a genetic disorder-dyskeratosis congenita. These findings clearly identify that this 2nt noncomplementary mutation destabilizes the folding of the wild-type pseudoknot by substantially reducing the folding rate constant (≈ 400-fold) while only nominally increasing the unfolding rate constant (≈ 5-fold). Furthermore, the urea dependence of the equilibrium and rate constants is used to develop a free energy landscape for this unimolecular equilibrium and propose details about the structure of the transition state. Finally, the urea-dependent folding experiments provide valuable physical insights into the mechanism for destabilization of RNA pseudoknots by such chemical denaturants.

  2. Single-Molecule Fluorescence Resonance Energy Transfer Studies of the Human Telomerase RNA Pseudoknot: Temperature-/Urea-Dependent Folding Kinetics and Thermodynamics

    PubMed Central

    2015-01-01

    The ribonucleoprotein telomerase is an RNA-dependent DNA polymerase that catalyzes the repetitive addition of a short, species-specific, DNA sequence to the ends of linear eukaryotic chromosomes. The single RNA component of telomerase contains both the template sequence for DNA synthesis and a functionally critical pseudoknot motif, which can also exist as a less stable hairpin. Here we use a minimal version of the human telomerase RNA pseudoknot to study this hairpin–pseudoknot structural equilibrium using temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) experiments. The urea dependence of these experiments aids in determination of the folding kinetics and thermodynamics. The wild-type pseudoknot behavior is compared and contrasted to a mutant pseudoknot sequence implicated in a genetic disorder–dyskeratosis congenita. These findings clearly identify that this 2nt noncomplementary mutation destabilizes the folding of the wild-type pseudoknot by substantially reducing the folding rate constant (≈ 400-fold) while only nominally increasing the unfolding rate constant (≈ 5-fold). Furthermore, the urea dependence of the equilibrium and rate constants is used to develop a free energy landscape for this unimolecular equilibrium and propose details about the structure of the transition state. Finally, the urea-dependent folding experiments provide valuable physical insights into the mechanism for destabilization of RNA pseudoknots by such chemical denaturants. PMID:24617561

  3. Network measures for protein folding state discrimination

    PubMed Central

    Menichetti, Giulia; Fariselli, Piero; Remondini, Daniel

    2016-01-01

    Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-principle model to explain this different behavior. We exploit the network properties of protein structures by introducing novel observables to address the problem of classifying the different types of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, possible configurations compatible with the native protein structure, and folding cooperativity. The relevance of these observables is supported by a classification performance up to 90%, even with simple classifiers such as discriminant analysis. PMID:27464796

  4. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.

    PubMed

    Garcia, Pascal; Bruix, Marta; Rico, Manuel; Ciofi-Baffoni, Simone; Banci, Lucia; Ramachandra Shastry, M C; Roder, Heinrich; de Lumley Woodyear, Thierry; Johnson, Christopher M; Fersht, Alan R; Barker, Paul D

    2005-02-11

    Heme-linked proteins, such as cytochromes, are popular subjects for protein folding studies. There is the underlying question of whether the heme affects the structure of the denatured state by cross-linking it and forming other interactions, which would perturb the folding pathway. We have studied wild-type and mutant cytochrome b562 from Escherichia coli, a 106 residue four-alpha-helical bundle. The holo protein apparently refolds with a half-life of 4 micros in its ferrous state. We have analysed the folding of the apo protein using continuous-flow fluorescence as well as stopped-flow fluorescence and CD. The apo protein folded much more slowly with a half-life of 270 micros that was unaffected by the presence of exogenous heme. We examined the nature of the denatured states of both holo and apo proteins by NMR methods over a range of concentrations of guanidine hydrochloride. The starting point for folding of the holo protein in concentrations of denaturant around the denaturation transition was a highly ordered native-like species with heme bound. Fully denatured holo protein at higher concentrations of denaturant consisted of denatured apo protein and free heme. Our results suggest that the very fast folding species of denatured holo protein is in a compact state, whereas the normal folding pathway from fully denatured holo protein consists of the slower folding of the apo protein followed by the binding of heme. These data should be considered in the analysis of folding of heme proteins.

  5. Solvability of certain inverse problems for the nonstationary kinetic transport equation

    NASA Astrophysics Data System (ADS)

    Volkov, N. P.

    2016-09-01

    Linear and nonlinear inverse problems for the nonstationary multispeed anisotropic kinetic transport equation are studied. Sufficient conditions for the existence and uniqueness of weak solutions to these problems in various function spaces are found. The proofs of the corresponding theorems imply that solutions of the inverse problems under study can be obtained by applying the method of successive approximations.

  6. Problems associated with the Z-fold region of defibrillation electrodes.

    PubMed

    Cleland, M J; Maloney, J P; Rowe, B H

    1998-01-01

    To examine performance failures of automatic external defibrillator (AED) self-adhesive electrodes, a retrospective analysis of patient reports and electrodes was conducted in a suburban emergency medical service (EMS) system. In all cases, only records from out-of-hospital cardiac arrests (OHCA) were used if the EMS was activated and an AED was used. Electrode failures were assessed as follows: 1) EMS staff returned defibrillation electrodes when they were unable to resolve repeated "Check Electrode" messages, and 2) an audit of selected records was used to determine the frequency of electrode problems during calls. Of 302 OHCA calls during the study period, 22 (7%) resulted in returned electrodes. Defects (cracks or faults) in the internal conductor were present in 37 (86%) of the 43 returned electrodes; 2 (5%) possessed dehydrated conductive gel, and in 4 (9%) electrodes no faults could be identified. Of the 21 complete sets of defective electrodes, 16 (76%) had faults in both electrodes. Chart review revealed at least one "check electrode" message occurring in 21 (60%) of 35 OHCA reports. The electrode checks were present for a total of over 83 min, representing 11% of the call times. Paramedics were required to change electrodes in 9 (26%) of the 35 cases, resolving the malfunction in all instances. Electrode malfunction appears to be a common prehospital problem; the conductor is responsible for the majority of electrode problems and is probably subjected to the most stress during storage and handling. More reliable, durable defibrillation electrodes are required for OHCA treatment. Other strategies for electrode storage and quality control are also discussed.

  7. Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-07-01

    Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. The consequences of gradually increased kinetic energy transfer was analyzed by evaluating the impact intracranial pressure (ICP), strain level, and their potential influences on binding forces in folded protein structures. The gradually increased kinetic energy was found to have the potential to break apart bonds of Van der Waals in all impacts and hydrogen bonds at simulated impacts from 6 m/s and higher, thereby superseding the energy in folded protein structures. Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.

  8. A Hooke׳s law-based approach to protein folding rate.

    PubMed

    Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Prieto, Pablo J; Salgado, Jesús; García, Yamila; Sotomayor-Torres, Clivia M

    2015-01-07

    Kinetics is a key aspect of the renowned protein folding problem. Here, we propose a comprehensive approach to folding kinetics where a polypeptide chain is assumed to behave as an elastic material described by the Hooke׳s law. A novel parameter called elastic-folding constant results from our model and is suggested to distinguish between protein with two-state and multi-state folding pathways. A contact-free descriptor, named folding degree, is introduced as a suitable structural feature to study protein-folding kinetics. This approach generalizes the observed correlations between varieties of structural descriptors with the folding rate constant. Additionally several comparisons among structural classes and folding mechanisms were carried out showing the good performance of our model with proteins of different types. The present model constitutes a simple rationale for the structural and energetic factors involved in protein folding kinetics.

  9. A New Folding Kinetic Mechanism for Human Transthyretin and the Influence of the Amyloidogenic V30M Mutation

    PubMed Central

    Jesus, Catarina S. H.; Almeida, Zaida L.; Vaz, Daniela C.; Faria, Tiago Q.; Brito, Rui M. M.

    2016-01-01

    Protein aggregation into insoluble amyloid fibrils is the hallmark of several neurodegenerative diseases, chief among them Alzheimer’s and Parkinson’s. Although caused by different proteins, these pathologies share some basic molecular mechanisms with familial amyloidotic polyneuropathy (FAP), a rare hereditary neuropathy caused by amyloid formation and deposition by transthyretin (TTR) in the peripheral and autonomic nervous systems. Among the amyloidogenic TTR mutations known, V30M-TTR is the most common in FAP. TTR amyloidogenesis (ATTR) is triggered by tetramer dissociation, followed by partial unfolding and aggregation of the low conformational stability monomers formed. Thus, tetramer dissociation kinetics, monomer conformational stability and competition between refolding and aggregation pathways do play a critical role in ATTR. Here, we propose a new model to analyze the refolding kinetics of WT-TTR and V30M-TTR, showing that at pH and protein concentrations close to physiological, a two-step mechanism with a unimolecular first step followed by a second-order second step adjusts well to the experimental data. Interestingly, although sharing the same kinetic mechanism, V30M-TTR refolds at a much slower rate than WT-TTR, a feature that may favor the formation of transient species leading to kinetic partition into amyloidogenic pathways and, thus, significantly increasing the probability of amyloid formation in vivo. PMID:27589730

  10. Kinetic approach to the evaporation and condensation problem

    NASA Technical Reports Server (NTRS)

    Murakami, M.; Oshima, K.

    1974-01-01

    In the paper, the Boltzmann equation governing the evaporation and condensation phenomena is solved by the Monte Carlo method. Based on the kinetic theory of gas the role of the non-equilibrium Knudsen layer and the growth of the hydrodynamic region outside the layer as time proceeds are simulated. Results show two possible types of transient developments in the vapor phase. The effects of the molecular absorption coefficient of the phase surface are examined. Except in the case of very strong evaporation the kinematic effects of binary collisions among vapor molecules on the mass flux rate are not serious. The limiting case of the quasi-steady evaporation and the maximal value of the evaporation rate are obtained.

  11. GeoFold: Topology-based protein unfolding pathways capture the effects of engineered disulfides on kinetic stability

    PubMed Central

    Ramakrishnan, Vibin; Srinivasan, Sai Praveen; Salem, Saeed M; Matthews, Suzanne J; Colón, Wilfredo; Zaki, Mohammed; Bystroff, Christopher

    2011-01-01

    Protein unfolding is modeled as an ensemble of pathways, where each step in each pathway is the addition of one topologically possible conformational degree of freedom. Starting with a known protein structure, GeoFold hierarchically partitions (cuts) the native structure into substructures using revolute joints and translations. The energy of each cut and its activation barrier are calculated using buried solvent accessible surface area, side chain entropy, hydrogen bonding, buried cavities, and backbone degrees of freedom. A directed acyclic graph is constructed from the cuts, representing a network of simultaneous equilibria. Finite difference simulations on this graph simulate native unfolding pathways. Experimentally observed changes in the unfolding rates for disulfide mutants of barnase, T4 lysozyme, dihydrofolate reductase, and factor for inversion stimulation were qualitatively reproduced in these simulations. Detailed unfolding pathways for each case explain the effects of changes in the chain topology on the folding energy landscape. GeoFold is a useful tool for the inference of the effects of disulfide engineering on the energy landscape of protein unfolding. PMID:22189917

  12. Students' Systematic Errors When Solving Kinetic and Chemical Equilibrium Problems.

    ERIC Educational Resources Information Center

    BouJaoude, Saouma

    Although students' misconceptions about the concept of chemical equilibrium has been the focus of numerous investigations, few have investigated students' systematic errors when solving equilibrium problems at the college level. Students (n=189) enrolled in the second semester of a first year chemistry course for science and engineering majors at…

  13. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.

    PubMed

    Meuzelaar, Heleen; Vreede, Jocelyne; Woutersen, Sander

    2016-06-07

    Using a combination of ultraviolet circular dichroism, temperature-jump transient-infrared spectroscopy, and molecular dynamics simulations, we investigate the effect of salt bridges between different types of charged amino-acid residue pairs on α-helix folding. We determine the stability and the folding and unfolding rates of 12 alanine-based α-helical peptides, each of which has a nearly identical composition containing three pairs of positively and negatively charged residues (either Glu(-)/Arg(+), Asp(-)/Arg(+), or Glu(-)/Lys(+)). Within each set of peptides, the distance and order of the oppositely charged residues in the peptide sequence differ, such that they have different capabilities of forming salt bridges. Our results indicate that stabilizing salt bridges (in which the interacting residues are spaced and ordered such that they favor helix formation) speed up α-helix formation by up to 50% and slow down the unfolding of the α-helix, whereas salt bridges with an unfavorable geometry have the opposite effect. Comparing the peptides with different types of charge pairs, we observe that salt bridges between side chains of Glu(-) and Arg(+) are most favorable for the speed of folding, probably because of the larger conformational space of the salt-bridging Glu(-)/Arg(+) rotamer pairs compared to Asp(-)/Arg(+) and Glu(-)/Lys(+). We speculate that the observed impact of salt bridges on the folding kinetics might explain why some proteins contain salt bridges that do not stabilize the final, folded conformation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Existence Result for the Kinetic Neutron Transport Problem with a General Albedo Boundary Condition

    NASA Astrophysics Data System (ADS)

    Sanchez, Richard; Bourhrara, Lahbib

    2011-09-01

    We present an existence result for the kinetic neutron transport equation with a general albedo boundary condition. The proof is constructive in the sense that we build a sequence that converges to the solution of the problem by iterating on the albedo term. Both nonhomogeneous and albedo boundary conditions are studied.

  15. Distinguishing between sequential and nonsequentially folded proteins: implications for folding and misfolding.

    PubMed Central

    Tsai, C. J.; Maizel, J. V.; Nussinov, R.

    1999-01-01

    We describe here an algorithm for distinguishing sequential from nonsequentially folding proteins. Several experiments have recently suggested that most of the proteins that are synthesized in the eukaryotic cell may fold sequentially. This proposed folding mechanism in vivo is particularly advantageous to the organism. In the absence of chaperones, the probability that a sequentially folding protein will misfold is reduced significantly. The problem we address here is devising a procedure that would differentiate between the two types of folding patterns. Footprints of sequential folding may be found in structures where consecutive fragments of the chain interact with each other. In such cases, the folding complexity may be viewed as being lower. On the other hand, higher folding complexity suggests that at least a portion of the polypeptide backbone folds back upon itself to form three-dimensional (3D) interactions with noncontiguous portion(s) of the chain. Hence, we look at the mechanism of folding of the molecule via analysis of its complexity, that is, through the 3D interactions formed by contiguous segments on the polypeptide chain. To computationally splice the structure into consecutively interacting fragments, we either cut it into compact hydrophobic folding units or into a set of hypothetical, transient, highly populated, contiguous fragments ("building blocks" of the structure). In sequential folding, successive building blocks interact with each other from the amino to the carboxy terminus of the polypeptide chain. Consequently, the results of the parsing differentiate between sequentially vs. nonsequentially folded chains. The automated assessment of the folding complexity provides insight into both the likelihood of misfolding and the kinetic folding rate of the given protein. In terms of the funnel free energy landscape theory, a protein that truly follows the mechanism of sequential folding, in principle, encounters smoother free energy barriers

  16. Kinetic and thermodynamic consequences of the removal of the Cys-77-Cys-123 disulphide bond for the folding of TEM-1 beta-lactamase.

    PubMed Central

    Vanhove, M; Guillaume, G; Ledent, P; Richards, J H; Pain, R H; Frère, J M

    1997-01-01

    Class A beta-lactamases of the TEM family contain a single disulphide bond which connects cysteine residues 77 and 123. To clarify the possible role of the disulphide bond in the stability and folding kinetics of the TEM-1 beta-lactamase, this bond was removed by introducing a Cys-77-->Ser mutation, and the enzymically active mutant protein was studied by reversible guanidine hydrochloride-induced denaturation. The unfolding and refolding rates were monitored using tryptophan fluorescence. At low guanidine hydrochloride concentrations, the refolding of the wild-type and mutant enzymes followed biphasic time courses. The characteristics of the two phases were not significantly affected by the mutation. Double-jump experiments, in which the protein was unfolded in a high concentration of guanidine hydrochloride for a short time period and then refolded by diluting out the denaturant, indicated that, for both the wild-type and mutant enzymes, the two refolding phases could be ascribed to proline isomerization reactions. Equilibrium unfolding experiments monitored by fluorescence spectroscopy and far-UV CD indicated a three-state mechanism (N<-->H<--U). Both the folded mutant protein (N) and, to a lesser extent the thermodynamically stable intermediate, H. were destabilized relative to the fully unfolded state, U. Removal of the disulphide bond resulted in a decrease of 14.2 kJ/mol (3.4 kcal/mol) in the global free energy of stabilization. Similarly, the mutation also induced a drastic increase in the rate of thermal inactivation. PMID:9020874

  17. Guiding the folding pathway of DNA origami.

    PubMed

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  18. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  19. Folding Beauties

    ERIC Educational Resources Information Center

    Berman, Leah Wrenn

    2006-01-01

    This article has its genesis in an MAA mini-course on origami, where a way to get a parabola by folding paper was presented. This article discusses the methods and mathematics of other curves obtained by paper-folding.

  20. Folding Beauties

    ERIC Educational Resources Information Center

    Berman, Leah Wrenn

    2006-01-01

    This article has its genesis in an MAA mini-course on origami, where a way to get a parabola by folding paper was presented. This article discusses the methods and mathematics of other curves obtained by paper-folding.

  1. The effects of pK(a) tuning on the thermodynamics and kinetics of folding: design of a solvent-shielded carboxylate pair at the a-position of a coiled-coil.

    PubMed

    Lau, Wai Leung; Degrado, William F; Roder, Heinrich

    2010-10-06

    The tuning of the pK(a) of ionizable residues plays a critical role in various protein functions, such as ligand-binding, catalysis, and allostery. Proteins harness the free energy of folding to position ionizable groups in highly specific environments that strongly affect their pK(a) values. To investigate the interplay among protein folding kinetics, thermodynamics, and pK(a) modulation, we introduced a pair of Asp residues at neighboring interior positions of a coiled-coil. A single Asp residue was replaced for an Asn side chain at the a-position of the coiled-coil from GCN4, which was also crosslinked at the C-terminus via a flexible disulfide bond. The thermodynamic and kinetic stability of the system was measured by circular dichroism and stopped-flow fluorescence as a function of pH and concentration of guanidine HCl. Both sets of data are consistent with a two-state equilibrium between fully folded and unfolded forms. Distinct pK(a) values of 6.3 and 5.35 are assigned to the first and second protonation of the Asp pair; together they represent an energetic difference of 5 kcal/mol relative to the protonation of two Asp residues with unperturbed pK(a) values. Analysis of the rate data as a function of pH and denaturant concentration allowed calculation of the kinetic constants for the conformational transitions of the peptide with the Asp residues in the doubly protonated, singly protonated, and unprotonated forms. The doubly and singly protonated forms fold rapidly, and a ϕ-value analysis shows that their contribution to folding occurs subsequent to the transition state ensemble for folding. By contrast, the doubly charged state shows a reduced rate of folding and a ϕ-value near 0.5 indicative of a repulsive interaction, and possibly also heterogeneity in the transition state ensemble.

  2. Review of chemical-kinetic problems of future NASA missions. I - Earth entries

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1993-01-01

    A number of chemical-kinetic problems related to phenomena occurring behind a shock wave surrounding an object flying in the earth atmosphere are discussed, including the nonequilibrium thermochemical relaxation phenomena occurring behind a shock wave surrounding the flying object, problems related to aerobraking maneuver, the radiation phenomena for shock velocities of up to 12 km/sec, and the determination of rate coefficients for ionization reactions and associated electron-impact ionization reactions. Results of experiments are presented in form of graphs and tables, giving data on the reaction rate coefficients for air, the ionization distances, thermodynamic properties behind a shock wave, radiative heat flux calculations, Damkoehler numbers for the ablation-product layer, together with conclusions.

  3. THE SOLAR ABUNDANCE PROBLEM: THE EFFECT OF THE TURBULENT KINETIC FLUX ON THE SOLAR ENVELOPE MODEL

    SciTech Connect

    Zhang, Q. S.

    2014-06-01

    Recent three-dimensional (3D) simulations have shown that the turbulent kinetic flux (TKF) is significant. We discuss the effects of TKF on the size of the convection zone and find that the TKF may help solve the solar abundance problem. The solar abundance problem is that, with new abundances, the solar convection zone depth, the sound speed in the radiative interior, the helium abundance, and the density in the convective envelope are not in agreement with helioseismic inversions. We have performed Monte Carlo simulations on solar convective envelope models with different profiles of TKF to test its effects. The solar abundance problem is revealed in the standard solar convective envelope model with AGSS09 composition, which shows significant differences (∼10)) in density from the helioseismic inversions, but the differences in the model with the old composition GN93 is small (∼0.5)). In the testing models with a different TKF imposed, it is found that the density profile is sensitive to the value of TKF at the base of the convective envelope and insensitive to the structure of TKF in the convection zone. The required value of turbulent kinetic luminosity at the base is about –13% to – 19% L {sub ☉}. Comparing with the 3D simulations, this value is plausible. This study is for the solar convective envelope only. Evolutionary solar models with TKF are required to investigat the effects of TKF on the solar interior structure below the convection zone and the whole solar abundance problem, but the profile of the TKF in the overshoot region is necessary.

  4. Protein Folding: Then and Now

    PubMed Central

    Chen, Yiwen; Ding, Feng; Nie, Huifen; Serohijos, Adrian W.; Sharma, Shantanu; Wilcox, Kyle C.; Yin, Shuangye; Dokholyan, Nikolay V.

    2007-01-01

    Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases. PMID:17585870

  5. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 3: Illustrative test problems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.; Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  6. Transtensional folding

    NASA Astrophysics Data System (ADS)

    Fossen, Haakon; Teyssier, Christian; Whitney, Donna L.

    2014-05-01

    For now three decades transpression has dominated the concepts that underlie oblique tectonics, but in more recent years transtension has garnered much interest as a simple model that can be applied to shallow and deep crustal tectonics. One fundamental aspect that distinguishes transtension from transpression is that material lines in transtension rotate toward the direction of oblique divergence. Another point that may be less intuitive when thinking of transtension is that while transtensional strain involves shortening in the vertical direction, one of the horizontal axes is also a shortening axis, whatever the angle of divergence. It is the combination of these two shortening axes that leads to constrictional finite strain in transtension. The existence of a horizontal shortening strain axis implies that transtension offers the potential for folds of horizontal layers to form and then rotate toward the direction of oblique divergence. An investigation of transtensional folding using 3D strain modeling reveals that folding is more likely for simple shear dominated transtension (large wrench component). Transtensional folds can only accumulate a fixed amount of horizontal shortening and tightness that are prescribed by the angle of oblique divergence, regardless of finite strain. Transtensional folds are characterized by hinge-parallel stretching that exceeds that expected from pure wrenching. In addition, the magnitude of hinge-parallel stretching always exceeds hinge-perpendicular shortening, causing constrictional fabrics and hinge-parallel boudinage to develop. Because the dominant vertical strain axis is shortening, transtensional fold growth is generally suppressed, but when folds do develop their limbs enter the field of shortening, resulting in possible fold interference patterns akin to cascading folds. Application of these transtensional folding principles to regions of oblique rifting (i.e. Gulf of California) or exhumation of deep crust (i.e. Western

  7. Early Events in RNA Folding

    NASA Astrophysics Data System (ADS)

    Thirumalai, D.; Lee, Namkyung; Woodson, Sarah A.; Klimov, Dk

    2001-10-01

    We describe a conceptual framework for understanding the way large RNA molecules fold based on the notion that their free-energy landscape is rugged. A key prediction of our theory is that RNA folding can be described by the kinetic partitioning mechanism (KPM). According to KPM a small fraction of molecules folds rapidly to the native state whereas the remaining fraction is kinetically trapped in a low free-energy non-native state. This model provides a unified description of the way RNA and proteins fold. Single-molecule experiments on Tetrahymena ribozyme, which directly validate our theory, are analyzed using KPM. We also describe the earliest events that occur on microsecond time scales in RNA folding. These must involve collapse of RNA molecules that are mediated by counterion-condensation. Estimates of time scales for the initial events in RNA folding are provided for the Tetrahymena ribozyme.

  8. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    NASA Astrophysics Data System (ADS)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  9. Site-specific experiments on folding/unfolding of Jun coiled coils: thermodynamic and kinetic parameters from spin inversion transfer nuclear magnetic resonance at leucine-18.

    PubMed

    d'Avignon, D André; Bretthorst, G Larry; Holtzer, Marilyn Emerson; Schwarz, Kathleen A; Angeletti, Ruth Hogue; Mints, Lisa; Holtzer, Alfred

    2006-10-15

    The 32-residue leucine zipper subsequence, called here Jun-lz, associates in benign media to form a parallel two-stranded coiled coil. Studies are reported of its thermal unfolding/folding transition by circular dichroism (CD) on samples of natural isotopic abundance and by both equilibrium and spin inversion transfer (SIT) nuclear magnetic resonance (NMR) on samples labeled at the leucine-18 alpha-carbon with 99% 13C. The data cover a wide range of temperature and concentration, and show that Jun-lz unfolds below room temperature, being far less stable than some other leucine zippers such as GCN4. 13C-NMR shows two well-separated resonances. We ascribe the upfield one to 13C spins on unfolded single chains and the downfield one to 13C spins on coiled-coil dimers. Their relative intensities provide a measure of the unfolding equilibrium constant. In SIT NMR, the recovery of the equilibrium magnetization after one resonance is inverted is modulated in part by the unfolding and folding rate constants, which are accessible from the data. Global Bayesian analysis of the equilibrium and SIT NMR data provide values for the standard enthalpy, entropy, and heat capacity of unfolding, and show the latter to be unusually large. The CD results are compatible with the NMR findings. Global Bayesian analysis of the SIT NMR data yields the corresponding activation parameters for unfolding and folding. The results show that both reaction directions are activated processes. Activation for unfolding is entropy driven, enthalpy opposed. Activation for folding is strongly enthalpy opposed and somewhat entropy opposed, falsifying the idea that the barrier for folding is solely due to a purely entropic search for properly registered partners. The activation heat capacity is much larger for folding, so almost the entire overall change is due to the folding direction. This latter finding, if it applies to GCN4 leucine zippers, clears up an extant apparent disagreement between folding rate

  10. A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

    NASA Technical Reports Server (NTRS)

    Mclain, A. G.; Rao, C. S. R.

    1976-01-01

    A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem.

  11. Some current problems in perovskite nano-ferroelectrics and multiferroics: kinetically-limited systems of finite lateral size

    PubMed Central

    Scott, James F; Schilling, Alina; Rowley, S E; Gregg, J Marty

    2015-01-01

    We describe some unsolved problems of current interest; these involve quantum critical points in ferroelectrics and problems which are not amenable to the usual density functional theory, nor to classical Landau free energy approaches (they are kinetically limited), nor even to the Landau–Kittel relationship for domain size (they do not satisfy the assumption of infinite lateral diameter) because they are dominated by finite aperiodic boundary conditions. PMID:27877812

  12. Simulating protein folding and aggregation on the 10 second timescale

    NASA Astrophysics Data System (ADS)

    Pande, Vijay

    2007-03-01

    Understanding how proteins self-assemble or ``fold'' is a fundamental problem in biophysics. Moreover, the ability to understand and quantitatively predict folding kinetics would have many implications, especially in the area of diseases related to protein misfolding, such as Alzheimer's Disease. However, there are many challenges to simulating folding, most notably the great computational challenges of simulating protein folding with models with sufficient accuracy to make quantitative predictions of experiments. In my talk, I will discuss our recent work to combine distributed computing with a new theoretical technique (Markov State Models) in order to simulate folding on long timescales as well as the direct and quantitative experimental tests of these methods. I will conclude with the application of these methods to the study of the Abeta peptide, whose aggregation has been directly implicated as the toxic element in Alzheimer's Disease.

  13. Lattice-Gas Automata for the Problem Of Kinetic Theory of Gas During Free Expansion

    NASA Astrophysics Data System (ADS)

    Khotimah, Siti Nurul; Arif, Idam; Liong, The Houw

    The lattice-gas method has been applied to solve the problem of kinetic theory of gas in the Gay-Lussac-Joule experiment. Numerical experiments for a two-dimensional gas were carried out to determine the number of molecules in one vessel (Nr), the ratio between the mean square values of the components of molecule velocity (/line{vx2}//line{v_y^2}), and the change in internal energy (ΔU) as a function of time during free expansion. These experiments were repeated for different sizes of an aperture in the partition between the two vessels. After puncturing the partition, the curve for the particle number in one vessel shows a damped oscillation for about half of the total number. The oscillations do not vanish after a sampling over different initial configurations. The system is in nonequilibrium due to the pressure equilibration, and here the flow is actually compressible. The equilibration time (in time steps) decreases with decreased size of aperture in the partition. For very small apertures (equal or less than 9{√{3}}/{2} lattice units), the number of molecules in one vessel changes with time in a smooth way until it reaches half of the total number; their curves obey the analytical solution for quasi-static processes. The calculations on /line{vx2}//line{v_y^2} and ΔU also support the results that the equilibration time decreases with decreased size of aperture in the partition.

  14. The nature of protein folding pathways

    PubMed Central

    Englander, S. Walter; Mayne, Leland

    2014-01-01

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure. PMID:25326421

  15. Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists

    PubMed Central

    Heideman, Paul D.; Flores, K. Adryan; Sevier, Lu M.; Trouton, Kelsey E.

    2017-01-01

    Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had ∼50–80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior. PMID:28495932

  16. Solvent–amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: Folding thermodynamics and kinetics

    PubMed Central

    Leonhard, Kai; Prausnitz, John M.; Radke, Clayton J.

    2004-01-01

    Amino acid residue–solvent interactions are required for lattice Monte Carlo simulations of model proteins in water. In this study, we propose an interaction-energy scale that is based on the interaction scale by Miyazawa and Jernigan. It permits systematic variation of the amino acid–solvent interactions by introducing a contrast parameter for the hydrophobicity, Cs, and a mean attraction parameter for the amino acids, ω. Changes in the interaction energies strongly affect many protein properties. We present an optimized energy parameter set for best representing realistic behavior typical for many proteins (fast folding and high cooperativity for single chains). Our optimal parameters feature a much weaker hydrophobicity contrast and mean attraction than does the original interaction scale. The proposed interaction scale is designed for calculating the behavior of proteins in bulk and at interfaces as a function of solvent characteristics, as well as protein size and sequence. PMID:14739322

  17. Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists.

