Science.gov

Sample records for foliar por tallo

  1. Remote sensing of foliar chemistry

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.

    1989-01-01

    Remotely sensed data are being used to estimate foliar chemical content. This paper reviews how stepwise multiple regression and deconvolution have been used to extract chemical information from foliar spectra, and concludes that both methods are useful, but neither is ideal. It is recommended that the focus of research be modeling in the long term and experimentation in the short term. Long-term research should increase our understanding of the interaction between radiation and foliar chemistry so that the focus of research can move from leaf model to canopy model to field experiment. Short-term research should aim to design experiments in which remotely sensed data are used to generate unambiguous and accurate estimates of foliar chemical content.

  2. Probability of foliar injury for Acer sp. based on foliar fluoride concentrations.

    PubMed

    McDonough, Andrew M; Dixon, Murray J; Terry, Debbie T; Todd, Aaron K; Luciani, Michael A; Williamson, Michele L; Roszak, Danuta S; Farias, Kim A

    2016-12-01

    Fluoride is considered one of the most phytotoxic elements to plants, and indicative fluoride injury has been associated over a wide range of foliar fluoride concentrations. The aim of this study was to determine the probability of indicative foliar fluoride injury based on Acer sp. foliar fluoride concentrations using a logistic regression model. Foliage from Acer nedundo, Acer saccharinum, Acer saccharum and Acer platanoides was collected along a distance gradient from three separate brick manufacturing facilities in southern Ontario as part of a long-term monitoring programme between 1995 and 2014. Hydrogen fluoride is the major emission source associated with the manufacturing facilities resulting with highly elevated foliar fluoride close to the facilities and decreasing with distance. Consistent with other studies, indicative fluoride injury was observed over a wide range of foliar concentrations (9.9-480.0 μg F(-) g(-1)). The logistic regression model was statistically significant for the Acer sp. group, A. negundo and A. saccharinum; consequently, A. negundo being the most sensitive species among the group. In addition, A. saccharum and A. platanoides were not statistically significant within the model. We are unaware of published foliar fluoride values for Acer sp. within Canada, and this research provides policy maker and scientist with probabilities of indicative foliar injury for common urban Acer sp. trees that can help guide decisions about emissions controls. Further research should focus on mechanisms driving indicative fluoride injury over wide ranging foliar fluoride concentrations and help determine foliar fluoride thresholds for damage.

  3. [Organic and element carbon in foliar smoke].

    PubMed

    Chen, Hui-yu; Liu Gang; Xu, Hui; Li, Jiu-hai; Wu, Dan

    2015-03-01

    A home-made combustion and sampling apparatus was used to burn green leaves under flaming and smoldering conditions and to collect the smoke generated. The smoke was measured with Organic/Elemental Carbon (OC/EC) Analyzer using IMPROVE thermal-optical reflectance (TOR) method, to investigate the mass fractions and the distribution of OC, EC and eight carbon fractions in foliar smoke. The results showed that in smoldering condition, the mean OC, EC mass fractions of ten foliar smokes were 48.9% and 4.5%, respectively. The mean mass fraction of char-EC (EC1 - POC) was 4.4%. The average emission factors (EF) of particulate matters, OC and EC in smoldering foliar smoke were 102.4 g x kg(-1), 50.0 g x kg(-1) and 4.7 g x kg(-1), respectively. The mean ratios of OC/EC, OC1/OC2 and char-EC/soot-EC (EC1 - POC/EC2 + EC3) in this condition were 11.5, 1.9 and 48.1, respectively. For the foliar smoke emitted in flaming condition, the mean mass fractions of OC, EC and char-EC were 44.9%, 10.9% and 10.7%, respectively. The average EF of PM, OC and EC in flaming smoke were 59.2 g x kg(-1), 26.6 g x kg(-1) and 6.0 g x kg(-1). And the three ratios mentioned above in this condition were 4.8, 1.1 and 133.0, respectively. In conclusion, foliar smoke had higher OC1 mass fractions and OC1/OC2 values in smoldering condition. While flaming foliar smoke had higher char-EC mass fractions and char-EC/soot-EC values. The compositions of OC, EC in foliar smoke varied between different tree species and different combustion conditions. The composition was also obviously different from those of other biomass smoke.

  4. Hyperspectral Remote Sensing of Foliar Nitrogen Content

    NASA Technical Reports Server (NTRS)

    Knyazikhin, Yuri; Schull, Mitchell A.; Stenberg, Pauline; Moettus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Carmona, Pedro Latorre; Kaufmann, Robert K.; Lewis, Philip; Disney, Mathias I.; Vanderbilt, Vern; Davis, Anthony B.; Baret, Frederic; Jacquemoud, Stephane; Lyapustin, Alexei; Myneni, Ranga B.

    2013-01-01

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact - it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  5. Hyperspectral remote sensing of foliar nitrogen content.

    PubMed

    Knyazikhin, Yuri; Schull, Mitchell A; Stenberg, Pauline; Mõttus, Matti; Rautiainen, Miina; Yang, Yan; Marshak, Alexander; Latorre Carmona, Pedro; Kaufmann, Robert K; Lewis, Philip; Disney, Mathias I; Vanderbilt, Vern; Davis, Anthony B; Baret, Frédéric; Jacquemoud, Stéphane; Lyapustin, Alexei; Myneni, Ranga B

    2013-01-15

    A strong positive correlation between vegetation canopy bidirectional reflectance factor (BRF) in the near infrared (NIR) spectral region and foliar mass-based nitrogen concentration (%N) has been reported in some temperate and boreal forests. This relationship, if true, would indicate an additional role for nitrogen in the climate system via its influence on surface albedo and may offer a simple approach for monitoring foliar nitrogen using satellite data. We report, however, that the previously reported correlation is an artifact--it is a consequence of variations in canopy structure, rather than of %N. The data underlying this relationship were collected at sites with varying proportions of foliar nitrogen-poor needleleaf and nitrogen-rich broadleaf species, whose canopy structure differs considerably. When the BRF data are corrected for canopy-structure effects, the residual reflectance variations are negatively related to %N at all wavelengths in the interval 423-855 nm. This suggests that the observed positive correlation between BRF and %N conveys no information about %N. We find that to infer leaf biochemical constituents, e.g., N content, from remotely sensed data, BRF spectra in the interval 710-790 nm provide critical information for correction of structural influences. Our analysis also suggests that surface characteristics of leaves impact remote sensing of its internal constituents. This further decreases the ability to remotely sense canopy foliar nitrogen. Finally, the analysis presented here is generic to the problem of remote sensing of leaf-tissue constituents and is therefore not a specific critique of articles espousing remote sensing of foliar %N.

  6. PARTITIONING THE RELATIVE INFLUENCE OF SOIL N, MYCORRHIZAE, AND FOLIAR N UPTAKE ON FOLIAR δ15N PATTERNS: CAN WE DETECT FOLIAR UPTAKE OF REACTIVE N?

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Sparks, J. P.

    2009-12-01

    Vegetation is an important sink for atmospheric reactive N in N-limited systems and may be capable of incorporating reactive N compounds directly into leaves through the foliar uptake pathway. A proxy for atmospheric reactive N entering vegetation would be useful to estimate the impact of direct foliar N uptake on plant metabolism. Natural abundance foliar N isotopic composition (δ15N) is a practical tool for this purpose because plant-available N sources often have different isotopic compositions. Current understanding of foliar δ15N suggests these values primarily represent the integration of soil δ15N, direct foliar N uptake, mycorrhizal fractionation, and within-plant fractionations. Using a potted plant mesocosm system, we estimated the influence of mycorrhizae on foliar δ15N patterns in red maple (Acer rubrum) seedlings along an N deposition gradient in New York State. We found that mycorrhizal associations altered foliar δ15N in red maple seedlings from 0.03 - 1.01‰ across sites. Along the same temporal and spatial scales, we examined the influence of soil δ15N, foliar N uptake, and mycorrhizae on foliar δ15N in adult stands of American beech (Fagus grandifolia), black birch (Betula lenta), red maple (A. rubrum), and red oak (Quercus rubra). Using multiple regression models, atmospheric NO2 concentration explained 0%, 69%, 23%, and 45% of the residual variation in foliar δ15N remaining in American beech, red maple, red oak, and black birch, respectively, after accounting for soil δ15N. Our results suggest that foliar δ15N may be used to estimate pollution-derived atmospheric reactive N entering vegetation via the foliar N uptake pathway.

  7. Foliar δ15N is affected by foliar nitrogen uptake, soil nitrogen, and mycorrhizae along a nitrogen deposition gradient.

    PubMed

    Vallano, Dena M; Sparks, Jed P

    2013-05-01

    Foliar nitrogen isotope (δ(15)N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ(15)N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ(15)N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ(15)N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ(15)N, and mycorrhizae on foliar δ(15)N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ(15)N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ(15)N. There was no correlation between foliar δ(13)C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ(15)N in several dominant species occurring in temperate forest ecosystems.

  8. Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass in green canopies using a spectral index, the Normalized Dry Matter Index (NDMI)...

  9. Foliar nutrient retranslocation in Eucalyptus globulus.

    PubMed

    Saur, E; Nambiar, E K; Fife, D N

    2000-10-01

    We measured patterns of change in concentrations and contents of nitrogen, phosphorus, potassium, magnesium and calcium in fully expanded leaves of young Eucalyptus globulus (Labill.) trees growing in a plantation in southeastern Australia, over a 12-month period beginning at the onset of spring. There was significant net retranslocation of mobile nutrients on a seasonal basis from green leaves, coinciding with continued growth and production of foliage. There was a close positive relationship between initial nutrient content (N, P and K) of the leaf and amount retranslocated, and a tight coupling between N and P retranslocated from leaves. Net retranslocation was significantly correlated with basal area growth increments. Artificial shading of leaves resulted in senescence and reduction in leaf mass. It also induced retranslocation of N, P and K from leaves of different ages and from different position in the canopy. Although the mechanisms underlying the effects of shading intensity on these changes were not elucidated, shading provided an experimental tool for studying retranslocation. Comparison of the results with published data for Pinus radiata (D. Don) grown in the same environment indicated a similarity between the species in patterns of change in foliar nutrient contents and in factors governing foliar nutrient retranslocation, giving rise to unifying principles.

  10. On the Remote Sensing of Foliar Nitrogen in Plants

    NASA Astrophysics Data System (ADS)

    Ollinger, S. V.; Lepine, L. C.; Martin, M.; Wicklein, H. F.; Sullivan, F. B.

    2012-12-01

    The concentration of nitrogen (N) in foliage is central to numerous biogeochemical processes and can serve as an indicator of carbon assimilation, species composition and linkages between terrestrial and aquatic ecosystems. Efforts to detect foliar N via remote sensing began decades ago and have been continually improved using a variety of methods and sensors. Despite this, the use of foliar N in regional- to global-scale analyses has lagged, in part because we lack instruments that provide applicable data at broad scales and because there is still no consensus on the spectral properties needed and the mechanisms that underlie foliar N detection. Here, we review the history of foliar N detection--from early laboratory based approaches to proposed methods using planned future sensors--and discuss recent findings that relate foliar N to broadband spectral features as well as high spectral resolution data. We also discuss recently revealed relations among foliar N and total shortwave albedo and address criticisms that have been directed at the use of remote sensing for foliar N detection. Our analysis is based on a combination of models and data collected over a wide range of North American research sites. Findings are presented in relation to both current and planned future sensors.

  11. Molecular mechanisms of foliar water uptake in a desert tree

    PubMed Central

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  12. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake.

    PubMed

    Shahid, Muhammad; Dumat, Camille; Khalid, Sana; Schreck, Eva; Xiong, Tiantian; Niazi, Nabeel Khan

    2017-03-05

    Anthropologic activities have transformed global biogeochemical cycling of heavy metals by emitting considerable quantities of these metals into the atmosphere from diverse sources. In spite of substantial and progressive developments in industrial processes and techniques to reduce environmental emissions, atmospheric contamination by toxic heavy metals and associated ecological and health risks are still newsworthy. Atmospheric heavy metals may be absorbed via foliar organs of plants after wet or dry deposition of atmospheric fallouts on plant canopy. Unlike root metal transfer, which has been largely studied, little is known about heavy metal uptake by plant leaves from the atmosphere. To the best of our understanding, significant research gaps exist regarding foliar heavy metal uptake. This is the first review regarding biogeochemical behaviour of heavy metals in atmosphere-plant system. The review summarizes the mechanisms involved in foliar heavy metal uptake, transfer, compartmentation, toxicity and in plant detoxification. We have described the biological and environmental factors that affect foliar uptake of heavy metals and compared the biogeochemical behaviour (uptake, translocation, compartmentation, toxicity and detoxification) of heavy metals for root and foliar uptake. The possible health risks associated with the consumption of heavy metal-laced food are also discussed.

  13. Foliar retention and leachability of submicron plutonium and americium particles

    SciTech Connect

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1981-01-01

    Submicron particles of Pu and Am were aerosolized, deposited onto foliage of bush bean (Phaseolus vulgaris L.), and their subsequent retention and behavior determined. Particles having mass median diameters of <1 ..mu..m are not readily dislodged from leaf surfaces at wind speeds of approx. 400 m min/sup -1/. Under conditions of simulated rainfall, weathering half-times range from 164 to 1000 days, and are dependent on both particle size and initial solubility. The residence time of contaminants on foliar surfaces prior to leaching influences subsequent foliar retention and leachate characteristics. Foliar retention of particles ranges from 20 to 92% and is dependent on particle size of Pu- and Am-oxides, chemical form of Pu, and environmental conditions such as humidity, simulated rainfall, and acidity of the simulated rain.

  14. Foliar ozone injury and gas exchange among black cherry genotypes

    SciTech Connect

    Kouterick, K.B.; Skelly, J.M.; Fredericksen, T.S.; Kolb, T.E.; Savage, J.E.; Snyder, K.R. )

    1994-06-01

    The effect of differing ozone exposures on seedlings of black cherry genotypes was investigated in northcentral Pennsylvania. Ozone exclusion treatments were administrated to half-sib families R12 and MO-7, and wild-type (WT) grown in open-top chambers. Over the 1993 growing season, left gas exchange and stem volume were related to percentage of foliar ozone injury observed as adaxial stipple. Ozone symptoms decreased significantly with increasing ozone filtration. R12 exhibited the most severe foliar injury, while WT seedlings showed slightly less symptoms. MO-7 had the least amount of foliar injury. No clear trends in stomatal conductance or net photosynthesis were observed until August. During August, foliar injury was positively related to stomatal conductance. Stomatal conductance values were greatest in R12, followed by WT and MO-7. Photosynthesis followed the same pattern at stomatal conductance. Dark respiration rates were variable across treatments for the entire growing season. Differing ozone exposures did not affect stem volume, but stem volume of seedlings of all families in the open plot were significantly lower than seedlings within chambers. Overall, R12 had higher stem volume than MO-7 and WT seedlings.

  15. Foliar biofilms of Burkholderia pyrrocinia FP62 on geraniums

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation on foliar surfaces is commonly associated with plants in water-saturated environments (e.g. tropics or modified environments). On most leaf surfaces bacteria are thought to reside in aggregates with limited production of an exopolysaccharide (EPS) matrix. However, the biocontrol ag...

  16. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients

    PubMed Central

    Fernández, Victoria; Brown, Patrick H.

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers. PMID:23914198

  17. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients.

    PubMed

    Fernández, Victoria; Brown, Patrick H

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers.

  18. [Influence of foliar dust on crop reflectance spectrum and nitrogen monitoring].

    PubMed

    Wang, Tao; Liu, Yang; Wu, Hai-Yun; Zuo, Yue-Ming

    2012-07-01

    More researches were carried out to investigate the application of spectral technology on crop nutrition diagnosis. However, the complex conditions in the field results in the uncertainty of spectrum. In this paper, the influence of foliar dust on spectral of the crop beside the nation road was studied, the differences of the raw spectral reflectance and first derivative spectral reflectance between the foliar with dust and the foliar washed with deionised water were analyzed, nitrogen prediction models were built on the disturbance of foliar dust. Result showed that the dust foliar spectral reflectance increased in the visible light (350-720 nm) and shortwave infrared (SWIR) (1 360-2 500 nm) regions whereas the spectral reflectance in the near infrared (NIR) (720-1 360 nm) wavelength regions decreased. There were no change rules for blue edge position, yellow edge position, red edge position, blue edge slope and yellow edge slope on the effect of foliar dust, but red edge slope, blue edge area, yellow edge area, red edge area decreased. Determinate coefficient (R2) of nitrogen prediction models reduced in the condition of foliar dust. The primary research work about the condition of foliar dust was studied which helps to provide foundation for evaluating effect of foliar dust and proposing foliar dust modification model in the future.

  19. Effects of foliar applied nickel on tomato plants. [Lycopersicon esculentum

    SciTech Connect

    Cash, R.C.; Leone, I.A.

    1987-01-01

    Shoot-applied nickel (Ni) treatments produced symptomatology, foliar Ni accumulation, and cytological changes in tomato (Lycopersicon esculentum Mill.) similar to those caused by treatments with root-applied nickel (Ni). Leaf damage resulting from 100 ..mu..g/ml foliar Ni-treatments consisted of interveinal chlorosis and spotting necrosis which appeared histologically as tissue collapse, cell clumping, and chloroplast disintegration. Shoot-treated plants accumulated more Ni in leaves than in roots; whereas the reverse was true in root-treated plants. Interference with root-to-shoot manganese translocation was attributed to attenuated vascular tissue and phloem blockage. Evidence of reduced nutrient transport and inhibited meristem activity due to Ni toxicity presents a potential for crop damage from excessive Ni in the atmosphere as well as in the soil environment.

  20. Methods in plant foliar volatile organic compounds research1

    PubMed Central

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-01-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant–plant and plant–insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies. PMID:26697273

  1. Foliar uptake of fog in coastal California shrub species.

    PubMed

    Emery, Nathan C

    2016-11-01

    Understanding plant water uptake is important in ecosystems that experience periodic drought. In many Mediterranean-type climates like coastal California, plants are subject to significant drought and wildfire disturbance. During the dry summer months, coastal shrub species are often exposed to leaf wetting from overnight fog events. This study sought to determine whether foliar uptake of fog occurs in shrub species and how this uptake affects physiology and fuel condition. In a controlled greenhouse experiment, dominant California shrub species were exposed to isotopically labeled fog water and plant responses were measured. Potted plants were covered at the base to prevent root uptake. The deuterium label was detected in the leaves of four out of five species and in the stems of two of the species. While there was a minimal effect of foliar water uptake on live fuel moisture, several species had lower xylem tension and greater photosynthetic rates after overnight fog treatments, especially Salvia leucophylla. Coastal fog may provide a moisture source for many species during the summer drought, but the utilization of this water source may vary based on foliar morphology, phenology and plant water balance. From this study, it appears that drought-deciduous species (Artemisia californica and Salvia leucophylla) benefit more from overnight fog events than evergreen species (Adenostoma fasciculatum, Baccharis pilularis and Ceanothus megacarpus). This differential response to fog exposure among California shrub species may affect species distributions and physiological tolerances under future climate scenarios.

  2. Methods in plant foliar volatile organic compounds research.

    PubMed

    Materić, Dušan; Bruhn, Dan; Turner, Claire; Morgan, Geraint; Mason, Nigel; Gauci, Vincent

    2015-12-01

    Plants are a major atmospheric source of volatile organic compounds (VOCs). These secondary metabolic products protect plants from high-temperature stress, mediate in plant-plant and plant-insect communication, and affect our climate globally. The main challenges in plant foliar VOC research are accurate sampling, the inherent reactivity of some VOC compounds that makes them hard to detect directly, and their low concentrations. Plant VOC research relies on analytical techniques for trace gas analysis, usually based on gas chromatography and soft chemical ionization mass spectrometry. Until now, these techniques (especially the latter one) have been developed and used primarily by physicists and analytical scientists, who have used them in a wide range of scientific research areas (e.g., aroma, disease biomarkers, hazardous compound detection, atmospheric chemistry). The interdisciplinary nature of plant foliar VOC research has recently attracted the attention of biologists, bringing them into the field of applied environmental analytical sciences. In this paper, we review the sampling methods and available analytical techniques used in plant foliar VOC research to provide a comprehensive resource that will allow biologists moving into the field to choose the most appropriate approach for their studies.

  3. No globally consistent effect of ectomycorrhizal status on foliar traits.

    PubMed

    Koele, Nina; Dickie, Ian A; Oleksyn, Jacek; Richardson, Sarah J; Reich, Peter B

    2012-11-01

    The concept that ectomycorrhizal plants have a particular foliar trait suite characterized by low foliar nutrients and high leaf mass per unit area (LMA) is widely accepted, but whether this trait suite can be generalized to all ectomycorrhizal clades is unclear. We identified 19 evolutionary clades of ectomycorrhizal plants and used a global leaf traits dataset comprising 11,466 samples across c. 3000 species to test whether there were consistent shifts in leaf nutrients or LMA with the evolution of ectomycorrhiza. There were no consistent effects of ectomycorrhizal status on foliar nutrients or LMA in the 17 ectomycorrhizal/non-ectomycorrhizal pairs for which we had sufficient data, with some ectomycorrhizal groups having higher and other groups lower nutrient status than non-ectomycorrhizal contrasts. Controlling for the woodiness of host species did not alter the results. Our findings suggest that the concepts of ectomycorrhizal plant trait suites should be re-examined to ensure that they are broadly reflective of mycorrhizal status across all evolutionary clades, rather than reflecting the traits of a few commonly studied groups, such as the Pinaceae and Fagales.

  4. Foliar and ecosystem respiration in an old-growth tropical rain forest.

    PubMed

    Cavaleri, Molly A; Oberbauer, Steven F; Ryan, Michael G

    2008-04-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 +/- 0.2 micromol CO2 m(-2) s(-1), and ecosystem respiration was 9.4 +/- 0.5 micromol CO2 m(-2) s(-1)[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.

  5. Are correlations among foliar traits in ferns consistent with those in the seed plants?

    PubMed

    Karst, Amanda L; Lechowicz, Martin J

    2007-01-01

    Broad-based studies of gymnosperms and angiosperms reveal consistent and functionally significant correlations among foliar traits such as leaf mass per area (LMA), maximum photosynthetic rate (A(area)), foliar nitrogen (N(area)), foliar chlorophyll (Chl) and leaf longevity. To assess the generality of these relationships, we studied 20 fern species growing in the understorey of a temperate deciduous forest. We found that foliar N(area) increases with LMA, and that foliar N(area) and A(area) are positively correlated with one another, as are foliar N(area) and Chl. The ferns in general have very low LMA compared with most seed plants; A(area), N(area) and Chl are below median values for seed plants but are not extreme. Species with overwintering fronds have significantly higher LMA than species with fronds that senesce at the end of the growing season, as well as a significantly higher C : N ratio in frond tissue and relatively high foliar N on an areal basis. Correlations among foliar traits associated with gas exchange in these forest understorey ferns are in accordance with patterns reported for seed plants, suggesting a high degree of functional constraint on the interrelationships among key elements in foliar design.

  6. Natural foliar variegation without costs? The case of Begonia

    PubMed Central

    Sheue, Chiou-Rong; Pao, Shang-Horng; Chien, Lee-Feng; Chesson, Peter; Peng, Ching-I

    2012-01-01

    Background and Aims Foliar variegation is recognized as arising from two major mechanisms: leaf structure and pigment-related variegation. Begonia has species with a variety of natural foliar variegation patterns, providing diverse examples of this phenomenon. The aims of this work are to elucidate the mechanisms underlying different foliar variegation patterns in Begonia and to determine their physiological consequences. Methods Six species and one cultivar of Begonia were investigated. Light and electron microscopy revealed the leaf structure and ultrastructure of chloroplasts in green and light areas of variegated leaves. Maximum quantum yields of photosystem II were measured by chlorophyll fluorescence. Comparison with a cultivar of Ficus revealed key features distinguishing variegation mechanisms. Key Results Intercellular space above the chlorenchyma is the mechanism of variegation in these Begonia. This intercellular space can be located (a) below the adaxial epidermis or (b) below the adaxial water storage tissue (the first report for any taxa), creating light areas on a leaf. In addition, chlorenchyma cell shape and chloroplast distribution within chlorenchyma cells differ between light and green areas. Chloroplasts from both areas showed dense stacking of grana and stroma thylakoid membranes. The maximum quantum yield did not differ significantly between these areas, suggesting minimal loss of function with variegation. However, the absence of chloroplasts in light areas of leaves in the Ficus cultivar led to an extremely low quantum yield. Conclusions Variegation in these Begonia is structural, where light areas are created by internal reflection between air spaces and cells in a leaf. Two forms of air space structural variegation occur, distinguished by the location of the air spaces. Both forms may have a common origin in development where dermal tissue becomes loosely connected to mesophyll. Photosynthetic functioning is retained in light areas, and

  7. Wood and foliar respiration of tropical wet forest environment

    NASA Astrophysics Data System (ADS)

    Asao, S.; Bedoya Arrieta, R.; Ryan, M. G.

    2011-12-01

    Wood and foliar respiration from tropical forests constitute major components of ecosystem respiration that may control their productivity and carbon storage. However, few estimates on tropical forests vary greatly. Furthermore, the trees in these forests respire great amounts of carbon, but impacts of individual tree species on respiration is not well known. We examined wood and foliar respiration in this environment in relation to individual tree species. The objectives of this study were to: 1) identify how respiration rates relate to scaling variables for wood and foliage, 2) examine the effects of individual tree species on these relationships, 3) extrapolate the rates to the annual fluxes of the whole stands, and 4) determine if tree species differed in these fluxes. Established on an abandoned pasture in 1988 at La Selva Biological Station in Costa Rica, the monodominant stands contained four native species in a complete randomized block design. Respiration rates based on tissue surface area ranged among dominant tree species from 0.6 to 1.0 μg C m^-2 s^-1 for small diameter wood (<10cm), 1.0 to 1.8 μg C m^-2 s^-1 for large diameter wood, and 0.7 to 0.8 μg C m^-2 s^-1 for foliage. Understory species had similar wood respiration rates, but foliage respiration rates were about half of those for canopy leaves. Among surface area, volume, or biomass, respiration rates scaled best with surface area for wood with small diameter, volume or biomass for large diameter wood, and leaf area for foliage. These relationships differed slightly among tree species and between canopy trees and understory species. Foliar respiration rate was generally related to leaf nitrogen content, and this relationship differed among dominant tree species. Temperature response of foliar respiration also differed among tree species and canopy class. However, daily and annual temperature fluctuations had less than 3% effect on annual flux. Annual respiratory fluxes from wood and foliage

  8. FOLIAR AND TUBER BLIGHT RESISTANCE IN A SOLANUM TUBEROSUM BREEDING LINES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this research was to identify the genetic basis of foliar and tuber resistance to Phytophthora infestans in a potato breeding population developed from a cross between two tetraploid Solanum tuberosum lines, NY121 and NY115. The parent with high foliar resistance, NY121, was highly s...

  9. Foliar and tuber late blight resistance in a Solanum tuberosum potato mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar and tuber resistance to Phytophthora infestans were evaluated in a mapping population (n=94) developed between two Solanum tuberosum breeding lines, NY121 x NY115. Foliar disease severity of the progeny clones was measured by the area under the disease progress curve (AUDPC) in field tests in...

  10. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Gu, Honghao; Wang, Meng; Zhou, Guomo; Li, Quan

    2016-04-01

    Moso bamboo, well known for its high growth rate, is being subjected to increasing amounts of nitrogen deposition. However, how anthropogenic management practices regulate the effects of N deposition on Moso bamboo stoichiometry remains poorly understood. We observed the effects of two years of simulated N deposition (30, 60 and 90 kg N ha‑1yr‑1) on the foliar stoichiometry of Moso bamboo plantations under conventional management (CM) and intensive management (IM). Young bamboo had significantly greater foliar N and P concentrations and N:P ratios than mature plants (P < 0.05). IM significantly increased the foliar N concentrations of young bamboo and P concentrations of mature bamboo but decreased mature bamboo foliar N:P ratios (P < 0.05). Nitrogen increased foliar N and P concentrations in IM bamboo plantations, but the positive effects were diminished when the addition rate exceeded 60 kg N ha‑1yr‑1. Nitrogen increased foliar N concentrations but aggravated P deficiency in CM bamboo plantations. The positive effects of N deposition on foliar stoichiometry were influenced by management practices and bamboo growth stage. The effects of N deposition on foliar stoichiometry combined with anthropogenic management practices can influence ecosystem production, decomposition, and subsequent N and P cycles in Moso bamboo plantations.

  11. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition.

    PubMed

    Song, Xinzhang; Gu, Honghao; Wang, Meng; Zhou, Guomo; Li, Quan

    2016-04-07

    Moso bamboo, well known for its high growth rate, is being subjected to increasing amounts of nitrogen deposition. However, how anthropogenic management practices regulate the effects of N deposition on Moso bamboo stoichiometry remains poorly understood. We observed the effects of two years of simulated N deposition (30, 60 and 90 kg N ha(-1)yr(-1)) on the foliar stoichiometry of Moso bamboo plantations under conventional management (CM) and intensive management (IM). Young bamboo had significantly greater foliar N and P concentrations and N:P ratios than mature plants (P < 0.05). IM significantly increased the foliar N concentrations of young bamboo and P concentrations of mature bamboo but decreased mature bamboo foliar N:P ratios (P < 0.05). Nitrogen increased foliar N and P concentrations in IM bamboo plantations, but the positive effects were diminished when the addition rate exceeded 60 kg N ha(-1)yr(-1). Nitrogen increased foliar N concentrations but aggravated P deficiency in CM bamboo plantations. The positive effects of N deposition on foliar stoichiometry were influenced by management practices and bamboo growth stage. The effects of N deposition on foliar stoichiometry combined with anthropogenic management practices can influence ecosystem production, decomposition, and subsequent N and P cycles in Moso bamboo plantations.

  12. Management practices regulate the response of Moso bamboo foliar stoichiometry to nitrogen deposition

    PubMed Central

    Song, Xinzhang; Gu, Honghao; Wang, Meng; Zhou, Guomo; Li, Quan

    2016-01-01

    Moso bamboo, well known for its high growth rate, is being subjected to increasing amounts of nitrogen deposition. However, how anthropogenic management practices regulate the effects of N deposition on Moso bamboo stoichiometry remains poorly understood. We observed the effects of two years of simulated N deposition (30, 60 and 90 kg N ha−1yr−1) on the foliar stoichiometry of Moso bamboo plantations under conventional management (CM) and intensive management (IM). Young bamboo had significantly greater foliar N and P concentrations and N:P ratios than mature plants (P < 0.05). IM significantly increased the foliar N concentrations of young bamboo and P concentrations of mature bamboo but decreased mature bamboo foliar N:P ratios (P < 0.05). Nitrogen increased foliar N and P concentrations in IM bamboo plantations, but the positive effects were diminished when the addition rate exceeded 60 kg N ha−1yr−1. Nitrogen increased foliar N concentrations but aggravated P deficiency in CM bamboo plantations. The positive effects of N deposition on foliar stoichiometry were influenced by management practices and bamboo growth stage. The effects of N deposition on foliar stoichiometry combined with anthropogenic management practices can influence ecosystem production, decomposition, and subsequent N and P cycles in Moso bamboo plantations. PMID:27052002

  13. Scaling uncertainties in estimating canopy foliar maintenance respiration for black spruce ecosystems in Alaska

    USGS Publications Warehouse

    Zhang, X.; McGuire, A.D.; Ruess, Roger W.

    2006-01-01

    A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes R m at 0??C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar

  14. Controls on foliar nutrient and aluminium concentrations in a tropical tree flora: phylogeny, soil chemistry and interactions among elements.

    PubMed

    Metali, Faizah; Abu Salim, Kamariah; Tennakoon, Kushan; Burslem, David F R P

    2015-01-01

    Foliar elemental concentrations are predictors of life-history variation and contribute to spatial patterns in biogeochemical cycling. We examined the contributions of habitat association, local soil environment, and elemental interactions to variation in foliar elemental concentrations in tropical trees using methods that account for phylogeny. We sampled top-soils and leaves of 58 tropical trees in heath forest (HF) on nutrient-poor sand and mixed dipterocarp forest (MDF) on nutrient-rich clay soils. A phylogenetic generalized least squares method was used to determine how foliar nutrient and aluminium (Al) concentrations varied in response to habitat distribution, soil chemistry and other elemental concentrations. Foliar nitrogen (N) and Al concentrations were greater for specialists of MDF than for specialists of HF, while foliar calcium (Ca) concentrations showed the opposite trend. Foliar magnesium (Mg) concentrations were lower for generalists than for MDF specialists. Foliar element concentrations were correlated with fine-scale variation in soil chemistry in phylogenetically controlled analyses across species, but there was limited within-species plasticity in foliar elemental concentrations. Among Al accumulators, foliar Al concentration was positively associated with foliar Ca and Mg concentrations, and negatively associated with foliar phosphorus (P) concentrations. The Al-accumulation trait and relationships between foliar elemental and Al concentrations may contribute to species habitat partitioning and ecosystem-level differences in biogeochemical cycles.

  15. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention.

    PubMed

    Jia, Xin; Sheng, Wen-bo; Li, Wei; Tong, Yan-bin; Liu, Zhi-yong; Zhou, Feng

    2014-11-26

    In this work, we report a conceptual strategy for prolonging foliar pesticide retention by using an adhesive polydopamine (PDA) microcapsule to encapsulate avermectin, thereby minimizing its volatilization and improving its residence time on crop surfaces. Polydopamine coated avermectin (Av@PDA) microcapsules were prepared by emulsion interfacial-polymerization and characterized by Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, field-emission scanning electron microscope, and transmission electron microscopy. The in situ synthesis route confers Av@PDA microcapsules with remarkable avermectin loading ability of up to 66.5% (w/w). Kinetic study of avermectin release demonstrated that Av@PDA microcapsules exhibit sustained- and controlled-release properties. The adhesive property of Av@PDA microcapsules on different surfaces was verified by a comparative study between Av@PDA and passivated Av@SiO2 and Av@PDA@SiO2 capsules with silica shell. Moreover, PDA shell could effectively shield UV irradiation and so protect avermectin from photodegradation, making it more applicable for foliar spraying. Meanwhile, it is determinated that Av@PDA microcapsules have good mechanical stability property.

  16. Foliar sorption of emerging and priority contaminants under controlled conditions.

    PubMed

    Calderón-Preciado, Diana; Matamoros, Víctor; Biel, Carmen; Save, Robert; Bayona, Josep M

    2013-09-15

    Agricultural irrigation water contains a variety of contaminants that can be introduced into the food chain through intake by irrigated crops. This paper describes an experiment under controlled conditions designed to simulate sprinkle irrigation with polluted water at two different relative humidities (40 and 90%). Specifically, shed lettuce-heart leaves were spiked with an aqueous solution containing organic microcontaminants, including pharmaceuticals (ibuprofen, diclofenac, clofibric acid, and carbamazepine), fragrances (tonalide), biocides (triclosan), insecticides (lindane), herbicides (atrazine), phenolic estrogen (bisphenol A), and polycyclic aromatic hydrocarbons (phenanthrene and pyrene). Following an incubation period (48 h), the treated leaves were rinsed with water, and both the solution used to rinse them and the leaves themselves were independently analyzed to investigate the foliar sorption and uptake of the spiked organic contaminants through cuticle. The results showed that the foliar sorption of emerging and priority microcontaminants in leaves wetted by irrigation practices is related to their polarity (logD(ow)) and volatility (logk(H)), regardless of their compound class and the relative humidity. The results thus underscore the need to improve the quality of reclaimed water in crop irrigation, particularly when sprinkle irrigation is used.

  17. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata.

    PubMed

    Kumar, Amutha Sampath; Lakshmanan, Venkatachalam; Caplan, Jeffrey L; Powell, Deborah; Czymmek, Kirk J; Levia, Delphis F; Bais, Harsh P

    2012-11-01

    Plants exist in a complex multitrophic environment, where they interact with and compete for resources with other plants, microbes and animals. Plants have a complex array of defense mechanisms, such as the cell wall being covered with a waxy cuticle serving as a potent physical barrier. Although some pathogenic fungi infect plants by penetrating through the cell wall, many bacterial pathogens invade plants primarily through stomata on the leaf surface. Entry of the foliar pathogen, Pseudomonas syringae pathovar tomato DC3000 (hereafter PstDC3000), into the plant corpus occurs through stomatal openings, and consequently a key plant innate immune response is the transient closure of stomata, which delays disease progression. Here, we present evidence that the root colonization of the rhizobacteria Bacillus subtilis FB17 (hereafter FB17) restricts the stomata-mediated pathogen entry of PstDC3000 in Arabidopsis thaliana. Root binding of FB17 invokes abscisic acid (ABA) and salicylic acid (SA) signaling pathways to close light-adapted stomata. These results emphasize the importance of rhizospheric processes and environmental conditions as an integral part of the plant innate immune system against foliar bacterial infections.

  18. Foliar temperature acclimation reduces simulated carbon sensitivity to climate

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas G.; Malyshev, Sergey L.; Shevliakova, Elena; Kattge, Jens; Dukes, Jeffrey S.

    2016-04-01

    Plant photosynthesis and respiration are the largest carbon fluxes between the terrestrial biosphere and the atmosphere, and their parameterizations represent large sources of uncertainty in projections of land carbon uptake in Earth system models (ESMs). The incorporation of temperature acclimation of photosynthesis and foliar respiration, commonly observed processes, into ESMs has been proposed as a way to reduce this uncertainty. Here we show that, across 15 flux tower sites spanning multiple biomes at various locations worldwide (10° S-67° N), acclimation parameterizations improve a model's ability to reproduce observed net ecosystem exchange of CO2. This improvement is most notable in tropical biomes, where photosynthetic acclimation increased model performance by 36%. The consequences of acclimation for simulated terrestrial carbon uptake depend on the process, region and time period evaluated. Globally, including acclimation has a net effect of increasing carbon assimilation and storage, an effect that diminishes with time, but persists well into the future. Our results suggest that land models omitting foliar temperature acclimation are likely to overestimate the temperature sensitivity of terrestrial carbon exchange, thus biasing projections of future carbon storage and estimates of policy indicators such as the transient climate response to cumulative carbon emissions.

  19. Mapping Amazonian Canopy Foliar Traits with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Martin, R.; Anderson, C. B.; Knapp, D. E.

    2014-12-01

    Spatial and temporal information on plant functional traits is lacking in ecology, which limits our understanding of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions such as in Andean and Amazonian forests, where information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the chemical composition of tropical forests along a 3000 m elevation gradient from lowland Amazonia to the Andean treeline. We calibrated and validated the retrieval of 15 canopy foliar chemicals and leaf mass per area (LMA) in 81 one-hectare field plots using a new VSWIR-LiDAR fusion approach. Remotely sensed estimates of elevational changes in forest foliar pigments, nitrogen, phosphorus, water, soluble and total carbon, cellulose and LMA were similar to those derived via laborious field survey and laboratory analysis. This new airborne approach addresses the inherent limitations and sampling biases associated with field-based studies of forest functional traits, particularly in structurally and floristically complex tropical canopies.

  20. Foliar fungal communities strongly differ between habitat patches in a landscape mosaic

    PubMed Central

    Robin, Cécile; Capdevielle, Xavier; Delière, Laurent; Vacher, Corinne

    2016-01-01

    Background Dispersal events between habitat patches in a landscape mosaic can structure ecological communities and influence the functioning of agrosystems. Here we investigated whether short-distance dispersal events between vineyard and forest patches shape foliar fungal communities. We hypothesized that these communities homogenize between habitats over the course of the growing season, particularly along habitat edges, because of aerial dispersal of spores. Methods We monitored the richness and composition of foliar and airborne fungal communities over the season, along transects perpendicular to edges between vineyard and forest patches, using Illumina sequencing of the Internal Transcribed Spacer 2 (ITS2) region. Results In contrast to our expectation, foliar fungal communities in vineyards and forest patches increasingly differentiate over the growing season, even along habitat edges. Moreover, the richness of foliar fungal communities in grapevine drastically decreased over the growing season, in contrast to that of forest trees. The composition of airborne communities did not differ between habitats. The composition of oak foliar fungal communities change between forest edge and centre. Discussion These results suggest that dispersal events between habitat patches are not major drivers of foliar fungal communities at the landscape scale. Selective pressures exerted in each habitat by the host plant, the microclimate and the agricultural practices play a greater role, and might account for the differentiation of foliar fugal communities between habitats. PMID:27833817

  1. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species

    PubMed Central

    Hidaka, Amane; Kitayama, Kanehiro

    2013-01-01

    How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P-use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in cells among P-containing biochemical compounds (i.e., foliar P fractions). We investigated the relationships among mass-based photosynthetic carbon assimilation rate (Amass), PPUE, total foliar P concentration, and foliar P fractions in 10 tree species in two tropical montane rain forests with differing soil P availability (five species on sedimentary soils and five species on P-poorer ultrabasic serpentine soils) on Mount Kinabalu, Borneo. We chemically fractionated foliar P into the following four fractions: metabolic P, lipid P, nucleic acid P, and residual P. Amass was positively correlated with the concentrations of total foliar P and of metabolic P across 10 tree species. Mean Amass and mean concentrations of total foliar P and of each foliar P fraction were lower on the P-poorer ultrabasic serpentine soils than on the sedimentary soils. There was a negative relationship between the proportion of metabolic P per total P and the proportion of lipid P per total P. PPUE was positively correlated with the ratio of metabolic P to lipid P. High PPUE is explained by the net effect of a relatively greater investment of P into P-containing metabolites and a relatively lesser investment into phospholipids in addition to generally reduced concentrations of all P fractions. We conclude that plants optimize the allocation of P among foliar P fractions for maintaining their productivity and growth and for reducing demand for P as their adaptation to P-poor soils. PMID:24455122

  2. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants

    PubMed Central

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-01-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. PMID:27273581

  3. Droplet fragmentation on leaves shapes foliar disease dispersal

    NASA Astrophysics Data System (ADS)

    Bourouiba, Lydia; Gilet, Tristan

    2015-11-01

    Although the dispersal of pathogens from plant to plant remains poorly understood, a strong statistical correlation exists between rainfall patterns and plant disease outbreaks. This correlation suggests that rain is a culprit in the dispersal of foliar pathogens. In this combined experimental and theoretical study, we unveil the mechanisms at play when a raindrop impacts an infected plant leaf. We identify two main fragmentation processes that shape rain-induced dispersal mechanisms. In both, pathogens are initially contained in water residues left on leaves by previous raindrops. As most leaves are partially wetting, residues take the shape of sessile drops. The impact of another raindrop in the vicinity triggers fragmentation of the sessile drop and subsequent ejection of contaminated droplets towards neighboring plants. Each scenario yields a different distribution of ejected droplets and brings a distinct contribution to the epidemic onset pattern. We show that leaf mechanical properties govern both fragmentation scenarios. Dimensionless parameters and scaling laws are provided to rationalize our observations.

  4. Foliar uptake of nitrogen oxides: A nitrogen source for forests

    SciTech Connect

    Hanson, P.J.; Taylor, G.E. Jr.; Gunderson, C.A. )

    1989-04-01

    Non-urban concentrations of nitrogen oxide gases are insufficient to directly impede plant growth processes, but foliar uptake of these gases may represent a significant N source. Measurements of NO{sub 2} and HNO{sub 3} vapor uptake by elements representative of a forest landscape (e.g. foliage, bark, forest floor) were conducted in an open gas exchange system. Under daylight conditions using a mean NO{sub 2} level of 33 ml l{sup {minus}1}, NO{sub 2} uptake by foliage of forest tree species ranged from 0.35 to 5.75 nmol m{sup {minus}2} s{sup {minus}1}. Uptake of NO{sub 2} by broadleaf species was greater than by conifers. Dry bark surfaces showed about half the conductance to NO{sub 2} than did plant shoots. Forest floor samples had a disproportionately high conductance to NO{sub 2} when compared to bark or foliage surfaces. At similar concentrations, uptake of HNO{sub 3} vapor exceeded that for NO{sub 2}. Foliar NO{sub 2} uptake, under stomatal control, was principally to leaf interiors, but HNO{sub 3} uptake occurred to leaf interiors and surfaces. Based on ambient NO{sub 2} concentrations and conductance data scaled to the forest canopy, NO{sub 2} deposition provides from 0.1 to 2.0 kg ha{sup {minus}1} y{sup {minus}1} of nitrogen to natural forests (0.1 to 3% of annual needs). Conversely, deposition to urban forests may supply >10% of a forest's annual need.

  5. [Relationship between antophyte foliar morphology and abiotic factors in the main rainforests of Eastern Cuba].

    PubMed

    Quesada, Eddy Martínez

    2009-01-01

    Relationship between antophyte foliar morphology and abiotic factors in the main rainforests of Eastern Cuba. The foliar morphology of representative antophytes in four rainforest types of Eastern Cuba was studied in relation to the main abiotic factors. Although there are several leaf types in these forests, the microphyll type is the most important among endemic species in the ophiolites complex and the Montane rainforest. At the Lowland rainforest (metamorphic complex) the mesophyll leaf was the most important. Most foliar epidermis had structures normally found in mesomorphic plants, but xeromorphic and higromorphic morphologies were also present.

  6. Effect of foliar feeding on nitrogen assimilation in alfalfa plants at insufficient molybdenum supply.

    PubMed

    Hristozkova, Marieta; Geneva, Maria; Stancheva, Ira

    2009-06-01

    The influence of foliar feeding on the nitrogen assimilation in alfalfa plants under conditions of Mo shortage was studied. It was established that foliar fertilization with 0.3% solution of Agroleaf® resulted in increase of nitrogen fixation and nitrogen assimilation in the absence of Mo. Insufficient molybdenum supply leads to significant reduction of plant Mo content and nitrogen-fixing activity, while stress induced amino acids as alanine, GABA, threonine, proline and serine increased repeatedly. The negative effect of Mo deficiency on the enzyme activities related to the primary nitrogen assimilation (NR, GS, GOGAT) and plant growth diminished due to the foliar absorbed nutrients.

  7. Phenylalanine and urea foliar application: Effect on grape and must microbiota.

    PubMed

    González-Arenzana, Lucía; Portu, Javier; López, Rosa; Garijo, Patrocinio; Garde-Cerdán, Teresa; López-Alfaro, Isabel

    2017-03-20

    The main aim of this study was to describe the impact of foliar phenylalanine and urea application on grape and must microbial populations. The tool used to perform the ecological study was DGGE conducted with several infusions in non-enriched and enriched liquid media, as well as direct DNA extractions of grapes and musts. A total of 75 microbial species were found in the study. The alpha diversity indices of grape after both foliar nitrogen treatments did not show significant changes in comparison to the control samples, but were modified in some indices in must samples. The phenylalanine must sample was similar to the control, while foliar urea application caused significant changes in microbial diversity and population structure in comparison to the control must. Further research would be necessary to properly predict the impact on winemaking of the effects observed in this study for grape and must microbiota, especially regarding the foliar application of urea.

  8. Foliar application of two silica sols reduced cadmium accumulation in rice grains.

    PubMed

    Liu, Chuanping; Li, Fangbai; Luo, Chunling; Liu, Xinming; Wang, Shihua; Liu, Tongxu; Li, Xiangdong

    2009-01-30

    In the present study, pot experiments were conducted to investigate the effects of foliar application of two silica (Si) sols on the alleviation of cadmium (Cd) toxicity in contaminated soil to rice. Results showed that the foliar application of Si sols significantly increased the dry weight of grains (without husk) and shoots in rice grown in Cd contaminated soil, whereas the Cd concentration in the grains and shoots decreased obviously. The total accumulation of Cd in rice grains also decreased with the application of both of the Si sols, but no significant effect was found on the Cd accumulation in the shoots. For the optimal effect, Si-sol-B should be foliar applied at the tillering-stage during rice growth. The mechanism of Si foliar application to alleviate the toxicity and accumulation of Cd in grains of rice may be related to the probable Cd sequestration in the shoot cell walls.

  9. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    DOE PAGES

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer; ...

    2016-02-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  10. Shrimp pond effluent dominates foliar nitrogen in disturbed mangroves as mapped using hyperspectral imagery.

    PubMed

    Fauzi, Anas; Skidmore, Andrew K; van Gils, Hein; Schlerf, Martin; Heitkönig, Ignas M A

    2013-11-15

    Conversion of mangroves to shrimp ponds creates fragmentation and eutrophication. Detection of the spatial variation of foliar nitrogen is essential for understanding the effect of eutrophication on mangroves. We aim (i) to estimate nitrogen variability across mangrove landscapes of the Mahakam delta using airborne hyperspectral remote sensing (HyMap) and (ii) to investigate links between the variation of foliar nitrogen mapped and local environmental variables. In this study, multivariate prediction models achieved a higher level of accuracy than narrow-band vegetation indices, making multivariate modeling the best choice for mapping. The variation of foliar nitrogen concentration in mangroves was significantly influenced by the local environment: (1) position of mangroves (seaward/landward), (2) distance to the shrimp ponds, and (3) predominant mangrove species. The findings suggest that anthropogenic disturbances, in this case shrimp ponds, influence nitrogen variation in mangroves. Mangroves closer to the shrimp ponds had higher foliar nitrogen concentrations.

  11. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat.

    PubMed

    Kutman, Bahar Yildiz; Kutman, Umit Baris; Cakmak, Ismail

    2013-09-04

    Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.

  12. Exploring the remote sensing of foliar biochemical concentrations with AVIRIS data

    NASA Technical Reports Server (NTRS)

    Smith, Geoffrey M.; Curran, Paul J.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data shows promise for the estimation of foliar biochemical concentrations at the scale of the canopy. There are, however, several problems associated with the use of AVIRIS data in this way and these are detailed in recent Plant Biochemical Workshop Report. The research reported was concentrated upon three of these problems: field sampling of forest canopies, wet laboratory assay of foliar chemicals, and the visualization of AVIRIS data.

  13. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    PubMed

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  14. Foliar absorption of transuranic elements: influence of physiochemical form and environmental factors

    SciTech Connect

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.; Thomas, J.M.

    1980-07-01

    The accumulation of plutonium (/sup 238/Pu) and americium (/sup 241/Am) in seeds and roots of Phaseolus vulgaris L. was investigated following foliar interception. Under controlled conditions plants were exposed to well-characterized aerosols of fresh and aged Pu-dioxide, fresh Am-oxides, and Pu-nitrate and Pu-citrate complexes to assess the influence of chemical form and long-term weathering on foliar absorption and subsequent translocation to other plant parts. Mean values for Pu and Am accumulated in seeds and roots 28 days after foliar exposure ranged from 9 to 427 x 10/sup -4/% of that deposited on foilage. These results and previous plant uptake studies indicate that the foliar route is potentially of equal importance to the soil-root pathway as a route of transport. The levels of Pu and Am in seeds and roots resulting from foliar absorption and translocation from foilage were significantly affected by simulated rainfall and by the size of particles to which foilage was exposed. The influence of relative humidity and solution aging of oxides was less definitive; however, results suggest that either or both may infuence foliar absorption and subsequent translocation of Pu and Am to seeds and roots.

  15. Fluid fragmentation shapes rain-induced foliar disease transmission

    PubMed Central

    Gilet, T.; Bourouiba, L.

    2015-01-01

    onset dynamics of foliar epidemics through the lens of fluid fragmentation. We discuss how the reported findings can inform the design of mitigation strategies acting at the early stage of a foliar disease outbreak. PMID:25652459

  16. Fluid fragmentation shapes rain-induced foliar disease transmission.

    PubMed

    Gilet, T; Bourouiba, L

    2015-03-06

    onset dynamics of foliar epidemics through the lens of fluid fragmentation. We discuss how the reported findings can inform the design of mitigation strategies acting at the early stage of a foliar disease outbreak.

  17. Foliar Uptake of Atmospheric Reactive Nitrogen Pollution Along an Urban-Rural Gradient in New York State

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Sparks, J. P.

    2008-12-01

    Vegetation is an important sink for atmospheric reactive nitrogen (N) pollution in terrestrial ecosystems, and when soil N is limiting, foliar N uptake can be a source of plant-available N. A proxy for pollution derived N, and in particular foliar assimilated N, would be useful to quantify the impact of the foliar uptake pathway on plant metabolism. Nitrogen stable isotope ratios (15N/14N) are practical for this purpose because forms of plant-available N often have varying isotopic compositions. However, the mechanisms driving differences in foliar N isotopic composition (δ15N) are still unresolved. Current understanding of foliar δ 15N suggests these values primarily represent the integration of the soil water solution δ15N, direct foliar uptake of atmospheric reactive N, within-plant fractionations, and fractionation due to the fungus to root transfer in mycorrhizae. In this study, we investigated the influence of direct foliar uptake, soil solution δ 15N, and mycorrhizae on foliar δ15N in seedlings of two dominant Northeastern tree species, red maple (Acer rubrum) and red oak (Quercus rubra), along an N deposition gradient in New York State. Using a potted plant mesocosm system, we compared foliar δ15N values directly to soil solution δ15N values while controlling for mycorrhizal associations. Both species showed higher foliar δ15N when exposed to fractionation by mycorrhizal associations. Overall, A. rubrum showed higher foliar δ15N than Q. rubra across all sites. In both species, patterns of foliar δ15N values were coupled with soil solution δ15N values across the N deposition gradient. Additionally, increasing atmospheric N deposition was correlated with higher foliar δ15N values in Q. rubra, but not in A. rubrum. Using a mixing model, we estimated that Q. rubra seedlings incorporated up to 7% of their assimilated N via direct foliar uptake of atmospheric N pollution. However, foliar uptake was not detectable in A. rubrum seedlings. Results

  18. Effect of humic acid-based amendments with foliar application of Zn and Se on Cd accumulation in tobacco.

    PubMed

    Yu, Yao; Wan, Yanan; Wang, Qi; Li, Huafen

    2017-04-01

    The smoke of tobacco is a major source of exposure to Cd in humans and therefore it is urgent to find a way to a method to reduce Cd accumulation in tobacco. A four-month tobacco pot experiment was conducted to investigate the effects of two base treatments (humic acid-based amendments) and two foliar treatments (Zn and Se) on Cd uptake by tobacco. The results showed that Cd in tobacco was mainly transferred into leaves, which could be significantly reduced by both applied amendments. The Cd contents in leaves were reduced by up to 67%. Foliar Zn alone significantly decreased Cd contents in leaves while foliar Se slightly increased them. When base and foliar treatments were combined, base treatments had dominant effects but those of foliar treatments were not distinct. The applied amendments did reduce Cd contents in all the parts of tobacco and the translocation into leaves and they were more effective than foliar Zn and Se.

  19. Stoichiometric patterns in foliar nutrient resorption across multiple scales

    USGS Publications Warehouse

    Reed, Sasha C.; Townsend, Alan R.; Davidson, Eric A.; Cleveland, Cory C.

    2012-01-01

    *Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. *Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. *N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26′) had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. *These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.

  20. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat.

    PubMed

    Saifullah; Javed, Hina; Naeem, Asif; Rengel, Zed; Dahlawi, Saad

    2016-08-01

    Due to chemical and biochemical similarities between cadmium (Cd) and zinc (Zn), application of Zn may minimize Cd uptake by plants and ameliorate its toxicity. However, there is poor understanding of the comparative effectiveness of the foliar Zn application at different growth stages on Cd toxicity and accumulation in wheat. The present study was carried out to compare the effectiveness of foliarly applied Zn at different stages of plant growth to minimize Cd accumulation in wheat grains. Wheat (cv AARI-2011) was grown at three levels of soil Cd (0, 2.5, and 5.0 mg kg(-1)). Foliar application of Zn was carried out at either tillering, jointing, booting, heading, or grain filling stage using 0.05 % w/v aqueous solution of ZnSO4 · 7H2O. Increasing soil Cd had a negative effect on growth and yield attributes, including tiller production, root length and dry weight, plant height, 100-grain weight and grain and straw yield. Zinc foliar spray increased grain yield by increasing tiller production; importantly, an application at booting was more effective than at other stages. Foliarly applied Zn decreased Cd concentration in the roots, straw, and grain. Similar to grain yield, the largest decrease (74 %) in Cd concentration was associated with Zn foliar spray at booting. Grain yield was negatively related to grain Cd concentration which in turn showed a negative relationship with Zn concentration in leaves and grains. It is concluded that the booting stage is the suitable time for foliar application of Zn to (i) effectively minimize a Cd-induced loss in grain yield and (ii) decrease grain Cd concentration.

