Sample records for food processing applications

  1. Effect of Ultrasound Technology on Food and Nutritional Quality.

    PubMed

    Ojha, Kumari S; Tiwari, Brijesh K; O'Donnell, Colm P

    2018-01-01

    Ultrasound technology has been successfully demonstrated for several food processing and preservation applications. The majority of food processing applications reported refer to liquid foods. Ultrasound has been applied to solid foods in some niche applications, e.g., tenderization of meat, mass transfer applications, and drying. Similar to any other technology, ultrasound also has some positive and negative effects on food quality depending on the application and processing conditions employed. This chapter outlines various applications of ultrasound to food and its effect on food and nutritional quality. © 2018 Elsevier Inc. All rights reserved.

  2. Radio-Frequency Applications for Food Processing and Safety.

    PubMed

    Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L

    2018-03-25

    Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.

  3. Applications of sonochemistry in Russian food processing industry.

    PubMed

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Adsorption and ion exchange: basic principles and their application in food processing.

    PubMed

    Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-12

    A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.

  5. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2015-10-01

    Literature published in 2014 and early 2015 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  6. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  7. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2016-10-01

    Literature published in 2015 and early 2016 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  8. The principles of high voltage electric field and its application in food processing: A review.

    PubMed

    Dalvi-Isfahan, Mohsen; Hamdami, Nasser; Le-Bail, Alain; Xanthakis, Epameinondas

    2016-11-01

    Food processing is a major part of the modern global industry and it will certainly be an important sector of the industry in the future. Several processes for different purposes are involved in food processing aiming at the development of new products by combining and/or transforming raw materials, to the extension of food shelf-life, recovery, exploitation and further use of valuable compounds and many others. During the last century several new food processes have arisen and most of the traditional ones have evolved. The future food factory will require innovative approaches food processing which can combine increased sustainability, efficiency and quality. Herein, the objective of this review is to explore the multiple applications of high voltage electric field (HVEF) and its potentials within the food industry. These applications include processes such as drying, refrigeration, freezing, thawing, extending food shelf- life, and extraction of biocompounds. In addition, the principles, mechanism of action and influence of specific parameters have been discussed comprehensively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.

    PubMed

    Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei

    2018-02-02

    Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.

  10. Principles and application of high pressure-based technologies in the food industry.

    PubMed

    Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra

    2015-01-01

    High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.

  11. Application of Nanotechnology in Food Science: Perception and Overview.

    PubMed

    Singh, Trepti; Shukla, Shruti; Kumar, Pradeep; Wahla, Verinder; Bajpai, Vivek K

    2017-01-01

    Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products.

  12. Application of Nanotechnology in Food Science: Perception and Overview

    PubMed Central

    Singh, Trepti; Shukla, Shruti; Kumar, Pradeep; Wahla, Verinder; Bajpai, Vivek K.; Rather, Irfan A.

    2017-01-01

    Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties. Aspects of application of nanotechnology in relation to increasing in food nutrition and organoleptic properties of foods have also been discussed briefly along with a few insights on safety issues and regulatory concerns on nano-processed food products. PMID:28824605

  13. Applications of artificial neural networks (ANNs) in food science.

    PubMed

    Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A

    2007-01-01

    Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.

  14. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment.

    PubMed

    Brovko, Lubov Y; Anany, Hany; Griffiths, Mansel W

    2012-01-01

    This chapter presents recent advances in bacteriophage research and their application in the area of food safety. Section 1 describes general facts on phage biology that are relevant to their application for control and detection of bacterial pathogens in food and environmental samples. Section 2 summarizes the recently acquired data on application of bacteriophages to control growth of bacterial pathogens and spoilage organisms in food and food-processing environment. Section 3 deals with application of bacteriophages for detection and identification of bacterial pathogens. Advantages of bacteriophage-based methods are presented and their shortcomings are discussed. The chapter is intended for food scientist and food product developers, and people in food inspection and health agencies with the ultimate goal to attract their attention to the new developing technology that has a tremendous potential in providing means for producing wholesome and safe food. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Recent Advances in Food Processing Using High Hydrostatic Pressure Technology.