    PubMed

    Heideman, Paul D; Flores, K Adryan; Sevier, Lu M; Trouton, Kelsey E

    2017-01-01

    Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL), and allowed them to self-assess their recall and problem solving, first in a simple recall task involving non-European alphabets and later using unfamiliar biology content. In two preliminary ex situ experiments, students had greater recall on the simple learning task, non-European alphabets with associated phonetic sounds, using MSFL in comparison with a preferred method, visual review (VR). In the intervention, students studying using MSFL and VR had ∼50-80% greater recall of content studied with MSFL and, in a subset of trials, better performance on problem-solving tasks on biology content. Eight months after beginning the intervention, participants had shifted self-reported use of drawing from 2% to 20% of study time. For a small subset of participants, MSFL had become a preferred study method, and 70% of participants reported continued use of MSFL. This brief, low-cost intervention resulted in enduring changes in study behavior. © 2017 P. D. Heideman et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Evolutionary Optimization of Protein Folding

    PubMed Central

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, 3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last 1.5 billion years that began during the “big bang” of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  19. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    PubMed

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. PREFACE Protein folding: lessons learned and new frontiers Protein folding: lessons learned and new frontiers

    NASA Astrophysics Data System (ADS)

    Pappu, Rohit V.; Nussinov, Ruth

    2009-03-01

    In appropriate physiological milieux proteins spontaneously fold into their functional three-dimensional structures. The amino acid sequences of functional proteins contain all the information necessary to specify the folds. This remarkable observation has spawned research aimed at answering two major questions. (1) Of all the conceivable structures that a protein can adopt, why is the ensemble of native-like structures the most favorable? (2) What are the paths by which proteins manage to robustly and reproducibly fold into their native structures? Anfinsen's thermodynamic hypothesis has guided the pursuit of answers to the first question whereas Levinthal's paradox has influenced the development of models for protein folding dynamics. Decades of work have led to significant advances in the folding problem. Mean-field models have been developed to capture our current, coarse grain understanding of the driving forces for protein folding. These models are being used to predict three-dimensional protein structures from sequence and stability profiles as a function of thermodynamic and chemical perturbations. Impressive strides have also been made in the field of protein design, also known as the inverse folding problem, thereby testing our understanding of the determinants of the fold specificities of different sequences. Early work on protein folding pathways focused on the specific sequence of events that could lead to a simplification of the search process. However, unifying principles proved to be elusive. Proteins that show reversible two-state folding-unfolding transitions turned out to be a gift of natural selection. Focusing on these simple systems helped researchers to uncover general principles regarding the origins of cooperativity in protein folding thermodynamics and kinetics. On the theoretical front, concepts borrowed from polymer physics and the physics of spin glasses led to the development of a framework based on energy landscape theories. These

  1. Universality and diversity of the protein folding scenarios: a comprehensive analysis with the aid of a lattice model.

    PubMed

    Mirny, L A; Abkevich, V; Shakhnovich, E I

    1996-01-01

    The role of intermediates in protein folding has been a matter of great controversy. Although it was widely believed that intermediates play a key role in minimizing the search problem associated with the Levinthal paradox, experimental evidence has been accumulating that small proteins fold fast without any detectable intermediates. We study the thermodynamics and kinetics of folding using a simple lattice model. Two folding sequences obtained by the design procedure exhibit different folding scenarios. The first sequence folds fast to the native state and does not exhibit any populated intermediates during folding. In contrast, the second sequence folds much slower, often being trapped in misfolded low-energy conformations. However, a small fraction of folding molecules for the second sequence fold on a fast track avoiding misfolded traps. In equilibrium at the same temperature the second sequence has a highly populated intermediate with structure similar to that of the kinetics intermediate. Our analysis suggests that intermediates may often destabilize native conformations and derail the folding process leading it to traps. Less-optimized sequences fold via parallel pathways involving misfolded intermediates. A better designed sequence is more stable in the native state and folds fast without intermediates in a two-state process.

  2. Single molecule RNA folding studied with optical trapping

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey Robert

    The RNA folding problem (predicting the equilibrium structure and folding pathway of an RNA molecule from its sequence) is one of the classic problems of biophysics. Recent discoveries of many new functions for RNA have increased its importance, and new instrumental techniques have provided new ways to characterize molecular behavior. In particular, optical trapping (optical tweezers) allows controlled mechanical force to be applied to single RNA molecules while their end-to-end extension is monitored in real time. This enables characterization of RNA folding dynamics at a level unreachable by traditional bulk methods. Furthermore, recent advances in statistical mechanics make it possible to recover equilibrium quantities such as free energy from reactions which occur away from equilibrium. This dissertation describes the application of optical trapping and non-equilibrium statistical mechanics to quantitatively characterize folding of RNA secondary structures. By measuring the folding free energy of several specially designed hairpins in solutions containing various amounts of sodium and potassium, we were able to determine that RNA secondary structure thermodynamics depends not only on monovalent cation concentration but also surprisingly, on species. We also investigated the temperature dependence of hairpin folding thermodynamics and kinetics, which provided a direct measurement of enthalpy and entropy for RNA folding at physiological temperatures. We found that the folding pathway was quite sensitive to both salt and temperature, as measured by the folding success rate of a biologically important hairpin from the HIV-1 viral genome. Finally, I discuss modeling of force-induced RNA folding and unfolding, as well as a series of efforts which have dramatically improved the performance of our optical trapping instrument.

  3. Problems for kinetic equation with nonequilibrium boundary conditions and possible tests

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Frolova, A. A.; Zabelok, S. A.

    2016-11-01

    Some new problems with nonequlibrium boundary conditions are formulated and solved. So-called nonuniform relaxation problem with nonequilibrium conditions on a free boundary for supersonic and subsonic cases are considered. Classical 1D heat transfer problem but with nonequilibrium boundary condition on one surface is also studied. Possible nonequilibrium flows with anomalous transport of momentum and heat are observed and discussed.

  4. Problem with nonequilibrium boundary conditions in the kinetic theory of gases

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Zabelok, S. A.; Fedosov, M. A.; Frolova, A. A.

    2016-05-01

    The Boltzmann kinetic equation is considered in a new formulation with nonequilibrium distribution functions on free boundaries, which makes it possible to simulate nonequilibrium superand subsonic flows. Transport processes for such flows are analyzed. The possibility of anomalous transport is determined, in which case the heat flux, temperature gradient, and the corresponding components of the nonequilibrium stress tensor and the velocity gradient have the same sign.

  5. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Zhang, Yongli

    2017-01-01

    How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.

  6. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers

    PubMed Central

    Jiao, Junyi; Rebane, Aleksander A.; Ma, Lu; Zhang, Yongli

    2017-01-01

    Summary How proteins fold from linear chains of amino acids to delicate three dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including methods of data analysis to extract folding energies and rates from the single-molecule measurements. PMID:27844436

  7. Pseudoknots in RNA folding landscapes

    PubMed Central

    Kucharík, Marcel; Hofacker, Ivo L.; Stadler, Peter F.; Qin, Jing

    2016-01-01

    Motivation: The function of an RNA molecule is not only linked to its native structure, which is usually taken to be the ground state of its folding landscape, but also in many cases crucially depends on the details of the folding pathways such as stable folding intermediates or the timing of the folding process itself. To model and understand these processes, it is necessary to go beyond ground state structures. The study of rugged RNA folding landscapes holds the key to answer these questions. Efficient coarse-graining methods are required to reduce the intractably vast energy landscapes into condensed representations such as barrier trees or basin hopping graphs (BHG) that convey an approximate but comprehensive picture of the folding kinetics. So far, exact and heuristic coarse-graining methods have been mostly restricted to the pseudoknot-free secondary structures. Pseudoknots, which are common motifs and have been repeatedly hypothesized to play an important role in guiding folding trajectories, were usually excluded. Results: We generalize the BHG framework to include pseudoknotted RNA structures and systematically study the differences in predicted folding behavior depending on whether pseudoknotted structures are allowed to occur as folding intermediates or not. We observe that RNAs with pseudoknotted ground state structures tend to have more pseudoknotted folding intermediates than RNAs with pseudoknot-free ground state structures. The occurrence and influence of pseudoknotted intermediates on the folding pathway, however, appear to depend very strongly on the individual RNAs so that no general rule can be inferred. Availability and implementation: The algorithms described here are implemented in C++ as standalone programs. Its source code and Supplemental material can be freely downloaded from http://www.tbi.univie.ac.at/bhg.html. Contact: qin@bioinf.uni-leipzig.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID

  8. Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems

    SciTech Connect

    Perry, William L; Gunderson, Jake A; Dickson, Peter M

    2010-01-01

    There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problem of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the

  9. A kinetic stochastic model of blistering and nanofilm islands deposition: self-organization problem

    NASA Astrophysics Data System (ADS)

    Zmievskaya, G. I.; Bondareva, A. L.; Levchenko, V. D.; Levchenko, T. V.

    2007-08-01

    First-order phase transition at a fluctuation stage into non-linear dissipative plasma-like media is considered. The clustering of new phase germs (or nucleation) is represented by stochastic Wiener processes. Brownian motion of clusters induced by a long-range potential of indirect (through acoustic phonons and Friedel's oscillation of electron density) interaction between one another is taken into account. Kinetic models for blistering materials in a controlled thermonuclear reactor and for melted metal thin film islands deposition during surface CVD modification are both put forward. The non-steady-state distribution of clusters versus their size and position in space is calculated using Ito-Stratonovich stochastic differential equations. Formation of radiation stimulated porosity layers in a lattice as well as liquid island chains on the surface are to be discussed as characteristics of phase transition at fluctuation stages as well as a new kind of self-organization phenomenon.

  10. Fast folding of RNA pseudoknots initiated by laser temperature-jump.

    PubMed

    Narayanan, Ranjani; Velmurugu, Yogambigai; Kuznetsov, Serguei V; Ansari, Anjum

    2011-11-23

    RNA pseudoknots are examples of minimal structural motifs in RNA with tertiary interactions that stabilize the structures of many ribozymes. They also play an essential role in a variety of biological functions that are modulated by their structure, stability, and dynamics. Therefore, understanding the global principles that determine the thermodynamics and folding pathways of RNA pseudoknots is an important problem in biology, both for elucidating the folding mechanisms of larger ribozymes as well as addressing issues of possible kinetic control of the biological functions of pseudoknots. We report on the folding/unfolding kinetics of a hairpin-type pseudoknot obtained with microsecond time-resolution in response to a laser temperature-jump perturbation. The kinetics are monitored using UV absorbance as well as fluorescence of extrinsically attached labels as spectroscopic probes of the transiently populated RNA conformations. We measure folding times of 1-6 ms at 37 °C, which are at least 100-fold faster than previous observations of very slow folding pseudoknots that were trapped in misfolded conformations. The measured relaxation times are remarkably similar to predictions of a computational study by Thirumalai and co-workers (Cho, S. S.; Pincus, D.L.; Thirumalai, D. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17349-17354). Thus, these studies provide the first observation of a fast-folding pseudoknot and present a benchmark against which computational models can be refined.

  11. Effectiveness and Adoption of a Drawing-to-Learn Study Tool for Recall and Problem Solving: Minute Sketches with Folded Lists

    ERIC Educational Resources Information Center

    Heideman, Paul D.; Flores, K. Adryan; Sevier, Lu M.; Trouton, Kelsey E.

    2017-01-01

    Drawing by learners can be an effective way to develop memory and generate visual models for higher-order skills in biology, but students are often reluctant to adopt drawing as a study method. We designed a nonclassroom intervention that instructed introductory biology college students in a drawing method, minute sketches in folded lists (MSFL),…

  12. In-Space Propulsion, Logistics Reduction, and Evaluation of Steam Reformer Kinetics: Problems and Prospects

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.

    2015-01-01

    Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.

  13. Unfolded protein ensembles, folding trajectories, and refolding rate prediction

    NASA Astrophysics Data System (ADS)

    Das, A.; Sin, B. K.; Mohazab, A. R.; Plotkin, S. S.

    2013-09-01

    Computer simulations can provide critical information on the unfolded ensemble of proteins under physiological conditions, by explicitly characterizing the geometrical properties of the diverse conformations that are sampled in the unfolded state. A general computational analysis across many proteins has not been implemented however. Here, we develop a method for generating a diverse conformational ensemble, to characterize properties of the unfolded states of intrinsically disordered or intrinsically folded proteins. The method allows unfolded proteins to retain disulfide bonds. We examined physical properties of the unfolded ensembles of several proteins, including chemical shifts, clustering properties, and scaling exponents for the radius of gyration with polymer length. A problem relating simulated and experimental residual dipolar couplings is discussed. We apply our generated ensembles to the problem of folding kinetics, by examining whether the ensembles of some proteins are closer geometrically to their folded structures than others. We find that for a randomly selected dataset of 15 non-homologous 2- and 3-state proteins, quantities such as the average root mean squared deviation between the folded structure and unfolded ensemble correlate with folding rates as strongly as absolute contact order. We introduce a new order parameter that measures the distance travelled per residue, which naturally partitions into a smooth "laminar" and subsequent "turbulent" part of the trajectory. This latter conceptually simple measure with no fitting parameters predicts folding rates in 0 M denaturant with remarkable accuracy (r = -0.95, p = 1 × 10-7). The high correlation between folding times and sterically modulated, reconfigurational motion supports the rapid collapse of proteins prior to the transition state as a generic feature in the folding of both two-state and multi-state proteins. This method for generating unfolded ensembles provides a powerful approach to

  14. A linearized kinetic formulation including a second-order slip model for an impulsive start problem at arbitrary Knudsen numbers

    NASA Astrophysics Data System (ADS)

    Hadjiconstantinou, N. G.; Al-Mohssen, H. A.

    2005-06-01

    We investigate the time evolution of an impulsive start problem for arbitrary Knudsen numbers (Kn) using a linearized kinetic formulation. The early-time behaviour is described by a solution of the collisionless Boltzmann equation. The same solution can be used to describe the late-time behaviour for Kn ≫ 1. The late-time behaviour for Kn < 0.5 is captured by a newly proposed second-order slip model with no adjustable parameters. All theoretical results are verified by direct Monte Carlo solutions of the nonlinear Boltzmann equation. A measure of the timescale to steady state, normalized by the momentum diffusion timescale, shows that the timescale to steady state is significantly extended by ballistic transport, even at low Knudsen numbers where the latter is only important close to the system walls. This effect is captured for Kn < 0.5 by the slip model which predicts the equivalent effective domain size increase (slip length).

  15. How Does Your Protein Fold? Elucidating the Apomyoglobin Folding Pathway.

    PubMed

    Dyson, H Jane; Wright, Peter E

    2017-01-17

    conformational ensembles formed in the presence of denaturing agents and low pH can be characterized as models for the unfolded states of the protein. Newer NMR techniques such as measurement of residual dipolar couplings in the various partly folded states, and relaxation dispersion measurements to probe invisible states present at low concentrations, have contributed to providing a detailed picture of the apomyoglobin folding pathway. The research summarized in this Account was aimed at characterizing and comparing the equilibrium and kinetic intermediates both structurally and dynamically, as well as delineating the complete folding pathway at a residue-specific level, in order to answer the question: "What is it about the amino acid sequence that causes each molecule in the unfolded protein ensemble to start folding, and, once started, to proceed towards the formation of the correctly folded three-dimensional structure?"

  16. Improving protein fold recognition by random forest

    PubMed Central

    2014-01-01

    Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. PMID:25350499

  17. Osmolyte-induced folding of an intrinsically disordered protein: folding mechanism in the absence of ligand.

    PubMed

    Chang, Yu-Chu; Oas, Terrence G

    2010-06-29

    Understanding the interconversion between thermodynamically distinguishable states present in a protein folding pathway provides not only the kinetics and energetics of protein folding but also insights into the functional roles of these states in biological systems. The protein component of the bacterial RNase P holoenzyme from Bacillus subtilis (P protein) was previously shown to be unfolded in the absence of its cognate RNA or other anionic ligands. P protein was used in this study as a model system to explore general features of intrinsically disordered protein (IDP) folding mechanisms. The use of trimethylamine N-oxide (TMAO), an osmolyte that stabilizes the unliganded folded form of the protein, enabled us to study the folding process of P protein in the absence of ligand. Transient stopped-flow kinetic traces at various final TMAO concentrations exhibited multiphasic kinetics. Equilibrium "cotitration" experiments were performed using both TMAO and urea during the titration to produce a urea-TMAO titration surface of P protein. Both kinetic and equilibrium studies show evidence of a previously undetected intermediate state in the P protein folding process. The intermediate state is significantly populated, and the folding rate constants are relatively slow compared to those of intrinsically folded proteins similar in size and topology. The experiments and analysis described serve as a useful example for mechanistic folding studies of other IDPs.

  18. Stochastic Resonance in Protein Folding Dynamics.

    PubMed

    Davtyan, Aram; Platkov, Max; Gruebele, Martin; Papoian, Garegin A

    2016-05-04

    Although protein folding reactions are usually studied under static external conditions, it is likely that proteins fold in a locally fluctuating cellular environment in vivo. To mimic such behavior in in vitro experiments, the local temperature of the solvent can be modulated either harmonically or using correlated noise. In this study, coarse-grained molecular simulations are used to investigate these possibilities, and it is found that both periodic and correlated random fluctuations of the environment can indeed accelerate folding kinetics if the characteristic frequencies of the applied fluctuations are commensurate with the internal timescale of the folding reaction; this is consistent with the phenomenon of stochastic resonance observed in many other condensed-matter processes. To test this theoretical prediction, the folding dynamics of phosphoglycerate kinase under harmonic temperature fluctuations are experimentally probed using Förster resonance energy transfer fluorescence measurements. To analyze these experiments, a combination of theoretical approaches is developed, including stochastic simulations of folding kinetics and an analytical mean-field kinetic theory. The experimental observations are consistent with the theoretical predictions of stochastic resonance in phosphoglycerate kinase folding. When combined with an alternative experiment on the protein VlsE using a power spectrum analysis, elaborated in Dave et al., ChemPhysChem 2016, 10.1002/cphc.201501041, the overall data overwhelmingly point to the experimental confirmation of stochastic resonance in protein folding dynamics.

  19. Crystal chemistry, and thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica: applications to petrologic problems

    NASA Astrophysics Data System (ADS)

    Tribble, Jane S.; Arvidson, Rolf S.; Lane, Michael; Mackenzie, Fred T.

    1995-02-01

    Sedimentary minerals are generally metastable phases that, given time and changing environmental conditions, recrystallize to more stable phases. The actual pathway of stabilization is governed by a host of kinetic factors. Unfortunately, much of the theoretical and experimental work on thermodynamic and kinetic behavior of sedimentary minerals either has not reached field practitioners in sedimentary petrology, or has been conducted under conditions that are difficult to extrapolate to natural sedimentary environments. In this paper we review and present new data on the basic crystal chemistry, thermodynamic and kinetic properties of calcite, dolomite, apatite, and biogenic silica, and discuss the relevance of these data to the solution of geological and geochemical problems. The crystal chemistry and structure of a given magnesian calcite exert a fundamental control on its solubility and solid solution behavior, and this control can be seen most clearly through comparison of synthetic and biogenic phases. Thus, variations in crystal chemistry and structure, through solubility control during diagenesis, yield a range of possible stabilization pathways, whose documentation is the domain of much field-based study. Experimental work involving dolomite has focused on delineation of phase relations in dry and aqueous systems at moderate to high temperatures, determination of reaction pathways followed during dolomitization of calcium carbonate, and measurement of reaction rate. Uncertainties reside in the relevance of these data to the classic problem of low-temperature dolomite formation. We suggest that the effort must now focus on designing experimental systems that effectively mimic natural environments, and yield reaction rate data as a function of temperature and solution composition. Such an example is presented. A primary goal in experimental work involving carbonate fluorapatite has been an understanding of the mechanism of formation of this mineral. We review

  20. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-05-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.

  1. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  2. Learning To Fold Proteins Using Energy Landscape Theory

    PubMed Central

    Schafer, N.P.; Kim, B.L.; Zheng, W.; Wolynes, P.G.

    2014-01-01

    This review is a tutorial for scientists interested in the problem of protein structure prediction, particularly those interested in using coarse-grained molecular dynamics models that are optimized using lessons learned from the energy landscape theory of protein folding. We also present a review of the results of the AMH/AMC/AMW/AWSEM family of coarse-grained molecular dynamics protein folding models to illustrate the points covered in the first part of the article. Accurate coarse-grained structure prediction models can be used to investigate a wide range of conceptual and mechanistic issues outside of protein structure prediction; specifically, the paper concludes by reviewing how AWSEM has in recent years been able to elucidate questions related to the unusual kinetic behavior of artificially designed proteins, multidomain protein misfolding, and the initial stages of protein aggregation. PMID:25308991

  3. The inverse problem of the kinetics of redox sorption taking into account the size of ultradisperse metal particles in an electron-ion exchanger

    NASA Astrophysics Data System (ADS)

    Konev, D. V.; Fertikov, V. V.; Kravchenko, T. A.; Kalinichev, A. I.

    2008-08-01

    The inverse kinetic problem of reducing sorption of molecular oxygen by a copper-containing electron-ion exchanger was formulated and solved taking into account the influence of the size of ultradisperse metal particles on the total rate of the process. These results were used to determine the inside diffusion coefficient of oxygen and rate constants for its interaction with disperse copper from the experimental kinetic curves. The diffusion coefficient obtained was compared with the result of an independent experiment. The kinetic parameters found were used to perform a theoretical analysis of the contributions of various factors influencing the rate of the process under consideration. The reason for the experimentally observed acceleration of the reducing sorption of oxygen by a high-dispersity electron-ion exchanger sample was shown to be an increase in the surface area of metal because of a decrease in the size of its particles and a comparatively high copper content in the surface layer of grains.

  4. Paper Folding Fractions

    ERIC Educational Resources Information Center

    Pagni, David

    2007-01-01

    In this article, the author presents a paper folding activity that can be used for teaching fractions. This activity can be used to describe areas of folded polygons in terms of a standard unit of measure. A paper folding fractions worksheet and its corresponding solutions are also presented in this article. (Contains 2 figures.)

  5. Folding of viscous sheets and filaments

    NASA Astrophysics Data System (ADS)

    Skorobogatiy, M.; Mahadevan, L.

    2000-12-01

    We consider the nonlinear folding behavior of a viscous filament or a sheet under the influence of an external force such as gravity. Everyday examples of this phenomenon are provided by the periodic folding of a sheet of honey as it impinges on toast, or the folding of a stream of shampoo as it falls on one's hand. To understand the evolution of a fold, we formulate and solve a free-boundary problem for the phenomenon, give scaling laws for the size of the folds and the frequency with which they are laid out, and verify these experimentally.

  6. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  7. Mechanics of Curved Folds

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2011-03-01

    Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.

  8. Elbow Synovial Fold Syndrome

    DTIC Science & Technology

    2007-12-01

    Density MR with arrows The clinical differential diagnosis of plica syndrome includes lateral epicondylitis (aka tennis elbow ), loose bodies... Elbow Synovial Fold Syndrome Radiology Corner Elbow Synovial Fold Syndrome Guarantor: CPT Amit Sanghi, USA, MC FS Contributors: CPT Amit...the case of a 17 year old female with elbow synovial fold syndrome (aka plica synovialis). The etiology is thought to be related to repetitive

  9. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 13149, as Cycle 20.

  10. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 12778, as Cycle 19.

  11. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis, Proposal 12416, as Cycle 18.

  12. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2009-07-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {10035} during Cycle 12.

  13. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {11863} during Cycle 17.

  14. A galaxy of folds

    PubMed Central

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains. PMID:19937658

  15. A galaxy of folds.

    PubMed

    Alva, Vikram; Remmert, Michael; Biegert, Andreas; Lupas, Andrei N; Söding, Johannes

    2010-01-01

    Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co-occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.

  16. Folding at the birth of the nascent chain: coordinating translation with co-translational folding.

    PubMed

    Zhang, Gong; Ignatova, Zoya

    2011-02-01

    In the living cells, the folding of many proteins is largely believed to begin co-translationally, during their biosynthesis at the ribosomes. In the ribosomal tunnel, the nascent peptide may establish local interactions and stabilize α-helical structures. Long-range contacts are more likely outside the ribosomes after release of larger segments of the nascent chain. Examples suggest that domains can attain native-like structure on the ribosome with and without population of folding intermediates. The co-translational folding is limited by the speed of the gradual extrusion of the nascent peptide which imposes conformational restraints on its folding landscape. Recent experimental and in silico modeling studies indicate that translation kinetics fine-tunes co-translational folding by providing a time delay for sequential folding of distinct portions of the nascent chain.

  17. Chemical and Biological Kinetics

    NASA Astrophysics Data System (ADS)

    Emanuel', N. M.

    1981-10-01

    Examples of the application of the methods and ideas of chemical kinetics in various branches of chemistry and biology are considered and the results of studies on the kinetics and mechanisms of autoxidation and inhibited and catalysed oxidation of organic substances in the liquid phase are surveyed. Problems of the kinetics of the ageing of polymers and the principles of their stabilisation are discussed and certain trends in biological kinetics (kinetics of tumour growth, kinetic criteria of the effectiveness of chemotherapy, problems of gerontology, etc.) are considered. The bibliography includes 281 references.

  18. Microsecond subdomain folding in dihydrofolate reductase.

    PubMed

    Arai, Munehito; Iwakura, Masahiro; Matthews, C Robert; Bilsel, Osman

    2011-07-08

    The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.

  19. Ultrafast protein folding in cages and zippers

    NASA Astrophysics Data System (ADS)

    Qiu, Linlin; Hagen, Stephen J.

    2003-03-01

    The smallest, fastest-folding proteins fold on the ˜μ s time scale, where state-of-the-art molecular dynamics (MD) simulation can finally overlap with the fastest experimental probes such as laser temperature-jump spectroscopy. For such proteins, one can now ask whether molecular dynamics correctly predicts the native structure and/or the folding speed. We will present experimental measurements of folding speed in two small proteins that acquire a stable tertiary fold rapidly enough to have been simulated in MD: (a) The 20-residue tryptophan (Trp) cage, which constitutes both the smallest truly protein-like molecule and also the fastest-folding [Neidigh et al., Nat. Struct. Biol. 9 425 (2002); Qiu et al., JACS 124 12952 (2002)], and (b) the 12-residue Trp zippers (e.g. TrpZip1), monomeric β-hairpins engineered by Cochran et al. [PNAS 98 5578 (2001)]. Both proteins fold in a cooperative, two-state transition at rates exceeding 10^5 s-1 (τ < 10 μs). We will compare the folding kinetics of these proteins with the predictions of MD simulations.

  20. Real value prediction of protein folding rate change upon point mutation

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Tsung; Gromiha, M. Michael

    2012-03-01

    Prediction of protein folding rate change upon amino acid substitution is an important and challenging problem in protein folding kinetics and design. In this work, we have analyzed the relationship between amino acid properties and folding rate change upon mutation. Our analysis showed that the correlation is not significant with any of the studied properties in a dataset of 476 mutants. Further, we have classified the mutants based on their locations in different secondary structures and solvent accessibility. For each category, we have selected a specific combination of amino acid properties using genetic algorithm and developed a prediction scheme based on quadratic regression models for predicting the folding rate change upon mutation. Our results showed a 10-fold cross validation correlation of 0.72 between experimental and predicted change in protein folding rates. The correlation is 0.73, 0.65 and 0.79, respectively in strand, helix and coil segments. The method has been further tested with an extended dataset of 621 mutants and a blind dataset of 62 mutants, and we observed a good agreement with experiments. We have developed a web server for predicting the folding rate change upon mutation and it is available at http://bioinformatics.myweb.hinet.net/fora.htm.

  1. Circuit topology of self-interacting chains: implications for folding and unfolding dynamics.

    PubMed

    Mugler, Andrew; Tans, Sander J; Mashaghi, Alireza

    2014-11-07

    Understanding the relationship between molecular structure and folding is a central problem in disciplines ranging from biology to polymer physics and DNA origami. Topology can be a powerful tool to address this question. For a folded linear chain, the arrangement of intra-chain contacts is a topological property because rearranging the contacts requires discontinuous deformations. Conversely, the topology is preserved when continuously stretching the chain while maintaining the contact arrangement. Here we investigate how the folding and unfolding of linear chains with binary contacts is guided by the topology of contact arrangements. We formalize the topology by describing the relations between any two contacts in the structure, which for a linear chain can either be in parallel, in series, or crossing each other. We show that even when other determinants of folding rate such as contact order and size are kept constant, this 'circuit' topology determines folding kinetics. In particular, we find that the folding rate increases with the fractions of parallel and crossed relations. Moreover, we show how circuit topology constrains the conformational phase space explored during folding and unfolding: the number of forbidden unfolding transitions is found to increase with the fraction of parallel relations and to decrease with the fraction of series relations. Finally, we find that circuit topology influences whether distinct intermediate states are present, with crossed contacts being the key factor. The approach presented here can be more generally applied to questions on molecular dynamics, evolutionary biology, molecular engineering, and single-molecule biophysics.

  2. Early aggregated States in the folding of interleukin-1β.

    PubMed

    Finke, J M; Jennings, P A

    2001-06-01

    Kinetic data measured from folding of the protein interleukin-1β fits best to three exponential phases when studied with tryptophan fluorescence but only two exponential phases when measured using other methods. The technique of ANS fluorescence was used to determine whether the additional phase observed in tryptophan fluorescence was also detected with ANS dye binding. Unlike trytophan fluorescence, the ANS fluorescence was highly dependent on the concentration of protein present during the folding experiment. Experimental controls provide evidence that ANS binds to protein aggregates, present at higher concentrations and absent at lower concentrations. Protein concentration-dependent folding studies demonstrate that, at lower interleukin-1β concentrations, tryptophan fluorescence kinetics can be fit adequately with a two exponential fit. This study indicates that (1) measured interleukin-1β folding kinetics fit to a 2 phase model and (2) at higher protein concentrations, transient association of IL-1β may result in a kinetic fit of 3 phases.