  1. Precision and accuracy of visual foliar injury assessments

    SciTech Connect

    Gumpertz, M.L.; Tingey, D.T.; Hogsett, W.E.

    1982-07-01

    The study compared three measures of foliar injury: (i) mean percent leaf area injured of all leaves on the plant, (ii) mean percent leaf area injured of the three most injured leaves, and (iii) the proportion of injured leaves to total number of leaves. For the first measure, the variation caused by reader biases and day-to-day variations were compared with the innate plant-to-plant variation. Bean (Phaseolus vulgaris 'Pinto'), pea (Pisum sativum 'Little Marvel'), radish (Rhaphanus sativus 'Cherry Belle'), and spinach (Spinacia oleracea 'Northland') plants were exposed to either 3 ..mu..L L/sup -1/ SO/sub 2/ or 0.3 ..mu..L L/sup -1/ ozone for 2 h. Three leaf readers visually assessed the percent injury on every leaf of each plant while a fourth reader used a transparent grid to make an unbiased assessment for each plant. The mean leaf area injured of the three most injured leaves was highly correlated with all leaves on the plant only if the three most injured leaves were <100% injured. The proportion of leaves injured was not highly correlated with percent leaf area injured of all leaves on the plant for any species in this study. The largest source of variation in visual assessments was plant-to-plant variation, which ranged from 44 to 97% of the total variance, followed by variation among readers (0-32% of the variance). Except for radish exposed to ozone, the day-to-day variation accounted for <18% of the total. Reader bias in assessment of ozone injury was significant but could be adjusted for each reader by a simple linear regression (R/sup 2/ = 0.89-0.91) of the visual assessments against the grid assessments.

  2. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    PubMed

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  3. Identification of Genes in Thuja plicata Foliar Terpenoid Defenses1[C][W][OA

    PubMed Central

    Foster, Adam J.; Hall, Dawn E.; Mortimer, Leanne; Abercromby, Shelley; Gries, Regine; Gries, Gerhard; Bohlmann, Jörg; Russell, John; Mattsson, Jim

    2013-01-01

    Thuja plicata (western redcedar) is a long-lived conifer species whose foliage is rarely affected by disease or insect pests, but can be severely damaged by ungulate browsing. Deterrence to browsing correlates with high foliar levels of terpenoids, in particular the monoterpenoid α-thujone. Here, we set out to identify genes whose products may be involved in the production of α-thujone and other terpenoids in this species. First, we generated a foliar transcriptome database from which to draw candidate genes. Second, we mapped the storage of thujones and other terpenoids to foliar glands. Third, we used global expression profiling to identify more than 600 genes that are expressed at high levels in foliage with glands, but can either not be detected or are expressed at low levels in a natural variant lacking foliar glands. Fourth, we used in situ RNA hybridization to map the expression of a putative monoterpene synthase to the epithelium of glands and used enzyme assays with recombinant protein of the same gene to show that it produces sabinene, the monoterpene precursor of α-thujone. Finally, we identified candidate genes with predicted enzymatic functions for the conversion of sabinene to α-thujone. Taken together, this approach generated both general resources and detailed functional characterization in the identification of genes of foliar terpenoid biosynthesis in T. plicata. PMID:23388118

  4. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera).

    PubMed

    Bálint, Miklós; Tiffin, Peter; Hallström, Björn; O'Hara, Robert B; Olson, Matthew S; Fankhauser, Johnathon D; Piepenbring, Meike; Schmitt, Imke

    2013-01-01

    Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.

  5. Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.).

    PubMed

    Reig-Armiñana, J; Calatayud, V; Cerveró, J; García-Breijo, F J; Ibars, A; Sanz, M J

    2004-11-01

    An open-top chamber study was conducted to investigate the tissue and cellular-level foliar effects of ozone (O3) on a Mediterranean evergreen species, the mastic plant (Pistacia lentiscus L.). Plants were exposed at three different O3 levels, and leaf samples were collected periodically from the beginning of the exposure. Although no visible foliar injury was evident, alterations of the plastids and vacuoles in the mesophyll were observed. Senescence processes were accelerated with an anomalous stacking of tannin vacuoles, and a reduction in the size and number of the chloroplasts. Overall, most of the modifications induced by O3 were consistent with previously reported observations on deciduous broadleaf species, with the exception of alterations in the cells covering the secretory channels, reported here as a new finding. Comments on the feasibility of using microscopy to validate O3 related field observations and subtle foliar injury are also given.

  6. Nutrient leaching from conifer needles in relation to foliar apoplast cation-exchange capacity

    SciTech Connect

    Turner, D.P.; van Broekhuizen, H.J.

    1992-01-01

    Limited evidence to date suggests that acidic precipitation promotes leaching of nutrient cations from conifer foliage. In order to evaluate the relative contribution of the apoplast cation exchange complex and symplast nutrient pools to the leached ions, the magnitude of potential foliar leaching in response to acidic precipitation was compared to foliar apoplast cation exchange capacity (CEC) for two conifer tree species (Pseudotsuga menziesii and Picea engelmanii). Leaching increased with decreasing pH and increasing time of immersion. At pH 2.1 and 3.1, equivalents of H+ depleted from the acidic solutions approximated equivalent of cations gained by the solutions. Maximum amounts leached were less than 40 micro equiv/g dry weight of needles for all ions combined. Measured foliar apoplast CEC for these species was approximately 120 micro equiv/g dry weight of needles. These relative magnitudes indicated that the apoplast provided the leached ions.

  7. Quantitative Trait Loci Associated with Foliar Trigonelline Accumulation in Glycine Max L

    PubMed Central

    2002-01-01

    The objective of this study was to utilize a Glycine max RIL population to (1) evaluate foliar trigonelline (TRG) content in field-grown soybean, (2) determine the heritability of TRG accumulation, and (3) identify DNA markers linked to quantitative trait loci (QTLs) conditioning variation in TRG accumulation. Frequency distributions of 70 recombinant inbred lines showed statistically no significant departure from normality (P > .05) for TRG accumulation measured at pod development stage (R4). Six different molecular linkage groups (LGs) (B2, C2, D2, G, J, and K) were identified to be linked to QTLs for foliar TRG accumulation. Two unique microsatellite markers (SSR) on two different linkage groups identified QTL significantly associated with foliar TRG accumulation: a region on LG J (Satt285) (P = .0019, R2 = 15.9%) and a second region on LG C2 (Satt079) (P = .0029, R2 = 13.4%). PMID:12488580

  8. Purple Phototrophic Bacterium Enhances Stevioside Yield by Stevia rebaudiana Bertoni via Foliar Spray and Rhizosphere Irrigation

    PubMed Central

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant -1 by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms. PMID:23825677

  9. Purple phototrophic bacterium enhances stevioside yield by Stevia rebaudiana Bertoni via foliar spray and rhizosphere irrigation.

    PubMed

    Wu, Jing; Wang, Yiming; Lin, Xiangui

    2013-01-01

    This study was conducted to compare the effects of foliar spray and rhizosphere irrigation with purple phototrophic bacteria (PPB) on growth and stevioside (ST) yield of Stevia. rebaudiana. The S. rebaudiana plants were treated by foliar spray, rhizosphere irrigation, and spray plus irrigation with PPB for 10 days, respectively. All treatments enhanced growth of S. rebaudiana, and the foliar method was more efficient than irrigation. Spraying combined with irrigation increased the ST yield plant (-1) by 69.2% as compared to the control. The soil dehydrogenase activity, S. rebaudiana shoot biomass, chlorophyll content in new leaves, and soluble sugar in old leaves were affected significantly by S+I treatment, too. The PPB probably works in the rhizosphere by activating the metabolic activity of soil bacteria, and on leaves by excreting phytohormones or enhancing the activity of phyllosphere microorganisms.

  10. Eleven-year response of foliar chemistry to chronic nitrogen and sulfur additions at the Bear Brooks Watershed in Maine

    SciTech Connect

    Jose Alexander Elvir; Gregory J. White

    2005-06-01

    The foliar chemistry of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), and red spruce (Picea rubens Sarg.) was studied from 1993 to 2003 at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study, with one watershed treated bimonthly since 1989 with ammonium sulfate ((NH4)2SO4) at a rate of 25.2 kg N·ha–1·year–1. Foliar N concentrations were higher in all tree species within the treated watershed compared with trees within the reference watershed. Foliar Ca and Mg concentrations were lower in American beech and red spruce within the treated watershed. There were no significant differences in foliar K concentrations between watersheds. Foliar P and Mn concentration differences between watersheds were inconsistent among years. Differences in foliar N concentrations between watersheds declined over time in sugar maple but not in red spruce or American beech. Differences in foliar Ca and Mg concentrations between the treated and reference watersheds increased over time for American beech and red spruce, primarily because of a consistent decline in concentrations of these nutrients in trees within the treated watershed. No temporal trends in foliar Ca and Mg concentration differences between watersheds were observed for sugar maple.

  11. Soybean seed phenol, lignin, and isoflavones and sugars composition are altered by Foliar Boron application in soybean under water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research showed that foliar boron (B) fertilizer at flowering or seed-fill growth stages altered seed protein, oil, and fatty acids. The objective of this research was to investigate the effects of foliar B fertilizer on seed phenolics (phenol, lignin, and isoflavones) and sugars concentrat...

  12. Changes in distribution and frequency of fungi associated with a foliar disease complex of pyrethrum in Australia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Australia, pyrethrum is affected by a foliar disease complex which can substantially reduce green leaf area and deleteriously affect yield. Traditionally, the dominant disease in spring has been ray blight, caused by Stagonosporopsis tanaceti, with other foliar diseases more prevalent during aut...

  13. Foliar and Seed Application of Amino Acids Affects the Antioxidant Metabolism of the Soybean Crop

    PubMed Central

    Teixeira, Walquíria F.; Fagan, Evandro B.; Soares, Luís H.; Umburanas, Renan C.; Reichardt, Klaus; Neto, Durval D.

    2017-01-01

    In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity

  14. Changes in Foliar Chemistry Along a Midwestern Air Pollution Gradient: 1988- 2005

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Burton, A. J.; Pregitzer, K. S.

    2008-12-01

    Sugar maple (Acer saccharum) leaf litter has been collected annually for the past two decades from four sites in Michigan along a regional gradient in air pollution. During this time, wet acid deposition at monitoring stations near these sites declined 20-30 % while wet deposition of nitrogen remained virtually unchanged. Given these dynamics, we examined the foliar chemistry of this leaf litter to determine (a) if concentrations of the biologically important elements Ca and Al had responded to the reduction in acid deposition and (b) if foliar N concentrations and δ15N values reflected a trend toward increased N availability resulting from the persistence of high rates of N deposition. During the study period of 1988-2005, the foliar [Ca] declined significantly at three of the four sites and the foliar [Al] declined significantly at all four sites. Together, these changes suggest that amount of these elements removed from exchange sites and put into soil solution has decreased with the decline in acid deposition. Furthermore, the ratio of Ca:Al significantly increased at each site. Changes in the Ca:Al are of particular importance because low Ca to Al ratios in foliar tissue have been strongly implicated in declines in plant growth resulting from acid deposition. The increase in the foliar Ca:Al suggests that rather than causing a lasting depletion of base cations, previous highs in acid deposition had a transient effect from which hardwood forests in this region have largely recovered. In contrast, there were no significant trends in the [N] at any of the four sites and only one site in the middle of the pollution gradient showed a significant trend in δ15N that implies increased N availability. These results suggest that current levels of N deposition are not causing widespread increases in the amount of N available to plants in these ecosystems and do not appear to be quickly pushing the systems toward N saturation.

  15. Foliar Shielding: How Non-Meteoric Water Deposition Helps Leaves Survive Drought by Reducing Incoming Energy

    NASA Astrophysics Data System (ADS)

    Gerlein-Safdi, C.; Sinkler, C. J.; Caylor, K. K.

    2015-12-01

    The uptake of water from the surface of the leaves, called foliar uptake, is common when rainfall is scarce and non-meteoric water (dew or fog) is the only source of water. However, many species have very water repellent leaves. Past studies have not differentiated between the uptake of water and the impact of the droplets on the energy balance of the leaf, which we call 'foliar shielding'. Leaves of the hydrophobic Colocasia esculenta were misted with isotopically enriched water in order to mimic non-meteoric water deposition. The leaf water potential and water isotopes were monitored for different water-stress conditions. A new protocol was developed for the fast analysis of leaf water isotopes using the Picarro induction module coupled to a laser spectrometer. Comparing the isotopic composition of the bulk leaf water at the end of the experiment, the misted leaves exhibit a d-excess higher by c. 63‰ than the control ones (P < 0.001). Low d-excess values are commonly associated with a high transpiration rate. Linking isotopic enrichment with leaf transpiration rate, we find a c. 30% decrease in transpiration rate for the treated leaves compared to the control (P < 0.001). Water-stressed leaves that were misted regularly exhibit a c. 64% smaller decline in water potential than water-stressed leaves that did not get misted (P < 0.05). Three possible mechanisms are proposed for the interaction of water droplets with the leaf energy and water balance. Comparing three previous foliar uptake studies to our results, we conclude that foliar shielding has a comparable yet opposite effect to foliar uptake on leaf water isotopes and that it is necessary to consider both processes when estimating foliar uptake of fog water.

  16. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer.

    PubMed

    He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe

    2013-12-15

    The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program.

  17. Relationships between C3 Plant Foliar Carbon Isotope Composition and Element Contents of Grassland Species at High Altitudes on the Qinghai-Tibet Plateau, China

    PubMed Central

    Zhou, Yong-Chun; Fan, Jiang-Wen; Harris, Warwick; Zhong, Hua-Ping; Zhang, Wen-Yan; Cheng, Xi-Lei

    2013-01-01

    Relationships of foliar carbon isotope composition (δ13C) with foliar C, N, P, K, Ca, Mg contents and their ratios of 219 C3 species leaf samples, obtained in August in 2004 to 2007 from 82 high altitude grassland sites on the Qinghai-Tibet Plateau China, were examined. This was done with reference to the proposition that foliar δ13C increases with altitude and separately for the life-form groups of graminoids, forbs and shrubs and for the genera Stipa and Kobresia. For all samples, foliar δ13C was negatively related to foliar K, P and ∑K+ Ca+ Mg, and positively correlated to foliar C, C/N and C/P. The significance of these correlations differed for the taxonomic and life-form groups. Lack of a relationship of foliar δ13C with foliar N was inconsistent with the majority of studies that have shown foliar δ13C to be positively related to foliar N due to a decrease of Ci/Ca (the ratio between intercellular and atmospheric concentration of CO2) and explained as a result of greater photosynthetic capacity at higher foliar N concentration. However this inconsistency relates to other high altitude studies that have found that photosynthetic capacity remains constant as foliar N increases. After accounting for the altitudinal relationship with foliar δ13C, of the elements only the K effect was significant and was most strongly expressed for Kobresia. It is concluded that factors critical to plant survival and growth at very high altitudes, such as low atmospheric pressure and low temperatures, may preclude expression of relationships between foliar δ13C and foliar elements that have been observed at lower altitudes. PMID:23565275

  18. Neonicotinoid Seed Treatments and Foliar Sprays on Sugarbeet for Control of Severe Curly Top

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet production in semiarid regions is hindered by yield loss caused with Beet severe curly top virus and other closely related species vectored by the beet leafhopper. In 2010, a study was established to investigate the level of control from seed treatments and supplemental foliar insecticide...

  19. Observations on the foliar nematode, Aphelenchoides besseyi, infecting tuberose and rice in India

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The foliar nematode Aphelenchoides besseyi causes white tip disease in rice (Oryza sativa L.) and floral malady in tuberose (Polianthes tuberosa L.). This nematode is widely distributed in the rice fields of many states of India, including West Bengal (WB), Andhra Pradesh (AP), Madhya Pradesh (MP) a...

  20. Sensitivity of soybean plant introductions to the foliar fungicide tebuconazole (Folicur)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly 100 plant introductions, ranging in maturity from 0 to IX and representing over 90% of the current commercial germplasm, were planted in 2 replications of 1 row plots 2.4 m long. Tebuconazole was applied at R1 and R3 at 4.0 oz/acre. Evaluation was done in both 2006 and 2007 with foliar sympto...

  1. Response of young bearing pecan trees to spring foliar nickel applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lower critical leaf concentration for nickel (Ni) has not been fully determined for commercial pecan [Carya illinoinensis (Wang.) K. Koch.] orchards. In a two-year study, foliar Ni was applied to orchard trees in early spring beginning at the parachute stage of leaf development and followed by ...

  2. Foliar boron and nickel applications reduce water-stage fruit-split of pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-stage fruit-split (WSFS) is a relatively common and often major problem of certain pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. This study evaluates the possibility that the malady can be influenced by improving tree micronutrient nutrition. Foliar sprays of boron (B) and nickel...

  3. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects

    NASA Astrophysics Data System (ADS)

    Schachat, Sandra R.; Labandeira, Conrad C.

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.

  4. Determination of foliar uptake of water droplets on waxy leaves in controlled environmental system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pertinent techniques for determination of plant cuticle permeability are needed to select proper doses of active ingredients and spray additives to improve pesticide application efficacy. A controlled environmental system with 100% relative humidity was developed for direct measurements of foliar up...

  5. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.

    PubMed

    Limm, Emily Burns; Simonin, Kevin A; Bothman, Aron G; Dawson, Todd E

    2009-09-01

    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2-11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials.

  6. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects.

    PubMed

    Schachat, Sandra R; Labandeira, Conrad C

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.

  7. CORRELATION BETWEEN OZONE EXPOSURE AND VISIBLE FOLIAR INJURY IN PONDEROSA AND JEFFREY PINES. (R825433)

    EPA Science Inventory

    Ozone exposure was related to ozone-induced visible foliar injury in ponderosa and Jeffrey pines growing on the western slopes of the Sierra Nevada Mountains of California. Measurements of ozone exposure, chlorotic mottle and fascicle retention were collected during the years ...

  8. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance.

  9. Testing Taxonomic Predictivity of Foliar and Tuber Resistance to Phytophthora infestans in Wild Relatives of Potato.

    PubMed

    Khiutti, A; Spooner, D M; Jansky, S H; Halterman, D A

    2015-09-01

    Potato late blight, caused by the oomycete phytopathogen Phytophthora infestans, is a devastating disease found in potato-growing regions worldwide. Long-term management strategies to control late blight include the incorporation of host resistance to predominant strains. However, due to rapid genetic changes within pathogen populations, rapid and recurring identification and integration of novel host resistance traits is necessary. Wild relatives of potato offer a rich source of desirable traits, including late blight resistance, but screening methods can be time intensive. We tested the ability of taxonomy, ploidy, crossing group, breeding system, and geography to predict the presence of foliar and tuber late blight resistance in wild Solanum spp. Significant variation for resistance to both tuber and foliar late blight was found within and among species but there was no discernable predictive power based on taxonomic series, clade, ploidy, breeding system, elevation, or geographic location. We observed a moderate but significant correlation between tuber and foliar resistance within species. Although previously uncharacterized sources of both foliar and tuber resistance were identified, our study does not support an assumption that taxonomic or geographic data can be used to predict sources of late blight resistance in wild Solanum spp.

  10. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    SciTech Connect

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer; Carper, Dana L.; Vandehey, Nick; O'Neil, James; Frank, A. Carolin

    2016-02-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  11. Inheritance of fruit, foliar and plant habit attributes in Capsicum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape and size, as well as plant habit. Utilizing F1, F2 and backcross generations developed from diverse parental stocks, this report describes the inheritance patterns and relationships between unique foliar characters and ...

  12. Effects of Foliar Fertilizer and Mepiquat Penteborate on Early Planted Cotton Growth and Lint Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple growth regulators and foliar fertilizers are currently marketed for use in cotton (Gossypium hirsutum L.) with varying effectiveness in promoting yield improvement. This research addressed the effectiveness of these products in a cotton early planting production system with its higher yiel...

  13. Phosphorous acid residues in apples after foliar fertilization: results of field trials.

    PubMed

    Malusà, E; Tosi, L

    2005-06-01

    The levels of phosphorous acid residues in apples after foliar fertilization with P fertilizers and after treatment with a phosphonate fungicide (Fosetyl-Al) were determined and compared. Two field trials and a glasshouse experiment, using different genotypes and plants of different age, were carried out and monitored over a three-year period. Phosphorous acid residues were found in apples after application of foliar P fertilizers. Concentrations of the residues ranged between 0.02 and 14 mg kg(-1) depending on the phosphorous acid content in the fertilizer used and the plant size and yield. The treatments induced an accumulation of the residue in the course of the experiments, which in some cases reached a level exceeding the maximum limit set by EU legislation. Residues were also detected in other plant organs, i.e., roots and buds. Plants treated with Fosetyl-Al contained phosphorous acid residues in their fruits and buds two years after the suspension of the treatment, suggesting a long-term persistence of the substance in plant storage organs. A second experiment, involving treatment of trees with seven foliar fertilizers of different composition, also induced accumulation of phosphorous acid residues in fruits. It is concluded that a wide array of foliar products containing phosphorous acid, even as a minor component, could mimic the residue effect of phosphonate fungicide treatments.

  14. Influence of fertilisation with foliar urea on the content of amines in wine.

    PubMed

    Ancín-Azpilicueta, C; Nieto-Rojo, R; Gómez-Cordón, J

    2011-01-01

    Amines are substances that could cause toxic effects in the consumer. The concentration of amines in wine depends on different factors such as grape variety, vinification conditions and nitrogen fertilisation of the vines. The aim of this work was to study the influence of the application of foliar urea on the concentration of amines in wine. To carry out the study, grapevines of Tempranillo variety were used. These grapevines were treated with foliar urea at two different concentrations: 2 and 4 kg N ha(-1). Treatment with foliar urea significantly increased (p < 0.05) the concentration of histamine in the wines compared with the control sample (65% in the treatment with 2 kg N ha(-1) and 93% in the treatment with 4 kg N ha(-1)), reaching higher concentrations than the threshold level where it could provoke toxic effects in the consumer (8-20 mg l(-1)). On the other hand, treatment with foliar urea did not increase the concentrations of other amines which could be toxic such as tyramine or phenylethylamine, nor amines such as putrescine which could enhance the toxic effect of histamine. In the case of the volatile amines containing secondary amine groups, the concentration of pirrolidine increased by 37% after treatment with 2 kg N ha(-1) and 61% after treatment with 4 kg N ha(-1).

  15. Foliar amino acid accumulation as an indicator of ecosystem stress for first-year sugar maple seedlings

    SciTech Connect

    McLaughlin, J.W.; Reed, D.D.; Jurgensen, M.F.

    1994-01-01

    Accumulation of certain plant foliar amino acids (arginine, glutamine, and proline) can be used as indicators of anthropogenic and natural stressors, such as atmospheric deposition and mineral nutritional imbalances, which result in decreased plant growth. In this study a number of factors were evaluated to assess the use of foliar amino acid accumulation as indicators of sugar maple seedling stress at two sugar maple dominated forests in Michigan. These factors were: (1) first-year sugar maple (Acer saccharum Marshall) seedling growth, (2) N and P nutrition, (3) soluble foliar and root total amino acid concentrations, and (4) concentrations of foliar arginine, glutamine, and proline. The most southern site (Wellston), which was exposed to high atmospheric deposition and had high available soil P and seedling foliar P, had greater seedling growth. Foliar glutamine, arginine, and proline were greater at the most northern site (Alberta), which received lesser amounts of atmospheric deposition, but also had lower levels of available soil phosphorus, seedling foliar phosphorus, less seedling growth, and greater canopy closure. These results suggest that since atmospheric deposition is high in nitrogen, even the low levels of deposition at Alberta may be interacting with ecological variables such as, available soil phosphorus, light, or moisture to result in NIP imbalances and consequently higher arginine and glutamine concentrations in seedling foliage. 37 refs., 4 figs., 3 tabs.

  16. Erythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamore.

    SciTech Connect

    Coyle, David, Robert: Aubrey, Doug, Patric; Bentz, Jo-Ann

    2010-01-01

    Abstract 1 Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2 Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3 Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundance was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4 Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5 The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding.

  17. Atmospheric change alters foliar quality of host trees and performance of two outbreak insect species.

    PubMed

    Couture, John J; Meehan, Timothy D; Lindroth, Richard L

    2012-03-01

    This study examined the independent and interactive effects of elevated carbon dioxide (CO(2)) and ozone (O(3)) on the foliar quality of two deciduous trees species and the performance of two outbreak herbivore species. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE research site in northern Wisconsin, USA, under four combinations of ambient and elevated CO(2) and O(3). We measured the effects of elevated CO(2) and O(3) on aspen and birch phytochemistry and on gypsy moth (Lymantria dispar) and forest tent caterpillar (Malacosoma disstria) performance. Elevated CO(2) nominally affected foliar quality for both tree species. Elevated O(3) negatively affected aspen foliar quality, but only marginally influenced birch foliar quality. Elevated CO(2) slightly improved herbivore performance, while elevated O(3) decreased herbivore performance, and both responses were stronger on aspen than birch. Interestingly, elevated CO(2) largely offset decreased herbivore performance under elevated O(3). Nitrogen, lignin, and C:N were identified as having strong influences on herbivore performance when larvae were fed aspen, but no significant relationships were observed for insects fed birch. Our results support the notion that herbivore performance can be affected by atmospheric change through altered foliar quality, but how herbivores will respond will depend on interactions among CO(2), O(3), and tree species. An emergent finding from this study is that tree age and longevity of exposure to pollutants may influence the effects of elevated CO(2) and O(3) on plant-herbivore interactions, highlighting the need to continue long-term atmospheric change research.

  18. Habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses

    PubMed Central

    Liu, Yanjie; Zhang, Lirong; Niu, Haishan; Sun, Yue; Xu, Xingliang

    2014-01-01

    A decrease in foliar δ13C with increasing precipitation is a common tendency in steppe plants. However, the rate of decrease has been reported to differ between different species or populations. We here hypothesized that plant populations in the same habitat of temperate steppes may not differ in foliar δ13C response patterns to precipitation, but could differ in the levels of plasticity of foliar δ13C across different habitats. In order to test this hypothesis, we conducted controlled watering experiments in northeast China at five sites along a west–east transect at latitude 44°N, which show substantial interannual fluctuations and intra-annual changes in precipitation among them. In 2001, watering treatment (six levels, three replicates) was assigned to 18 plots at each site. The responses of foliar δ13C to precipitation (i.e., the sum of watering and rainfall) were determined in populations of several grass species that were common across all sites. Although similar linear regression slopes were observed for populations of different species growing at the same site, significantly different slopes were obtained for populations of the same species growing at different sites. Further, the slope of the line progressively decreased from Site I to Site V for all species in this study. These results suggest habitat-specific differences in plasticity of foliar δ13C in temperate steppe grasses. This indicates that species' δ13C response to precipitation is conservative at the same site due to their long-term acclimation, but the mechanism responsible behind this needs further investigations. PMID:25035804

  19. Climatic limits on foliar growth during major droughts in the Southwestern U.S.A.

    USGS Publications Warehouse

    Weiss, Jeremy L.; Betancourt, Julio L.; Overpeck, Jonathan T.

    2012-01-01

    Pronounced droughts during the 1950s and 2000s in the Southwestern U.S.A. (SW) provide an opportunity to compare mesoscale ecosystem responses to anomalously dry conditions before and during the regional warming that started in the late 1970s. This year-round warming has produced fewer cool season freezes, losses in regional snowpack, an 8-10 day advance in spring onset, and hotter summers, all of which should affect vegetation differently across seasons and elevations. Here, we examine indices that represent climatic limits on foliar growth for both drought periods, and evaluate these indices for areas that experienced tree mortality during the 2000s drought. Relative to the 1950s drought, warmer conditions during the 2000s drought decreased the occurrence of temperatures too low for foliar growth at lower elevations in winter and higher elevations in summer. Higher vapor pressure deficits (VPDs) largely driven by warmer temperatures in the more recent drought were more limiting to foliar growth from spring through summer at lower and middle elevations. At many locations where tree mortality occurred during the 2000s drought, low-temperature constraints on foliar growth were extremely unlimiting, whereas VPD constraints were extremely limiting from early spring through late autumn. Our analysis shows that in physiographically complex regions like the SW, seasonality and elevational gradients are important for understanding vegetative responses to warming. It also suggests that continued warming will increase the degree to which VPD limits foliar growth during future droughts, and expand its reach to higher elevations and other seasons.

  20. Variations of foliar carbon isotope discrimination and nutrient concentrations in Artemisia ordosica and Caragana korshinskii at the southeastern margin of China's Tengger Desert

    NASA Astrophysics Data System (ADS)

    Zhao, Liangju; Xiao, Honglang; Liu, Xiaohong

    2006-05-01

    Seasonal variations in foliar stable carbon isotope discrimination (Δ) of Artemisia ordosica and Caragana korshinskii and correlations of foliar Δ with N, P, and K concentrations were studied under different planting regimes at the southeastern margin of China’s Tengger Desert. Foliar Δ, N, P, and K concentrations and the correlations of Δ with N, P, and K differed between the species and planting regimes. Foliar Δ, P and K concentrations in A. ordosica were markedly higher than in C. korshinskii, while foliar N concentrations in C. korshinskii was significantly higher than in A. ordosica. There were no significant differences in N, P, and K concentrations in C. korshinskii between planting regimes, but foliar Δ was significantly increased after June in mixed-species planting. In A. ordosica foliar N concentrations in mixed-species planting and foliar Δ in single-species planting were significantly higher than those of corresponding planting regimes. According to water-use efficiency (WUE) calculated based on foliar Δ, and on N, P, and K concentrations, C. korshinskii’s survival may profit from its higher WUE, whereas A. ordosica can avoid drought damage by its higher P and K concentrations in leaves in arid or semi-arid environments. The complex correlations of foliar Δ with foliar N, P and K suggested that water in C. korshinskii and water and P nutrition in A. ordosica were the key factors limiting their growth.

  1. Low-Cost,Portable Multispectral Radiometer For Assessment Of Onset And Severity Of Foliar Disease Of Barley

    NASA Astrophysics Data System (ADS)

    Pederson, Vernyl D.; Nutter, Forrest W.

    1983-06-01

    A low-cost, hand-held multiband radiometer was used to measure reflected sunlight from barley canopies with varying levels of spot blotch, a foliar disease of barley. Spectrora-diometric measurements indicated that reflection of light in the .75 - .9 μm range was significantly less (P = < .01) from diseased canopies than from healthy ones. Yield of grain from the susceptible cultivar 'Larker' was correlated positively with amount of reflectance in the .75 - .9 μm range (P < .01). The results suggest the instrument may be useful for the objective assessment of foliar disease and the possible development of models to estimate losses from foliar disease.

  2. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  3. Corn silage from corn treated with foliar fungicide and performance of Holstein cows.

    PubMed

    Haerr, K J; Lopes, N M; Pereira, M N; Fellows, G M; Cardoso, F C

    2015-12-01

    Foliar fungicide application to corn plants is used in corn aimed for corn silage in the dairy industry, but questions regarding frequency of application and its effect on corn silage quality and feed conversion when fed to dairy cows remain prevalent. The objective of this study was to evaluate the effects of various foliar fungicide applications to corn on dry matter intake (DMI), milk production, and milk composition when fed to dairy cows. Sixty-four Holstein cows with parity 2.5±1.5, 653±80kg of body weight, and 161±51d in milk were blocked and randomly assigned to 1 of 4 corn silage treatments (total mixed ration with 35% of the dry matter as corn silage). Treatments were as follows: control (CON), corn silage with no applications of foliar fungicide; treatment 1 (1X), corn silage from corn that received 1 application of pyraclostrobin (PYR) foliar fungicide (Headline; BASF Corp.) at corn vegetative stage 5; treatment 2 (2X), corn silage from corn that received the same application as 1X plus another application of a mixture of PYR and metconazole (Headline AMP; BASF Corp.) at corn reproductive stage 1 ("silking"); and treatment 3 (3X), corn silage from corn that received the same applications as 2X as well as a third application of PYR and metconazole at reproductive stage 3 ("milky kernel"). Corn was harvested at about 32% dry matter and 3/4 milk line stage of kernel development and ensiled for 200d. Treatments were fed to cows for 5wk, with the last week being used for statistical inferences. Week -1 was used as a covariate in the statistical analysis. Dry matter intake tended to be lower for cows fed corn silage treated with fungicide than CON (23.8, 23.0, 19.5, and 21.3kg for CON, 1X, 2X, and 3X, respectively). A linear treatment effect for DMI was observed, with DMI decreasing as foliar fungicide applications increased. Treatments CON, 1X, 2X, and 3X did not differ for milk yield (34.5, 34.5, 34.2, and 34.4kg/d, respectively); however, a trend for

  4. [Seasonal release characteristics of Ca, Mg and Mn of foliar litter of six tree species in subtropical evergreen broadleaved forest].

    PubMed

    Ma, Zhi-liang; Gao, Shun; Yang, Wan-qin; Wu, Fu-zhong

    2015-10-01

    Seasonal release dynamics of Ca, Mg and Mn during decomposition of foliar litter of Pinus massoniana, Cryptomeria fortunei, Cunninghamia lanceolata, Cinnamomum camphora, Toona ciliate, and Quercus acutissima were investigated in subtropical evergreen broad-leaved forest employing the method of litterbag. After one-year decomposition, the release rates of Ca, Mg and Mn in foliar litter of the studied tree species ranged from -13.8% to 92.3%, from 4.0% to 64.8%, and from 41.6% to 81.1%, respectively. Ca dynamics in foliar litter of P. massoniana, C. camphora exhibited the pattern of accumulating early and releasing later, while that of the other four tree species showed direct release. Similarly, the dynamics of Mg released from foliar litter of C. camphora showed the pattern of accumulating early and then releasing, while that of the other five tree species exhibited continuous release. Meanwhile, the dynamics of Mn released from foliar litter of C. fortunei and T. ciliate exhibited early accumulation, and subsequent release, while that of the other four tree species showed continuous release. The releases of Ca, Mg and Mn in foliar litter were greatly influenced by seasonal rainfall, and varied with tree species. Furthermore, the rates and amounts of Ca, Mg and Mn released from foliar litter were higher in rainy season than in dry season. In conclusion, the initial nutrient concentrations and precipitation were two key factors influencing the release dynamics of Ca, Mg and Mn during decomposition of foliar litter in the subtropical evergreen broad-leaved forest.

  5. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    PubMed

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  6. Eutrophication of mangroves linked to depletion of foliar and soil base cations.

    PubMed

    Fauzi, Anas; Skidmore, Andrew K; Heitkönig, Ignas M A; van Gils, Hein; Schlerf, Martin

    2014-12-01

    There is growing concern that increasing eutrophication causes degradation of coastal ecosystems. Studies in terrestrial ecosystems have shown that increasing the concentration of nitrogen in soils contributes to the acidification process, which leads to leaching of base cations. To test the effects of eutrophication on the availability of base cations in mangroves, we compared paired leaf and soil nutrient levels sampled in Nypa fruticans and Rhizophora spp. on a severely disturbed, i.e. nutrient loaded, site (Mahakam delta) with samples from an undisturbed, near-pristine site (Berau delta) in East Kalimantan, Indonesia. The findings indicate that under pristine conditions, the availability of base cations in mangrove soils is determined largely by salinity. Anthropogenic disturbances on the Mahakam site have resulted in eutrophication, which is related to lower levels of foliar and soil base cations. Path analysis suggests that increasing soil nitrogen reduces soil pH, which in turn reduces the levels of foliar and soil base cations in mangroves.

  7. Phytotoxic activity of foliar volatiles and essential oils of Calamintha nepeta (L.) Savi.

    PubMed

    Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Statti, Giancarlo Antonio; Abenavoli, Maria Rosa

    2013-01-01

    Foliar volatiles and essential oils of Calamintha nepeta (L.) Savi, a Mediterranean plant species belonging to the Labiatae family, were investigated for their phytotoxic activities on seed germination and root growth of crops (Lactuca sativa L. and Raphanus sativus L.) and weed species (Lolium perenne L. and Amaranthus retroflexus L.). Foliar volatiles of C. nepeta (L.) Savi strongly inhibited both germination and root growth of lettuce, and its essential oils, especially at 125, 250 and 500 μL/L, inhibited both processes in lettuce, radish and A. retroflexus L. species, while displaying a little effect on L. perenne L. By GC-MS, 28 chemicals were identified: 17 monoterpenes, 8 sesquiterpenes, 1 diterpene and 2 miscellaneous. Pulegone was the main constituent of the C. nepeta (L.) Savi essential oils. The terpenic components of essentials oils were probably responsible for the phytotoxic activities.

  8. Potential of foliar, dip, and injection applications of avermectins for control of plant-parasitic nematodes.

    PubMed

    Jansson, R K; Rabatin, S

    1998-03-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 mug/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.

  9. Potential of Foliar, Dip, and Injection Applications of Avermectins for Control of Plant-Parasitic Nematodes

    PubMed Central

    Jansson, Richard K.; Rabatin, Susan

    1998-01-01

    Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes. PMID:19274200

  10. Reconciling In Situ Foliar Nitrogen and Vegetation Structure Measurements with Airborne Imagery Across Ecosystems

    NASA Astrophysics Data System (ADS)

    Flagg, C.

    2015-12-01

    Over the next 30 years the National Ecological Observatory Network (NEON) will monitor environmental and ecological change throughout North America. NEON will provide a suite of standardized data from several ecological topics of interest, including net primary productivity and nutrient cycling, from 60+ sites across 20 eco-climatic domains when fully operational in 2017. The breadth of sampling includes ground-based measurements of foliar nitrogen and vegetation structure, ground-based spectroscopy, airborne LIDAR, and airborne hyperspectral surveys occurring within narrow overlapping time intervals once every five years. While many advancements have been made in linking and scaling in situ data with airborne imagery, establishing these relationships across dozens of highly variable sites poses significant challenges to understanding continental-wide processes. Here we study the relationship between foliar nitrogen content and airborne hyperspectral imagery at different study sites. NEON collected foliar samples from three sites in 2014 as part of a prototype study: Ordway Swisher Biological Station (pine-oak savannah, with active fire management), Jones Ecological Research Center (pine-oak savannah), and San Joaquin Experimental Range (grass-pine oak woodland). Leaf samples and canopy heights of dominant and co-dominant species were collected from trees located within 40 x 40 meter sampling plots within two weeks of aerial LIDAR and hyperspectral surveys. Foliar canopy samples were analyzed for leaf mass per area (LMA), stable isotopes of C and N, C/N content. We also examine agreement and uncertainty between ground based canopy height and airborne LIDAR derived digital surface models (DSM) for each site. Site-scale maps of canopy nitrogen and canopy height will also be presented.

  11. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables

    PubMed Central

    Lawson, Patrick G.; Daum, Diemo; Czauderna, Roman; Meuser, Helmut; Härtling, Joachim W.

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha-1) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desired iodine content [50–100 μg I (100 g FM)-1] was obtained or exceeded at a fertilizer rate of 7.5 kg IO3--I ha-1 without a significant yield reduction or impairment of the marketable quality. In contrast, supplying KI at the same rate resulted in a much lower iodine enrichment and clearly visible growth impairment. Soil applied iodine was phytoavailable only for a short period of time as indicated by a rapid decline of CaCl2-extractable iodine in the top soil. Consequently, long-term effects of a one-time iodine soil fertilization could not be observed. A comparison between the soil and the foliar fertilization revealed a better performance of iodine applied aerially to butterhead lettuce, which reached the desired iodine accumulation in edible plant parts at a fertilizer rate of 0.5 kg I--I ha-1. In contrast, the iodine content in the tuber of sprayed kohlrabi remained far below the targeted range. The results indicate that a sufficient spreading of iodine applied on the edible plant parts is crucial for the efficiency of the foliar approach and leafy vegetables are the more suitable target crops. The low iodine doses needed as well as the easy and inexpensive application may favor the implementation of foliar sprays as the preferred iodine biofortification strategy in practice. PMID:26157445

  12. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the

  13. Foliar washoff potential and simulated surface runoff losses of trifloxysulfuron in cotton.

    PubMed

    Matocha, Mark A; Krutz, L Jason; Reddy, Krishna N; Senseman, Scott A; Locke, Martin A; Steinriede, Robert W; Palmer, Eric W

    2006-07-26

    The surface runoff potential of trifloxysulfuron {N-[(4,6-dimethoxy-2-pyrimidinyl)carbamoyl]-3-(2,2,2-trifluoroethoy)-pyridin-2-sulfonamide sodium salt} in cotton (Gossypium hirsutum L.) production systems has not been evaluated. The objectives of this study were to (i) determine sorption/desorption coefficients for trifloxysulfuron; (ii) quantify foliar washoff of trifloxysulfuron when applied to cotton at the five-leaf stage; and (iii) determine the surface runoff potential of trifloxysulfuron when applied to cotton at the five-leaf stage and to bare soil. Freundlich sorption and desorption coefficients were 1.15 and 1.22, respectively. Sorption data indicated that trifloxysulfuron was moderately sorbed to soil and that it will be transported primarily in the dissolved phase of surface runoff. Foliar washoff studies revealed that approximately 91% of trifloxysulfuron applied to cotton at the five-leaf stage was available for washoff 72 h after application. Simulated rainfall (7.5 cm h-1) applied 1 day after herbicide application (7.9 g ha-1) resulted in average concentrations of trifloxysulfuron in surface runoff water of 0.8 microg L-1 for bare plots and 1.3 microg L-1 for cotton plots. Cumulative trifloxysulfuron losses in surface runoff from bare plots and cotton plots were 0.13 and 0.21 g ha-1, respectively. These values correspond to fractional losses of 1.7% for bare plots and 2.7% for cotton plots. Greater runoff losses of trifloxysulfuron from cotton plots were attributed to foliar washoff. Trifloxysulfuron runoff losses may be curtailed if the herbicide is applied early postemergence when canopy coverage is minimal, thereby reducing the potential for foliar washoff.

  14. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables.

    PubMed

    Lawson, Patrick G; Daum, Diemo; Czauderna, Roman; Meuser, Helmut; Härtling, Joachim W

    2015-01-01

    Iodine (I) biofortification of vegetables by means of soil and foliar applications was investigated in field experiments on a sandy loam soil. Supply of iodine to the soil in trial plots fertilized with potassium iodide (KI) and potassium iodate directly before planting (0, 1.0, 2.5, 7.5, and 15 kg I ha(-1)) increased the iodine concentration in the edible plant parts. The highest iodine accumulation levels were observed in the first growing season: In butterhead lettuce and kohlrabi the desired iodine content [50-100 μg I (100 g FM)(-1)] was obtained or exceeded at a fertilizer rate of 7.5 kg IO3 (-)-I ha(-1) without a significant yield reduction or impairment of the marketable quality. In contrast, supplying KI at the same rate resulted in a much lower iodine enrichment and clearly visible growth impairment. Soil applied iodine was phytoavailable only for a short period of time as indicated by a rapid decline of CaCl2-extractable iodine in the top soil. Consequently, long-term effects of a one-time iodine soil fertilization could not be observed. A comparison between the soil and the foliar fertilization revealed a better performance of iodine applied aerially to butterhead lettuce, which reached the desired iodine accumulation in edible plant parts at a fertilizer rate of 0.5 kg I(-)-I ha(-1). In contrast, the iodine content in the tuber of sprayed kohlrabi remained far below the targeted range. The results indicate that a sufficient spreading of iodine applied on the edible plant parts is crucial for the efficiency of the foliar approach and leafy vegetables are the more suitable target crops. The low iodine doses needed as well as the easy and inexpensive application may favor the implementation of foliar sprays as the preferred iodine biofortification strategy in practice.

  15. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese

    PubMed Central

    Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  16. Effects of ozone on morphogenesis of the foliar embryos of bryophyllum calycinum Salisb

    SciTech Connect

    Rier, J.P.; Phillips, G. )

    1990-01-01

    Explants from three different ages, including the foliar embryo of ozonated and non-ozonated marginal leaf tissue from Bryophyllum calycinum were cultured on modified formulations of Murashige and Skoog's medium. Kinetin 2,4-D and IAA were added to the media individually or in combination. The development of the embryos was affected by tissue age, media composition and prior exposure to ozone. The production of callus, shoots, roots and anthocyanin were all in response to different sets of culture conditions.

  17. Pre-harvest foliar application of ethephon strengthens gibberellins-induced fruit expansion in Pyrus pyrifolia.

    PubMed

    Ma, C; Wang, L; Lee, U Y; Tanabe, K; Kang, S; Zhang, C X

    2016-12-23

    To identify the roles of ethylene in fruit development in Japanese pear Pyrus pyrifolia 'Niitaka', one of the non-climacteric genotypes, source-sink strength and fruit development during fruit expansion were investigated when ethephon was applied after a conventional gibberellic acid (GA) lanolin paste treatment on the pedicel. The results demonstrate that the conventional GA treatment during the early stage of fruit expansion resulted in larger fruit size and advanced fruit maturation, but pre-harvest foliar application of ethephon only advanced fruit maturation. However, pre-harvest foliar application of ethephon with a preceding conventional GA treatment during the early stage of fruit expansion dramatically improved fruit size and advanced fruit maturation over GA or ethephon alone. Moreover, the early foliar application of ethephon showed a better efficacy in increasing fruit size than the late spraying. A further study revealed that when ethephon was applied after the conventional GA treatment, it improved source-sink strength associated with leaf photosynthesis and the specific rate of [(13)C] accumulation in fruit, and also strengthened cell expansion more than did GA or ethephon alone.

  18. Foliar Nutritional Quality Explains Patchy Browsing Damage Caused by an Invasive Mammal

    PubMed Central

    Windley, Hannah R.; Barron, Mandy C.; Holland, E. Penelope; Starrs, Danswell; Ruscoe, Wendy A.; Foley, William J.

    2016-01-01

    Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect) of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein) and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems. PMID:27171381

  19. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer.

    PubMed

    Moyes, Andrew B; Kueppers, Lara M; Pett-Ridge, Jennifer; Carper, Dana L; Vandehey, Nick; O'Neil, James; Frank, A Carolin

    2016-04-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2 -fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P. flexilis-AAB association is consistent across years, we re-sampled P. flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N2 , we incubated twigs with (13) N2 -enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using (13) N. We used the acetylene reduction assay to test for nitrogenase activity within P. flexilis twigs four times from June to September. We found evidence for N2 fixation in P. flexilis foliage. N2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6 μg N m(-2)  d(-1) to P. flexilis stands. AAB dominated the P. flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stable N2 -fixing strategy for long-lived conifers. This novel source of biological N2 fixation has fundamental implications for understanding forest N budgets.

  20. Foliar nutrient status of Pinus ponderosa exposed to ozone and acid rain

    SciTech Connect

    Anderson, P.D.; Houpis, J.L.J. )

    1991-05-01

    A direct effect of foliar exposure to acid rain may be increased leaching of nutrient elements. Ozone exposure, through degradation of the cuticle and cellular membranes, may also result in increased nutrient leaching. To test these hypotheses, the foliar concentrations of 13 nutrient elements were monitored for mature branches of three clones of Pinus ponderosa exposed to ozone and/or acid rain. The three clones represented three distinct levels of phenotypic vigor. Branches were exposed to charcoal filtered, ambient, or 2 x ambient concentrations of ozone and received no acid rain (NAP), pH 5.1 rain (5.1), or pH 3.0 (3.0) rain. Following 10 months of continuous ozone exposure and 3 months of weekly rain applications, the concentrations of P and Mg differed significantly among rain treatments with a ranking of: 5.1 < NAP < 3.0. The S concentration increased with rain application regardless of pH. For the clones of moderate and low vigor, the concentration of N decreased with increasing rain acidity. There was no evidence of significant ozone or ozone x acid rain response. Among the three families, high phenotypic vigor was associated with significantly greater concentrations of N, P, K, Mg, B and An. These results indicate generally negligible leaching as a result of exposure to acid rain and/or ozone for one growing season. Increases in foliar concentrations of S, Mg and P are possibly the result of evaporative surface deposition from the rain solution.

  1. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region.

    PubMed

    Asner, Gregory P; Martin, Roberta E; Carranza-Jiménez, Loreli; Sinca, Felipe; Tupayachi, Raul; Anderson, Christopher B; Martinez, Paola

    2014-10-01

    Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.

  2. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    PubMed

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.

  3. Effects of hemlock woolly adelgid and elongate hemlock scale on eastern hemlock growth and foliar chemistry.

    PubMed

    Miller-Pierce, Mailea R; Orwig, David A; Preisser, Evan

    2010-04-01

    In the eastern United States, two invasive specialist insects share a native host plant, Eastern hemlock, Tsuga canadensis. In recent years, much research has focused on the impacts of the hemlock woolly adelgid (Adelges tsugae) because of the detrimental effects it has on hemlock growth and survival. In contrast, the invasive elongate hemlock scale (Fiorinia externa) is thought to have only minor impacts on hemlock. We infested hemlock saplings with each insect and compared them with control (i.e., neither insect herbivore) saplings to assess how early infestations impact Eastern hemlock health (measured using new branch growth, foliar %N, and C:N ratio). Our study showed that, at equal densities, the two insects differed in their effect on Eastern hemlock. F. externa did not impact plant growth or foliar chemistry over the course of the 2-yr experiment. A. tsugae significantly reduced plant growth and caused a reduction of %N in the first year of the experiment. By the end of the experiment, A. tsugae trees had the same %N in their foliage as control and F. externa trees but drastically reduced growth patterns. The most likely explanation for this result is the greater growth in control and F. externa saplings during the second year resulted in the dilution of available foliar N over a larger amount of newly produced plant tissue. For early infestations of both insects, our study suggests that management plans should focus on the more detrimental A. tsugae.

  4. Root and foliar nutrient concentrations in loblolly pine: Effects of season, site, and fertilization

    SciTech Connect

    Adams, M.B. ); Campbell, R.G. ); Allen, H.L.; Davey, C.B. )

    1987-12-01

    Nitrogen (N) and phosphorus (P) concentrations in the roots and foliage of plantation-grown loblolly pine were examined over a period of 18 months. Samples were collected from 4 sites on the lower coastal plain of North Carolina, each representing a distinct combination of soil moisture and soil fertility. The patterns in foliar and root nutrient concentrations followed similar trends over the course of this study. However, seasonal trends were irregular, suggesting that annual climatic variation may affect seasonal nutrient levels. Nutrient concentrations varied among sites, as did effects of fertilization (225 kg N ha{sup {minus}1}, 225 kg N ha{sup {minus}1} + 75 kg P ha{sup {minus}1}) on nutrient concentrations. Significant fertilizer effects on nutrient concentrations did not always result in increased volume growth. On some sites, root N and P concentrations appeared to be more sensitive to fertilizer-induced changes than did foliar nutrient levels and may have integrated site factors more effectively than foliar concentrations. Foliage seemed more sensitive of N deficiencies, while the roots detected P deficiencies more often.

  5. Management of Pratylenchus penetrans on Oriental Lilies with Drip and Foliar-applied Nematicides.

    PubMed

    Westerdahl, B B; Giraud, D; Radewald, J D; Anderson, C A; Darso, J

    1993-12-01

    Pratylenchus penetrans is a pest for producers of oriental lilies in northern California. Concern over groundwater contamination from 1,2-dichloropropane following shank injections of 1,3-dichloropropene-l,2-dichloropropane mixture and granular applications of aldicarb prompted testing for alternative methods of controlling P. penetrans. In field trials, nematicides applied by drip irrigation (ethoprop, fenamiphos, oxamyl, sodium tetrathiocarbonate, water extracts of marigold and vetch, and 1,3-D plus emulsifier) were tested with and without foliar applications of oxamyl. Nematode populations were reduced (P = 0.05) relative to controls in soil or roots on one or more sampling dates by all drip-applied nematicides except the plant extracts. On some sampling dates, additional reductions (P = 0.05) occurred as a result of three foliar applications of oxamyl. Foliar-applied oxamyl alone also reduced (P = 0.05) nematodes in soil or roots. Lily bulb weight was not affected (P = 0.05) by chemical treatments.

  6. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species

    PubMed Central

    Borzak, Christina L.; Potts, Brad M.; Davies, Noel W.; O’Reilly-Wapstra, Julianne M.

    2015-01-01

    Background and Aims The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant–herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. Methods Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. Key Results Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. Conclusions The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways. PMID:25434028

  7. Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem.

    PubMed

    Hall, Myra C; Stiling, Peter; Moon, Daniel C; Drake, Bert G; Hunter, Mark D

    2005-02-01

    Atmospheric CO2 concentrations have increased exponentially over the last century and continuing increases are expected to have significant effects on ecosystems. We investigated the interactions among atmospheric CO2, foliar quality, and herbivory within a scrub oak community at the Kennedy Space Center, Florida. Sixteen plots of open-top chambers were followed; eight of which were exposed to ambient levels of CO2 (350 ppm), and eight of which were exposed to elevated levels of CO2 (700 ppm). We focused on three oak species, Quercus geminata, Quercus myrtifolia, Quercus chapmanii, and one nitrogen fixing legume, Galactia elliottii. There were declines in overall nitrogen and increases in C:N ratios under elevated CO2. Total carbon, phenolics (condensed tannins, hydrolyzable tannins, total phenolics) and fiber (cellulose, hemicellulose, lignin) did not change under elevated CO2 across plant species. Plant species differed in their relative foliar chemistries over time, however, the only consistent differences were higher nitrogen concentrations and lower C:N ratios in the nitrogen fixer when compared to the oak species. Under elevated CO2, damage by herbivores decreased for four of the six insect groups investigated. The overall declines in both foliar quality and herbivory under elevated CO2 treatments suggest that damage to plants may decline as atmospheric CO2 levels continue to rise.

  8. Influence of foliar fertilization with P and K on chemical constituents of grape cv. 'Cardinal'.

    PubMed

    Topalović, Ana; Slatnar, Ana; Stampar, Franci; Knezević, Mirko; Veberic, Robert

    2011-09-28

    The foliar fertilization has been used as an important agrotechnical measure to avoid deficiencies and to improve quality. During the two consecutive years, a study has been performed on Vitis vinifera L. (cv. 'Cardinal') to examine whether a grape berry quality has been affected by the foliar application of PK fertilizer. A liquid mineral fertilizer containing 15% P2O5, 20% K2O with 0.1% B, 0.1% Mn and 0.01% Mo (% w/w) has been sprayed three times at rate of 8 L ha(-1) every 14-15 days starting at about 15 days before veraison. The sugars, organic acids and flavonoids (anthocyanins, flavonols and flavan-3-ols) have been analyzed by the high performance liquid chromatography in the grape berries. The foliar fertilization of grapevine can accelerate the accumulation of sugars and anthocyanins, whereas climatic factors and yearly fluctuations influence the content of sugars, organic acids, and phenolic compounds in general. The effect of fertilizer spraying on flavonols and flavan-3-ols has not been found.

  9. Quantifying Foliar Pigment Concentrations of Temperate Forest Species Using Digital Photography and Hyperspectral Reflectance Indices

    NASA Astrophysics Data System (ADS)

    Gagnon, M. T.; Rock, B. N.; Jahnke, L. S.; Lee, T. D.