    PubMed

    Wang, Chung-Yi; Huang, Hsiao-Wen; Hsu, Chiao-Ping; Yang, Binghuei Barry

    2016-01-01

    High hydrostatic pressure is an emerging non-thermal technology that can achieve the same standards of food safety as those of heat pasteurization and meet consumer requirements for fresher tasting, minimally processed foods. Applying high-pressure processing can inactivate pathogenic and spoilage microorganisms and enzymes, as well as modify structures with little or no effects on the nutritional and sensory quality of foods. The U.S. Food and Drug Administration (FDA) and the U.S. Department of Agriculture (USDA) have approved the use of high-pressure processing (HPP), which is a reliable technological alternative to conventional heat pasteurization in food-processing procedures. This paper presents the current applications of HPP in processing fruits, vegetables, meats, seafood, dairy, and egg products; such applications include the combination of pressure and biopreservation to generate specific characteristics in certain products. In addition, this paper describes recent findings on the microbiological, chemical, and molecular aspects of HPP technology used in commercial and research applications.

  16. The principles of ultrasound and its application in freezing related processes of food materials: A review.

    PubMed

    Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai

    2015-11-01

    Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Computer and control applications in a vegetable processing plant

    USDA-ARS?s Scientific Manuscript database

    There are many advantages to the use of computers and control in food industry. Software in the food industry takes 2 forms - general purpose commercial computer software and software for specialized applications, such as drying and thermal processing of foods. Many applied simulation models for d...

  18. Edible holography: the application of holographic techniques to food processing

    NASA Astrophysics Data System (ADS)

    Begleiter, Eric

    1991-07-01

    Reports on current research efforts in the application of holographic techniques to food processing. Through a simple and inexpensive production process, diffractive and holographic effects of color, depth, and motion can be transferred to edible products. Processes are discussed which can provide a competitive advantage to the marketing of a diverse group of sugar and non-sugar-based consumable products, i.e. candies, chocolates, lollipops, snacks, cereals and pharmaceuticals. Techniques, applications, and products are investigated involving the shift from a chemical to a physical basis for the production of food coloring and decorating.

  19. Food metabolomics: from farm to human.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The applications of nanotechnology in food industry.

    PubMed

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  1. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  2. Supercritical fluids as alternative, safe, food-processing media: an overview.

    PubMed

    Da Cruz Francisco, José; Szwajcer Dey, Estera

    2003-01-01

    The continuous growth of world population and its concentration in the urban areas require food supplies that are continuous, sufficient and of good quality. To resolve this problem techniques have been developed for increasing food quantity and quality. The techniques are applied throughout the food chain from production, conservation and during distribution to the consumers (from "the field to the fork"). During handling of food, chemicals are often deliberately added to achieve improved processing and better quality. This is one of the main reasons food undergoes different kinds of contamination. This overview focuses on the application of supercritical fluids as media for handling food materials during processing with the perspective of reducing chemical contamination of food. Examples of developmental applications of this technique and on research work in process are presented. Emphasis is given to extraction and biotransformation techniques.

  3. The Maillard reaction and its control during food processing. The potential of emerging technologies.

    PubMed

    Jaeger, H; Janositz, A; Knorr, D

    2010-06-01

    The Maillard reaction between reducing sugars and amino acids is a common reaction in foods which undergo thermal processing. Desired consequences like the formation of flavor and brown color of some cooked foods but also the destruction of essential amino acids and the production of anti-nutritive compounds require the consideration of the Maillard reaction and relevant mechanisms for its control. This paper aims to exemplify the recent advances in food processing with regard to the controllability of heat-induced changes in the food quality. Firstly, improved thermal technologies, such as ohmic heating, which allows direct heating of the product and overcoming the heat transfer limitations of conventional thermal processing are presented in terms of their applicability to reduce the thermal exposure during food preservation. Secondly, non-thermal technologies such as high hydrostatic pressure and pulsed electric fields and their ability to extend the shelf life of food products without the application of heat, thus also preserving the quality attributes of the food, will be discussed. Finally, an innovative method for the removal of Maillard reaction substrates in food raw materials by the application of pulsed electric field cell disintegration and extraction as well as enzymatic conversion is presented in order to demonstrate the potential of the combination of processes to control the occurrence of the Maillard reaction in food processing. (c) 2009 Elsevier Masson SAS. All rights reserved.

  4. Who Would Have Thought? The Story of a Food Engineer.

    PubMed

    Lund, Daryl B

    2017-02-28

    Food engineering is a hybrid of food science and an engineering science, like chemical engineering in my particular case, resulting in the application of chemical engineering principles to food systems and their constituents. With the complexity of food and food processing, one generally narrows his or her interests, and my primary interests were in the kinetics of reactions important in foods, thermal processing, deposition of unwanted materials from food onto heated surfaces (fouling), and microwave heat transfer in baking. This review describes how I developed an interest in these topics and the contributions I have hopefully made to understanding food and to the application of engineering.