  3. Transition-path sampling of -hairpin folding

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter G.

    2003-10-01

    We examine the dynamical folding pathways of the C-terminal -hairpin of protein G-B1 in explicit solvent at room temperature by means of a transition-path sampling algorithm. In agreement with previous free-energy calculations, the resulting path ensembles reveal a folding mechanism in which the hydrophobic residues collapse first followed by backbone hydrogen-bond formation, starting with the hydrogen bonds inside the hydrophobic core. In addition, the path ensembles contain information on the folding kinetics, including solvent motion. Using the recently developed transition interface sampling technique, we calculate the rate constant for unfolding of the protein fragment and find it to be in reasonable agreement with experiments. The results support the validation of using all-atom force fields to study protein folding.

  4. Protein folding and misfolding: mechanism and principles.

    PubMed

    Englander, S Walter; Mayne, Leland; Krishna, Mallela M G

    2007-11-01

    Two fundamentally different views of how proteins fold are now being debated. Do proteins fold through multiple unpredictable routes directed only by the energetically downhill nature of the folding landscape or do they fold through specific intermediates in a defined pathway that systematically puts predetermined pieces of the target native protein into place? It has now become possible to determine the structure of protein folding intermediates, evaluate their equilibrium and kinetic parameters, and establish their pathway relationships. Results obtained for many proteins have serendipitously revealed a new dimension of protein structure. Cooperative structural units of the native protein, called foldons, unfold and refold repeatedly even under native conditions. Much evidence obtained by hydrogen exchange and other methods now indicates that cooperative foldon units and not individual amino acids account for the unit steps in protein folding pathways. The formation of foldons and their ordered pathway assembly systematically puts native-like foldon building blocks into place, guided by a sequential stabilization mechanism in which prior native-like structure templates the formation of incoming foldons with complementary structure. Thus the same propensities and interactions that specify the final native state, encoded in the amino-acid sequence of every protein, determine the pathway for getting there. Experimental observations that have been interpreted differently, in terms of multiple independent pathways, appear to be due to chance misfolding errors that cause different population fractions to block at different pathway points, populate different pathway intermediates, and fold at different rates. This paper summarizes the experimental basis for these three determining principles and their consequences. Cooperative native-like foldon units and the sequential stabilization process together generate predetermined stepwise pathways. Optional misfolding errors

  5. Protein Folding: Detailed Models

    NASA Astrophysics Data System (ADS)

    Pande, Vijay

    Proteins play a fundamental role in biology. With their ability to perform numerous biological roles, including acting as catalysts, antibodies, and molecular signals, proteins today realize many of the goals that modern nanotechnology aspires to. However, before proteins can carry out these remarkable molecular functions, they must perform another amazing feat — they must assemble themselves. This process of protein self-assembly into a particular shape, or "fold" is called protein folding. Due to the importance of the folded state in the biological activity of proteins, recent interest from misfolding related diseases [1], as well as a fascination of just how this process occurs [2-4], there has been much work performed in order to unravel the mechanism of protein folding [5].

  6. NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2009-07-01

    The performance of MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS SMOV as proposal 13555 {visit 5}.

  7. On the Role of Entropy in the Protein Folding Process

    NASA Astrophysics Data System (ADS)

    Hoppe, Travis

    2011-12-01

    A protein's ultimate function and activity is determined by the unique three-dimensional structure taken by the folding process. Protein malfunction due to misfolding is the culprit of many clinical disorders, such as abnormal protein aggregations. This leads to neurodegenerative disorders like Huntington's and Alzheimer's disease. We focus on a subset of the folding problem, exploring the role and effects of entropy on the process of protein folding. Four major concepts and models are developed and each pertains to a specific aspect of the folding process: entropic forces, conformational states under crowding, aggregation, and macrostate kinetics from microstate trajectories. The exclusive focus on entropy is well-suited for crowding studies, as many interactions are nonspecific. We show how a stabilizing entropic force can arise purely from the motion of crowders in solution. In addition we are able to make a a quantitative prediction of the crowding effect with an implicit crowding approximation using an aspherical scaled-particle theory. In order to investigate the effects of aggregation, we derive a new operator expansion method to solve the Ising/Potts model with external fields over an arbitrary graph. Here the external fields are representative of the entropic forces. We show that this method reduces the problem of calculating the partition function to the solution of recursion relations. Many of the methods employed are coarse-grained approximations. As such, it is useful to have a viable method for extracting macrostate information from time series data. We develop a method to cluster the microstates into physically meaningful macrostates by grouping similar relaxation times from a transition matrix. Overall, the studied topics allow us to understand deeper the complicated process involving proteins.

  8. Folding of polyglutamine chains

    NASA Astrophysics Data System (ADS)

    Chopra, Manan; Reddy, Allam S.; Abbott, N. L.; de Pablo, J. J.

    2008-10-01

    Long polyglutamine chains have been associated with a number of neurodegenerative diseases. These include Huntington's disease, where expanded polyglutamine (PolyQ) sequences longer than 36 residues are correlated with the onset of symptoms. In this paper we study the folding pathway of a 54-residue PolyQ chain into a β-helical structure. Transition path sampling Monte Carlo simulations are used to generate unbiased reactive pathways between unfolded configurations and the folded β-helical structure of the polyglutamine chain. The folding process is examined in both explicit water and an implicit solvent. Both models reveal that the formation of a few critical contacts is necessary and sufficient for the molecule to fold. Once the primary contacts are formed, the fate of the protein is sealed and it is largely committed to fold. We find that, consistent with emerging hypotheses about PolyQ aggregation, a stable β-helical structure could serve as the nucleus for subsequent polymerization of amyloid fibrils. Our results indicate that PolyQ sequences shorter than 36 residues cannot form that nucleus, and it is also shown that specific mutations inferred from an analysis of the simulated folding pathway exacerbate its stability.

  9. GroEL-mediated protein folding.

    PubMed Central

    Fenton, W. A.; Horwich, A. L.

    1997-01-01

    I. Architecture of GroEL and GroES and the reaction pathway A. Architecture of the chaperonins B. Reaction pathway of GroEL-GroES-mediated folding II. Polypeptide binding A. A parallel network of chaperones binding polypeptides in vivo B. Polypeptide binding in vitro 1. Role of hydrophobicity in recognition 2. Homologous proteins with differing recognition-differences in primary structure versus effects on folding pathway 3. Conformations recognized by GroEL a. Refolding studies b. Binding of metastable intermediates c. Conformations while stably bound at GroEL 4. Binding constants and rates of association 5. Conformational changes in the substrate protein associated with binding by GroEL a. Observations b. Kinetic versus thermodynamic action of GroEL in mediating unfolding c. Crossing the energy landscape in the presence of GroEL III. ATP binding and hydrolysis-driving the reaction cycle IV. GroEL-GroES-polypeptide ternary complexes-the folding-active cis complex A. Cis and trans ternary complexes B. Symmetric complexes C. The folding-active intermediate of a chaperonin reaction-cis ternary complex D. The role of the cis space in the folding reaction E. Folding governed by a "timer" mechanism F. Release of nonnative polypeptides during the GroEL-GroES reaction G. Release of both native and nonnative forms under physiologic conditions H. A role for ATP binding, as well as hydrolysis, in the folding cycle V. Concluding remarks. PMID:9098884

  10. Understanding the influence of codon translation rates on cotranslational protein folding.

    PubMed

    O'Brien, Edward P; Ciryam, Prajwal; Vendruscolo, Michele; Dobson, Christopher M

    2014-05-20

    Protein domains can fold into stable tertiary structures while they are synthesized by the ribosome in a process known as cotranslational folding. If a protein does not fold cotranslationally, however, it has the opportunity to do so post-translationally, that is, after the nascent chain has been fully synthesized and released from the ribosome. The rate at which a ribosome adds an amino acid encoded by a particular codon to the elongating nascent chain can vary significantly and is called the codon translation rate. Recent experiments have illustrated the profound impact that codon translation rates can have on the cotranslational folding process and the acquisition of function by nascent proteins. Synonymous codon mutations in an mRNA molecule change the chemical identity of a codon and its translation rate without changing the sequence of the synthesized protein. This change in codon translation rate can, however, cause a nascent protein to malfunction as a result of cotranslational misfolding. In some situations, such dysfunction can have profound implications; for example, it can alter the substrate specificity of an ABC transporter protein, resulting in patients who are nonresponsive to chemotherapy treatment. Thus, codon translation rates are crucial in coordinating protein folding in a cellular environment and can affect downstream cellular processes that depend on the proper functioning of newly synthesized proteins. As the importance of codon translation rates makes clear, a necessary aspect of fully understanding cotranslational folding lies in considering the kinetics of the process in addition to its thermodynamics. In this Account, we examine the contributions that have been made to elucidating the mechanisms of cotranslational folding by using the theoretical and computational tools of chemical kinetics, molecular simulations, and systems biology. These efforts have extended our ability to understand, model, and predict the influence of codon

  11. Modelling RNA folding under mechanical tension

    PubMed Central

    VIEREGG, JEFFREY R.; TINOCO, IGNACIO

    2006-01-01

    We investigate the thermodynamics and kinetics of RNA unfolding and refolding under mechanical tension. The hierarchical nature of RNA structure and the existence of thermodynamic parameters for base pair formation based on nearest-neighbour interactions allows modelling of sequence-dependent folding dynamics for any secondary structure. We calculate experimental observables such as the transition force for unfolding, the end-to-end distribution function and its variance, as well as kinetic information, for a representative RNA sequence and for a sequence containing two homopolymer segments: A.U and G.C. PMID:16969426

  12. Programmable matter by folding

    PubMed Central

    Hawkes, E.; An, B.; Benbernou, N. M.; Tanaka, H.; Kim, S.; Demaine, E. D.; Rus, D.; Wood, R. J.

    2010-01-01

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to meet the goal. This paper considers achieving programmable sheets that can form themselves in different shapes autonomously by folding. Past approaches to creating transforming machines have been limited by the small feature sizes, the large number of components, and the associated complexity of communication among the units. We seek to mitigate these difficulties through the unique concept of self-folding origami with universal crease patterns. This approach exploits a single sheet composed of interconnected triangular sections. The sheet is able to fold into a set of predetermined shapes using embedded actuation. To implement this self-folding origami concept, we have developed a scalable end-to-end planning and fabrication process. Given a set of desired objects, the system computes an optimized design for a single sheet and multiple controllers to achieve each of the desired objects. The material, called programmable matter by folding, is an example of a system capable of achieving multiple shapes for multiple functions. PMID:20616049

  13. Folding of apominimyoglobin.

    PubMed Central

    De Sanctis, G; Ascoli, F; Brunori, M

    1994-01-01

    The acid unfolding pathway of apominimyoglobin (apo-mini-Mb), a 108-aa fragment (aa 32-139) of horse heart apomyoglobin has been studied by means of circular dichroism, in comparison with the native apoprotein. Similar to sperm whale apomyoglobin [Hughson, F. M., Wright, P. E. & Baldwin, R. L. (1990) Science 249, 1544-1548], a partly folded intermediate (alpha-helical content approximately 35%) is populated at pH 4.2 for horse heart apomyoglobin. For this intermediate, Hughson et al. proposed a structural model with a compact subdomain involving tertiary interactions between the folded A, G, and H helices, with the remainder of the protein essentially unfolded. As described in this paper, a folding intermediate with an alpha-helical content of approximately 33% is populated at pH 4.3-5.0 also in apo-mini-Mb. The acid unfolding pathway is similarly affected in both the native and the mini apoprotein by 15% trifluoroethanol, a helix-stabilizing compound. Thus, the folding of the apo-mini-Mb intermediate is similar to that observed for the native apoprotein, in spite of the absence in the miniprotein of the A helix and of a large part of the H helix, which are crucial for the stability of apo-Mb intermediate. Our results suggest that acquisition of a folded state in apo-mini-Mb occurs through an alternative pathway, which may or may not be shared also by apo-Mb. PMID:7972092

  14. Synthesizing folded band chaos

    NASA Astrophysics Data System (ADS)

    Corron, Ned J.; Hayes, Scott T.; Pethel, Shawn D.; Blakely, Jonathan N.

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics.

  15. Protein folding and misfolding

    NASA Astrophysics Data System (ADS)

    Dobson, Christopher M.

    2003-12-01

    The manner in which a newly synthesized chain of amino acids transforms itself into a perfectly folded protein depends both on the intrinsic properties of the amino-acid sequence and on multiple contributing influences from the crowded cellular milieu. Folding and unfolding are crucial ways of regulating biological activity and targeting proteins to different cellular locations. Aggregation of misfolded proteins that escape the cellular quality-control mechanisms is a common feature of a wide range of highly debilitating and increasingly prevalent diseases.

  16. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    NASA Astrophysics Data System (ADS)

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-02-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally--a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process.

  17. Folding pathways of the Tetrahymena ribozyme.

    PubMed

    Mitchell, David; Russell, Rick

    2014-06-12

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Folding pathways of the Tetrahymena ribozyme

    PubMed Central

    Mitchell, David; Russell, Rick

    2014-01-01

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min–1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here, we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min–1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the ‘choice’ is enforced by energy barriers that grow larger as folding progresses. PMID:24747051

  19. Fold pattern formation in 3D

    NASA Astrophysics Data System (ADS)

    Schmid, Daniel W.; Dabrowski, Marcin; Krotkiewski, Marcin

    2010-05-01

    The vast majority of studies concerned with folding focus on 2D and assume that the resulting fold structures are cylindrically extended in the out of place direction. This simplification is often justified as fold aspect ratios, length/width, are quite large. However, folds always exhibit finite aspect ratios and it is unclear what controls this (cf. Fletcher 1995). Surprisingly little is known about the fold pattern formation in 3D for different in-plane loading conditions. Even more complicated is the pattern formation when several folding events are superposed. Let us take the example of a plane strain pure shear superposed by the same kind of deformation but rotated by 90 degrees. The text book prediction for this event is the formation of an egg carton structure; relevant analogue models either agree and produce type 1 interference patterns or contradict and produce type 2. In order to map out 3D fold pattern formation we have performed a systematic parameter space investigation using BILAMIN, our efficient unstructured mesh finite element Stokes solver. BILAMIN is capable of solving problems with more than half a billion unknowns. This allows us to study fold patterns that emerge in randomly (red noise) perturbed layers. We classify the resulting structures with differential geometry tools. Our results show that there is a relationship between fold aspect ratio and in-plane loading conditions. We propose that this finding can be used to determine the complete parameter set potentially contained in the geometry of three dimensional folds: mechanical properties of natural rocks, maximum strain, and relative strength of the in-plane far-field load components. Furthermore, we show how folds in 3D amplify and that there is a second deformation mode, besides continuous amplification, where compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that the textbook prediction of egg carton shaped dome and basin structures resulting

  20. Folding a protein by discretizing its backbone torsional dynamics

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    1999-05-01

    The aim of this work is to provide a coarse codification of local conformational constraints associated with each folding motif of a peptide chain in order to obtain a rough solution to the protein folding problem. This is accomplished by implementing a discretized version of the soft-mode dynamics on a personal computer (PC). Our algorithm mimics a parallel process as it evaluates concurrent folding possibilities by pattern recognition. It may be implemented in a PC as a sequence of perturbation-translation-renormalization (p-t-r) cycles performed on a matrix of local topological constraints (LTM). This requires suitable representational tools and a periodic quenching of the dynamics required for renormalization. We introduce a description of the peptide chain based on a local discrete variable the values of which label the basins of attraction of the Ramachandran map for each residue. Thus, the local variable indicates the basin in which the torsional coordinates of each residue lie at a given time. In addition, a coding of local topological constraints associated with each secondary and tertiary structural motif is introduced. Our treatment enables us to adopt a computation time step of 81 ps, a value far larger than hydrodynamic drag time scales. Folding pathways are resolved as transitions between patterns of locally encoded structural signals that change within the 10 μs-100 ms time scale range. These coarse folding pathways are generated by the periodic search for structural patterns in the time-evolving LTM. Each pattern is recorded as a contact matrix, an operation subject to a renormalization feedback loop. The validity of our approach is tested vis-a-vis experimentally-probed folding pathways eventually generating tertiary interactions in proteins which recover their active structure under in vitro renaturation conditions. As an illustration, we focus on determining significant folding intermediates and late kinetic bottlenecks that occur within the

  1. Protein folding by distributed computing and the denatured state ensemble.

    PubMed

    Marianayagam, Neelan J; Fawzi, Nicolas L; Head-Gordon, Teresa

    2005-11-15

    The distributed computing (DC) paradigm in conjunction with the folding@home (FH) client server has been used to study the folding kinetics of small peptides and proteins, giving excellent agreement with experimentally measured folding rates, although pathways sampled in these simulations are not always consistent with the folding mechanism. In this study, we use a coarse-grain model of protein L, whose two-state kinetics have been characterized in detail by using long-time equilibrium simulations, to rigorously test a FH protocol using approximately 10,000 short-time, uncoupled folding simulations starting from an extended state of the protein. We show that the FH results give non-Poisson distributions and early folding events that are unphysical, whereas longer folding events experience a correct barrier to folding but are not representative of the equilibrium folding ensemble. Using short-time, uncoupled folding simulations started from an equilibrated denatured state ensemble (DSE), we also do not get agreement with the equilibrium two-state kinetics because of overrepresented folding events arising from higher energy subpopulations in the DSE. The DC approach using uncoupled short trajectories can make contact with traditionally measured experimental rates and folding mechanism when starting from an equilibrated DSE, when the simulation time is long enough to sample the lowest energy states of the unfolded basin and the simulated free-energy surface is correct. However, the DC paradigm, together with faster time-resolved and single-molecule experiments, can also reveal the breakdown in the two-state approximation due to observation of folding events from higher energy subpopulations in the DSE.

  2. Folds and Etudes

    ERIC Educational Resources Information Center

    Bean, Robert

    2007-01-01

    In this article, the author talks about "Folds" and "Etudes" which are images derived from anonymous typing exercises that he found in a used copy of "Touch Typing Made Simple". "Etudes" refers to the musical tradition of studies for a solo instrument, which is a typewriter. Typing exercises are repetitive attempts to type words and phrases…

  3. Oxidative folding in chloroplasts.

    PubMed

    Kieselbach, Thomas

    2013-07-01

    Disulfide-bonded proteins in chloroplasts from green plants exist in the envelope and the thylakoid membrane, and in the stroma and the lumen. The formation of disulfide bonds in proteins is referred to as oxidative folding and is linked to the import and folding of chloroplast proteins as well as the assembly and repair of thylakoid complexes. It is also important in the redox regulation of enzymes and signal transfer. Green-plant chloroplasts contain enzymes that can form and isomerize disulfide bonds in proteins. In Arabidopsis thaliana, four proteins are identified that are relevant for the catalysis of disulfide bond formation in chloroplast proteins. The proteins' low quantum yield of Photosystem II 1 (LQY1, At1g75690) and snowy cotyledon 2 (SCO2, At3g19220) exhibits protein disulfide isomerase activity and is suggested to function in the assembly and repair of Photosystem II (PSII), and the biogenesis of thylakoids in cotyledons, respectively. The thylakoid-located Lumen thiol oxidoreductase 1 (LTO1, At4g35760) can catalyze the formation of the disulfide bond of the extrinsic PsbO protein of PSII. In addition, the stroma-located protein disulfide isomerase PDIL1-3 (At3g54960) may have a role in oxidative folding. Research on oxidative folding in chloroplasts plants is in an early stage and little is known about the mechanisms of disulfide bond formation in chloroplast proteins. The close link between the import and folding of chloroplast proteins suggests that Hsp93, a component of the inner envelope's import apparatus, may have co-chaperones that can catalyze disulfide bond formation in newly imported proteins.

  4. Folding of multidomain proteins: biophysical consequences of tethering even in apparently independent folding.

    PubMed

    Arviv, Oshrit; Levy, Yaakov

    2012-12-01

    Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering-induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse-grained and atomistic molecular dynamics simulations of two two-domain constructs from the immunoglobulin-like β-sandwich fold. Each of these was experimentally shown to behave as the "sum of its parts," that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two-domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Copyright © 2012 Wiley Periodicals, Inc.

  5. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  6. Macrotransport-solidification kinetics modeling of equiaxed dendritic growth. Part 2: Computation problems and validation on INCONEL 718 superalloy castings

    SciTech Connect

    Nastac, L.; Stefanescu, D.M.

    1996-12-01

    In Part 1 of the article, a new analytical model that describes solidification of equiaxed dendrites was presented. In this part of the article, the model is used to simulate the solidification of INCONEL 718 superalloy castings. The model was incorporated into a commercial finite-element code, PROCAST. A special procedure called microlatent heat method (MLHM) was used for coupling between macroscopic heat flow and microscopic growth kinetics. A criterion for time-stepping selection in microscopic modeling has been derived in conjunction with MLHM. Reductions in computational (CPU) time up to 90 pct over the classic latent heat method were found by adopting this coupling. Validation of the model was performed against experimental data for an INCONEL 718 superalloy casting. In the present calculations, the model for globulitic dendrite was used. The evolution of fraction of solid calculated with the present model was compared with Scheil`s model and experiments. An important feature in solidification of INCONEL 718 is the detrimental Laves phase. Laves phase content is directly related to the intensity of microsegregation of niobium, which is very sensitive to the evolution of the fraction of solid. It was found that thee is a critical cooling rate at which the amount of Laves phase is maximum. The critical cooling rate is not a function of material parameters (diffusivity, partition coefficient, etc.). It depends only on the grain size and solidification time. The predictions generated with the present model are shown to agree very well with experiments.

  7. Design principles for rapid folding of knotted DNA nanostructures.

    PubMed

    Kočar, Vid; Schreck, John S; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P K; Jerala, Roman

    2016-02-18

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the 'free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins.

  8. Modelling of lateral fold growth and fold linkage: Applications to fold-and-thrust belt tectonics

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard; Schmalholz, Stefan

    2013-04-01

    We use a finite element model to investigate the three-dimensional fold growth and interference of two initially isolated fold segments. The most critical parameter, which controls the fold linkage mode, is the phase difference between the laterally growing fold hinge lines: 1) "Linear-linkage" yields a sub-cylindrical fold with a saddle at the location where the two initial folds linked. 2) "Oblique-linkage" produces a curved fold resembling a Type II refold structure. 3) "Oblique-no-linkage" results in two curved folds with fold axes plunging in opposite directions. 4) "Linear-no-linkage" yields a fold train of two separate sub-cylindrical folds with fold axes plunging in opposite directions. The transition from linkage to no-linkage occurs when the fold separation between the initially isolated folds is slightly larger than one half of the low-amplitude fold wavelength. The model results compare well with previously published plasticine analogue models and can be directly applied to the investigation of fold growth history in fold-and-thust belts. An excellent natural example of lateral fold linkage is described from the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The fold growth in this region is not controlled by major thrust faults but the shortening of the Paleozoic to Cenozoic passive margin sediments of the Arabian plate occurred mainly by detachment folding. The sub-cylindrical anticlines with hinge-parallel lengths of more than 50 km have not developed from single sub-cylindrical embryonic folds but they have merged from different fold segments that joined laterally during fold amplification and lateral fold growth. Linkage points are marked by geomorphological saddle points which are structurally the lowermost points of antiforms and points of principal curvatures with opposite sign. Linkage points can significantly influence the migration of mineral-rich fluids and hydrocarbons and are therefore of great economic importance.

  9. Protein folding: Over half a century lasting quest. Comment on "There and back again: Two views on the protein folding puzzle" by Alexei V. Finkelstein et al.

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Dokholyan, Nikolay V.

    2017-07-01

    Most proteins fold into unique three-dimensional (3D) structures that determine their biological functions, such as catalytic activity or macromolecular binding. Misfolded proteins can pose a threat through aberrant interactions with other proteins leading to a number of diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [1,2]. What does determine 3D structure of proteins? The first clue to this question came more than fifty years ago when Anfinsen demonstrated that unfolded proteins can spontaneously fold to their native 3D structures [3,4]. Anfinsen's experiments lead to the conclusion that proteins fold to unique native structure corresponding to the stable and kinetically accessible free energy minimum, and protein native structure is solely determined by its amino acid sequence. The question of how exactly proteins find their free energy minimum proved to be a difficult problem. One of the puzzles, initially pointed out by Levinthal, was an inconsistency between observed protein folding times and theoretical estimates. A self-avoiding polymer model of a globular protein of 100-residues length on a cubic lattice can sample at least 1047 states. Based on the assumption that conformational sampling occurs at the highest vibrational mode of proteins (∼picoseconds), predicted folding time by searching among all the possible conformations leads to ∼1027 years (much larger than the age of the universe) [5]. In contrast, observed protein folding time range from microseconds to minutes. Due to tremendous theoretical progress in protein folding field that has been achieved in past decades, the source of this inconsistency is currently understood that is thoroughly described in the review by Finkelstein et al. [6].

  10. [Benign vocal fold lesions].

    PubMed

    Pickhard, A; Reiter, R

    2013-05-01

    Benign vocal fold lesions are grouped in lesions arising from the epithelium like papillomas, lesions affecting the Reinke's space (nodules, polyps, cysts, Reinkes's edema as a form of chronic laryngitis) and lesions affecting the arytenoid (granulomas). A multifactorial genesis is assumed. Main symptoms are dysphonia and hyperfunctional vocal behavior that might also be a cause of these lesions. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Ab initio RNA folding.

    PubMed

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-17

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  12. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  13. The protein folding network

    NASA Astrophysics Data System (ADS)

    Rao, Francesco; Caflisch, Amedeo

    2004-03-01

    Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)

  14. Paediatric vocal fold paralysis.

    PubMed

    Garcia-Lopez, Isabel; Peñorrocha-Teres, Julio; Perez-Ortin, Magdalena; Cerpa, Mauricio; Rabanal, Ignacio; Gavilan, Javier

    2013-01-01

    Vocal fold paralysis (VFP) is a relatively common cause of stridor and dysphonia in the paediatric population. This report summarises our experience with VFP in the paediatric age group. All patients presenting with vocal fold paralysis over a 12-month period were included. Medical charts were revised retrospectively. The diagnosis was performed by flexible endoscopic examination. The cases were evaluated with respect to aetiology of the paralysis, presenting symptoms, delay in diagnosis, affected side, vocal fold position, need for surgical treatment and outcome. The presenting symptoms were stridor and dysphonia. Iatrogenic causes formed the largest group, followed by idiopathic, neurological and obstetric VFP. Unilateral paralysis was found in most cases. The median value for delay in diagnosis was 1 month and it was significantly higher in the iatrogenic group. Surgical treatment was not necessary in most part of cases. The diagnosis of VFP may be suspected based on the patient's symptoms and confirmed by flexible endoscopy. Infants who develop stridor or dysphonia following a surgical procedure have to be examined without delay. The surgeon has to keep in mind that there is a possibility of late spontaneous recovery or compensation. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Folded waveguide coupler

    DOEpatents

    Owens, Thomas L.

    1988-03-01

    A resonant cavity waveguide coupler for ICRH of a magnetically confined plasma. The coupler consists of a series of inter-leaved metallic vanes disposed withn an enclosure analogous to a very wide, simple rectangular waveguide that has been "folded" several times. At the mouth of the coupler, a polarizing plate is provided which has coupling apertures aligned with selected folds of the waveguide through which rf waves are launched with magnetic fields of the waves aligned in parallel with the magnetic fields confining the plasma being heated to provide coupling to the fast magnetosonic wave within the plasma in the frequency usage of from about 50-200 mHz. A shorting plate terminates the back of the cavity at a distance approximately equal to one-half the guide wavelength from the mouth of the coupler to ensure that the electric field of the waves launched through the polarizing plate apertures are small while the magnetic field is near a maximum. Power is fed into the coupler folded cavity by means of an input coaxial line feed arrangement at a point which provides an impedance match between the cavity and the coaxial input line.

  16. Folding mechanism of a multiple independently-folding domain protein: double B domain of protein A.

    PubMed

    Arora, Pooja; Hammes, Gordon G; Oas, Terrence G

    2006-10-10

    The antibody binding properties of staphylococcal protein A (SpA) can be attributed to the presence of five highly homologous domains (E, D, A, B, and C). Although the folding of the B domain of protein A (BdpA) is well-characterized, the folding behavior of this domain in the context of full-length SpA in the cell remains unexplored. The sequence of the B domain is 89 and 91% identical to those of domains A and C, respectively. We have fused B domain sequences (BBdpA) as a close approximation of the A-B or B-C portion of SpA. Circular dichroism and fluorescence-detected denaturation curves of BBdpA are experimentally indistinguishable from those of BdpA. The rate constants for folding and unfolding from NMR line shape analysis for the single- and double-domain proteins are the same within experimental uncertainties (+/-20%). These results support the designation of SpA as a multiple independently-folding domain (MIFD) protein. We develop a mathematical model that describes the folding thermodynamics and kinetics of MIFD proteins. The model depicts MIFD protein folding and unfolding as a parallel network and explicitly calculates the flux through all parallel pathways. These fluxes are combined to give a complete description of the global thermodynamics and kinetics of the folding and unfolding of MIFD proteins. The global rates for complete folding and unfolding of a MIFD protein and those of the individual domains depend on the stability of the protein. We show that the global unfolding rate of a MIFD protein may be many orders of magnitude slower than that of the constituent domains.

  17. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    NASA Astrophysics Data System (ADS)

    Doisneau, François; Arienti, Marco; Oefelein, Joseph C.