    2008-12-01

    Determination of leaf chlorophyll content is a common and important procedure for plant scientists. There are many multispectral techniques for non destructive in-vivo, estimation of chlorophyll in foliage. Although much has been done to explore the estimation of foliar pigments using remote sensing, very little work has been done exploring the potential that basic, affordable, digital cameras may have for such analysis. This study utilizes a combination of digital photography, hyperspectral laboratory remote sensing, and chlorophyll extractions to determine if digital photographs can be used to accurately predict foliar chlorophyll concentrations as well to compare this digital approach with several common spectral indices used for estimating foliar chlorophyll content. Foliar materials for this study come from three sources. A large collection of samples were collected (60) from 9 common temperate forest species in July and late September over a 1 kilometer area at the Bartlett Experimental Forest in northern New Hampshire. Secondly, 15 trees were selected in a forested setting near the University of New Hampshire for more intensive phenological analysis. These samples consist of 5 white pine (Pinus strobus), 5 black oak (Quercus velutina) and 5 sugar maple (Acer saccharum). Finally, dozens of samples of white pine utilized in Forest Watch, a successful K-12 science outreach which assesses the impact of tropospheric ozone on forest health in New England, were also analyzed for this study. For all samples in this study, chlorophyll extractions were conducted to determine chlorophyll a, chlorophyll b, and total chlorophyll concentrations. Laboratory spectral analysis was performed using a GER 2600 Spectroradiometer to determine hyperspectral estimates of chlorophyll content using a Red Edge Inflection Point (REIP) approach, as well as a Transformed Chlorophyll Absorption Reflectance Index/Optimized Soil Adjusted Vegetation Index (TCARI/OSAVI) approach. These

  10. Forest vegetation monitoring and foliar chemistry of red spruce and red maple at Acadia National Park in Maine.

    PubMed

    Wiersma, G Bruce; Elvir, Jose Alexander; Eckhoff, Janet D

    2007-03-01

    The USDA Forest Service Forest Health Monitoring (FHM) program indicators, including forest mensuration, crown condition classification, and damage and mortality indicators were used in the Cadillac Brook and Hadlock Brook watershed forests at Acadia National Park (ANP) along coastal Maine. Cadillac Brook watershed burned in a wildfire in 1947. Hadlock Brook watershed, undisturbed for several centuries, serves as the reference site. These two small watersheds have been gauged and monitored at ANP since 1998 as part of the Park Research and Intensive Monitoring of Ecosystems Network (PRIMENet). Forest vegetation at Hadlock Brook was dominated by late successional species such as Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Acer rubrum and Picea rubens. Forest vegetation at Cadillac Brook, on the other hand, was younger and more diverse and included those species found in Hadlock as well as early successional species such as Betula papyrifera and Populus grandidentata. Differences in forest species composition and stand structure were attributed to the severe wildfire that affected the Cadillac Brook watershed. Overall, the forests at these ANP watersheds were healthy with a low percentage (Foliar nitrogen (N) concentrations were higher in A. rubrum and P. rubens trees growing in Hadlock Brook watershed, but differences were significant only for P. rubens. Foliar aluminum (Al) concentrations were also higher in both species growing in Hadlock Brook watershed but differences were significant only for A. rubrum. Foliar calcium (Ca) and manganese (Mn) concentrations, on the other hand, were significantly lower in Hadlock Brook watershed for both species. Foliar potassium (K) was significantly higher for P. rubens growing in Hadlock Brook. No differences in foliar concentrations of magnesium (Mg), phosphorus (P), boron (B), copper (Cu) and lead (Pb) were found between watersheds. The higher foliar N concentrations

  11. [Platanus orientalis foliar N% and delta15 N responses to nitrogen of atmospheric wet deposition in urban area].

    PubMed

    Wang, Yan-Li; Xiao, Hua-Yun; Xiao, Hong-Wei

    2012-04-01

    Leaves of Platanus orientalis were collected since Mar. 2009 till Apr. 2010, in an urban area at Guiyang. After mass of experiments and analysis, we carried out constructing the temporal variation of foliar N% and delta15 N: both higher in Spring/Summer, lower in Autumn, no data of Winter because of leaf abscission. Results showed that foliar N% varied from 1.48% to 5.27%, with an annual average of 3.36%, while the average concentration of total N in rhizospheric soil was 0.29%. The foliar N% rose and fell relative to DIN in rainwater (range from 0.57 mg x L(-1) to 6.74 mg x L(-1)), indicating that the N% content in foliar tissue of plant was approximately proportional to atmospheric N inputs. The range of foliar delta15N were from 4.48 per thousand to 8.39 per thousand, with the average of 6.33 per thousand, much higher than the delta15N-NH4+ of rain water (-19.76 per thousand(-) -10.41 per thousand) and delta15TN of rhizospheric soil (3.19 per thousand +/- 1.04 per thousand). Besides, a good uniform correlation between foliar delta15N and delta15N-NH4+ of rain water were found. As synthesis of two main N sources, the more positive delta15N values of Platanus orientalis can be explained by isotopic fractionation during N uptake and basipetal translocation. These responses of both foliar N% and delta15N to atmospheric nitrogen deposition, revealed the potential value in using vascular leaves as bio-monitors for assessment of N deposition, furthermore, for prevention and control of air pollution in urban ecosystem.

  12. Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys.

    PubMed

    Hicks, W K; Leith, I D; Woodin, S J; Fowler, D

    2000-03-01

    The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.

  13. [Effects of different soil types on the foliar δ13C values of common local plant species in karst rocky desertification area in central Guizhou Province].

    PubMed

    Du, Xue-lian; Wang, Shi-jie; Luo, Xu-qiang

    2014-09-01

    By measuring the foliar δ13C values of common local plant species grown in different soil types in Wangjiazhai catchments, a typical karst desertification area in Qingzhen City, Central Guizhou, we studied the impact of soil type and rocky desertification grade on the foliar δ13C values. The results showed that the foliar δ13C values were more negative in yellow soil area than those in black calcareous area and there was no obvious difference in foliar δ13C values between these two soil types. The distribution interval of foliar δ13C values in yellow soil area was narrower than those in black calcareous area and the variation coefficient of foliar δ13C values in yellow soil area were smaller than those in black calcareous area. With increasing degree of karst rocky desertification, the foliar δ13C values of plant community in black calcareous area increased, whereas those in yellow soil area first increased and then decreased. The result of multiple comparison showed that the difference in foliar δ13C values of plant community among rocky desertification grade was not obvious in yellow soil area, but it was obvious in black calcareous area. Correlation analysis between the foliar δ13C values of plant species and the main environmental factors indicated that slope and soil thickness were the main factors which affected the foliar δ13C values of plants in yellow soil area and soil water contant was the main factor in black calcareous area. The impact of soil on the foliar δ13C values was realized by adjusting the soil moisture in study area.

  14. Enabling Continental-Scale Analysis of Vegetation Foliar Traits through Consistent Sampling and Analysis Protocols

    NASA Astrophysics Data System (ADS)

    Petroy, S. B.; Leisso, N.; Hinckley, E. S.; Meier, C. L.; Barnett, D.

    2013-12-01

    The National Ecological Observatory Network (NEON) is a continental-scale ecological observation platform designed to collect and disseminate data that contributes to understanding and forecasting the impacts of climate change, land use change, and invasive species on ecology. NEON will collect in-situ and airborne data over 60 sites across the US, including Alaska, Hawaii, and Puerto Rico. The NEON vegetation sampling protocol currently directs the collection of foliar samples from dominant species at each site; field spectra are collected from the samples that are further analyzed for bulk and isotopic carbon and nitrogen content. Through employment of consistent sampling and analysis strategies, NEON will provide a unique, rich, and varied data collection to support studies of foliar traits within species at specific sites and across/between regions. When combined with the NEON airborne hyperspectral and LiDAR imagery, these data will be key to support validation efforts of existing algorithms for deriving canopy scale nitrogen, carbon and other foliar traits, as well as supporting development of data products that are informed by - and include - the ground data specifically, thereby potentially reducing uncertainties in the observational data products. Presented here are prototype datasets collected at NEON Domain 1 (Harvard Forest, summer 2012) and Domain 17 (San Joaquin Experiment Range, summer 2013). Lessons-learned from the field campaigns are discussed, along with preliminary results from the Harvard Forest campaign, which combine the field and the laboratory data in support of current algorithm validation efforts. Extension of these protocols to future NEON Domain characterization activities is also presented.

  15. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.

    PubMed

    Fassnacht, Fabian E; Stenzel, Stefanie; Gitelson, Anatoly A

    2015-03-15

    Leaf pigment content is an important indicator of plant status and can serve to assess the vigor and photosynthetic activity of plants. The application of spectral information gathered from laboratory, field and remote sensing-based spectrometers to non-destructively assess total chlorophyll (Chl) content of higher plants has been demonstrated in earlier studies. However, the precise estimation of carotenoid (Car) content with non-destructive spectral measurements has so far not reached accuracies comparable to the results obtained for Chl content. Here, we examined the potential of a recently developed angular vegetation index (AVI) to estimate total foliar Car content of three tree species. Based on an iterative search of all possible band combinations, we identified a best candidate AVIcar. The identified index showed quite close but essentially not linear relation with Car contents of the examined species with increasing sensitivity to high Car content and a lack of sensitivity to low Car content for which earlier proposed vegetation indices (VI) performed better. To make use of the advantages of both VI types, we developed a simple merging procedure, which combined the AVIcar with two earlier proposed carotenoid indices. The merged indices had close linear relationship with total Car content and outperformed all other examined indices. The merged indices were able to accurately estimate total Car content with a percental root mean square error (%RMSE) of 8.12% and a coefficient of determination of 0.88. Our findings were confirmed by simulations using the radiative transfer model PROSPECT-5. For simulated data, the merged indices again showed a quasi linear relationship with Car content. This strengthens the assumption that the proposed merged indices have a general ability to accurately estimate foliar Car content. Further examination of the proposed merged indices to estimate foliar Car content of other plant species is desirable to prove the general

  16. Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Skidmore, Andrew K.; Wang, Tiejun; Darvishzadeh, Roshanak; Heiden, Uta; Heurich, Marco; Latifi, Hooman; Hearne, John

    2017-02-01

    A statistical relationship between canopy mass-based foliar nitrogen concentration (%N) and canopy bidirectional reflectance factor (BRF) has been repeatedly demonstrated. However, the interaction between leaf properties and canopy structure confounds the estimation of foliar nitrogen. The canopy scattering coefficient (the ratio of BRF and the directional area scattering factor, DASF) has recently been suggested for estimating %N as it suppresses the canopy structural effects on BRF. However, estimation of %N using the scattering coefficient has not yet been investigated for longer spectral wavelengths (>855 nm). We retrieved the canopy scattering coefficient for wavelengths between 400 and 2500 nm from airborne hyperspectral imagery, and then applied a continuous wavelet analysis (CWA) to the scattering coefficient in order to estimate %N. Predictions of %N were also made using partial least squares regression (PLSR). We found that %N can be accurately retrieved using CWA (R2 = 0.65, RMSE = 0.33) when four wavelet features are combined, with CWA yielding a more accurate estimation than PLSR (R2 = 0.47, RMSE = 0.41). We also found that the wavelet features most sensitive to %N variation in the visible region relate to chlorophyll absorption, while wavelet features in the shortwave infrared regions relate to protein and dry matter absorption. Our results confirm that %N can be retrieved using the scattering coefficient after correcting for canopy structural effect. With the aid of high-fidelity airborne or upcoming space-borne hyperspectral imagery, large-scale foliar nitrogen maps can be generated to improve the modeling of ecosystem processes as well as ecosystem-climate feedbacks.

  17. Plant Foliar Response to Soil Nutrient Availability Across Contrasting Geologic Settings

    NASA Astrophysics Data System (ADS)

    Castle, S. C.; Neff, J. C.

    2007-12-01

    Rock derived mineral nutrients such as P, Ca, Mg, Mn, and K play a significant, but poorly understood role in the structure and function of temperate forest ecosystems. Though these nutrients are not necessarily limiting to plant growth, they are essential to plant physiological functioning. In this study, we test the hypothesis that foliar nutrients are a proxy for soil nutrient availability across sites of different underlying geologies. Specifically, we focus on the plant nutrient-use strategies of rock derived nutrients (P and K) and how they relate to soil nutrient status. In order to assess the responses of plant species to nutrient availability, we monitored above ground net primary productivity (current annual increment + litterfall), plant chemistry, and soil nutrients for a period of 24 months. This research was completed in the San Juan Mountain region of southern Colorado, where there is a high local diversity of bedrock geochemistry. Within this region, two small sub-alpine basins were chosen; a sedimentary basin composed of Mesozoic cyclic limestone, sandstone & shale and a volcanic basin composed of Tertiary rhyolite. Across these basins, geology played a significant role in explaining the variability of rock derived nutrient availability. Initial results suggest that differences in bedrock geochemistry have little influence on the aboveground net primary production (ANPP) of plants or on the chemistry of foliar materials. This inflexibility of foliar chemistry to variations in nutrient availability suggests that genetic and physiologic controls play a strong role in determining the chemical content of plant materials. An alternative hypothesis is that deposition of eolian mineral dust into subalpine systems could play a role in offsetting the reliance of vegetation on deeper bedrock derived nutrient sources. An investigation is currently underway to assess the contribution of eolian dust derived nutrients to plant nutrition using Sr as a geochemical

  18. Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants.

    PubMed

    Ramakrishna, Bellamkonda; Rao, S Seeta Ram

    2015-03-01

    Growth chamber experiments were conducted to investigate the comparative effect of 24-epibrassinolide (EBL) and 28-homobrassinolide (HBL) at 0.5, 1.0, or 2.0 μM concentrations by foliar application on radish plants growing under Zn(2+) stress. In radish plants exposed to excess Zn(2+), growth was substantially reduced in terms of shoot and root length, fresh and dry weight. However, foliar application of brassinosteroids (BRs) was able to alleviate Zn(2+)-induced stress and significantly improve the above growth traits. Zinc stress decreased chlorophyll a, b, and carotenoids levels in radish plants. However, follow-up treatment with BRs increased the photosynthetic pigments in stressed and stress-free plants. The treatment of BRs led to reduced levels of H2O2, lipid peroxidation and, electrolyte leakage (ELP) and improved the leaf relative water content (RWC) in stressed plants. Increased levels of carbonyls indicating enhanced protein oxidation under Zn(2+) stress was effectively countered by supplementation of BRs. Under Zn(2+) stress, the activities of catalase (CAT), ascorbate peroxidase (APX), and superoxidase dismutase (SOD) were increased but peroxidase (POD) and glutathione reductase (GR) decreased. Foliar spraying of BRs enhanced all these enzymatic activities in radish plants under Zn(2+) stress. The BRs application greatly enhanced contents of ascorbate (ASA), glutathione (GSH), and proline under Zn(2+) stress. The decrease in the activity of nitrate reductase (NR) caused by Zn(2+) stress was restored to the level of control by application of BRs. These results point out that BRs application elevated levels of antioxidative enzymes as well as antioxidants could have conferred resistance to radish plants against Zn(2+) stress resulting in improved plant growth, relative water content and photosynthetic attributes. Of the two BRs, EBL was most effective in amelioration of Zn(2+) stress.

  19. Foliar nitrogen and phosphorus dynamics of three Chilean Nothofagus (Fagaceae) species in relation to leaf lifespan.

    PubMed

    Hevia, F; Minoletti O, M L; Decker, K L; Boerner, R E

    1999-03-01

    This study examined foliar nutrient dynamics and nutrient resorption (retranslocation) in three species of Chilean Nothofagus (Fagaceae) that differed in leaf lifespan and elevational distribution. In our central Chile study area the elevations at which these three species are most abundant increase from N. obliqua (deciduous) at low elevations to N. dombeyi at intermediate elevation and N. pumilio (deciduous) at higher elevations up to treeline. We sampled a single stand at 1680 m in which all three species co-occurred. Nothofagus dombeyi leaves were structurally heavier, with specific leaf mass approximately twice that of the two deciduous species. On a concentration basis, foliar N increased in the order N. dombeyi < N. pumilio < N. obliqua and foliar P increased in the order N. dombeyi < N. obliqua < N. pumilio. However, when the differences in specific leaf mass among species were taken into account by calculating N and P content on a leaf area basis, N. dombeyi had the greatest N and P content. N and P remained relatively constant throughout most of the 4-yr N. dombeyi leaf lifespan, then decreased prior to abscission. Nothofagus dombeyi resorbed significantly less N (44-50%) than did the two deciduous species (63-78%), both on proportional and absolute bases. In contrast, N. pumilio and N. dombeyi resorbed similar amounts of P prior to abscission (40-50%), whereas no significant resorption of P from leaves of N. obliqua was noted. We use these results to clarify the relative importance of environmental gradients associated with elevation vs. genetically fixed leaf lifespans in controlling the nutrient dynamics of these congeneric tree species.

  20. Modeling Foliar Uptake in Colocasia Esculenta Using High Resolution Maps of Leaf Water Isotopes

    NASA Astrophysics Data System (ADS)

    Sinkler, C. J.; Gerlein-Safdi, C.; Caylor, K. K.

    2014-12-01

    The uptake of carbon dioxide by vegetation is a major sink of CO2 and a factor that will determine future climate. Some studies predict a decrease in CO2 uptake from vegetation because of a general drying of the Amazon Basin. Because of the tight linkage between water availability and plant carbon uptake, a comprehensive model of plant water use at the individual scale is necessary to build a complete carbon budget at the global scale. Foliar uptake of non-meteoric water is a common process used by plants to alleviate water stress. However the occurrence of this process in tropical ecosystems, as well as its interaction with other physiological parameters, is not well understood. We present a model of leaf water balance that includes foliar uptake. The isotopic composition of the different sources as well as the leaf water are also included. The model is tested against a series of experiments on Colocasia esculenta, under two different water availability conditions: drought and artificial dew. The artificial dew is spiked with stable isotopes of water (δ18O = 8.56 permil, δ2H = 709.7 permil) that allow us to trace the partition of dew uptake within a leaf. We create high-resolution maps of the distribution of isotopes in one half of each leaf using a Picarro IM-CRDS. The maps show a clear enrichment due to foliar uptake for the artificial dew treatment. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and IRMS for quality control of the IM-CRDS data. Soil water is collected for isotope analysis and water content measurement. Finally, stomatal conductance data collected every two days shows no significant decrease due to either treatment over the course of the experiment. We conclude that foliar uptake of dew water is an important water acquisition mechanism for C. esculenta, even under high soil water content conditions, and we propose guidelines for further improvement of models of leaf-scale water

  1. Foliar Nutrition, Biostimulants and Prime-Like Dynamics in Fruit Tree Physiology: New Insights on an Old Topic

    PubMed Central

    Tanou, Georgia; Ziogas, Vasileios; Molassiotis, Athanassios

    2017-01-01

    Despite the fact that the usage of foliar nutrients has long history, many aspects of fertilization through leaves are still unknown. Herein, we review the current knowledge regarding the canopy fertilization putting special emphasis on Fe nutrition and briefly provide insights into the nanofertilizer technology of the foliar feeding of fruit crops. In addition, this paper discusses the main aspects of the foliar application of biostimulants regarding crucial factors of fruit cropping systems, such as fruit yield/size, tolerance to environmental stresses, and nutrient availability. Also, we specifically discuss the role of hydrogen peroxide (H2O2) and nitric oxide (NO) as priming molecules and their possible cross-talk with biostimulants in fruit tree physiology. Finally, a view of the key issues for future fundamental and applied research in the topic is put forward. PMID:28203243

  2. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  3. Effect of soil and foliar application of zinc on grain zinc and cadmium concentration of wheat genotypes differing in Zn-efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year field experiment was carried out to investigate the effectiveness of soil and foliar applications of zinc sulfate and soil application of waste rubber ash to increase Zn and decrease cadmium (Cd) concentration in grain of 10 wheat genotypes with different Zn-efficiency. Foliar spray of zi...

  4. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  5. Two cycles of recurrent maternal half-sib selection reduce foliar late blight in a diploid hybrid Solanum phureja-S. stenotomum population by two-thirds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar late blight, caused by Phytophthora infestans, is an important disease problem worldwide. Foliar resistance to late blight was found in a hybrid population of the cultivated diploid species Solanum phureja-S. stenotomum (phu-stn). The objective of this study was to determine if resistance t...

  6. Foliar injury, tree growth and mortality, and lichen studies in Mammoth Cave National Park. Final report, 1985-1986

    SciTech Connect

    McCune, B.; Cloonan, C.L.; Armentano, T.V.

    1987-03-01

    Foliar condition, tree growth, tree mortality, and lichen communities were studied in Mammoth Cave National Park, Kentucky, to document the present forest condition and to provide a basis for detecting future changes. Foliar injury by ozone was common on many plant species in 1985. Species showing the most injury were white ash, green ash, redbud, sycamore, tulip poplar, milkweed, and wild grape. Injury apparently depended on canopy position and vigor. Tree growth was equivocally related to visible symptoms in 1986, probably because of the low ozone levels in that year. Tree mortality rates from 1966-1985 in two natural stands were somewhat lower than mortality rates known for other midwestern woods.

  7. Ecophysiological and foliar nitrogen concentration responses of understorey Acacia spp. and Eucalyptus sp. to prescribed burning.

    PubMed

    Ma, Ling; Rao, Xingquan; Lu, Ping; Bai, Shahla Hosseini; Xu, Zhihong; Chen, Xiaoyang; Blumfield, Timothy; Xie, Jun

    2015-07-01

    Eucalyptus spp. is a dominant tree genus in Australia and most Eucalyptus spp. are canopy dominant species. In Australian natural forests, Eucalyptus spp. commonly are associated with understorey legumes which play a crucial role for ecological restoration owing to their nitrogen (N) fixing ability for replenishing the soil N lost after frequent prescribed burning. This study aimed to explore to what extent physiological responses of these species differ 7 and 12 years after last fire. Two most common understorey Acacia spp., Acacia leiocalyx and A. disparrima, as well as one non-leguminous Eucalyptus resinifera, were studied due to their dominance in the forest. Both A. leiocalyx and A. disparrima showed higher carbon (C) assimilation capacity, maximum photosynthetic capacity, and moderate foliar C/N ratio compared with E. resinifera. A. leiocalyx showed various advantages compared to A. disparrima such as higher photosynthetic capacity, adaptation to wider light range and higher foliar total N (TNmass). A. leiocalyx also relied on N2-fixing ability for longer time compared to A. disparrima. The results suggested that the two Acacia spp. were more beneficial to C and N cycles for the post burning ecosystem than the non-N2-fixing species E. resinifera. A. leiocalyx had greater contribution to complementing soil N cycle long after burning compared to A. disparrima.

  8. Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere.

    PubMed

    Means, Nathan E; Kremer, Robert J; Ramsier, Clifford

    2007-02-01

    A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha(-1) was applied GR soybean at the V4-V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha(-1) and 9.2 kg ha(-1), respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.

  9. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    PubMed Central

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-01-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710

  10. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles

    PubMed Central

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity. PMID:27832171

  11. Foliar ozone injury on different-sized Prumus serotina Ehrh. trees

    SciTech Connect

    Fredericksen, T.S.; Skelly, J.M.; Steiner, K.C.

    1995-06-01

    Black cherry (Prunus serotina Ehrh.) is a common tree species in the eastern U.S. that is highly sensitive to ozone relative to other associated deciduous tree species. Because of difficulties in conducting exposure-response experiments on large trees, air pollution studies have often utilized seedlings and extrapolated the results to predict the potential response of larger forest trees. However, physiological differences between seedlings and mature forest trees may alter responses to air pollutants. A comparative study of seedling, sapling, and canopy black cherry trees was conducted to determine the response of different-sized trees to known ozone exposures and amounts of ozone uptake. Apparent foliar sensitivity to ozone, observed as a dark adaxial leaf stipple, decreased with increasing tree size. An average of 46% of seedling leaf area was symptomatic by early September, compared to 15% - 20% for saplings and canopy trees. In addition to visible symptoms, seedlings also appeared to have greater rates of early leaf abscission than larger trees. Greater sensitivity (i.e., foliar symptoms) per unit exposure with decreasing tree size was closely correlated with rates of stomatal conductance. However, after accounting for differences in stomatal conductance, sensitivity appeared to increase with tree size.

  12. A Novel Botrytis Species Is Associated with a Newly Emergent Foliar Disease in Cultivated Hemerocallis

    PubMed Central

    Grant-Downton, Robert T.; Terhem, Razak B.; Kapralov, Maxim V.; Mehdi, Saher; Rodriguez-Enriquez, M. Josefina; Gurr, Sarah J.; van Kan, Jan A. L.; Dewey, Frances M.

    2014-01-01

    Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids) showing the symptoms of a newly emergent foliar disease known as ‘spring sickness’ were investigated for associated fungi. The cause(s) of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight) which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of ‘spring sickness’ symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants. PMID:24887415

  13. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-11-15

    The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd+Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd+Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd+Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g(-1) DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended.

  14. Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles.

    PubMed

    Borišev, Milan; Borišev, Ivana; Župunski, Milan; Arsenov, Danijela; Pajević, Slobodanka; Ćurčić, Živko; Vasin, Jovica; Djordjevic, Aleksandar

    2016-01-01

    Over the past few years, significant efforts have been made to decrease the effects of drought stress on plant productivity and quality. We propose that fullerenol nanoparticles (FNPs, molecular formula C60(OH)24) may help alleviate drought stress by serving as an additional intercellular water supply. Specifically, FNPs are able to penetrate plant leaf and root tissues, where they bind water in various cell compartments. This hydroscopic activity suggests that FNPs could be beneficial in plants. The aim of the present study was to analyse the influence of FNPs on sugar beet plants exposed to drought stress. Our results indicate that intracellular water metabolism can be modified by foliar application of FNPs in drought exposed plants. Drought stress induced a significant increase in the compatible osmolyte proline in both the leaves and roots of control plants, but not in FNP treated plants. These results indicate that FNPs could act as intracellular binders of water, creating an additional water reserve, and enabling adaptation to drought stress. Moreover, analysis of plant antioxidant enzyme activities (CAT, APx and GPx), MDA and GSH content indicate that fullerenol foliar application could have some beneficial effect on alleviating oxidative effects of drought stress, depending on the concentration of nanoparticles applied. Although further studies are necessary to elucidate the biochemical impact of FNPs on plants; the present results could directly impact agricultural practice, where available water supplies are often a limiting factor in plant bioproductivity.

  15. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    NASA Astrophysics Data System (ADS)

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-02-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species.

  16. Effects of simulated sulfuric acid rain on yield, growth, and foliar injury of several crops

    SciTech Connect

    Lee, J.J.; Neely, G.E.; Perrigan, S.C.; Grothaus, L.C.

    1980-10-01

    This study was designed to reveal patterns of response of major United States crops to sulfuric acid rain. Potted plants were grown in field chambers and exposed to simulated sulfuric acid rain (pH 3.0, 3.5 or 4.0) or to a control rain (pH 5.6). At harvest, the weights of the marketable portion, total aboveground portion and roots were determined for 28 crops. Of these, marketable yield production was inhibited for 5 crops (radish, beet, carrot, mustard greens, broccoli), stimulated for 6 crops (tomato, green pepper, strawberry, alfalfa, orchardgrass, timothy), and ambiguously affected for 1 crop (potato). In addition, stem and leaf production of sweet corn was stimulated. Visible injury of tomatoes might have decreased their marketability. No statistically significant effects on yield were observed for the other 15 crops. The results suggest that the likelihood of yield being affected by acid rain depends on the part of the plant utilized, as well as on species. Effects on the aboveground portions of crops and on roots are also presented. Plants were regularly examined for foliar injury associated with acid rain. Of the 35 cultivars examined, the foliage of 31 was injured at pH 3.0, 28 at pH 3.5, and 5 at pH 4.0. Foliar injury was not generally related to effects on yield. However, foilar injury of swiss chard, mustard greens and spinach was severe enough to adversely affect marketability.

  17. Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution.

    PubMed

    Sager, E P S; Hutchinson, T C; Croley, T R

    2005-06-01

    Tropospheric O3 has been implicated in the declining health of forest ecosystems in Europe and North America and has been shown to have negative consequences on human health. We have measured tropospheric ozone (O3) in the lower canopy through the use of passive monitors located in five woodlots along a 150 km urban-rural transect, originating in the large urban complex of Toronto, Canada. We also sampled foliage from 10 mature sugar maple trees in each woodlot and measured the concentration of a number of phenolic compounds and macronutrients. O3 concentrations were highest in the two rural woodlots, located approximately 150 km downwind of Toronto, when compared to the woodlots found within the Greater Toronto Area. Foliar concentrations of three flavonoids, avicularin, isoquercitrin, and quercitrin, were significantly greater and nitrogen concentrations significantly lower at these same rural woodlots, suggesting some physiological disruption is occurring in those sites where exposure to tropospheric O3 is greater. We suggest that foliar phenolics of sugar maple may be a biochemical indicator of tropospheric ozone exposure.

  18. Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen

    PubMed Central

    Lihavainen, Jenna; Keinänen, Markku; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Sõber, Anu; Oksanen, Elina

    2016-01-01

    Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate. PMID:27255929

  19. Effect of bio-regulator and foliar fertilizers on chemical composition and yield of soybean.

    PubMed

    Piccinin, Gleberson Guillen; Braccini, Alessandro Lucca; da Silva, Luiz Henrique; Mariucci, Giovanna Emanuêlle Gonçalves; Suzukawa, Andréia Kazumi; Dan, Lilian Gomes de Morais; Tonin, Telmo António

    2013-11-15

    Current study evaluates the effects of bio-regulator associated with foliar fertilizers on the yield components, productivity and chemical composition of soybean. The experimental design was entirely randomized blocks, with four replications. The treatments consisted of: T1-absolute control, T2-application of 0.25 L h(-1) Stimulate in R1 stage of development, T3-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1, T4-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1; T5-application of 0.25 L h(-1) Stimulate and 3 L h(-1) Sett in R1 and 2 L h(-1) Mover in R5.1, T6-application of 3 L h(-1) Sett in R1 and 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R5.1 and T7-application of 0.25 L h(-1) Stimulate and 2 L h(-1) Mover in R1. Application of Sett and Mover is a potentially efficient handling as it favors the soybean agronomic performance in R1 stage. Chemical composition of processed grains has influence with applying bio-regulator and foliar fertilizers.

  20. Phenotypic Variations in the Foliar Chemical Profile of Persea americana Mill. cv. Hass.

    PubMed

    García-Rodríguez, Yolanda Magdalena; Torres-Gurrola, Guadalupe; Meléndez-González, Claudio; Espinosa-García, Francisco J

    2016-12-01

    The Hass avocado tree Persea americana cv. Hass was derived from a single hybrid tree of P. americana var. drymifolia and P. americana var. guatemalensis, and it is propagated clonally by grafting. This cultivar is the most widely planted in the world but its profile of secondary metabolites has been studied rarely despite of its importance in plant protection. We illustrate the variability of the volatilome of mature leaves by describing the average chemical composition and the phenotypic variability found in 70 trees. Contrary to the uniformity expected in the Hass cultivar, high variability coefficients were found for most of the 36 detected foliar volatile compounds; furthermore we found six chemotypes grouping the foliar phenotypes of the sampled trees using hierarchical cluster analysis. About 48% of trees were grouped in one chemotype; five chemotypes grouped the remaining trees. The compounds that determined these chemotypes were: estragole, α-farnesene, β-caryophyllene, germacrene D, α-cubebene and eugenol. This striking variation in a cultivar propagated clonally is discussed in terms of somatic mutation.

  1. Copper oxide nanoparticle foliar uptake, phytotoxicity and consequences for sustainable urban agriculture.

    PubMed

    Xiong, Tiantian; Dumat, Camille; Dappe, Vincent; Vezin, Hervé; Schreck, Eva; Shahid, Muhammad; Pierart, Antoine; Sobanska, Sophie

    2017-04-06

    Throughout the world, urban agriculture supplies fresh local vegetables to city populations. However, the increasing anthropogenic uses of metal containing nanoparticles (NPs) such as CuO-NPs in urban areas may contaminate vegetables through foliar uptake. This study focused on the CuO-NPs transfer processes in leafy edible vegetables (i.e. lettuce and cabbage) to assess their potential phytotoxicity. Vegetables were exposed via leaves for 5, 10 or 15 days to various concentrations of CuO-NPs (0, 10 or 250 mg per plant). Biomass and gas exchange measurements were determined in relation to the Cu uptake rate, localization and Cu speciation within the plant tissues. High foliar Cu uptake occurred after 15 days of exposure for lettuce (3773 mg kg(-1) DW) and cabbage (4448 mg kg-1 DW), along with: (i) decreased plant weight, net photosynthesis and water content and (ii) necrotic Cu-rich areas near deformed stomata containing CuO-NPs observed by SEM-EDX. Analysis of the CuO-NPs transfer rate (7.8-242 µg day(-1)), Cu translocation from leaves to roots and Cu speciation biotransformation in leaf tissues using EPR, suggests the involvement of plant Cu regulation processes. Finally, a potential health risk associated with consumption of vegetables contaminated with CuO-NPs was highlighted.

  2. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  3. Foliar Substrate Affects Cuticular Hydrocarbon Profiles and Intraspecific Aggression in the Leafcutter Ant Atta sexdens

    PubMed Central

    Valadares, Lohan; Nascimento, Daniela; Nascimento, Fabio S.

    2015-01-01

    Cuticular hydrocarbons (CHCs) are traditionally considered to be one of the most important chemical cues used in the nestmate recognition process of social hymenopterans. However, it has been suggested that in the leafcutter ant genus Atta, it is not the CHCs, but the alarm pheromone that is involved in the nestmate recognition process. In this study we used a laboratory population of Atta sexdens to explore the association between their CHC profile variation and intraspecific aggression. In the first part of the experiment, four colonies were divided into two groups with distinct diets to stimulate differentiation of their CHC profiles. In the second part of the experiment, all colonies received the same diet to examine resemblance of chemical profiles. At the end of each part of the experiment we extracted the CHCs from workers. The results demonstrated that colonies that shared the same food resource had similar cuticular hydrocarbon profiles. Furthermore, colonies were significantly more aggressive towards conspecifics that used a different foliar substrate and consequently had greater differences in their cuticular chemical composition. This study suggests that the CHC profiles of A. sexdens can be affected by the foliar substrates used, and that the CHCs are used in the nestmate recognition process of this species. PMID:26463072

  4. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings.

    PubMed

    Wang, Shihua; Wang, Fayuan; Gao, Shuangcheng

    2015-02-01

    Nanofertilizers may be more effective than regular fertilizers in improving plant nutrition, enhancing nutrition use efficiency, and protecting plants from environmental stress. A hydroponic pot experiment was conducted to study the role of foliar application with 2.5 mM nano-silicon in alleviating Cd stress in rice seedlings (Oryza sativa L. cv Youyou 128) grown in solution added with or without 20 μM CdCl2. The results showed that Cd treatment decreased the growth and the contents of Mg, Fe, Zn, chlorophyll a, and glutathione (GSH), accompanied by a significant increase in Cd accumulation. However, foliar application with nano-Si improved the growth, Mg, Fe, and Zn nutrition, and the contents of chlorophyll a of the rice seedlings under Cd stress and decreased Cd accumulation and translocation of Cd from root to shoot. Cd treatment produced oxidative stress to rice seedlings indicated by a higher lipid peroxidation level (as malondialdehyde (MDA)) and higher activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and a lower GSH content. However, those nano-Si-treated plants had lower MDA but higher GSH content and different antioxidant enzyme activities, indicating a higher Cd tolerance in them. The results suggested that nano-Si application alleviated Cd toxicity in rice by decreasing Cd accumulation, Cd partitioning in shoot and MDA level and by increasing content of some mineral elements (Mg, Fe, and Zn) and antioxidant capacity.

  5. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    NASA Astrophysics Data System (ADS)

    Ostertag, Rebecca; DiManno, Nicole

    2016-03-01

    Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP) after addition of fertilizer of nitrogen (N), phosphorus (P), or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow "conventional wisdom" that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  6. Potential foliar fertilizers with copper and zinc dual micronutrients in nanocrystal suspension

    NASA Astrophysics Data System (ADS)

    Li, Peng; Li, Li; Du, Yumei; Hampton, Marc A.; Nguyen, Anh V.; Huang, Longbin; Rudolph, Victor; Xu, Zhi Ping

    2014-11-01

    Control preparation, aqueous stability, and ion release of several Cu-Zn-containing crystals in suspensions have been investigated as potential dual micronutrient foliar fertilizers. These crystals were prepared by quick co-precipitation through simultaneously adding potassium hydroxide and copper salt solutions into zinc salt solution, and characterized in structure and composition with XRD, FTIR, SEM, TEM, and ICP in detail. As-prepared Cu-Zn mixed hydroxide nitrate was identified as a two-phase mixture while Cu-Zn mixed hydroxide sulfate as a single-phase compound. These crystals are all sheet-like in morphology and stable in aqueous solutions with pH 5-9. No phase change was detected after the samples were kept in shelf for >3 months, suggesting that these crystals have long shelf lives. In terms of ion release, Cu-Zn mixed hydroxide nitrate and Cu-Zn mixed hydroxide sulfate can afford 4 and 1 mg L-1 of Cu2+, respectively, which could be suitable for different levels of copper deficiency in plants. Moreover, both compounds can provide 38-39 mg L-1 of Zn2+ in aqueous suspensions. Thus, our findings suggest that as-prepared compounds can be potentially applied as long-term foliar fertilizers to simultaneously correct deficiencies of copper and zinc in various crops.

  7. Release and retention patterns of organic compounds and nutrients after the cold period in foliar litterfall of pure European larch, common beech and red oak plantations in Lithuania

    NASA Astrophysics Data System (ADS)

    Čiuldienė, D.; Aleinikovienė, J.; Muraškienė, M.; Marozas, V.; Armolaitis, K.

    2017-01-01

    This study was carried out in alien warmth-tolerant forest plantations of red oak ( Quercus rubra), common beech ( Fagus sylvatica) and European larch ( Larix decidua). We compared the changes in foliar litterfall mass and biochemical composition after five months of cold period. The mean mass of fresh foliar litterfall collected in late autumn was 30% higher in red oak compared to the larch and beech plantations. After the cold period, the reduction of foliar litterfall mass did not exceed 10% in any of the studied plantations. The fresh foliar litterfall of red oak was the richest in cellular fibre and easily decomposable glucose and nutrients such as P and Mg, larch was distinguished by the highest lignin, N, K and Ca concentrations, while beech fresh foliar litterfall was the poorest in the aforementioned nutrients. After the cold period, the changes in the biochemical composition of foliar litterfall revealed different patterns. In the spring, the beech and red oak foliar litterfall was the richest in N, P and Ca, meanwhile the larch foliar litterfall still had the highest concentration of lignin but, in contrast to the autumn, was the poorest in nutrients. After the cold period Lignin: N, C: N and C: P ratios reached critical values indicating that the foliar litterfall of beech and red oak had started to decompose. The highest lignin concentration and the highest and most stable Lignin: N, C: N, C: P and N: P ratios after the cold period indicated that the slowest foliar litterfall decomposition took place in the larch plantation.

  8. Correlations of foliar Δ with K concentration and ash content in sand-fixing plants in the Tengger Desert of China: patterns and implications

    NASA Astrophysics Data System (ADS)

    Zhao, Liangju; Xiao, Honglang; Liu, Xiaohong; Juan, Ren; Mingfeng, Lu; Maoxian, Zhou

    2007-01-01

    In different-aged sand-fixing zones and shifting sand dunes, the seasonal variations of foliar carbon isotope discrimination (Δ), potassium (K) concentration and ash content were investigated in three dominated deserted plants ( Artemisia ordosica, Hedysarum scoparium and Caragana korshinskii) during growth season in Shapotou, which is in the southeast margin of the Tengger Desert. The correlations of foliar Δ with foliar K concentration and ash content were examined to evaluate the foliar K and ash content as surrogates of Δ in those deserted plants. Results showed that there were significant effects of plant species, micro-habitation and growth season on foliar Δ, K concentration and ash content. Foliar Δ of C. korshinskii was significantly lower than those of A. ordosica and H. scoparium, and K concentrations in A. ordosica were 2.14 and 2.36 times those of C. korshinskii and H. scoparium. At the same time, micro-habitation and the conditions in growth seasons had significant effects on foliar Δ, K concentration and ash content. Ash content and K concentration were positively correlated to Δ in A. ordosica and H. scoparium, while there was significantly negative relationship between foliar K concentration and Δ in C. korshinskii. Thus, those findings suggest that foliar ash content and K concentration can serve as surrogates of carbon isotope discrimination (Δ) in A. ordosica and H. scoparium, while they do not in C. korshinskii. This result implied that the correlations of foliar Δ with ash content and K concentration were various due to the physiological features of plant species, and species differences should be fully considered when evaluating the surrogates of carbon isotope discrimination in plants.

  9. Kaolin-based foliar reflectant and water deficit influence Malbec leaf and berry temperature, pigments, and photosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a kaolin-based foliar reflectant on traits of commercial interest in the red-skinned wine grape cultivar Malbec (Vitis vinifera L.) were evaluated over three growing seasons by measuring the surface temperatures of leaves and clusters, leaf-level assimilation, leaf and berry pigment c...

  10. Effect of Deficit Irrigation and Kaolin-based Foliar Reflectant Particle Film on Aroma of cv. Merlot (Vitis vinifera L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water deficit during development of red-skinned wine grape enhances berry composition for wine production but increases risk of fruit exposure to deleterious levels of heat and/or solar radiation. Foliar application of a kaolin-based particle film has been shown in many crops to alleviate stress sym...

  11. Increasing foliar Zn:Ni or Cu:Ni concentration ratios increase severity of nickel deficiency symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of essential micronutrients on the endogenous bioavailability of Ni is unknown. This study examines the linkage between Ni deficiency and endogenous foliar concentration of Ni, Zn, and Cu. It was hypothesized that expression of morphological symptoms of Ni deficiency by pecan [Carya i...

  12. Foliar nickel application can increase the incidence of peach tree short life and consequent peach tree mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of postplant nickel (Ni) foliar application to suppress Mesocriconema xenoplax populations and thereby prolong tree survival of peach trees on a peach tree short life (PTSL) site was investigated from 2004-2011. The study was conducted in an orchard infested with M. xenoplax and a histo...

  13. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  14. Stimulation of short-term plant growth by glycerol applied as foliar sprays and drenches under greenhouse conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar and drench applications of glycerol were tested at 0, 0.1, 5, 10, 25, and 50 ml.l-1 on ‘Chantenay’ carrot (Daucus carota L.) family Apiaceae. Certain glycerol levels, especially the 1 to 10 ml.L-1 treatments, substantially increased fresh and dry weights of carrots sprayed twice over a 60-day...

  15. Influence of plant culture conditions on efficacy of foliar applications of entomopathogenic fungi against western flower thrips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of greenhouse tests was conducted to assess the efficacy of foliar applications of two commercially available entomopathogenic fungi, Beauveria bassiana strain GHA and Metarhizium brunneum strain F52, against western flower thrips infesting potted impatiens grown with subirrigation. Unformu...

  16. A survey of the foliar and soil arthropod communities in sunflower (Helianthus annuus) fields in central and eastern South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long coevolutionary history between sunflowers (Helianthus annuus, Asterales: Asteraceae) and arthropods in the Northern Great Plains has resulted in a commonly grown oilseed crop that harbors a large diversity of insects. A bioenventory of foliar and subterranean arthropods was performed in 22 ...

  17. [Characteristics of foliar delta13C values of common shrub species in various microhabitats with different karst rocky desertification degrees].

    PubMed

    Du, Xue-Lian; Wang, Shi-Jie; Rong, Li

    2011-12-01

    By measuring the foliar delta13C values of 5 common shrub species (Rhamnus davurica, Pyracantha fortuneana, Rubus biflorus, Zanthoxylum planispinum, and Viburnum utile) growing in various microhabitats in Wangjiazhai catchment, a typical karst desertification area in Guizhou Province, this paper studied the spatial heterogeneity of plant water use at niche scale and the response of the heterogeneity to different karst rocky desertification degrees. The foliar delta13C values of the shrub species in the microhabitats followed the order of stony surface > stony gully > stony crevice > soil surface, and those of the majority of the species were more negative in the microhabitat soil surface than in the others. The foliar delta13C values decreased in the sequence of V. utile > R. biflorus > Z. planispinum > P. fortuneana > R. davurica, and the mean foliar delta13C value of the shrubs and that of typical species in various microhabitats all increased with increasing karst rocky desertification degree, differed significantly among different microhabitats. It was suggested that with the increasing degree of karst rocky desertification, the structure and functions of karst habitats were impaired, microhabitats differentiated gradually, and drought degree increased.

  18. Effects of Mulch and Potato Hilling on Development of Foliar Blight (Phytophthora infestans) and Control of Tuber Blight Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar and tuber blight caused by Phytophthora infestans accounts for significant losses in potatoes in field and storage, however; limited research has documented the effect of cultural practices on late blight control. Field experiments were conducted for two years on Howard gravely loam soil in N...

  19. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  20. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama.

    PubMed

    Norby, Richard J; Gu, Lianhong; Haworth, Ivan C; Jensen, Anna M; Turner, Benjamin L; Walker, Anthony P; Warren, Jeffrey M; Weston, David J; Xu, Chonggang; Winter, Klaus

    2016-11-21

    Our objective was to analyze and summarize data describing photosynthetic parameters and foliar nutrient concentrations from tropical forests in Panama to inform model representation of phosphorus (P) limitation of tropical forest productivity. Gas exchange and nutrient content data were collected from 144 observations of upper canopy leaves from at least 65 species at two forest sites in Panama, differing in species composition, rainfall and soil fertility. Photosynthetic parameters were derived from analysis of assimilation rate vs internal CO2 concentration curves (A/Ci ), and relationships with foliar nitrogen (N) and P content were developed. The relationships between area-based photosynthetic parameters and nutrients were of similar strength for N and P and robust across diverse species and site conditions. The strongest relationship expressed maximum electron transport rate (Jmax ) as a multivariate function of both N and P, and this relationship was improved with the inclusion of independent data on wood density. Models that estimate photosynthesis from foliar N would be improved only modestly by including additional data on foliar P, but doing so may increase the capability of models to predict future conditions in P-limited tropical forests, especially when combined with data on edaphic conditions and other environmental drivers.

  1. Kaolin Foliar Application Has a Stimulatory Effect on Phenylpropanoid and Flavonoid Pathways in Grape Berries

    PubMed Central

    Conde, Artur; Pimentel, Diana; Neves, Andreia; Dinis, Lia-Tânia; Bernardo, Sara; Correia, Carlos M.; Gerós, Hernâni; Moutinho-Pereira, José

    2016-01-01

    Drought, elevated air temperature, and high evaporative demand are increasingly frequent during summer in grape growing areas like the Mediterranean basin, limiting grapevine productivity and berry quality. The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven effective in mitigating the negative impacts of these abiotic stresses in grapevine and other fruit crops, however, little is known about its influence on the composition of the grape berry and on key molecular mechanisms and metabolic pathways notably important for grape berry quality parameters. Here, we performed a thorough molecular and biochemical analysis to assess how foliar application of kaolin influences major secondary metabolism pathways associated with berry quality-traits, leading to biosynthesis of phenolics and anthocyanins, with a focus on the phenylpropanoid, flavonoid (both flavonol- and anthocyanin-biosynthetic) and stilbenoid pathways. In grape berries from different ripening stages, targeted transcriptional analysis by qPCR revealed that several genes involved in these pathways—VvPAL1, VvC4H1, VvSTSs, VvCHS1, VvFLS1, VvDFR, and VvUFGT—were more expressed in response to the foliar kaolin treatment, particularly in the latter maturation phases. In agreement, enzymatic activities of phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), and UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) were about two-fold higher in mature or fully mature berries from kaolin-treated plants, suggesting regulation also at a transcriptional level. The expression of the glutathione S-transferase VvGST4, and of the tonoplast anthocyanin transporters VvMATE1 and VvABCC1 were also all significantly increased at véraison and in mature berries, thus, when anthocyanins start to accumulate in the vacuole, in agreement with previously observed higher total concentrations of phenolics and anthocyanins in berries from kaolin-treated plants, especially at full

  2. Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy Across California Ecosystems

    NASA Astrophysics Data System (ADS)

    Meerdink, S.; Roberts, D. A.; King, J. Y.; Roth, K. L.; Amaral, C. H.; Hook, S. J.

    2014-12-01

    Synergies between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared (TIR) spectra for identifying plant species' foliar chemistry have been largely unexplored. Here we evaluate: 1) the capability of VSWIR and/or TIR spectra to predict levels of lignin, cellulose, nitrogen, leaf mass area, and water content; 2) whether these relationships between spectra and foliar chemistry can be extended to the reduced spectral resolution available in airborne and proposed spaceborne sensors, including the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal Emission Spectrometer (HyTES), and the Hyperspectral Thermal Imager (HyspIRI); and 3) how these predictive relationships might change seasonally and among plant functional types. In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub and tree species were sampled from the Sierra Nevada Mountains, the Central Valley, and coastal Santa Barbara. Partial Least Squares (PLS) regression analysis was used to relate spectral response at wavelengths from 0.3 µm to 15.4 µm to laboratory-measured biochemical properties. For each component, three PLS regression models were fit using different portions of the spectrum: VSWIR (0.3 - 2.5 µm), TIR (2.5 - 15.4 µm), and the entire spectrum (0.3 - 15.4 µm). Three additional models were fitted using spectra resampled to AVIRIS (0.4 - 2.5 µm), HyTES (7.5 - 12 µm), and HyspIRI (0.38 - 12 µm). The majority of the highest performing models used either the TIR spectrum or entire spectrum. When using simulated sensor spectra, HyspIRI produced the highest performing models, followed by HyTES. From model results the combination of VSWIR and TIR increased the R2 of regression models compared to VSWIR alone, signifying that the inclusion of TIR data would improve predictions of foliar chemistry. Also, we found that model accuracy varied by seasons and across plant functional types. Models developed for all

  3. Do Foliar, Litter, and Root Nitrogen and Phosphorus Concentrations Reflect Nutrient Limitation in a Lowland Tropical Wet Forest?

    PubMed Central

    Alvarez-Clare, Silvia; Mack, Michelle C.

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation —as defined mechanistically by NPP responses to fertilization— based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9 % higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community. PMID:25901750

  4. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?

    PubMed

    Alvarez-Clare, Silvia; Mack, Michelle C

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation--as defined mechanistically by NPP responses to fertilization--based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9% higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.

  5. Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure.

    PubMed

    Canivet, L; Dubot, P; Garçon, G; Denayer, F-O

    2015-03-01

    The effects of iron nanoparticles on bryophytes (Physcomitrella patens) were studied following foliar exposure. We used iron nanoparticles (Fe-NP) representative of industrial emissions from the metallurgical industries. After a characterization of iron nanoparticles and the validation of nanoparticle internalization in cells, the effects (cytotoxicity, oxidative stress, lipid peroxidation of membrane) of iron nanoparticles were determined through the axenic culturing of Physcomitrella patens exposed at five different concentrations (5 ng, 50 ng, 500 ng, 5 µg and 50 µg per plant). Following exposure, the plant health, measured as ATP concentrations, was not impacted. Moreover, we studied oxidative stress in three ways: through the measure of reactive oxygen species (ROS) production, through malondialdehyde (MDA) production and also through glutathione regulation. At concentrations tested over a short period, the level of ROS, MDA and glutathione were not significantly disturbed.

  6. Long vs. short monitoring intervals for peach harvesters exposed to foliar azinphos-methyl residues.

    PubMed

    Spencer, J R; Sanborn, J R; Hernandez, B Z; Krieger, R I; Margetich, S S; Schneider, F A

    1995-06-01

    A dermal monitoring study of peach harvesters exposed to azinphos-methyl (AM) residues was conducted in Sutter County, California. Harvesters were paid by piecework, which allowed characterization of the relationship between dermal exposure (DE) and time or production. Workers wore 2 long-sleeved knit T-shirts for each monitoring interval and also provided a hand residue sample. Dislodgeable foliar residue (DFR) samples were also collected. The highest correlations were found for inner shirts vs. production and DE vs. time worked (r2 = 0.67, P < 0.01). DE was greatest after 2-h exposures and reached equilibrium after 3 h, indicating that exposure estimates from shorter intervals would overestimate exposure.

  7. Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus.

    PubMed

    Richardson, Susan N; Nsiama, Tienabe K; Walker, Allison K; McMullin, David R; Miller, J David

    2015-09-01

    Foliar fungal endophytes of Pinus strobus (eastern white pine) were collected from different sites across south-eastern New Brunswick, Canada and screened for the production of bioactive metabolites. From one site, two fungal isolates representing a formerly unknown genus and species within the family Massarinaceae (Pleosporales, Dothideomycetes, Ascomycota) were resolved by phylogenetic analysis. These isolates produced crude organic extracts that were active against Microbotryum violaceum and Saccharomyces cerevisiae. From these strains, DAOM 242779 and 242780, four dihydrobenzofurans (1-4) and two xanthenes (5-6) were characterized. Structures were elucidated by HRMS, interpretation of NMR spectra and other spectroscopic techniques. All isolated metabolites displayed antimicrobial activity against the biotrophic fungal pathogen M. violaceum and Bacillus subtilis.

  8. First Report of Foliar Blight on Dendropanax morbifera Caused by Alternaria panax.

    PubMed

    Deng, Jian Xin; Kim, Chang Sun; Oh, Eun Sung; Yu, Seung Hun

    2010-12-01

    Leaf spot and blight disease was observed on two-year-old seedlings of Dendropanax morbifera (Korean name: Hwangchil tree) during July of 2008 in Jindo Island, Korea. Symptoms included yellow-brown to dark brown irregularly enlarged spots frequently located along the veins of leaves. The lesions were often surrounded by chlorotic haloes. Severe leaf blight and subsequent defoliation occurred when conditions favored disease outbreak. The causal organism of the disease was identified as Alternaria panax based on morphological characteristics and sequence analysis of the internal transcribed spacer region of rDNA. A. panax isolates induced leaf spots and blight symptoms not only on D. morbifera but also on the other members of Araliaceae tested. This is the first report of foliar blight caused by A. panax on D. morbifera.

  9. Glands on the foliar surfaces of tribe Cercideae (Caesapiniodeae, Leguminosae): distribution and taxonomic significance.

    PubMed

    Duarte-Almeida, Joaquim M; Clemente, Milene S; Arruda, Rosani C O; Vaz, Angela M S F; Salatino, Antonio

    2015-01-01

    Large elongated glands occur on Cercideae leaf surfaces. Leaves of Bauhinia (55 taxa, 53 species), Cercis (1 species), Phanera (1 species), Piliostigma (2 species), Schnella (19 species) and Tylosema (1 species) were observed to determine location and relative number of glands. They were only observed on the abaxial leaf surface of 42 Bauhinia taxa. The glands were analyzed by light stereomicroscope and scanning electron microscopy. They are large (up to 270 µm long and 115 µm wide) and multicellular, containing lipophilic substances, probably volatile oils. Presence or absence and density of the glands in species of Bauhinia may be useful to determine species delimitation or distinction among infraspecific taxa. Higher density of glands is more common in species from "cerrado" (a savanna ecosystem) and "caatinga" (a semiarid ecosystem from northeast Brazil) areas. Bauhinia species devoid of foliar glands are frequently from humid forests.

  10. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays

    PubMed Central

    Trouvelot, Sophie; Héloir, Marie-Claire; Poinssot, Benoît; Gauthier, Adrien; Paris, Franck; Guillier, Christelle; Combier, Maud; Trdá, Lucie; Daire, Xavier; Adrian, Marielle

    2014-01-01

    Increasing interest is devoted to carbohydrates for their roles in plant immunity. Some of them are elicitors of plant defenses whereas other ones act as signaling molecules in a manner similar to phytohormones. This review first describes the main classes of carbohydrates associated to plant immunity, their role and mode of action. More precisely, the state of the art about perception of “PAMP, MAMP, and DAMP (Pathogen-, Microbe-, Damage-Associated Molecular Patterns) type” oligosaccharides is presented and examples of induced defense events are provided. A particular attention is paid to the structure/activity relationships of these compounds. The role of sugars as signaling molecules, especially in plant microbe interactions, is also presented. Secondly, the potentialities and limits of foliar sprays of carbohydrates to stimulate plant immunity for crop protection against diseases are discussed, with focus on the roles of the leaf cuticle and phyllosphere microflora. PMID:25408694

  11. Foliar phosphite application has minor phytotoxic impacts across a diverse range of conifers and woody angiosperms.

    PubMed

    Scott, Peter; Bader, Martin Karl-Friedrich; Williams, Nari Michelle

    2016-10-01

    Phytophthora plant pathogens cause tremendous damage in planted and natural systems worldwide. Phosphite is one of the only effective chemicals to control broad-scale Phytophthora disease. Little work has been done on the phytotoxic effects of phosphite application on plant communities especially in combination with plant physiological impacts. Here, we tested the phytotoxic impact of phosphite applied as foliar spray at 0, 12, 24 and 48 kg a.i. ha(-1) . Eighteen-month-old saplings of 13 conifer and angiosperm species native to New Zealand, and two exotic coniferous species were treated and the development of necrotic tissue and chlorophyll-a-fluorescence parameters (optimal quantum yield, Fv /Fm ; effective quantum yield of photosystem II, ΦPSII ) were assessed. In addition, stomatal conductance (gs ) was measured on a subset of six species. Significant necrosis assessed by digital image analysis occurred in only three species: in the lauraceous canopy tree Beilschmiedia tawa (8-14%) and the understory shrub Dodonaea viscosa (5-7%) across phosphite concentrations and solely at the highest concentration in the myrtaceous pioneer shrub Leptospermum scoparium (66%). In non-necrotic tissue, Fv /Fm , ΦPSII and gs remained unaffected by the phosphite treatment. Overall, our findings suggest minor phytotoxic effects resulting from foliar phosphite application across diverse taxa and regardless of concentration. This study supports the large-scale use of phosphite as a management tool to control plant diseases caused by Phytophthora pathogens in plantations and natural ecosystems. Long-term studies are required to ascertain potential ecological impacts of repeated phosphite applications.