  5. Application of predictive modelling techniques in industry: from food design up to risk assessment.

    PubMed

    Membré, Jeanne-Marie; Lambert, Ronald J W

    2008-11-30

    In this communication, examples of applications of predictive microbiology in industrial contexts (i.e. Nestlé and Unilever) are presented which cover a range of applications in food safety from formulation and process design to consumer safety risk assessment. A tailor-made, private expert system, developed to support safe product/process design assessment is introduced as an example of how predictive models can be deployed for use by non-experts. Its use in conjunction with other tools and software available in the public domain is discussed. Specific applications of predictive microbiology techniques are presented relating to investigations of either growth or limits to growth with respect to product formulation or process conditions. An example of a probabilistic exposure assessment model for chilled food application is provided and its potential added value as a food safety management tool in an industrial context is weighed against its disadvantages. The role of predictive microbiology in the suite of tools available to food industry and some of its advantages and constraints are discussed.

  6. Application of induction heating in food processing and cooking: A Review

    USDA-ARS?s Scientific Manuscript database

    Induction heating is an electromagnetic heating technology that has several advantages such as high safety, scalability, and high energy efficiency. It has been applied for a long time in metal processing, medical applications, and cooking. However, the application of this technology in the food pro...

  7. Encapsulates for Food Bioconversions and Metabolite Production

    NASA Astrophysics Data System (ADS)

    Breguet, Véronique; Vojinovic, Vojislav; Marison, Ian W.

    The control of production costs in the food industry must be very strict as a result of the relatively low added value of food products. Since a wide variety of enzymes and/or cells are employed in the food industry for starch processing, cheese making, food preservation, lipid hydrolysis and other applications, immobilization of the cells and/or enzymes has been recognized as an attractive approach to improving food processes while minimizing costs. This is due to the fact that biocatalyst immobilization allows for easier separation/purification of the product and reutilization of the biocatalyst. The advantages of the use of immobilized systems are many, and they have a special relevance in the area of food technology, especially because industrial processes using immobilized biosystems are usually characterized by lower capital/energy costs and better logistics. The main applications of immobilization, related to the major processes of food bioconversions and metabolite production, will be described and discussed in this chapter.

  8. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  9. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    PubMed

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  10. Membrane processing technology in the food industry: food processing, wastewater treatment, and effects on physical, microbiological, organoleptic, and nutritional properties of foods.

    PubMed

    Kotsanopoulos, Konstantinos V; Arvanitoyannis, Ioannis S

    2015-01-01

    Membrane processing technology (MPT) is increasingly used nowadays in a wide range of applications (demineralization, desalination, stabilization, separation, deacidification, reduction of microbial load, purification, etc.) in food industries. The most frequently applied techniques are electrodialysis (ED), reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF). Several membrane characteristics, such as pore size, flow properties, and the applied hydraulic pressure mainly determine membranes' potential uses. In this review paper the basic membrane techniques, their potential applications in a large number of fields and products towards the food industry, the main advantages and disadvantages of these methods, fouling phenomena as well as their effects on the organoleptic, qualitative, and nutritional value of foods are synoptically described. Some representative examples of traditional and modern membrane applications both in tabular and figural form are also provided.

  11. Aspects of food processing and its effect on allergen structure.

    PubMed

    Paschke, Angelika

    2009-08-01

    The article summarizes current physical and chemical methods in food processing as storage, preparation, separation, isolation or purification and thermal application on the one hand as well as enzymatic treatment on the other and their impact on the properties of food proteins. Novel methods of food processing like high pressure, electric field application or irradiation and their impact on food allergens are presented. The EU project REDALL (Reduced Allergenicity of Processed Foods, Containing Animal Allergens: QLK1-CT-2002-02687) showed that by a combination of enzyme and heat treatment the allergic potential of hen's egg decreased about 100 fold. Clinical reactions do not appear anymore. An AiF-FV 12024 N project worked with fruits like mango, lychee and apple. Processed mango and lychee had no change in allergenic potential during heating while e. g. canning. Apple almost lost its allergenic potential after pasteurization in juice production.

  12. Guar gum: processing, properties and food applications-A Review.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, Bhupendar Singh

    2014-03-01

    Guar gum is a novel agrochemical processed from endosperm of cluster bean. It is largely used in the form of guar gum powder as an additive in food, pharmaceuticals, paper, textile, explosive, oil well drilling and cosmetics industry. Industrial applications of guar gum are possible because of its ability to form hydrogen bonding with water molecule. Thus, it is chiefly used as thickener and stabilizer. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer. This article focuses on production, processing, composition, properties, food applications and health benefits of guar gum.