    2017-01-01

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  18. Two approaches to self-organization in plasma: Kinetic theory treatment for the dynamo problem and sandpile automaton model for pedestal formation in magnetically confined plasma

    NASA Astrophysics Data System (ADS)

    Gruzinov, Irina

    The dissertation consists of two parts, both of which relate to the topic of the self-organization in plasma. Self-organization in plasma is a process of spontaneous formation of ordered structures at scales much larger than the turbulent correlation scale. Examples of such structures could be a mean magnetic field in interstellar or in interplanetary space, accretion disks around dense objects, zonal fields and zonal flows in fusion plasmas, steep gradient profiles in tokamaks etc. Part I of the dissertation addresses the fundamental problem of magnetic field generation (dynamo action). The novelty of our work is that, applying a quasilinear theory to the kinetic Alfven wave (KAW) turbulence, we demonstrate the possibility of the 'fast dynamo', i.e. a dynamo action which does not depend on plasma resistivity, which is extremely small in most of the relevant plasmas in space and in laboratories. Instead, the irreversibility of the dynamo action is provided by the Landau damping of the kinetic Alfven waves on plasma electrons. Whereas Part I explicitly exploite microscopic properties of the plasma instability, the opposite methodology is applied in Part II to the problem of L → H transition and pedestal formation in magnetically confined plasmas. There a generic dynamical model, known as a sandpile cellular automaton is applied. This model is independent of the particular kind of underlying turbulence and incorporates the key features of a confined plasma, namely, collisional diffusion, shear induced bistability of turbulent transport and a local MHD limit on the gradient. One chapter of Part II describes the general phenomenology of the pedestal formation. Another chapter is concerned with an effect of the diffusion. Diffusion changes the character of the edge discharge events and can lead to hysteresis in the L → H → L transition.

  19. Transition paths, diffusive processes, and preequilibria of protein folding.

    PubMed

    Zhang, Zhuqing; Chan, Hue Sun

    2012-12-18

    Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.

  20. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    SciTech Connect

    Bouras, I.; El, A.; Fochler, O.; Greiner, C.; Molnar, E.; Niemi, H.; Xu, Z.; Rischke, D. H.

    2010-08-15

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  1. Folding funnels, binding funnels, and protein function.

    PubMed Central

    Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R.

    1999-01-01

    , with a range of complexed conformations. Hence, knowledge of the shape of the folding funnels is biologically very useful. The converse also holds: If kinetic and thermodynamic data are available, hints regarding the role of the protein and its binding selectivity may be obtained. Thus, the utility of the concept of the funnel carries over to the origin of the protein and to its function. PMID:10386868

  2. Influence of the native topology on the folding barrier for small proteins

    NASA Astrophysics Data System (ADS)

    Prieto, Lidia; Rey, Antonio

    2007-11-01

    The possibility of downhill instead of two-state folding for proteins has been a very controversial topic which arose from recent experimental studies. From the theoretical side, this question has also been accomplished in different ways. Given the experimental observation that a relationship exists between the native structure topology of a protein and the kinetic and thermodynamic properties of its folding process, Gō-type potentials are an appropriate way to approach this problem. In this work, we employ an interaction potential from this family to get a better insight on the topological characteristics of the native state that may somehow determine the presence of a thermodynamic barrier in the folding pathway. The results presented here show that, indeed, the native topology of a small protein has a great influence on its folding behavior, mostly depending on the proportion of local and long range contacts the protein has in its native structure. Furthermore, when all the interactions present contribute in a balanced way, the transition results to be cooperative. Otherwise, the tendency to a downhill folding behavior increases.

  3. Theory of turbulent shear flow I. Kinetic theory derivation of the Reynolds equation: Avoiding the closure problem

    NASA Astrophysics Data System (ADS)

    Piest, Jürgen

    1989-06-01

    This is the first of a series of three papers which report on an theoretical turbulence investigation. In the present part, the Reynolds equation for the mean velocity field in turbulent shear flow is derived in a systematic way starting from established physical knowledge. A basic problem of contemporary turbulence theory is that, at the hydrodynamic level, there seems to be no way presently to derive systematically the initial probability distribution of the fluctuating momentum density. For this reason, N-particle statistical mechanics is employed in this investigation. The closure problem of continuum turbulence theory is avoided by this method. The technique of deriving transport equations from the Liouville equation by projection operator methods is used for the derivation. Stationary constant density/temperature processes are considered only. The dissipative term of the momemtum transport equation is analyzed in order to obtain the formulas for the laminar and turbulent friction forces. The latter is obtained as a second-order convolution in the mean velocity field. The kernel function is a time integral of an equilibrium triple correlation function; it constitutes a physical “constant” of the fluid which is needed in addition to the viscosity constant. Its calculation has been the object of a separate investigation which will be reported in the second paper. The third paper describes the numerical evaluation and comparison with experiment for the spherical case of the circular jet. In the present state, the theoretical formula does not reproduce the experimental data. This is considered a preliminary result which, in view of the systematic nature of the derivation, offers the possibility to trace it back to the spots where the theoretical structure is still not adequate.

  4. Information from folds: A review

    NASA Astrophysics Data System (ADS)

    Hudleston, Peter J.; Treagus, Susan H.

    2010-12-01

    Folds are spectacular geological structures that are seen in layered rock on many different scales. To mark 30 years of the Journal of Structural Geology, we review the information that can be gained from studies of folds in theory, experiment and nature. We first review theoretical considerations and modeling, from classical approaches to current developments. The subject is dominated by single-layer fold theory, with the assumption of perfect layer-parallel shortening, but we also review multilayer fold theory and modeling, and folding of layers that are oblique to principal stresses and strains. This work demonstrates that viscosity ratio, degree of non-linearity of the flow law, anisotropy, and the thickness and spacing distribution of layers of different competence are all important in determining the nature and strength of the folding instability. Theory and modeling provide the basis for obtaining rheological information from natural folds, through analysis of wavelength/thickness ratios of single layer folds, and fold shapes. They also provide a basis for estimating the bulk strain from folded layers. Information about folding mechanisms can be obtained by analysis of cleavage and fabric patterns in folded rocks, and the history of deformation can be revealed by understanding how asymmetry can develop in folds, by how folds develop in shear zones, and how folds develop in more complex three-dimensional deformations.

  5. Fragility of Liquids, Polyamorphism, Nucleation, and Folding Directions, in the Landscape Paradigm

    NASA Astrophysics Data System (ADS)

    Angell, C. A.

    1998-03-01

    folding problem. The possibility exists that in certain cases an aberrant step in the nucleation event, facilitated by mutant nucleotide sequences or by third agents (heterogeneous nucleating agents), will trigger folding down an alternative and pathogenic route to a second stable state. This possibility should be evaluated, using nucleation kinetics analysis techniques, as an approach to understanding the initiation of ``mad cow" disease cerebral pathology.

  6. Folding, Binding, Misfolding and Aggregation with AWSEM

    NASA Astrophysics Data System (ADS)

    Schafer, Nicholas P.

    This thesis discusses our recent results using the Associative-memory, Water-mediated, Structure and Energy Model (AWSEM), an optimized, coarse-grained molecular dynamics protein folding model, to fold, bind, and predict the misfolding behavior of proteins. AWSEM is capable of performing de novo structure prediction on small alpha-helical protein domains and predict the binding interfaces of homo- and hetero-dimers. More recent work demonstrates how the misfolding behavior of tandem constructs in AWSEM is consistent with crucial aspects of ensemble and single molecule experiments on the aggregation and misfolding of these constructs. The first chapter is a review of the energy landscape theory of protein folding as it applies to the problem of protein structure prediction, and more specifically how energy landscape theory and the principle of minimal frustration can be used to optimize parameters of coarse-grained protein folding simulation models. The subsequent four chapters are reports of novel research performed with one such model.

  7. Folding above faults, Rocky Mountains

    SciTech Connect

    McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Asymmetric folds formed above basement faults can be observed throughout the Rocky Mountains. Several previous interpretations of the folding process made the implicit assumption that one or both fold hinges migrated or rolled'' through the steep forelimb of the fold as the structure evolved (rolling hinge model). Results of mapping in the Bighorn and Seminoe Mountains, WY, and Sangre de Cristo Range, CO, do not support this hypothesis. An alternative interpretation is presented in which fold hinges remained fixed in position during folding (fixed hinge model). Mapped folds share common characteristics: (1) axial traces of the folds intersect faults at or near the basement/cover interface, and diverge from faults upsection; (2) fold hinges are narrow and interlimb angles cluster around 80--100[degree] regardless of fold location; (3) fold shape is typically angular, despite published cross sections that show concentric folds; and, (4) beds within the folds show thickening and/or thinning, most commonly adjacent to fold hinges. The rolling hinge model requires that rocks in the fold forelimbs bend through narrow fold hinges as deformation progressed. Examination of massive, competent rock units such as the Ord. Bighorn Dolomite, Miss. Madison Limestone, and, Penn. Tensleep Sandstone reveals no evidence of the extensive internal deformation that would be expected if hinges rolled through rocks of the forelimb. The hinges of some folds (e.g. Golf Creek anticline, Bighorn Mountains) are offset by secondary faults, effectively preventing the passage of rocks from backlimb to forelimb. The fixed hinge model proposes that the fold hinges were defined early in fold evolution, and beds were progressively rotated and steepened as the structure grew.

  8. Folds on Europa

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, acquired by NASA's Galileo spacecraft on September 26, 1998, shows features on the surface of Jupiter's moon Europa that a scientific report published today interprets as signs of compressive folding.

    The imaged area is in the Astypalaea Linea region of Europa's southern hemisphere, seen with low-angle sunshine coming from the upper right. North is toward the top.

    Astypalaea Linea is the smooth, gray area that stretches from north to south across the image mosaic. It is thought to have formed by a combination of pulling apart and sliding of the icy surface. The telltale fold features are within the smoother portions of the surface between the more dominant ridges, which are attributed to upwelling of material through surface ice. In the smooth areas, the surface has gentle swells and dips, which show most clearly in the version on the right, processed to accentuate broader-scale shapes. For example, a dip about 15 kilometers (about 10 miles) wide cuts diagonally across the northern half of the largest smooth area, and a rise runs parallel to that in the southern half of the smooth area. closeup detail

    Louise M. Prockter, at Johns Hopkins University, and Robert T. Pappalardo, at Brown University, report in the journal Science today that those rises, or anticlines, and dips, or synclines, appear to be the result of compression causing the crust to fold.

    Additional evidence comes from smaller features more visible in the version on the left, covering the same area. At the crest of the gentle rise in the largest smooth area are small fractures that could be caused by the stretching stress of bending the surface layer upwards. Similarly, at the bottom of the adjacent dip are small, wrinkle-like ridges that could be caused by stress from bending the surface layer downwards.

    The Jet Propulsion Laboratory, Pasadena, Calif., manages the Galileo mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California

  9. Protein photo-folding and quantum folding theory.

    PubMed

    Luo, Liaofu

    2012-06-01

    The rates of protein folding with photon absorption or emission and the cross section of photon -protein inelastic scattering are calculated from quantum folding theory by use of a field-theoretical method. All protein photo-folding processes are compared with common protein folding without the interaction of photons (non-radiative folding). It is demonstrated that there exists a common factor (thermo-averaged overlap integral of the vibration wave function, TAOI) for protein folding and protein photo-folding. Based on this finding it is predicted that (i) the stimulated photo-folding rates and the photon-protein resonance Raman scattering sections show the same temperature dependence as protein folding; (ii) the spectral line of the electronic transition is broadened to a band that includes an abundant vibration spectrum without and with conformational transitions, and the width of each vibration spectral line is largely reduced. The particular form of the folding rate-temperature relation and the abundant spectral structure imply the existence of quantum tunneling between protein conformations in folding and photo-folding that demonstrates the quantum nature of the motion of the conformational-electronic system.

  10. Bacteriorhodopsin folds through a poorly organized transition state.

    PubMed

    Schlebach, Jonathan P; Woodall, Nicholas B; Bowie, James U; Park, Chiwook

    2014-11-26

    The folding mechanisms of helical membrane proteins remain largely uncharted. Here we characterize the kinetics of bacteriorhodopsin folding and employ φ-value analysis to explore the folding transition state. First, we developed and confirmed a kinetic model that allowed us to assess the rate of folding from SDS-denatured bacteriorhodopsin (bRU) and provides accurate thermodynamic information even under influence of retinal hydrolysis. Next, we obtained reliable φ-values for 16 mutants of bacteriorhodopsin with good coverage across the protein. Every φ-value was less than 0.4, indicating the transition state is not uniquely structured. We suggest that the transition state is a loosely organized ensemble of conformations.

  11. Overview of the regulation of disulfide bond formation in Peptide and protein folding.

    PubMed

    Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the maintenance of the native conformation of proteins under thermodynamic control. In general, disulfide bond formation is associated with protein folding, and this restricts the formation of folding intermediates such as misbridged disulfide isomers or kinetically trapped conformations, which provide important information related to how proteins fold into their native conformation. Therefore, numerous studies have focused on the structural analysis of folding intermediates in vitro. However, isolating or trapping folding intermediates, as well as the entire proteins, including mutant proteins, is not an easy task. Several chemical methods have recently been developed for examining peptide and protein folding and for producing, e.g., intact, post-translationally modified, or kinetically trapped proteins, or proteins with misbridged disulfide bonds. This overview introduces chemical methods for regulating the formation of disulfide bonds of peptides and proteins in the context of the thermodynamic and kinetic control of peptide and protein folding.

  12. Evolution, Energy Landscapes and the Paradoxes of Protein Folding

    PubMed Central

    Wolynes, Peter G.

    2014-01-01

    Protein folding has been viewed as a difficult problem of molecular self-organization. The search problem involved in folding however has been simplified through the evolution of folding energy landscapes that are funneled. The funnel hypothesis can be quantified using energy landscape theory based on the minimal frustration principle. Strong quantitative predictions that follow from energy landscape theory have been widely confirmed both through laboratory folding experiments and from detailed simulations. Energy landscape ideas also have allowed successful protein structure prediction algorithms to be developed. The selection constraint of having funneled folding landscapes has left its imprint on the sequences of existing protein structural families. Quantitative analysis of co-evolution patterns allows us to infer the statistical characteristics of the folding landscape. These turn out to be consistent with what has been obtained from laboratory physicochemical folding experiments signalling a beautiful confluence of genomics and chemical physics. PMID:25530262

  13. Folding and aggregation of export-defective mutants of the maltose-binding protein.

    PubMed

    Betton, Jean-Michel; Phichith, Denis; Hunke, Sabine

    2002-09-01

    We previously characterized a defective-folding variant of the periplasmic maltose-binding protein, MalE31. To examine the alternative folding pathways open to the MalE31 precursor, we have analyzed the cellular fates of this aggregation-prone protein carrying altered signal sequences. Our results are most easily interpreted by a kinetic competition between exportation, folding, and degradation.

  14. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    SciTech Connect

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  15. A Simple Model for Protein Folding

    NASA Astrophysics Data System (ADS)

    Henry, Eric R.; Eaton, William A.

    We describe a simple Ising-like statistical mechanical model for folding proteins based on the α-carbon contact map of the native structure. In this model residues can adopt two microscopic states corresponding to the native and non-native conformations. In order to exactly enumerate the large number of possible configurations, structure is considered to grow as continuous sequences of native residues, with no more than two sequences in each molecule. Inter-residue contacts can only form within each sequence and between residues of the two native sequences. As structure grows there is a tradeoff between the stabilizing effect of inter-residue contacts and the entropy losses from ordering residues in their native conformation and from forming a disordered loop to connect two continuous sequences. Folding kinetics are calculated from the dynamics on the free energy profile, as in Kramers' reaction rate theory. Although non-native interactions responsible for roughness in the energy landscape are not explicitly considered in the model, they are implicitly included by determining the absolute rates for motion on the free energy profile. With the exception of α-helical proteins, the kinetic progress curves exhibit single exponential time courses, consistent with two state behavior, as observed experimentally. The calculated folding rates are in remarkably good agreement with the measured values for the 25 two-state proteins investigated, with a correlation coefficient of 0.8. With its coarse-grained description of both the energy and entropy, and only three independently adjustable parameters, the model may be regarded as the simplest possible analytical model of protein folding capable of predicting experimental properties of specific proteins.

  16. Electrostatically Accelerated Coupled Binding and Folding of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Otieno, Steve; Waddell, Brett; Iconaru, Luigi; Kriwacki, Richard W.; Chen, Jianhan

    2012-01-01

    Intrinsically disordered proteins (IDPs) are now recognized to be prevalent in biology, and many potential functional benefits have been discussed. However, the frequent requirement of peptide folding in specific interactions of IDPs could impose a kinetic bottleneck, which could be overcome only by efficient folding upon encounter. Intriguingly, existing kinetic data suggest that specific binding of IDPs is generally no slower than that of globular proteins. Here, we exploited the cell cycle regulator p27Kip1 (p27) as a model system to understand how IDPs might achieve efficient folding upon encounter for facile recognition. Combining experiments and coarse-grained modeling, we demonstrate that long-range electrostatic interactions between enriched charges on p27 and near its binding site on cyclin A not only enhance the encounter rate (i.e., electrostatic steering), but also promote folding-competent topologies in the encounter complexes, allowing rapid subsequent formation of short-range native interactions en route to the specific complex. In contrast, nonspecific hydrophobic interactions, while hardly affecting the encounter rate, can significantly reduce the efficiency of folding upon encounter and lead to slower binding kinetics. Further analysis of charge distributions in a set of known IDP complexes reveals that, although IDP binding sites tend to be more hydrophobic compared to the rest of the target surface, their vicinities are frequently enriched with charges to complement those on IDPs. This observation suggests that electrostatically accelerated encounter and induced folding might represent a prevalent mechanism for promoting facile IDP recognition. PMID:22721951

  17. Protein Flexibilty and Folding

    NASA Astrophysics Data System (ADS)

    Thorpe, Michael

    2003-10-01

    In this talk we apply a novel approach to the exploration of energy landscapes of macromolecules and proteins that uses constraint theory. Constraints fix the bond lengths and bond angles and allow the use of theorems from graph theory to perform a rigid region decomposition of the network of atoms, which identifies the rigid regions, the flexible joints between them and also the stressed regions. We will show movies of the diffusive motion of various proteins. The protein unfolding transition is an example of a rigid to floppy transition and is shown to be more first order than second order because of the self-organized nature of the cross-linked polypeptide chain in the native protein. This approach emphasizes the universality in protein unfolding and allows the folding core and the transition state to be identified. Useful reference are: M.F. Thorpe, Ming Lei, A.J. Rader, Donald J. Jacobs and Leslie A. Kuhn Protein Flexibility Predictions using Graph Theory, Proteins 44, 150 - 165, (2001). A. J. Rader, Brandon M. Hespenheide, Leslie A. Kuhn and M. F. Thorpe Protein Unfolding: Rigidity Lost Proceedings of the National Academy of Sciences 99, 3540-3545 (2002). More details of this work can be found via http://physics.asu.edu/mfthorpe

  18. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  19. How the genome folds

    NASA Astrophysics Data System (ADS)

    Lieberman Aiden, Erez

    2012-02-01

    I describe Hi-C, a novel technology for probing the three-dimensional architecture of whole genomes by coupling proximity-based ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used Hi-C to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, gene-rich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genome-wide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, a knot-free conformation that enables maximally dense packing while preserving the ability to easily fold and unfold any genomic locus. The fractal globule is distinct from the more commonly used globular equilibrium model. Our results demonstrate the power of Hi-C to map the dynamic conformations of whole genomes.

  20. Adequacy of kinetic models

    SciTech Connect

    Kiperman, S.L.

    1995-01-01

    The problems associated with the accuracy of kinetic models in heterogeneous catalysis and their adequacy to experimental data and reaction mechanisms are considered. The prospects for the further improvement and use of these models is also explored.

  1. Improving Protein Fold Recognition by Deep Learning Networks

    NASA Astrophysics Data System (ADS)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  2. Improved Method of Design for Folding Inflatable Shells

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J.

    2009-01-01

    An improved method of designing complexly shaped inflatable shells to be assembled from gores was conceived for original application to the inflatable outer shell of a developmental habitable spacecraft module having a cylindrical mid-length section with toroidal end caps. The method is also applicable to inflatable shells of various shapes for terrestrial use. The method addresses problems associated with the assembly, folding, transport, and deployment of inflatable shells that may comprise multiple layers and have complex shapes that can include such doubly curved surfaces as toroids and spheres. One particularly difficult problem is that of mathematically defining fold lines on a gore pattern in a double- curvature region. Moreover, because the fold lines in a double-curvature region tend to be curved, there is a practical problem of how to implement the folds. Another problem is that of modifying the basic gore shapes and sizes for the various layers so that when they are folded as part of the integral structure, they do not mechanically interfere with each other at the fold lines. Heretofore, it has been a common practice to design an inflatable shell to be assembled in the deployed configuration, without regard for the need to fold it into compact form. Typically, the result has been that folding has been a difficult, time-consuming process resulting in a An improved method of designing complexly shaped inflatable shells to be assembled from gores was conceived for original application to the inflatable outer shell of a developmental habitable spacecraft module having a cylindrical mid-length section with toroidal end caps. The method is also applicable to inflatable shells of various shapes for terrestrial use. The method addresses problems associated with the assembly, folding, transport, and deployment of inflatable shells that may comprise multiple layers and have complex shapes that can include such doubly curved surfaces as toroids and spheres. One

  3. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate. © 2014 Wiley Periodicals, Inc.

  4. Extreme Mechanics: Self-Folding Origami

    NASA Astrophysics Data System (ADS)

    Santangelo, Christian D.

    2017-03-01

    Origami has emerged as a tool for designing three-dimensional structures from flat films. Because they can be fabricated by lithographic or roll-to-roll processing techniques, they have great potential for the manufacture of complicated geometries and devices. This article discusses the mechanics of origami and kirigami with a view toward understanding how to design self-folding origami structures. Whether an origami structure can be made to fold autonomously depends strongly on the geometry and kinematics of the origami fold pattern. This article collects some of the results on origami rigidity into a single framework, and discusses how these aspects affect the foldability of origami. Despite recent progress, most problems in origami and origami design remain completely open.

  5. Atom-by-atom analysis of global downhill protein folding

    NASA Astrophysics Data System (ADS)

    Sadqi, Mourad; Fushman, David; Muñoz, Victor

    2006-07-01

    Protein folding is an inherently complex process involving coordination of the intricate networks of weak interactions that stabilize native three-dimensional structures. In the conventional paradigm, simple protein structures are assumed to fold in an all-or-none process that is inaccessible to experiment. Existing experimental methods therefore probe folding mechanisms indirectly. A widely used approach interprets changes in protein stability and/or folding kinetics, induced by engineered mutations, in terms of the structure of the native protein. In addition to limitations in connecting energetics with structure, mutational methods have significant experimental uncertainties and are unable to map complex networks of interactions. In contrast, analytical theory predicts small barriers to folding and the possibility of downhill folding. These theoretical predictions have been confirmed experimentally in recent years, including the observation of global downhill folding. However, a key remaining question is whether downhill folding can indeed lead to the high-resolution analysis of protein folding processes. Here we show, with the use of nuclear magnetic resonance (NMR), that the downhill protein BBL from Escherichia coli unfolds atom by atom starting from a defined three-dimensional structure. Thermal unfolding data on 158 backbone and side-chain protons out of a total of 204 provide a detailed view of the structural events during folding. This view confirms the statistical nature of folding, and exposes the interplay between hydrogen bonding, hydrophobic forces, backbone conformation and side-chain entropy. From the data we also obtain a map of the interaction network in this protein, which reveals the source of folding cooperativity. Our approach can be extended to other proteins with marginal barriers (less than 3RT), providing a new tool for the study of protein folding.

  6. Predicting protein folds with fold-specific PSSM libraries.

    PubMed

    Hong, Yoojin; Chintapalli, Sree Vamsee; Ko, Kyung Dae; Bhardwaj, Gaurav; Zhang, Zhenhai; van Rossum, Damian; Patterson, Randen L

    2011-01-01

    Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies. Herein, we outline an effective method for fold recognition using sets of PSSMs, each of which is constructed for different protein folds. Our analyses demonstrate that FSL (Fold-specific Position Specific Scoring Matrix Libraries) can predict/relate structures given only their amino acid sequences of highly divergent proteins. This ability to detect distant relationships is dependent on low-identity sequence alignments obtained from FSL. Results from our experiments demonstrate that FSL perform well in recognizing folds from the "twilight-zone" SABmark dataset. Further, this method is capable of accurate fold prediction in newly determined structures. We suggest that by building complete PSSM libraries for all unique folds within the Protein Database (PDB), FSL can be used to rapidly and reliably annotate a large subset of protein folds at proteomic level. The related programs and fold-specific PSSMs for our FSL are publicly available at: http://ccp.psu.edu/download/FSLv1.0/.

  7. Communication Between RNA Folding Domains Revealed by Folding of Circularly Permuted Ribozymes

    SciTech Connect

    Lease,R.; Adilakshmi, T.; Heilman-Miller, S.; Woodson, S.

    2007-01-01

    To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T1 digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.

  8. Communication between RNA folding domains revealed by folding of circularly permuted ribozymes.

    PubMed

    Lease, Richard A; Adilakshmi, Tadepalli; Heilman-Miller, Susan; Woodson, Sarah A

    2007-10-12

    To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.

  9. α-Helix folding in the presence of structural constraints

    PubMed Central

    Ihalainen, Janne A.; Paoli, Beatrice; Muff, Stefanie; Backus, Ellen H. G.; Bredenbeck, Jens; Woolley, G. Andrew; Caflisch, Amedeo; Hamm, Peter

    2008-01-01

    We have investigated the site-specific folding kinetics of a photoswitchable cross-linked α-helical peptide by using single 13C = 18O isotope labeling together with time-resolved IR spectroscopy. We observe that the folding times differ from site to site by a factor of eight at low temperatures (6°C), whereas at high temperatures (45°C), the spread is considerably smaller. The trivial sum of the site signals coincides with the overall folding signal of the unlabeled peptide, and different sites fold in a noncooperative manner. Moreover, one of the sites exhibits a decrease of hydrogen bonding upon folding, implying that the unfolded state at low temperature is not unstructured. Molecular dynamics simulations at low temperature reveal a stretched-exponential behavior which originates from parallel folding routes that start from a kinetically partitioned unfolded ensemble. Different metastable structures (i.e., traps) in the unfolded ensemble have a different ratio of loop and helical content. Control simulations of the peptide at high temperature, as well as without the cross-linker at low temperature, show faster and simpler (i.e., single-exponential) folding kinetics. The experimental and simulation results together provide strong evidence that the rate-limiting step in formation of a structurally constrained α-helix is the escape from heterogeneous traps rather than the nucleation rate. This conclusion has important implications for an α-helical segment within a protein, rather than an isolated α-helix, because the cross-linker is a structural constraint similar to those present during the folding of a globular protein. PMID:18621686

  10. Visualizing chaperone-assisted protein folding

    PubMed Central

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Quan, Shu; Afonine, Pavel V.; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C.; Brooks, Charles L.; Bardwell, James CA

    2016-01-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding, where obtaining structural ensembles of chaperone:substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a novel structural biology approach based on X-ray crystallography, termed Residual Electron and Anomalous Density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the E. coli chaperone Spy. This study resulted in a series of snapshots depicting the various folding states of Im7 while bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded and native-like states, and reveals how a substrate can explore its folding landscape while bound to a chaperone. PMID:27239796

  11. Visualizing chaperone-assisted protein folding

    SciTech Connect

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Quan, Shu; Afonine, Pavel V.; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C.; Brooks, Charles L.; Bardwell, James C. A.

    2016-05-30

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.

  12. Visualizing chaperone-assisted protein folding

    DOE PAGES

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; ...

    2016-05-30

    We present that challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone–substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperonemore » Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.« less

  13. Detachment folding, fold amplification, and diapirism in thrust wedge experiments

    NASA Astrophysics Data System (ADS)

    Bonini, Marco

    2003-12-01

    The relations between detachment folding, fold amplification, and salt diapirism in contractional settings have been investigated by means of scaled analogue models. The viscosity of the silicone layer simulating salt in nature and the shortening rates were combined in order to reproduce weak (type 1 models) and strong (type 2 models) décollements. Deformation patterns in the roof sequence exhibited two contrasting styles, (1) outward propagation of detachment folding along the décollement (OFP mode) and (2) passive roof duplex (PRD mode). In type 2 models, detachment folding propagated away from the most external thrust in the floor sequence, while in type 1 models, long-lived detachment folds almost invariably localized amplified above a floor thrust tip as a result of strain localization. A silicone wall intruded occasionally into the crestal graben of detachment folds in type 1 and OFP models. Best fitting of transition models data points indicates nonlinear relations with regression curves close to the equilateral hyperbola equation for both OFP-PRD and amplified detachment folds-box folds transitions. A quantitative comparison of model results with nature has been attempted by plotting salt-based fold-and-thrust belts data points on the scaled transition curves obtained from the modeling. Such a comparison relates shear stress products and ratios to the conditions favoring the amplification of detachment folds and the potential emplacement of ductile diapirs in their core. By reducing the roof sequence strength, pore fluid pressure λb is inferred to shift the equilibrium of fold-and-thrust belts toward the field of OFP and diapirism.

  14. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  15. Mechanical development of folded chert beds in Monterey Formation, California

    SciTech Connect

    Crowther, D.; Snyder, W.S.

    1988-03-01

    Small-scale folds in the upper siliceous facies of the Miocene Monterey Formation, at Lions Head, California (Santa Maria basin) are of tectonic origin. Folding is well developed in the chert-dominated zones and dies out rapidly in the adjacent siliceous mudstones. A tectonic origin is evidenced by the dominantly brittle deformation of the competent chert layers. Mechanically, the folds formed through a complex interrelationship between fracture and flexural slip. Opal-CT and quartz-chert layers display brittle fractures and rotated fracture blocks that responded to shortening. Thrusting of the chert layers is common in folds where fold propagation was impeded. Dilation breccia and void space occur in the hinges and reflect room problems during development of these disharmonic folds. Subsequent diagenesis has partially healed the fractures and slip surfaces, creating the erroneous appearance that ductile deformation was an important factor in the formation of the folds.