  12. Contamination of potato plants with {sup 134}Cs by foliar deposition of the radionuclide

    SciTech Connect

    Egli, J.; Amrhein, N.; Andres, R. |

    1995-12-31

    In the framework of a CEC-research program in radiation protection, the uptake and subsequent translocation of radionuclides in potato plants is studied. Results from these studies will be used to further refine computational models applied in calculating doses and in decision making after a potential nuclear fallout. Potatoes are an important staple food crop in western European countries. Foliar absorption of radionuclides plays a major role for the contamination of agricultural products during the first vegetation period after a nuclear fallout. This study aims at investigating the influence of the time-point of contamination on crop radionuclide content. Three groups of potato plants were of contaminated with an aqueous solution {sup 134}CsCl at three different time-points: Group A: First leaves were fully developed. Group B: Immediately before onset of flowering (4 weeks after group A). Group C: Onset of senescence (8 weeks after group A). Plants were harvested 7, 14, 21, and 28 days after each contamination, and after full tuber development. The distribution of {sup 134}Cs within the plants was studied in three compartments: contaminated part, newly grown part, and subterranean part (roots and tubers). A steady translocation of {sup 134}CS from the contaminated parts into the other parts of the plants was observed in all three groups. The highest radionuclide content of the crop was observed in group B, i.e. in fully developed plants: 58 {+-} 3% (n = 4) of the originally applied radioactivity was found in the tubers. This experiment clearly identified the beginning of tuber formation to be the most critical time for a foliar contamination. These results serve as an important experimental verification of parameters used in computational radioecological models of radionuclide transport through the biosphere.

  13. Effect of Foliar Applications of Oxamyl with Aldicarb for the Management of Rotylenchulus reniformison Cotton

    PubMed Central

    Lawrence, G. W.; McLean, K. S.

    2000-01-01

    The efficacy of foliar applications of oxamyl were evaluated for the management of Rotylenchulus reniformis on cotton in Mississippi. Two tests were established in Tallahatchie County on a fine sandy loam soil (56.8% sand, 37.8% silt, 5.3% clay, pH 5.4, and 0.3% OM) naturally infested with R. reniformis. Oxamyl was applied as a foliar spray at 0.14, 0.27, or 0.53 kg a.i./ha to cotton plants that had reached the sixth true leaf growth stage. A second oxamyl application was applied 14 days after the first treatment at the same rates. All oxamyl treatments also received aldicarb at 0.59 kg a.i./ha at planting. Controls consisted of aldicarb alone, disulfoton (which is not a nematicide), and an untreated control. Oxamyl reduced R. reniformis numbers at 79 and 107 days after planting in Test 1 and at 62 and 82 days after planting in Test 2 compared to aldicarb at 0.59 kg a.i./ha alone and the controls that received neither material. Average reniform population densities in oxamyl-treated plots were 24.5% and 30% lower than with aldicarb alone and the controls. Cotton plant height was greater in plots that received oxamyl at all rates than in the controls. Cotton in oxamyl plus aldicarb and aldicarb alone treatments produced more bolls per plant and had a greater total boll weight than disulfoton and the untreated control. Seed cotton yields were greater in oxamyl-treated plots than for disulfoton-treated and the untreated control. PMID:19271008

  14. Foliar uptake and metal(loid) bioaccessibility in vegetables exposed to particulate matter.

    PubMed

    Xiong, Tian-Tian; Leveque, Thibaut; Austruy, Annabelle; Goix, Sylvaine; Schreck, Eva; Dappe, Vincent; Sobanska, Sophie; Foucault, Yann; Dumat, Camille

    2014-10-01

    At the global scale, high concentrations of particulate matter (PM) enriched with metal(loid)s are currently observed in the atmosphere of urban areas. Foliar lead uptake was demonstrated for vegetables exposed to airborne PM. Our main objective here was to highlight the health risk associated with the consumption of vegetables exposed to foliar deposits of PM enriched with the various metal(loid)s frequently observed in the atmosphere of urban areas (Cd, Sb, Zn and Pb). Leaves of mature cabbage and spinach were exposed to manufactured mono-metallic oxide particles (CdO, Sb2O3 and ZnO) or to complex process PM mainly enriched with lead. Total and bioaccessible metal(loid) concentrations were then measured for polluted vegetables and the various PM used as sources. Finally, scanning electronic microscopy coupled with energy dispersive X-ray microanalysis was used to study PM-phyllosphere interactions. High quantities of Cd, Sb, Zn and Pb were taken up by the plant leaves. These levels depended on both the plant species and nature of the PM, highlighting the interest of acquiring data for different plants and sources of exposure in order to better identify and manage health risks. A maximum of 2% of the leaf surfaces were covered with the PM. However, particles appeared to be enriched in stomatal openings, with up to 12% of their area occupied. Metal(loid) bioaccessibility was significantly higher for vegetables compared to PM sources, certainly due to chemical speciation changes. Taken together, these results confirm the importance of taking atmospheric PM into account when assessing the health risks associated with ingestion of vegetables grown in urban vegetable crops or kitchen gardens.

  15. Foliar pathogens of Populus angustifolia are consistent with a hypothesis of Beringian migration into North America.

    PubMed

    Busby, Posy E; Aime, M Catherine; Newcombe, George

    2012-07-01

    Populus angustifolia, the narrowleaf cottonwood, is considered one of two native species of Populus section Tacamahaca restricted to western North America. Efforts to construct a definitive phylogeny of Populus spp. are complicated by ancient hybridization, but some phylogenetic analyses suggest P. angustifolia is more closely related to Asian congeners than to Populus trichocarpa, the other species of Populus section Tacamahaca in western North America. Because hosts and their obligate symbionts can display parallel phylogeographic patterns, we evaluated the possibility of a Beringian migration into North America by an Asian ancestor of P. angustifolia by determining the distributions, host preferences, and, in some cases, closest phylogenetic relatives of fungal leaf pathogens of P. angustifolia. Phyllactinia populi, a common foliar pathogen on Populus spp. in Asia but unknown on P. trichocarpa, was found on P. angustifolia in multiple sites. Mycosphaerella angustifoliorum, also unknown on P. trichocarpa, was commonly collected on P. angustifolia. Conversely, many common foliar pathogens of P. trichocarpa in western North America were not found on P. angustifolia; only Melampsora×columbiana and Drepanopeziza populi were common to both Populus species. Phylogenetic analyses revealed that M. angustifoliorum was not part of the diversification of Mycosphaerella on Populus that includes all other Mycosphaerella species on Populus in North America: Mycosphaerella populicola, Mycosphaerella populorum, M. sp. 1, and M. sp. 2. The latter two undescribed species represent a newly discovered diversification of M. populorum in western North America. Overall, the leaf pathogen community of P. angustifolia is consistent with a Beringian migration into North America by the ancestor of P. angustifolia.

  16. Corymbia species and hybrids: chemical and physical foliar attributes and implications for herbivory.

    PubMed

    Nahrung, Helen F; Waugh, Rachel; Andrew Hayes, Richard

    2009-09-01

    Hybridization is an important biological phenomenon that can be used to understand the evolutionary process of speciation of plants and their associated pests and diseases. Interactions between hybrid plants and the herbivores of the parental taxa may be used to elucidate the various cues being used by the pests for host location or other processes. The chemical composition of plants, and their physical foliar attributes, including leaf thickness, trichome density, moisture content and specific leaf weight were compared between allopatric pure and commercial hybrid species of Corymbia, an important subtropical hardwood taxon. The leaf-eating beetle Paropsis atomaria, to which the pure taxa represented host (C. citriodora subsp. variegata) and non-host (C. torelliana) plants, was used to examine patterns of herbivory in relation to these traits. Hybrid physical foliar traits, chemical profiles, and field and laboratory beetle feeding preference, while showing some variability, were generally intermediate to those exhibited by parent taxa, thus suggesting an additive inheritance pattern. The hybrid susceptibility hypothesis was not supported by our field or laboratory studies, and there was no strong relationship between adult preference and larval performance. The most-preferred adult host was the sympatric taxon, although this species supported the lowest larval survival, while the hybrid produced significantly smaller pupae than the pure species. The results are discussed in relation to plant chemistry and physical characteristics. The findings suggest a chemical basis for host selection behavior and indicate that it may be possible to select for resistance to this insect pest in these commercially important hardwood trees.

  17. [Soluble nitrogen and soluble phosphorus dynamics during foliar litter decomposition in winter in alinine forest streams].

    PubMed

    Zhang, Chuan; Yang, Wan-qin; Yue, Kai; Huang, Chun-ping; Peng, Yan; Wu, Fu-zhong

    2015-06-01

    In order to understand the dynamic pattern of soluble nitrogen and soluble phosphorus in the headwater streams during the process of litter decomposition in winter, a field experiment using litterbag method was conducted in an alpine forest in Western Sichuan, China. The foliar litter of two dominant canopy trees (Sabina saltuaria, and Larix mastersiana) and two shrubs (Salix paraplesia and Rhododendron lapponicum) were selected. The litterbags were placed in a headwater stream, river, riparian zone and closed canopy, and sampled in different freezing-thawing periods of winter (pre-freezing period, freezing period and thawing period). The results indicated that the soluble nitrogen content of foliar litter showed little changes over a whole winter decomposition regardless of species. In contrast, the soluble phosphorus content displayed the order as river < stream < riparian zone < closed canopy, and showed a decrease tendency in stream, river and riparian, although little changes under closed canopy over a whole winter decomposition. Correlation analysis suggested that the dynamics of soluble phosphorus content significantly correlated to the average temperature, positive accumulated temperature, negative accumulated temperature and flow velocity during the decomposition in winter. The dynamics of soluble nitrogen content only exhibited significant correlations with positive accumulated temperature. Additionally, litter quality (species) also controlled the dynamics of soluble nitrogen and soluble phosphorus content as litter decomposition proceeded. The results implied that soluble phosphorus could be more liable to loss in streams and rivers during litter decomposition compared with soluble nitrogen, which could further provide some new ideas in understanding nitrogen and phosphorus cycling in this alpine forest.

  18. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application.

    PubMed

    Zhang, Yueqiang; Shi, Rongli; Rezaul, Karim Md; Zhang, Fusuo; Zou, Chunqin

    2010-12-08

    Human deficiencies of iron (Fe) and zinc (Zn) are worldwide problems. Biofortification of wheat could reduce Fe and Zn deficiencies in societies that depend on wheat consumption. This study investigated the effects of foliar application of Fe with or without Zn on the concentrations of Fe and Zn in grain and especially in flour of three wheat cultivars. On average, grain Fe concentration was increased significantly from 29.5 mg kg(-1) in the control to 37.8, 35.9, or 34.9 mg kg(-1) by application of FeSO4, ferric citrate plus ZnSO4, or ferric citrate, respectively. As expected, grain Zn concentration was increased from 29.0 mg kg(-1) in the control to 45.7 or 39.6 mg kg(-1) by application of ferric citrate plus ZnSO4 or a complex of micronutrients. Although the Fe and Zn concentrations in flour were inherently lower than in bran and shorts made by experimental mill, the concentrations in flour were simultaneously increased from 10.4 to 12.4 mg kg(-1) for Fe and from 11.8 to 17.4 mg kg(-1) for Zn by application of ferric citrate plus ZnSO4. Importantly, Fe was peripherally localized within grain fractions and strictly limited to transport to endosperm, making it more difficult to increase the quantity of Fe in flour products by foliar Fe application, but the situation with Zn is promising because Zn is more readily transported to the endosperm than Fe. The current study increases the understanding of agronomic biofortification.

  19. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-11-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.

  20. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  1. Quantifying foliar responses of white ash to ozone and simulated acid precipitation: An assessment proposal for forest exposure studies. Forest Service research paper. (Final)

    SciTech Connect

    Dochinger, L.S.; Jensen, K.F.

    1990-04-01

    Seedlings populations represent an important linkage for assessing the effect of air pollution on forests. The study examines the foliar responses of white ash seedlings to ozone and acid precipitation as a means of identifying atmospheric deposition effects on forests.

  2. Effects of Biopesticides on Foliar Diseases and Japanese Beetle (Popillia japonica) Adults in Roses (Rosa spp.), Oakleaf Hydrangea (Hydrangea quercifolia), and Crapemyrtle (Lagerstroemia indica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated efficacy of biopesticides for reducing foliar diseases and feeding damage from Japanese beetle adults on hybrid T rose (Rosa spp.), oakleaf hydrangea (Hydrangea quercifolia), and crapemyrtle (Lagerstroemia indica). The materials tested included household soaps with Triclosan act...

  3. Foliar application of glyphosate affects molecular mechanisms in underground adventitious buds of leafy spurge (Euphorbia esula) and alters their vegetative growth patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long term control of leafy spurge with glyphosate requires multiple applications because the plant reproduces vegetatively from abundant underground adventitious buds (UABs). Determining the molecular mechanisms involved in controlling vegetative reproduction in leafy spurge following foliar glyphos...

  4. A Negative Relationship between Foliar Carbon Isotope Composition and Mass-Based Nitrogen Concentration on the Eastern Slope of Mount Gongga, China

    PubMed Central

    Li, Jiazhu; Wang, Guoan; Zhang, Runan; Li, Li

    2016-01-01

    Plants adopt ecological strategy to resist environmental changes and increase their resource-use efficiency. The ecological strategy includes changes in physiological traits and leaf morphology, which may result in simultaneous variations in foliar N concentration and the ratio of intercellular CO2 concentration to ambient CO2 concentration (ci/ca). This in turn links to foliar carbon isotope discrimination, and thus, a relationship between foliar N concentration and foliar carbon isotope composition (δ13C) is expected. To understand how plants integrate their structural and physiological resistance to environmental changes, the relationship between foliar N concentration and foliarδ13C has been assessed intensively, especially the correlation between area-based N concentration (Narea) and δ13C.Less effort has been dedicated to the examination of the relationship between mass-based N concentration(Nmass) and δ13C. Studies on the Nmass–δ13C relationship, especially those including a large amount of data and species, will enhance our understanding of leaf economics and benefit ecological modeling. The present study includes an intensive investigation into this relationship by measuring foliar Nmass and δ13C in a large number of plant species grown on the eastern slope of Mount Gongga, China. This study shows that foliar Nmass decreases with increasing δ13C, which is independent of functional group, vegetation type, and altitude. This suggests that a negative correlation between Nmass and δ13C may be a general pattern for plants grown not only on Mount Gongga, but also in other areas. PMID:27870885

  5. DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example.

    PubMed

    Schreck, E; Bonnard, R; Laplanche, C; Leveque, T; Foucault, Y; Dumat, C

    2012-12-15

    In the context of peri-urban atmospheric pollution by industrial lead recycling emissions, metal can transfer to plant shoots. Home gardeners consuming their produce can therefore be exposed to metal pollution. The Human Health Risk Assessment Protocol (HHRAP) model from the United States Environmental Protection Agency (US EPA) classically used in risk assessment provides foliar metal uptake predictions for large farms but is not adapted to cultures in kitchen gardens. Thus, this study developed a new model, entitled "DECA", which includes individually measured parameters and the washing of vegetables before human consumption. Results given by DECA and HHRAP models were compared with experimental measurements of lettuce. The data calculated by the DECA model were highly correlated with the measured values; the HHRAP model overestimates foliar lead uptake. Moreover, strong influences of factor of washing and time-dependent variations of loss coefficient were highlighted. Finally, the DECA model provided important risk assessment data regarding consumption of vegetables from kitchen gardens.

  6. Gravitational infusion of ethylenediurea (EDU) into trunks protected adult European ash trees (Fraxinus excelsior L.) from foliar ozone injury.

    PubMed

    Paoletti, E; Manning, W J; Spaziani, F; Tagliaferro, F

    2007-02-01

    Adult ash trees (Fraxinus excelsior L.), known to be sensitive or insensitive to ozone, determined by presence or absence of foliar symptoms in previous years, were treated with ethylenediurea (EDU) at 450 ppm by gravitational trunk infusion on six occasions at 21-day intervals in summer 2005 at Turin, Italy. At the end of the season, foliar ozone injury on EDU-treated trees was not complete, but was greatly and significantly reduced when compared to results from trees infused with water. Significant symptom reduction occurred at any crown level in the treated trees suggesting that EDU protected whole crowns. Gravitational infusion of EDU resulted in protection from ozone injury for ozone-sensitive ash trees. The amount of EDU needed to provide protection is assumed to be in the range 13-26 mg m(-2) leaf.

  7. Seasonal development of ozone-induced foliar injury on tall milkweed (Asclepias exaltata) in Great Smoky Mountains National Park.

    PubMed

    Souza, Lara; Neufeld, Howard S; Chappelka, Arthur H; Burkey, Kent O; Davison, Alan W

    2006-05-01

    The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.

  8. Temporal patterns of foliar ozone symptoms on tall milkweed (Asclepias exaltata L.) in Great Smoky Mountains National Park.

    PubMed

    Chappelka, A H; Somers, G L; Renfro, J R

    2007-10-01

    Incidence and severity of ozone-induced foliar symptoms on tall milkweed (Asclepias exaltata L.) along selected trails in Great Smoky Mountains National Park (GRSM) were determined by two surveys/season conducted from 1992 through 1996. Overall incidence was 73%, and was 84%, 44%, 90%, 58%, and 82% for 1992-1996, respectively for the same clusters. Average incidence was 61% and 84% for the 1st and 2nd surveys, respectively. Seasonal comparisons showed two distinct injury groupings regarding incidence and severity of injury: 1992, 1994 and 1996 (high injury); 1993 and 1995 (low injury). No discernible patterns were observed between symptomatic and asymptomatic plants regarding height, herbivory or flowering. Regression analyses indicated no differentiation in foliar symptoms regarding topographic position, aspect, slope or elevation over the 5-year study period. Our findings indicate other micro-site or genetic factors may control ozone sensitivity of tall milkweed in GRSM.

  9. Impact of elevated CO(2) and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation.

    PubMed

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-06-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO(2) and fertilization (two CO(2) treatments, elevated CO(2) and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO(2) enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO(2) and N fertilization amplified some element unbalances such as the K/N-ratio.

  10. Linking Seasonal Foliar Chemistry to VSWIR-TIR Spectroscopy Across California Ecosystems

    NASA Astrophysics Data System (ADS)

    Meerdink, Susan Kay

    Potential ecological impacts of disturbance, land use, and climate change have driven many studies to evaluate ecosystem functions through the measurement of vegetation biochemical properties that provide integral information on nutrient cycling, litter decomposition, and plant productivity. The use of spectroscopy in quantifying vegetation biochemistry shows promise with faster analytical speed than traditional methods. Synergies between the Visible Near Infrared/ Short Wave Infrared (VSWIR) and Thermal Infrared (TIR) spectra for identifying plant species' foliar chemistry have been largely unexplored. Here we evaluate the capability of VSWIR and/or TIR spectra to predict leaf levels of lignin, cellulose, nitrogen, water content, and leaf mass per area. We specifically examined how these predictive relationships might change seasonally and among plant functional types. Lastly we determined whether these relationships between spectra and foliar chemistry could be extended to the reduced spectral resolution available in airborne sensors, including the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), the Hyperspectral Thermal Emission Spectrometer (HyTES), and the combined AVIRIS and MODIS/ASTER (MASTER) sensors used in the Hyperspectral Infrared Imager (HyspIRI) preparatory flight campaign. In the 2013 spring, summer, and fall seasons, fresh leaves from sixteen common shrub and tree species in California representing three broad plant functional types were sampled from the Sierra Nevada Mountains, the Central Valley at the Sedgwick Reserve, and coastal Santa Barbara. Partial least squares regression (PLSR) analysis was used to relate spectral response at wavelengths from 0.3 - 15.4 microm to laboratory-measured biochemical and biophysical properties. For each component, three PLSR models were fit using different portions of the spectrum: VSWIR (0.3 - 2.5 microm), TIR (2.5 - 15.4 microm), and the full spectrum (0.3 - 15.4 microm). Three additional models were

  11. The Iodine Content in Urine, Faeces and Selected Organs of Rats Fed Lettuce Biofortified with Iodine Through Foliar Application.

    PubMed

    Rakoczy, Roksana; Kopeć, Aneta; Piątkowska, Ewa; Smoleń, Sylwester; Skoczylas, Łukasz; Leszczyńska, Teresa; Sady, Włodzimierz

    2016-12-01

    Iodine is an essential trace element for humans. Foliar application of micronutrients is successfully used in order to increase the concentration of essential elements in vegetables. The aim of this study was to evaluate the iodine absorption in the rat organism fed foliar biofortified lettuce. The presented study was consisted of the vegetative and animal experiment. In the vegetative experiment with lettuce, two combinations of foliar application were used: (1) control-without iodine application and (2) iodine application in the potassium iodide (KI) form. In the animal experiment, Wistar rats were divided to four groups, which received one of four diets: (1) C-control diet containing iodine in the KI form, (2) D-diet deficient in iodine, (3) D + BL-diet containing biofortified lettuce, and (4) D + CL-diet containing control lettuce (as the only source of iodine in diet, respectively). The diets contained 0.260, 0.060, 0.254 and 0.075 mg I/kg, respectively. In order to determine the iodine absorption in the rat organisms, the content of this trace element was measured in urine, faeces and in selected organs with the use of the ICP-OES technique. Foliar application of the KI increased the content of iodine in lettuce. The rats from the D + BL group excreted significantly less iodine in their urine and faeces and also accumulated more iodine in the organs than the rats from the C group. Iodine with biofortified lettuce was much bioavailable for rodents than iodine from control diet. Biofortified lettuce can be a source of iodine in a diet of human and can improve iodine nutrition.

  12. Oak loss increases foliar nitrogen, δ(15)N and growth rates of Betula lenta in a northern temperate deciduous forest.

    PubMed

    Falxa-Raymond, Nancy; Patterson, Angelica E; Schuster, William S F; Griffin, Kevin L

    2012-09-01

    Oak forests dominate much of the eastern USA, but their future is uncertain due to a number of threats and widespread failure of oak regeneration. A sudden loss of oaks (Quercus spp.) could be accompanied by major changes in forest nitrogen (N) cycles with important implications for plant nutrient uptake and tree species composition. In this study, we measured the changes in N use and growth rates of black birch trees (Betula lenta L.) following oak girdling at the Black Rock Forest in southeastern New York, USA. Data were collected from nine experimental plots composed of three treatments: 100% oaks girdled (OG), 50% oaks girdled (O50) and control (C). Foliar N concentration and foliar (15)N abundance increased significantly in the oak-girdled plots relative to the control, indicating that the loss of oaks significantly altered N cycling dynamics. As mineralization and nitrification rates increase following oak loss, black birch trees increase N absorption as indicated by higher foliar N content and increased growth rates. Foliar N concentration increased by 15.5% in the O50 and 30.6% in the OG plots relative to the control, while O50 and OG plots were enriched in (15)N by 1.08‰ and 3.33‰, respectively (P < 0.0001). A 641% increase in black birch growth rates in OG plots suggests that this species is able to respond to additional N availability and/or increased light availability. The loss of oaks and subsequent increase in black birch productivity may have a lasting impact on ecosystem form and function.

  13. Foliar bacteria and soil fertility mediate seedling performance: a new and cryptic dimension of niche differentiation.

    PubMed

    Griffin, Eric A; Traw, M Brian; Morin, Peter J; Pruitt, Jonathan N; Wright, S Joseph; Carson, Walter P

    2016-11-01

    The phyllosphere (comprising the leaf surface and interior) is one of the world's largest microbial habitats and is host to an abundant and diverse array of bacteria. Nonetheless, the degree to which bacterial communities are benign, harmful, or beneficial to plants in situ is unknown. We tested the hypothesis that the net effect of reducing bacterial abundance and diversity would vary substantially among host species (from harmful to beneficial) and this would be strongly mediated by soil resource availability. To test this, we monitored tree seedling growth responses to commercial antibiotics among replicated resource supply treatments (N, P, K) in a tropical forest in Panama for 29 months. We applied either antibiotics or control water to replicated seedlings of five common tree species (Alseis blackiana, Desmopsis panamensis, Heisteria concinna, Sorocea affinis, and Tetragastris panamensis). These antibiotic treatments significantly reduced both the abundance and diversity of bacteria epiphytically as well as endophytically. Overall, the effect of antibiotics on performance was highly host specific. Applying antibiotics increased growth for three species by as much as 49% (Alseis, Heisteria, and Tetragastris), decreased growth for a fourth species by nearly 20% (Sorocea), and had no impact on a fifth species (Desmopsis). Perhaps more importantly, the degree to which foliar bacteria were harmful or not varied with soil resource supply. Specifically, applying antibiotics had no effect when potassium was added but increased growth rate by almost 40% in the absence of potassium. Alternatively, phosphorus enrichment caused the effect of bacteria to switch from being primarily beneficial to harmful or vice versa, but this depended entirely on the presence or absence of nitrogen enrichment (i.e., important and significant interactions). Our results are the first to demonstrate that the net effect of reducing the abundance and diversity of bacteria can have very

  14. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  15. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    PubMed

    Crowley, Brooke E; McGoogan, Keriann C; Lehman, Shawn M

    2012-01-01

    Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest

  16. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves1

    PubMed Central

    Etxeberria, Ed; Gonzalez, Pedro; Fanton Borges, Ana; Brodersen, Craig

    2016-01-01

    Premise of the study: Uptake of foliar-applied substances across the leaf cuticle is central to world food production as well as for physiological investigations into phloem structure and function. Yet, despite the presence of stomata, foliar application as a delivery system can be extremely inefficient due to the low permeability of leaf surfaces to polar compounds. Methods: Using laser light to generate microscopic perforations in the leaf cuticle, we tested the penetration of several substances into the leaf, their uptake into the phloem, and their subsequent movement through the phloem tissue. Substances varied in their size, charge, and Stokes radius. Results: The phloem-mobile compounds 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG), lysine, Biocillin, adenosine triphosphate (ATP), trehalose, carboxyfluorescein-SE, and poly(amidomine) (PAMAM) dendrimer G-4 nanoparticles (4.5 nm in size) showed a high degree of mobility and were able to penetrate and be transported in the phloem. Discussion: Our investigation demonstrated the effectiveness of laser light technology in enhancing the penetration of foliar-applied substances into citrus leaves. The technology is also applicable to the study of phloem mobility of substances by providing a less invasive, highly repeatable, and more quantifiable delivery method. The implied superficial lesions to the leaf can be mitigated by applying a waxy coating. PMID:26819863

  17. Responses of foliar delta13C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches.

    PubMed

    Cernusak, L A; Marshall, J D

    2001-10-01

    We tested the hypothesis that branch hydraulic conductivity partly controls foliar stable carbon isotope ratio (delta13C) by its influence on stomatal conductance in Pinus monticola Dougl. Notching and phloem-girdling treatments were applied to reduce branch conductivity over the course of a growing season. Notching and phloem girdling reduced leaf-specific conductivity (LSC) by about 30 and 90%, respectively. The 90% reduction in LSC increased foliar delta13C by about 1 per thousand (P < 0.0001, n = 65), whereas the 30% reduction in LSC had no effect on foliar delta13C (P = 0.90, n = 65). Variation in the delta13C of dark respiration was similar to that of whole-tissues when compared among treatments. These isotopic measurements, in addition to instantaneous gas exchange measurements, suggested only minor adjustments in the ratio of intercellular to atmospheric CO2 partial pressures (ci/ca) in response to experimentally reduced hydraulic conductivity. A strong correlation was observed between stomatal conductance (gs) and photosynthetic demand over a tenfold range in gs. Although ci/ca and delta13C appeared to be relatively homeostatic, current-year leaf area varied linearly as a function of branch hydraulic conductivity (r2 = 0.69, P < 0.0001, n = 18). These results suggest that, for Pinus monticola, adjustment of leaf area is a more important response to reduced branch conductivity than adjustment of ci/ca.

  18. Opposing Roles of Foliar and Glandular Trichome Volatile Components in Cultivated Nightshade Interaction with a Specialist Herbivore

    PubMed Central

    Murungi, Lucy Kananu; Kirwa, Hillary; Salifu, Daisy; Torto, Baldwyn

    2016-01-01

    Plant chemistry is an important contributor to the interaction with herbivores. Here, we report on a previously unknown role for foliar and glandular trichome volatiles in their interaction with the specialist herbivore of solanaceous plants, the tomato red spider mite Tetranychus evansi. We used various bioassays and chemical analyses including coupled gas chromatography-mass spectrometry (GC/MS) and liquid chromatography coupled to quadrupole time of flight mass spectrometry (LC-QToF-MS) to investigate this interaction between cultivated African nightshades and T. evansi. We show that, whereas morphologically different cultivated African nightshade species released similar foliar volatile organic compounds (VOCs) that attracted T. evansi, VOCs released from exudates of ruptured glandular trichomes of one nightshade species influenced local defense on the leaf surface. VOCs from ruptured glandular trichomes comprising mainly saturated and unsaturated fatty acids deterred T. evansi oviposition. Of the fatty acids, the unsaturated fatty acids accounted for >40% of the oviposition deterrent activity. Our findings point to a defense strategy in a plant, based on opposing roles for volatiles released by foliar and glandular trichomes in response to attack by a specialist herbivore. PMID:27556560

  19. Important photosynthetic contribution from the non-foliar green organs in cotton at the late growth stage.

    PubMed

    Hu, Yuan-Yuan; Zhang, Ya-Li; Luo, Hong-Hai; Li, Wei; Oguchi, Riichi; Fan, Da-Yong; Chow, Wah Soon; Zhang, Wang-Feng

    2012-02-01

    Non-foliar green organs are recognized as important carbon sources after leaves. However, the contribution of each organ to total yield has not been comprehensively studied in relation to the time-course of changes in surface area and photosynthetic activity of different organs at different growth stages. We studied the contribution of leaves, main stem, bracts and capsule wall in cotton by measuring their time-course of surface area development, O(2) evolution capacity and photosynthetic enzyme activity. Because of the early senescence of leaves, non-foliar organs increased their surface area up to 38.2% of total at late growth stage. Bracts and capsule wall showed less ontogenetic decrease in O(2) evolution capacity per area and photosynthetic enzyme activity than leaves at the late growth stage. The total capacity for O(2) evolution of stalks and bolls (bracts plus capsule wall) was 12.7 and 23.7% (total ca. 36.4%), respectively, as estimated by multiplying their surface area by their O(2) evolution capacity per area. We also kept the bolls (from 15 days after anthesis) or main stem (at the early full bolling stage) in darkness for comparison with non-darkened controls. Darkening the bolls and main stem reduced the boll weight by 24.1 and 9%, respectively, and the seed weight by 35.9 and 16.3%, respectively. We conclude that non-foliar organs significantly contribute to the yield at the late growth stage.

  20. Airborne foliar transfer of PM bound heavy metals in Cassia siamea: A less common route of heavy metal accumulation.

    PubMed

    Gajbhiye, Triratnesh; Pandey, Sudhir Kumar; Kim, Ki-Hyun; Szulejko, Jan E; Prasad, Satgur

    2016-12-15

    In order to investigate possible foliar transfer of toxic heavy metals, concentrations of Cd, Pb, and Fe were measured in samples of: Cassia siamea leaves (a common tree) Cassia siamea foliar dust, nearby road dust, and soil (Cassia siamea tree roots) at six different sites in/around the Bilaspur industrial area and a control site on the university campus. Bilaspur is located in a subtropical central Indian region. The enrichment factor (EF) values of Pb and Cd, when derived using the crustal and measured soil Fe data as reference, indicated significant anthropogenic contributions to Pb and Cd regional pollution. Based on correlation analysis and scanning electron microscopy (SEM) observations, it was evident that Pb and Cd in foliar part of Cassia siamea were largely from airborne sources. The SEM studies of leaf confirmed that leaf morphology (epidermis, trichome, and stomata) of Cassia siamea helped accumulate the toxic metals from deposited particulate matter (PM). There is a line of evidence that the leaf of Cassia siamea was able to entrap PM in respirable suspended particulate matter (RSPM) range (i.e., both in fine and coarse fractions). The overall results of this study suggest that Cassia siamea can be a potential plant species to control the pollution of PM and PM-bound metals (Pb and Cd) in affected areas.

  1. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    PubMed

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis.

  2. Opposing Roles of Foliar and Glandular Trichome Volatile Components in Cultivated Nightshade Interaction with a Specialist Herbivore.

    PubMed

    Murungi, Lucy Kananu; Kirwa, Hillary; Salifu, Daisy; Torto, Baldwyn

    2016-01-01

    Plant chemistry is an important contributor to the interaction with herbivores. Here, we report on a previously unknown role for foliar and glandular trichome volatiles in their interaction with the specialist herbivore of solanaceous plants, the tomato red spider mite Tetranychus evansi. We used various bioassays and chemical analyses including coupled gas chromatography-mass spectrometry (GC/MS) and liquid chromatography coupled to quadrupole time of flight mass spectrometry (LC-QToF-MS) to investigate this interaction between cultivated African nightshades and T. evansi. We show that, whereas morphologically different cultivated African nightshade species released similar foliar volatile organic compounds (VOCs) that attracted T. evansi, VOCs released from exudates of ruptured glandular trichomes of one nightshade species influenced local defense on the leaf surface. VOCs from ruptured glandular trichomes comprising mainly saturated and unsaturated fatty acids deterred T. evansi oviposition. Of the fatty acids, the unsaturated fatty acids accounted for >40% of the oviposition deterrent activity. Our findings point to a defense strategy in a plant, based on opposing roles for volatiles released by foliar and glandular trichomes in response to attack by a specialist herbivore.

  3. Soil and foliar zinc biofortification in field pea (Pisum sativum L.): Grain accumulation and bioavailability in raw and cooked grains.

    PubMed

    Poblaciones, M J; Rengel, Z

    2016-12-01

    To evaluate the potential of cooked field peas to be used in Zn biofortification programs, all combinations of soil Zn application of 0, 4 and 8mgZnSO4·7H2Okg(-1) and foliar Zn application of 0 and two sprays of 0.25% or 0.5% (w/v) ZnSO4·7H2O before flowering and at early grain-filling stage were tested. Soil Zn application increased Zn-DTPA concentration 3.7- to 5.6-times depending on the Zn soil treatments. Grain Zn concentrations higher than 60mgZnkg(-1) were obtained with all foliar Zn applications, alone or in combination with soil Zn applications, and grain Zn bioavailability was adequate (phytate:Zn ratios lower than 15). Processing (freezing and cooking) caused a decrease of about 30% in grain Zn concentration and a 17%-increase in phytate:Zn ratios (to ⩽9.5). The combined application of 8mgZnSO4·7H2Okg(-1) soil+0.25% (w/v) ZnSO4·7H2O foliarly could be a good option for biofortifying field peas.

  4. [Changes of foliar delta13C value of Quercus fabric in different root underground habitat types in Karst area].

    PubMed

    Fu, Yu-Hong; Huang, Zong-Sheng; Yu, Li-Fei

    2012-11-01

    Selecting the dominant tree species Quercus fabric in three root underground habitat types (the dolomites of low oblique occurrence with multilayer space, middle oblique occurrence with multilayer space, and high oblique occurrence with multilayer space) in Karst area as test object, this paper studied the foliar delta13C value and its correlations with habitat soil conditions, and the plant water use efficiency. There existed remarkable differences in the foliar delta13C value of Q. fabric among the three habitat types, being decreased in the order of low oblique occurrence with multilayer space type (-26.35 per thousand) > high oblique occurrence with multilayer space type (-26.66 per thousand) > middle oblique occurrence with multilayer space type (-27.07 per thousand). Accordingly, the plant water use efficiency decreased in the same order. The foliar delta13C value had significant correlation with habitat soil moisture content, but less correlation with habitat soil elements contents. The delta13C value increased with the decrease of soil moisture content and soil fertility.

  5. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura.

    PubMed

    Yadav, Jitendra; Tan, Ching-Wen; Hwang, Shaw-Yhi

    2010-12-01

    Foliar chemicals are variable within a plant and this may affect herbivore feeding preference. This study was carried out to quantify concentrations of primary (nitrogen, water, and total nonstructural carbohydrates) and secondary substances (sinigrin) in young and old leaves of Raphanus sativus L. and to evaluate performance and survival of a generalist herbivore Spodoptera litura F. feeding on them. Forty to 50-d-old R. sativus plants were used in both foliar chemical analysis and insect performance bioassays. Leaves located on the third to the sixth node from the base of the plant were defined as old leaves and the remaining leaves (from seventh node to the plant apex) of the plant were referred as young leaves in this study. All foliar chemicals except water differed significantly between young and old leaves. Moreover, young leaves were more nutritious but much more defended, based on sinigrin content, against S. litura than old leaves. Performance and survival of S. litura were reduced on young leaves as compared with old leaves. Male and female larval duration only differed significantly on young leaves. Female larval development time was longer than male development time on young leaves, but not on older leaves. Therefore, this study revealed that defenses in young leaves have differential effects upon male and female S. litura.

  6. Assisted phytoremediation of mixed metal(loid)-polluted pyrite waste: effects of foliar and substrate IBA application on fodder radish.

    PubMed

    Vamerali, Teofilo; Bandiera, Marianna; Hartley, William; Carletti, Paolo; Mosca, Giuliano

    2011-06-01

    Exogenous application of plant-growth promoting substances may potentially improve phytoremediation of metal-polluted substrates by increasing shoot and root growth. In a pot-based study, fodder radish (Raphanus sativus L. var. oleiformis Pers.) was grown in As-Zn-Cu-Co-Pb-contaminated pyrite waste, and treated with indolebutyric acid (IBA) either by foliar spraying (10 mgL(-1)), or by direct application of IBA to the substrate (0.1 and 1 mgkg(-1)) in association, or not, with foliar spraying. With the exception of foliar spraying, IBA reduced above-ground biomass, whilst direct application of IBA to the substrate surface reduced root biomass (-59%). Trace element concentrations were generally increased, but removals (mg per plant) greatly reduced with IBA application, together with greater metal leaching from the substrate. It is concluded that, in our case, IBA had a negative effect on plant growth and phytoextraction of trace elements, possibly due to unsuitable root indoleacetic acid concentration following soil IBA application, the direct chelating effect of IBA and the low microbial activity in the pyrite waste affecting its breakdown.

  7. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean

    PubMed Central

    Wang, Bing; Swaminathan, Sivakumar; Bhattacharyya, Madan K.

    2015-01-01

    Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed. PMID:26709700

  8. The effects of light on foliar chemistry, growth and susceptibility of seedlings of a canopy tree to an attine ant.

    PubMed

    Nichols-Orians, Colin M

    1991-05-01

    Seedlings of Inga oerstediana Benth. (Mimosaceae) growing in three different light environments (the understory, tree-fall gaps and full sun) were tested for differences in chemistry (nutrients and tannins), wound-induced increases in tannins, growth, and susceptibility to leaf-cutter ants, Atta cephalotes (L.) (Formicidae: Attini). I hypothesized that seedlings of I. oerstediana would contain higher concentrations of tannins when growing in high light conditions and, therefore, would be less susceptible to leaf-cutter ants.Foliar concentrations of condensed tannins were much higher in plants growing in full sun compared to those growing in the understory. The concentrations of condensed tannins did not increase following damage. Despite higher concentrations of condensed tannins in sun foliage, leaf-cutter ants found these leaves more acceptable. The preference for sun leaves was consistent with higher concentrations of foliar nutrients. I suggest that the magnitude of the increase in condensed tannins was not great enough to override the benefits of increased concentrations of foliar nutrients. Finally, based on these results and those of others, I suggest that foraging by leaf-cutter ants may be an important factor determining patterns of succession in early successional habitats.

  9. Spatial variation in soil biota mediates plant adaptation to a foliar pathogen.

    PubMed

    Mursinoff, Sini; Tack, Ayco J M

    2017-01-02

    Theory suggests that below-ground spatial heterogeneity may mediate host-parasite evolutionary dynamics and patterns of local adaptation, but this has rarely been tested in natural systems. Here, we test experimentally for the impact of spatial variation in the abiotic and biotic soil environment on the evolutionary outcome of the interaction between the host plant Plantago lanceolata and its specialist foliar pathogen Podosphaera plantaginis. Plants showed no adaptation to the local soil environment in the absence of natural enemies. However, quantitative, but not qualitative, plant resistance against local pathogens was higher when plants were grown in their local field soil than when they were grown in nonlocal field soil. This pattern was robust when extending the spatial scale beyond a single region, but disappeared with soil sterilization, indicating that soil biota mediated plant adaptation. We conclude that below-ground biotic heterogeneity mediates above-ground patterns of plant adaptation, resulting in increased plant resistance when plants are grown in their local soil environment. From an applied perspective, our findings emphasize the importance of using locally selected seeds in restoration ecology and low-input agriculture.

  10. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato.

    PubMed

    Haroldsen, Victor M; Chi-Ham, Cecilia L; Kulkarni, Shashank; Lorence, Argelia; Bennett, Alan B

    2011-10-01

    Vitamin C (L-ascorbate, AsA) is an essential nutrient required in key metabolic functions in humans and must be obtained from the diet, mainly from fruits and vegetables. Given its importance in human health and plant physiology we sought to examine the role of the ascorbate recycling enzymes monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) in tomato (Solanum lycopersicum), an economically important fruit crop. Cytosolic-targeted tomato genes Mdhar and Dhar were cloned and over-expressed under a constitutive promoter in tomato var. Micro-Tom. Lines with increased protein levels and enzymatic activity were identified and examined. Mature green and red ripe fruit from DHAR over-expressing lines had a 1.6 fold increase in AsA content in plants grown under relatively low light conditions (150 μmol m(-2) s(-1)). Conversely, MDHAR over-expressers had significantly reduced AsA levels in mature green fruits by 0.7 fold. Neither over-expressing line had altered levels of AsA in foliar tissues. These results underscore a complex regulation of the AsA pool size in tomato.

  11. Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance.

    PubMed

    Barnaby, Jinyoung Y; Kim, Moon; Bauchan, Gary; Bunce, James; Reddy, Vangimalla; Sicher, Richard Charles

    2013-01-01

    Maize (Zea mays L.) hybrids varying in drought tolerance were treated with water stress in controlled environments. Experiments were performed during vegetative growth and water was withheld for 19 days beginning 17 days after sowing. Genotypic comparisons used measured changes of leaf water potential or results were expressed by time of treatment. Total dry matter of the drought tolerant hybrid on the final harvest was 53% less than that of the intermediate and susceptible maize hybrids when plants were water sufficient. This showed that maize hybrids selected for extreme drought tolerance possessed a dwarf phenotype that affected soil water contents and leaf water potentials. Changes of shoot and root growth, leaf water potential, net photosynthesis and stomatal conductance in response to the time of water stress treatment were diminished when comparing the drought tolerant to the intermediate or susceptible maize hybrids. Genotypic differences were observed in 26 of 40 total foliar metabolites during water stress treatments. Hierarchical clustering revealed that the tolerant maize hybrid initiated the accumulation of stress related metabolites at higher leaf water potentials than either the susceptible or intermediate hybrids. Opposite results occurred when changes of metabolites in maize leaves were expressed temporally. The above results demonstrated that genotypic differences were readily observed by comparing maize hybrids differing in drought tolerance based on either time of treatment or measured leaf water potential. Current findings provided new and potentially important insights into the mechanisms of drought tolerance in maize.

  12. Isolation of Endohyphal Bacteria from Foliar Ascomycota and In Vitro Establishment of Their Symbiotic Associations

    PubMed Central

    Arendt, Kayla R.; Hockett, Kevin L.; Araldi-Brondolo, Sarah J.; Baltrus, David A.

    2016-01-01

    Endohyphal bacteria (EHB) can influence fungal phenotypes and shape the outcomes of plant-fungal interactions. Previous work has suggested that EHB form facultative associations with many foliar fungi in the Ascomycota. These bacteria can be isolated in culture, and fungi can be cured of EHB using antibiotics. Here, we present methods for successfully introducing EHB into axenic mycelia of strains representing two classes of Ascomycota. We first establish in vitro conditions favoring reintroduction of two strains of EHB (Luteibacter sp.) into axenic cultures of their original fungal hosts, focusing on fungi isolated from healthy plant tissue as endophytes: Microdiplodia sp. (Dothideomycetes) and Pestalotiopsis sp. (Sordariomycetes). We then demonstrate that these EHB can be introduced into a novel fungal host under the same conditions, successfully transferring EHB between fungi representing different classes. Finally, we manipulate conditions to optimize reintroduction in a focal EHB-fungal association. We show that EHB infections were initiated and maintained more often under low-nutrient culture conditions and when EHB and fungal hyphae were washed with MgCl2 prior to reassociation. Our study provides new methods for experimental assessment of the effects of EHB on fungal phenotypes and shows how the identity of the fungal host and growth conditions can define the establishment of these widespread and important symbioses. PMID:26969692

  13. Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants

    PubMed Central

    González-Teuber, Marcia; Jiménez-Alemán, Guillermo H; Boland, Wilhelm

    2014-01-01

    In defensive ant-plant interactions myrmecophytic plants express reduced chemical defense in their leaves to protect themselves from pathogens, and it seems that mutualistic partners are required to make up for this lack of defensive function. Previously, we reported that mutualistic ants confer plants of Acacia hindsii protection from pathogens, and that the protection is given by the ant-associated bacteria. Here, we examined whether foliar endophytic fungi may potentially act as a new partner, in addition to mutualistic ants and their bacteria inhabitants, involved in the protection from pathogens in myrmecophytic Acacia plants. Fungal endophytes were isolated from the asymptomatic leaves of A. hindsii plants for further molecular identification of 18S rRNA gene. Inhibitory effects of fungal endophytes were tested against Pseudomonas plant pathogens. Our findings support a potential role of fungal endophytes in pathogen the protection mechanisms against pathogens in myrmecophytic plants and provide the evidence of novel fungal endophytes capable of biosynthesizing bioactive metabolites. PMID:26843901

  14. Pervasive effects of wildfire on foliar endophyte communities in montane forest trees

    PubMed Central

    Huang, Yu-Ling; Devan, MM Nandi; U'Ren, Jana M.; Furr, Susan H.; Arnold, A. Elizabeth

    2015-01-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes. PMID:26370111

  15. Analysis of Stomata Distribution Patterns for Quantification of the Foliar Plasticity of Tradescantia Zebrina

    NASA Astrophysics Data System (ADS)

    Batista Florindo, Joao; Landini, Gabriel; Almeida Filho, Humberto; Martinez Bruno, Odemir

    2015-09-01

    Here we propose a method for the analysis of the stomata distribution patterns on the surface of plant leaves. We also investigate how light exposure during growth can affect stomata distribution and the plasticity of leaves. Understanding foliar plasticity (the ability of leaves to modify their structural organization to adapt to changing environmental resources) is a fundamental problem in Agricultural and Environmental Sciences. Most published work on quantification of stomata has concentrated on descriptions of their density per unit of leaf area, however density alone does not provide a complete description of the problem and leaves several unanswered questions (e.g. whether the stomata patterns change across various areas of the leaf, or how the patterns change under varying observational scales). We used two approaches here, to know, multiscale fractal dimension and complex networks, as a means to provide a description of the complexity of these distributions. In the experiments, we used 18 samples from the plant Tradescantia Zebrina grown under three different conditions (4 hours of artificial light each day, 24 hours of artificial light each day, and sunlight) for a total of 69 days. The network descriptors were capable of correctly discriminating the different conditions in 88% of cases, while the fractal descriptors discriminated 83% of the samples. This is a significant improvement over the correct classification rates achieved when using only stomata density (56% of the samples).

  16. Estimation of aerial deposition and foliar uptake of xenobiotics: Assessment of current models

    SciTech Connect

    Link, S.O.; Fellows, R.J.; Cataldo, D.A.; Droppo, J.G.; Van Voris, P.

    1987-10-01

    This report reviews existing mathematical and/or computer simulation models that estimate xenobiotic deposition to and transport through (both curricular and stomatal) vegetative surfaces. The report evaluates the potential for coupling the best of those models to the existing Uptake, Translocation, Accumulation, and Biodegradation model to be used for future xenobiotic exposure assessments. Here xenobiotic compounds are defined as airborne contaminants, both organic and gaseous pollutants, that are introduced into the environment by man. Specifically this document provides a detailed review of the state-of-the-art models that addressed aerial deposition of particles and gases to foliage; foliar and cuticular transport, metabolism, and uptake of organic xenobiotics; and stomatal transport of gaseous and volatile organic xenobiotic pollutants. Where detailed information was available, parameters for each model are provided on a chemical by chemical as well as species by species basis. Sufficient detail is provided on each model to assess the potential for adapting or coupling the model to the existing UTAB plant exposure model. 126 refs., 6 figs., 10 tabs.

  17. Foliar application of β-D-glucan nanoparticles to control rhizome rot disease of turmeric.

    PubMed

    Anusuya, Sathiyanarayanan; Sathiyabama, Muthukrishnan

    2015-01-01

    The soilborne Oomycete Pythium aphanidermatum is the causal agent of rhizome rot disease, one of the most serious threats to turmeric crops. At present, effective fungicides are not available. Researches on nanoparticles in a number of crops have evidenced the positive changes in gene expression indicating their potential use in crop improvement. Hence, experiments were carried out to determine the effect of β-D-glucan nanoparticles (nanobiopolymer) in protection of turmeric plants against rot disease by the way of products that reinforce plant's own defense mechanism. Foliar spray of β-D-glucan nanoparticles (0.1%, w/v) elicited marked increase in the activity of defense enzymes such as peroxidases (E.C.1.11.1.7), polyphenol oxidases (E.C.1.14.18.1), protease inhibitors (E.C.3.4.21.1) and β-1,3-glucanases (E.C.3.2.1.39) at various age levels. Constitutive and induced isoforms of these enzymes were investigated during this time-course study. β-D-glucan nanoparticles (GNPs) significantly reduced the rot incidence offering 77% protection. Increased activities of defense enzymes in GNPs-applied turmeric plants may play a role in restricting the development of disease symptoms. These results demonstrated that GNPs could be used as an effective resistance activator in turmeric for control of rhizome rot disease.

  18. Foliar nitrogen, phosphorus and potassium content in trees in environmentally toxic plastic industry area.

    PubMed

    Sett, Rupnarayan; Soni, Bhawna

    2013-04-01

    In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.

  19. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum).

    PubMed

    Landi, Marco; Guidi, Lucia; Pardossi, Alberto; Tattini, Massimiliano; Gould, Kevin S

    2014-11-01

    Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.

  20. Analysis of optimal narrow band RVI for estimating foliar photosynthetic pigments based on PROSPECT model

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Shi, Runhe; Liu, Pudong; Ma, Mingliang; Gao, Wei

    2014-10-01

    Remote sensing is an effective tool to estimate foliar pigments contents with the analysis of vegetation index. The crucial issue is how to choose the optimal bands-combination to conduct the vegetation index. In this study, RVI, a vegetation index computed by the reflectance of Red and NIR bands, has been used to estimate the contents of chlorophyll and carotenoid. The reflectance of the two bands forming the narrow band RVI was simulated by the PROSPECT model. The possible combinations of narrow band RVI were examined from 400 nm to 800 nm. The results showed that: At the leaf level, estimation of chlorophyll content can be identified in narrow band RVI. Ranges for these bands included: (1) 549-589nm, 616-636nm or 729-735nm combined with 434-454nm; (2) 663-688nm, 710-717nm, 719-728nm or 730- 739nm combined with 549-561nm; (3) 663-688nm combined with 569-615nm. However, no valid narrow-band RVI for the estimation of carotenoid content was successfully identified. Our results also showed that two rules should be followed when choosing optimal bands-combination: (1) the selected bands must have minimal interference from other biochemical constituents; (2) there should be distinct differences between the sensitivities of the bands selected for particular pigments.

  1. Edge effects, not connectivity, determine the incidence and development of a foliar fungal plant disease.

    SciTech Connect

    Johnson, Brenda, L.; Haddad, Nick, M.

    2011-08-01

    Using a model plant-pathogen system in a large-scale habitat corridor experiment, we found that corridors do not facilitate the movement of wind-dispersed plant pathogens, that connectivity of patches does not enhance levels of foliar fungal plant disease, and that edge effects are the key drivers of plant disease dynamics. Increased spread of infectious disease is often cited as a potential negative effect of habitat corridors used in conservation, but the impacts of corridors on pathogen movement have never been tested empirically. Using sweet corn (Zea mays) and southern corn leaf blight (Cochliobolus heterostrophus) as a model plant-pathogen system, we tested the impacts of connectivity and habitat fragmentation on pathogen movement and disease development at the Savannah River Site, South Carolina, USA. Over time, less edgy patches had higher proportions of diseased plants, and distance of host plants to habitat edges was the greatest determinant of disease development. Variation in average daytime temperatures provided a possible mechanism for these disease patterns. Our results show that worries over the potentially harmful effects of conservation corridors on disease dynamics are misplaced, and that, in a conservation context, many diseases can be better managed by mitigating edge effects.

  2. Foliar nutrients and Sr isotopes along a climate gradient on Mt. Haleakala, Maui

    NASA Astrophysics Data System (ADS)

    Lindeburg, K.; Amatangelo, K.; Vitousek, P.

    2008-12-01

    On the northeast, windward side of Mt. Haleakala, Maui, a trade-wind inversion layer at 1900 m controls the uppermost extent of a tropical montane cloud forest. Treeline marks the boundary between the cool and moist cloud forest below and the drier and colder locations above. Within the cloud forest, Metrosideros polymorpha is the dominant canopy tree. Above treeline, the predominant species are a xerophytic shrub and a non-native grass; M. polymorpha exists only as isolated individuals within the drier, cooler shrub and grasslands. We sampled surface soils and vegetation of the three species along four elevational transects to observe how nutrient availabilities and sources change across treeline. Transects were comprised of locations within the upper extent of the cloud forest, at treeline, and in the shrub and grassland communities. Soils were analyzed for C, N, net N mineralization rates, and plant-available P. Foliar samples were analyzed for C, N, P, base cations, micronutrients, and the isotopic ratio of 87Sr/86Sr. Total soil N and net mineralization rates decrease with increasing elevation across treeline. N content of the grass and shrub reflect soil characteristics and also significantly decrease above treeline, although this trend is not observed in M. polymorpha. Preliminary isotopic results suggest for all three species a change in source of nutrients from predominately rock-derived in the upper extent of the cloud forest to partially precipitation- derived in the shrub and grasslands.

  3. Fungicide volatilization measurements: inverse modeling, role of vapor pressure, and state of foliar residue.

    PubMed

    Bedos, Carole; Rousseau-Djabri, Marie-France; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Briand, Olivier; Barriuso, Enrique

    2010-04-01

    Few data sets of pesticide volatilization from plants at the field scale are available. In this work, we report measurements of fenpropidin and chlorothalonil volatilization on a wheat field using the aerodynamic gradient (AG) method and an inverse dispersion modeling approach (using the FIDES model). Other data necessary to run volatilization models are also reported: measured application dose, crop interception, plant foliage residue, upwind concentrations, and meteorological conditions. The comparison of the AG and inverse modeling methods proved the latter to be reliable and hence suitable for estimating volatilization rates with minimized costs. Different diurnal/nocturnal volatilization patterns were observed: fenpropidin volatilization peaked on the application day and then decreased dramatically, while chlorothalonil volatilization remained fairly stable over a week-long period. Cumulated emissions after 31 h reached 3.5 g ha(-1) and 5 g ha(-1), respectively (0.8% and 0.6% of the theoretical application dose). A larger difference in volatilization rates was expected given differences in vapor pressure, and for fenpropidin, volatilization should have continued given that 80% of the initial amount remained on plant foliage for 6 days. We thus ask if vapor pressure alone can accurately estimate volatilization just after application and then question the state of foliar residue. We identified adsorption, formulation, and extraction techniques as relevant explanations.

  4. Major constituents of the foliar epicuticular waxes of species from the Caatinga and Cerrado.

    PubMed

    Oliveira, A F; Salatino, A

    2000-01-01

    The epicuticular waxes of leaves of four species (Aspidosperma pyrifolium, Capparis yco, Maytenus rigida and Ziziphus joazeiro) from the Caatinga, (a semi-arid ecosystem of Northeast Brazil) and four species (Aristolochia esperanzae, Didymopanax vinosum, Strychnos pseudoquina and Tocoyena formosa) from the Cerrado, (a savanna ecosystem covering one third of the Brazilian territory), were analyzed. Six species contained a high content (above 60 microg x cm(-2)) of wax, four of them from the Caatinga. Triterpenoids and n-alkanes were the most frequent and abundant constituents found in the species from both habitats. The distribution of n-alkanes predominated by homologues with 27, 29, 31 and 33 carbon atoms, displayed no consistent differences between species from the two habitats. Lupeol, beta-amyrin, epifriedelinol and ursolic acid were the triterpenoids found. Triterpenoids clearly predominate over alkanes in the waxes from the Cerrado species. The waxes of two evergreen species from the Caatinga yielded n-alkanes as predominant constituents. A comparison of foliar epicuticular waxes of native plants from ecosystems with different hydric constraints is discussed.

  5. Subalpine conifers in different geographical locations host highly similar foliar bacterial endophyte communities.

    PubMed

    Carrell, Alyssa A; Carper, Dana L; Frank, A Carolin

    2016-08-01

    Pines in the subalpine environment at Niwot Ridge, CO, have been found to host communities of acetic acid bacteria (AAB) within their needles. The significance and ubiquity of this pattern is not known, but recent evidence of nitrogen (N)-fixing activity in Pinus flexilis (limber pine) foliage calls for a better understanding of the processes that regulate endophytic communities in forest tree canopies. Here, to test if AAB dominate the foliar bacterial microbiota in other subalpine locations, we compared the 16S rRNA community in needles from P. flexilis and P. contorta (lodgepole pine) growing in the Eastern Sierra Nevada, CA, and Niwot Ridge, CO. AAB made up the majority of the bacterial community in both species at both sites. Multiple distinct AAB taxa, resolved at the single nucleotide level, were shared across host species and sites, with dominant OTUs identical or highly similar to database sequences from cold environments, including high altitude air sampled in Colorado, and the endosphere of Arctic plants. Our results suggest strong selection for community composition, potentially amplified by the long lifespan of individual Pinus needles, along with low dispersal constraints on canopy bacteria.

  6. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato

    PubMed Central

    Haroldsen, Victor M.; Chi-Ham, Cecilia L.; Kulkarni, Shashank; Lorence, Argelia; Bennett, Alan B.

    2012-01-01

    Vitamin C (l-ascorbate, AsA) is an essential nutrient required in key metabolic functions in humans and must be obtained from the diet, mainly from fruits and vegetables. Given its importance in human health and plant physiology we sought to examine the role of the ascorbate recycling enzymes monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) in tomato (Solanum lycopersicum), an economically important fruit crop. Cytosolic-targeted tomato genes Mdhar and Dhar were cloned and over-expressed under a constitutive promoter in tomato var. Micro-Tom. Lines with increased protein levels and enzymatic activity were identified and examined. Mature green and red ripe fruit from DHAR over-expressing lines had a 1.6 fold increase in AsA content in plants grown under relatively low light conditions (150 µmol m−2 s−1). Conversely, MDHAR over-expressers had significantly reduced AsA levels in mature green fruits by 0.7 fold. Neither over-expressing line had altered levels of AsA in foliar tissues. These results underscore a complex regulation of the AsA pool size in tomato. PMID:21875809

  7. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  8. Isotopic study of post-anthesis foliar incorporation of sulphur and nitrogen in wheat.

    PubMed

    Tea, I; Genter, T; Naulet, N; Morvan, E; Kleiber, D

    2003-12-01

    Nitrogen (N) and sulphur (S) supplies have a strong influence on the quality and quantity of wheat storage proteins, which play an important role in the bread-making process. In order to relate the incorporation and distribution of foliar N and S fertilisers at the post-anthesis stage to the quality of wheat, 15N and 34S isotopes were used as tracers. The incorporation of these tracers in different plant parts (leaves, stems, ears) and in each storage protein fraction (gliadins, HMW and LMW glutenin subunits) was determined by isotopic ratio mass spectrometry coupled with an elemental analyser (EA-IRMS). By this means, the true recovery coefficient of N and S (TRCNfertiliser and TRCSfertiliser) and the N and S derived from fertilisers (Ndff and Sdff) could be determined. The TRCNfertiliser and TRCSfertiliser values of the different plant parts provide evidence of the applied N and S assimilation and translocation from wheat leaves to the seeds. The determination of Ndff and Sdff incorporated into storage proteins shows the efficiency and the influence of N and S incorporation into each storage protein fraction. Moreover, a favourable stage for fertiliser application can be determined by the TRCNfertiliser values in the grain and in the whole plant. The fertilisers enriched in stable isotope used in the culture techniques can be a means of understanding the effectiveness of fertilisers in the expression of wheat quality.

  9. The effect of signal noise on the remote sensing of Foliar biochemical concentration

    NASA Technical Reports Server (NTRS)

    Smith, Geoffrey M.; Curran, Paul J.

    1993-01-01

    Spectral measurements made using an imaging spectrometer contain systematic and random noise, while the former can be corrected the latter remains a source of error in the remotely sensed signal. A number of investigators have tried to determine the signal-to-noise-ratio (SNR) of the instrument, or the resultant imagery. However, the level of noise at which spectra are too noisy to be useful is not usually determined. The first attempt was by Goetz and Calvin, who suggested that the depth of the absorption feature should be at least an order of magnitude greater than the noise and more recently Dekker suggested a SNR of around 600:1 was required in visible/near infrared wavelengths to measure a 1/gl change in chlorophyll a concentration water. The wide range of applications of imaging spectroscopy make it difficult to set SNR specifications as they are dependent on a number of factors, one of the most important being reflectance of a particular target. For example, the SNR of imagery for vegetated targets is relatively low simply because vegetation has a relatively low level of reflectance. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is being used to estimate the concentration of biochemicals within vegetation canopies. This paper reports a study undertaken to identify first, wavebands that were highly correlated with foliar biochemical concentration and second, to determine how sensitive these correlations were to sensor noise.

  10. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply.

    PubMed

    Mercado, Lina M; Patiño, Sandra; Domingues, Tomas F; Fyllas, Nikolaos M; Weedon, Graham P; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L; Aragão, Luiz E O C; Malhi, Yadvinder; Dolman, A J; Restrepo-Coupe, Natalia; Saleska, Scott R; Baker, Timothy R; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon

    2011-11-27

    The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.

  11. Litter quality and decomposition rates of foliar litter produced under CO{sub 2} enrichment

    SciTech Connect

    O`Neill, E.G.; Norby, R.J.

    1993-12-31

    Decomposition of senesced plant material is one of two critical processes linking above- and below-ground components of nutrient cycles. As such, it is a key area of concern in understanding and predicting ecosystem responses to elevated atmospheric CO{sub 2}. Just as root acquisition of nutrients from soils represents the major pathway for nutrient movement from the soil to vegetation, decomposition serves as the major path of return to the soil. For any given ecosystem, a long-term shift in decomposition rates could alter nutrient cycling rates and potentially change the structure, function, and even the persistence of that ecosystem type within a given region. There is wide-spread concern that decomposition processes would be altered in an enriched-CO{sub 2} world. What is lacking presently is sufficient experimental data at the ecosystem level to determine whether these concerns have merit. Two issues are discussed in this article: effects of carbon dioxide enrichement on foliar litter quality and subsequent effects on decomposition rates. The focus is primarily on nitrogen because in many terrestrial ecosystems, nitrogen is the major nutrient limiting plant growth and experimental results from diverse ecosystem types have demonstrated that nitrogen concentrations are consistently reduced in green foliage produced at elevated carbon dioxide. Methodological questions are also discussed.

  12. Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.

    PubMed

    Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth

    2016-02-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.

  13. Control of foliar pathogens of spring barley using a combination of resistance elicitors

    PubMed Central

    Walters, Dale R.; Havis, Neil D.; Paterson, Linda; Taylor, Jeanette; Walsh, David J.; Sablou, Cecile

    2014-01-01

    The ability of the resistance elicitors acibenzolar-S-methyl (ASM), β-aminobutyric acid (BABA), cis-jasmone (CJ), and a combination of the three products, to control infection of spring barley by Rhynchosporium commune was examined under glasshouse conditions. Significant control of R. commune was provided by ASM and CJ, but the largest reduction in infection was obtained with the combination of the three elicitors. This elicitor combination was found to up-regulate the expression of PR-1b, which is used as a molecular marker for systemic acquired resistance (SAR). However, the elicitor combination also down-regulated the expression of LOX2, a gene involved in the biosynthesis of jasmonic acid (JA). In field experiments over 3 consecutive years, the effects of the elicitor combination were influenced greatly by crop variety and by year. For example, the elicitor combination applied on its own provided significant control of powdery mildew (Blumeria graminis f.sp. hordei) and R. commune in 2009, whereas no control on either variety was observed in 2007. In contrast, treatments involving both the elicitor combination and fungicides provided disease control and yield increases which were equal to, and in some cases better than that provided by the best fungicide-only treatment. The prospects for the use of elicitor plus fungicide treatments to control foliar pathogens of spring barley in practice are discussed. PMID:24904629

  14. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature

    PubMed Central

    Adams, William W.; Stewart, Jared J.; Cohu, Christopher M.; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature – most strongly in Col-0 and least strongly in the Italian ecotype – and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  15. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    PubMed

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  16. Forest Gaps Inhibit Foliar Litter Pb and Cd Release in Winter and Inhibit Pb and Cd Accumulation in Growing Season in an Alpine Forest

    PubMed Central

    He, Jie; Yang, Wanqin; Li, Han; Xu, Liya; Ni, Xiangyin; Tan, Bo; Zhao, Yeyi; Wu, Fuzhong

    2015-01-01

    Aims The release of heavy metals (such as Pb and Cd) from foliar litter play an important role in element cycling in alpine forest ecosystems. Although natural forest gaps could play important roles in the release of heavy metals from foliar litter by affecting the snow cover during the winter and solar irradiation during the growing season, few studies have examined these potential roles. The objectives of this study were to document changes in Pb and Cd dynamics during litter decomposition in the center of gaps and under closed canopies and to investigate the factors that controlled these changes during the winter and growing seasons. Methods Senesced foliar litter from six dominant species, including Kangding willow (Salix paraplesia), Masters larch (Larix mastersiana), Mingjiang fir (Abies faxoniana), Alpine azalea (Rhododendron lapponicum), Red birch (Betula albosinensis) and Mourning cypress (Sabina saltuaria), was placed in litterbags and incubated between the gap center and closed canopy conditions in an alpine forest in the eastern region of the Tibetan Plateau. The litterbags were sampled at the snow formation stage, snow coverage stage, snow melt stage and during the growing season. The Pb and Cd concentrations in the sampled foliar litter were determined by acid digestion (HNO3/HClO4). Important findings Over one year of decomposition, Pb accumulation and Cd release from the foliar litter occurred, regardless of the foliar litter species. However, Pb and Cd were both released from the foliar litter during the winter and accumulated during the growing season. Compared with the gap center and the canopy gap edge, the extended gap edge and the closed canopy showed higher Pb and Cd release rates in winter and higher Pb and Cd accumulation rates during the growing season, respectively. Statistical analyses indicate that the dynamics of Pb were significantly influenced by frequent freeze–thaw cycles in winter and appropriate hydrothermal conditions during

  17. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes.

  18. Transcriptome Analysis of the Chrysanthemum Foliar Nematode, Aphelenchoides ritzemabosi (Aphelenchida: Aphelenchoididae)

    PubMed Central

    Li, Jun-Yi; Xie, Hui; Xu, Chun-Ling; Li, Yu

    2016-01-01

    The chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi, is a plant parasitic nematode that attacks many plants. In this study, a transcriptomes of mixed-stage population of CFN was sequenced on the Illumina HiSeq 2000 platform. 68.10 million Illumina high quality paired end reads were obtained which generated 26,817 transcripts with a mean length of 1,032 bp and an N50 of 1,672 bp, of which 16,467 transcripts were annotated against six databases. In total, 20,311 coding region sequences (CDS), 495 simple sequence repeats (SSRs) and 8,353 single-nucleotide polymorphisms (SNPs) were predicted, respectively. The CFN with the most shared sequences was B. xylophilus with 16,846 (62.82%) common transcripts and 10,543 (39.31%) CFN transcripts matched sequences of all of four plant parasitic nematodes compared. A total of 111 CFN transcripts were predicted as homologues of 7 types of carbohydrate-active enzymes (CAZymes) with plant/fungal cell wall-degrading activities, fewer transcripts were predicted as homologues of plant cell wall-degrading enzymes than fungal cell wall-degrading enzymes. The phylogenetic analysis of GH5, GH16, GH43 and GH45 proteins between CFN and other organisms showed CFN and other nematodes have a closer phylogenetic relationship. In the CFN transcriptome, sixteen types of genes orthologues with seven classes of protein families involved in the RNAi pathway in C. elegans were predicted. This research provides comprehensive gene expression information at the transcriptional level, which will facilitate the elucidation of the molecular mechanisms of CFN and the distribution of gene functions at the macro level, potentially revealing improved methods for controlling CFN. PMID:27875578

  19. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    SciTech Connect

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  20. Leaf structure affects a plant's appearance: combined multiple-mechanisms intensify remarkable foliar variegation.

    PubMed

    Chen, Yun-Shiuan; Chesson, Peter; Wu, Ho-Wei; Pao, Shang-Hung; Liu, Jian-Wei; Chien, Lee-Feng; Yong, Jean W H; Sheue, Chiou-Rong

    2017-03-01

    The presence of foliar variegation challenges perceptions of leaf form and functioning. But variegation is often incorrectly identified and misinterpreted. The striking variegation found in juvenile Blastus cochinchinensis (Melastomataceae) provides an instructive case study of mechanisms and their ecophysiological implications. Variegated (white and green areas, vw and vg) and non-variegated leaves (normal green leaves, ng) of seedlings of Blastus were compared structurally with microtechniques, and characterized for chlorophyll content and fluorescence. More limited study of Sonerila heterostemon (Melastomataceae) and Kaempferia pulchra (Zingiberaceae) tested the generality of the findings. Variegation in Blastus combines five mechanisms: epidermal, air space, upper mesophyll, chloroplast and crystal, the latter two being new mechanisms. All mesophyll cells (vw, vg, ng) have functional chloroplasts with dense thylakoids. The vw areas are distinguished by flatter adaxial epidermal cells and central trichomes containing crystals, the presence of air spaces between the adaxial epidermis and a colorless spongy-like upper mesophyll containing smaller and fewer chloroplasts. The vw area is further distinguished by having the largest spongy-tissue chloroplasts and fewer stomata. Both leaf types have similar total chlorophyll content and similar  F v/F m (maximum quantum yield of PSII), but vg has significantly higher F v/F m than ng. Variegation in Sonerila and Kaempferia is also caused by combined mechanisms, including the crystal type in Kaempferia. This finding of combined mechanisms in three different species suggests that combined mechanisms may occur more commonly in nature than current understanding. The combined mechanisms in Blastus variegated leaves represent intricate structural modifications that may compensate for and minimize photosynthetic loss, and reflect changing plant needs.

  1. Photochemical Transformation and Bacterial Utilization of Dissolved Organic Matter and Disinfection Byproduct Precursors from Foliar Litter

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.

    2009-12-01

    Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a

  2. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  3. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Gitelson, Anatoly

    2015-06-01

    Leaf pigment content provides valuable insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast, nondestructive method for pigment estimation. A number of methods were used previously for estimation of leaf pigment content, however, spectral bands employed varied widely among the models and data used. Our objective was to find informative spectral bands in three types of models, vegetation indices (VI), neural network (NN) and partial least squares (PLS) regression, for estimating leaf chlorophyll (Chl) and carotenoids (Car) contents of three unrelated tree species and to assess the accuracy of the models using a minimal number of bands. The bands selected by PLS, NN and VIs were in close agreement and did not depend on the data used. The results of the uninformative variable elimination PLS approach, where the reliability parameter was used as an indicator of the information contained in the spectral bands, confirmed the bands selected by the VIs, NN, and PLS models. All three types of models were able to accurately estimate Chl content with coefficient of variation below 12% for all three species with VI showing the best performance. NN and PLS using reflectance in four spectral bands were able to estimate accurately Car content with coefficient of variation below 14%. The quantitative framework presented here offers a new way of estimating foliar pigment content not requiring model re-parameterization for different species. The approach was tested using the spectral bands of the future Sentinel-2 satellite and the results of these simulations showed that accurate pigment estimation from satellite would be possible.

  4. Leaf domatia and foliar mite abundance in broadleaf deciduous forest of north Asia.

    PubMed

    O'Dowd, D; Pemberton, R

    1998-01-01

    Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.

  5. Wood CO(2) efflux and foliar respiration for Eucalyptus in Hawaii and Brazil.

    PubMed

    Ryan, Michael G; Cavaleri, Molly A; Almeida, Auro C; Penchel, Ricardo; Senock, Randy S; Luiz Stape, José

    2009-10-01

    We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).

  6. Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.

    PubMed

    Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C

    2007-08-01

    Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.

  7. Understanding the Impact of Drought on Foliar and Xylem Invading Bacterial Pathogen Stress in Chickpea

    PubMed Central

    Sinha, Ranjita; Gupta, Aarti; Senthil-Kumar, Muthappa

    2016-01-01

    In field conditions, plants are concurrently exposed to multiple stresses, where one stressor impacts the plant's response to another stressor, and the resultant net effect of these stresses differs from individual stress response. The present study investigated the effect of drought stress on interaction of chickpea with Pseudomonas syringae pv. phaseolicola (Psp; foliar pathogen) and Ralstonia solanacearum (Rs; xylem inhabiting wilt causing pathogen), respectively, and the net-effect of combined stress on chlorophyll content and cell death. Two type of stress treatments were used to study the influence of each stress factor during combined stress, viz., imposition of drought stress followed by pathogen challenge (DP), and pathogen inoculated plants imposed with drought in course of pathogen infection (PD). Drought stress was imposed at different levels with pathogen inoculum to understand the influence of different stress intensities on stress interaction and their net impact. Drought stressed chickpea plants challenged with Psp infection (DPsp) showed reduced in planta bacterial number compared to Psp infection alone. Similarly, Rs infection of chickpea plants showed reduced in planta bacterial number under severe drought stress. Combined drought and Psp (DPsp) infected plants showed decreased cell death compared to plants infected only with Psp but the extent of cell death was similar to drought stressed plants. Similarly, chlorophyll content in plants under combined stress was similar to the individual drought stressed plants; however, the chlorophyll content was more compared to pathogen only infected plants. Under combined drought and Rs infection (DRs), cell death was similar to individual drought stress but significantly less compared to only Rs infected plants. Altogether, the study proposes that both stress interaction and net effect of combined stress could be majorly influenced by first occurring stress, for example, drought stress in DP treatment. In

  8. Effect of soil acidity factors on yields and foliar composition of tropical root crops

    SciTech Connect

    Abruna-Rodriguez, F.; Vicente-Chandler, J.I. Rivera, E.; Rodriguez, J.

    1982-09-01

    Tropical root crops, a major source of food for subsistence farmers, varied in their sensitivity to soil acidity factors. Tolerance to soil acidity is an important characteristic of crops for the humid tropics where soils are often very acid and lime-scarce and expensive. Experiments on two Ultisols and an Oxisol showed that three tropical root crops differed markedly in sensitivity to soil acicity factors. Yams (Dioscorea alata L.) were very sensitive to soil acidity with yields on a Ultisol decreasing from 70% of maximum when Al saturation of the effective cation exchange capacity of the soil was 10 to 25% of maximum when Al saturation was 40%. On the other hand, cassava (Manihot esculenta Crantz) was very tolerant to high levels of soil acidity, yielding about 85% of maximum with 60% Al saturation. Taniers (Xanthosoma sp.) were intermediate between yams and cassava in their tolerance to soil acidity yielding about 60% of maximum with 50% Al saturation of the soil. Foliar composition of cassava was not affected by soil acidity levels and that of yams and taniers was also unaffected except for Ca content which decreased with decreasing soil pH and increasing Al saturation.Response of these tropical root crops to soil acidity components was far more striking on Ultisols than on the Oxisol. For yams, soils should be limed to about pH 5.5 with essentially no exhangeable Al/sup 3 +/ present whereas high yields of taniers can be obtained at about pH 4.8 with 20% exchangeable Al/sup 3 +/ and of cassava at pH as low as 4.5 with 60% exchangeable Al/sup 3 +/.

  9. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition.

    PubMed

    Barbehenn, Raymond V; Jaros, Adam; Lee, Grace; Mozola, Cara; Weir, Quentin; Salminen, Juha-Pekka

    2009-04-01

    The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce

  10. Competition between rice (Oryza sativa L.) and (barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) as affected by methanol foliar application.

    PubMed

    Rezaeieh, Alireza D; Aminpanah, Hashem; Sadeghi, Seyed M

    2015-01-01

    Pot experiment was conducted in Iran, to evaluate the effect of methanol on competition between rice (Oryza sativa) and barnyardgrass (Echinochloa crus-galli). The experiment was conducted as a randomized complete block design with a factorial treatment arrangement and three replicates. Factors were two aqueous methanol foliar applications (0, and 14% v/v) and five rice: barnyardgrass ratios (100:0, 75:25, 50:50, 25:6, and 0:100). Replacement series diagrams for aboveground dry weight illustrated that 'Shiroudi' was more competitive than barnyardgrass as averaged across methanol foliar applications. When methanol was not sprayed, the lines for 'Shiroudi' and barnyardgrass intersected at 75:25 rice: barnyardgrass ratio, but when methanol was sprayed at 14% v/v, the lines for 'Shiroudi' and barnyardgrass intersect at the left of the 75:25 rice: barnyardgrass mixture proportion. These indicate that methanol application reduced competitive ability of 'Shiroudi' against barnyardgrass for aboveground biomass accumulation. At the same time, Methanol foliar application significantly reduced the relative crowding coefficient of 'Shiroudi' while simultaneously it significantly increased the relative crowding coefficient of barnyard grass. This indicates that methanol foliar application reduced the competitive ability of 'Shiroudi' against barnyardgrass for shoot biomass accumulation. This experiment illustrated that foliar spray of aqueous methanol can not be recommended for rice under weedy conditions.

  11. Are vascular epiphytes nitrogen or phosphorus limited? A study of plant (15) N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta.

    PubMed

    Wanek, Wolfgang; Zotz, Gerhard

    2011-10-01

    Although there is unambiguous evidence for vascular epiphytic plants to be limited by insufficient water and nutrient supply under natural conditions, it is an open debate whether they are primarily phosphorus (P) or nitrogen (N) limited. Plant (15) N fractionation and foliar N : P stoichiometry of a tank epiphyte (Vriesea sanguinolenta), and its response to combined N-P fertilization, were studied under semi-natural conditions over 334 d to clarify the type of nutrient limitation. Plants collected in the field and experimental plants with limited nutrient supply showed significant plant (15) N fractionation (mean 5‰) and plant N : P ratios of c. 13.5. Higher relative growth rates and declines in plant (15) N fractionation (0.5‰) and in foliar N : P ratios to 8.5 in the high N-P treatment indicated that these epiphytes were P limited in situ. The critical foliar N : P ratio was 10.4, as derived from the breakpoint in the relationship between plant (15) N fractionation and foliar N : P. We interpret the widespread (15) N depletion of vascular epiphytes relative to their host trees as deriving from (15) N fractionation of epiphytes as a result of P limitation. High foliar N : P ratios (> 12) corroborate widespread P limitation (or co-limitation by N and P) of epiphytic bromeliads and, possibly, other epiphyte species.

  12. [Effects of snow patches on the release of N and P during foliar litter decomposition in an alpine forest of western Sichuan China].

    PubMed

    He, Jie; Jiang, Xian-Min; Yang, Wan-Qin; Ni, Xiang-Yin; Xu, Li-Ya; Li, Han; Wu, Fu-Zhong

    2014-08-01

    A field experiment using litterbags was conducted in an alpine forest of western Sichuan in order to understand the effects of snow patches on the dynamics of N and P during decomposition of six representative species foliar litter in different periods of winter. Net N immobilization during foliar litter decomposition was observed in the whole snow cover season regardless of species. In contrast, P mainly released from foliar litter in the snow cover season, with a rapid rate of P release in the snow melt stage. Thick and moderate snow patches showed higher P release rates, but lower N release rates of foliar litter. The rate of N release was negatively related to daily mean temperature regardless of species, but the rate of P release was positively related to daily mean temperature with the exception of fir needle-litter. The decrease of snow cover in the scenario of global warming could inhibit P release but promote N release from foliar litter decomposition in winter in the alpine forest.

  13. Effect of sequential applications of foliar nutrients, biofertilizers and sowing dates on the incidence of corn stem borers in Egypt.

    PubMed

    Mesbah, H A; Mourad, A K; el-Nimr, Hanyiat M; el-Kady, Magda B; Haroun, Nagah S

    2002-01-01

    In this study either early sown (May 1st) or lately sown (June 2nd) corn plants were treated with Phosphorin & Rhizobactrin as biofertilizers and sprayed with six selected foliar nutrients, i.e. Polymex; Greenzit SP100, Greenzit NPK, Potasin-F, Copper sulphate and Ascorbic acid; in mono-, bi-, and/or tri-sequential applications. Such practices were conducted to show their beneficial effects compared with the chemical treatment in checking the incidence of the stem borers and hence increasing the corn yield. The obtained results could be summarized in the following chief points: (a) the lately sown biofertilized plants showed somewhat higher levels of infestation than the early planted ones., (b) in general, spraying the biofertilized corn plants in both sowing dates with the tested foliar nutrients, significantly decreased the rate of the stem borers infestation than the untreated plants of control., (c) the foliar sprays of Greenzit NPK alone, bi- or tri-sequential applications of Potasin-F, Polymex, Ascorbic acid and Copper sulphate achieved considerable success in reducing larval numbers of the borers species. For example, in case of using the bi-sequential nutrients (Polymex/Ascorbic acid) the numbers were 1.2, 1.5 and 1.2 larvae/5 plants, whereas the numbers were 1.3, 1.0 and 0.7 larvae/5 plants as a result, of the tri-sequential applications (Potasin-F/Ascorbic acid/Polymex) for the pink stem borer, Sesamia cretica, (Led.), the purple lined borer, Chilo agamemnon, (Bels.), and the European corn borer Ostrinia nubilalis (Hb.), in respect, vs. 4.8, 4.5 and 2.9 larvae/5 plants for the same stem borers, respectively, in case of the untreated corn plants. In addition, the other trisequential applications (Polymex/ascorbic acid/Copper sulphate), (Potasin-F/Copper sulphate/ascorbic acid) and (Potasin-F/Copper sulphate/Polymex) reduced the stem borers infestation; (d) from the view point of the interaction effects of sowing dates and the tested foliar nutrients, it

  14. Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality.

    PubMed

    Hong, Jie; Wang, Lina; Sun, Youping; Zhao, Lijuan; Niu, Genhua; Tan, Wenjuan; Rico, Cyren M; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    There is lack of information about the effects of foliar applied nanoparticles on fruit quality. In this study, three week-old soil grown cucumber seedlings were foliar-exposed to nCeO2, nCuO, and corresponding bulk counterparts at 50, 100, and 200mg/L. Respective suspensions/solutions were sprayed to experimental units in a volume of 250ml. Net photosynthesis rate (Pn), stomatal conductance (Gs), and transpiration rate (E) were measured 15days after treatment application and in 74day-old plants. Yield, fruit characteristics (size, weight, and firmness), Ce, Cu, and nutritional elements were also measured. Results showed a nano-specific decrement on Pn (22% and 30%) and E (11% and 17%) in seedling leaves exposed to nCeO2 and nCuO at 200mg/L, respectively, compared with control. nCeO2 at 50mg/L, bCeO2 at 200mg/L, and all Cu treatments, except nCuO at 100mg/L, significantly reduced fruit firmness (p≤0.05), compared with control. However, nCuO at 200mg/L and bCuO at 50mg/L significantly increased fruit fresh weight (p≤0.05). At 200mg/L, nCeO2 and bCeO2 reduced fruit Zn by 25%, while nCuO and bCuO reduced fruit Mo by 51% and 44%, respectively, compared with control. This study has shown that when the route of exposure is the foliage, differences in particle size are less significant, compared to root-based exposure. To the authors' knowledge, this is the first report on the effect of foliar application of nCeO2 and nCuO upon yield and nutritional quality of cucumber.

  15. An evaluation of the allelopathic potential of selected perennial groundcovers: foliar volatiles of catmint (Nepeta x faassenii) inhibit seedling growth.

    PubMed

    Eom, Seok Hyun; Yang, Hyun Seuk; Weston, Leslie A

    2006-08-01

    Six perennial groundcovers including Alchemilla mollis, Nepeta x faassenii, Phlox subulata, Sedum acre, Solidago cutleri, and Thymus praecox were investigated for the allelopathic potential of their respective foliar tissues via evaluation of volatile constituents produced by foliage. These groundcovers were selected for further laboratory evaluation because of superior performance as weed-suppressive groundcovers in previous field experiments. Foliar volatile components of N. x faassenii exhibited the strongest inhibitory effects on seedling growth of curly cress (Lepidium sativum), but S. cutleri also showed allelopathic potential by reducing shoot growth of curly cress seedlings with extracted volatiles. Although A. mollis and P. subulata exhibited strong weed-suppressive traits in past field experiments, weed suppression is apparently associated with either competition for resources or other allelopathic mechanisms rather than an allelopathic effect caused by volatiles. Volatiles of N. x faassenii were further evaluated with gas chromatography coupled to mass spectrometry (GC-MS). A total of 21 chemical constituents were identified in the volatile cocktail; 17 components were identified from a direct crude leaf sample extraction, including sabinene, beta-pinene, beta-myrcene, 2-(2-ethoxyethoxy)-ethanol, 1,8-cineole, ocimene, neryl Acetate, 4aalpha,7alpha,7aalpha-nepetalactone, alpha-copaene, trans-caryophyllene, alloaromadendrene, 4abeta,7alpha,7abeta-nepetalactone, germacrene D, beta-farnesene, chi-cadinene, germacrene B, and beta-sesquiphellandrene. Five additional constituents were identified in a methanolic extract of dried of N. x faassenii foliage, but not the volatile cocktail collected from N. x faassenii foliage. These included methyl benzoate, 2,4-decadienal, neryl acetate, isodihydronepetalactone, and caryophyllene oxide. Three components, 2-(2-ethoxyethoxy)-ethanol, alloaromadendrene, and chi-cadinene, were not only detected in both the volatile

  16. Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O3-induced injury.

    PubMed

    Agathokleous, Evgenios; Paoletti, Elena; Saitanis, Costas J; Manning, William J; Sugai, Tetsuto; Koike, Takayoshi

    2016-12-15

    It is widely accepted that elevated levels of surface ozone (O3) negatively affect plants. Ethylenediurea (EDU) is a synthetic substance which effectively protects plants against O3-caused phytotoxicity. Among other questions, the one still open is: which EDU application method is more appropriate for treating fast-growing tree species. The main aims of this study were: (i) to test if chronic exposure of Salix sachalinensis plants to 200-400mgEDUL(-1), the usually applied range for protection against O3 phytotoxicity, is beneficial to plants; (ii) to evaluate the effects of chronic exposure to elevated O3 on S. sachalinensis; (iii) to assess the efficacy of two methods (i.e. soil drench and foliar spray) of EDU application to plants; (iv) to investigate the appropriate concentration of EDU to protect against elevated O3-induced damage in S. sachalinensis; and (v) to compare the two methods of EDU application in terms of effectiveness and EDU consumption. Current-year cuttings grown in infertile soil free from organic matter were exposed either to low ambient O3 (AOZ, 10-h≈28.3nmolmol(-1)) or to elevated O3 (EOZ, 10-h≈65.8nmolmol(-1)) levels during daylight hours. Over the growing season, plants were treated every nine days with 200mL soil drench of 0, 200 or 400mgEDUL(-1) or with foliar spray of 0, 200 or 400mgEDUL(-1) (in two separate experiments). We found that EDU per se had no effects on plants exposed to AOZ. EOZ practically significantly injured S. sachalinensis plants, and the impact was indifferent between the experiments. EDU did not protect plants against EOZ impact when applied as soil drench but it did protect them when applied as 200-400mgL(-1) foliar spray. We conclude that EDU may be more effective against O3 phytotoxicity to fast-growing species when applied as a spray than when applied as a drench. Keymessage: Soil-drenched EDU was ineffective in protecting willow plants against O3-induced injury, whereas foliar-sprayed EDU was effective even

  17. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    PubMed

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  18. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    PubMed

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  19. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence.

    PubMed

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H

    2014-01-01

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO4 alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant "GroZyme" resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.

  20. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in Northern Michigan.

    PubMed

    Kobe, Richard K

    2006-02-01

    Interspecific differences in sapling growth responses to soil resources could influence species distributions across soil resource gradients. I calibrated models of radial growth as a function of light intensity and landscape-level variation in soil water and foliar N for saplings of four canopy tree species, which differ in adult distributions across soil resource gradients. Model formulations, characterizing different resource effects and modes of influencing growth, were compared based on relative empirical support using Akaike's Information Criterion. Contrary to expectation, the radial growth of species associated with lower fertility (Acer rubrum and Quercus rubra) was more sensitive to variation in soil resources than the high fertility species Acer saccharum. Moreover, there was no species tradeoff between growth under high foliar N versus growth under low foliar N, which would be expected if growth responses to foliar N mediated distributions. In general, there was functional consistency among species in growth responses to light, foliar N, and soil water availability, respectively. Foliar N influenced primarily high-light growth in F. grandifolia, A. rubrum, and Q. rubra (but was not significant for A. saccharum). In A. saccharum and A. rubrum, for which soil water availability was a significant predictor, soil water and light availability simultaneously limited growth (i.e., either higher light or water increased growth). Simple resource-based models explained 0.74-0.90 of growth variance, indicating a high degree of determinism. Results suggest that nitrogen effects on forest dynamics would be strongest in high-light early successional communities but that water availability influences growth in both early successional and understory environments.

  1. Comparison of Rain-Fast Bait Stations Versus Foliar Bait Sprays for Control of Oriental Fruit Fly, Bactrocera dorsalis, in Papaya Orchards in Hawaii

    PubMed Central

    Piñero, Jaime C.; Mau, Ronald F. L.; Vargas, Roger I.

    2010-01-01

    Bait stations represent an environmentally friendly attract-and-kill approach to fruit fly population suppression. Recently a novel, visually attractive, rain-fast bait station was developed in Hawaii for potential use against multiple species of pestiferous fruit flies. Here, we compared the efficacy of GF-120 NF Naturalyte Fruit Fly Bait applied either as foliar sprays or onto bait stations in reducing female oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), population density and level of fruit infestation in commercial papaya orchards in Hawaii. Trapping and infestation data were used as indicators of the effectiveness of the two bait application methods. For the first 10 weeks of the study, captures of female B. dorsalis in monitoring traps were significantly greater in control plots than in plots treated with foliar sprays or bait stations. Six weeks after the first bait spray, incidence of infestation (i.e. number of fruit with one or more B. dorsalis larvae) of quarter to half-ripe papaya fruit was reduced by 71.4% and 63.1% for plots with bait stations and foliar sprays, respectively, as compared to control plots. Twelve weeks after first spray, incidence of infestation was reduced by only 54.5% and 45.4% for plots with bait stations and foliar sprays, respectively, as compared to control plots. About 42% less GF-120 was used in orchard plots with bait stations compared to those subject to foliar sprays. The impact of field sanitation on the outcome is also discussed. The results indicate that bait stations can provide a simple, efficient, and economical method of applying insecticidal baits to control fruit flies and a safer alternative to foliar sprays. PMID:21067423

  2. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    DOE PAGES

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; ...

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn withinmore » the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less

  3. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    PubMed Central

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A.; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H.

    2014-01-01

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO4 alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower. PMID:25653663

  4. Twig and foliar biomass estimation equations for major plant species in the Tanana River basin of interior Alaska. Forest Service research paper

    SciTech Connect

    Yarie, J.; Mead, B.R.

    1988-09-01

    Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of the foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of foliar-to-twig biomass changed drastically between layers, for example, Rosa acicularis Lindl. Eighteen species were tested for regression differences between years. Thirteen showed no significant differences, five were different. Of these five, three were feather mosses for which live and dead biomass are easily confused when measured.

  5. Speciation of gas-phase and fine particle emissions from burning of foliar fuels.

    PubMed

    Hays, Michael D; Geron, Christopher D; Linna, Kara J; Smith, N Dean; Schauer, James J

    2002-06-01

    Fine particle matter with aerodynamic diameter <2.5 microm (PM2.5) and gas-phase emissions from open burning of six fine (foliar) fuels common to fire-prone U.S. ecosystems are investigated. PM2.5 distribution is unimodal within the 10-450 nm range, indicative of an accumulation mode. Smoldering relative to flaming combustion shows smaller particle number density per unit time and median size. Over 100 individual organic compounds in the primarily carbonaceous (>70% by mass) PM2.5 are chemically speciated by gas chromatography/mass spectrometry. Expressed as a percent of PM2.5 mass, emission ranges by organic compound class are as follows: n-alkane (0.1-2%), polycyclic aromatic hydrocarbon (PAH) (0.02-0.2%), n-alkanoic acid (1-3%), n-alkanedioic acid (0.06-0.3%), n-alkenoic acid (0.3-3%), resin acid (0.5-6%), triterpenoid (0.2-0.5%), methoxyphenol (0.5-3%), and phytosterol (0.2-0.6%). A molecular tracer of biomass combustion, the sugar levoglucosan is abundant and constitutes a remarkably narrow PM2.5 mass range (2.8-3.6%). Organic chemical signatures in PM2.5 from open combustion of fine fuels differ with those of residential wood combustion and other related sources, making them functional for source-receptor modeling of PM. Inorganic matter [PM2.5 - (organic compounds + elemental carbon)] on average is estimated to make up 8% of the PM2.5. Wavelength dispersive X-ray fluorescence spectroscopy and ion chromatography identify 3% of PM2.5 as elements and water-soluble ions, respectively. Compared with residential wood burning, the PM2.5 of fine fuel combustion is nitrate enriched but shows lower potassium levels. Gas-phase C2-C13 hydrocarbon and C2-C9 carbonyl emissions are speciated by respective EPA Methods T0-15 and T0-11A. They comprise mainly low molecular weight C2-C3 compounds and hazardous air pollutants (48 wt % of total quantified volatile organic carbon).

  6. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

    SciTech Connect

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.; Kingdon, Clayton C.; Townsend, Philip A.

    2015-12-01

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series of 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (Marea), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R2 > 0.65 and carbon and cellulose with R2 > 0.45. Although R2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ15N was the lowest (R2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to

  7. Imaging spectroscopy algorithms for mapping canopy foliar chemical and morphological traits and their uncertainties

    DOE PAGES

    Singh, Aditya; Serbin, Shawn P.; McNeil, Brenden E.; ...

    2015-12-01

    A major goal of remote sensing is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties across space and time. Imaging spectroscopy has great potential to map vegetation traits that cannot be retrieved from broadband spectral data, but rarely have such methods been tested across broad regions. Here we illustrate a general approach for estimating key foliar chemical and morphological traits through space and time using NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-Classic). We apply partial least squares regression (PLSR) to data from 237 field plots within 51 images acquired between 2008 and 2011. Using a series ofmore » 500 randomized 50/50 subsets of the original data, we generated spatially explicit maps of seven traits (leaf mass per area (Marea), percentage nitrogen, carbon, fiber, lignin, and cellulose, and isotopic nitrogen concentration, δ15N) as well as pixel-wise uncertainties in their estimates based on error propagation in the analytical methods. Both Marea and %N PLSR models had a R2 > 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the range of data. Fiber and lignin were predicted with R2 > 0.65 and carbon and cellulose with R2 > 0.45. Although R2 of %C and cellulose were lower than Marea and %N, the measured variability of these constituents (especially %C) was also lower, and their RMSE values were beneath 12% of the range in overall variability. Model performance for δ15N was the lowest (R2 = 0.48, RMSE = 0.95‰), but within 15% of the observed range. The resulting maps of chemical and morphological traits, together with their overall uncertainties, represent a first-of-its-kind approach for examining the spatiotemporal patterns of forest functioning and nutrient cycling across a broad range of temperate and sub-boreal ecosystems. These results offer an alternative to categorical maps of functional or physiognomic types by providing non-discrete maps (i

  8. Foliar Reflectance and Fluorescence Responses for Plants Under Nitrogen Stress Determined with Active and Passive Systems

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.

    2003-01-01

    Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment

  9. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    PubMed

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  10. Forest gaps slow the sequestration of soil organic matter: a humification experiment with six foliar litters in an alpine forest

    PubMed Central

    Ni, Xiangyin; Yang, Wanqin; Tan, Bo; Li, Han; He, Jie; Xu, Liya; Wu, Fuzhong

    2016-01-01

    Humification of plant litter containing carbon and other nutrients greatly contributes to the buildup of soil organic matter, but this process can be altered by forest gap-induced environmental variations during the winter and growing seasons. We conducted a field litterbag experiment in an alpine forest on the eastern Tibetan Plateau from November 2012 to October 2014. Six dominant types of foliar litter were placed on the forest floor in various forest gap positions, including gap centre, canopy gap, expanded gap and closed canopy. Over two years of incubation, all foliar litters were substantially humified especially during the first winter, although the newly accumulated humic substances were young and could be decomposed further. The forest gaps exhibited significant effects on early litter humification, but the effects were regulated by sampling seasons and litter types. Compared with the litter under the closed canopy, humification was suppressed in the gap centre after two years of field incubation. The results presented here suggest that gap formation delays the accumulation of soil organic matter, and reduces soil carbon sequestration in these alpine forests. PMID:26790393

  11. Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level.

    PubMed

    Meng, Shuan; Peng, Jia-Shi; He, Ya-Ni; Zhang, Guo-Bin; Yi, Hong-Ying; Fu, Yan-Lei; Gong, Ji-Ming

    2016-03-07

    Nitrogen deficiency induces leaf senescence. However, whether or how nitrate might affect this process remains to be investigated. Here, we report an interesting finding that nitrate-instead of nitrogen-starvation induced early leaf senescence in nrt1.5 mutant, and present genetic and physiological data demonstrating that nitrate starvation-induced leaf senescence is suppressed by NRT1.5. NRT1.5 suppresses the senescence process dependent on its function from roots, but not the nitrate transport function. Further analyses using nrt1.5 single and nia1 nia2 nrt1.5-4 triple mutant showed a negative correlation between nitrate concentration and senescence rate in leaves. Moreover, when exposed to nitrate starvation, foliar potassium level decreased in nrt1.5, but adding potassium could essentially restore the early leaf senescence phenotype of nrt1.5 plants. Nitrate starvation also downregulated the expression of HAK5, RAP2.11, and ANN1 in nrt1.5 roots, and appeared to alter potassium level in xylem sap from nrt1.5. These data suggest that NRT1.5 likely perceives nitrate starvation-derived signals to prevent leaf senescence by facilitating foliar potassium accumulation.

  12. Tracing Sources and Contamination Assessments of Heavy Metals in Road and Foliar Dusts in a Typical Mining City, China

    PubMed Central

    Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui

    2016-01-01

    Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518

  13. Foliar spray with vermiwash modifies the Arbuscular mycorrhizal dependency and nutrient stoichiometry of Bhut Jolokia (Capsicum assamicum).

    PubMed

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay; Singh, Lokendra; Kalita, Mohan C

    2014-01-01

    Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth.

  14. Variability in foliar essential oils among different morphotypes of Lantana species complexes, and its taxonomic and ecological significance.

    PubMed

    Love, Amit; Naik, Dattatraya; Basak, Sandip K; Babu, Suresh; Pathak, Namrata; Babu, Cherukuri R

    2009-12-01

    The genus Lantana has many species complexes, and L. camara is one of the aggressive alien weedy species complexes; species delimitation in these complexes is a nightmare for taxonomists. We examined the diversity in the chemical composition of foliar essential oils among morphotypes of Lantana species complexes inhabiting the same ecological gradient, and its taxonomic and ecological significance. The yields of essential oils varied from 0.1 to 0.79% in foliar hydrodistillates of eleven morphotypes, and a total of 39 chemical constituents were detected by GC/MS. The quantitative and qualitative variability in the composition of essential oils among morphotypes was very high, and hence they represent chemotypes. The diversity observed in the composition of essential oils appears to be of genetic origin and thus of taxonomic value. The formation of distinct clusters and sub-clusters at high distance cluster combine values also substantiates that the patterns of distribution of chemical constituents among morphotypes can be used in delimiting species and infraspecific taxa within the species complexes. The presence of beta-caryophyllene and other such compounds, which are known to prevent herbivory, in morphotypes of Lantana species complexes suggest that these compounds may provide selective advantage to Lantana over native species in the invasion of new and disturbed habitats.

  15. Foliar leaching and root uptake of Ca, Mg and K in relation to acid fog effects on Douglas Fir

    SciTech Connect

    Turner, D.P.; Tingey, D.T.

    1990-01-01

    The impact of acid fog on foliar leaching and root uptake of Ca, Mg, and K by Douglas-fir (Pseudotsuga menziesii) seedlings was examined. In a factorial experiment, 1-year old seedlings were grown in a solution culture at two levels of nutrient availability (low and moderate) and exposed twice a week (4 hr per event) for 12 weeks to fog at pH 5.6 or pH 3.1. Throughfall enrichment of Ca, Mg and K was determined from drip collectors at the base of each seedling and root uptake rates for trees under the moderate nutrient regime were evaluated by monitoring nutrient solution depletion. Throughfall enrichment was higher in the pH 3.1 fog than the pH 5.6 fog but much of the enrichment appeared to be wash off of precipitate from previous fogs. The amounts of nutrients coming off of the foliage with the low pH fog were small relative to the daily uptake rates. Foliar concentrations of K and Mg at the end of the exposures were lower under the low nutrient regime but were not affected by fog pH. Comparisons of wax weight and examinations of epicuticular wax by electron microscopy did not indicate a significant impact from exposure to the low pH fog.

  16. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation.

    PubMed

    Larue, Camille; Castillo-Michel, Hiram; Sobanska, Sophie; Cécillon, Lauric; Bureau, Sarah; Barthès, Véronique; Ouerdane, Laurent; Carrière, Marie; Sarret, Géraldine

    2014-01-15

    The impact of engineered nanomaterials on plants, which act as a major point of entry of contaminants into trophic chains, is little documented. The foliar pathway is even less known than the soil-root pathway. However, significant inputs of nanoparticles (NPs) on plant foliage may be expected due to deposition of atmospheric particles or application of NP-containing pesticides. The uptake of Ag-NPs in the crop species Lactuca sativa after foliar exposure and their possible biotransformation and phytotoxic effects were studied. In addition to chemical analyses and ecotoxicological tests, micro X-ray fluorescence, micro X-ray absorption spectroscopy, time of flight secondary ion mass spectrometry and electron microscopy were used to localize and determine the speciation of Ag at sub-micrometer resolution. Although no sign of phytotoxicity was observed, Ag was effectively trapped on lettuce leaves and a thorough washing did not decrease Ag content significantly. We provide first evidence for the entrapment of Ag-NPs by the cuticle and penetration in the leaf tissue through stomata, for the diffusion of Ag in leaf tissues, and oxidation of Ag-NPs and complexation of Ag(+) by thiol-containing molecules. Such type of information is crucial for better assessing the risk associated to Ag-NP containing products.

  17. crw1 - A Novel Maize Mutant Highly Susceptible to Foliar Damage by the Western Corn Rootworm Beetle

    PubMed Central

    Venkata, Bala Puchakayala; Lauter, Nick; Li, Xu; Chapple, Clint; Krupke, Christian; Johal, Gurmukh; Moose, Stephen

    2013-01-01

    Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is the most destructive insect pest of corn (Zea mays L.) in the United States. The adult WCR beetles derive their nourishment from multiple sources including corn pollen and silks as well as the pollen of alternate hosts. Conversely, the corn foliage is largely neglected as a food source by WCR beetles, leading to a perception of a passive interaction between the two. We report here a novel recessive mutation of corn that was identified and named after its foliar susceptibility to corn rootworm beetles (crw1). The crw1 mutant under field conditions was exceptionally susceptible to foliar damage by WCR beetles in an age-specific manner. It exhibits pleiotropic defects on cell wall biochemistry, morphology of leaf epidermal cells and lower structural integrity via differential accumulation of cell wall bound phenolic acids. These findings indicate that crw1 is perturbed in a pathway that was not previously ascribed to WCR susceptibility, as well as implying the presence of an active mechanism(s) deterring WCR beetles from devouring corn foliage. The discovery and characterization of this mutant provides a unique opportunity for genetic analysis of interactions between maize and adult WCR beetles and identify new strategies to control the spread and invasion of this destructive pest. PMID:23951124

  18. Evaluation of foliar phenols of 25 Mexican varieties of common bean (Phaseolus vulgaris L.) as antioxidants and varietal markers.

    PubMed

    Reyes-Martínez, Alfonso; Almaraz-Abarca, Norma; Gallardo-Velázquez, Tzayhri; González-Elizondo, María Del Socorro; Herrera-Arrieta, Yolanda; Pajarito-Ravelero, Arnulfo; Alanís-Bañuelos, Ruth Elizabeth; Torres-Morán, Martha Isabel

    2014-01-01

    The antioxidant properties and the foliar phenol composition of 25 Mexican varieties of Phaseolus vulgaris L. (common bean) were evaluated. Phaseolus coccineus was analysed with comparative aims. The high performance liquid chromatography with photodiode array detection analysis revealed 27 phenolics in the leaves of P. vulgaris (13 quercetin-3-O-glycosides, 8 kaempferol-3-O-glycosides, 2 myricetin glycosides and 4 phenolic acids) and 5 in P. coccineus (2 kaempferol-3-O-glycoside, 2 apigenin-7-O-glycoside and 1 luteolin-7-O-glycoside). All extracts showed high levels of phenols and flavonoids (0.964-5.601 mg g⁻¹ dry tissue, and 0.287-1.418 mg g⁻¹ dry tissue, respectively) and relevant antioxidant properties, suggesting that the leaves of the varieties of P. vulgaris are a significant source of natural antioxidants. The foliar phenol profiles were species-specific and, besides, the qualitative variation allowed discriminating among varieties of P. vulgaris. These profiles can represent an important varietal authenticity proof.

  19. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    PubMed

    Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  20. Foliar injury response of petunia and kidney bean to simultaneous and alternate exposures to ozone and pan

    NASA Astrophysics Data System (ADS)

    Nouchi, Isamu; Mayumi, Hirokazu; Yamazoe, Fumio

    Petunia at about 6 weeks old and kidney bean at two growing stages (6-7 days old and 16-18 days old) were exposed separately to O 3, (0-0.40 ppm) and PAN (0-0.25 ppm) for 4 h and to the mixture for the same time. In addition, petunia was exposed to O, (0.10-0.40 ppm) and then PAN (0.010-0.040 ppm) for 4 h, respectively. Foliar injury of petunia and kidney bean in exposures to the mixtures of O 3 and PAN was significantly smaller than that induced by each oxidant, with the exception of PAN injury on young leaves of 16-18 day-old kidney bean. The percentage of foliar injury caused by either of the mixed pollutants decreased with an increase of the concentration of the other oxidant, and was found to approximate a logarithmic function of the combined pollutant concentrations expressed as O 3, minum PAN or vice versa. Alternate exposures caused no additive or synergistic injuries.

  1. Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens

    PubMed Central

    Lee, Gahyung; Lee, Sang-Heon; Kim, Kyung Mo; Ryu, Choong-Min

    2017-01-01

    Yeast associates with many plant parts including the phyllosphere, where it is subject to harsh environmental conditions. Few studies have reported on biological control of foliar pathogens by yeast. Here, we newly isolated leaf-colonizing yeasts from leaves of field-grown pepper plants in a major pepper production area of South Korea. The yeast was isolated using semi-selective medium supplemented with rifampicin to inhibit bacterial growth and its disease control capacity against Xanthomonas axonopodis infection of pepper plants in the greenhouse was evaluated. Of 838 isolated yeasts, foliar spray of Pseudozyma churashimaensis strain RGJ1 at 108 cfu/mL conferred significant protection against X. axonopodis and unexpectedly against Cucumber mosaic virus, Pepper mottle virus, Pepper mild mottle virus, and Broad bean wilt virus under field conditions. Direct antagonism between strain RGJ1 and X. axonopodis was not detected from co-culture assays, suggesting that disease is suppressed via induced resistance. Additional molecular analysis of the induced resistance marker genes Capsicum annuum Pathogenesis-Related (CaPR) 4 and CaPR5 indicated that strain RGJ1 elicited plant defense priming. To our knowledge, this study is the first report of plant protection against bacterial and viral pathogens mediated by a leaf-colonizing yeast and has potential for effective disease management in the field. PMID:28071648

  2. Tree Foliar Chemistry in an African Savanna and Its Relation to Life History Strategies and Environmental Filters

    PubMed Central

    Colgan, Matthew S.; Martin, Roberta E.; Baldeck, Claire A.; Asner, Gregory P.

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ13C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry. PMID:25993539

  3. Uptake and persistence of pesticides in plants: measurements and model estimates for imidacloprid after foliar and soil application.

    PubMed

    Juraske, Ronnie; Castells, Francesc; Vijay, Ashwin; Muñoz, Pere; Antón, Assumpció

    2009-06-15

    The uptake and persistence behaviour of the insecticide imidacloprid in tomato plants treated by (i) foliar spray application and (ii) soil irrigation was studied using two plant uptake models. In addition to a pesticide deposition model, a dynamic root uptake and translocation model was developed, and both models predict residual concentrations of pesticides in or on fruits. The model results were experimentally validated. The fraction of imidacloprid ingested by the human population is on average 10(-2) to 10(-6), depending on the time between pesticide application and ingestion, the processing step, and the application method. Model and experimentally derived intake fractions deviated by less than a factor of 2 for both application techniques. Total imidacloprid residues were up to five times higher in plants treated by foliar spray application than by soil irrigation. However, peeling tomatoes treated by spray application reduces the human intake fraction by up to three orders of magnitude. Model calculations suggest that drip-irrigation in a closed hydroponic system minimizes worker and consumer exposure to pesticides and prevents runoff of pesticide by spray drift and leaching into the environment.

  4. Morphology of foliar trichomes of the Chinese cork oak Quercus variabilis by electron microscopy and three-dimensional surface profiling.

    PubMed

    Kim, Ki Woo; Cho, Do-Hyun; Kim, Pan-Gi

    2011-06-01

    Morphology of foliar trichomes was analyzed in Quercus variabilis by electron microscopy and three-dimensional surface profiling. Leaves from suppressed or dominant sprouts of the oak species were collected after a forest fire to unravel the effects of the disturbance factor on sprouting of the oak species. Scanning electron microscopy revealed two types of trichomes depending on the leaf surface. The trichomes on the adaxial surface were branched and constricted, and possessed a single row of thin-walled cells with a collapsed morphology (glandular branched uniseriate trichomes). Meanwhile, the trichomes on the abaxial surface were star-shaped, unfused with each other, and had 6 to 10 rays (nonglandular simple stellate trichomes). An apparent proliferation of trichomes was evident on the adaxial surface of the dominant sprouts. Uniseriate trichomes could be discernable as an elevation from the surface by white light scanning interferometry. By transmission electron microscopy, thin and convoluted cell wall, degenerated cytoplasm, and a single row of cells were characteristic of the trichomes on the adaxial surface. The thick cell walls of the mature trichomes on the abaxial surface represented the nonglandular nature. This is the first report on the morphological and ultrastructural characterization of foliar trichomes of the oak species.

  5. Foliar Spray with Vermiwash Modifies the Arbuscular Mycorrhizal Dependency and Nutrient Stoichiometry of Bhut Jolokia (Capsicum assamicum)

    PubMed Central

    Gupta, Rajeev; Veer, Vijay; Singh, Lokendra; Kalita, Mohan C.