  16. Abstract folding space analysis based on helices

    PubMed Central

    Huang, Jiabin; Backofen, Rolf; Voß, Björn

    2012-01-01

    RNA has many pivotal functions especially in the regulation of gene expression by ncRNAs. Identification of their structure is an important requirement for understanding their function. Structure prediction alone is often insufficient for this task, due to algorithmic problems, parameter inaccuracies, and biological peculiarities. Among the latter, there are base modifications, cotranscriptional folding leading to folding traps, and conformational switching as in the case of riboswitches. All these require more in-depth analysis of the folding space. The major drawback, which all methods have to cope with, is the exponential growth of the folding space. Therefore, methods are often limited in the sequence length they can analyze, or they make use of heuristics, sampling, or abstraction. Our approach adopts the abstraction strategy and remedies some problems of existing methods. We introduce a position-specific abstraction based on helices that we term helix index shapes, or hishapes for short. Utilizing a dynamic programming framework, we have implemented this abstraction in the program RNAHeliCes. Furthermore, we developed two hishape-based methods, one for energy barrier estimation, called HiPath, and one for abstract structure comparison, termed HiTed. We demonstrate the superior performance of HiPath compared to other existing methods and the competitive accuracy of HiTed. RNAHeliCes, together with HiPath and HiTed, are available for download at http://www.cyanolab.de/software/RNAHeliCes.htm. PMID:23104999

  17. Physical experiments of transpressional folding

    NASA Astrophysics Data System (ADS)

    Tikoff, Basil; Peterson, Karl

    1998-06-01

    In order to understand the process of folding in obliquely convergent settings, we formed folds within a shear box capable of creating homogeneous transpressional deformations. Folds were created in a single layer of stiff mixed plasticine and silicone that overlay a Newtonian silicone, for a variety of plate convergence angles. As small amplitude folds became visible, they were parallel to the long axis of the horizontal finite strain ellipse. With increasing deformation, the fold hinges rotated parallel with the long axis of the horizontal finite strain ellipse for all angles of convergence. This parallelism indicates that fold hinges, once formed, rotate with the horizontal strain ellipse rather than as material lines. The experiments highlight several interesting effects of transpression dynamics. The fold hinges initiate parallel to either ṡ1 or ṡ2 and are parallel to either S1 or S2 with increasing deformation. Neither infinitesimal strain (stress) nor finite strain is resolvable solely from fold geometry. Further, the net amount of contraction determined by folding across the zone was overestimated in all cases except pure contraction. This effect is obvious for the case of wrenching, where folding implies that the zone contracts if elongation parallel to the fold hinge is not considered. Therefore, attempts to balance cross-sections in transpressional zones will tend to overestimate contraction unless the wrench component of deformation is addressed. This result is validated by applying the modeling results in folding in central California adjacent to the San Andreas fault, where cross-section balancing indicates higher amounts of contraction than predicted by plate motion.

  18. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {12723} during Cycle 19.

  19. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {11891} during Cycle 17.

  20. WW domain folding complexity revealed by infrared spectroscopy.

    PubMed

    Davis, Caitlin M; Dyer, R Brian

    2014-09-02

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics.

  1. WW Domain Folding Complexity Revealed by Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Although the intrinsic tryptophan fluorescence of proteins offers a convenient probe of protein folding, interpretation of the fluorescence spectrum is often difficult because it is sensitive to both global and local changes. Infrared (IR) spectroscopy offers a complementary measure of structural changes involved in protein folding, because it probes changes in the secondary structure of the protein backbone. Here we demonstrate the advantages of using multiple probes, infrared and fluorescence spectroscopy, to study the folding of the FBP28 WW domain. Laser-induced temperature jumps coupled with fluorescence or infrared spectroscopy have been used to probe changes in the peptide backbone on the submillisecond time scale. The relaxation dynamics of the β-sheets and β-turn were measured independently by probing the corresponding IR bands assigned in the amide I region. Using these wavelength-dependent measurements, we observe three kinetics phases, with the fastest process corresponding to the relaxation kinetics of the turns. In contrast, fluorescence measurements of the wild-type WW domain and tryptophan mutants exhibit single-exponential kinetics with a lifetime that corresponds to the slowest phase observed by infrared spectroscopy. Mutant sequences provide evidence of an intermediate dry molten globule state. The slowest step in the folding of this WW domain is the tight packing of the side chains in the transition from the dry molten globule intermediate to the native structure. This study demonstrates that using multiple complementary probes enhances the interpretation of protein folding dynamics. PMID:25121968

  2. Folding superfunnel to describe cooperative folding of interacting proteins.

    PubMed

    Smeller, László

    2016-07-01

    This paper proposes a generalization of the well-known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein-protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein-protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009-1016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  4. Identification of multiple folding pathways of monellin using pulsed thiol labeling and mass spectrometry.

    PubMed

    Jha, Santosh Kumar; Dasgupta, Amrita; Malhotra, Pooja; Udgaonkar, Jayant B

    2011-04-19

    Protein folding reactions often display multiexponential kinetics of changes in intrinsic optical signals, as a manifestation of heterogeneity, either on one folding pathway or on multiple folding pathways. Delineating the origin of this heterogeneity is difficult because different coexisting structural forms of a protein cannot be easily distinguished by optical probes. In this study, the complex folding reaction of single-chain monellin has been investigated using a pulsed thiol labeling (SX) methodology in conjunction with mass spectrometry, which measures the kinetics of burial of a cysteine side chain thiol during folding. Because it can directly distinguish between unfolded and folded molecules and can measure the disappearance of the former during folding, the pulsed SX methodology is an ideal method for investigating whether multiple pathways are operative during folding. The kinetics of burial of the C42 thiol of monellin was observed to follow biexponential kinetics. To determine whether this was because the fast phase leads to the partial protection of the thiol group in all the molecules or to complete protection in only a fraction of the molecules, the duration and intensity of the labeling pulse were varied. The observation that the extent of labeling did not vary with the duration of the pulse cannot be explained by a simple sequential folding mechanism. Two parallel folding pathways are shown to be operative, with one leading to the formation of thiol-protective structure more rapidly than the other.

  5. Protein folding and de novo protein design for biotechnological applications

    PubMed Central

    Khoury, George A.; Smadbeck, James; Kieslich, Chris A.; Floudas, Christodoulos A.

    2014-01-01

    In the post-genomic era, the medical/biological fields are advancing faster than ever. However, before the power of full-genome sequencing can be fully realized, the connection between amino acid sequence and protein structure, known as the protein folding problem, needs to be elucidated. The protein folding problem remains elusive, with significant difficulties still arising when modeling amino acid sequences lacking an identifiable template. Understanding protein folding will allow for unforeseen advances in protein design, often referred as the inverse protein folding problem. Despite challenges in protein folding, de novo protein design has recently demonstrated significant success via computational techniques. We review advances and challenges in protein structure prediction and de novo protein design, and highlight their interplay in successful biotechnological applications. PMID:24268901

  6. Changes of protein stiffness during folding detect protein folding intermediates.

    PubMed

    Małek, Katarzyna E; Szoszkiewicz, Robert

    2014-01-01

    Single-molecule force-quench atomic force microscopy (FQ-AFM) is used to detect folding intermediates of a simple protein by detecting changes of molecular stiffness of the protein during its folding process. Those stiffness changes are obtained from shape and peaks of an autocorrelation of fluctuations in end-to-end length of the folding molecule. The results are supported by predictions of the equipartition theorem and agree with existing Langevin dynamics simulations of a simplified model of a protein folding. In the light of the Langevin simulations the experimental data probe an ensemble of random-coiled collapsed states of the protein, which are present both in the force-quench and thermal-quench folding pathways.

  7. Structural Bridges through Fold Space.

    PubMed

    Edwards, Hannah; Deane, Charlotte M

    2015-09-01

    Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes.

  8. Structural Bridges through Fold Space

    PubMed Central

    Edwards, Hannah; Deane, Charlotte M.

    2015-01-01

    Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes. PMID:26372166

  9. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 20 proposal 13128.

  10. How cooperative are protein folding and unfolding transitions?

    PubMed

    Malhotra, Pooja; Udgaonkar, Jayant B

    2016-11-01

    A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.

  11. Theory of RNA Folding: From Hairpins to Ribozymes

    NASA Astrophysics Data System (ADS)

    Thirumalai, D.; Hyeon, Changbong

    The rugged nature of the RNA folding landscape is determined by a number of conflicting interactions like repulsive electrostatic potential between the charges on the phosphate groups, constraints due to loop entropy, base stacking, and hydrogen bonding that operate on various length scales. As a result the kinetics of self-assembly of RNA is complex, but can be easily modulated by varying the concentrations, sizes, and shapes of the counterions. Here, we provide a theoretical description of RNA folding that is rooted in the energy landscape perspective and polyelectrolyte theory. A consequence of the rugged folding landscape is that, self-assembly of RNA into compact three-dimensional structures occurs by parallel routes, and is best described by the kinetic partitioning mechanism (KPM). According to KPM one fraction of molecules (Φ) folds rapidly while the remaining gets trapped in one of several competing basins of attraction. The partition factor Φ can be altered by point mutations as well as by changing the initial conditions such as ion concentration, size and valence of ions. We show that even hairpin formation, either by temperature or force quench, captures much of the features of folding of large RNA molecules. Despite the complexity of the folding process, we show that the KPM concepts from polyelectrolyte theory, and charge density of ions can be used to explain the stability, pathways and their diversity, and the plastiCity of the transition State ensemble of RNA self-assembly.

  12. Design and simulation of origami structures with smooth folds.

    PubMed

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  13. How do chaperonins fold protein?

    PubMed Central

    Motojima, Fumihiro

    2015-01-01

    Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings. PMID:27493521

  14. Maximum probability reaction sequences in stochastic chemical kinetic systems.

    PubMed

    Salehi, Maryam; Perkins, Theodore J

    2010-01-01

    The detailed behavior of many molecular processes in the cell, such as protein folding, protein complex assembly, and gene regulation, transcription and translation, can often be accurately captured by stochastic chemical kinetic models. We investigate a novel computational problem involving these models - that of finding the most-probable sequence of reactions that connects two or more states of the system observed at different times. We describe an efficient method for computing the probability of a given reaction sequence, but argue that computing most-probable reaction sequences is EXPSPACE-hard. We develop exact (exhaustive) and approximate algorithms for finding most-probable reaction sequences. We evaluate these methods on test problems relating to a recently-proposed stochastic model of folding of the Trp-cage peptide. Our results provide new computational tools for analyzing stochastic chemical models, and demonstrate their utility in illuminating the behavior of real-world systems.

  15. Maximum Probability Reaction Sequences in Stochastic Chemical Kinetic Systems

    PubMed Central

    Salehi, Maryam; Perkins, Theodore J.

    2010-01-01

    The detailed behavior of many molecular processes in the cell, such as protein folding, protein complex assembly, and gene regulation, transcription and translation, can often be accurately captured by stochastic chemical kinetic models. We investigate a novel computational problem involving these models – that of finding the most-probable sequence of reactions that connects two or more states of the system observed at different times. We describe an efficient method for computing the probability of a given reaction sequence, but argue that computing most-probable reaction sequences is EXPSPACE-hard. We develop exact (exhaustive) and approximate algorithms for finding most-probable reaction sequences. We evaluate these methods on test problems relating to a recently-proposed stochastic model of folding of the Trp-cage peptide. Our results provide new computational tools for analyzing stochastic chemical models, and demonstrate their utility in illuminating the behavior of real-world systems. PMID:21629860

  16. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates

    PubMed Central

    KING, JONATHAN; HAASE-PETTINGELL, CAMERON; ROBINSON, ANNE SKAJA; SPEED, MARGARET; MITRAKI, ANNA

    2007-01-01

    An unexpected aspect of the expression of cloned genes is the frequent failure of newly synthesized polypeptide chains to reach their native state, accumulating instead as insoluble inclusion bodies. Amyloid deposits represent a related state associated with a variety of human diseases. The critical folding intermediates at the juncture of productive folding and the off-pathway aggregation reaction have been identified for the phage P22 tailspike and coat proteins. Though the parallel β coil tailspike is thermostable, an early intracellular folding intermediate is thermolabile. As the temperature of intracellular folding is increased, this species partitions to inclusion bodies, a kinetic trap within the cell. The earliest intermediates along the in vitro aggregation pathway, sequential multimers of the thermolabile folding intermediates, have been directly identified by native gel electrophoresis. Temperature-sensitive folding (tsf) mutations identify sites in the β coil domain, which direct the junctional intermediate down the productive pathway. Global suppressors of tsf mutants inhibit the pathway to inclusion bodies, rescuing the mutant chains. These mutants identify sites important for avoiding aggregation. Coat folding intermediates also partition to inclusion bodies as temperature is increased. Coat tsf mutants are suppressed by overexpression of the GroE chaperonin, indicating that the thermolabile intermediate is a physiological substrate for GroE. We suggest that many proteins are likely to have thermolabile intermediates in their intracellular folding pathways, which will be precursors to inclusion body formation at elevated temperatures and therefore substrates for heat shock chaperonins. PMID:8566549

  17. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition

    PubMed Central

    Melvin, Iain; Ie, Eugene; Kuang, Rui; Weston, Jason; Stafford, William Noble; Leslie, Christina

    2007-01-01

    Background Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community. Results We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves

  18. Polymer Uncrossing and Knotting in Protein Folding, and Their Role in Minimal Folding Pathways

    PubMed Central

    Mohazab, Ali R.; Plotkin, Steven S.

    2013-01-01

    We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold , , , and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation “alignment”. The consensus minimal pathway is constructed and shown schematically for representative cases of an , , and knotted protein. An overlap parameter is defined between pathways; we find that proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding. PMID:23365638

  19. UFO (UnFold Operator) computer program abstract

    SciTech Connect

    Kissel, L.; Biggs, F.

    1982-11-01

    UFO (UnFold Operator) is an interactive user-oriented computer program designed to solve a wide range of problems commonly encountered in physical measurements. This document provides a summary of the capabilities of version 3A of UFO.

  20. Microfluidic Mixers for Studying Protein Folding

    PubMed Central

    Waldauer, Steven A.; Wu, Ling; Yao, Shuhuai; Bakajin, Olgica; Lapidus, Lisa J.

    2012-01-01

    The process by which a protein folds into its native conformation is highly relevant to biology and human health yet still poorly understood. One reason for this is that folding takes place over a wide range of timescales, from nanoseconds to seconds or longer, depending on the protein1. Conventional stopped-flow mixers have allowed measurement of folding kinetics starting at about 1 ms. We have recently developed a microfluidic mixer that dilutes denaturant ~100-fold in ~8 μs2. Unlike a stopped-flow mixer, this mixer operates in the laminar flow regime in which turbulence does not occur. The absence of turbulence allows precise numeric simulation of all flows within the mixer with excellent agreement to experiment3-4. Laminar flow is achieved for Reynolds numbers Re ≤100. For aqueous solutions, this requires micron scale geometries. We use a hard substrate, such as silicon or fused silica, to make channels 5-10 μm wide and 10 μm deep (See Figure 1). The smallest dimensions, at the entrance to the mixing region, are on the order of 1 μm in size. The chip is sealed with a thin glass or fused silica coverslip for optical access. Typical total linear flow rates are ~1 m/s, yielding Re~10, but the protein consumption is only ~0.5 nL/s or 1.8 μL/hr. Protein concentration depends on the detection method: For tryptophan fluorescence the typical concentration is 100 μM (for 1 Trp/protein) and for FRET the typical concentration is ~100 nM. The folding process is initiated by rapid dilution of denaturant from 6 M to 0.06 M guanidine hydrochloride. The protein in high denaturant flows down a central channel and is met on either side at the mixing region by buffer without denaturant moving ~100 times faster (see Figure 2). This geometry causes rapid constriction of the protein flow into a narrow jet ~100 nm wide. Diffusion of the light denaturant molecules is very rapid, while diffusion of the heavy protein molecules is much slower, diffusing less than 1 μm in 1 ms

  1. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches

    PubMed Central

    Muñoz, Victor; Cerminara, Michele

    2016-01-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. PMID:27574021

  2. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.

    PubMed

    Muñoz, Victor; Cerminara, Michele

    2016-09-01

    Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats.

  3. Distinct folding pathways of two homologous disulfide proteins: bovine pancreatic trypsin inhibitor and tick anticoagulant peptide.

    PubMed

    Chang, Jui-Yoa

    2011-01-01

    The folding pathways of disulfide proteins vary substantially (Arolas et al., Trends Biochem Sci 31: 292-301, 2006). The diversity is mainly manifested by (a) the extent of heterogeneity of folding intermediates, (b) the extent of presence of native-like intermediates, and (c) the variation of folding kinetics. Even among structurally similar proteins, the difference can be enormous. This is demonstrated in this concise review with two structurally homologous kunitz-type protease inhibitors, bovine pancreatic trypsin inhibitor and tick anticoagulant peptide, as well as a group of cystine knot proteins. The diversity of their folding mechanisms is illustrated with two different folding techniques: (a) the conventional method of disulfide oxidation (oxidative folding), and (b) the novel method of disulfide scrambling (Chang, J Biol Chem 277: 120-126, 2002). This review also highlights the convergence of folding models concluded form the conventional conformational folding and those obtained by oxidative folding.

  4. RNA molecules with conserved catalytic cores but variable peripheries fold along unique energetically optimized pathways

    PubMed Central

    Mitra, Somdeb; Laederach, Alain; Golden, Barbara L.; Altman, Russ B.; Brenowitz, Michael

    2011-01-01

    Functional and kinetic constraints must be efficiently balanced during the folding process of all biopolymers. To understand how homologous RNA molecules with different global architectures fold into a common core structure we determined, under identical conditions, the folding mechanisms of three phylogenetically divergent group I intron ribozymes. These ribozymes share a conserved functional core defined by topologically equivalent tertiary motifs but differ in their primary sequence, size, and structural complexity. Time-resolved hydroxyl radical probing of the backbone solvent accessible surface and catalytic activity measurements integrated with structural-kinetic modeling reveal that each ribozyme adopts a unique strategy to attain the conserved functional fold. The folding rates are not dictated by the size or the overall structural complexity, but rather by the strength of the constituent tertiary motifs which, in turn, govern the structure, stability, and lifetime of the folding intermediates. A fundamental general principle of RNA folding emerges from this study: The dominant folding flux always proceeds through an optimally structured kinetic intermediate that has sufficient stability to act as a nucleating scaffold while retaining enough conformational freedom to avoid kinetic trapping. Our results also suggest a potential role of naturally selected peripheral A-minor interactions in balancing RNA structural stability with folding efficiency. PMID:21712400

  5. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding

    PubMed Central

    Nissley, Daniel A.; Sharma, Ajeet K.; Ahmed, Nabeel; Friedrich, Ulrike A.; Kramer, Günter; Bukau, Bernd; O'Brien, Edward P.

    2016-01-01

    The rates at which domains fold and codons are translated are important factors in determining whether a nascent protein will co-translationally fold and function or misfold and malfunction. Here we develop a chemical kinetic model that calculates a protein domain's co-translational folding curve during synthesis using only the domain's bulk folding and unfolding rates and codon translation rates. We show that this model accurately predicts the course of co-translational folding measured in vivo for four different protein molecules. We then make predictions for a number of different proteins in yeast and find that synonymous codon substitutions, which change translation-elongation rates, can switch some protein domains from folding post-translationally to folding co-translationally—a result consistent with previous experimental studies. Our approach explains essential features of co-translational folding curves and predicts how varying the translation rate at different codon positions along a transcript's coding sequence affects this self-assembly process. PMID:26887592

  6. Inframammary fold: a histologic reappraisal.

    PubMed

    Muntan, C D; Sundine, M J; Rink, R D; Acland, R D

    2000-02-01

    The inframammary fold is a defining element in the shape and structure of the female breast. It should be preserved whenever possible in ablative procedures and recreated accurately when the breast is reconstructed after mastectomy. To date, no accurate anatomic description of this essential structure exists. Previous studies have suggested that the fold is produced by a supporting ligament running from the dermis in the fold region to a variety of locations on the rib cage. This clinic's experience with mastectomy, augmentation mammaplasty, and breast reconstruction does not support the existence of a ligamentous structure. To define the structure of the inframammary fold, 10 female and 2 male cadavers were studied. The anterior chest wall was removed en bloc and frozen in orthostatic position. Parasagittal sections were made of the inframammary fold with the chest wall intact. After decalcification of the ribs and routine histologic preparation, thin sections were stained with Gomori's trichrome. On light microscopic examination, no demonstrable ligamentous structure of dense regular connective tissue could be identified in the fold region in any of the 12 specimens. Superficial and deep fascial layers were uniformly observed anterior to the pectoralis major and serratus anterior muscles. The superficial fascia was connected to the dermis in the fold region in a variety of configurations. In some cases, the deep fascia fused with the superficial fascia and dermis at the fold level. In other cases, bundles of collagen fibers arising from the superficial fascial layer were found to insert into the dermis at the inframammary fold, slightly inferior to it, or both. These bundles were observed consistently in sections from the sternum to the middle axillary line. They were distinct from Cooper's suspensory ligaments, which are seen more superiorly in the glandular tissue.

  7. Coiling and Folding of Viscoelastic Jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth

    2007-11-01

    The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).

  8. THEORY OF PROTEIN FOLDING: The Energy Landscape Perspective

    NASA Astrophysics Data System (ADS)

    Onuchic, Jose Nelson; Luthey-Schulten, Zaida; Wolynes, Peter G.

    1997-10-01

    The energy landscape theory of protein folding is a statistical description of a protein's potential surface. It assumes that folding occurs through organizing an ensemble of structures rather than through only a few uniquely defined structural intermediates. It suggests that the most realistic model of a protein is a minimally frustrated heteropolymer with a rugged funnel-like landscape biased toward the native structure. This statistical description has been developed using tools from the statistical mechanics of disordered systems, polymers, and phase transitions of finite systems. We review here its analytical background and contrast the phenomena in homopolymers, random heteropolymers, and protein-like heteropolymers that are kinetically and thermodynamically capable of folding. The connection between these statistical concepts and the results of minimalist models used in computer simulations is discussed. The review concludes with a brief discussion of how the theory helps in the interpretation of results from fast folding experiments and in the practical task of protein structure prediction.

  9. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  10. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  11. Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module.

    PubMed Central

    Cota, E.; Clarke, J.

    2000-01-01

    An analysis of the folding of the 94 residue tenth fibronectin type III (fnIII) domain of human fibronectin (FNfn10) is presented. Use of guanidine isothiocyanate as a denaturant allows us to obtain equilibrium and kinetic data across a broad range of denaturant concentrations that are unavailable in guanidine hydrochloride. Equilibrium unfolding experiments show that FNfn10 is significantly more stable than has been reported previously. Comparison of equilibrium and kinetic parameters reveals the presence of an intermediate that accumulates at low denaturant concentrations. This is the first demonstration of three-state folding kinetics for a fnIII domain. We have previously shown that a homologous domain from human tenascin (TNfn3) folds by a two-state mechanism, but this does not necessarily indicate that the two proteins fold by different folding pathways. PMID:10739253

  12. Toward understanding driving forces in membrane protein folding.

    PubMed

    Hong, Heedeok

    2014-12-15

    α-Helical membrane proteins are largely composed of nonpolar residues that are embedded in the lipid bilayer. An enigma in the folding of membrane proteins is how a polypeptide chain can be condensed into the compact folded state in the environment where the hydrophobic effect cannot strongly drive molecular interactions. Probably other forces such as van der Waals packing, hydrogen bonding, and weakly polar interactions, which are regarded less important in the folding of water-soluble proteins, should emerge. However, it is not clearly understood how those individual forces operate and how they are balanced for stabilizing membrane proteins. Studying this problem is not a trivial task mainly because of the methodological challenges in controlling the reversible folding of membrane proteins in the lipid bilayer. Overcoming the hurdles, meaningful progress has been made in the field in the last few decades. This review will focus on recent studies tackling the problem of driving forces in membrane protein folding.

  13. BarMap: RNA folding on dynamic energy landscapes

    PubMed Central

    Hofacker, Ivo L.; Flamm, Christoph; Heine, Christian; Wolfinger, Michael T.; Scheuermann, Gerik; Stadler, Peter F.

    2010-01-01

    Dynamical changes of RNA secondary structures play an important role in the function of many regulatory RNAs. Such kinetic effects, especially in time-variable and externally triggered systems, are usually investigated by means of extensive and expensive simulations of large sets of individual folding trajectories. Here we describe the theoretical foundations of a generic approach that not only allows the direct computation of approximate population densities but also reduces the efforts required to analyze the folding energy landscapes to a one-time preprocessing step. The basic idea is to consider the kinetics on individual landscapes and to model external triggers and environmental changes as small but discrete changes in the landscapes. A “barmap” links macrostates of temporally adjacent landscapes and defines the transfer of population densities from one “snapshot” to the next. Implemented in the BarMap software, this approach makes it feasible to study folding processes at the level of basins, saddle points, and barriers for many nonstationary scenarios, including temperature changes, cotranscriptional folding, refolding in consequence to degradation, and mechanically constrained kinetics, as in the case of the translocation of a polymer through a pore. PMID:20504954

  14. Exploring the Levinthal limit in protein folding.

    PubMed

    Cruzeiro, Leonor; Degrève, Léo

    2017-03-01

    According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.

  15. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  16. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  17. Folding gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Sanders, J. R.; Ballmer, Stefan W.

    2017-01-01

    The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.

  18. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  19. Protein folding by motion planning

    NASA Astrophysics Data System (ADS)

    Thomas, Shawna; Song, Guang; Amato, Nancy M.

    2005-12-01

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L. This research was supported in part by NSF CAREER Award CCR-9624315, NSF Grants ACI-9872126, EIA-9975018, EIA-0103742, EIA-9805823, ACR-0113971, CCR-0113974, EIA-9810937, EIA-0079874 and the Texas Higher Education Coordinating Board grant ATP-000512-0261-2001. ST was supported in part by an NSF Graduate Research Fellowship. GS was supported in part by an IBM PhD Fellowship.

  20. Protein folding by motion planning.

    PubMed

    Thomas, Shawna; Song, Guang; Amato, Nancy M

    2005-11-09

    We investigate a novel approach for studying protein folding that has evolved from robotics motion planning techniques called probabilistic roadmap methods (PRMs). Our focus is to study issues related to the folding process, such as the formation of secondary and tertiary structures, assuming we know the native fold. A feature of our PRM-based framework is that the large sets of folding pathways in the roadmaps it produces, in just a few hours on a desktop PC, provide global information about the protein's energy landscape. This is an advantage over other simulation methods such as molecular dynamics or Monte Carlo methods which require more computation and produce only a single trajectory in each run. In our initial studies, we obtained encouraging results for several small proteins. In this paper, we investigate more sophisticated techniques for analyzing the folding pathways in our roadmaps. In addition to more formally revalidating our previous results, we present a case study showing that our technique captures known folding differences between the structurally similar proteins G and L.

  1. Dissecting Ubiquitin Folding Using the Self-Organized Polymer Model.

    PubMed

    Reddy, Govardhan; Thirumalai, D

    2015-08-27

    Folding of Ubiquitin (Ub), a functionally important protein found in eukaryotic organisms, is investigated at low and neutral pH at different temperatures using simulations of the coarse-grained self-organized-polymer model with side chains (SOP-SC). The melting temperatures (Tm's), identified with the peaks in the heat capacity curves, decrease as pH decreases, in qualitative agreement with experiments. The calculated radius of gyration, showing dramatic variations with pH, is in excellent agreement with scattering experiments. At Tm, Ub folds in a two-state manner at low and neutral pH. Clustering analysis of the conformations sampled in equilibrium folding trajectories at Tm, with multiple transitions between the folded and unfolded states, shows a network of metastable states connecting the native and unfolded states. At low and neutral pH, Ub folds with high probability through a preferred set of conformations resulting in a pH-dependent dominant folding pathway. Folding kinetics reveal that Ub assembly at low pH occurs by multiple pathways involving a combination of nucleation-collapse and diffusion collision mechanism. The mechanism by which Ub folds is dictated by the stability of the key secondary structural elements responsible for establishing long-range contacts and collapse of Ub. Nucleation collapse mechanism holds if the stability of these elements are marginal, as would be the case at elevated temperatures. If the lifetimes associated with these structured microdomains are on the order of hundreds of microseconds, then Ub folding follows the diffusion-collision mechanism with intermediates, many of which coincide with those found in equilibrium. Folding at neutral pH is a sequential process with a populated intermediate resembling that sampled at equilibrium. The transition state structures, obtained using a Pfold analysis, are homogeneous and globular with most of the secondary and tertiary structures being native-like. Many of our findings for

  2. Folding or misfolding: the choice of β-hairpin.

    PubMed

    Shao, Qiang

    2015-03-12

    Proteins fold through complex inter-residue interactions which are mutually supportive and cooperatively lead to thermodynamically favorable native structures. Competing (misfolded) structures, however, could exist, which might affect the thermodynamic and kinetic properties of folded structure. Running long-time REMD simulations on two β-structured polypeptides, the present study identifies the folded and (less populated) competing misfolded states of β-hairpins. Of particular interest is a one-residue shifted misfolded state which has been often seen in previous reports. The folding and misfolding pathways are then energetically characterized by free energy landscape analysis, indicating that the folding and misfolding of β-hairpin are parallel pathways and a protein's selection of following which pathway is a consequence of the competition between the formation of alterable turn configurations and cross-strand hydrophobic interactions. Proteins possessing high percentage of hydrophobic residues introduce strong cross-strand hydrophobic interactions which stabilize the native structural elements in the folding pathway, leading to low possibility of misfolding. The present study provides novel insights into the origin of sequence-dependent β-hairpin misfolding "hidden" behind experimentally detectable β-hairpin folding, suggesting the direction for the structure design of β-structured protein.