    2014-01-01

    Vermiwash (VW), a liquid extract obtained from vermicomposting beds, is used as an organic fertilizer for crop plants. The current study investigated the effect of a vermiwash foliar spray on the response of bhut jolokia (Capsicum assamicum) exposed to two different arbuscular mycorrhizal fungi (AMF: Rhizophagus irregularis, RI and G. mosseae, GM) in acidic soil under naturally ventilated greenhouse conditions. The VW spray significantly influenced the growth of plants receiving the dual treatment of AMF+VW. Plant growth was more prominent in the GM+VW treatment group than that in the RI+VW treatment group. The plant-AMF interactions in relation to growth and nutrient requirements were also significantly influenced by the application of VW. Interestingly, the VW treatment appeared to contribute more N to plants when compared to that under the AMF treatment, which led to changes in the C:N:P stoichiometry in plant shoots. Furthermore, the increased potassium dependency, as observed in the case of the dual treatments, suggests the significance of such treatments for improving crop conditions under salt stress. Overall, our study shows that the VW foliar spray modifies the response of a crop to inoculations of different AMF with regard to growth and nutrient utilization, which has implications for the selection of an efficient combination of nutrient source for improving crop growth. PMID:24651577

  6. Consequences of enriched atmospheric CO{sub 2} and defoliation for foliar chemistry and gypsy moth performance

    SciTech Connect

    Lindroth, R.L.; Kinney, K.K.

    1998-10-01

    Elevated concentrations of atmospheric CO{sub 2} are likely to interact with other factors affecting plant physiology to alter plant chemical profiles and plant-herbivore interactions. The authors evaluated the independent and interactive effects of enriched CO{sub 2} and artificial defoliation on foliar chemistry of quaking aspen (Populus tremuloides) and sugar maple (Acer saccharum), and the consequences of such changes for short-term performance of the gypsy moth (Lymantria dispar). They grew aspen and maple seedlings in ambient and enriched CO{sub 2} environments at the University of wisconsin Biotron. Seven weeks after budbreak, trees in half of the rooms were subjected to 50% defoliation. Afterwards, foliage was collected for chemical analyses, and feeding trials were conducted with fourth-stadium gypsy moths. Enriched CO{sub 2} altered foliar levels of water, nitrogen, carbohydrates, and phenolics, and responses generally differed between the two tree species. Defoliation induced chemical changes only in aspen. They found no significant interactions between CO{sub 2} and defoliation for levels of carbon-based defenses (phenolic glycosides and tannins). CO{sub 2} treatment altered the performance of larvae fed aspen, but not maple, whereas defoliation had little effect on performance on insects. In general, results from this experimental system do not support the hypothesis that induction of carbon-based chemical defenses, and attendant effects on insects, will be stronger in a CO{sub 2}-enriched world.

  7. Arabidopsis thaliana as a suitable model host for research on interactions between plant and foliar nematodes, parasites of plant shoot

    PubMed Central

    Wang, Dong-Wei; Peng, Xiao-Fang; Xie, Hui; Xu, Chun-Ling; Cheng, De-Qiang; Li, Jun-Yi; Wu, Wen-Jia; Wang, Ke

    2016-01-01

    The rice white tip nematode (RWTN), Aphelenchoides besseyi and the chrysanthemum foliar nematode (CFN), Aphelenchoides ritzemabosi are migratory plant parasitic nematodes that infect the aboveground parts of plants. In this research, Arabidopsis thaliana was infected by RWTN and CFN under indoor aseptic cultivation, and the nematodes caused recognizable symptoms in the leaves. Furthermore, RWTN and CFN completed their life cycles and proliferated. Therefore, A. thaliana was identified as a new host of RWTN and CFN. The optimum inoculum concentration for RWTN and CFN was 100 nematodes/plantlet, and the optimum inoculum times were 21 and 24 days, respectively. For different RWTN populations, the pathogenicity and reproduction rates were different in the A. thaliana Col-0 ecotype and were positively correlated. The optimum A. thaliana ecotypes were Col-0 and WS, which were the most susceptible to RWTN and CFN, respectively. Additionally, RWTN was ectoparasitic and CFN was ecto- and endoparasitic in A. thaliana. The RWTN and CFN migrated from inoculated leaves to the entire plantlet, and the number of nematodes in different parts of A. thaliana was not correlated with distance from the inoculum point. This is a detailed study of the behavior and infection process of foliar nematodes on A. thaliana. PMID:27910895

  8. Physiological and foliar injury responses of Prunus serotina, Fraxinus americana, and Acer rubrum seedlings to varying soil moisture and ozone.

    PubMed

    Schaub, M; Skelly, J M; Steiner, K C; Davis, D D; Pennypacker, S P; Zhang, J; Ferdinand, J A; Savage, J E; Stevenson, R E

    2003-01-01

    Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons. During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.

  9. Analyses of Expressed Sequence Tags from the Maize Foliar Pathogen Cercospora Zeae-Maydis Identifing Novel Genes expressed during Vegetative, Infectious, & Reproductive Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial yield losses annually throughout the western hemisphere. To learn more about the molecular regulation of pathogenesis in C. zeae-maydis, we generated a collection of expressed sequence tags (ESTs) and...

  10. Delayed efficacy of Beauveria bassiana foliar spray applications against Colorado potato beetle: impacts of number and timing of applications on larval and next-generation adult populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray programs comprising multiple or single foliar applications of the fungal pathogen Beauveria bassiana strain GHA (Bb) made during morning (AM) vs. evening (PM) hours were tested against Colorado potato beetle Leptinotarsa decemlineata (CPB) in small research plots of potatoes over multiple fiel...

  11. Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon.

    PubMed

    Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.

  12. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    PubMed

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits.

  13. Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation with high salinity water influences plant growth, production of photosynthetic pigments and total phenols, leading to reduction in crop yield and quality. Foliar application of macro- and/or micro-nutrients can, to some extent, mitigate negative effects of high salinity irrigation water o...

  14. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

    PubMed Central

    Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525

  15. Do Geomagnetic Variations Affect the Foliar Spiral Direction of Coconut Palms?

    NASA Astrophysics Data System (ADS)

    Minorsky, P. V.; Bronstein, N. B.

    2005-12-01

    In coconut palms, leaves are attached to the stem in either an ascending clockwise (left-handed or L) or counter-clockwise (right-handed or R) spiral (1). Foliar spiral direction (FSD) is a classic case of morphological antisymmetry, in which dextral and sinistral forms are not inherited and are equally common within a species (2). FSD would seem a simple stochastic process unworthy of further study if not for the observation, based on data collected from 71,640 coconut palms in 42 locations around the world, that the FSD of coconut palms varies with latitude: R-trees predominate in the N Hemisphere and L-trees predominate in the S Hemisphere (3). Hemispheric asymmetries in FSD are significantly better correlated with magnetic latitude than with geographic or geomagnetic latitude, suggesting that latitudinal asymmetries in FSD might be associated with the temporally varying component of Earth's magnetic field (4). Here, we present two new lines of evidence that geomagnetic variations may underlie asymmetries in palm FSD. First, we show that asymmetries occur in the FSD of palm populations on opposite sides of islands, and second, that asymmetries in FSD vary with the 11-year solar cycle. The prediction that asymmetries in coconut palm FSD should exist on opposite sides of islands arises from the fact that because seawater is more electrically conductive than land, induced earth currents divide and stream past an island more strongly in one particular direction. The "geomagnetic island effect" is characterized by a complete reversal of the vertical Z component of short-period geomagnetic field anomalies at observation points on opposite sides of islands (5). To examine whether FSD varied around the circumferences of islands, we collected data on 6 islands (Puerto Rico, n = 4311; Antigua, n = 2038; Hawaii, n = 3552; Maui, n = 2175; Tahiti, n = 1582; Moorea, n = 2116). For each population, the degree of asymmetry was determined by calculating an "asymmetry quotient

  16. Foliar carbon dynamics of piñon and juniper in response to experimental drought and heat

    NASA Astrophysics Data System (ADS)

    Collins, A.; Ryan, M. G.; Adams, H. D.; Dickman, L. T.; Garcia-Forner, N.; Grossiord, C.; Powers, H. H.; Sevanto, S.; McDowell, N. G.

    2015-12-01

    Plant respiration (R) is generally well-coupled with temperature and in the absence of thermal acclimation, respiration is expected to increase as climate change brings higher temperatures. Increased drought is also predicted for future climate, which could drive respiration higher if the carbon (C) cost to maintain tissues (Rm) or grow increases, or lower if substrate or other factors become limiting. We examined the effects of temperature and drought on R as well as photosynthesis, growth, and carbohydrate storage of mature individuals of two co-dominant tree species. Three mature, in-situ piñon (Pinus edulis) and juniper (Juniperus monosperma) trees were assigned to each of the following treatments: +4.8 °C; 45% reduced precipitation; a combination of both (heat + drought); along with ambient control and treatment controls. Rm measured prior to foliar and twig growth was far more sensitive to drought in piñon, and heat in juniper. Total respiration (Rt, R not partitioned) acclimated to temperature in piñon such that elevated temperature had minimal impacts on Rt; however, juniper exhibited higher Rt with elevated temperature, thus juniper did not display any thermal acclimation. Rt in both species was weakly associated with temperature, but strongly correlated with pre-dawn water potential, photosynthetic assimilation (A) rates, and in piñon, foliar carbohydrates. For both species, heat caused far more days where A-R was negative than did drought. The consequences of drought alone and heat alone in piñon included higher Rt per unit growth, indicating that each abiotic stress forces a greater allocation of Rt to maintenance costs, and both drought + heat in combination results in far fewer days that foliar carbohydrates could sustain R in both species. Notably, the much higher A and R of juniper than piñon is consistent with predicted superior carbon budget regulation of juniper than piñon during drought; however, juniper's lack of temperature acclimation

  17. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  18. Determination of 67Zn distribution in navy bean (Phaseolus vulgaris L.) after foliar application of 67Zn-lignosulfonates using isotope pattern deconvolution.

    PubMed

    Benedicto, Ana; Hernández-Apaolaza, Lourdes; Rivas, Inmaculada; Lucena, Juan J

    2011-08-24

    The improvement of Zn fertilizers requires new techniques to evaluate their efficacy. In this paper, the (67)Zn stable isotope was used as tracer of several Zn-lignosulfonate complexes to study the foliar-applied Zn uptake and distribution behavior in the plant, compared with ZnEDTA. Navy bean plants ( Phaseolus vulgaris L.) were grown hydroponically in a Zn-free nutrient solution, and six modified lignosulfonates and EDTA complexed with (67)Zn were used in foliar application in the young leaves as Zn sources. Zinc isotopes in roots, stems, and sprayed and unsprayed leaves were determined by ICP-MS, and signal interferences caused by the compounds of the digested vegetal samples were corrected. The mathematical procedure of isotope pattern deconvolution allowed the minimization of the uncertainty in the measured molar fractions of Zn from fertilizer or from natural sources. Significant differences in Zn use and distribution were observed among the fertilizers when the calculated concentrations of Zn from the fertilizer were compared, whereas they were unnoticeable attending to the total Zn in plant tissues, usually determined at the conventional studies. By foliar spray, higher Zn uptake and mobilization to leaves and stems were achieved with (67)ZnEDTA than with (67)Zn-LS complexes. The ultrafiltered LS and phenolated LS showed slightly better ability to provide Zn to the bean plants than the other LS. The foliar-applied Zn use and distribution in the plant were related with the stability of the Zn-lignosulfonates complexes. Those presenting the lower stability versus pH, but the highest complexing capacity, were slightly more suitable to supply foliar-applied Zn to navy beans.

  19. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes

    PubMed Central

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition. PMID:26098564

  20. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    PubMed

    Bellaloui, Nacer; Turley, Rickie B; Stetina, Salliana R

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha(-1) as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  1. Plants as Bio-monitor Agents: Foliar Deposition of Be-7, Pb-210, K-40 and Cs-137

    SciTech Connect

    Freitas, Antonio Carlos de; Brito, Lavinia C.; Tanizaki, Kenny F.; Lima, Rafaela; Paschoa, Anselmo S.; Franco, Marcia

    2008-08-07

    Leaves of Eremanthus crotonoides, Allagoptera arenaria, Byrsonima sericea, Tibouchina sp, Tocoyena bullata and Clusia hilariana were collected under the same climatic in an area of restinga in the Northeast of the State of Rio de Janeiro, Brazil. The activity concentrations of selected radionuclides in the leaves samples were determined. The results obtained have shown a high concentration of {sup 7}Be and {sup 40}K in E. crotonoides, {sup 210}Pb in T. bullata and {sup 137}Cs in Tibouchina sp. The high activity concentration of {sup 7}Be in E. crotonoides can be explained by the presence of trichomes in the leaves. E. crotonoides and T. bullata reveal high foliar deposition of {sup 7}Be and {sup 210}Pb, respectively, thus these species can be used as bio-monitors to evaluate the concentration and dispersion of radionuclides in environmental studies.

  2. Foliar application of Zn at flowering stage improves plant's performance, yield and yield attributes of black gram.

    PubMed

    Pandey, Nalini; Gupta, Bhavana; Pathak, Girish Chandra

    2013-07-01

    Black gram plants subjected to varying levels of Zn supply (0.01 to 10 microM Zn) showed optimum growth and dry matter yield in plants receiving 1 microM Zn. The dry matter yield of plants decreased in plants receiving 0.01 and 0.1 microM Zn (deficient) and excess levels of Zn (2 and 10 microM Zn). The plants grown with Zn deficient supply showed delayed flowering, premature bud abscission, reduced size of anthers, pollen producing capacity, pollen viability and stigma receptivity resulting in poor pod formation and seed yield. Providing Zn as a foliar spray at pre-flowering stage minimized the severity of Zn deficiency on reproductive structure development and enhanced the seed nutritional status by enhancing seed Zn density, seed carbohydrate (sugar and starch content) and storage proteins (albumins, globulins, glutenins, and prolamines).

  3. Scaling, propagating and mapping uncertainty in spectroscopy-derived foliar traits from the leaf to the image

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S. P.; Kingdon, C.; Townsend, P. A.

    2013-12-01

    A major goal of remote sensing, and imaging spectroscopy in particular, is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties such as canopy chemistry across space and time. Existing methods must therefore be tested across a range of measurement approaches to identify and overcome limits to the consistent retrieval of such properties from spectroscopic imagery. Here we illustrate a general approach for the estimation of key foliar biochemical and morphological traits from spectroscopic imagery derived from the AVIRIS instrument and the propagation of errors from the leaf to the image scale using partial least squares regression (PLSR) techniques. Our method involves the integration of three types of data representing different scales of observation: At the image scale, the images were normalized for atmospheric, illumination and BRDF effects. Spectra from field plot locations were extracted from the 51AVIRIS images and were averaged when the field plot was larger than a single pixel. At the plot level, the scaling was conducted using multiple replicates (1000) derived from the leaf-level uncertainty estimates to generate plot-level estimates with their associated uncertainties. Leaf-level estimates of foliar traits (%N, %C, %Fiber, %Cellulose, %Lignin, LMA) were scaled to the canopy based on relative species composition of each plot. Image spectra were iteratively split into 50/50 randomized calibration-validation datasets and multiple (500) trait-predictive PLSR models were generated, this time sampling from within the plot-level uncertainty distribution. This allowed the propagation of uncertainty from the leaf-level dependent variables to the plot level, and finally to models built using AVIRIS image spectra. Moreover, this method allows us to generate spatially explicit maps of uncertainty in our sampled traits. Both LMA and %N PLSR models had a R2 greater than 0.8, root mean square errors (RMSEs) for both

  4. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing.

    PubMed

    Yang, Chuanyu; Powell, Charles A; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB.

  5. Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation.

    PubMed

    Schmittgen, Simone; Metzner, Ralf; Van Dusschoten, Dagmar; Jansen, Marcus; Fiorani, Fabio; Jahnke, Siegfried; Rascher, Uwe; Schurr, Ulrich

    2015-09-01

    Cercospora leaf spot (CLS) infection can cause severe yield loss in sugar beet. Introduction of Cercospora-resistant varieties in breeding programmes is important for plant protection to reduce both fungicide applications and the risk of the development of fungal resistance. However, in vivo monitoring of the sugar-containing taproots at early stages of foliar symptoms and the characterization of the temporal development of disease progression has proven difficult. Non-invasive magnetic resonance imaging (MRI) measurements were conducted to quantify taproot development of genotypes with high (HS) and low (LS) levels of susceptibility after foliar Cercospora inoculation. Fourteen days post-inoculation (dpi) the ratio of infected leaf area was still low (~7%) in both the HS and LS genotypes. However, during this period, the volumetric growth of the taproot had already started to decrease. Additionally, inoculated plants showed a reduction of the increase in width of inner cambial rings while the width of outer rings increased slightly compared with non-inoculated plants. This response partly compensated for the reduced development of inner rings that had a vascular connection with Cercospora-inoculated leaves. Hence, alterations in taproot anatomical features such as volume and cambial ring development can be non-invasively detected already at 14 dpi, providing information on the early impact of the infection on whole-plant performance. All these findings show that MRI is a suitable tool to identify promising candidate parent lines with improved resistance to Cercospora, for example with comparatively lower taproot growth reduction at early stages of canopy infection, for future introduction into breeing programmes.

  6. Antimicrobial Nanoemulsion Formulation with Improved Penetration of Foliar Spray through Citrus Leaf Cuticles to Control Citrus Huanglongbing

    PubMed Central

    Yang, Chuanyu; Powell, Charles A.; Duan, Yongping; Shatters, Robert; Zhang, Muqing

    2015-01-01

    Huanglongbing (HLB) is the most serious disease affecting the citrus industry worldwide to date. The causal agent, Candidatus Liberibacter asiaticus (Las), resides in citrus phloem, which makes it difficult to effectively treat with chemical compounds. In this study, a transcuticular nanoemulsion formulation was developed to enhance the permeation of an effective antimicrobial compound (ampicillin; Amp) against HLB disease through the citrus cuticle into the phloem via a foliar spray. The results demonstrated that efficiency of cuticle isolation using an enzymatic method (pectinase and cellulase) was dependent on the citrus cultivar and Las-infection, and it was more difficult to isolate cuticles from valencia orange (Citrus sinensis) and HLB-symptomatic leaves. Of eight adjuvants tested, Brij 35 provided the greatest increase in permeability of the HLB-affected cuticle with a 3.33-fold enhancement of cuticular permeability over water control. An in vitro assay using Bacillus subtilis showed that nanoemulsion formulations containing Amp (droplets size = 5.26 ± 0.04 nm and 94 ± 1.48 nm) coupled with Brij 35 resulted in greater inhibitory zone diameters (5.75 mm and 6.66 mm) compared to those of Brij 35 (4.34 mm) and Amp solution (2.83 mm) alone. Furthermore, the nanoemulsion formulations eliminated Las bacteria in HLB-affected citrus in planta more efficiently than controls. Our study shows that a water in oil (W/O) nanoemulsion formulation may provide a useful model for the effective delivery of chemical compounds into citrus phloem via a foliar spray for controlling citrus HLB. PMID:26207823

  7. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    PubMed

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  8. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia.

    PubMed

    Kaluthota, Sobadini; Pearce, David W; Evans, Luke M; Letts, Matthew G; Whitham, Thomas G; Rood, Stewart B

    2015-09-01

    Narrowleaf cottonwood (Populus angustifolia James) is an obligate riparian poplar that is a foundation species in river valleys along the Rocky Mountains, spanning 16° of latitude from southern Arizona, USA to southern Alberta, Canada. Its current distribution is fragmented, and genetic variation shows regional population structure consistent with the effects of geographic barriers and past climate. It is thus very well-suited for investigating ecophysiological adaptation associated with latitude. In other section Tacamahaca poplar species, genotypes from higher latitudes show evidence of short-season adaptation with foliar traits that contribute to higher photosynthetic capacity. We tested for similar adaptation in three populations of narrowleaf cottonwoods: from Arizona (south), Alberta (north) and Utah, near the centre of the latitudinal distribution. We propagated 20 genotypes from each population in a common garden in Alberta, and measured foliar and physiological traits after 3 years. Leaves of genotypes from the northern population had higher leaf mass per area (LMA), increased nitrogen (N) content and higher carotenoid and chlorophyll content, and these were associated with higher light-saturated net photosynthesis (Asat). In leaves of all populations the majority of stomata were abaxial, with the proportion of abaxial stomata highest in the southern population. Stomatal conductance (gs) and transpiration rates were higher in the northern population but water-use efficiency (Asat/gs) and leaf carbon isotope composition (δ(13)C) did not differ across the populations. These results (i) establish links between Asat and gs, N, chlorophyll and LMA among populations within this species, (ii) are consistent with the discrimination of populations from prior investigation of genetic variation and (iii) support the concept of latitudinal adaptation, whereby deciduous trees from higher latitudes display higher photosynthetic capacity, possibly compensating for a

  9. Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar Cercospora beticola infestation

    PubMed Central

    Schmittgen, Simone; Metzner, Ralf; Van Dusschoten, Dagmar; Jansen, Marcus; Fiorani, Fabio; Jahnke, Siegfried; Rascher, Uwe; Schurr, Ulrich

    2015-01-01

    Cercospora leaf spot (CLS) infection can cause severe yield loss in sugar beet. Introduction of Cercospora-resistant varieties in breeding programmes is important for plant protection to reduce both fungicide applications and the risk of the development of fungal resistance. However, in vivo monitoring of the sugar-containing taproots at early stages of foliar symptoms and the characterization of the temporal development of disease progression has proven difficult. Non-invasive magnetic resonance imaging (MRI) measurements were conducted to quantify taproot development of genotypes with high (HS) and low (LS) levels of susceptibility after foliar Cercospora inoculation. Fourteen days post-inoculation (dpi) the ratio of infected leaf area was still low (~7%) in both the HS and LS genotypes. However, during this period, the volumetric growth of the taproot had already started to decrease. Additionally, inoculated plants showed a reduction of the increase in width of inner cambial rings while the width of outer rings increased slightly compared with non-inoculated plants. This response partly compensated for the reduced development of inner rings that had a vascular connection with Cercospora-inoculated leaves. Hence, alterations in taproot anatomical features such as volume and cambial ring development can be non-invasively detected already at 14 dpi, providing information on the early impact of the infection on whole-plant performance. All these findings show that MRI is a suitable tool to identify promising candidate parent lines with improved resistance to Cercospora, for example with comparatively lower taproot growth reduction at early stages of canopy infection, for future introduction into breeing programmes. PMID:25873673

  10. Plant community change mediates the response of foliar δ(15)N to CO 2 enrichment in mesic grasslands.

    PubMed

    Polley, H Wayne; Derner, Justin D; Jackson, Robert B; Gill, Richard A; Procter, Andrew C; Fay, Philip A

    2015-06-01

    Rising atmospheric CO2 concentration may change the isotopic signature of plant N by altering plant and microbial processes involved in the N cycle. CO2 may increase leaf δ(15)N by increasing plant community productivity, C input to soil, and, ultimately, microbial mineralization of old, (15)N-enriched organic matter. We predicted that CO2 would increase aboveground productivity (ANPP; g biomass m(-2)) and foliar δ(15)N values of two grassland communities in Texas, USA: (1) a pasture dominated by a C4 exotic grass, and (2) assemblages of tallgrass prairie species, the latter grown on clay, sandy loam, and silty clay soils. Grasslands were exposed in separate experiments to a pre-industrial to elevated CO2 gradient for 4 years. CO2 stimulated ANPP of pasture and of prairie assemblages on each of the three soils, but increased leaf δ(15)N only for prairie plants on a silty clay. δ(15)N increased linearly as mineral-associated soil C declined on the silty clay. Mineral-associated C declined as ANPP increased. Structural equation modeling indicted that CO2 increased ANPP partly by favoring a tallgrass (Sorghastrum nutans) over a mid-grass species (Bouteloua curtipendula). CO2 may have increased foliar δ(15)N on the silty clay by reducing fractionation during N uptake and assimilation. However, we interpret the soil-specific, δ(15)N-CO2 response as resulting from increased ANPP that stimulated mineralization from recalcitrant organic matter. By contrast, CO2 favored a forb species (Solanum dimidiatum) with higher δ(15)N than the dominant grass (Bothriochloa ischaemum) in pasture. CO2 enrichment changed grassland δ(15)N by shifting species relative abundances.

  11. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers.

    PubMed

    Rios, Juan J; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier

    2016-01-01

    The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools.

  12. Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers

    PubMed Central

    Rios, Juan J.; Carrasco-Gil, Sandra; Abadía, Anunciación; Abadía, Javier

    2016-01-01

    The aim of this study was to trace the Fe uptake pathway in leaves of Prunus rootstock (GF 677; Prunus dulcis × Prunus persica) plants treated with foliar Fe compounds using the Perls blue method, which detects labile Fe pools. Young expanded leaves of Fe-deficient plants grown in nutrient solution were treated with Fe-compounds using a brush. Iron compounds used were the ferrous salt FeSO4, the ferric salts Fe2(SO4)3 and FeCl3, and the chelate Fe(III)-EDTA, all of them at concentrations of 9 mM Fe. Leaf Fe concentration increases were measured at 30, 60, 90 min, and 24 h, and 70 μm-thick leaf transversal sections were obtained with a vibrating microtome and stained with Perls blue. In vitro results show that the Perls blue method is a good tool to trace the Fe uptake pathway in leaves when using Fe salts, but is not sensitive enough when using synthetic Fe(III)-chelates such as Fe(III)-EDTA and Fe(III)-IDHA. Foliar Fe fertilization increased leaf Fe concentrations with all Fe compounds used, with inorganic Fe salts causing larger leaf Fe concentration increases than Fe(III)-EDTA. Results show that Perls blue stain appeared within 30 min in the stomatal areas, indicating that Fe applied as inorganic salts was taken up rapidly via stomata. In the case of using FeSO4 a progression of the stain was seen with time toward vascular areas in the leaf blade and the central vein, whereas in the case of Fe(III) salts the stain mainly remained in the stomatal areas. Perls stain was never observed in the mesophyll areas, possibly due to the low concentration of labile Fe pools. PMID:27446123

  13. Effects of foliar application with compost tea and filtrate biogas slurry liquid on yield and fruit quality of washington navel orange (Citrus sinenesis Osbeck) trees.

    PubMed

    Omar, Alaa El-din K; Belal, Elsayed B; El-Abd, Abd El-Naiem A

    2012-07-01

    Sixteen-year-old navel orange trees at a private orchard located in Kafer El-Sheikh Governorate, Egypt, were used in this study. Compost tea (CT) and filtrate biogas slurry liquid (FLB) were applied at two different concentrations (50% and 100%); control trees were sprayed with water Trees treated with CT at 100% were the highest in yield, fruit weight, and vitamin C, whereas the highest percentage of fruit set, fruit number and soluble solid content (SSC), lowest fruit drop, and highest reducing and total sugars were in trees treated with 100% FLB. Concentrations at 50% for both foliar application (CT and FLB) improved yield and fruit characteristics than control treatment. Generally, using a foliar application of compost tea and filtrate biogas slurry liquid at (100%) treatments as food nutrients could be recommended to improve the yield and fruit quality of navel orange fruits under the current study conditions.

  14. Effects of foliar application with compost tea and filtrate biogas slurry liquid on yield and fruit quality of Washington navel orange (Citrus sinenesis Osbeck) trees.

    PubMed

    Omar, Alaa El-Din Kh; Belal, Elsayed B; El-Abd, Abd El-Naiem A

    2012-07-01

    Sixteen-year-old navel orange trees at a private orchard located in Kafer El-Sheikh Governorate, Egypt, were used in this study. Compost tea (CT) and filtrate biogas slurry liquid (FLB) were applied at two different concentrations (50% and 100%); control trees were sprayed with water. Trees treated with CT at 100% were the highest in yield, fruit weight, and vitamin C, whereas the highest percentage of fruit set, fruit number, and soluble solid content (SSC), lowest fruit drop, and highest reducing and total sugars were in trees treated with 100% FLB. Concentrations at 50% for both foliar application (CT and FLB) improved yield and fruit characteristics than control treatment. Generally, using a foliar application of compost tea and filtrate biogas slurry liquid at (100%) treatments as food nutrients could be recommended to improve the yield and fruit quality of navel orange fruits under the current study conditions. [Box: see text].

  15. Study of the effects of proline, phenylalanine, and urea foliar application to Tempranillo vineyards on grape amino acid content. Comparison with commercial nitrogen fertilisers.

    PubMed

    Garde-Cerdán, T; López, R; Portu, J; González-Arenzana, L; López-Alfaro, I; Santamaría, P

    2014-11-15

    The aim of this work was to study the influence of foliar application of different nitrogen sources on grape amino acid content. The nitrogen sources applied to Tempranillo grapevines were proline, phenylalanine, urea, and two commercial nitrogen fertilisers, both without and with amino acids in their formulations. All treatments were applied at veraison and one week later. Proline treatment did not affect the must nitrogen composition. However, phenylalanine and urea foliar application enhanced the plants' synthesis of most of the amino acids, producing similar effects. In addition, the spray of commercial nitrogen fertilisers over leaves also induced a rise in grape amino acid concentrations regardless of the presence or absence of amino acids in their formulation. The most effective treatments were phenylalanine and urea followed by nitrogen fertilisers. This finding is of oenological interest for improved must nitrogen composition, ensuring better fermentation kinetics and most likely enhancing wine quality.

  16. Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments.

    PubMed

    Chaudhary, Nivedita; Singh, Suruchi; Agrawal, S B; Agrawal, Madhoolika

    2013-09-01

    Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h day(-1)) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F(v)/F(m)) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F(v)/F(m) and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).

  17. Disruption of the mitochondrial alternative oxidase (AOX) and uncoupling protein (UCP) alters rates of foliar nitrate and carbon assimilation in Arabidopsis thaliana.

    PubMed

    Gandin, Anthony; Denysyuk, Mykhaylo; Cousins, Asaph B

    2014-07-01

    Under high light, the rates of photosynthetic CO2 assimilation can be influenced by reductant consumed by both foliar nitrate assimilation and mitochondrial alternative electron transport (mAET). Additionally, nitrate assimilation is dependent on reductant and carbon skeletons generated from both the chloroplast and mitochondria. However, it remains unclear how nitrate assimilation and mAET coordinate and contribute to photosynthesis. Here, hydroponically grown Arabidopsis thaliana T-DNA insertional mutants for alternative oxidase (AOX1A) and uncoupling protein (UCP1) fed either NO3 (-) or NH4 (+) were used to determine (i) the response of NO3 (-) uptake and assimilation to the disruption of mAET, and (ii) the interaction of N source (NO3 (-) versus NH4 (+)) and mAET on photosynthetic CO2 assimilation and electron transport. The results showed that foliar NO3 (-) assimilation was enhanced in both aox1a and ucp1 compared with the wild-type, suggesting that foliar NO3 (-) assimilation is probably driven by a decreased capacity of mAET and an increase in reductant within the cytosol. Wild-type plants had also higher rates of net CO2 assimilation (A net) and quantum yield of PSII (ϕPSII) under NO3 (-) feeding compared with NH4 (+) feeding. Additionally, under NO3 (-) feeding, A net and ϕPSII were decreased in aox1a and ucp1 compared with the wild type; however, under NH4 (+) they were not significantly different between genotypes. This indicates that NO3 (-) assimilation and mAET are both important to maintain optimal rates of photosynthesis, probably in regulating reductant accumulation and over-reduction of the chloroplastic electron transport chain. These results highlight the importance of mAET in partitioning energy between foliar nitrogen and carbon assimilation.

  18. Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus spp. Efficiently Controls Foliar Diseases Caused by Alternaria spp.

    PubMed Central

    El-Sayed, Ashraf S. A.; Patel, Jaimin S.; Green, Kari B.; Ali, Mohammad; Brennan, Mary; Norman, David

    2015-01-01

    Bacterial biological control agents (BCAs) are largely used as live products to control plant pathogens. However, due to variable environmental and ecological factors, live BCAs usually fail to produce desirable results against foliar pathogens. In this study, we investigated the potential of cell-free culture filtrates of 12 different bacterial BCAs isolated from flower beds for controlling foliar diseases caused by Alternaria spp. In vitro studies showed that culture filtrates from two isolates belonging to Bacillus subtilis and Bacillus amyloliquefaciens displayed strong efficacy and potencies against Alternaria spp. The antimicrobial activity of the culture filtrate of these two biological control agents was effective over a wider range of pH (3.0 to 9.0) and was not affected by autoclaving or proteolysis. Comparative liquid chromatography-mass spectrometry (LC-MS) analyses showed that a complex mixture of cyclic lipopeptides, primarily of the fengycin A and fengycin B families, was significantly higher in these two BCAs than inactive Bacillus spp. Interaction studies with mixtures of culture filtrates of these two species revealed additive activity, suggesting that they produce similar products, which was confirmed by LC-tandem MS analyses. In in planta pre- and postinoculation trials, foliar application of culture filtrates of B. subtilis reduced lesion sizes and lesion frequencies caused by Alternaria alternata by 68 to 81%. Taken together, our studies suggest that instead of live bacteria, culture filtrates of B. subtilis and B. amyloliquefaciens can be applied either individually or in combination for controlling foliar diseases caused by Alternaria species. PMID:26519395

  19. Disruption of the mitochondrial alternative oxidase (AOX) and uncoupling protein (UCP) alters rates of foliar nitrate and carbon assimilation in Arabidopsis thaliana

    PubMed Central

    Gandin, Anthony; Denysyuk, Mykhaylo; Cousins, Asaph B.

    2014-01-01

    Under high light, the rates of photosynthetic CO2 assimilation can be influenced by reductant consumed by both foliar nitrate assimilation and mitochondrial alternative electron transport (mAET). Additionally, nitrate assimilation is dependent on reductant and carbon skeletons generated from both the chloroplast and mitochondria. However, it remains unclear how nitrate assimilation and mAET coordinate and contribute to photosynthesis. Here, hydroponically grown Arabidopsis thaliana T-DNA insertional mutants for alternative oxidase (AOX1A) and uncoupling protein (UCP1) fed either NO3 – or NH4 + were used to determine (i) the response of NO3 – uptake and assimilation to the disruption of mAET, and (ii) the interaction of N source (NO3 – versus NH4 +) and mAET on photosynthetic CO2 assimilation and electron transport. The results showed that foliar NO3 – assimilation was enhanced in both aox1a and ucp1 compared with the wild-type, suggesting that foliar NO3 – assimilation is probably driven by a decreased capacity of mAET and an increase in reductant within the cytosol. Wild-type plants had also higher rates of net CO2 assimilation (A net) and quantum yield of PSII (ϕPSII) under NO3 – feeding compared with NH4 + feeding. Additionally, under NO3 – feeding, A net and ϕPSII were decreased in aox1a and ucp1 compared with the wild type; however, under NH4 + they were not significantly different between genotypes. This indicates that NO3 – assimilation and mAET are both important to maintain optimal rates of photosynthesis, probably in regulating reductant accumulation and over-reduction of the chloroplastic electron transport chain. These results highlight the importance of mAET in partitioning energy between foliar nitrogen and carbon assimilation. PMID:24799562

  20. Biochar Amendment Modifies Expression of Soybean and Rhizoctonia solani Genes Leading to Increased Severity of Rhizoctonia Foliar Blight.

    PubMed

    Copley, Tanya; Bayen, Stéphane; Jabaji, Suha

    2017-01-01

    Application of biochar, a pyrolyzed biomass from organic sources, to agricultural soils is considered a promising strategy to sustain soil fertility leading to increased plant productivity. It is also known that applications of biochar to soilless potting substrates and to soil increases resistance of plants against diseases, but also bear the potential to have inconsistent and contradictory results depending on the type of biochar feedstock and application rate. The following study examined the effect of biochar produced from maple bark on soybean resistance against Rhizoctonia foliar blight (RFB) disease caused by Rhizoctonia solani, and examined the underlying molecular responses of both soybean and R. solani during interaction with biochar application. Soybean plants were grown in the presence of 1, 3, or 5% (w/w) or absence of maple bark biochar for 2 weeks, and leaves were infected with R. solani AG1-IA. At lower concentrations (1 and 3%), biochar was ineffective against RFB, however at the 5% amendment rate, biochar was conducive to RFB with a significant increase in disease severity. For the first time, soybean and R. solani responsive genes were monitored during the development of RFB on detached leaves of plants grown in the absence and presence of 5% biochar at 0, 6, 12, and 24 h post-inoculation (h.p.i.). Generally, large decreases in soybean transcript abundances of genes associated with primary metabolism such as glycolysis, tricarboxylic acid (TCA) cycle, starch, amino acid and glutathione metabolism together with genes associated with plant defense and immunity such as salicylic acid (SA) and jasmonic acid pathways were observed after exposure of soybean to high concentration of biochar. Such genes are critical for plant protection against biotic and abiotic stresses. The general down-regulation of soybean genes and changes in SA hormonal balance were tightly linked with an increased susceptibility to RFB. In conjunction, R. solani genes associated

  1. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield

    PubMed Central

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were

  2. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)

    NASA Astrophysics Data System (ADS)

    Sperlich, D.; Chang, C. T.; Peñuelas, J.; Gracia, C.; Sabaté, S.

    2014-10-01

    Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 °C) or freezing temperatures (< 0 °C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc, max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P

  3. Biochar Amendment Modifies Expression of Soybean and Rhizoctonia solani Genes Leading to Increased Severity of Rhizoctonia Foliar Blight

    PubMed Central

    Copley, Tanya; Bayen, Stéphane; Jabaji, Suha

    2017-01-01

    Application of biochar, a pyrolyzed biomass from organic sources, to agricultural soils is considered a promising strategy to sustain soil fertility leading to increased plant productivity. It is also known that applications of biochar to soilless potting substrates and to soil increases resistance of plants against diseases, but also bear the potential to have inconsistent and contradictory results depending on the type of biochar feedstock and application rate. The following study examined the effect of biochar produced from maple bark on soybean resistance against Rhizoctonia foliar blight (RFB) disease caused by Rhizoctonia solani, and examined the underlying molecular responses of both soybean and R. solani during interaction with biochar application. Soybean plants were grown in the presence of 1, 3, or 5% (w/w) or absence of maple bark biochar for 2 weeks, and leaves were infected with R. solani AG1-IA. At lower concentrations (1 and 3%), biochar was ineffective against RFB, however at the 5% amendment rate, biochar was conducive to RFB with a significant increase in disease severity. For the first time, soybean and R. solani responsive genes were monitored during the development of RFB on detached leaves of plants grown in the absence and presence of 5% biochar at 0, 6, 12, and 24 h post-inoculation (h.p.i.). Generally, large decreases in soybean transcript abundances of genes associated with primary metabolism such as glycolysis, tricarboxylic acid (TCA) cycle, starch, amino acid and glutathione metabolism together with genes associated with plant defense and immunity such as salicylic acid (SA) and jasmonic acid pathways were observed after exposure of soybean to high concentration of biochar. Such genes are critical for plant protection against biotic and abiotic stresses. The general down-regulation of soybean genes and changes in SA hormonal balance were tightly linked with an increased susceptibility to RFB. In conjunction, R. solani genes associated

  4. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield.

    PubMed

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were

  5. Translocation of 125I, 75Se and 36Cl to wheat edible parts following wet foliar contamination under field conditions.

    PubMed

    Hurtevent, P; Thiry, Y; Levchuk, S; Yoschenko, V; Henner, P; Madoz-Escande, C; Leclerc, E; Colle, C; Kashparov, V

    2013-07-01

    Apart from radiocaesium and radiostrontium, there have been few studies on the foliar transfer of radionuclides in plants. Consequently, specific translocation factor (ftr) values for (129)I, (79)Se and (36)Cl are still missing from the IAEA reference databases. The translocation of short - lived isotopes, (125)I and (75)Se, and of (36)Cl to wheat grain were measured under field conditions following acute and chronic wet foliar contamination at various plant growth stages in the absence of leaching caused by rain. The translocation factors ranged from 0.02% to 1.1% for (125)I (a value similar to Sr), from 0.1% to 16.5% for (75)Se, and from 1% to 14.9% for (36)Cl. Both (36)Cl and (75)Se were as mobile as Cs. The phenomenological analysis showed that each element displayed a specific behavior. Iodide showed the lowest apparent mobility because of its preferential fixation in or on the leaves and a significant amount probably volatilized. Selenite internal transfer was significant and possibly utilized the sulphur metabolic pathway. However bio - methylation of selenite may have led to increased volatilization. Chloride was very mobile and quickly diffused throughout the plant. In addition, the analysis underlined the importance of plant growth responses to annual variations in weather conditions that can affect open field experiments because plant growth stage played a major role in ftr values dispersion. The chronic contamination results suggested that a series of acute contamination events had an additive effect on translocated elements. The highest translocation value obtained for an acute contamination event was shown to be a good conservative assessment of chronic contamination if data on chronic contamination translocation are lacking. The absence of rain leaching during the experiment meant that this investigation avoided potential radionuclide transfer by the roots, which also meant that radionuclide retention on or in the leaves was maximized. This study was

  6. Variation in Populus euphratica foliar carbon isotope composition and osmotic solute for different groundwater depths in an arid region of China.

    PubMed

    Si, Jianhua; Feng, Qi; Yu, Tengfei; Zhao, Chunyan; Li, Wei

    2015-11-01

    Water use efficiency (WUE) is an important trait associated with plant acclimation caused by water deficits, and δ13C is a good surrogate of WUE under conditions of water deficits. Water deficiency also enhances the accumulation of compatible solutes in the leaves. In this study, variations in foliar δ(13)C values and main osmotic solutes were investigated. Those included total soluble sugar (TSS), sucrose, free proline, glycine betaine (GB), and inorganic ionic (K+, Ca2+, and Cl-) content of Populus euphratica for different groundwater depths in a Ejina desert riparian forest, China. Results indicated that foliar δ13C values in the P. euphratica for different groundwater depths ranged from -29.14±0.06 to -25.84±0.04 ‰. Foliar δ13C signatures became richer as groundwater levels declined. TSS, sucrose, free proline, GB, and K+ were accumulated in P. euphratica foliage with developing plant growth and increasing groundwater depth. Ca2+ and Cl- content increased under stronger P. euphratica transpiration rates for shallower groundwater depths (1-2.5 m) and decreased for deeper groundwater depths (greater than 3.0 m). Moreover, correlations between δ13C, osmotic solutes, and groundwater depths showed that the primary osmotic solutes were TSS, sucrose, proline, GB, and K+. Correlations also showed that δ13C was not only a useful measure for P. euphratica-integrated WUE but also could be used as an indicator reflecting some physiological osmotic indexes.

  7. Selenium Fortification of an Italian Rice Cultivar via Foliar Fertilization with Sodium Selenate and Its Effects on Human Serum Selenium Levels and on Erythrocyte Glutathione Peroxidase Activity

    PubMed Central

    Giacosa, Attilio; Faliva, Milena Anna; Perna, Simone; Minoia, Claudio; Ronchi, Anna; Rondanelli, Mariangela

    2014-01-01

    Selenium food fortification could be a cost-effective strategy to counteract the inadequacy of selenium intake among the Italian population. In this study, the effect of foliar fertilization with sodium selenate of an Italian rice cultivar and the increase of serum selenium and of erythrocyte glutathione peroxidase (GPx) activity after intake of fortified rice, have been evaluated. The effect of foliar fertilization with sodium selenate (50 g Se/ha) vs. water was studied. Moreover, in a randomized, double-blind study, 10 healthy women supplemented their usual diet with a daily dose of 80 g of Se-enriched-rice and 10 matched-women with 80 g of regular rice. Before, after 5 and 20 days of supplementation, serum Se and GPx-activity were evaluated. The mean selenium content in Se-enriched-rice was 1.64 ± 0.28 μg/g, while in regular rice it was 0.36 ± 0.15 μg/g (p < 0.001). A significant increase of serum Se and GPx-activity was observed only in the intervention group and only after 20 days. The results show that selenium fortification of rice can be achieved with foliar fertilization with sodium selenate and that the 20 days intake of this Se-enriched-rice increases the serum selenium levels and GPx-activity. PMID:24667132

  8. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus).

    PubMed

    Chen, Xuan; Aoki, Masatoshi; Takami, Akinori; Chai, Fahe; Hatakeyama, Shiro

    2010-05-01

    To investigate the effects of ambient-level gas-phase peroxides concurrent with O(3) on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O(3), 100 ppb O(3), and 2-3 ppb peroxides + 50 ppb O(3) in outdoor chambers. Compared with exposure to 100 ppb O(3), exposure to 2-3 ppb peroxides + 50 ppb O(3) induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O(3) exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O(3) can cause more severe damage to plants than 100 ppb O(3), and that not only O(3), but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.

  9. Selenium fortification of an Italian rice cultivar via foliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity.

    PubMed

    Giacosa, Attilio; Faliva, Milena Anna; Perna, Simone; Minoia, Claudio; Ronchi, Anna; Rondanelli, Mariangela

    2014-03-24

    Selenium food fortification could be a cost-effective strategy to counteract the inadequacy of selenium intake among the Italian population. In this study, the effect of foliar fertilization with sodium selenate of an Italian rice cultivar and the increase of serum selenium and of erythrocyte glutathione peroxidase (GPx) activity after intake of fortified rice, have been evaluated. The effect of foliar fertilization with sodium selenate (50 g Se/ha) vs. water was studied. Moreover, in a randomized, double-blind study, 10 healthy women supplemented their usual diet with a daily dose of 80 g of Se-enriched-rice and 10 matched-women with 80 g of regular rice. Before, after 5 and 20 days of supplementation, serum Se and GPx-activity were evaluated. The mean selenium content in Se-enriched-rice was 1.64 ± 0.28 μg/g, while in regular rice it was 0.36 ± 0.15 μg/g (p < 0.001). A significant increase of serum Se and GPx-activity was observed only in the intervention group and only after 20 days. The results show that selenium fortification of rice can be achieved with foliar fertilization with sodium selenate and that the 20 days intake of this Se-enriched-rice increases the serum selenium levels and GPx-activity.

  10. An innovative approach to the recovery of phenolic compounds and volatile terpenes from the same fresh foliar sample of Rosmarinus officinalis L.

    PubMed

    Bellumori, Maria; Michelozzi, Marco; Innocenti, Marzia; Congiu, Federica; Cencetti, Gabriele; Mulinacci, Nadia

    2015-01-01

    Rosmarinus officinalis L. is a plant of relevant commercial interest because of its volatile fraction and also its phenolic constituents which are both well known for their numerous properties. Nevertheless, an extractive method suitable to recovering both the aromatic and phenolic fractions from the same fresh foliar tissue has not yet been reported. In this work we have optimized a two-step procedure able to recover first the phenolic compounds and successively the volatile terpenes from the same foliar sample. The recovery of the whole phenolic fraction, partially degraded using a traditional extractive method, was guaranteed and we observed a significant increment in the amount of volatile terpenes compared to a traditional extraction procedure. We also highlight crucial information on the enzymatic activity of the endogenous oxidases that rapidly transform the phenolic substrates, mainly the rosmarinic acid. Our results suggest that this extractive procedure could also be used for other aromatic plants, thus providing a useful tool for more complete analyses of the main phytochemicals available in fresh foliar samples and creating the possibility of incrementing yields of volatile compounds.

  11. Method for the analysis of triadimefon and ethofumesate from dislodgeable foliar residues on turfgrass by solid-phase extraction and in-vial elution.

    PubMed

    Runes, H B; Jenkins, J J; Field, J A

    1999-08-01

    Triadimefon, a fungicide, and ethofumesate, an herbicide, are commonly applied to turfgrass in the Pacific Northwest, resulting in foliar residues. A simple and rapid method was developed to determine triadimefon and ethofumesate concentrations from dislodgeable foliar residues on turfgrass. Turfgrass samples were washed, and wash water containing surfactant (a 0.126% solution) was collected for residue analysis. This analytical method utilizes a 25 mm C(8) Empore disk and in-vial elution to quantitatively determine triadimefon and ethofumesate in 170 mL aqueous samples. The analytes were eluted by placing the disk in a 2 mL autosampler vial with 980 microL of ethyl acetate and 20 microL of 2-chlorolepidine, the internal standard, for analysis by GC/MS. The method quantitation limits are 0.29 microg/L for ethofumesate and 0.59 microg/L for triadimefon. The method detection limits are 0.047 microg/L and 0.29 microg/L for ethofumesate and triadimefon, respectively. Concentrations of triadimefon and ethofumesate from dislodgeable foliar residues from a field study are reported.

  12. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda).

    PubMed

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-10-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts.

  13. Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases.

    PubMed

    Vivas, M; Silveira, S F; Viana, A P; Amaral, A T; Cardoso, D L; Pereira, M G

    2014-07-02

    Diallel crossing methods provide information regarding the performance of genitors between themselves and their hybrid combinations. However, with a large number of parents, the number of hybrid combinations that can be obtained and evaluated become limited. One option regarding the number of parents involved is the adoption of circulant diallels. However, information is lacking regarding diallel analysis using mixed models. This study aimed to evaluate the efficacy of the method of linear mixed models to estimate, for variable resistance to foliar fungal diseases, components of general and specific combining ability in a circulant table with different s values. Subsequently, 50 diallels were simulated for each s value, and the correlations and estimates of the combining abilities of the different diallel combinations were analyzed. The circulant diallel method using mixed modeling was effective in the classification of genitors regarding their combining abilities relative to the complete diallels. The numbers of crosses in which each genitor(s) will compose the circulant diallel and the estimated heritability affect the combining ability estimates. With three crosses per parent, it is possible to obtain good concordance (correlation above 0.8) between the combining ability estimates.

  14. Toxicity, absorption, and translocation of soil and foliar applied imazaquin in yellow (Cyperus esculentus) and purple (C. rotundus) nutsedge

    SciTech Connect

    Nandihalli, U.B.

    1986-01-01

    Studies were conducted to investigate the toxicity of soil and foliar applied imazaquin in yellow and purple nutsedge. Soil incorporated imazaquin rates from 0.1 to 0.5 ppmw reduced plant dry weight of yellow nutsedge by 92 to 99%, and that of purple nutsedge by 82 to 99%. Imazaquin placement above the tuber was significantly more toxic than placement either around or below the tuber. This suggests that a shallow incorporation of imazaquin at 1 to 2 inch depth should provide effective nutsedge control. Incrementing imazaquin rate significantly increased the number of sprouts when the herbicide was placed above the tuber. This apparent release of apical dominance may be a result of herbicide absorption and translocation from the sprouts to the lateral buds of the tuber at growth regulatory level or a result of the death of the current sprout at lethal concentrations. Three-day old nutsedge propagules absorbed significantly greater amounts of /sup 14/C-imazaquin from shoot application than from root application. The emerging shoot appeared to be the major site of imazaquin uptake at early stages of nutsedge plant development.

  15. Foliar uptake of radiocaesium from irrigation water by paddy rice (Oryza sativa): an overlooked pathway in contaminated environments.

    PubMed

    Uematsu, Shinichiro; Vandenhove, Hildegarde; Sweeck, Lieve; Hees, May Van; Wannijn, Jean; Smolders, Erik

    2017-04-01

    Flooded (paddy) rice (Oryza sativa) can take up ions from the irrigation water by foliar uptake via the exposed stem base. We hypothesised that the stem base uptake of radiocaesium (RCs) is a pathway for rice grown in RCs-contaminated environments. We developed a bi-compartmental device which discriminates the stem base from root RCs uptake from solutions, thereby using RCs isotopes ((137) Cs and (134) Cs) with < 2% solution leak between the compartments. Radiocaesium uptake was linear over time (0-24 h). Radiocaesium uptake to the entire plant, expressed per dry weight of the exposed parts, was sixfold higher for the roots than for the exposed stem base. At equal RCs concentrations in both compartments, the exposed stem base and root uptake contributed almost equally to the total shoot RCs concentrations. Reducing potassium supply to the roots not only increased the root RCs uptake but also increased RCs uptake by the stem base. This study was the first to experimentally demonstrate active and internally regulated RCs uptake by the stem base of rice. Scenario calculations for the Fukushima-affected area predict that RCs in irrigation water could be an important source of RCs in rice as indirectly suggested from field data.

  16. Analysis of an alternative method for the study of bromeliad-associated fauna in plants with different foliar organization.

    PubMed

    Müller, Gerson A; Name, Fernando T; Pacheco, Frederico C L; Marcondes, Carlos B

    2010-12-01

    The efficiency of an alternative method of collection (by suction of water) for the study of Culicidae and Chironomidae (Diptera), Scirtidae (Coleoptera) and Coenagrionidae (Odonata) in bromeliads with different foliar architecture in a restinga at Florianópolis, SC, Brazil, was studied. The alternative method was less efficient to collect Culicidae and Chironomidae (Wilcoxon test p < 0.05) and was more efficient to Scirtidae and Coenagrionidae (Wilcoxon test p > 0.05) from Aechmea lindenii. This method was less efficient to collect insects of all groups from Vriesea friburgensis (Wilcoxon test p < 0.05). The alternative method was efficient to estimate the diversity of these insects in both species of bromeliads. The higher mobility of immature forms of beetles and dragonflies, and the availability of only one tank in Aechea lindenii, contrasting to several tanks in Vriesea friburgensis that help the suction of these immature, probably influenced the results, which indicated that the suction method should not replace the dismantling in the study of Culicidae and Chironomidae. This method can be useful to get immature forms of Scirtidae and Coenagrionidae in one-tank bromeliads.

  17. Gap locations influence the release of carbon, nitrogen and phosphorus in two shrub foliar litter in an alpine fir forest

    PubMed Central

    He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis

    2016-01-01

    Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests. PMID:26906762

  18. Gap locations influence the release of carbon, nitrogen and phosphorus in two shrub foliar litter in an alpine fir forest.

    PubMed

    He, Wei; Wu, Fuzhong; Yang, Wanqin; Zhang, Danju; Xu, Zhenfeng; Tan, Bo; Zhao, Yeyi; Justine, Meta Francis

    2016-02-24

    Gap formation favors the growth of understory plants and affects the decomposition process of plant debris inside and outside of gaps. Little information is available regarding how bioelement release from shrub litter is affected by gap formation during critical periods. The release of carbon (C), nitrogen (N), and phosphorus (P) in the foliar litter of Fargesia nitida and Salix paraplesia in response to gap locations was determined in an alpine forest of the eastern Qinghai-Tibet Plateau via a 2-year litter decomposition experiment. The daily release rates of C, N, and P increased from the closed canopy to the gap centers during the two winters, the two later growing seasons and the entire 2 years, whereas this trend was reversed during the two early growing seasons. The pairwise ratios among C, N, and P converged as the litter decomposition proceeded. Compared with the closed canopy, the gap centers displayed higher C:P and N:P ratio but a lower C:N ratio as the decomposition proceeded. Alpine forest gaps accelerate the release of C, N, and P in decomposing shrub litter, implying that reduced snow cover resulting from vanishing gaps may inhibit the release of these elements in alpine forests.

  19. Evaluation of cucurbitacin-based gustatory stimulant to facilitate cucumber beetle (Coleoptera: Chrysomelidae) management with foliar insecticides in melons.

    PubMed

    Pedersen, Andrew B; Godfrey, Larry D

    2011-08-01

    The bitter plant-derived compounds cucurbitacins are known to stimulate feeding of adult cucumber beetles (Coleoptera: Chrysomelidae). A cucurbitacin-based gustatory stimulant applied as a flowable bait combined with either spinosad or carbaryl was compared with foliar sprays of spinosad and carbaryl for controlling two cucumber beetle species (Diabrotica undecimpunctata undecimpunctata Mannerheim and Acalymma trivittatum Mannerheim) in honeydew melons (Cucumis melo L.). Field studies were conducted on the University of California-Davis plant pathology farm in 2008 and 2009. Beetle densities after applications and fruit damage from beetle feeding were compared among treatments. In addition, beetle survival was compared within field cages placed over the treated foliage infested with beetles. Using all three measures of efficacy, we determined that the addition of cucurbitacin bait had no effect on the level of cucumber beetle control with carbaryl in either 2008 or 2009. In both years, spinosad did not significantly reduce cucumber beetle densities in either field cages or field plots and did not reduce fruit damage relative to the untreated control. The addition of the bait to spinosad did not improve its efficacy. A laboratory bioassay of the spinosad formulation used in the field showed it had significant lethal effects on adults of both cucumber beetle species. Results indicated that the bait formulation used did not improve cucumber beetle control but may benefit from the addition of floral attractants or using a different type of cucurbitacin.

  20. Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite.

    PubMed

    El Hayek, Eliane; El Samrani, Antoine; Lartiges, Bruno; Kazpard, Veronique; Aigouy, Thierry

    2017-01-01

    The contamination of edible leafy vegetables by atmospheric heavy metal-bearing particles is a major issue in environmental toxicology. In this study, the uptake of lead by cladodes of Opuntia ficus-indica (Ofi), traditionally used in Mexican cuisine and in livestock fodder, is investigated after a 4-months exposure of either cladodes or roots to synthetic Pb-fluorapatite particles. Atomic Absorption Spectroscopy (AAS) for the quantitative analysis of Pb levels, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) for the examination of the cladode surface and fate of particles, and Micro-X-ray fluorescence (μXRF) measurements for elemental mapping of Pb in cladodes, were used. The results evidence that foliar contamination may be a major pathway for the transfer of Pb within Ofi cladodes. The stomata, areoles, and cuticle of cladode surface, play an obvious role in the retention and the incorporation of lead-bearing apatite, thus revealing the hazard of eating contaminated cladodes. The possibility of using series of successive cladodes for biomonitoring the atmospheric pollution in arid and semi-arid regions is also rapidly discussed.

  1. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    PubMed

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed.

  2. Root biomass response to foliar application of imazapyr for two imidazolinone tolerant alleles of sunflower (Helianthus annuus L.).

    PubMed

    Sala, Carlos A; Bulos, Mariano; Altieri, Emiliano; Ramos, María Laura

    2012-09-01

    Imisun and CLPlus are two imidazolinone tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of two alleles at the locus Ahasl1. Both traits differed in their tolerance level to imazapyr -a type of imidazolinone herbicide- when aboveground biomass is considered, but the concomitant herbicide effect over the root system has not been reported. The objective of this work was to quantify the root biomass response to increased doses of imazapyr in susceptible (ahasl1/ahasl1), Imisun (Ahasl1-1/Ahasl1-1) and CLPlus (Ahasl1-3/Ahasl1-3) homozygous sunflower genotypes. These materials were sprayed at the V2-V4 stage with increased doses of imazapyr (from 0 to 480 g active ingredient ha(-1)) and 14 days after treatment root biomass of each plant was assessed. Genotype at the Ahasl1 locus, dose of imazapyr and their interaction significantly contributed (P < 0.001) to explain the reduction in root biomass accumulation after herbicide application. Estimated dose of imazapyr required to reduce root biomass accumulation by fifty percent (GR(50)) differed statistically for the three genotypes under study (P < 0.001). CLPlus genotypes showed the highest values of GR(50), 300 times higher on average than the susceptible genotypes, and almost 8 times higher than Imisun materials, demonstrating that both alleles differ in their root biomass response to foliar application of increased doses of imazapyr.

  3. Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting.

    PubMed

    Vestergård, Mette; Henry, Frédéric; Rangel-Castro, Juan Ignacio; Michelsen, Anders; Prosser, James I; Christensen, Søren

    2008-04-01

    Differences in bacterial community composition (BCC) between bulk and rhizosphere soil and between rhizospheres of different plant species are assumed to be strongly governed by quantitative and qualitative rhizodeposit differences. However, data on the relationship between rhizodeposit amounts and BCC are lacking. Other soil microorganisms, e.g. arbuscular mycorrhizal fungi (AMF), may also influence BCC. We simulated foliar herbivory (cutting) to reduce belowground carbon allocation and rhizodeposition of pea plants grown either with or without AMF. This reduced soil respiration, rhizosphere microbial biomass and bacteriovorous protozoan abundance, whereas none of these were affected by AMF. After labelling plants with (13)CO(2), root and rhizosphere soil (13)C enrichment of cut plants were reduced to a higher extent (24-46%) than shoot (13)C enrichment (10-24%). AMF did not affect (13)C enrichment. Despite these clear indications of reduced rhizosphere carbon-input, denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes PCR-amplified targeting DNA and RNA from rhizosphere soil did not reveal any effects of cutting on banding patterns. In contrast, AMF induced consistent differences in both DNA- and RNA-based DGGE profiles. These results show that a reduction in rhizosphere microbial activity is not necessarily accompanied by changes in BCC, whereas AMF presence inhibits proliferation of some bacterial taxa while stimulating others.

  4. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda)

    PubMed Central

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-01-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS–LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  5. Foliar uptake of cesium, iodine and strontium and their transfer to the edible parts of beans, potatoes and radishes

    NASA Astrophysics Data System (ADS)

    Oestling, O.; Kopp, P.; Burkart, W.

    Considerable fractions of radionuclide solutions deposited on the surface of the leaves may be transferred to the edible parts of plants. In radishes we observed a transfer of more than 40% of the applied cesium radioisotope within a few days. A rather similar uptake was found for beans and potatoes when harvested a month after application of radioactivity. As much as 60% of the applied cesium-isotope remained in (or on) the potato leaves even 8 days after application. The major part could however be washed off the leaves a few hours after application. When radishes were showered with water within 7 h after the application of activity the uptake was greatly reduced. No competitive effect of potassium chloride for the foliar uptake of cesium was found. A 10 -2 M colloidal suspension of Prussian Blue, a chelating agent for monovalent alkali metals such as potassium, cesium, or other monovalent cations, applied as droplets to the leaves one day prior to application of active cesium was found to strongly inhibit the transfer of cesium to the radish. The transfer of iodine and strontium to the edible parts was found to be negligible (or slower) as compared to cesium. In most cases no detectable amounts of these two nuclides were transfered to the edible parts of the radish after 2-5 weeks.

  6. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis.

    PubMed

    Zhou, Sheng-Liang; Yan, Shu-Zhen; Liu, Qi-Sha; Chen, Shuang-Lin

    2015-01-01

    Foliar fungal endophytes are an important plant-associated fungal group. However, little is known about these fungi in hemi-parasitic plants, a unique plant group which derive nutrients from living plants of its hosts by haustoria while are photosynthetic to some degree. In this paper, the endophytic fungi in the leaves of a species of hemi-parasitic plant, Macrosolen cochinchinensis, were studied by both culture-dependent and culture-independent methods. By culture-dependent method, a total of 511 isolates were recovered from 452 of 600 leaf fragments (colonization rate = 75.3 %) and were identified to be 51 taxa. Valsa sp. was the most abundant (relative abundance = 38.4 %), followed by Cladosporium sp. 1 (13.5 %), Ulocladium sp. (4.3 %), Phomopsis sp. 2 (3.7 %), Hendersonia sp. (3.5 %), and Diaporthe sp. 4 (3.5 %). The Shannon index (H') of the isolated endophytic fungi was 2.628, indicating a moderate diversity. By culture-independent method, Aspergillus spp., Cladosporium sp., Mycosphaerella sp., Acremonium strictum, and Tremella sp. were detected. To our knowledge, the Tremella species have never been detected as endophytes so far. In addition, a cloned sequence was not similar with any current sequence in the Genbank, which may represent a novel species. Altogether, this study documented endophytic fungal assemble in the leaves of M. cochinchinensis which was worthy of our attention, and may expand our knowledge about endophytic fungi within the photosynthetic tissues of plants.

  7. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai Peninsula.

    PubMed

    Baltzer, Jennifer L; Grégoire, Dorthea M; Bunyavejchewin, Sarayudh; Noor, N Supardi M; Davies, Stuart J

    2009-12-01

    Drought is a critical factor in plant species distributions. Much research points to its relevance even in moist tropical regions. Recent studies have begun to elucidate mechanisms underlying the distributions of tropical tree species with respect to drought; however, how such desiccation tolerance mechanisms correspond with the coordination of hydraulic and photosynthetic traits in determining species distributions with respect to rainfall seasonality deserves attention. In the present study, we used a common garden approach to quantify inherent differences in wood anatomical and foliar physiological traits in 21 tropical tree species with either widespread (occupying both seasonal and aseasonal climates) or southern (restricted to aseasonal forests) distributions with respect to rainfall seasonality. Use of congeneric species pairs and phylogenetically independent contrast analyses allowed examination of this question in a phylogenetic framework. Widespread species opted for wood traits that provide biomechanical support and prevent xylem cavitation and showed associated reductions in canopy productivity and consequently growth rates compared with southern species. These data support the hypothesis that species having broader distributions with respect to climatic variability will be characterized by traits conducive to abiotic stress tolerance. This study highlights the importance of the well-established performance vs. stress tolerance trade-off as a contributor to species distributions at larger scales.

  8. Impact of foliar symptoms of "Esca proper" on proteins related to defense and oxidative stress of grape skins during ripening.

    PubMed

    Pasquier, Grégory; Lapaillerie, Delphine; Vilain, Sébastien; Dupuy, Jean-William; Lomenech, Anne-Marie; Claverol, Stéphane; Gény, Laurence; Bonneu, Marc; Teissedre, Pierre-Louis; Donèche, Bernard

    2013-01-01

    Esca is one of the major diseases affecting vineyards with direct impact on product yield; nevertheless, scientific studies concerning its impact on grape quality are scarce. As an attempt to better understand the mechanisms behind "Esca proper" development in grapes, this work focused on the identification of proteins whose expression is altered by the disease. 2-DEs were performed on protein extracts from grape skins at different stages of maturity for two consecutive vintages. Grapes were collected in 2009 and in 2010 from plants that did not present signs of infection by Esca proper since the 2004 vintage and from plants that presented cast leaf symptoms at least once since 2004. For the first time, 13 proteins were shown to be influenced by Esca proper during the ripening process. Extensive bioinformatics analysis allowed the grouping of proteins involved in (i) stress tolerance and defense response, (ii) oxidative phosphorylation, (iii) oxidation-reduction processes in mitochondria, and (iv) oxidation-reduction processes in chloroplasts. Of these 13 proteins, cysteine synthase is the only one implicated in a metabolic pathway of oenological interest. This study shows how foliar symptoms of Esca proper may impact stress-related pathways in grapes, which are characterized by modifications in the chain of oxidative phosphorylation and redox scavenging.

  9. Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335).

    PubMed

    Joshi, Juhie; Sharma, Sonika; Guruprasad, K N

    2014-09-01

    A field study was conducted to investigate the impact of the fungicide pyraclostrobin (F500 - Headline®; a.i. 20%) on the activity of nitrogenase in soybean (var. JS-335). Pyraclostrobin (F500) was applied on the leaves of soybean plants at 10 and 20 days after emergence (DAE) of seedlings at concentrations ranging from 0.05% to 1%. Leghemoglobin (Lb) content and nitrogenase activity in root nodules were analyzed at 45(th)day after emergence of seedlings indicated a remarkable increase in Lb content and enhanced activity of nitrogenase in the root nodules of pyraclostrobin treated plants. The fungicide also enhanced the number of nodules along with weight of nodules, root biomass and growth of shoot and leaves. Enhanced nitrogen fixation in the root nodules by pyraclostrobin improves the growth of the plant in soybean before flowering and pod formation which ultimately resulted in yield and yield attributes. These results suggest that pyraclostrobin (F500) can be successfully employed as a foliar spray under field conditions to enhance the growth, nitrogen assimilation and hence yield of soybean.

  10. Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative

    NASA Astrophysics Data System (ADS)

    Mondolot, Laurence; Marlas, Amandine; Barbeau, Damien; Gargadennec, Annick; Pujol, Benoît; McKey, Doyle

    2008-09-01

    Plant domestication is accompanied by shifts in resource allocation, as a result of farmer selection for genotypes that give high yields in agricultural habitats. Relaxed natural selection for chemical and physical defences in these habitats could facilitate resource allocation to yield. We compared the concentrations of tannins, and C/N ratios, which are often correlated with investment in cell-wall compounds, in leaves of landraces of domesticated cassava ( Manihot esculenta) and a close wild relative in French Guiana. Foliar concentrations of tannins were about 1.9 times higher in the wild relative than in domesticated cassava. Histochemical analyses showed that tannins were present in nearly all palisade and spongy parenchyma cells of the wild taxon, but in only some cells of these tissues in M. esculenta. C/N ratios were also 1.9 times higher in leaves of the wild relative than in those of domesticated cassava. Tannins accounted for only a small proportion of total carbon, and the higher C/N ratio in wild than in domesticated cassava may reflect higher investment in carbon-containing compounds additional to tannins, such as cell-wall compounds. The divergence in these traits between cassava and this close wild relative mirrors a broad pattern observed in wild plant species across habitats varying in resource availability. One explanation for our results is that domestication in cassava may have favoured a shift from a resource conservation strategy to a resource acquisition strategy.

  11. Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice.

    PubMed

    Xu, Juan; Hu, Qiuhui

    2004-03-24

    Selenium fertilizer was foliar applied to determine the effects of antioxidant activity of selenium-enriched rice assessed by alpha,alpha-diphenyl-beta-picylhydrazyl (DPPH) radical scavenging and the ferric thiocyanate (FTC) method. Results showed that selenium concentration in rice was significantly enhanced dose dependently. Aqueous or ethanolic extracts of rice displayed significantly higher antioxidant activity against lipid peroxidation. The activities of aqueous extracts were significantly higher than those of ethanolic extracts and increased with the increasing selenium concentration in rice. The DPPH assay showed that the kinetic behaviors of aqueous extracts were complex and slow, while ethanolic extracts reacted quickly with DPPH radical. Aqueous extracts of rice exhibited higher antiradical efficiencies than ethanolic extracts, and rice (1.275 mg Se kg(-)(1)) presented the lowest EC(50) values of 533.46 +/- 0.58 microg mL(-)(1). As compared to rice extracts, all of the reference antioxidants showed more than 4-fold antiradical efficiencies than rice extracts. This radical scavenging activity was significantly correlated with selenium concentrations in rice (R = 0.862, p < 0.05), while ethanolic extracts were inversely correlated with selenium concentration in rice.

  12. [Influence of mulching management on the relationships between foliar non-structural carbohydrates and N, P concentrations in Phyllostachys violascens stand].

    PubMed

    Guo, Zi-wu; Hu, Jun-jing; Yang, Qing-ping; Li, Ying-chun; Chen, Shuang-lin; Chen, Wei-jun

    2015-04-01

    To understand the physiological adaptive mechanism of Phyllostachys violascens to intensive mulching management, the effect of mulching management (CK, 1, 3 and 6 years) on the concentrations and ratios of non-structural carbohydrates (NSC), nitrogen (N) and phosphorus (P) in bamboo foliage, and their stoichiometry was investigated. The results showed the concentrations of NSC and soluble sugar increased, while the starch content and N/P decreased markedly in bamboo stand with 1-year mulching, compared to CK stand, which suggested the N limitation to bamboo growth was strengthened. Foliar soluble sugar content decreased significantly, while the starch content increased dramatically, and the NSC content by per unit mass of N and P reached the maximum in the bamboo stand with 3-year mulching, compared to all other treatments. Foliar NSC and soluble sugar contents decreased significantly, while foliar starch content and N/P increased dramatically in the stand with 6-year mulching, which suggested the P limitation to bamboo growth was strengthened. Foliar NSC content was positively correlated with N and P concentrations in a short-term mulching management stand (≤ 3 years), while showed negative relationship with N/P. The foliar starch content in the stand with 6-year mulching was negatively correlated with N and P contents, while was positively correlated with N/P. The results indicated that short-term mulching management accelerated the accumulation of soluble sugar and decomposition of starch in foliage, thus the growth and activity of Ph. violascens was enhanced greatly. Long-term mulching management promoted the starch accumulation, which led to the transition from N limitation to P limitation for bamboo growth. In summary, long-term (6 years) mulching management caused the decrease of growth and activity of Ph. violascens dramatically, thus enhancing the bamboo stand degradation. The utilization efficiency of N and P reached the highest in the stand with 3-year

  13. Drought and air warming affect the species-specific levels of stress-related foliar metabolites of three oak species on acidic and calcareous soil.

    PubMed

    Hu, Bin; Simon, Judy; Rennenberg, Heinz

    2013-05-01

    Climate change as projected for Central Europe will lead to prolonged periods of summer drought and enhanced air temperature. Thus, forest management practices are required to take into account how species performance is adapted to cope with these climate changes. Oak trees may play a major role in future forests because of their relative drought-tolerance compared with other species like beech. Therefore, this study investigated the stress responses (i.e., anti-oxidants, free amino acids) in the leaves of three widely distributed oak species in Central Europe (i.e., Quercus robur L., Q. petraea [Matt.] Libel., Q. pubescens Willd.) to drought, air warming and the combination of drought plus air warming under controlled conditions after periods of spring drought, a short rewetting and summer drought. We quantified foliar levels of thiols, ascorbate, and free amino compounds in Q robur, Q. petraea and Q. pubescens. Our study showed that oak saplings had increased levels of γ-glutamylcysteine and total glutathione and proline with drought and air warming. Foliar ascorbate, glutathione disulfide and dehydroascorbic acid levels were not affected. The comparison of stress responses to drought and/or air warming between the three species showed higher foliar thiol levels in Q. robur and Q. pubescens compared with Q. petraea. For total and reduced ascorbic acid and γ-aminobutyric acid, the highest levels were found in Q. robur. In conclusion, our study showed that foliar anti-oxidant and free amino acid levels were significantly affected by drought plus air warming; however, this effect was species-dependent with the drought-tolerant species of Q. pubescens having the highest reactive oxygen species scavenging capacity among three tested oak species. Furthermore, stress responses as shown by increased levels of foliar anti-oxidants and free amino acids differ between calcareous and acidic soil indicating that the capacities of anti-oxidative defense and osmotic stress

  14. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    Young trees 0.03-1.7 m high of three coexisting Betula species were investigated in four sites of varying soil fertility, but all in full daylight, to separate nutrient and plant size controls on leaf dry mass per unit area (MA), light-saturated foliar photosynthetic electron transport rate (J) and the fraction of plant biomass in foliage (F(L)). Because the site effect was generally non-significant in the analyses of variance with foliar nitrogen content per unit dry mass (N(M)) as a covariate, N(M) was used as an explaining variable of leaf structural and physiological characteristics. Average leaf area (S) and dry mass per leaf scaled positively with N(M) and total tree height (H) in all species. Leaf dry mass per unit area also increased with increasing H, but decreased with increasing N(M), whereas the effects were species-specific. Increases in plant size led to a lower and increases in N(M) to a greater FL and total plant foliar area per unit plant biomass (LAR). Thus, the self-shading probably increased with increasing N(M) and decreased with increasing H. Nevertheless, the whole-plant average M(A), as well as M(A) values of topmost fully exposed leaves, correlated with N(M) and H in a similar manner, indicating that scaling of MA with N(M) and H did not necessarily result from the modified degree of within-plant shading. The rate of photosynthetic electron transport per unit dry mass (J(M)) scaled positively with N(M), but decreased with increasing H and M(A). Thus, increases in M(A) with tree height and decreasing nitrogen content not only resulted in a lower plant foliar area (LAR = F(L)/M(A)), but also led to lower physiological activity of unit foliar biomass. The leaf parameters (J(M), N(M) and M(A)) varied threefold, but the whole-plant characteristic FL varied 20-fold and LAR 30-fold, indicating that the biomass allocation was more plastically adjusted to different plant internal nitrogen contents and to tree height than the foliar variables. Our

  15. Foliar delta(13)C and delta(18)O reveal differential physiological responses of canopy foliage to pre-planting weed control in a young spotted gum (Corymbia citriodora subsp. Variegata) plantation.

    PubMed

    Huang, Zhiqun; Xu, Zhihong; Blumfield, Timothy J; Bubb, Ken

    2008-10-01

    Weed control may improve the growth of forest plantations by influencing soil water and nutrient availability, but our knowledge of leaf-level physiological responses to weed control at different within-canopy positions is limited for tropical and subtropical plantations. Foliar carbon (delta(13)C) and oxygen (delta(18)O) isotope compositions, gas exchange, and nitrogen (N(mass)) and phosphorus (P(mass)) concentrations at four canopy positions were assessed in a young spotted gum (Corymbia citriodora subsp. Variegata (F. Muell.) A.R. Bean & M.W. McDonald) plantation subjected to either weed control or no weed control treatment, to test if leaves at different positions within the tree canopy had the same physiological responses to the weed control treatment. Weed control increased foliar delta(13)C but lowered delta(18)O in the upper-outer and upper-inner canopy, indicating that weed control resulted in a higher foliar photosynthetic capacity at upper-canopy positions, a conclusion confirmed by gas exchange measurements. The increased photosynthetic capacity resulting from weed control can be explained by an increase in foliar N(mass). In the lower-outer canopy, weed control reduced foliar delta(13)C while lowering delta(18)O even more than in the upper-canopy, suggesting strong enhancement of the partial pressure of CO(2) in the leaf intercellular spaces and of foliar stomatal conductance in lower-canopy foliage. This conclusion was supported by gas exchange measurements. Foliar photosynthesis in the lower-inner canopy showed no significant response to weed control. The finding that leaves at different canopy positions differ in their physiological responses to weed control highlights the need to consider the canopy position effect when examining competition for soil nutrient and water resources between weeds and trees.

  16. Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)

    NASA Astrophysics Data System (ADS)

    Sperlich, D.; Chang, C. T.; Peñuelas, J.; Gracia, C.; Sabaté, S.

    2014-06-01

    Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 °C) or freezing temperatures (< 0 °C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.) during a period of mild winter conditions and their responses to a sudden cold period. The state of the photosynthetic machinery in both periods was thus tested by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials similar to those under spring conditions. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). This change persisted for several weeks after the cold period despite the recovery of the temperature to the conditions

  17. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    PubMed

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  18. On the decomposition of foliar hyperspectral signatures for the high-fidelity discrimination and monitoring of crops

    NASA Astrophysics Data System (ADS)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2016-04-01

    Hyperspectral technologies are being increasingly employed in precision agriculture. By separating the surface and subsurface components of foliar hyperspectral signatures using polarization optics, it is possible to enhance the remote discrimination of different plant species and optimize the assessment of different factors associated with the crops' health status such as chlorophyll levels and water content. These initiatives, in turn, can lead to higher crop yield and lower environmental impact through a more effective use of freshwater supplies and fertilizers (reducing the risk of nitrogen leaching). It is important to consider, however, that the main varieties of crops, represented by C3 (e.g., soy) and C4 (e.g., maize) plants, have markedly distinct morphological characteristics. Accordingly, the influence of these characteristics on their interactions with impinging light may affect the selection of optimal probe wavelengths for specific applications making use of combined hyperspectral and polarization measurements. In this work, we compare the sensitivity of the surface and subsurface reflectance responses of C3 and C4 plants to different spectral and geometrical light incidence conditions. In our comparisons, we also consider intra- species variability with respect to specimen characterization data. This investigation is supported by measured biophysical data and predictive light transport simulations. The results of our comparisons indicate that the surface and subsurface reflectance responses of C3 and C4 plants depict well-defined patterns of sensitivity to varying illumination conditions. We believe that these patterns should be considered in the design of new high-fidelity crop discrimination and monitoring procedures.

  19. Evidence for a volatile pheromone in Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) that increases attraction to a host foliar volatile.

    PubMed

    Silk, Peter J; Ryall, Krista; Mayo, Peter; Lemay, Matthew A; Grant, Gary; Crook, Damon; Cossé, Allard; Fraser, Ivich; Sweeney, Jon D; Lyons, D Barry; Pitt, Doug; Scarr, Taylor; Magee, David

    2011-08-01

    Analysis by gas chromatography/mass spectrometry (GC/MS) of volatiles from virgin female emerald ash borer, Agrilus planipennis Fairmaire confirmed the emission of (3Z)-lactone [(3Z)-dodecen-12-olide] but not its geometric isomer, (3E)-lactone [(3E)-dodecen-12-olide]. Gas chromatographic/electroantennographic (GC/EAD) analysis of synthetic (3Z)-lactone, which contained 10% (3E)-lactone, showed a strong response of male and female antennae to both isomers. EAG analysis with 0.01- to 100-μg dosages showed a positive dose response, with females giving significantly higher responses than males. In field experiments with sticky purple prism traps, neither lactone isomer affected catches when combined with ash foliar or cortical volatiles (green leaf volatiles or Phoebe oil, respectively). However, on green prism traps, the (3Z)-lactone significantly increased capture of male A. planipennis when traps were deployed in the canopy. Captures of males on traps with both (3E)-lactone and (3Z)-hexenol or with (3Z)-lactone and (3Z)-hexenol were increased by 45-100%, respectively, compared with traps baited with just (3Z)-hexenol. In olfactometer bioassays, males were significantly attracted to (3E)-lactone, but not the (3Z)-lactone or a 60:40 (3E):(3Z) blend. The combination of either (3E)- or (3Z)-lactone with Phoebe oil was not significantly attractive to males. Males were highly attracted to (3Z)-hexenol and the (3Z)-lactone + (3Z)-hexenol combination, providing support for the field trapping results. These data are the first to demonstrate increased attraction with a combination of a pheromone and a green leaf volatile in a Buprestid species.

  20. Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene.

    PubMed

    Hebert, Stephanie L; Jia, Lingling; Goggin, Fiona L

    2007-04-01

    The Mi resistance gene in tomato reduces the feeding, fecundity, and survival of certain isolates of the potato aphid (Macrosiphum euphorbiae Thomas). This study compared the performance of two potato aphid isolates, WU11 and WU12, on nearly isogenic susceptible (Mi-) and resistant (Mi+) tomato cultivars. Although Mi significantly reduced the population growth of both aphids, WU12 numbers decreased by only 15% compared with 95% for isolate WU11. These results show that there are quantitative differences in virulence among potato aphid isolates. Compared with WU11 aphids, isolate WU12 caused more necrosis on both resistant and susceptible plants, and this increased damage may play a role in the partial virulence of isolate WU12. However, infestation with aphid isolate WU12 did not compromise plant defenses against isolate WU11 in resistant plants. Prior inoculation with either aphid isolate caused a modest reduction in the survival of WU12 adults, but this form of induced resistance was observed on both resistant and susceptible cultivars. Thus, Mi did not play a role in acquired resistance or mediate any indirect interactions between the two aphid isolates. Notably, the mode of action of Mi-mediated resistance seemed to differ depending on the aphid isolate tested. Mi dramatically deterred feeding by WU11 aphids, whereas the effects of resistance on isolate WU12 seemed to be caused primarily by antibiosis. Tolerance did not seem to be a major component of Mi-mediated responses, although resistant plants showed a modest reduction in the amount of foliar necrosis induced per aphid compared with susceptible plants.

  1. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    PubMed Central

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  2. Transfer of Escherichia coli O157:H7 from simulated wildlife scat onto romaine lettuce during foliar irrigation.

    PubMed

    Atwill, Edward R; Chase, Jennifer A; Oryang, David; Bond, Ronald F; Koike, Steven T; Cahn, Michael D; Anderson, Maren; Mokhtari, Amirhossein; Dennis, Sherri

    2015-02-01

    A field trial in Salinas Valley, California, was conducted during July 2011 to quantify the microbial load that transfers from wildlife feces onto nearby lettuce during foliar irrigation. Romaine lettuce was grown using standard commercial practices and irrigated using an impact sprinkler design. Five grams of rabbit feces was spiked with 1.29 × 10(8) CFU of Escherichia coli O157:H7 and placed - 3, - 2, and - 1 days and immediately before a 2-h irrigation event. Immediately after irrigation, 168 heads of lettuce ranging from ca. 23 to 69 cm (from 9 to 27 in.) from the fecal deposits were collected, and the concentration of E. coli O157:H7 was determined. Thirty-eight percent of the collected lettuce heads had detectable E. coli O157:H7, ranging from 1 MPN to 2.30 × 10(5) MPN per head and a mean concentration of 7.37 × 10(3) MPN per head. Based on this weighted arithmetic mean concentration of 7.37 × 10(3) MPN of bacteria per positive head, only 0.00573% of the original 5 g of scat with its mean load of 1.29 × 10(8) CFU was transferred to the positive heads of lettuce. Bacterial contamination was limited to the outer leaves of lettuce. In addition, factors associated with the transfer of E. coli O157:H7 from scat to lettuce were distance between the scat and lettuce, age of scat before irrigation, and mean distance between scat and the irrigation sprinkler heads. This study quantified the transfer coefficient between scat and adjacent heads of lettuce as a function of irrigation. The data can be used to populate a quantitative produce risk assessment model for E. coli O157:H7 in romaine lettuce to inform risk management and food safety policies.

  3. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    DOE PAGES

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; ...

    2015-09-22

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination ofmore » both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.« less

  4. Insights to fossil and geochemical archives of forest structure from foliar flux, isotopic and biomarker gradients in modern canopies

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Patzkowsky, M.; Wing, S. L.; Freeman, K. H.

    2012-12-01

    Paleoecologists and paleoclimatologists alike are interested in the geological history of closed-canopy forests because of their evolutionary and climatic significance. In order to develop chemical tools for inferring closed-canopy forests in the geological record we have studied the relationships among foliar carbon isotope compositions (δ13C), litter flux and leaf-wax properties in the context of environmental gradients (light, moisture, CO2) within extant forest canopies. Leaves in a tropical closed-canopy forest exhibit a greater range of vertical isotopic enrichment (10‰) compared with similarly sampled temperate open-canopy forest (6‰). We used these data and a statistical resampling (bootstrap) method to form expectations for isotopic variation in fossil leaf assemblages and sediments that formed under different forest types. According to this model, there is a robust likelihood of identifying canopy closure by isotopic analysis of as few as 50 fossil leaves selected randomly. By sampling many thousands of leaves, the model estimates the influence of leaf biomass on organic matter in ancient soils and other terrestrial archives. The model predicts that soil organic matter in a tropical closed-canopy will be ~1‰ more depleted than in a temperate open-canopy forest. Modeled closed-canopy litter coincides with observed δ13C values for litterfall and humic soils in the tropical forest. Despite variability within a canopy and among individual leaves and species, sedimentary organic matter potentially captures global-scale biome patterns, provided diagenetic influences can be constrained. Thus to allow insights to isotopic differences between litter input and preserved signals in ancient environments, we can incorporate biomarker abundance and isotopic data for six n-alkanes (n-C25 to n-C35) into the model. This model allows us to predict the sediment lipid profiles that would result from a variety of canopy conditions and taxonomic dominance patterns.

  5. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype.

    PubMed

    Holton, M Kim; Lindroth, Richard L; Nordheim, Erik V

    2003-10-01

    This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.

  6. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees

    SciTech Connect

    Adams, Henry D.; Collins, Adam D.; Briggs, Samuel P.; Vennetier, Michel; Dickman, L. Turin; Sevanto, Sanna A.; Garcia-Forner, Núria; Powers, Heath H.; McDowell, Nate G.

    2015-09-22

    Higher temperatures associated with climate change are anticipated to trigger an earlier start to the growing season, which could increase the terrestrial C sink strength. Greater variability in the amount and timing of precipitation is also expected with higher temperatures, bringing increased drought stress to many ecosystems. We experimentally assessed the effects of higher temperature and drought on the foliar phenology and shoot growth of mature trees of two semiarid conifer species. We exposed field-grown trees to a ~45% reduction in precipitation with a rain-out structure (‘drought’), a ~4.8 °C temperature increase with open-top chambers (‘heat’), and a combination of both simultaneously (‘drought + heat’). Over the 2013 growing season, drought, heat, and drought + heat treatments reduced shoot and needle growth in piñon pine (Pinus edulis) by ≥39%, while juniper (Juniperus monosperma) had low growth and little response to these treatments. Needle emergence on primary axis branches of piñon pine was delayed in heat, drought, and drought + heat treatments by 19–57 days, while secondary axis branches were less likely to produce needles in the heat treatment, and produced no needles at all in the drought + heat treatment. Growth of shoots and needles, and the timing of needle emergence correlated inversely with xylem water tension and positively with nonstructural carbohydrate concentrations. Our findings demonstrate the potential for delayed phenological development and reduced growth with higher temperatures and drought in tree species that are vulnerable to drought and reveal potential mechanistic links to physiological stress responses. Furthermore, climate change projections of an earlier and longer growing season with higher temperatures, and consequent increases in terrestrial C sink strength, may be incorrect for regions where plants will face increased drought stress with climate change.

  7. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  8. Foliar litter nitrogen dynamics as affected by forest gap in the alpine forest of eastern Tibet Plateau.

    PubMed

    Wu, Qiqian; Wu, Fuzhong; Yang, Wanqin; Zhao, Yeyi; He, Wei; Tan, Bo

    2014-01-01

    There is increasing attention on the effects of seasonal snowpack on wintertime litter decomposition, as well as the processes following it, in cold biomes. However, little information is available on how litter nitrogen (N) dynamics vary with snowpack variations created by tree crown canopies in alpine forests. Therefore, to understand the effects of seasonal snowpack on litter N dynamics during different critical stages, litterbags with fir (Abies faxoniana), birch (Betula albo-sinensis), larch (Larix mastersiana) and cypress (Sabina saltuaria) foliar litter were placed on the forest floor beneath snowpack created by forest gaps in the eastern Tibet Plateau. The litterbags were sampled at the onset of freezing, deep freezing, thawing and growing stages from October 2010 to October 2012. Mass loss and N concentrations in litter were measured. Over two years of decomposition, N release occurred mainly during the first year, especially during the first winter. Litter N release rates (both in the first year and during the entire two-year decomposition study period) were higher in the center of canopy gaps than under closed canopy, regardless of species. Litter N release rates in winter were also highest in the center of canopy gaps and lowest under closed canopy, regardless of species, however the reverse was found during the growing season. Compared with broadleaf litter, needle litter N release comparisons of gap center to closed canopy showed much stronger responses to the changes in snow cover in winter and availability of sunshine during the growing season. As the decomposition proceeded, decomposing litter quality, microbial biomass and environmental temperature were important factors related to litter N release rate. This suggests that if winter warm with climate change, reduced snow cover in winter might slow down litter N release in alpine forest.

  9. Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants.

    PubMed

    Taffouo, Victor Désiré; Ngwene, Benard; Akoa, Amougou; Franken, Philipp

    2014-07-01

    The present study was undertaken to evaluate the effects of phosphorus (P) application and arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea (Vigna unguiculata cv. Vita-5) plants. The experiment was conducted in a greenhouse in pots containing a mixture of vermiculite and sterilized quartz sand. Mycorrhizal and non-mycorrhizal cowpea plants were supplied with three levels of soluble P (0.1 (low P), 0.5 (medium P), or 1.0 mM (high P)).Cowpea plants supplied with low P fertilization showed significantly (p < 0.05) higher root colonization than those with medium and high P fertilization at both the vegetative and pod-filling stages. P uptake and growth parameters of cowpea plants were positively influenced by mycorrhizal inoculation only in the medium P fertilization treatment at the vegetative stage. Lack of these effects in the other treatments may be linked to either a very low P supply (in the low P treatment at the vegetative stage) or the availability of optimal levels of freely diffusible P in the substrate towards the pod-filling stage due to accumulation with time. The N concentration in leaves of all cowpea plants were lower at the pod-filling stage than at the vegetative stage, presumably as a result of N mobilization from vegetative organs to the developing pods. This was however not influenced by AM fungal inoculation and may be a consequence of the lack of an improved plant P acquisition by the fungus at the pod-filling stage.

  10. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    PubMed Central

    Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.

    2014-01-01

    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic

  11. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China.

    PubMed

    Fang, Yong; Wang, Lin; Xin, Zhihong; Zhao, Liyan; An, Xinxin; Hu, Qiuhui

    2008-03-26

    Zn, Se, and Fe levels in 65 Chinese rice samples were investigated, and the results indicated that these micronutrients contents of rice products from different location varied considerably. The mean contents of Zn, Se and Fe in these rice samples were 21.5+/-1.8, 0.020+/-0.012, and 12.4+/-4.3 mg kg(-1), respectively, which were too low to meet the micronutrient demands for the population feeding on the rice as staple. A field orthogonal experiment L9 (3(4)) was conducted on rice cultivar Wuyunjing 7, to evaluate the effect of Zn, Se, and Fe foliar fertilization on the concentration of these micronutrients, yield, and protein and ash content of rice grain. The results indicated that Zn and Se were the main variables influencing the Zn, Se, and Fe content of rice, and the optimal combination of fertilization for enhancing these micronutrients was 0.90 kg ha(-1) Zn, 0.015 kg ha(-1) Se, and 0.90 kg ha(-1) Fe. Under the optimal application condition, Zn, Se, and Fe content of rice could be significantly increased by 36.7%, 194.1%, and 37.1%, respectively, compared with the control, without affecting grain yield and protein and ash content of rice products. Moreover, in the confirmation experiment on rice cultivar Ninggeng 1, the optimal fertilization could increase the Zn, Se, and Fe content of rice up to 17.4, 0.123, and 14.2 mg kg(-1), respectively.

  12. Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology

    NASA Astrophysics Data System (ADS)

    Eitel, Jan U. H.; Magney, Troy S.; Vierling, Lee A.; Dittmar, Günter

    2014-11-01

    Advanced technologies for improved nitrogen (N) fertilizer management are paramount for sustainably meeting future food demands. Green laser systems that measure pulse return intensity can provide more reliable information about foliar N than can traditional passive remote sensing devices during the critical early crop growth stages (e.g., before canopy closure when vegetation and soil signals are spectrally mixed) when further decisions regarding N management can be made. However, current green laser systems are not designed for agricultural applications and only employ a single green laser wavelength, which may limit applications because many factors that require normalization techniques can affect pulse return intensity. Here, we describe the design of a tractor-mountable, green (532 nm)- and red (658 nm) dual wavelength laser system and evaluate the potential of an additional red reference wavelength to improve laser based estimates of foliar N by calculating laser spectral indices based on ratio combinations of green laser return intensity (GLRI) and red laser return intensity (RLRI). We hypothesized that such laser spectral indices aid in accounting for factors that confound laser based foliar N estimates including variations in leaf angle, measurement distance, soil returns, and mixed edge returns. Leaf level measurements in winter wheat (Triticum aestivum) revealed that the two laser spectral indices improved the relationship with foliar N (r2 > 0.71, RMSE < 0.28%) compared to the sole use of GLRI (r2 = 0.47, RMSE = 0.38%). Laboratory measurements also showed that laser spectral indices reduced the effect of measurement distance on laser readings and allowed leaf returns to be better separated from edge returns and soil returns. However, laboratory measurements showed that laser spectral indices did not account for variations in leaf angle, possibly explaining the weak relationships (r2 < 0.36, RMSE = 0.49%) between foliar N and laser spectral indices

  13. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents.

    PubMed

    Goodger, Jason Q D; Seneratne, Samiddhi L; Nicolle, Dean; Woodrow, Ian E

    2016-01-01

    The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands

  14. [Effects of foliar spraying methyl jasmonate on leaf chlorophyll fluorescence characteristics of flue-cured tobacco seedlings under drought and re-watering].

    PubMed

    Jin, Wei-Wei; Wang, Yan; Zhang, Hui-Hui; Jiao, Zhi-Li; Wang, Peng; Li, Xin; Yue, Bing-Bing; Sun, Guang-Yu

    2011-12-01

    Taking the flue-cured tobacco variety of "Longjiang 911" from Heilongjiang Province of Northeast China as test material, a pot experiment was conducted to study the effects of foliar spraying different concentration methyl jasmonate (MeJA) on the seedlings leaf chlorophyll content and chlorophyll fluorescence characteristics during the transplantation stage under drought and re-watering. Under drought condition, the leaf chlorophyll content, maximum fluorescence (F(m)), potential activities of PSII (F(v)/F(o)), maximum photochemical efficiency (F(v)/F(m)), actual photochemical efficiency (psi(PSII)), apparent electron transport rate (ETR), and photochemical quenching (q(P)) decreased, but the minimal fluorescence (F(o)) and non-photochemical quenching (q(N)) increased. Foliar spraying 0.2 and 0.5 mmol x L(-1) of MeJA had obvious positive effects in mitigating the decrease of F(v)/F(m), F(v)/F(o), phi(PSII), ETR, and q(P) and the increase of q(N) under drought stress, while spraying 1.0 mmol x L(-1) of MeJA had lesser effects. After re-watering, all the leaf chlorophyll fluorescence indices had obvious recovery, and spraying MeJA made the indices more close to the original levels before drought. It was suggested that foliar spraying MeJA could alleviate the degradation of chlorophyll and play definite role in protecting the PSII under drought stress, decrease the damage of drought stress on the seedlings, promote the rapid MeJA recovery of chlorophyll fluorescence parameters after re-watering, and thus, ensure the regrowth of flue-cured tobacco seedlings.

  15. Soil and foliar nutrient and nitrogen isotope composition (δ(15)N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard.

    PubMed

    Bai, Shahla Hosseini; Xu, Cheng-Yuan; Xu, Zhihong; Blumfield, Timothy J; Zhao, Haitao; Wallace, Helen; Reverchon, Frédérique; Van Zwieten, Lukas

    2015-03-01

    This study aimed to evaluate the improvement in soil fertility and plant nutrient use in a macadamia orchard following biochar application. The main objectives of this study were to assess the effects of poultry litter and green waste biochar applications on nitrogen (N) cycling using N isotope composition (δ(15)N) and nutrient availability in a soil-plant system at a macadamia orchard, 5 years following application. Biochar was applied at 10 t ha(-1) dry weight but concentrated within a 3-m diameter zone when trees were planted in 2007. Soil and leaf samples were collected in 2012, and both soil and foliar N isotope composition (δ(15)N) and nutrient concentrations were assessed. Both soil and foliar δ(15)N increased significantly in the poultry litter biochar plots compared to the green waste biochar and control plots. A significant relationship was observed between soil and plant δ(15)N. There was no influence of either biochars on foliar total N concentrations or soil NH4 (+)-N and NO3 (-)-N, which suggested that biochar application did not pose any restriction for plant N uptake. Plant bioavailable phosphorus (P) was significantly higher in the poultry litter biochar treatment compared to the green waste biochar treatment and control. We hypothesised that the bioavailability of N and P content of poultry litter biochar may play an important role in increasing soil and plant δ(15)N and P concentrations. Biochar application affected soil-plant N cycling and there is potential to use soil and plant δ(15)N to investigate N cycling in a soil-biochar-tree crop system. The poultry litter biochar significantly increased soil fertility compared to the green waste biochar at 5 years following biochar application which makes the poultry litter a better feedstock to produce biochar compared to green waste for the tree crops.

  16. Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents

    PubMed Central

    Nicolle, Dean; Woodrow, Ian E.

    2016-01-01

    The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands

  17. Enhancing growth, phytochemical constituents and aphid resistance capacity in cabbage with foliar application of eckol--a biologically active phenolic molecule from brown seaweed.

    PubMed

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Pendota, Srinivasa C; Van Staden, Johannes

    2016-03-25

    Although foliar application of seaweed extracts on plant growth and development has and is extensively studied, reliable knowledge and understanding of the mode of action of particular compound(s) responsible for enhancing plant growth is lacking. A brown seaweed Ecklonia maxima is widely used commercially as a biostimulant to improve plant growth and crop protection. Eckol, a phenolic compound isolated from E. maxima has recently shown stimulatory effects in maize, indicating its potential use as a plant biostimulant. Cabbage is a widely cultivated vegetable crop throughout the world, which requires high input of fertilizers and is susceptible to several aphid borne diseases. This study was conducted to evaluate the effect of foliar application of eckol on the growth, phytochemical constituents and myrosinase activity (aphid resistance capacity) of commercially cultivated cabbage. Foliar application of eckol (10(-6) M) significantly enhanced shoot and root length, shoot and root fresh and dry weight, leaf area and leaf number. This treatment also showed a significant increase in photosynthetic pigments (chlorophyll 'a', chlorophyll 'b', total chlorophyll and carotenoid) compared to the untreated plants. The levels of protein, proline and iridoid glycosides were significantly higher in cabbage leaves with eckol treatment. All the control plants were severely infested with cabbage aphid (Brevicoryne brassicae) but no infestation was observed on the eckol-sprayed plants, which can be attributed to an increase in myrosinase activity. This study reveals dual effects (plant growth promoting and insect repelling) of eckol on cabbage plants that need further investigations both under field conditions and in other brassicaceous species.

  18. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions.

    PubMed

    Schaub, M; Skelly, J M; Zhang, J W; Ferdinand, J A; Savage, J E; Stevenson, R E; Davis, D D; Steiner, K C

    2005-02-01

    The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (psi(L)) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g(wv)) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P(n)), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P < 0.05). The inconsistent differences in gas exchange response within the same crowns of ash and the uncoupling relationship between g(wv) and P(n) demonstrate the strong influence of heterogeneous environmental conditions within forest canopies.

  19. Foliar Treatments of 2,4-Dichlorophenoxyacetic Acid for Control of Common Scab in Potato Have Beneficial Effects on Powdery Scab Control

    PubMed Central

    Thompson, Hannah Katherine; Tegg, Robert Stephen; Corkrey, Ross; Wilson, Calum Rae

    2014-01-01

    Prior studies have shown that applications of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) to the foliage of potato plants can reduce common scab. Here field and glasshouse trials suggest that 2,4-D foliar treatments may also reduce the biologically distinct tuber disease, powdery scab. Significant correlations between suppression of common and powdery scab from the field trials suggested an interaction between the two diseases or possible additional broad spectrum mechanisms of enhanced defence against pathogen invasion provided by 2,4-D treatment. PMID:25009832

  20. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA.

    PubMed

    Minocha, Rakesh; Turlapati, Swathi A; Long, Stephanie; McDowell, William H; Minocha, Subhash C

    2015-08-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements were analyzed for control, low N (LN, 50 kg NH4NO3 ha(-1) year(-1)) and high N (HN, 150 kg NH4NO3 ha(-1) year(-1)) treatments. In the pine stands, partitioning of excess N into foliar PAs and AAs increased with both N treatments until 2002. By 2005, several of these effects on N metabolites disappeared for HN, and by 2008 they were mostly observed for LN plot. A significant decline in foliar Ca and P was observed mostly with HN for a few years until 2005. However, sapwood data actually showed an increase in Ca, Mg and Mn and no change in PAs in the HN plot for 2008, while AAs data revealed trends that were generally similar to foliage for 2008. Concomitant with these changes, mortality data revealed a large number of dead trees in HN pine plots by 2002; the mortality rate started to decline by 2005. Oak trees in the hardwood plot did not exhibit any major changes in PAs, AAs, nutrients and mortality rate with LN treatment, indicating that oak trees were able to tolerate the yearly doses of 50 kg NH4NO3 ha(-1) year(-1). However, HN trees suffered from physiological and nutritional stress along with increased mortality in 2008. In this case also, foliar data were supported by the sapwood data. Overall, both low and high N applications resulted in greater physiological stress to the pine trees than the oaks. In general, the time course of changes in metabolic data are in agreement with the published reports on changes in soil chemistry and microbial community structure, rates of soil carbon sequestration and production of woody biomass for this chronic N study. This correspondence of selected metabolites

  1. Observations of ozone-induced foliar injury on black cherry (Prunus serotina, var. capuli) within the Desierto de Los Leones National Park, Mexico City.

    PubMed

    Skelly, J M; Savage, J E; de Bauer, M de L; Alvarado, D

    1997-01-01

    A survey for ozone-induced foliar injury of black cherry was conducted in mid-June 1995 within the Desierto de Los Leones National Park located southwest of Mexico City. Evaluations of the upper and lower tree crowns of 18 trees revealed evidence of significant upper surface stipple, leaf reddening and premature senescence on 72% of the trees. A general survey of an additional 169 trees disclosed that 41% exhibited similar symptoms. A gradient of increasing symptoms with increasing elevation was also evident. For the most part, asymptomatic trees were observed to be situated within well-shaded coves at the lower elevations with very few symptomatic trees present in these areas.

  2. Foliar nitrogen concentrations and natural abundance of (15)N suggest nitrogen allocation patterns of Douglas-fir and mycorrhizal fungi during development in elevated carbon dioxide concentration and temperature.

    PubMed

    Hobbie, E A; Olszyk, D M; Rygiewicz, P T; Tingey, D T; Johnson, M G

    2001-09-01

    Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings were grown in a 2 x 2 factorial design in enclosed mesocosms at ambient temperature or 3.5 degrees C above ambient, and at ambient CO2 concentration ([CO2]) or 179 ppm above ambient. Two additional mesocosms were maintained as open controls. We measured the extent of mycorrhizal infection, foliar nitrogen (N) concentrations on both a weight basis (%N) and area basis (Narea), and foliar delta15N signatures (15N/14N ratios) from summer 1993 through summer 1997. Mycorrhizal fungi had colonized nearly all root tips across all treatments by spring 1994. Elevated [CO2] lowered foliar %N but did not affect N(area), whereas elevated temperature increased both foliar %N and Narea. Foliar delta15N was initially -1 per thousand and dropped by the final harvest to between -4 and -5 per thousand in the enclosed mesocosms, probably because of transfer of isotopically depleted N from mycorrhizal fungi. Based on the similarity in foliar delta15N among treatments, we conclude that mycorrhizal fungi had similar N allocation patterns across CO2 and temperature treatments. We combined isotopic and Narea data for 1993-94 to calculate fluxes of N for second- and third-year needles. Yearly N influxes were higher in second-year needles than in third-year needles (about 160 and 50% of initial leaf N, respectively), indicating greater sink strength in the younger needles. Influxes of N in second-year needles increased in response to elevated temperature, suggesting increased N supply from soil relative to plant N demands. In the elevated temperature treatments, N effluxes from third-year needles were higher in seedlings in elevated [CO2] than in ambient [CO2], probably because of increased N allocation below ground. We conclude that N allocation patterns shifted in response to the elevated temperature and [CO2] treatments in the seedlings but not in their fungal symbionts.

  3. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    SciTech Connect

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A.; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H.

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.

  4. The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated 'Williams' bananas.

    PubMed

    Aremu, Adeyemi O; Bairu, Michael W; Szüčová, Lucie; Finnie, Jeffrey F; Van Staden, Johannes

    2012-10-15

    The effect of five topolins (meta-Topolin=mT; meta-Topolin riboside=mTR; meta-Methoxy topolin=MemT; meta-Methoxy topolin riboside=MemTR and 6-(meta-methoxy)-9-(tetrahydropyran-2-yl)-topolin=MemTTHP) on the photosynthetic pigments and leaf structures of micropropagated 'Williams' bananas was compared with the commonly used benzyladenine (BA). Surface-decontaminated explants were cultured for 70 d on modified Murashige and Skoog (MS) basal medium and supplemented with 10, 20 or 30μM cytokinins (CKs). At 10 d intervals, the photosynthetic pigments were quantified via spectrophotometric methods for 7 cycles. Generally, the maximum pigment content was attained between 40 and 50 d. The control plantlets had the highest pigment content (1150μg/g FW). Among the CKs, 10μM MemTTHP generally had the best pigment stimulatory effect at the same period. After 40 d, scanning electron microscopy (SEM) of the foliar surface showed that the stomata density was highest in 10μM MemTTHP-treated and lowest in 10μM MemTR-treated plantlets. The stomatal structure and pore area also varied with the type and concentration of CK added. Generally, prolonging culture duration as well as increasing CK concentrations reduced the pigment content. However, the drastic breakdown in chlorophyll pigments beyond 50 d was slightly inhibited by the presence of mT, mTR, MemTTHP and BA compared to the control. The CK-treated plantlets at equimolar concentration had comparable chlorophyll a/b and total chlorophyll/carotenoid ratios after 10 d; probably as an adaptive measure. At the end of the current study, 10μM mT and mTR plantlets remained green as reflected by the higher total chlorophyll/carotenoid ratio as well as by the visual observations. A well-developed photosynthetic apparatus enhances the survival of in vitro plantlets during the acclimatization stage. Current findings provide some insight into the role of meta-topolins on photosynthetic parameters in vitro, which inevitably partly

  5. De Novo Foliar Transcriptome of Chenopodium amaranticolor and Analysis of Its Gene Expression During Virus-Induced Hypersensitive Response

    PubMed Central

    Zhang, Yongqiang; Pei, Xinwu; Zhang, Chao; Lu, Zifeng; Wang, Zhixing; Jia, Shirong; Li, Weimin

    2012-01-01

    Background The hypersensitive response (HR) system of Chenopodium spp. confers broad-spectrum virus resistance. However, little knowledge exists at the genomic level for Chenopodium, thus impeding the advanced molecular research of this attractive feature. Hence, we took advantage of RNA-seq to survey the foliar transcriptome of C. amaranticolor, a Chenopodium species widely used as laboratory indicator for pathogenic viruses, in order to facilitate the characterization of the HR-type of virus resistance. Methodology and Principal Findings Using Illumina HiSeq™ 2000 platform, we obtained 39,868,984 reads with 3,588,208,560 bp, which were assembled into 112,452 unigenes (3,847 clusters and 108,605 singletons). BlastX search against the NCBI NR database identified 61,698 sequences with a cut-off E-value above 10−5. Assembled sequences were annotated with gene descriptions, GO, COG and KEGG terms, respectively. A total number of 738 resistance gene analogs (RGAs) and homology sequences of 6 key signaling proteins within the R proteins-directed signaling pathway were identified. Based on this transcriptome data, we investigated the gene expression profiles over the stage of HR induced by Tobacco mosaic virus and Cucumber mosaic virus by using digital gene expression analysis. Numerous candidate genes specifically or commonly regulated by these two distinct viruses at early and late stages of the HR were identified, and the dynamic changes of the differently expressed genes enriched in the pathway of plant-pathogen interaction were particularly emphasized. Conclusions To our knowledge, this study is the first description of the genetic makeup of C. amaranticolor, providing deep insight into the comprehensive gene expression information at transcriptional level in this species. The 738 RGAs as well as the differentially regulated genes, particularly the common genes regulated by both TMV and CMV, are suitable candidates which merit further functional characterization

  6. Decay Rates and Semi-stable Fraction Formation after 12 years of Foliar Litter Decomposition in Canadian Forests

    NASA Astrophysics Data System (ADS)

    Trofymow, J. A.; Smyth, C.; Moore, T.; Prescott, C.; Titus, B.; Siltanen, M.; Visser, S.; Preston, C. M.; Nault, J.

    2009-12-01

    Litter decay in early and midphases of decomposition have been shown to highly influenced by climate and substrate quality, however factors affecting decay during the late semi-stable phase are less well understood. The Canadian Intersite Decomposition Experiment (CIDET) was established in 1992 with the objective of providing data on the long-term rates of litter decomposition and nutrient mineralization for a range of forested ecoclimatic regions in Canada. Such data were needed to help verify models used for national C accounting, as well as aid in the development of other soil C models. CIDET examined the annual decay, over a 12-year period, of 10 standard foliar litters and 2 wood substrates at 18 forested upland and 3 wetland sites ranging from the cool temperate to subarctic regions, a nearly 20oC span in temperature. On a subset of sites and litter types, changes in litter C chemistry over time were also determined. Over the first 6 years, C/N ratio and iron increased, NMR showed an overall decline in O-alkyl C (carbohydrates) and increase in alkyl, aromatic, phenolic, and carboxyl C. Proximate analysis showed the acid unhydrolyzable residue (AUR) increases, but true lignin did not accumulate, in contrast to the conceptual ligno-cellulose model of decomposition. Litter decay during first phase was related to initial litter quality (AUR and water soluble extract), winter precipitation, but not temperature, suggesting the importance of leaching during this phase. Decay rate “k” during the mid phase was related to temperature, initial litter quality (AUR and AUR/N), summer precipitation, but not soil N. In most cases decay had approached an asymptote before end of experiment. Although annual temperature was the best single predictor for 12-year asymptotes, summer precipitation and forest floor pH and C/N ratio were the best set of combined predictors. The changes in the decay factors during different phases may explain some of the discrepancies in the

  7. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb).

    PubMed

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g(-1) of K vs. 5 μg g(-1)) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants.

  8. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb)

    PubMed Central

    Saa, Sebastian; Olivos-Del Rio, Andres; Castro, Sebastian; Brown, Patrick H.