  3. Desolvation effects and topology-dependent protein folding

    NASA Astrophysics Data System (ADS)

    Ferguson, Allison; Liu, Zhirong; Chan, Hue Sun

    2007-03-01

    As a protein folds, water molecules must be excluded from the hydrophobic core, and thus desolvation barriers between the protein's constituents must be crossed in order to reach the final folded state. Previous research on continuum Go-like protein models has demonstrated that pairwise-additive desolvation potentials lead to more thermodynamically and kinetically cooperative folding/unfolding transitions (Z. Liu and H. S. Chan, Phys. Biol. 2, S75-S85, 2005). The present work focuses on the role of this elementary desolvation potential in improving predictions of the well-known topology-folding rate relationship (K. W. Plaxco et al, J. Mol. Biol. 277, 985-994, 1998) of small single-domain proteins. Recent computational studies without desolvation barriers have shown (S. Wallin and H. S. Chan, J. Phys.: Condens. Matt. 18, S307-S328, 2006) that the observed correlation between topological parameters and folding rates is because these parameters may be proxies for rate-determining properties of the transition state, such as the activation free energy δG^ and activation conformational entropy δS^. Including the desolvation barrier in the model results in stronger correlations between measures of topology and simulated folding rates / transition state properties, reinforcing the theory that even simple representations of the desolvation effect are important for understanding crucial features of protein folding.

  4. Protein Folding:. Physics on Products of Evolution

    NASA Astrophysics Data System (ADS)

    Go, Nobuhiro

    2001-09-01

    Proteins are self-assembling molecular systems. A polypeptide chain of a protein molecule folds into a globular three-dimensional structure, which is specific to the amino acid sequence of the chain. A protein molecule is in the "native state" when folded into its specific three-dimensional structure. Only in the native state, a protein molecule carries out its biological function. This extraordinary self-assembly ability of proteins can be explained based on the three generally accepted empirical observations in proteins: (1) Two-state character; Folding and unfolding transitions in small globular proteins are generally of the two-state character. (2) Consistency principle; Various components of intra-molecular interactions responsible for stabilizing the native state of globular proteins are consistent to each other in their native state. (3) Principle of marginal stability; The native folded states of globular proteins are generally only marginally stable against their unfolded states. Deduction of the self-assembly ability from the three observations is a problem of physical nature. Very sophisticated theories have been developed recently as to this point. I shall give a very simple and intuitive discussion on this point. Asking why protein molecules show the three observations is another problem. Observation (1) can be derived from the globularity of native states. Observations (2) and (3) can be understood only by considering the evolutionary history of protein molecules, i.e., only polypeptide chains with very specific amino acid sequences selected during the history of evolution show properties of observations (2) and (3). Here we see a case where the mechanism of an extraordinary ability of biopolymers is elucidated in terms of physics, and physics expects that only a very small fraction of amino acid sequences have such an ability. Nature has left the job of finding able sequences to the history of evolution.

  5. The effect of surface tethering on the folding of the src-SH3 protein domain

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhuoyun; Jewett, Andrew I.; Soto, Patricia; Shea, Joan-Emma

    2009-03-01

    The effect of surface tethering on the folding mechanism of the src-SH3 protein domain was investigated using a coarse-grained Gō-type protein model. The protein was tethered at various locations along the protein chain and the thermodynamics and kinetics of folding were studied using replica exchange and constant temperature Langevin dynamics. Our simulations reveal that tethering in a structured part of the transition state can dramatically alter the folding mechanism, while tethering in an unstructured part leaves the folding mechanism unaltered as compared to bulk folding. Interestingly, there is only modest correlation between the tethering effect on the folding mechanism and its effect on thermodynamic stability and folding rates. We suggest locations on the protein at which tethering could be performed in single-molecule experiments so as to leave the folding mechanism unaltered from the bulk.

  6. Eigenvalues of the homogeneous finite linear one step master equation: Applications to downhill folding

    NASA Astrophysics Data System (ADS)

    Lane, Thomas J.; Pande, Vijay S.

    2012-12-01

    Motivated by the observed time scales in protein systems said to fold "downhill," we have studied the finite, linear master equation, with uniform rates forward and backward as a model of the downhill process. By solving for the system eigenvalues, we prove the claim that in situations where there is no free energy barrier a transition between single- and multi-exponential kinetics occurs at sufficient bias (towards the native state). Consequences for protein folding, especially the downhill folding scenario, are briefly discussed.

  7. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  8. Turbulent phenomena in protein folding.

    PubMed

    Kalgin, Igor V; Chekmarev, Sergei F

    2011-01-01

    Protein folding and hydrodynamic turbulence are two long-standing challenges, in molecular biophysics and fluid dynamics, respectively. The theories of these phenomena have been developed independently and used different formalisms. Here we show that the protein folding flows can be surprisingly similar to turbulent fluid flows. Studying a benchmark model protein (an SH3 domain), we have found that the flows for the slow folding trajectories of the protein, in which a partly formed N- and C-terminal β sheet hinders the RT loop from attaching to the protein core, have many properties of turbulent flows of a fluid. The flows are analyzed in a three-dimensional (3D) space of collective variables, which are the numbers of native contacts between the terminal β strands, between the RT loop and the protein core, and the rest of the native contacts. We have found that the flows have fractal nature and are filled with 3D eddies; the latter contain strange attractors, at which the tracer flow paths behave as saddle trajectories. Two regions of the space increment have been observed, in which the flux variations are self-similar with the scaling exponent h=1/3, in surprising agreement with the Kolmogorov inertial range theory of turbulence. In one region, the cascade of protein rearrangements is directed from larger to smaller scales (net folding), and in the other, it is oppositely directed (net unfolding). Folding flows for the fast trajectories are essentially "laminar" and do not have the property of self-similarity. Based on the results of our study, we infer, and support this inference by simulations, that the origin of the similarity between the protein folding and turbulent motion of a fluid is in a cascade mechanism of structural transformations in the systems that underlies these phenomena.

  9. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments.

    PubMed

    Jahn, Markus; Buchner, Johannes; Hugel, Thorsten; Rief, Matthias

    2016-02-02

    Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo.

  10. NoFold: RNA structure clustering without folding or alignment.

    PubMed

    Middleton, Sarah A; Kim, Junhyong

    2014-11-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function-for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. © 2014 Middleton and Kim; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. NoFold: RNA structure clustering without folding or alignment

    PubMed Central

    Middleton, Sarah A.

    2014-01-01

    Structures that recur across multiple different transcripts, called structure motifs, often perform a similar function—for example, recruiting a specific RNA-binding protein that then regulates translation, splicing, or subcellular localization. Identifying common motifs between coregulated transcripts may therefore yield significant insight into their binding partners and mechanism of regulation. However, as most methods for clustering structures are based on folding individual sequences or doing many pairwise alignments, this results in a tradeoff between speed and accuracy that can be problematic for large-scale data sets. Here we describe a novel method for comparing and characterizing RNA secondary structures that does not require folding or pairwise alignment of the input sequences. Our method uses the idea of constructing a distance function between two objects by their respective distances to a collection of empirical examples or models, which in our case consists of 1973 Rfam family covariance models. Using this as a basis for measuring structural similarity, we developed a clustering pipeline called NoFold to automatically identify and annotate structure motifs within large sequence data sets. We demonstrate that NoFold can simultaneously identify multiple structure motifs with an average sensitivity of 0.80 and precision of 0.98 and generally exceeds the performance of existing methods. We also perform a cross-validation analysis of the entire set of Rfam families, achieving an average sensitivity of 0.57. We apply NoFold to identify motifs enriched in dendritically localized transcripts and report 213 enriched motifs, including both known and novel structures. PMID:25234928

  12. Composition-based effective chain length for prediction of protein folding rates

    NASA Astrophysics Data System (ADS)

    Chang, Le; Wang, Jun; Wang, Wei

    2010-11-01

    Folding rate prediction is a useful way to find the key factors affecting folding kinetics of proteins. Structural information is more or less required in the present prediction methods, which limits the application of these methods to various proteins. In this work, an “effective length” is defined solely based on the composition of a protein, namely, the number of specific types of amino acids in a protein. A physical theory based on a minimalist model is employed to describe the relation between the folding rates and the effective length of proteins. Based on the resultant relationship between folding rates and effective length, the optimal sets of amino acids are found through the enumeration over all possible combinations of amino acids. This optimal set achieves a high correlation (with the coefficient of 0.84) between the folding rates and the optimal effective length. The features of these amino acids are consistent with our model and landscape theory. Further comparisons between our effective length and other factors are carried out. The effective length is physically consistent with structure-based prediction methods and has the best predictability for folding rates. These results all suggest that both entropy and energetics contribute importantly to folding kinetics. The ability to accurately and efficiently predict folding rates from composition enables the analysis of the kinetics for various kinds of proteins. The underlying physics in our method may be helpful to stimulate further understanding on the effects of various amino acids in folding dynamics.

  13. Statistically Derived Rules for RNA Folding

    NASA Astrophysics Data System (ADS)

    Zuker, Michael

    2004-03-01

    What I am not going to talk about, although I could improvise, is predicting RNA folding by energy minimization. Peter Schuster certainly talked about it, although he didn't present any algorithms, etc. If I had been trained as a physicist or a chemist instead of a mathematician, and if my chemical colleagues had cared about statistics or Boltzmann distributions, I think I would have come up with the McCaskill algorithm for computing partition functions earlier, because no one ever told me that that was a problem needing to be solved. I think there's a good potential for combining the two approaches ...

  14. Mesoscale Modeling of Chromatin Folding

    NASA Astrophysics Data System (ADS)

    Schlick, Tamar

    2009-03-01

    Eukaryotic chromatin is the fundamental protein/nucleic acid unit that stores the genetic material. Understanding how chromatin fibers fold and unfold in physiological conditions is important for interpreting fundamental biological processes like DNA replication and transcription regulation. Using a mesoscopic model of oligonucleosome chains and tailored sampling protocols, we elucidate the energetics of oligonucleosome folding/unfolding and the role of each histone tail, linker histones, and divalent ions in regulating chromatin structure. The resulting compact topologies reconcile features of the zigzag model with straight linker DNAs with the solenoid model with bent linker DNAs for optimal fiber organization and reveal dynamic and energetic aspects involved.

  15. Conceptual Transformation and Cognitive Processes in Origami Paper Folding

    ERIC Educational Resources Information Center

    Tenbrink, Thora; Taylor, Holly A.

    2015-01-01

    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  16. Conceptual Transformation and Cognitive Processes in Origami Paper Folding

    ERIC Educational Resources Information Center

    Tenbrink, Thora; Taylor, Holly A.

    2015-01-01

    Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…

  17. Protein folding in HP model on hexagonal lattices with diagonals

    PubMed Central

    2014-01-01

    Three dimensional structure prediction of a protein from its amino acid sequence, known as protein folding, is one of the most studied computational problem in bioinformatics and computational biology. Since, this is a hard problem, a number of simplified models have been proposed in literature to capture the essential properties of this problem. In this paper we introduce the hexagonal lattices with diagonals to handle the protein folding problem considering the well researched HP model. We give two approximation algorithms for protein folding on this lattice. Our first algorithm is a 53-approximation algorithm, which is based on the strategy of partitioning the entire protein sequence into two pieces. Our next algorithm is also based on partitioning approaches and improves upon the first algorithm. PMID:24564789

  18. Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size.

    PubMed

    Galzitskaya, Oxana V; Glyakina, Anna V

    2012-12-01

    The problem of protein self-organization is in the focus of current molecular biology studies. Although the general principles are understood, many details remain unclear. Specifically, protein folding rates are of interest because they dictate the rate of protein aggregation which underlies many human diseases. Here we offer predictions of protein folding rates and their correlation with folding nucleus sizes. We calculated free energies of the transition state and sizes of folding nuclei for 84 proteins and peptides whose other parameters were measured at the point of thermodynamic equilibrium between their unfolded and native states. We used the dynamic programming method where each residue was considered to be either as folded as in its native state or completely disordered. The calculated and measured folding rates showed a good correlation at the temperature mid-transition point (the correlation coefficient was 0.75). Also, we pioneered in demonstrating a moderate (-0.57) correlation coefficient between the calculated sizes of folding nuclei and the folding rates. Predictions made by different methods were compared. The established good correlation between the estimated free energy barrier and the experimentally found folding rate of each studied protein/peptide indicates that our model gives reliable results for the considered data set. Copyright © 2012 Wiley Periodicals, Inc.

  19. Folding studies of arginine kinase from Euphausia superba using denaturants.

    PubMed

    Si, Yue-Xiu; Fang, Nai-Yun; Wang, Wei; Wang, Zhi-Jiang; Yang, Jun-Mo; Qian, Guo-Ying; Yin, Shang-Jun; Park, Yong-Doo

    2014-04-01

    Arginine kinase (AK) is a key metabolic enzyme for maintaining energy balance in invertebrates and studies on AK from Euphausia superba might provide important insights into the metabolic enzymes in extreme climatic marine environments. A folding study of the AK from E. superba (ESAK) has not yet been reported. To gain insights into the structural and folding mechanisms of ESAK, the denaturants guanidine HCl and urea were applied in this study. We purified ESAK from the muscle of E. superba and evaluated the inhibition kinetics with structural unfolding studies under various conditions. The results revealed that ESAK was almost completely inactivated when using 1.0 M guanidine HCl and 8.25 M urea. The kinetics, characterized via time-interval measurements, showed that the inactivations by guanidine HCl and urea were first-order reactions, with the kinetic processes shifting from monophases to biphases as concentrations increased. Measurements of intrinsic and ANS (anilinonaphthalene-8-sulfonate)-binding fluorescences showed that guanidine HCl and urea induced conspicuous changes in tertiary structures and followed the regular unfolding mechanisms. Our study provides information regarding the folding of this muscle-derived metabolic enzyme and expands our knowledge and understanding of invertebrate metabolisms.

  20. Protein Solubility and Folding Enhancement by Interaction with RNA

    PubMed Central

    Choi, Seong Il; Han, Kyoung Sim; Kim, Chul Woo; Ryu, Ki-Sun; Kim, Byung Hee; Kim, Kyun-Hwan; Kim, Seo-Il; Kang, Tae Hyun; Shin, Hang-Cheol; Lim, Keo-Heun; Kim, Hyo Kyung; Hyun, Jeong-Min; Seong, Baik L.

    2008-01-01

    While basic mechanisms of several major molecular chaperones are well understood, this machinery has been known to be involved in folding of only limited number of proteins inside the cells. Here, we report a chaperone type of protein folding facilitated by interaction with RNA. When an RNA-binding module is placed at the N-terminus of aggregation-prone target proteins, this module, upon binding with RNA, further promotes the solubility of passenger proteins, potentially leading to enhancement of proper protein folding. Studies on in vitro refolding in the presence of RNA, coexpression of RNA molecules in vivo and the mutants with impaired RNA binding ability suggests that RNA can exert chaperoning effect on their bound proteins. The results suggest that RNA binding could affect the overall kinetic network of protein folding pathway in favor of productive folding over off-pathway aggregation. In addition, the RNA binding-mediated solubility enhancement is extremely robust for increasing soluble yield of passenger proteins and could be usefully implemented for high-throughput protein expression for functional and structural genomic research initiatives. The RNA-mediated chaperone type presented here would give new insights into de novo folding in vivo. PMID:18628952

  1. Use of Protein Folding Reagents.

    PubMed

    2016-04-01

    The reagents and methods for purification and use of the most commonly used denaturants, guanidine hydrochloride (guanidine-HCl) and urea, are described. Other protein denaturants and reagents used to fold proteins are briefly mentioned. Sulfhydryl reagents (reducing agents) and "oxido-shuffling" (or oxidative regeneration) systems are also described.

  2. Predicting RNA pseudoknot folding thermodynamics

    PubMed Central

    Cao, Song; Chen, Shi-Jie

    2006-01-01

    Based on the experimentally determined atomic coordinates for RNA helices and the self-avoiding walks of the P (phosphate) and C4 (carbon) atoms in the diamond lattice for the polynucleotide loop conformations, we derive a set of conformational entropy parameters for RNA pseudoknots. Based on the entropy parameters, we develop a folding thermodynamics model that enables us to compute the sequence-specific RNA pseudoknot folding free energy landscape and thermodynamics. The model is validated through extensive experimental tests both for the native structures and for the folding thermodynamics. The model predicts strong sequence-dependent helix-loop competitions in the pseudoknot stability and the resultant conformational switches between different hairpin and pseudoknot structures. For instance, for the pseudoknot domain of human telomerase RNA, a native-like and a misfolded hairpin intermediates are found to coexist on the (equilibrium) folding pathways, and the interplay between the stabilities of these intermediates causes the conformational switch that may underlie a human telomerase disease. PMID:16709732

  3. Protein folding in the cell

    NASA Astrophysics Data System (ADS)

    Gething, Mary-Jane; Sambrook, Joseph

    1992-01-01

    In the cell, as in vitro, the final conformation of a protein is determined by its amino-acid sequence. But whereas some isolated proteins can be denatured and refolded in vitro in the absence of other macromolecular cellular components, folding and assembly of polypeptides in vivo involves other proteins, many of which belong to families that have been highly conserved during evolution.

  4. Slowing Down Downhill Folding: A Three-Probe Study

    SciTech Connect

    Kim, Seung Joong; Matsumura, Yoshitaka; Dumont, Charles; Kihara, Hiroshi; Gruebele, Martin

    2009-09-11

    The mutant Tyr{sup 22}Trp/Glu{sup 33}Tyr/Gly{sup 46}Ala/Gly{sup 48}Ala of {lambda} repressor fragment {lambda}6-85 was previously assigned as an incipient downhill folder. We slow down its folding in a cryogenic water-ethylene-glycol solvent (-18 to -28 C). The refolding kinetics are probed by small-angle x-ray scattering, circular dichroism, and fluorescence to measure the radius of gyration, the average secondary structure content, and the native packing around the single tryptophan residue. The main resolved kinetic phase of the mutant is probe independent and faster than the main phase observed for the pseudo-wild-type. Excess helical structure formed early on by the mutant may reduce the formation of turns and prevent the formation of compact misfolded states, speeding up the overall folding process. Extrapolation of our main cryogenic folding phase and previous T-jump measurements to 37 C yields nearly the same refolding rate as extrapolated by Oas and co-workers from NMR line-shape data. Taken together, all the data consistently indicate a folding speed limit of {approx}4.5 {micro}s for this fast folder.

  5. Kinetic: A system code for analyzing nuclear thermal propulsion rocket engine transients

    NASA Technical Reports Server (NTRS)

    Schmidt, Eldon; Lazareth, Otto; Ludewig, Hans

    1993-01-01

    The topics are presented in viewgraph form and include the following: outline of kinetic code; a kinetic information flow diagram; kinetic neutronic equations; turbopump/nozzle algorithm; kinetic heat transfer equations per node; and test problem diagram.

  6. EChem++--an object-oriented problem solving environment for electrochemistry. 2. The kinetic facilities of Ecco--a compiler for (electro-)chemistry.

    PubMed

    Ludwig, Kai; Speiser, Bernd

    2004-01-01

    We describe a modeling software component Ecco, implemented in the C++ programming language. It assists in the formulation of physicochemical systems including, in particular, electrochemical processes within general geometries. Ecco's kinetic part then translates any user defined reaction mechanism into an object-oriented representation and generates the according mathematical model equations. The input language, its grammar, the object-oriented design of Ecco, based on design patterns, and its integration into the open source software project EChem++ are discussed. Application Strategies are given.

  7. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  8. Chemical methods for producing disulfide bonds in peptides and proteins to study folding regulation.

    PubMed

    Okumura, Masaki; Shimamoto, Shigeru; Hidaka, Yuji

    2014-04-01

    Disulfide bonds play a critical role in the folding of secretory and membrane proteins. Oxidative folding reactions of disulfide bond-containing proteins typically require several hours or days, and numerous misbridged disulfide isomers are often observed as intermediates. The rate-determining step in refolding is thought to be the disulfide-exchange reaction from nonnative to native disulfide bonds in folding intermediates, which often precipitate during the refolding process because of their hydrophobic properties. To overcome this, chemical additives or a disulfide catalyst, protein disulfide isomerase (PDI), are generally used in refolding experiments to regulate disulfide-coupled peptide and protein folding. This unit describes such methods in the context of the thermodynamic and kinetic control of peptide and protein folding, including (1) regulation of disulfide-coupled peptides and protein folding assisted by chemical additives, (2) reductive unfolding of disulfide-containing peptides and proteins, and (3) regulation of disulfide-coupled peptide and protein folding using PDI.

  9. A direct view of the complex multi-pathway folding of telomeric G-quadruplexes

    PubMed Central

    Aznauryan, Mikayel; Søndergaard, Siri; Noer, Sofie L.; Schiøtt, Birgit; Birkedal, Victoria

    2016-01-01

    G-quadruplexes (G4s) are DNA secondary structures that are capable of forming and function in vivo. The propensity of G4s to exhibit extreme polymorphism and complex dynamics is likely to influence their cellular function, yet a clear microscopic picture of their folding process is lacking. Here we employed single-molecule FRET microscopy to obtain a direct view of the folding and underlying conformational dynamics of G4s formed by the human telomeric sequence in potassium containing solutions. Our experiments allowed detecting several folded states that are populated in the course of G4 folding and determining their folding energetics and timescales. Combining the single-molecule data with molecular dynamics simulations enabled obtaining a structural description of the experimentally observed folded states. Our work thus provides a comprehensive thermodynamic and kinetic description of the folding of G4s that proceeds through a complex multi-route pathway, involving several marginally stable conformational states. PMID:27799468

  10. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.

    PubMed

    Gerstman, Bernard S; Chapagain, Prem P

    2013-01-01

    The dynamics of protein folding are complicated because of the various types of amino acid interactions that create secondary, supersecondary, and tertiary interactions. Computational modeling can be used to simulate the biophysical and biochemical interactions that determine protein folding. Effective folding to a desired protein configuration requires a compromise between speed, stability, and specificity. If the primary sequence of amino acids emphasizes one of these characteristics, the others might suffer and the folding process may not be optimized. We provide an example of a model peptide whose primary sequence produces a highly stable supersecondary two-helix bundle structure, but at the expense of lower speed and specificity of the folding process. We show how computational simulations can be used to discover the configuration of the kinetic trap that causes the degradation in the speed and specificity of folding. We also show how amino acid sequences can be engineered by specific substitutions to optimize the folding to the desired supersecondary structure.

  11. Programmed folding of DNA origami structures through single-molecule force control

    NASA Astrophysics Data System (ADS)

    Bae, Wooli; Kim, Kipom; Min, Duyoung; Ryu, Je-Kyung; Hyeon, Changbong; Yoon, Tae-Young

    2014-12-01

    Despite the recent development in the design of DNA origami, its folding yet relies on thermal or chemical annealing methods. We here demonstrate mechanical folding of the DNA origami structure via a pathway that has not been accessible to thermal annealing. Using magnetic tweezers, we stretch a single scaffold DNA with mechanical tension to remove its secondary structures, followed by base pairing of the stretched DNA with staple strands. When the force is subsequently quenched, folding of the DNA nanostructure is completed through displacement between the bound staple strands. Each process in the mechanical folding is well defined and free from kinetic traps, enabling us to complete folding within 10 min. We also demonstrate parallel folding of DNA nanostructures through multiplexed manipulation of the scaffold DNAs. Our results suggest a path towards programmability of the folding pathway of DNA nanostructures.

  12. RNAiFold: a web server for RNA inverse folding and molecular design.

    PubMed

    Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan

    2013-07-01

    Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.

  13. Folded supersymmetry with a twist

    SciTech Connect

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; Pinner, David

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. As a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.

  14. Folded supersymmetry with a twist

    DOE PAGES

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; ...

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. Asmore » a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.« less

  15. Quantitative Morphology of Epithelial Folds

    PubMed Central

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  16. Folded waveguide designs for tokamaks

    NASA Astrophysics Data System (ADS)

    Hoffman, D. J.; Bigelow, T. S.; Fogelman, C. H.; Yugo, J. J.; Caughman, J. B. O.; Gardner, W. L.; Carter, M. D.; Probert, P. H.; Barbato, E.

    The folded waveguide (FWG) has been tested to the megawatt level in RFTF and shows great promise for tokamak use. It has three primary advantages: low electric field (anywhere) per unit power coupled to the plasma, strong structural capabilities, and better spectral content than loops. A tokamak test is now needed. Potential candidates include C-Mod at 80 MHz and FTU at 433 MHz. The waveguide test on the first machine will be directed at conventional ion cyclotron heating, while the test on the latter will be directed at direct electron heating. In addition, a variation of the folded waveguide is proposed to be tested on Phaedrus-T. In this paper, we discuss the advantages of the waveguide, the design layout, some of the potential physics programs, and how these programs may have an impact on its potential use in ITER.

  17. RNA folding and ribosome assembly.

    PubMed

    Woodson, Sarah A

    2008-12-01

    Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.

  18. Force generation by titin folding.

    PubMed

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós

    2017-07-01

    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (<10 pN), extension fluctuated without resolvable discrete events. In position-clamp experiments, the time-dependent force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  19. Mechanical Folding and Unfolding of Protein Barnase at the Single-Molecule Level

    PubMed Central

    Alemany, Anna; Rey-Serra, Blanca; Frutos, Silvia; Cecconi, Ciro; Ritort, Felix

    2016-01-01

    The unfolding and folding of protein barnase has been extensively investigated in bulk conditions under the effect of denaturant and temperature. These experiments provided information about structural and kinetic features of both the native and the unfolded states of the protein, and debates about the possible existence of an intermediate state in the folding pathway have arisen. Here, we investigate the folding/unfolding reaction of protein barnase under the action of mechanical force at the single-molecule level using optical tweezers. We measure unfolding and folding force-dependent kinetic rates from pulling and passive experiments, respectively, and using Kramers-based theories (e.g., Bell-Evans and Dudko-Hummer-Szabo models), we extract the position of the transition state and the height of the kinetic barrier mediating unfolding and folding transitions, finding good agreement with previous bulk measurements. Measurements of the force-dependent kinetic barrier using the continuous effective barrier analysis show that protein barnase verifies the Leffler-Hammond postulate under applied force and allow us to extract its free energy of folding, ΔG0. The estimated value of ΔG0 is in agreement with our predictions obtained using fluctuation relations and previous bulk studies. To address the possible existence of an intermediate state on the folding pathway, we measure the power spectrum of force fluctuations at high temporal resolution (50 kHz) when the protein is either folded or unfolded and, additionally, we study the folding transition-path time at different forces. The finite bandwidth of our experimental setup sets the lifetime of potential intermediate states upon barnase folding/unfolding in the submillisecond timescale. PMID:26745410

  20. Complex fold patterns developed by progressive deformation

    NASA Astrophysics Data System (ADS)

    Carreras, Jordi; Druguet, Elena

    2017-04-01

    Folds arise from shortening instabilities in rocks containing layers with contrasting viscosities or bearing mechanical anisotropies. A complete understanding of this fact requires a three-dimensional approach, because of the variable geometrical relations between strain and kinematic tensors and the surfaces subjected to folding. This is especially common in progressive non-coaxial flow, under which folds become unstable, leading to fold hinge curvature, axial surface curvature or both. The resulting complex fold patterns generated by progressive folding can be morphologically indistinguishable from interference patterns produced by the superposition of two fold systems, and a detailed 3-D analysis is needed to distinguish between them. This study is focused on complex fold shapes arisen from progressive single deformations. Examples can be grouped into: (i) non-cylindrical (or non-cylindroidal) folds and (ii) folds with non-planar axial surfaces (or non-plane folds). In both cases, hinge lines and axial surfaces can display up to a 180° curvature. Hinge line curvature leads to the development of sheath folds, while axial surface curvature leads to the development of polyclinal folds, being these cylindroidal if the hinges remain straight. The two end-member situations (sheath folds and polyclinal folds) are illustrated using examples from the Variscan Cap de Creus massif (Eastern Pyrenees). Fold Hinge rotation and development of sheath folds In simple shear zones, folds commonly nucleate with hinges at a high angle to the shear direction and progressively rotate towards parallelism with the shear/extension direction, giving rise to sheath folds. Axial surfaces also change in attitude with increasing strain, becoming parallel to the shear plane. Development of polyclinal folds with strongly curved axial surfaces A peculiar complex fold pattern consists of strongly curved axial surfaces but straight hinges. This folding type is opposed to sheath folds where axial

  1. On hydrodynamic interpretation of folding of an α-helical protein

    NASA Astrophysics Data System (ADS)

    Andryushchenko, V. A.; Chekmarev, S. F.

    2016-11-01

    Using the method of molecular dynamics, the simulation of folding of an α-helical protein from the unfolded to compact and functional (native) state is performed. The protein folding is interpreted as a stationary motion of a compressible "folding fluid". It is shown that the densities of folding fluxes obey the same similarity relations as the velocities of an incompressible fluid in the Kolmogorov's turbulence theory, except that instead of the rate of change of kinetic energy per mass unit, the rate of change of flux variance per volume unit plays the role of the key parameter.

  2. Folding rate dependence on the chain length of RNA-like heteropolymers.

    PubMed

    Galzitskaya, O; Finkelstein, A V

    1998-01-01

    Computer experiments and analytical estimates have shown that protein and RNA chains can reach their most stable folds without an exhaustive search over all their possible conformations. Protein-like chain folding proceeds via a specific nucleus and under conditions optimal for the fastest folding of these chains the dependence of the folding time (t) on the chain length (L) is in accord with the power law t integral of Lb (b is a constant). Using Monte-Carlo folding simulations for a simple model of RNA secondary structure formation, we estimated the RNA chain length dependence of the time necessary to reach the lowest energy fold. Our results are compatible with a relatively weak power dependence of the folding time on the chain length, t integral of Lb. Such dependencies have been observed for different folding conditions, both for random sequences (here, b > 5) and for sequences edited to stabilize their lowest energy folds (for extremely edited sequences b < 2). Although folding transitions in RNA chains are not an all-or-none type in terms of thermodynamics, they proceed via a folding nucleus in terms of kinetics. The peculiarity (compared with protein folding) is that the RNA critical nucleus is big and non-specific. We have obtained a general scaling for the dependence of the RNA secondary structure on the chain length. The obtained power dependence is very weak compared with an exponential dependence for an exhaustive sorting.

  3. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations.