    2015-01-01

    The use of biostimulants has become a common practice in agriculture. However, there is little peer-reviewed research on this topic. In this study we tested, under controlled and replicated conditions, the effect of one biostimulant derived from seaweed extraction (Bio-1) and another biostimulant derived from microbial fermentation (Bio-2). This experiment utilized 2-years-old almond plants over two growing seasons in a randomized complete design with a full 2 × 4 factorial structure with two soil potassium treatments (125 μg g-1 of K vs. 5 μg g-1) and four foliar treatments (No spray, Foliar-K, Bio-1, Bio-2). Rubidium was utilized as a surrogate for short-term potassium uptake and plant growth, nutrient concentration, and final plant biomass were evaluated. There was a substantial positive effect of both biostimulant treatments on total shoot leaf area, and significant increases in shoot length and biomass under adequate soil potassium supply with a positive effect of Bio-1 only under low K supply. Rubidium uptake was increased by Bio-1 application an effect that was greater under the low soil K treatment. Though significant beneficial effects of the biostimulants used on plant growth were observed, it is not possible to determine the mode of action of these materials. The results presented here illustrate the promise and complexity of research involving biostimulants. PMID:25755660

  9. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected.

  10. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application.

    PubMed

    Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A

    2001-01-01

    The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed.

  11. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture.

    PubMed

    Xiong, TianTian; Austruy, Annabelle; Pierart, Antoine; Shahid, Muhammad; Schreck, Eva; Mombo, Stéphane; Dumat, Camille

    2016-08-01

    At the global scale, foliar metal transfer occurs for consumed vegetables cultivated in numerous urban or industrial areas with a polluted atmosphere. However, the kinetics of metal uptake, translocation and involved phytotoxicity was never jointly studied with vegetables exposed to micronic and sub-micronic particles (PM). Different leafy vegetables (lettuces and cabbages) cultivated in RHIZOtest® devices were, therefore, exposed in a greenhouse for 5, 10 and 15days to various PbO PM doses. The kinetics of transfer and phytotoxicity was assessed in relation to lead concentration and exposure duration. A significant Pb accumulation in leaves (up to 7392mg/kg dry weight (DW) in lettuce) with translocation to roots was observed. Lead foliar exposure resulted in significant phytotoxicity, lipid composition change, a decrease of plant shoot growth (up to 68.2% in lettuce) and net photosynthesis (up to 58% in lettuce). The phytotoxicity results indicated plant adaptation to Pb and a higher sensitivity of lettuce in comparison with cabbage. Air quality needs, therefore, to be considered for the health and quality of vegetables grown in polluted areas, such as certain megacities (in China, Pakistan, Europe, etc.) and furthermore, to assess the health risks associated with their consumption.

  12. Foliar diseases of corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf blights and spots caused by fungi are some of the most destructive diseases of corn in the US and around the world. Correct identification of the disease is very important in determining the best means of control. For example, gray leaf spot of maize can be caused by one of at least two species...

  13. Volatile compounds and sensory attributes of wine from cv. Merlot (Vitis vinifera L.) grown under differential levels of water deficit with or without a kaolin-based, foliar reflectant particle film

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influences on wine volatile composition and wine sensory attributes from a foliar application of a kaolin-based particle film on vines under differing levels of water deficit were evaluated over three consecutive seasons for the cultivar Merlot grown in the high desert region of southwestern Ida...

  14. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  15. Ozone air pollution effects on tree-ring growth, delta(13)C, visible foliar injury and leaf gas exchange in three ozone-sensitive woody plant species.

    PubMed

    Novak, Kristopher; Cherubini, Paolo; Saurer, Matthias; Fuhrer, Jürg; Skelly, John M; Kräuchi, Norbert; Schaub, Marcus

    2007-07-01

    We assessed the effects of ambient tropospheric ozone on annual tree-ring growth, delta(13)C in the rings, leaf gas exchange and visible injury in three ozone-sensitive woody plant species in southern Switzerland. Seedlings of Populus nigra L., Viburnum lantana L. and Fraxinus excelsior L. were exposed to charcoal-filtered air (CF) and non-filtered air (NF) in open-top chambers, and to ambient air (AA) in open plots during the 2001 and 2002 growing seasons. Ambient ozone exposures in the region were sufficient to cause visible foliar injury, early leaf senescence and premature leaf loss in all species. Ozone had significant negative effects on net photosynthesis and stomatal conductance in all species in 2002 and in V. lantana and F. excelsior in 2001. Water-use efficiency decreased and intercellular CO(2) concentrations increased in all species in response to ozone in 2002 only. The width and delta(13)C of the 2001 and 2002 growth rings were measured for all species at the end of the 2002 growing season. Compared with CF seedlings, mean ring width in the AA and NF P. nigra seedlings was reduced by 52 and 46%, respectively, in 2002, whereas in V. lantana and F. excelsior, ring width showed no significant reductions in either year. Although delta(13)C was usually more negative in CF seedlings than in AA and NF seedlings, with the exception of F. excelsior in 2001, ozone effects on delta(13)C were significant only for V. lantana and P. nigra in 2001. Among species, P. nigra exhibited the greatest response to ozone for the measured parameters as well as the most severe foliar injury and was the only species to show a significant reduction in ring width in response to ozone exposure, despite significant negative ozone effects on leaf gas exchange and the development of visible foliar injury in V. lantana and F. excelsior. Thus, significant ozone-induced effects at the leaf level did not correspond to reduced tree-ring growth or increased delta(13)C in all species

  16. Effects of raw and diluted municipal sewage effluent with micronutrient foliar sprays on the growth and nutrient concentration of foxtail millet in southeast Iran.

    PubMed

    Asgharipour, Mohammad Reza; Reza Azizmoghaddam, Hamid

    2012-10-01

    In this study, the effect of irrigation with raw or diluted municipal sewage effluent accompanied by foliar micronutrient fertilizer sprays was examined on the growth, dry matter accumulation, grain yield, and mineral nutrients in foxtail millet plants. The experimental design was a split plot with three irrigation sources: raw sewage, 50% diluted sewage, and well water comprising the main treatments, and four combinations of Mn and Zn foliar sprays as sub-treatments that were applied with four replications. The experiment was conducted in 2009 at the Zabol University research farm in Zabol, south Iran. The applied municipal sewage effluent contained higher levels of micronutrients and macronutrients and exhibited greater degrees of electrical conductivity compared to well water. Because of the small scale of industrial activities in Zabol, the amount of heavy metals in the sewage was negligible (below the limits set for irrigation water in agricultural lands); these contaminants would not be severely detrimental to crop growth. The experimental results indicated that irrigation of plants with raw or diluted sewage stimulates the measured growth and productivity parameters of foxtail millet plants. The concentrations of micronutrients and macronutrients were also positively affected. These stimulations were attributed to the presence of high levels of such essential nutrients as N, P, and organic matter in wastewater. Supplied in sewage water alone, Mn and Zn were not able to raise the productivity of millet to the level obtained using fertilizers at the recommended values; this by itself indicated that additional nutrients from fertilizers are required to obtain higher levels of millet productivity with sewage farming. Despite the differences in nutrient concentrations among the different irrigation water sources, the micronutrient foliar sprays did not affect the concentrations of micronutrients and macronutrients in foxtail millet plants. These results suggested

  17. Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necrosis of ornamentals in the UK.

    PubMed

    Brasier, Clive M; Beales, Paul A; Kirk, Susan A; Denman, Sandra; Rose, Joan

    2005-08-01

    A new Phytophthora pathogen of trees and shrubs, previously informally designated Phytophthora taxon C, is formally named here as P. kernoviae. P. kernoviae was discovered in late 2003 during surveys of woodlands in Cornwall, south-west England, for the presence of another invasive pathogen, P. ramorum. P. kernoviae is self-fertile (homothallic), having plerotic oogonia, often with distinctly tapered stalks and amphigynous antheridia. It produces papillate sporangia, sometimes markedly asymmetric with medium length pedicels. Its optimum temperature for growth is ca 18 degrees C and upper limit ca 26 degrees. Currently, P. kernoviae is especially noted for causing bleeding stem lesions on mature Fagus sylvatica and foliar and stem necrosis of Rhododendron ponticum. P. kernoviae is the latest of several invasive tree Phytophthoras recently identified in the UK. Its geographical origins and the possible plant health risk it poses are discussed.

  18. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  19. Assessing the risk of foliar injury from ozone on vegetation in parks in the U.S. National Park Service's Vital Signs Network.

    PubMed

    Kohut, Robert

    2007-10-01

    The risk of ozone injury to plants was assessed in support of the National Park Service's Vital Signs Monitoring Network program. The assessment examined bioindicator species, evaluated levels of ozone exposure, and investigated soil moisture conditions during periods of exposure for a 5-year period in each park. The assessment assigned each park a risk rating of high, moderate, or low. For the 244 parks for which assessments were conducted, the risk of foliar injury was high in 65 parks, moderate in 46 parks, and low in 131 parks. Among the well-known parks with a high risk of ozone injury are Gettysburg, Valley Forge, Delaware Water Gap, Cape Cod, Fire Island, Antietam, Harpers Ferry, Manassas, Wolf Trap Farm Park, Mammoth Cave, Shiloh, Sleeping Bear Dunes, Great Smoky Mountains, Joshua Tree, Sequoia and Kings Canyon, and Yosemite.

  20. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.).

    PubMed

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them.

  1. Development and application of a liquid chromatography-mass spectrometry method to evaluate the glyphosate and aminomethylphosphonic acid dissipation in maize plants after foliar treatment.

    PubMed

    Bernal, José; Martin, María T; Soto, María E; Nozal, María J; Marotti, Ilaria; Dinelli, Giovanni; Bernal, José L

    2012-04-25

    A simple and fast method has been developed and validated to measure glyphosate (GLYP) and aminomethylphosphonic acid (AMPA), which were previously derivatized with 9-fluorenylmethylchloroformate (FMOC-Cl), in maize plants using liquid chromatography (LC) coupled to fluorescence (FLD) and electrospray ionization mass spectrometry (ESI-MS) detection. The method has shown to be consistent, reliable, precise, and efficient. Moreover, the limits of detection (LOD) and quantification (LOQ) reached with the proposed method for GLYP and AMPA are lower than the established maximum residue levels (MRLs). The validated method was applied to quantify GLYP and AMPA in genetically modified (GM) maize foliar treated with the herbicide. It has been found that the GLYP dissipation was mainly due to the progressive dilution effect after herbicide treatment. Finally, it was also observed that the GLYP residue dissipation trend in maize shoot (leaves and stem) tissue determined by LC-ESI-MS matched that determined by liquid scintillation.

  2. Accumulation of guaiacol glycoconjugates in fruit, leaves and shoots of Vitis vinifera cv. Monastrell following foliar applications of guaiacol or oak extract to grapevines.

    PubMed

    Pardo-Garcia, Ana I; Wilkinson, Kerry L; Culbert, Julie A; Lloyd, Natoiya D R; Alonso, Gonzalo L; Salinas, M Rosario

    2017-02-15

    Previous studies have shown that volatile compounds present within a vineyard during the growing season can be absorbed by grapevines, assimilated within grapes, and then released during fermentation to influence the final aroma of wine. For example, the accumulation of volatile phenols in glycoconjugate forms following grapevine exposure to bushfire smoke, and their subsequent release during winemaking. This study investigated the accumulation of guaiacol glycoconjugates in the fruit, shoots and leaves of Monastrell grapevines following foliar applications (at veraison) of either an aqueous solution of guaiacol or an aqueous oak extract. Fruit, shoot and leaf samples were then collected at 3 time points between veraison and maturity, and analysed by gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, to quantify guaiacol and its glycoconjugates, respectively. Guaiacol glycoconjugates were observed in fruit and leaves in particular, demonstrating glycosylation occurred after grapevine treatment; however, different glycoconjugate profiles were apparent.

  3. Field evaluation of in situ remediation of Cd-contaminated soil using four additives, two foliar fertilisers and two varieties of pakchoi.

    PubMed

    Feng, Renwei; Qiu, Weiwen; Lian, Fei; Yu, Zhihong; Yang, YiXin; Song, Zhengguo

    2013-07-30

    This study was conducted to determine the optimal planting mode for pakchoi (Brassica rapa chinensis) in Cd-contaminated soil to reduce the accumulation of Cd in the edible parts while maintaining yields. Four additives (red mud (RM), silicon calcium fertiliser (SC), spodium (SP) and calcium magnesium phosphate (CMP)), two foliar fertilisers (Ca and Zn) and two varieties of pakchoi (Aijiaohuang (AJ) and Baixuegongzhu (BX)) were used in this study. The results show that the addition of SC and RM had an effect, but the other additives did not appear to increase the biomasses of AJ and BX. In some cases, the growth responses of AJ and BX to the same treatment were different. Extra additions of Ca or Zn to additive-treated pakchoi did not help the additives stimulate the growth of AJ and BX, except for SC-treated AJ and BX and SP-treated AJ. The SC and CMP additives significantly reduced the available Cd concentration in both the AJ soil and the BX soil; however, they did not significantly decrease the Cd concentration in the aboveground parts of AJ and BX. The RM treatments (for both levels) and some treatments containing SP reduced the available Cd concentration in the soils and reduced the accumulation of Cd in the two pakchoi varieties. Additions of Ca or Zn fertiliser significantly reduced the Cd concentration in the aboveground parts of AJ and BX. However, when Ca or Zn was sprayed on the additive-treated AJ and BX, they did not help the additives reduce the Cd accumulation in the aboveground parts of AJ and BX, except for the additive CMP. This study shows that RM may be an optimal amendment to reduce the accumulation of Cd in the edible part of pakchoi while simultaneously maintaining yields. The utilisation of Ca or Zn as a foliar fertiliser to additive-treated pakchoi showed positive effects only under some conditions.

  4. Effect of foliar application of antitranspirant on photosynthesis and water relations of pepper plants under different levels of CO2 and water stress.

    PubMed

    del Amor, Francisco M; Cuadra-Crespo, Paula; Walker, David J; Cámara, José M; Madrid, Ramón

    2010-10-15

    Strategies such as foliar application of antitranspirants have the potential to regulate transpiration, but often, the limitation of CO(2) exchange as a result of reduced stomatal conductance can impair this beneficial effect. Elevated ambient [CO(2)] could significantly improve CO(2) diffusion while effectively reducing transpiration. In this experiment, we examined the response of sweet pepper (Capsicum annuum L.) to the foliar application of antitranspirant (AT) under two [CO(2)] (380 and 2000 micromol mol(-1)) and two drought intensities (4 or 8d without irrigation). The results showed that stomatal conductance and transpiration were reduced, while AT impaired photosynthesis at standard, but not at elevated [CO(2)] of fully irrigated plants. This effect was already apparent after 4d of drought. Drought had a minor impact on chlorophyll fluorescence (F(v)/F(m)). Additionally, root respiration was increased at elevated [CO(2)] but, after 8d of drought, it was higher for plants treated with AT than for non-sprayed plants. Leaf water potential was affected more by drought at ambient compared to elevated [CO(2)], and, especially after 8d of drought, AT minimized the reductions in leaf water potential. Leaf concentrations of proline and starch were affected by both [CO(2)] and AT, especially after 8d of drought. Moreover, increasing [CO(2)] promoted the accumulation of starch, but led to decreases in the tissue concentrations of the soluble organic osmolytes, and hence diminished osmotic adjustment after 8d of water withholding, relative to ambient [CO(2)]. This study indicates that, in addition to the reported beneficial effect of elevated [CO(2)] on drought stress, AT could significantly improve drought tolerance in sweet pepper plants.

  5. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    PubMed Central

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  6. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  7. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    PubMed

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  8. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River

    PubMed Central

    Peng, Yan; Yang, Wanqin; Li, Jun; Wang, Bin; Zhang, Chuan; Yue, Kai; Wu, Fuzhong

    2015-01-01

    Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and

  9. Evaluating Post-fire Ecosystem Effects in Tussock Tundra of the Seward Peninsula: Characterizing Above-ground Biomass Accumulation, Soil Nutrient Pools, and Foliar Nitrogen.

    NASA Astrophysics Data System (ADS)

    Hollingsworth, T. N.; Mack, M. C.; Breen, A. L.

    2014-12-01

    Over the last century in the circumpolar north, changes in vegetation include shrub cover expansion and shifts in tree line. Invasion of tundra by trees and shrubs may be further facilitated by wildfire disturbance, which creates opportunities for establishment where recruitment is otherwise rare. Even moderate increases in warm-season temperatures are predicted to increase the likelihood of tundra fires. Understanding the consequences of a change in fire regime are complicated by the fact that there are relatively few large recent fires to study. However, the Seward Peninsula is a region that currently experiences more frequent and large fires than other tundra regions in Arctic Alaska. In this tundra region, there are areas of overlapping burns dating back to the 1970s. Using a chronosequence approach, we looked at post-fire biomass accumulation as well as foliar and soil C and N. Our experimental design incorporated sites that showed no evidence of recent burning, sites that burned in 1971, 1997, 2002, and 2011 as well as sites that burned multiple times over the last 30 years. We found that fire had a significant effect on total biomass and shrub basal area in tussock tundra. Our site that burned in 2011 had the lowest total biomass, about half of the biomass of our unburned site. However, our results indicated the site that burned in 1971 had over double the aboveground biomass and more soil N than the unburned site. We found that sites that repeatedly burned since 1971 were very similar in biomass to unburned tundra. This suggests that repeat fires keep a post-fire site at unburned levels of biomass. However, in these repeat fire sites, foliar C/N was ~25% greater and soil C and N was ~50% less than in unburned tundra. These results indicate that repeat fires are potentially causing nitrogen loss that not likely to be replenished into the system. As tundra fires become more frequent prediction of post-fire ecosystem effects is critical due to impacts on

  10. Translocation of (125)I, (75)Se and (36)Cl to edible parts of radish, potato and green bean following wet foliar contamination under field conditions.

    PubMed

    Henner, P; Hurtevent, P; Thiry, Y; Levchuk, S; Yoschenko, V; Kashparov, V

    2013-10-01

    Specific translocation factor values (ftr) for (129)I, (79)Se and (36)Cl following foliar transfer are still missing from the IAEA reference databases. The translocation of the short-lived isotopes, (125)I, (75)Se, and (36)Cl, to radish, potato and green bean edible parts was measured under field conditions following acute and chronic wet foliar contamination at various plant growth stages in the absence of leaching caused by rain. The translocation factors obtained for (125)I ranged from 0.8 to 2.6% for radish, from 0.1 to 2.3% for potato and from 0.1 to 2.6% for bean. The translocation factors obtained for (75)Se ranged from 6.3 to 21% for radish, from 1.6 to 32.6% for potato and from 7.7 to 22.8% for bean (values similar to Cs or even higher). The translocation factors obtained for (36)Cl were close to those for (75)Se and ranged from 4.3 to 28.8% for radish, from 0.5 to 31.5% for potato and from 4.3 to 16.3% for bean. Iodide showed the lowest apparent mobility because of its preferential fixation in or on the leaves and a significant amount was probably volatilized. Selenite internal transfer was significant and possibly followed the sulfur metabolic pathway. Chloride was very mobile and quickly diffused throughout the plant. The translocation factors varied with the growth stage and depended on the development state of the edible tissue and its associated sink strength for nutrients and assimilates. For radish, translocation was high during the early vegetative stages. For potato, wheat and bean, a major peak in translocation was seen during the flowering growth stage and the concomitant growth of potato tubers. An additive effect of successive contamination events on translocated elements was shown in radish but not in bean and potato. The highest translocation value obtained for an acute contamination event was shown to be an adequate, conservative indicator of chronic contamination in absence of specific values. Due to the absence of rain leaching during

  11. Oviposition of the invasive two-spotted leafhopper on an endemic tree: effects of an alien weed, foliar pubescence, and habitat humidity.

    PubMed

    Alyokhin, Andrei V; Yanga, Pingjun; Messing, Russell H

    2004-01-01

    The two-spotted leafhopper, Sophonia rufofascia (Kuoh and Kuoh), is an exotic pest from South-East Asia that attacks a wide variety of plant species in Hawaii. Myrica faya Aiton is an aggressive exotic weed that displaces and excludes native plants in Hawaiian forests. It has been argued that because of the high nutritional quality of its foliage, M. faya might facilitate leafhopper invasion of native Hawaiian ecosystems that were originally dominated by the endemic tree Metrosideros polymorpha (Gaudichaud). In the present study, we quantified suitability of M. faya and M. polymorpha as ovipositional hosts for S. rufofascia. Overall, leafhoppers preferred to deposit their eggs into the foliage of M. faya. M. faya presence in the area did not affect leafhopper oviposition on M. polymorpha. Foliar pubescence provided good protection of hirsute morphotypes of M. polymorpha. At the same time, glabrous M. polymorpha morphotypes were quite suitable for leafhopper oviposition. There was no difference in the abundance of leafhopper eggs along a precipitation gradient. Our results confirm that invasion of native Hawaiian forests by the weed M. faya will facilitate their invasion by S. rufofascia. Because of the broad host range characteristic of the two-spotted leafhopper, this build-up may adversely affect a number of endemic plant species growing in native forests.

  12. Effects of atmospheric CO{sub 2} enrichment and foliar methanol application on net photosynthesis of sour orange tree (Citrus Aurantium; Rutaceae) leaves

    SciTech Connect

    Idso, S.B.; Garcia, R.L.; Kimball, B.A.; Idso, K.E.; Hoober, J.K.

    1995-01-01

    Foliar spray applications of 40% aqueous methanol were made to sunlit leaves of sour orange trees that had been grown continuously in clear-plastic-wall open-top enclosures maintained out-of-doors at Phoenix, Arizona, for over 5.5 years in ambient air of approximately 400 {mu}mol mol{sup -1} CO{sub 2} and in air enriched with CO{sub 2} to a concentration of approximately 700 {mu}mol mol{sup -1}. No unambiguous effects of the methanol applications were detected in photosynthesis measurements made on foliage in either of the two CO{sub 2} treatments. THe 75% increase in CO{sub 2}, however, raised the upper-limiting leaf temperature for positive net photosynthesis by approximately 7 C, which resulted in a 75% enhancement in net photosynthesis at a leaf temperature of 31 C, a 100% enhancement at a leaf temperature of 35 C, and a 200% enhancement at 42 C. 13 refs., 2 figs., 1 tab.

  13. Effect of Pre-Harvest Foliar Application of Citric Acid and Malic Acid on Chlorophyll Content and Post-Harvest Vase Life of Lilium cv. Brunello.

    PubMed

    Darandeh, Nafiseh; Hadavi, Ebrahim

    2011-01-01

    Citric acid is a regular ingredient in many vase solution formulations but pre-harvest use of citric acid is a novel method in vase life extension of cut flowers, which is reported on tuberose earlier. In order to verify previous result, and check for possible substitution of citric acid by malic acid, the current research was designed. Citric acid (0, 0.075, 0.15% w/v) and malic acid (0, 0.075, 0.15% w/v) were used in a factorial design with three replications. Foliar sprays were applied two times during growth period of Lilium plants. The results point out that 0.15% citric acid alone had increased vase life from 11.8 in control treatment to 14 days (α < 0.05). The interesting finding was the effect of citric acid on bulbil weight, which was decreased from 9 g in control to 1.5 g in treatment containing combination of 0.075% citric acid and 0.075% malic acid. Malic acid while having no direct effect on pre-mentioned traits surprisingly increased the chlorophyll content significantly. The interaction effect between citric acid and malic acid on vase life and chlorophyll content proved significant and was evident in results, both as antagonistic and synergistic in various traits.

  14. Both foliar and residual applications of herbicides that inhibit amino acid biosynthesis induce alternative respiration and aerobic fermentation in pea roots.

    PubMed

    Armendáriz, O; Gil-Monreal, M; Zulet, A; Zabalza, A; Royuela, M

    2016-05-01

    The objective of this work was to ascertain whether there is a general pattern of carbon allocation and utilisation in plants following herbicide supply, independent of the site of application: sprayed on leaves or supplied to nutrient solution. The herbicides studied were the amino acid biosynthesis-inhibiting herbicides (ABIH): glyphosate, an inhibitor of aromatic amino acid biosynthesis, and imazamox, an inhibitor of branched-chain amino acid biosynthesis. All treated plants showed impaired carbon metabolism; carbohydrate accumulation was detected in both leaves and roots of the treated plants. The accumulation in roots was due to lack of use of available sugars as growth was arrested, which elicited soluble carbohydrate accumulation in the leaves due to a decrease in sink strength. Under aerobic conditions, ethanol fermentative metabolism was enhanced in roots of the treated plants. This fermentative response was not related to a change in total respiration rates or cytochrome respiratory capacity, but an increase in alternative oxidase capacity was detected. Pyruvate accumulation was detected after most of the herbicide treatments. These results demonstrate that both ABIH induce the less-efficient, ATP-producing pathways, namely fermentation and alternative respiration, by increasing the key metabolite, pyruvate. The plant response was similar not only for the two ABIH but also after foliar or residual application.

  15. Investigating the foliar uptake and within-leaf migration of phenanthrene by moss (Hypnum cupressiforme) using two-photon excitation microscopy with autofluorescence.

    PubMed

    Keyte, Ian; Wild, Edward; Dent, John; Jones, Kevin C

    2009-08-01

    Mosses have the potential to play a significant role in the global cycling and fate of semivolatile organic compounds (SVOCs), due to their extensive distribution at high latitudes and the long-range atmospheric transport of SVOCs. Unlike vascular plants mosses lack a substantial cuticle, vascular system, or root structure, taking up water, nutrients and SVOCs primarily from the atmosphere. Mosses have thus been effectively used as passive air samplers for many SVOCs in urban and rural locations. The potential differences in atmospheric uptake and within-leaf movement storage and processing of SVOCs between vascular and nonvascular living plants were investigated here by comparing the uptake and behavior of phenanthrene in spinach (Spinacia oleracea) and moss (Hypnum cupressiforme), using two-photon excitation microscopy coupled with autofluorescence. Chemical uptake, movement storage, and compartmentalization of phenanthrene was directly detected, visualized, and monitored over a 12 day period following exposure to gas phase phenanthrene. Species differences in the uptake of phenanthrene between moss and spinach leaves were observed, showing how morphological differences affect the foliar uptake of SVOCs. In spinach, phenanthrene accumulated within the cellular cytoplasm and vacuole. In moss, phenanthrene accumulated predominantly within the cell walls, before later migrating across the cell membrane into adjacent cells and the cellular cytoplasm. The study represents a further demonstration of how different plant species can display different and complex transport and storage pathways for the same chemical, and highlights the importance of the cellular structure and plant morphological and physiological features in controlling this behavior.

  16. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest.

    PubMed

    Peñuelas, J; Rico, L; Ogaya, R; Jump, A S; Terradas, J

    2012-07-01

    We explored the changes in richness, diversity and evenness of epiphytic (on the leaf surface) and endophytic (within leaf tissues) bacteria and fungi in the foliar phyllosphere of Quercus ilex, the dominant tree species of Mediterranean forests. Bacteria and fungi were assessed during ontogenic development of the leaves, from the wet spring to the dry summer season in control plots and in plots subjected to drought conditions mimicking those projected for future decades. Our aim was to monitor succession in microbiota during the colonisation of plant leaves and its response to climate change. Ontogeny and seasonality exerted a strong influence on richness and diversity of the microbial phyllosphere community, which decreased in summer in the whole leaf and increased in summer in the epiphytic phyllosphere. Drought precluded the decrease in whole leaf phyllosphere diversity and increased the rise in the epiphytic phyllosphere. Both whole leaf bacterial and fungal richness decreased with the decrease in physiological activity and productivity of the summer season in control trees. As expected, the richness of epiphytic bacteria and fungi increased in summer after increasing time of colonisation. Under summer dry conditions, there was a positive relationship between TRF (terminal restriction fragments) richness and drought, both for whole leaf and epiphytic phyllosphere, and especially for fungal communities. These results demonstrate that changes in climate are likely to significantly alter microbial abundance and composition of the phyllosphere. Given the diverse functions and large number of phyllospheric microbes, the potential functional implications of such community shifts warrant exploration.

  17. The Urochloa Foliar Blight and Collar Rot Pathogen Rhizoctonia solani AG-1 IA Emerged in South America Via a Host Shift from Rice.

    PubMed

    Chavarro Mesa, Edisson; Ceresini, Paulo C; Ramos Molina, Lina M; Pereira, Danilo A S; Schurt, Daniel A; Vieira, José R; Poloni, Nadia M; McDonald, Bruce A

    2015-11-01

    The fungus Rhizoctonia solani anastomosis group (AG)-1 IA emerged in the early 1990s as an important pathogen causing foliar blight and collar rot on pastures of the genus Urochloa (signalgrass) in South America. We tested the hypothesis that this pathogen emerged following a host shift or jump as a result of geographical overlapping of host species. The genetic structure of host and regional populations of R. solani AG-1 IA infecting signalgrass, rice, and soybean in Colombia and Brazil was analyzed using nine microsatellite loci in 350 isolates to measure population differentiation and infer the pathogen reproductive system. Phylogeographical analyses based on the microsatellite loci and on three DNA sequence loci were used to infer historical migration patterns and test hypotheses about the origin of the current pathogen populations. Cross pathogenicity assays were conducted to measure the degree of host specialization in populations sampled from different hosts. The combined analyses indicate that the pathogen populations currently infecting Urochloa in Colombia and Brazil most likely originated from a population that originally infected rice. R. solani AG-1 IA populations infecting Urochloa exhibit a mixed reproductive system including both sexual reproduction and long-distance dispersal of adapted clones, most likely on infected seed. The pathogen population on Urochloa has a genetic structure consistent with a high evolutionary potential and showed evidence for host specialization.

  18. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L.

    PubMed

    Sperlich, D; Barbeta, A; Ogaya, R; Sabaté, S; Peñuelas, J

    2016-02-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (Rd) but not night respiration (Rn) was generally higher in the drought treatment leading to an increased Rd/Rn ratio. The limitation of mesophyll conductance (gm) on photosynthesis was generally stronger than stomatal limitation (gs) in the drought treatment, reflected in a lower gm/gs ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower Rd/Rn and higher gm/gs ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by gm; and (ii) decreased carbon losses mediated by Rd. Interestingly, photosynthetic potentials (Vc,max, Jmax, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently.

  19. Accumulation of Glycoconjugates of 3-Methyl-4-hydroxyoctanoic Acid in Fruits, Leaves, and Shoots of Vitis vinifera cv. Monastrell following Foliar Applications of Oak Extract or Oak Lactone.

    PubMed

    Pardo-Garcia, Ana I; Wilkinson, Kerry L; Culbert, Julie A; Lloyd, Natoiya D R; Alonso, Gonzalo L; Salinas, M Rosario

    2015-05-13

    Grapevines are capable of absorbing volatile compounds present in the vineyard during the growing season, and in some cases, volatiles have been found to accumulate in fruits or leaves in glycoconjugate forms, that is, with one or more sugar moieties attached. The presence of oak lactone in wine is usually attributable to oak maturation, but oak lactone has been detected in wines made with fruit from grapevines treated with oak extract or oak lactone. This study investigated the accumulation of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid (i.e., the ring-opened form of oak lactone) in the fruits, leaves, and shoots of Monastrell grapevines following foliar application of either oak extract or oak lactone at approximately 7 days postveraison. Fruits, leaves, and shoots were collected at three different time points, including at maturity. The oak lactone content of fruit was determined by gas chromatography-mass spectrometry, with declining concentrations observed in fruit from grapevines treated with oak lactone with ripening. The concentrations of a β-d-glucopyranoside of 3-methyl-4-hydroxyoctanoic acid in fruits, leaves, and shoots was determined by liquid chromatography-tandem mass spectrometry, with the highest oak lactone glucoside levels observed in leaves of grapevines treated with oak lactone. A glucose-glucose disaccharide was also tentatively identified. These results demonstrate both ring-opening and glycosylation of oak lactone occurred after experimental treatments were imposed.

  20. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens

    PubMed Central

    Mishra, Sandhya; Singh, Braj Raj; Naqvi, Alim H.; Singh, H. B.

    2017-01-01

    Stenotrophomonas sp. is emerging as a popular microbe of global concern with various potential ecological roles. Biosynthesis of gold and silver nanoparticles (AgNPs) using this bacterial strain has shown promising applications in life sciences. However, there is no report on efficient agricultural applications of biosynthesized AgNPs using Stenotrophomonas sp. In this regard, successful biosynthesis of AgNPs using Stenotrophomonas sp. BHU-S7 (MTCC 5978) was monitored by Uv-visible spectrum showing surface plasmon resonance (SPR) peak at 440 nm. The biosynthesized AgNPs were spherical with an average mean size of ~12 nm. The antifungal efficacy of biosynthesized AgNPs against foliar and soil-borne phytopathogens was observed. The inhibitory impact of AgNPs (2, 4, 10 μg/ml) on conidial germination was recorded under in vitro conditions. Interestingly, sclerotia of Sclerotium rolfsii exposed to AgNPs failed to germinate on PDA medium and in soil system. Moreover, AgNPs treatment successfully managed collar rot of chickpea caused by S. rolfsii under greenhouse conditions. The reduced sclerotia germination, phenolic acids induction, altered lignification and H2O2 production was observed to be the probable mechanisms providing protection to chickpea against S. rolfsii. Our data revealed that AgNPs treated plants are better equipped to cope with pathogen challenge pointing towards their robust applications in plant disease management. PMID:28345581

  1. Effect of Bioaccumulation of Cs and Sr Natural Isotopes on Foliar Structure and Plant Spectral Reflectance of Indian Mustard (Brassica juncea)

    SciTech Connect

    Maruthi Sridhar, Y.S.B.B.; Han, F.X.; Monts, D.L.; Diehl, S.V.

    2008-07-01

    The objectives of this study are: 1.) evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes; 2.) identify foliar structural and other physiological changes (biomass, relative water content, etc.) resulting from the accumulation of these two elements; and 3.) monitor Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr was found in the order of leaves > stems > roots for both Cs- and Sr-treated plants. The highest leaf Sr accumulation is observed to be 2708 mg kg{sup -1}, and the highest leaf Cs accumulation is 12251 mg kg{sup -1}. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Relative water content (RWC) of the plants showed a significant (p < 0.05) decrease in Cs-treated plants. Cs accumulation also affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in RWC, structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content RWC (r = -0.88) and Normalized Difference Vegetation Index (NDVI) (r = -0.68) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation. (authors)

  2. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism.

  3. Modelling Wheat Growth and Yield Losses from Late Epidemics of Foliar Diseases using Loss of Green Leaf Area per Layer and Pre-anthesis Reserves

    PubMed Central

    Bancal, Marie-Odile; Robert, Corinne; Ney, Bertrand

    2007-01-01

    Background and Aims Crop protection strategies, based on preventing quantitative crop losses rather than pest outbreaks, are being developed as a promising way to reduce fungicide use. The Bastiaans' model was applied to winter wheat crops (Triticum aestivum) affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (STB; Mycosphaerella graminicola) under a range of crop management conditions. This study examined (a) whether green leaf area per layer accurately accounts for growth loss; and (b) whether from growth loss it is possible to derive yield loss accurately and simply. Methods Over 5 years of field experiments, numerous green leaf area dynamics were analysed during the post-anthesis period on wheat crops using natural aerial epidemics of leaf rust and STB. Key Results When radiation use efficiency (RUE) was derived from bulk green leaf area index (GLAI), RUEbulk was hardly accurate and exhibited large variations among diseased wheat crops, thus extending outside the biological range. In contrast, when RUE was derived from GLAI loss per layer, RUElayer was a more accurate calculation and fell within the biological range. In one situation out of 13, no significant shift in the RUElayer of diseased crops vs. healthy crops was observed. A single linear relationship linked yield to post-anthesis accumulated growth for all treatments. Its slope, not different from 1, suggests that the allocation of post-anthesis photosynthates to grains was not affected by the late occurring diseases under study. The mobilization of pre-anthesis reserves completely accounted for the intercept value. Conclusions The results strongly suggest that a simple model based on green leaf area per layer and pre-anthesis reserves can predict both growth and yield of wheat suffering from late epidemics of foliar diseases over a range of crop practices. It could help in better understanding how crop structure and reserve management contribute to tolerance of wheat genotypes to

  4. Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78.

    PubMed

    Segarra, Guillem; Puopolo, Gerardo; Giovannini, Oscar; Pertot, Ilaria

    2015-12-20

    The formulation is a significant step in biopesticide development and is an efficient way to obtain consistency in terms of biological control under field conditions. Nonetheless, there is still a lack of information regarding the processes needed to achieve efficient formulation of non spore-forming bacterial biological control agents. In response to this, we propose a flow diagram made up of six steps including selection of growth parameters, checking of minimum shelf life, selection of protective additives, checking that the additives have no adverse effects, validation of the additive mix under field conditions and choosing whether to use additives as co-formulants or tank mix additives. This diagram is intended to provide guidance and decision-making criteria for the formulation of non spore-forming bacterial biological control agents against foliar pathogens. The diagram was then validated by designing an efficient formulation for a Gram-negative bacterium, Lysobacter capsici AZ78, to control grapevine downy mildew caused by Plasmopara viticola. A harvest of 10(10)L. capsici AZ78cellsml(-1) was obtained in a bench top fermenter. The viability of cells decreased by only one order of magnitude after one year of storage at 4°C. The use of a combination of corn steep liquor, lignosulfonate, and polyethyleneglycol in the formulation improved the survival of L. capsici AZ78 cells living on grapevine leaves under field conditions by one order of magnitude. Furthermore, the use of these additives also guaranteed a reduction of 71% in P. viticola attacks. In conclusion, this work presents a straightforward stepwise flow diagram to help researchers develop formulations for biological control agents that are easy to prepare, stable, not phytotoxic and able to protect the microorganims under field conditions.

  5. Bacteria in a wood fungal disease: characterization of bacterial communities in wood tissues of esca-foliar symptomatic and asymptomatic grapevines

    PubMed Central

    Bruez, Emilie; Haidar, Rana; Alou, Maryam T.; Vallance, Jessica; Bertsch, Christophe; Mazet, Flore; Fermaud, Marc; Deschamps, Alain; Guerin-Dubrana, Lucia; Compant, Stéphane; Rey, Patrice

    2015-01-01

    Esca is a grapevine trunk disease (GTD) associated with different pathogenic fungi inhabiting the woody tissues. Bacteria can also be found in such tissues and they may interact with these fungal colonizers. Although such types of microbial interactions have been observed for wood diseases in many trees, this has never been studied for grapevine. In this study, the bacterial microflora of different vine status (esca-symptomatic and asymptomatic), different anatomical part (trunk and cordon) and different type of tissues (necrotic or not) have been studied. Based on Single Strand Conformation Polymorphism (SSCP) analyses, data showed that (i) specific complexes of bacterial microflora colonize the wood of both necrotic and non-necrotic tissues of esca-foliar symptomatic and asymptomatic vines, and also that (ii) depending on the anatomical part of the plant, cordon or trunk, differences could be observed between the bacterial communities. Such differences were also revealed through the community-level physiological profiling (CLPP) with Biolog EcoplatesTM. Two hundred seventeen bacterial strains were also isolated from plant samples and then assigned to bacterial species based on the 16S rRNA genes. Although Bacillus sp. and Pantoea agglomerans were the two most commonly isolated species from all kinds of tissues, various other taxa were also isolated. Inoculation of vine cuttings with 14 different bacterial species, and one GTD fungus, Neofusicoccum parvum, showed no impact of these bacteria on the size of the wood necroses caused by N. parvum. This study showed, therefore, that bacterial communities differ according to the anatomical part (trunk or cordon) and/or the type of tissue (necrotic or non-necrotic) of wood of grapevine plants showing external symptoms of esca disease. However, research into bacteria having a role in GTD development needs further studies. PMID:26579076

  6. Analyses of expressed sequence tags from the maize foliar pathogen Cercospora zeae-maydis identify novel genes expressed during vegetative, infectious, and reproductive growth

    PubMed Central

    Bluhm, Burton H; Dhillon, Braham; Lindquist, Erika A; Kema, Gert HJ; Goodwin, Stephen B; Dunkle, Larry D

    2008-01-01

    Background The ascomycete fungus Cercospora zeae-maydis is an aggressive foliar pathogen of maize that causes substantial losses annually throughout the Western Hemisphere. Despite its impact on maize production, little is known about the regulation of pathogenesis in C. zeae-maydis at the molecular level. The objectives of this study were to generate a collection of expressed sequence tags (ESTs) from C. zeae-maydis and evaluate their expression during vegetative, infectious, and reproductive growth. Results A total of 27,551 ESTs was obtained from five cDNA libraries constructed from vegetative and sporulating cultures of C. zeae-maydis. The ESTs, grouped into 4088 clusters and 531 singlets, represented 4619 putative unique genes. Of these, 36% encoded proteins similar (E value ≤ 10-05) to characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions and biological processes based on Gene Ontology (GO) classification. We identified numerous, previously undescribed genes with potential roles in photoreception, pathogenesis, and the regulation of development as well as Zephyr, a novel, actively transcribed transposable element. Differential expression of selected genes was demonstrated by real-time PCR, supporting their proposed roles in vegetative, infectious, and reproductive growth. Conclusion Novel genes that are potentially involved in regulating growth, development, and pathogenesis were identified in C. zeae-maydis, providing specific targets for characterization by molecular genetics and functional genomics. The EST data establish a foundation for future studies in evolutionary and comparative genomics among species of Cercospora and other groups of plant pathogenic fungi. PMID:18983654

  7. Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L

    PubMed Central

    Sperlich, D.; Barbeta, A.; Ogaya, R.; Sabaté, S.; Peñuelas, J.

    2016-01-01

    Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mechanism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day respiration (R d) but not night respiration (R n) was generally higher in the drought treatment leading to an increased R d/R n ratio. The limitation of mesophyll conductance (g m) on photosynthesis was generally stronger than stomatal limitation (g s) in the drought treatment, reflected in a lower g m/g s ratio. The peak photosynthetic activity in the drought treatment occurred in an atypical favourable summer in parallel with lower R d/R n and higher g m/g s ratios. The plant carbon balance was thus strongly improved through: (i) higher photosynthetic rates induced by g m; and (ii) decreased carbon losses mediated by R d. Interestingly, photosynthetic potentials (V c,max, J max, and TPU) were not affected by the drought treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experiencing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so that eventually the atypical favourable growth period was exploited more efficiently. PMID:26552882

  8. Bacteria in a wood fungal disease: characterization of bacterial communities in wood tissues of esca-foliar symptomatic and asymptomatic grapevines.

    PubMed

    Bruez, Emilie; Haidar, Rana; Alou, Maryam T; Vallance, Jessica; Bertsch, Christophe; Mazet, Flore; Fermaud, Marc; Deschamps, Alain; Guerin-Dubrana, Lucia; Compant, Stéphane; Rey, Patrice

    2015-01-01

    Esca is a grapevine trunk disease (GTD) associated with different pathogenic fungi inhabiting the woody tissues. Bacteria can also be found in such tissues and they may interact with these fungal colonizers. Although such types of microbial interactions have been observed for wood diseases in many trees, this has never been studied for grapevine. In this study, the bacterial microflora of different vine status (esca-symptomatic and asymptomatic), different anatomical part (trunk and cordon) and different type of tissues (necrotic or not) have been studied. Based on Single Strand Conformation Polymorphism (SSCP) analyses, data showed that (i) specific complexes of bacterial microflora colonize the wood of both necrotic and non-necrotic tissues of esca-foliar symptomatic and asymptomatic vines, and also that (ii) depending on the anatomical part of the plant, cordon or trunk, differences could be observed between the bacterial communities. Such differences were also revealed through the community-level physiological profiling (CLPP) with Biolog Ecoplates(TM). Two hundred seventeen bacterial strains were also isolated from plant samples and then assigned to bacterial species based on the 16S rRNA genes. Although Bacillus sp. and Pantoea agglomerans were the two most commonly isolated species from all kinds of tissues, various other taxa were also isolated. Inoculation of vine cuttings with 14 different bacterial species, and one GTD fungus, Neofusicoccum parvum, showed no impact of these bacteria on the size of the wood necroses caused by N. parvum. This study showed, therefore, that bacterial communities differ according to the anatomical part (trunk or cordon) and/or the type of tissue (necrotic or non-necrotic) of wood of grapevine plants showing external symptoms of esca disease. However, research into bacteria having a role in GTD development needs further studies.

  9. Evidence of a role for foliar salicylic acid in regulating the rate of post-ingestive protein breakdown in ruminants and contributing to landscape pollution

    PubMed Central

    Kingston-Smith, Alison H.; Davies, Teri E.; Edwards, Joan; Gay, Alan; Mur, Luis A.J.

    2012-01-01

    Ruminant farming is important to global food security, but excessive proteolysis in the rumen causes inefficient use of nitrogenous plant constituents and environmental pollution. While both plant and microbial proteases contribute to ruminal proteolysis, little is known about post-ingestion regulation of plant proteases except that activity in the first few hours after ingestion of fresh forage can result in significant degradation of foliar protein. As the signal salicylic acid (SA) influences cell death during both biotic and abiotic stresses, Arabidopsis wild-type and mutants were used to test the effect of SA on proteolysis induced by rumen conditions (39 °C and anaerobic in a neutral pH). In leaves of Col-0, SA accumulation was induced by exposure to a rumen microbial inoculum. Use of Arabidopsis mutants with altered endogenous SA concentrations revealed a clear correlation with the rate of stress-induced proteolysis; rapid proteolysis occurred in leaves of SA-accumulating mutants cpr5-1 and dnd1-1 whereas there was little or no proteolysis in sid2-1 which is unable to synthesize SA. Reduced proteolysis in npr1-1 (Non-expressor of Pathogenesis Related genes) demonstrated a dependence on SA signalling. Slowed proteolysis in sid2-1 and npr1-1 was associated with the absence of a 34.6 kDa cysteine protease. These data suggest that proteolysis in leaves ingested by ruminants is modulated by SA. It is therefore suggested that influencing SA effects in planta could enable the development of forage crops with lower environmental impact and increased production potential. PMID:22378947

  10. Evidence of a role for foliar salicylic acid in regulating the rate of post-ingestive protein breakdown in ruminants and contributing to landscape pollution.

    PubMed

    Kingston-Smith, Alison H; Davies, Teri E; Edwards, Joan; Gay, Alan; Mur, Luis A J

    2012-05-01

    Ruminant farming is important to global food security, but excessive proteolysis in the rumen causes inefficient use of nitrogenous plant constituents and environmental pollution. While both plant and microbial proteases contribute to ruminal proteolysis, little is known about post-ingestion regulation of plant proteases except that activity in the first few hours after ingestion of fresh forage can result in significant degradation of foliar protein. As the signal salicylic acid (SA) influences cell death during both biotic and abiotic stresses, Arabidopsis wild-type and mutants were used to test the effect of SA on proteolysis induced by rumen conditions (39 °C and anaerobic in a neutral pH). In leaves of Col-0, SA accumulation was induced by exposure to a rumen microbial inoculum. Use of Arabidopsis mutants with altered endogenous SA concentrations revealed a clear correlation with the rate of stress-induced proteolysis; rapid proteolysis occurred in leaves of SA-accumulating mutants cpr5-1 and dnd1-1 whereas there was little or no proteolysis in sid2-1 which is unable to synthesize SA. Reduced proteolysis in npr1-1 (Non-expressor of Pathogenesis Related genes) demonstrated a dependence on SA signalling. Slowed proteolysis in sid2-1 and npr1-1 was associated with the absence of a 34.6 kDa cysteine protease. These data suggest that proteolysis in leaves ingested by ruminants is modulated by SA. It is therefore suggested that influencing SA effects in planta could enable the development of forage crops with lower environmental impact and increased production potential.

  11. Evaluating the robustness of models developed from field spectral data in predicting African grass foliar nitrogen concentration using WorldView-2 image as an independent test dataset

    NASA Astrophysics Data System (ADS)

    Mutanga, Onisimo; Adam, Elhadi; Adjorlolo, Clement; Abdel-Rahman, Elfatih M.

    2015-02-01

    In this paper, we evaluate the extent to which the resampled field spectra compare with the actual image spectra of the new generation multispectral WorldView-2 (WV-2) satellite. This was achieved by developing models from resampled field spectra data and testing them on an actual WV-2 image of the study area. We evaluated the performance of reflectance ratios (RI), normalized difference indices (NDI) and random forest (RF) regression model in predicting foliar nitrogen concentration in a grassland environment. The field measured spectra were used to calibrate the RF model using a randomly selected training (n = 70%) nitrogen data set. The model developed from the field spectra resampled to WV-2 wavebands was validated on an independent field spectral test dataset as well as on the actual WV-2 image of the same area (n = 30%, bootstrapped a 100 times). The results show that the model developed using RI could predict nitrogen with a mean R2 of 0.74 and 0.65 on an independent field spectral test data set and on the actual WV-2 image, respectively. The root mean square error of prediction (RMSE %) was 0.17 and 0.22 for the field test data set and the WV-2 image, respectively. Results provide an insight on the magnitude of errors that are expected when up-scaling field spectral models to airborne or satellite image data. The prediction also indicates the unceasing relevance of field spectroscopy studies to better understand the spectral models critical for vegetation quality assessment.

  12. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    PubMed

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  13. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics

    PubMed Central

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782

  14. The foliar trichomes of Hypoestes aristata (Vahl) Sol. ex Roem. & Schult var aristata (Acanthaceae) a widespread medicinal plant species in tropical sub-Saharan Africa: with comments on its possible phylogenetic significance.

    PubMed

    Bhatt, A; Naidoo, Y; Nicholas, A

    2010-01-01

    The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces.

  15. Foliar contamination of Phaseolus vulgaris with aerosols of 137Cs, 85Sr, 133Ba and 123mTe: influence of plant development stage upon contamination and rain.

    PubMed

    Madoz-Escande, C; Henner, P; Bonhomme, T

    2004-01-01

    As part of a requirement to improve the assessment of the impact of radioactive fallout on consumed agricultural products, bean plants at four development stages (seedlings, preflowering, late flowering and mature plants) were contaminated by dry deposition of (137)Cs, (85)Sr, (133)Ba and (123m)Te aerosols. The influence of two rain scenarios and of the development stage upon contamination on interception, retention, and translocation to pods was studied. Interception of the four radionuclides was almost identical and varied from 30 to 60% with increasing development stage. The most important rain parameter was the time which elapsed between contamination and the first rain. Whatever the development stage, rain washed off more cesium from the leaves when it occurred 2 days after the deposit (37% at the seedling stage, for example) rather than later on (6 days, 27%), due to rapid migration of Cs in the plant. The first rain washed off nearly 40% of Ba whatever the scenario. For later stages, Sr and Ba were more washed off by heavy weekly rains than by weak twice-a-week rains, perhaps because of the Sr/Ba-contaminated material loss associated with wash off (desquamation of cuticles). Te showed little wash off (less than 5%). Wash off decreased with an older development stage for a weak rain intensity, due to the superimposition of leaves. Heavy rains removed this shelter effect. At harvest, rain effect was no longer detectable as foliar activity was similar for both rain scenarios. Translocation factors (TF) for strontium and barium increased from 6 x 10(-3) to 1 x 10(-1) with the plant development stage upon contamination, whereas those for cesium remained almost unchanged between 2 x 10(-1) and 4 x 10(-1). Flowering is the most critical stage towards residual contamination in pods at harvest, with the exception of direct deposit on pods at the mature stage (TF values are one order of magnitude higher). TF value for Te was 6.5 x 10(-2) and was due to direct deposit

  16. Foliar retention of 15N-nitrate and 15N-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain

    SciTech Connect

    Garten Jr, Charles T; Hanson, Paul J

    1990-07-01

    Studies of nitrogen cycling in forests indicate that trees assimilate atmospheric nitrate and ammonium and that differences between atmospheric deposition to the forest canopy and deposition measured in forest throughfall can be attributed to the removal of these ions from rain by tree leaves. Red maple and white oak leaves were exposed to artificial rain solutions (pH 4.1) containing {sup 15}N-labeled nitrate (3.5 {micro}g N/ml) or ammonium (2.2 {micro}g N/ml). At two time intervals after exposure (2 hr and 2 days) an exposed leaf and a control (non-exposed) leaf were removed from replicate seedlings. Based on results from {sup 15}N analysis, most of the nitrate applied to tree leaves was removed by washing with water; the mean per cent removal ({+-} standard error, N = 4) was 87 {+-} 1 and 73 {+-} 4% of the {sup 15}NO-N Applied to red maple and white oak leaves, respectively. Relative retention of {sup 15}NH{sub 4}-N by the leaves was greater than that observed for {sup 15}NO{sub 3}-N. In red maple and white oak leaves, 58 {+-} 9 and 84 {+-} 7% (mean {+-} standard error, N = 4), respectively, of the applied ammonium was not removed by washing treatments. Our results show that the foliar uptake of {sup 15}NH{sub 4}{sup +} from simulated rain by deciduous tree leaves is greater than that for {sup 15}NO{sub 3}{sup -}. Greater retention of NH{sub 4}{sup +} than NO{sub 3}{sup -} ions by red maple and white oak leaves from simulated rainfall is consistent with field observations showing a preferential retention of ammonium from rainfall by forest canopies. As nitrogen chemistry and the relative importance of nitrogen compounds in the atmosphere change in response to proposed emission reductions (and possibly climate change), an improved understanding of the fate of airborne nitrogen compounds in forest biogeochemical cycles will be necessary.

  17. Seasonal variability in foliar characteristics and physiology for boreal forest species at the five Saskatchewan tower sites during the 1994 Boreal Ecosystem-Atmosphere Study

    NASA Astrophysics Data System (ADS)

    Middleton, E. M.; Sullivan, J. H.; Bovard, B. D.; Deluca, A. J.; Chan, S. S.; Cannon, T. A.

    1997-12-01

    Leaf-level measurements of gas exchange, chemistry, morphology, and spectral optical properties were acquired at the five instrumented tower sites during the three 1994 growing season intensive field campaigns (IFCs) conducted near Prince Albert, Saskatchewan, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). Stands included old and young aspen (OA, YA) associated with the hazelnut shrub, old and young jack pine (OJP, YJP) stands, and an old black spruce (OBS) stand; white spruce (at YA) and an understory herb (dogbane, at OJP) were also examined. Midsummer peak photosynthesis for aspen leaves in the field (A, light saturated) and laboratory (Amax light and CO2 saturated) was ˜12.6 and 33-41 μmol CO2 m-2 s-1. Black spruce exhibited the lowest A, 3 μmol CO2 m-2 s-1. Jack pine and black spruce attained their highest Amax (17-20 μmol CO2 m-2 s-1) in late summer/early fall. Gas exchange by white spruce was significantly higher and stomatal limitation lower than for other conifers, at levels comparable to broadleaf responses. White spruce foliage had the highest chlorophyll content in fall (˜41 μg cm-2), followed by aspen (OA) and hazelnut (YA) in midsummer (˜31 μg cm-2). Specific leaf mass of aspen, hazelnut, and conifer foliage was 86, ˜47, and ˜174 g m-2, respectively. Leaf nitrogen content of broadleaves (18-40 g N g-1 dry wt) was 2-3 times greater than conifer needles (8-12 g N g-1). Significantly larger needles were produced at OJP versus YJP, but needle number per age class was greater at YJP. The absorbed photosynthetically active radiation fraction (fAPAR) in June/July averaged ˜80% for broadleaves and ˜83% in conifer needles. The simple ratio (SR, near-infrared/red ratio) calculated from foliar transmittances was more strongly related to fAPAR than SR calculated from reflectances, with stronger correlation for broadleaves (r=0.92) than for conifers (r=0.78).

  18. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  19. The effect of wildfire and clear-cutting on above-ground biomass, foliar C to N ratios and fiber content throughout succession: Implications for forage quality in woodland caribou (Rangifer tarandus caribou)

    NASA Astrophysics Data System (ADS)

    Mallon, E. E.; Turetsky, M.; Thompson, I.; Noland, T. L.; Wiebe, P.

    2013-12-01

    Disturbance is known to play an important role in maintaining the productivity and biodiversity of boreal forest ecosystems. Moderate to low frequency disturbance is responsible for regeneration opportunities creating a mosaic of habitats and successional trajectories. However, large-scale deforestation and increasing wildfire frequencies exacerbate habitat loss and influence biogeochemical cycles. This has raised concern about the quality of the under-story vegetation post-disturbance and whether this may impact herbivores, especially those vulnerable to change. Forest-dwelling caribou (Rangifer tarandus caribou) are declining in several regions of Canada and are currently listed as a species at risk by COSEWIC. Predation and landscape alteration are viewed as the two main threats to woodland caribou. This has resulted in caribou utilizing low productivity peatlands as refuge and the impact of this habitat selection on their diet quality is not well unders