    PubMed

    Noé, Frank; Schütte, Christof; Vanden-Eijnden, Eric; Reich, Lothar; Weikl, Thomas R

    2009-11-10

    Characterizing the equilibrium ensemble of folding pathways, including their relative probability, is one of the major challenges in protein folding theory today. Although this information is in principle accessible via all-atom molecular dynamics simulations, it is difficult to compute in practice because protein folding is a rare event and the affordable simulation length is typically not sufficient to observe an appreciable number of folding events, unless very simplified protein models are used. Here we present an approach that allows for the reconstruction of the full ensemble of folding pathways from simulations that are much shorter than the folding time. This approach can be applied to all-atom protein simulations in explicit solvent. It does not use a predefined reaction coordinate but is based on partitioning the state space into small conformational states and constructing a Markov model between them. A theory is presented that allows for the extraction of the full ensemble of transition pathways from the unfolded to the folded configurations. The approach is applied to the folding of a PinWW domain in explicit solvent where the folding time is two orders of magnitude larger than the length of individual simulations. The results are in good agreement with kinetic experimental data and give detailed insights about the nature of the folding process which is shown to be surprisingly complex and parallel. The analysis reveals the existence of misfolded trap states outside the network of efficient folding intermediates that significantly reduce the folding speed.

  4. Folding and misfolding pathways of G-quadruplex DNA

    PubMed Central

    Marchand, Adrien; Gabelica, Valérie

    2016-01-01

    G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)3GGG) core, K+ binding affinity and cooperativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Misfolded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context. PMID:27924036

  5. Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    PubMed Central

    Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L.; Mechery, Vinodh; Meyer, Michelle M.; Clote, Peter

    2014-01-01

    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

  6. Intermediates and the folding of proteins L and G

    SciTech Connect

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  7. Ventricular-Fold Dynamics in Human Phonation

    ERIC Educational Resources Information Center

    Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus

    2014-01-01

    Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…

  8. Ventricular-Fold Dynamics in Human Phonation

    ERIC Educational Resources Information Center

    Bailly, Lucie; Bernardoni, Nathalie Henrich; Müller, Frank; Rohlfs, Anna-Katharina; Hess, Markus

    2014-01-01

    Purpose: In this study, the authors aimed (a) to provide a classification of the ventricular-fold dynamics during voicing, (b) to study the aerodynamic impact of these motions on vocal-fold vibrations, and (c) to assess whether ventricular-fold oscillations could be sustained by aerodynamic coupling with the vocal folds. Method: A 72-sample…

  9. Genetic Algorithms and Their Application to the Protein Folding Problem

    DTIC Science & Technology

    1993-12-01

    mutation, genetic algorithms simulate the Darwin theory of survival of the fittest. The search space is represented by a population of strings upon which... Darwin theory of survival of the fittest by representing the search space as a population of strings upon which genetic operators act to create new...34 International Conference on Tools for Artificial Intelligence, IEEE-TAI 90, 322-7. Cartwright , H. M. & Mott, G. F. (1991). "Looking A:;und: Using Clues

  10. A prospectus on kinetic heliophysics

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2017-05-01

    Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future.

  11. Comparing Fast Pressure Jump and Temperature Jump Protein Folding Experiments and Simulations

    PubMed Central

    Prigozhin, Maxim B.; Schulten, Klaus; Gruebele, Martin

    2016-01-01

    The unimolecular folding reaction of small proteins is now amenable to a very direct mechanistic comparison between experiment and simulation. We present such a comparison of microsecond pressure and temperature jump refolding kinetics of the engineered WW domain FiP35, a model system for beta sheet folding. Both perturbations produce experimentally a faster and a slower kinetic phase, the “slow” microsecond phase being activated. The fast phase shows differences between perturbation methods and is closer to the downhill limit by temperature jump, but closer to the transiently populated intermediate limit by pressure jump. These observations make more demands on simulations of the folding process than just a rough comparison of time scales. To complement experiments, we calculated several pressure jump and temperature jump all-atom molecular dynamics trajectories in explicit solvent, where FiP35 folded in five of the six simulations. We analyzed our pressure jump simulations by kinetic modeling and found that the pressure jump experiments and MD simulations are most consistent with a 4-state kinetic mechanism. Together, our experimental and computational data highlight FiP35’s position at the boundary where activated intermediates and downhill folding meet, and we show that this model protein is an excellent candidate for further pressure jump molecular dynamics studies to compare experiment and modeling at the folding mechanism level. PMID:25988868

  12. Identification of kinetically hot residues in proteins.

    PubMed Central

    Demirel, M. C.; Atilgan, A. R.; Jernigan, R. L.; Erman, B.; Bahar, I.

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed. PMID:9865946

  13. Folded MEMS approach to NMRG

    NASA Astrophysics Data System (ADS)

    Gundeti, Venu Madhav

    Atomic gyroscopes have a potential for good performance advantages and several attempts are being made to miniaturize them. This thesis describes the efforts made in implementing a Folded MEMS based NMRG. The micro implementations of all the essential components for NMRG (Nuclear Magnetic Resonance Gyroscope) are described in detail in regards to their design, fabrication, and characterization. A set of micro-scale Helmholtz coils are described and the homogeneity of the generated magnetic field is analyzed for different designs of heaters. The dielectric mirrors and metallic mirrors are compared in terms of reflectivity and polarization change up on reflection. A pyramid shaped folded backbone structure is designed, fabricated, and assembled along with all the required components. A novel double-folded structure 1/4th the size of original version is fabricated and assembled. Design and modeling details of a 5 layered shield with shielding factor > 106 and total volume of around 90 cc are also presented. A table top setup for characterization of atomic vapor cell is described in detail. A micro vapor cell based Rb magnetometer with a sensitivity of 108 pT/√Hz is demonstrated. The challenges due to DC heating are addressed and mitigated using an AC heater. Several experiments related to measuring the relaxation time of Xe are provided along with results. For Xe131, relaxation times of T1 = 23.78 sec, T2 = 18.06 sec and for Xe129, T1 = 21.65 sec and T2 = 20.45 sec are reported.

  14. Electrostatically accelerated encounter and folding for facile recognition of intrinsically disordered proteins.

    PubMed

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via "electrostatic steering" and at the same time promote "folding-competent" encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular

  15. Chaperonin-mediated Protein Folding

    PubMed Central

    Horwich, Arthur L.

    2013-01-01

    We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments. PMID:23803606

  16. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  17. RNAslider: a faster engine for consecutive windows folding and its application to the analysis of genomic folding asymmetry

    PubMed Central

    Horesh, Yair; Wexler, Ydo; Lebenthal, Ilana; Ziv-Ukelson, Michal; Unger, Ron

    2009-01-01

    Background Scanning large genomes with a sliding window in search of locally stable RNA structures is a well motivated problem in bioinformatics. Given a predefined window size L and an RNA sequence S of size N (L < N), the consecutive windows folding problem is to compute the minimal free energy (MFE) for the folding of each of the L-sized substrings of S. The consecutive windows folding problem can be naively solved in O(NL3) by applying any of the classical cubic-time RNA folding algorithms to each of the N-L windows of size L. Recently an O(NL2) solution for this problem has been described. Results Here, we describe and implement an O(NLψ(L)) engine for the consecutive windows folding problem, where ψ(L) is shown to converge to O(1) under the assumption of a standard probabilistic polymer folding model, yielding an O(L) speedup which is experimentally confirmed. Using this tool, we note an intriguing directionality (5'-3' vs. 3'-5') folding bias, i.e. that the minimal free energy (MFE) of folding is higher in the native direction of the DNA than in the reverse direction of various genomic regions in several organisms including regions of the genomes that do not encode proteins or ncRNA. This bias largely emerges from the genomic dinucleotide bias which affects the MFE, however we see some variations in the folding bias in the different genomic regions when normalized to the dinucleotide bias. We also present results from calculating the MFE landscape of a mouse chromosome 1, characterizing the MFE of the long ncRNA molecules that reside in this chromosome. Conclusion The efficient consecutive windows folding engine described in this paper allows for genome wide scans for ncRNA molecules as well as large-scale statistics. This is implemented here as a software tool, called RNAslider, and applied to the scanning of long chromosomes, leading to the observation of features that are visible only on a large scale. PMID:19257906

  18. Visualization of Protein Folding Funnels in Lattice Models

    PubMed Central

    Oliveira, Antonio B.; Fatore, Francisco M.; Paulovich, Fernando V.; Oliveira, Osvaldo N.; Leite, Vitor B. P.

    2014-01-01

    Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed. PMID:25010343

  19. Fold-A-Board communication device.

    PubMed

    Sokolowski, Joanna; Maher, Aedan; Jaycox, Katie; Siegler, Kevin

    2011-01-01

    Aphasia is an impairment of language resulting from stroke that can affect a person's ability to use and comprehend words. People who have aphasia often keep a writing device handy to write down information that they have trouble communicating verbally. Device options include expensive keyboard devices or more commonly small inexpensive notebooks. Neither of these options fits the needs of someone with communication problems and the use of only one hand. Our goal was to design a device that would allow persons with aphasia and use of one hand to be able to communicate more easily with others on a daily basis. The information gathered from the interviews and observations gave us direction in our design process. We determined that the device should be accessible with one hand, be small in size, have an erasable surface, and have a professional appearance. Our final design is the Fold-A-Board communication device. The Fold-A-Board communication device meets all the requirements for an easy-to-use writing device.

  20. On Finding All Suboptimal Foldings of an RNA Molecule

    NASA Astrophysics Data System (ADS)

    Zuker, Michael

    1989-04-01

    An algorithm and a computer program have been prepared for determining RNA secondary structures within any prescribed increment of the computed global minimum free energy. The mathematical problem of determining how well defined a minimum energy folding is can now be solved. All predicted base pairs that can participate in suboptimal structures may be displayed and analyzed graphically. Representative suboptimal foldings are generated by selecting these base pairs one at a time and computing the best foldings that contain them. A distance criterion that ensures that no two structures are ``too close'' is used to avoid multiple generation of similar structures. Thermodynamic parameters, including free-energy increments for single-base stacking at the ends of helices and for terminal mismatched pairs in interior and hairpin loops, are incorporated into the underlying folding model of the above algorithm.

  1. Induced fit or conformational selection for RNA/U1A folding

    PubMed Central

    Qin, Fang; Chen, Yue; Wu, Maoying; Li, Yixue; Zhang, Jian; Chen, Hai-Feng

    2010-01-01

    The hairpin II of U1 snRNA can bind U1A protein with high affinity and specificity. NMR spectra suggest that the loop region of apo-RNA is largely unstructured and undergoes a transition from unstructured to well-folded upon U1Abinding. However, the mechanism that RNA folding coupled protein binding is poorly understood. To get an insight into the mechanism, we have performed explicit-solvent molecular dynamics (MD) to study the folding kinetics of bound RNA and apo-RNA. Room-temperature MD simulations suggest that the conformation of bound RNA has significant adjustment and becomes more stable upon U1A binding. Kinetic analysis of high-temperature MD simulations shows that bound RNA and apo-RNA unfold via a two-state process, respectively. Both kinetics and free energy landscape analyses indicate that bound RNA folds in the order of RNA contracting, U1A binding, and tertiary folding. The predicted Φ-values suggest that A8, C10, A11, and G16 are key bases for bound RNA folding. Mutant Arg52Gln analysis shows that electrostatic interaction and hydrogen bonds between RNA and U1A (Arg52Gln) decrease. These results are in qualitative agreement with experiments. Furthermore, this method could be used in other studies about biomolecule folding upon receptor binding. PMID:20354153

  2. Equilibrium collapse and the kinetic 'foldability' of proteins.

    PubMed

    Millet, Ian S; Townsley, Lara E; Chiti, Fabrizio; Doniach, Sebastian; Plaxco, Kevin W

    2002-01-08

    An important element of protein folding theory has been the identification of equilibrium parameters that might uniquely distinguish rapidly folding polypeptide sequences from those that fold slowly. One such parameter, termed sigma, is a dimensionless, equilibrium measure of the coincidence of chain compaction and folding that is predicted to be an important determinant of relative folding kinetics. To test this prediction and improve our understanding of the putative relationship between nonspecific compaction of the unfolded state and protein folding kinetics, we have used small-angle X-ray scattering and circular dichroism spectroscopy to measure the sigma of five well-characterized proteins. Consistent with theoretical predictions, we find that near-perfect coincidence of the unfolded state contraction and folding (sigma approximately 0) is associated with the rapid kinetics of these naturally occurring proteins. We do not, however, observe any significant correlation between sigma and either the relative folding rates of these proteins or the presence or absence of well-populated kinetic intermediates. Thus, while sigma approximately 0 may be a necessary condition to ensure rapid folding, differences in sigma do not account for the wide range of rates and mechanisms with which naturally occurring proteins fold.

  3. Substrate protein folds while it is bound to the ATP-independent chaperone Spy.

    PubMed

    Stull, Frederick; Koldewey, Philipp; Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist in the folding of many proteins in the cell. Although the most well-studied chaperones use cycles of ATP binding and hydrolysis to assist in protein folding, a number of chaperones have been identified that promote folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we characterized the kinetic mechanism of substrate folding by the small ATP-independent chaperone Spy from Escherichia coli. Spy rapidly associates with its substrate, immunity protein 7 (Im7), thereby eliminating Im7's potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while it remains bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while being continuously bound to a chaperone.

  4. Protein folding occurs while bound to the ATP-independent chaperone Spy

    PubMed Central

    Humes, Julia R; Radford, Sheena E; Bardwell, James C A

    2016-01-01

    Chaperones assist the folding of many proteins in the cell. While the most well studied chaperones use cycles of ATP binding and hydrolysis to assist protein folding, a number of chaperones have been identified that promote protein folding in the absence of high-energy cofactors. Precisely how ATP-independent chaperones accomplish this feat is unclear. Here we have characterized the kinetic mechanism of substrate folding by the small, ATP-independent chaperone, Spy. Spy rapidly associates with its substrate, Immunity protein 7 (Im7), eliminating its potential for aggregation. Remarkably, Spy then allows Im7 to fully fold into its native state while remaining bound to the surface of the chaperone. These results establish a potentially widespread mechanism whereby ATP-independent chaperones can assist in protein refolding. They also provide compelling evidence that substrate proteins can fold while continuously bound to a chaperone. PMID:26619265

  5. Kinematics and thermodynamics of a folding heteropolymer.

    PubMed Central

    Fukugita, M; Lancaster, D; Mitchard, M G

    1993-01-01

    In order to elucidate the folding dynamics of protein, we have carried out numerical simulations of a heteropolymer model of self-interacting random chains. We find that folding propensity depends strongly on sequence and that both folding and nonfolding sequences exist. Furthermore we show that folding is a two-step process: the transition from coil state to unique folded state takes place through a globule phase. In addition to the continuous coil-globule transition, there exists an abrupt transition that separates the unique folded state from the globule state and ensures the stability of the native state. PMID:8327518

  6. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  7. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts

    PubMed Central

    Karbiener, Michael; Darnhofer, Barbara; Frisch, Marie-Therese; Rinner, Beate; Birner-Gruenberger, Ruth; Gugatschka, Markus

    2017-01-01

    Injuries of the vocal folds frequently heal with scar formation, which can have lifelong detrimental impact on voice quality. Current treatments to prevent or resolve scars of the vocal fold mucosa are highly unsatisfactory. In contrast, the adjacent oral mucosa is mostly resistant to scarring. These differences in healing tendency might relate to distinct properties of the fibroblasts populating oral and vocal fold mucosae. We thus established the in vitro cultivation of paired, near-primary vocal fold fibroblasts (VFF) and oral mucosa fibroblasts (OMF) to perform a basic cellular characterization and comparative cellular proteomics. VFF were significantly larger than OMF, proliferated more slowly, and exhibited a sustained TGF-β1-induced elevation of pro-fibrotic interleukin 6. Cluster analysis of the proteomic data revealed distinct protein repertoires specific for VFF and OMF. Further, VFF displayed a broader protein spectrum, particularly a more sophisticated array of factors constituting and modifying the extracellular matrix. Conversely, subsets of OMF-enriched proteins were linked to cellular proliferation, nuclear events, and protection against oxidative stress. Altogether, this study supports the notion that fibroblasts sensitively adapt to the functional peculiarities of their respective anatomical location and presents several molecular targets for further investigation in the context of vocal fold wound healing. Biological significance Mammalian vocal folds are a unique but delicate tissue. A considerable fraction of people is affected by voice problems, yet many of the underlying vocal fold pathologies are sparsely understood at the molecular level. One such pathology is vocal fold scarring - the tendency of vocal fold injuries to heal with scar formation -, which represents a clinical problem with highly suboptimal treatment modalities. This study employed proteomics to obtain comprehensive insight into the protein repertoire of vocal fold

  8. Competition between protein folding and aggregation: A three-dimensional lattice-model simulation

    NASA Astrophysics Data System (ADS)

    Bratko, D.; Blanch, H. W.

    2001-01-01

    Aggregation of protein molecules resulting in the loss of biological activity and the formation of insoluble deposits represents a serious problem for the biotechnology and pharmaceutical industries and in medicine. Considerable experimental and theoretical efforts are being made in order to improve our understanding of, and ability to control, the process. In the present work, we describe a Monte Carlo study of a multichain system of coarse-grained model proteins akin to lattice models developed for simulations of protein folding. The model is designed to examine the competition between intramolecular interactions leading to the native protein structure, and intermolecular association, resulting in the formation of aggregates of misfolded chains. Interactions between the segments are described by a variation of the Go potential [N. Go and H. Abe, Biopolymers 20, 1013 (1981)] that extends the recognition between attracting types of segments to pairs on distinct chains. For the particular model we adopt, the global free energy minimum of a pair of protein molecules corresponds to a dimer of native proteins. When three or more molecules interact, clusters of misfolded chains can be more stable than aggregates of native folds. A considerable fraction of native structure, however, is preserved in these cases. Rates of conformational changes rapidly decrease with the size of the protein cluster. Within the timescale accessible to computer simulations, the folding-aggregation balance is strongly affected by kinetic considerations. Both the native form and aggregates can persist in metastable states, even if conditions such as temperature or concentration favor a transition to an alternative form. Refolding yield can be affected by the presence of an additional polymer species mimicking the function of a molecular chaperone.

  9. Hydrophobic and Ionic-Interactions in Bulk and Confined Water with Implications for Collapse and Folding of Proteins

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, S.; Chen, Jie; Thirumalai, D.

    2011-10-01

    Water and water-mediated interactions determine the thermodynamics and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano-sized water droplets. Solvation of hydrophobic and charged species change drastically in nano-scale water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. The interactions between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores.

  10. Infrared signature and folding dynamics of a helical beta-peptide.

    PubMed

    Montalvo, Geronda; Waegele, Matthias M; Shandler, Scott; Gai, Feng; DeGrado, William F

    2010-04-28

    Synthetic foldamers consisting of beta-amino acids offer excellent model systems for examining the effect of backbone flexibility on the dynamics of protein folding. Herein, we study the folding-unfolding kinetics of a beta-peptide that folds into a 14-helical structure in water. We find that the T-jump induced relaxation kinetics of this peptide occur on the nanosecond time scale and are noticeably slower than those of alanine-based alpha-helical peptides, and additionally, the relaxation rates show a weaker dependence on temperature. These differences appear to indicate that the folding energy landscapes of these peptides are different. In addition, we find that the amide I' band of this beta-peptide exhibits a sharp feature at approximately 1612 cm(-1), which we believe is a distinct infrared reporter of 14-helix.

  11. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  12. Using VIPT-Jump to Distinguish Between Different Folding Mechanisms: Application to BBL and a Trpzip

    PubMed Central

    Lin, Chun–Wei; Culik, Robert M.; Gai, Feng

    2013-01-01

    Protein folding involves a large number of sequential molecular steps or conformational substates. Thus, experimental characterization of the underlying folding energy landscape for any given protein is difficult. Herein, we present a new method that can be used to determine the major characteristics of the folding energy landscape in question, for example, to distinguish between activated and barrierless downhill folding scenarios. This method is based on the idea that the conformational relaxation kinetics of different folding mechanisms at a given final condition will show different dependences on the initial condition. We show, using both simulation and experiment, that it is possible to differentiate between disparate kinetic folding models by comparing temperature-jump (T-jump) relaxation traces obtained with a fixed final temperature and varied initial temperatures, which effectively varies the initial potential (VIP) of the system of interest. We apply this method (hereafter refer to as VIPT-jump) to two model systems, Trpzip-2c and BBL, and our results show that BBL exhibits characteristics of barrierless downhill folding, whereas Trpzip-2c folding encounters a free energy barrier. In addition, using the T-jump data of BBL we are able to provide, via Langevin Dynamics simulations, a realistic estimate of its conformational diffusion coefficient. PMID:23642153

  13. Swallowing performance in patients with vocal fold motion impairment.

    PubMed

    Wilson, J A; Pryde, A; White, A; Maher, L; Maran, A G

    1995-01-01

    Twenty-seven patients with vocal fold motion impairment underwent detailed pharyngoesophagel manometry with a strain gauge assembly linked to a computer recorder. Nine were known to have lesions of the central vagal trunk or nucleus, 9 had recurrent laryngeal nerve (RLN) palsy, and the remainder were idiopathic. The site of the lesion was a more important determinant of subjective swallowing performance than the position of the involved cord at laryngoscopy. Patients with central lesions had lower tonic and contraction upper esophageal sphincter (UES) pressures than 25 age-matched controls, suggesting that high cervical branches of the lower cranial nerves are important in UES excitatory innervation. RLN palsy patients showed significantly increased pharyngeal contraction amplitude and reduced pharyngoesophageal wave durations. The results suggest that the dysphagia associated with vocal fold motion impairment is not simply due to the disruption of laryngeal deglutitive kinetics, but to independent effects on pharyngeal function.

  14. Chemical Kinetics Laboratory Discussion Worksheet.

    PubMed

    Demoin, Dustin Wayne; Jurisson, Silvia S

    2013-09-10

    A laboratory discussion worksheet and its answer key provide instructors and students a discussion model to further the students' understanding of chemical kinetics. This discussion worksheet includes a section for students to augment their previous knowledge about chemical kinetics measurements, an initial check on students' understanding of basic concepts, a group participation model where students work on solving complex-conceptual problems, and a conclusion to help students connect this discussion to their laboratory or lecture class. Additionally, the worksheet has a detailed solution to a more advanced problem to help students understand how the concepts they have put together relate to problems they will encounter during later formal assessments.

  15. Chemical Kinetics Laboratory Discussion Worksheet

    PubMed Central

    Demoin, Dustin Wayne; Jurisson, Silvia S.

    2013-01-01

    A laboratory discussion worksheet and its answer key provide instructors and students a discussion model to further the students’ understanding of chemical kinetics. This discussion worksheet includes a section for students to augment their previous knowledge about chemical kinetics measurements, an initial check on students’ understanding of basic concepts, a group participation model where students work on solving complex-conceptual problems, and a conclusion to help students connect this discussion to their laboratory or lecture class. Additionally, the worksheet has a detailed solution to a more advanced problem to help students understand how the concepts they have put together relate to problems they will encounter during later formal assessments. PMID:24092948

  16. The U.S. Army (BRL’s) (Ballistic Research Laboratory) Kinetic Energy Penetrator Problem: Estimating the Probability of Response for a Given Stimulus

    DTIC Science & Technology

    1981-12-21

    Spearman - Karber estimator, the L-estimator, the M-estimator, and the Tukey Biweight es- timator, have also been obtained, all under the assumption...problem. Specifically, the BRL’s commonly used "Langley Method " [Rothman, Alexander, and Zimmerman (1965, pp. 55-58)] and the "Up and Down Method " [op...otherwise. Given the data (ni,Xi ) , i=.,...,K , j=l,...,n i , the param- eters i and a are estimated using the method of maximum likelihood, 32 .E

  17. Two-dimensional equations of the surface harmonics method for solving problems of spatial neutron kinetics in square-lattice reactors

    SciTech Connect

    Boyarinov, V. F. Kondrushin, A. E. Fomichenko, P. A.

    2014-12-15

    Two-dimensional time-dependent finite-difference equations of the surface harmonics method (SHM) for the description of the neutron transport are derived for square-lattice reactors. These equations are implemented in the SUHAM-TD code. Verification of the derived equations and the developed code are performed by the example of known test problems, and the potential and efficiency of the SHM as applied to the solution of the time-dependent neutron transport equation in the diffusion approximation in two-dimensional geometry are demonstrated. These results show the substantial advantage of SHM over direct finite-difference modeling in computational costs.

  18. The Present State and Problems of the Theory of the Kinetics of Electrode Reactions Accompanied by the Adsorption of Inactive Substances and Reagents

    NASA Astrophysics Data System (ADS)

    Krylov, V. S.; Damaskin, B. B.; Kir'yanov, V. A.

    1986-08-01

    Problems in the theoretical description of the influence of the adsorption of dissolved species on the rates of electrode processes have been discussed. Present-day theories of the mechanism of the interaction between adsorbed species and ionic reagents have been used to develop a general statistical-mechanical approach to the quantitative examination of the macrokinetics of heterogeneous transformations complicated by the adsorption of ionic or dipolar components of the solution, including the adsorption of the reagents themselves. The bibliography contains 84 references.

  19. Folding tools for flat conductor cable harnesses

    NASA Technical Reports Server (NTRS)

    Loggins, R.

    1971-01-01

    Vise grip pliers have detachable metal gripping plates which are changed to accommodate cables from 1 to 3 in. wide and to form any desired fold angle. A second tool squeezes cable along crease to complete the fold.

  20. Geometry of Miura-folded metamaterials

    PubMed Central

    Schenk, Mark; Guest, Simon D.

    2013-01-01

    This paper describes two folded metamaterials based on the Miura-ori fold pattern. The structural mechanics of these metamaterials are dominated by the kinematics of the folding, which only depends on the geometry and therefore is scale-independent. First, a folded shell structure is introduced, where the fold pattern provides a negative Poisson’s ratio for in-plane deformations and a positive Poisson’s ratio for out-of-plane bending. Second, a cellular metamaterial is described based on a stacking of individual folded layers, where the folding kinematics are compatible between layers. Additional freedom in the design of the metamaterial can be achieved by varying the fold pattern within each layer. PMID:23401549

  1. The parallel universe of RNA folding.

    PubMed

    Batey, R T; Doudna, J A

    1998-05-01

    How do large RNA molecules find their active conformations among a universe of possible structures? Two recent studies reveal that RNA folding is a rapid and ordered process, with surprising similarities to protein folding mechanisms.

  2. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    PubMed Central

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  3. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy.

    PubMed

    Borgia, Alessandro; Wensley, Beth G; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B; Hoffmann, Armin; Pfeil, Shawn H; Lipman, Everett A; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.

  4. Mapping fast protein folding with multiple-site fluorescent probes.

    PubMed

    Prigozhin, Maxim B; Chao, Shu-Han; Sukenik, Shahar; Pogorelov, Taras V; Gruebele, Martin

    2015-06-30

    Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test.

  5. Solitons and protein folding: An In Silico experiment

    SciTech Connect

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-28

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen’s dogma states that the native 3D shape of a protein is completely determined by protein’s amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix–loop–helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  6. Design of RNAs: comparing programs for inverse RNA folding.

    PubMed

    Churkin, Alexander; Retwitzer, Matan Drory; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny

    2017-01-03

    Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.

  7. Folding of Small Proteins Using Constrained Molecular Dynamics

    PubMed Central

    Balaraman, Gouthaman S.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2011-01-01

    The focus of this paper is to examine whether conformational search using constrained molecular dynamics (MD) method is more enhanced and enriched towards “native-like” structures compared to all-atom MD for the protein folding as a model problem. Constrained MD methods provide an alternate MD tool for protein structure prediction and structure refinement. It is computationally expensive to perform all-atom simulations of protein folding because the processes occur on a timescale of microseconds. Compared to the all-atom MD simulation, constrained MD methods have the advantage that stable dynamics can be achieved for larger time steps and the number of degrees of freedom is an order of magnitude smaller, leading to a decrease in computational cost. We have developed a generalized constrained MD method that allows the user to “freeze and thaw” torsional degrees of freedom as fit for the problem studied. We have used this method to perform all-torsion constrained MD in implicit solvent coupled with the replica exchange method to study folding of small proteins with various secondary structural motifs such as, α-helix (polyalanine, WALP16), β-turn (1E0Q), and a mixed motif protein (Trp-cage). We demonstrate that constrained MD replica exchange method exhibits a wider conformational search than all-atom MD with increased enrichment of near native structures. “Hierarchical” constrained MD simulations, where the partially formed helical regions in the initial stretch of the all-torsion folding simulation trajectory of Trp-cage were frozen, showed a better sampling of near native structures than all-torsion constrained MD simulations. This is in agreement with the zipping-and-assembly folding model put forth by Dill and coworkers for folding proteins. The use of hierarchical “freeze and thaw” clustering schemes in constrained MD simulation can be used to sample conformations that contribute significantly to folding of proteins. PMID:21591767

  8. Solitons and protein folding: An In Silico experiment

    NASA Astrophysics Data System (ADS)

    Ilieva, N.; Dai, J.; Sieradzan, A.; Niemi, A.

    2015-10-01

    Protein folding [1] is the process of formation of a functional 3D structure from a random coil — the shape in which amino-acid chains leave the ribosome. Anfinsen's dogma states that the native 3D shape of a protein is completely determined by protein's amino acid sequence. Despite the progress in understanding the process rate and the success in folding prediction for some small proteins, with presently available physics-based methods it is not yet possible to reliably deduce the shape of a biologically active protein from its amino acid sequence. The protein-folding problem endures as one of the most important unresolved problems in science; it addresses the origin of life itself. Furthermore, a wrong fold is a common cause for a protein to lose its function or even endanger the living organism. Soliton solutions of a generalized discrete non-linear Schrödinger equation (GDNLSE) obtained from the energy function in terms of bond and torsion angles κ and τ provide a constructive theoretical framework for describing protein folds and folding patterns [2]. Here we study the dynamics of this process by means of molecular-dynamics simulations. The soliton manifestation is the pattern helix-loop-helix in the secondary structure of the protein, which explains the importance of understanding loop formation in helical proteins. We performed in silico experiments for unfolding one subunit of the core structure of gp41 from the HIV envelope glycoprotein (PDB ID: 1AIK [3]) by molecular-dynamics simulations with the MD package GROMACS. We analyzed 80 ns trajectories, obtained with one united-atom and two different all-atom force fields, to justify the side-chain orientation quantification scheme adopted in the studies and to eliminate force-field based artifacts. Our results are compatible with the soliton model of protein folding and provide first insight into soliton-formation dynamics.

  9. Dynamics of Folds in the Plane

    ERIC Educational Resources Information Center

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  10. Dynamics of Folds in the Plane

    ERIC Educational Resources Information Center

    Krylov, Nikolai A.; Rogers, Edwin L.

    2011-01-01

    Take a strip of paper and fold a crease intersecting the long edges, creating two angles. Choose one edge and consider the angle with the crease. Fold the opposite edge along the crease, creating a new crease that bisects the angle. Fold again, this time using the newly created crease and the initial edge, creating a new angle along the chosen…

  11. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  12. Extracting Information from Folds in Rocks.

    ERIC Educational Resources Information Center

    Hudleston, Peter John

    1986-01-01

    Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)

  13. Energy landscape and multiroute folding of topologically complex proteins adenylate kinase and 2ouf-knot

    PubMed Central

    Li, Wenfei; Terakawa, Tsuyoshi; Wang, Wei; Takada, Shoji

    2012-01-01

    While fast folding of small proteins has been relatively well characterized by experiments and theories, much less is known for slow folding of larger proteins, for which recent experiments suggested quite complex and rich folding behaviors. Here, we address how the energy landscape theory can be applied to these slow folding reactions. Combining the perfect-funnel approximation with a multiscale method, we first extended our previous atomic-interaction based coarse grained (AICG) model to take into account local flexibility of protein molecules. Using this model, we then investigated the energy landscapes and folding routes of two proteins with complex topologies: a multidomain protein adenylate kinase (AKE) and a knotted protein 2ouf-knot. In the AKE folding, consistent with experimental results, the kinetic free energy surface showed several substates between the fully unfolded and native states. We characterized the structural features of these substates and transitions among them, finding temperature-dependent multiroute folding. For protein 2ouf-knot, we found that the improved atomic-interaction based coarse-grained model can spontaneously tie a knot and fold the protein with a probability up to 96%. The computed folding rate of the knotted protein was much slower than that of its unknotted counterpart, in agreement with experimental findings. Similar to the AKE case, the 2ouf-knot folding exhibited several substates and transitions among them. Interestingly, we found a dead-end substate that lacks the knot, thus suggesting backtracking mechanisms. PMID:22753508

  14. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  15. Large Folded, Deployable Structure Development

    NASA Astrophysics Data System (ADS)

    Glover, Amy; Kiley, Andrew

    2014-06-01

    This paper presents an overview of Airbus Defence and Space in-house development activity associated with the large foldable deployable structures and analytical process tools initiated in 2007.Industrially the concept of stored energy, self- motorising structures is 'typically' limited to deployable boom concepts with the application to larger secondary or even primary structures having very little heritage. The concept of being able to 'collapse' a structure to fit into the available launcher fairing volume has numerous advantages and applications. One key advantage is the ability to launch very large structures of typical spacecraft cross-sectionand 50m+ deployed length. Another advantage is reduction of body inertia thus promoting dynamic efficiency with possible mass saving.Recent tape spring material characterisation has focused on torque versus angle stiffness characterisation of composite laminates. This work has been extended further to characterise for CFRP Damage Evolution; visco-elastic effect as a function of folded storage duration and impact of stiffness degradation. Further research has been performed around life testing and latched position repeatability.

  16. Some physical approaches to protein folding

    NASA Astrophysics Data System (ADS)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    To understand how a protein folds is a problem which has important biological implications. In this article, we would like to present a physics-oriented point of view, which is twofold. First of all, we introduce simple statistical mechanics models which display, in the thermodynamic limit, folding and related transitions. These models can be divided into (i) crude spin glass-like models (with their Mattis analogs), where one may look for possible correlations between the chain self-interactions and the folded structure, (ii) glass-like models, where one emphasizes the geometrical competition between one- or two-dimensional local order (mimicking α helix or β sheet structures), and the requirement of global compactness. Both models are too simple to predict the spatial organization of a realistic protein, but are useful for the physicist and should have some feedback in other glassy systems (glasses, collapsed polymers .... ). These remarks lead us to the second physical approach, namely a new Monte-Carlo method, where one grows the protein atom-by-atom (or residue-by-residue), using a standard form (CHARMM .... ) for the total energy. A detailed comparison with other Monte-Carlo schemes, or Molecular Dynamics calculations, is then possible; we will sketch such a comparison for poly-alanines. Our twofold approach illustrates some of the difficulties one encounters in the protein folding problem, in particular those associated with the existence of a large number of metastable states. Le repliement des protéines est un problème qui a de nombreuses implications biologiques. Dans cet article, nous présentons, de deux façons différentes, un point de vue de physicien. Nous introduisons tout d'abord des modèles simples de mécanique statistique qui exhibent, à la limite thermodynamique, des transitions de repliement. Ces modèles peuvent être divisés en (i) verres de spin (éventuellement à la Mattis), où l'on peut chercher des corrélations entre les

  17. Numerical study of human vocal folds vibration using Immersed Finite Element Method

    NASA Astrophysics Data System (ADS)

    Wang, Xingshi; Zhang, Lucy; Krane, Michael

    2011-11-01

    The voice production procedure is a self-oscillating, fluid-structure interaction problem. In this study, the vocal folds vibration during phonation will be simulated by self-oscillated layered-structure vocal folds model, using Immersed Finite Element Method. With the numerical results, we will find out the vocal folds vibration pattern, and also show how the lung pressure, stiffness and geometry of vocal folds will affect the vocal folds vibration. With further analysis, we shall get better understanding of the dynamics of voice production. National Institute on Deafness and Other Communication Disorders.

  18. Deciphering the Structural Basis That Guides the Oxidative Folding of Leech-derived Tryptase Inhibitor*

    PubMed Central

    Pantoja-Uceda, David; Arolas, Joan L.; Aviles, Francesc X.; Santoro, Jorge; Ventura, Salvador; Sommerhoff, Christian P.

    2009-01-01

    Protein folding mechanisms have remained elusive mainly because of the transient nature of intermediates. Leech-derived tryptase inhibitor (LDTI) is a Kazal-type serine proteinase inhibitor that is emerging as an attractive model for folding studies. It comprises 46 amino acid residues with three disulfide bonds, with one located inside a small triple-stranded antiparallel β-sheet and with two involved in a cystine-stabilized α-helix, a motif that is widely distributed in bioactive peptides. Here, we analyzed the oxidative folding and reductive unfolding of LDTI by chromatographic and disulfide analyses of acid-trapped intermediates. It folds and unfolds, respectively, via sequential oxidation and reduction of the cysteine residues that give rise to a few 1- and 2-disulfide intermediates. Species containing two native disulfide bonds predominate during LDTI folding (IIa and IIc) and unfolding (IIa and IIb). Stop/go folding experiments demonstrate that only intermediate IIa is productive and oxidizes directly into the native form. The NMR structures of acid-trapped and further isolated IIa, IIb, and IIc reveal global folds similar to that of the native protein, including a native-like canonical inhibitory loop. Enzyme kinetics shows that both IIa and IIc are inhibitory-active, which may substantially reduce proteolysis of LDTI during its folding process. The results reported show that the kinetics of the folding reaction is modulated by the specific structural properties of the intermediates and together provide insights into the interdependence of conformational folding and the assembly of native disulfides during oxidative folding. PMID:19820233

  19. 3D fold growth in transpression

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2016-12-01

    Geological folds in transpression are inherently 3D structures; hence their growth and rotation behavior is studied using 3D numerical finite-element simulations. Upright single-layer buckle folds in Newtonian materials are considered, which grow from an initial point-like perturbation due to a combination of in-plane shortening and shearing (i.e., transpression). The resulting fold growth exhibits three components: (1) fold amplification (vertical), (2) fold elongation (parallel to fold axis), and (3) sequential fold growth (perpendicular to axial plane) of new anti- and synforms adjacent to the initial fold. Generally, the fold growth rates are smaller for shearing-dominated than for shortening-dominated transpression. In spite of the growth rate, the folding behavior is very similar for the different convergence angles. The two lateral directions always exhibit similar growth rates implying that the bulk fold structure occupies an increasing roughly circular area. Fold axes are always parallel to the major horizontal principal strain axis (λ→max, i.e., long axis of the horizontal finite strain ellipse), which is initially also parallel to the major horizontal instantaneous stretching axis (ISA→max). After initiation, the fold axes rotate together with λ→max. Sequential folds appearing later do not initiate parallel to ISA→max, but parallel to λ→max, i.e. parallel to the already existing folds, and also rotate with λ→max. Therefore, fold axes do not correspond to passive material lines and hinge migration takes place as a consequence. The fold axis orientation parallel to λ→max is independent of convergence angle and viscosity ratio. Therefore, a triangular relationship between convergence angle, amount of shortening, and fold axis orientation exists. If two of these values are known, the third can be determined. This relationship is applied to the Zagros fold-and-thrust-belt to estimate the degree of strain partitioning between the Simply

  20. Anatomy and Histology of an Epicanthal Fold.

    PubMed

    Park, Jae Woo; Hwang, Kun

    2016-06-01

    The aim of this study is to elucidate the precise anatomical and histological detail of the epicanthal fold.Thirty-two hemifaces of 16 Korean adult cadavers were used in this study (30 hemifaces with an epicanthal fold, 2 without an epicanthal fold). In 2 patients who had an epicanthoplasty, the epicanthal folds were sampled.In a dissection, the periorbital skin and subcutaneous tissues were removed and the epicanthal fold was observed in relation to each part of the orbicularis oculi muscle. Specimens including the epicanthal fold were embeddedin in paraffin, sectioned at 10 um, and stained with Hematoxylin-Eosin. The horizontal section in the level of the paplebral fissure was made and the prepared slides were observed under a light microscope.In the specimens without an epicanthal fold, no connection between the upper preseptal muscle and the lower preseptal muscle was found. In the specimens with an epicanthal fold, a connection of the upper preseptal muscle to the lower preseptal muscle was observed. It was present in all 15 hemifaces (100%). There was no connection between the pretarsal muscles. In a horizontal section, the epicanthal fold was composed of 3 compartments: an outer skin lining, a core structure, and an innerskin lining. The core structure was mainly composed of muscular fibers and fibrotic tissue and they were intermingled.Surgeons should be aware of the anatomical details of an epicanthal fold. In removing or reconstructing an epicanthal fold, the fibromuscular core band should also be removed or reconstructed.

  1. Controlled Folding of Single Crystal Graphene.

    PubMed

    Wang, Bin; Huang, Ming; Kim, Na Yeon; Cunning, Benjamin V; Huang, Yuan; Qu, Deshun; Chen, Xianjue; Jin, Sunghwan; Biswal, Mandakini; Zhang, Xu; Lee, Sun Hwa; Lim, Hyunseob; Yoo, Won Jong; Lee, Zonghoon; Ruoff, Rodney S

    2017-03-08

    Folded graphene in which two layers are stacked with a twist angle between them has been predicted to exhibit unique electronic, thermal, and magnetic properties. We report the folding of a single crystal monolayer graphene film grown on a Cu(111) substrate by using a tailored substrate having a hydrophobic region and a hydrophilic region. Controlled film delamination from the hydrophilic region was used to prepare macroscopic folded graphene with good uniformity on the millimeter scale. This process was used to create many folded sheets each with a defined twist angle between the two sheets. By identifying the original lattice orientation of the monolayer graphene on Cu foil, or establishing the relation between the fold angle and twist angle, this folding technique allows for the preparation of twisted bilayer graphene films with defined stacking orientations and may also be extended to create folded structures of other two-dimensional nanomaterials.

  2. Group I Ribozymes as a Paradigm for RNA Folding and Evolution

    NASA Astrophysics Data System (ADS)

    Woodson, Sarah A.; Chauhan, Seema

    Group I ribozymes are an ancient class of RNA catalysts that serve as a paradigm for the self-assembly of complex structures of non-coding RNA. The diversity of subtypes illustrates the modular character of RNA architecture and the potential for the evolution of new functions. The folding mechanisms of group I ribozymes illustrate the hierarchy of folding transitions and the importance of kinetic partitioning among competing folding pathways. Studies on group I splicing factors demonstrate how proteins facilitate the assembly of splicing complexes by stabilizing tertiary interactions between domains and by ATP-dependent cycles of RNA unfolding.

  3. Kinetic percolation

    NASA Astrophysics Data System (ADS)

    Heinson, W. R.; Chakrabarti, A.; Sorensen, C. M.

    2017-05-01

    We demonstrate that kinetic aggregation forms superaggregates that have structures identical to static percolation aggregates, and these superaggregates appear as a separate phase in the size distribution. Diffusion limited cluster-cluster aggregation (DLCA) simulations were performed to yield fractal aggregates with a fractal dimension of 1.8 and superaggregates with a fractal dimension of D = 2.5 composed of these DLCA supermonomers. When properly normalized to account for the DLCA fractal nature of their supermonomers, these superaggregates have the exact same monomer packing fraction, scaling law prefactor, and scaling law exponent (the fractal dimension) as percolation aggregates; these are necessary and sufficient conditions for same structure. The size distribution remains monomodal until these superaggregates form to alter the distribution. Thus the static percolation and the kinetic descriptions of gelation are now unified.

  4. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.

    PubMed

    Badasyan, Artem; Liu, Zhirong; Chan, Hue Sun

    2008-12-12

    Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric C(alpha) chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.

  5. Template-directed protein folding into a metastable state of increased activity.

    PubMed

    Flecker, P

    1995-09-01

    The principal objective of this work was to distinguish between kinetic and thermodynamic reaction control in protein folding. The deleterious effects of a specific mutation on spontaneous refolding competence were analyzed for this purpose. A Bowman-Birk-type proteinase inhibitor of trypsin and chymotrypsin was selected as a double-headed model protein to facilitate the detection of functional irregularities by the use of functional assays. The parent protein spontaneously folds into a single, fully active and thermodynamically stable state in a redox buffer after reduction/denaturation. By contrast, the properties of a P'1Ser-->Pro variant in the trypsin-reactive subdomain differ before and after refolding on trypsin-Sepharose. A heterogenous and thermodynamically dominant population of conformers was attained in solution. However, the enzyme-inhibitory activity of the variant was dramatically increased in the presence of trypsin-Sepharose and a stoichiometric ratio of the two subdomains was obtained as expected for a single conformation. The subsequent return for the initial mixture of conformers in solution reveals a high kinetic barrier late in the folding process. The template facilitates folding kinetically, as shown by a rate acceleration of more than four orders of magnitude. The final state was also the thermodynamically favoured one on the template, due to its increased affinity for the enzyme. The long-range effects on folding kinetics and the partial activity, and the absence of free sulfhydryl groups after refolding in solution indicate rearrangements between closely related conformers late in folding. The importance of minor structural distortions in immobilized trypsin suggests a close structural analogy between the final and the transition state of protein folding.

  6. Probing the folding intermediate of Bacillus subtilis RNase P protein by nuclear magnetic resonance.

    PubMed

    Chang, Yu-Chu; Franch, William R; Oas, Terrence G

    2010-11-09

    Protein folding intermediates are often imperative for overall folding processes and consequent biological functions. However, the low population and transient nature of the intermediate states often hinder their biochemical and biophysical characterization. Previous studies have demonstrated that Bacillus subtilis ribonuclease P protein (P protein) is conformationally heterogeneous and folds with multiphasic kinetics, indicating the presence of an equilibrium and kinetic intermediate in its folding mechanism. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to study the ensemble corresponding to this intermediate (I). The results indicate that the N-terminal and C-terminal helical regions are mostly unfolded in I. 1H−15N heteronuclear single-quantum coherence NMR spectra collected as a function of pH suggest that the protonation of His 22 may play a major role in the energetics of the equilibria among the unfolded, intermediate, and folded state ensembles of P protein. NMR paramagnetic relaxation enhancement experiments were also used to locate the small anion binding sites in both the intermediate and folded ensembles. The results for the folded protein are consistent with the previously modeled binding regions. These structural insights suggest a possible role for I in the RNase P holoenzyme assembly process.

  7. Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme.

    PubMed

    Xie, Zheng; Srividya, Narayanan; Sosnick, Tobin R; Pan, Tao; Scherer, Norbert F

    2004-01-13

    The equilibrium folding of the catalytic domain of Bacillus subtilis RNase P RNA is investigated by single-molecule fluorescence resonance energy transfer (FRET). Previous ensemble studies of this 255-nucleotide ribozyme described the equilibrium folding with two transitions, U-to-I(eq)-to-N, and focused on the I(eq)-to-N transition. The present study focuses on the U-to-I(eq) transition. Comparative ensemble measurements of the ribozyme construct labeled with fluorescein at the 5' end and Cy3 at the 3' end show that modifications required for labeling do not interfere with folding and help to define the Mg(2+) concentration range for the U-to-I(eq) transition. Histogram analysis of the Mg(2+)-dependent single-molecule FRET efficiency reveals two previously undetermined folding intermediates. The single-molecule FRET trajectories exhibit non-two-state and nonergodic behaviors at intermediate Mg(2+) concentrations on the time scale of seconds. The trajectories at intermediate Mg(2+) concentrations are classified into five classes based on three FRET levels and their dynamics of interconversion within the measured time range. This heterogeneity, together with the observation of "nonsudden jump" FRET transitions, indicates that the early folding steps of this ribozyme involve a series of intermediates with different degrees of kinetic isolation and that folding occurs under kinetic control and involves many "local" conformational switches. A free energy contour is constructed to illustrate the complex folding surface.

  8. Metal ion specificities for folding and cleavage activity in the Schistosoma hammerhead ribozyme

    PubMed Central

    Boots, Jennifer L.; Canny, Marella D.; Azimi, Ehsan; Pardi, Arthur

    2008-01-01

    The effects of various metal ions on cleavage activity and global folding have been studied in the extended Schistosoma hammerhead ribozyme. Fluorescence resonance energy transfer was used to probe global folding as a function of various monovalent and divalent metal ions in this ribozyme. The divalent metals ions Ca2+, Mg2+, Mn2+, and Sr2+ have a relatively small variation (less than sixfold) in their ability to globally fold the hammerhead ribozyme, which contrasts with the very large difference (>10,000-fold) in apparent rate constants for cleavage for these divalent metal ions in single-turnover kinetic experiments. There is still a very large range (>4600-fold) in the apparent rate constants for cleavage for these divalent metal ions measured in high salt (2 M NaCl) conditions where the ribozyme is globally folded. These results demonstrate that the identity of the divalent metal ion has little effect on global folding of the Schistosoma hammerhead ribozyme, whereas it has a very large effect on the cleavage kinetics. Mechanisms by which the identity of the divalent metal ion can have such a large effect on cleavage activity in the Schistosoma hammerhead ribozyme are discussed. PMID:18755844

  9. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    PubMed

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model.

  10. Interaction of SecB with intermediates along the folding pathway of maltose-binding protein.

    PubMed Central

    Diamond, D. L.; Strobel, S.; Chun, S. Y.; Randall, L. L.

    1995-01-01

    SecB, a molecular chaperone involved in protein export in Escherichia coli, displays the remarkable ability to selectively bind many different polypeptide ligands whose only common feature is that of being nonnative. The selectivity is explained in part by a kinetic partitioning between the folding of a polypeptide and its association with SecB. SecB has no affinity for native, stably folded polypeptides but interacts tightly with polypeptides that are nonnative. In order to better understand the nature of the binding, we have examined the interaction of SecB with intermediates along the folding pathway of maltose-binding protein. Taking advantage of forms of maltose-binding protein that are altered in their folding properties, we show that the first intermediate in folding, represented by the collapsed state, binds to SecB, and that the polypeptide remains active as a ligand until it crosses the final energy barrier to attain the native state. PMID:7549876

  11. Numerical Approximations of Flow Induced Vibrations of Vocal Folds

    NASA Astrophysics Data System (ADS)

    Sváček, P.; Horáček, J.

    2010-09-01

    The paper is interested in numerical modelling of incompressible channel flow interacting with elastic part of its walls simulating vocal fold oscillations. The flow in moving domain is described with the aid of the Arbitrary Lagrangian-Eulerian method, see e.g. [1], and governed by the 2D incompressible Navier-Stokes equations. The flow model is coupled with the structural motion modelled by an aeroelastic two degrees of freedom model of the oscillating vocal folds, cf. [2], [9]. The described fluid-structure interaction problem is discretized in time and space, see also [1]. The numerical results of a channel flow modelling the glottal region of the human vocal tract including the vibrating vocal folds are shown. The vibrations of the channel walls are either prescribed (1st case) or induced by the aerodynamical forces (2nd case).

  12. On Inductive and Coinductive Proofs via Unfold/Fold Transformations

    NASA Astrophysics Data System (ADS)

    Seki, Hirohisa

    We consider a new application condition of negative unfolding, which guarantees its safe use in unfold/fold transformation of stratified logic programs. The new condition of negative unfolding is a natural one, since it is considered as a special case of replacement rule. The correctness of our unfold/fold transformation system in the sense of the perfect model semantics is proved. We then consider the coinductive proof rules proposed by Jaffar et al. We show that our unfold/fold transformation system, when used together with Lloyd-Topor transformation, can prove a proof problem which is provable by the coinductive proof rules by Jaffar et al. To this end, we propose a new replacement rule, called sound replacement, which is not necessarily equivalence-preserving, but is essential to perform a reasoning step corresponding to coinduction.

  13. The Energy Computation Paradox and ab initio Protein Folding

    PubMed Central

    Faver, John C.; Benson, Mark L.; He, Xiao; Roberts, Benjamin P.; Wang, Bing; Marshall, Michael S.; Sherrill, C. David; Merz, Kenneth M.

    2011-01-01

    The routine prediction of three-dimensional protein structure from sequence remains a challenge in computational biochemistry. It has been intuited that calculated energies from physics-based scoring functions are able to distinguish native from nonnative folds based on previous performance with small proteins and that conformational sampling is the fundamental bottleneck to successful folding. We demonstrate that as protein size increases, errors in the computed energies become a significant problem. We show, by using error probability density functions, that physics-based scores contain significant systematic and random errors relative to accurate reference energies. These errors propagate throughout an entire protein and distort its energy landscape to such an extent that modern scoring functions should have little chance of success in finding the free energy minima of large proteins. Nonetheless, by understanding errors in physics-based score functions, they can be reduced in a post-hoc manner, improving accuracy in energy computation and fold discrimination. PMID:21541343

  14. Stress and strain evolution of folding rocks

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Bons, Paul; Gomez-Rivas, Enrique; Weikusat, Ilka

    2015-04-01

    One of the main objectives of structural geology is to unravel rock deformation histories. Fold shapes can be used to estimate the orientation and amount of strain associated with folding. However, much more information on rheology and kinematics can potentially be extracted from fold geometries (Llorens et al., 2013a). We can study the development of folds, quantify the relationships between the different parameters that determine their geometries and estimate their mechanical evolution. This approach allows us to better understand and predict not only rock but also ice deformation. One of the main parameters in fold development is the viscosity contrast between the folding layer and the matrix in which it is embedded (m), since it determines the initial fold wavelength and the amplification rate of the developing folds. Moreover, non-linear viscous rheology influences fold geometry too (Llorens et al., 2013b). We present a series of 2-dimensional simulations of folding of viscous single layers in pure and simple shear. We vary different parameters in order to compare and determine their influence on the resulting fold patterns and the associated mechanical response of the material. To perform these simulations we use the software platform ELLE (www.elle.ws) with the non-linear viscous finite element code BASIL. The results show that layers thicken at the beginning of deformation in all simulations, and visible folds start earlier or later depending on the viscosity contrast. When folds start to nucleate the layer maximum shear strain decreases, moving away from the theoretical trend for homogeneous strain (no folding). This allows the accurate determination of the onset of folding. Maximum deviatoric stresses are higher in power-law than in linear-viscosity materials, and it is initially double in pure shear than in simple shear conditions. Therefore, folding a competent layer requires less work in simple than in pure shear. The maximum deviatoric stress

  15. Viscoelastic properties of the false vocal fold

    NASA Astrophysics Data System (ADS)

    Chan, Roger W.

    2004-05-01

    The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.

  16. Asymmetric hindwing foldings in rove beetles

    PubMed Central

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-01-01

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right–left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use. PMID:25368178

  17. Asymmetric hindwing foldings in rove beetles.

    PubMed

    Saito, Kazuya; Yamamoto, Shuhei; Maruyama, Munetoshi; Okabe, Yoji

    2014-11-18

    Foldable wings of insects are the ultimate deployable structures and have attracted the interest of aerospace engineering scientists as well as entomologists. Rove beetles are known to fold their wings in the most sophisticated ways that have right-left asymmetric patterns. However, the specific folding process and the reason for this asymmetry remain unclear. This study reveals how these asymmetric patterns emerge as a result of the folding process of rove beetles. A high-speed camera was used to reveal the details of the wing-folding movement. The results show that these characteristic asymmetrical patterns emerge as a result of simultaneous folding of overlapped wings. The revealed folding mechanisms can achieve not only highly compact wing storage but also immediate deployment. In addition, the right and left crease patterns are interchangeable, and thus each wing internalizes two crease patterns and can be folded in two different ways. This two-way folding gives freedom of choice for the folding direction to a rove beetle. The use of asymmetric patterns and the capability of two-way folding are unique features not found in artificial structures. These features have great potential to extend the design possibilities for all deployable structures, from space structures to articles of daily use.

  18. Folding of synthetic homogeneous glycoproteins in the presence of a glycoprotein folding sensor enzyme.

    PubMed

    Dedola, Simone; Izumi, Masayuki; Makimura, Yutaka; Seko, Akira; Kanamori, Akiko; Sakono, Masafumi; Ito, Yukishige; Kajihara, Yasuhiro

    2014-03-10

    UDP-glucose:glycoprotein glucosyltransferase (UGGT) plays a key role in recognizing folded and misfolded glycoproteins in the glycoprotein quality control system of the endoplasmic reticulum. UGGT detects misfolded glycoproteins and re-glucosylates them as a tag for misfolded glycoproteins. A flexible model to reproduce in vitro folding of a glycoprotein in the presence of UGGT in a mixture containing correctly folded, folding intermediates, and misfolded glycoproteins is described. The data demonstrates that UGGT can re-glucosylate all intermediates in the in vitro folding experiments, thus indicating that UGGT inspects not only final folded products, but also the glycoprotein folding intermediates.

  19. Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump.

    PubMed

    Dimitriadis, George; Drysdale, Adam; Myers, Jeffrey K; Arora, Pooja; Radford, Sheena E; Oas, Terence G; Smith, D Alastair

    2004-03-16

    The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acquired that provide excellent signal-to-noise ratio over a wide range of experimental conditions. By measuring the temperature and denaturant dependence of equilibrium and kinetic data for F13W*, we show that thermodynamic modeling of multidimensional equilibrium and kinetic surfaces is a robust method that allows reliable extrapolation of rate constants to regions of the folding landscape not directly accessible experimentally. The results reveal that F13W* is the fastest-folding protein of its size studied to date, with a maximum folding rate constant at 0 M guanidinium chloride and 45 degrees C of 249,000 s(-1). Assuming the single-exponential kinetics represent barrier-limited folding, these data limit the value for the preexponential factor for folding of this protein to at least approximately 2 x 10(6) s(-1).

  20. Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump

    PubMed Central

    Dimitriadis, George; Drysdale, Adam; Myers, Jeffrey K.; Arora, Pooja; Radford, Sheena E.; Oas, Terence G.; Smith, D. Alastair

    2004-01-01

    The small size (58 residues) and simple structure of the B domain of staphylococcal protein A (BdpA) have led to this domain being a paradigm for theoretical studies of folding. Experimental studies of the folding of BdpA have been limited by the rapidity of its folding kinetics. We report the folding kinetics of a fluorescent mutant of BdpA (G29A F13W), named F13W*, using nanosecond laser-induced temperature jump experiments. Automation of the apparatus has permitted large data sets to be acquired that provide excellent signal-to-noise ratio over a wide range of experimental conditions. By measuring the temperature and denaturant dependence of equilibrium and kinetic data for F13W*, we show that thermodynamic modeling of multidimensional equilibrium and kinetic surfaces is a robust method that allows reliable extrapolation of rate constants to regions of the folding landscape not directly accessible experimentally. The results reveal that F13W* is the fastest-folding protein of its size studied to date, with a maximum folding rate constant at 0 M guanidinium chloride and 45°C of 249,000 s-1. Assuming the single-exponential kinetics represent barrier-limited folding, these data limit the value for the preexponential factor for folding of this protein to at least ≈2 × 106 s-1. PMID:15007169

  1. Computational evidence that fast translation speed can increase the probability of cotranslational protein folding.

    PubMed

    Wang, Ercheng; Wang, Jun; Chen, Changjun; Xiao, Yi

    2015-10-21

    Translation speed can affect the cotranslational folding of nascent peptide. Experimental observations have indicated that slowing down translation rates of codons can increase the probability of protein cotranslational folding. Recently, a kinetic modeling indicates that fast translation can also increase the probability of cotranslational protein folding by avoiding misfolded intermediates. We show that the villin headpiece subdomain HP35 is an ideal model to demonstrate this phenomenon. We studied cotranslational folding of HP35 with different fast translation speeds by all-atom molecular dynamics simulations and found that HP35 can fold along a well-defined pathway that passes the on-pathway intermediate but avoids the misfolded off-pathway intermediate in certain case. This greatly increases the probability of HP35 cotranslational folding and the approximate mean first passage time of folding into native state is about 1.67μs. Since we also considered the space-confined effect of the ribosomal exit tunnel on the cotranslational folding, our simulation results suggested alternative mechanism for the increasing of cotranslational folding probability by fast