  13. Applications of Microbial Enzymes in Food Industry.

    PubMed

    Raveendran, Sindhu; Parameswaran, Binod; Ummalyma, Sabeela Beevi; Abraham, Amith; Mathew, Anil Kuruvilla; Madhavan, Aravind; Rebello, Sharrel; Pandey, Ashok

    2018-03-01

    The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  14. Applications of Microbial Enzymes in Food Industry

    PubMed Central

    2018-01-01

    Summary The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed. PMID:29795993

  15. How extrusion shapes food processing

    USDA-ARS?s Scientific Manuscript database

    This month's column will explore food extrusion. Extrusion is one of the most commonly used food manufacturing processes. Its versatility enables production of a diverse array of food products. This column will review the basic principles and provide an overview of applications. I would like to ...

  16. Application of atomic force microscopy as a nanotechnology tool in food science.

    PubMed

    Yang, Hongshun; Wang, Yifen; Lai, Shaojuan; An, Hongjie; Li, Yunfei; Chen, Fusheng

    2007-05-01

    Atomic force microscopy (AFM) provides a method for detecting nanoscale structural information. First, this review explains the fundamentals of AFM, including principle, manipulation, and analysis. Applications of AFM are then reported in food science and technology research, including qualitative macromolecule and polymer imaging, complicated or quantitative structure analysis, molecular interaction, molecular manipulation, surface topography, and nanofood characterization. The results suggested that AFM could bring insightful knowledge on food properties, and the AFM analysis could be used to illustrate some mechanisms of property changes during processing and storage. However, the current difficulty in applying AFM to food research is lacking appropriate methodology for different food systems. Better understanding of AFM technology and developing corresponding methodology for complicated food systems would lead to a more in-depth understanding of food properties at macromolecular levels and enlarge their applications. The AFM results could greatly improve the food processing and storage technologies.

  17. Real-time hyperspectral imaging for food safety applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  18. Food Applications and Regulation

    NASA Astrophysics Data System (ADS)

    Gálvez, Antonio; Abriouel, Hikmate; Omar, Nabil Ben; Lucas, Rosario

    This chapter deals with food applications of bacteriocins. Regulatory issues on the different possibilities for incorporating bacteriocins as bioprotectants are discussed. Specific applications of bacteriocins or bacteriocin-producing strains are described for main food categories, including milk and dairy products, raw meats, ready-to-eat meat and poultry products, fermented meats, fish and fish products or fermented fish. The last section of the chapter deals with applications in foods and beverages derived from plant materials, such as raw vegetable foods, fruits and fruit juices, cooked food products, fermented vegetable foods and ­fermented beverages. Results obtained for application of bacteriocins in combination with other hurdles are also discussed for each specific case, with a special emphasis on novel food packaging and food-processing technologies, such as irradiation, pulsed electric field treatments or high hydrostatic pressure treatment.

  19. Gelatin-Filtered Consomme: A Practical Demonstration of the Freezing and Thawing Processes

    ERIC Educational Resources Information Center

    Lahne, Jacob B.; Schmidt, Shelly J.

    2010-01-01

    Freezing is a key food processing and preservation technique widely used in the food industry. Application of best freezing and storage practices extends the shelf-life of foods for several months, while retaining much of the original quality of the fresh food. During freezing, as well as its counterpart process, thawing, a number of critical…

  20. Recent Developments in Superheated Steam Processing of Foods-A Review.

    PubMed

    Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh

    2016-10-02

    Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.

  1. Cold plasma as a nonthermal food processing technology

    USDA-ARS?s Scientific Manuscript database

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  2. Contamination and changes of food factors during processing with modeling applications-safety related issues

    USDA-ARS?s Scientific Manuscript database

    Chemical and microbiological contamination of food during processing and preservation can result in foodborne illness outbreaks and food poisoning. Chemical contaminations can occur through exposure of foods to illegal additives, pesticides and fertilizer residues, toxic compounds formed by microbes...

  3. 76 FR 55869 - Notice of Funding Availability: Inviting Applications for the McGovern-Dole International Food...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Applications for the McGovern-Dole International Food for Education and Child Nutrition Program; Correction... Federal Register on July 28, 2011, inviting proposals for the McGovern-Dole International Food for... eligibility requirements, makes minor changes to the application and review process, and provides updates to...

  4. High pressure processing and its application to the challenge of virus-contaminated foods

    USDA-ARS?s Scientific Manuscript database

    High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP’s potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such...

  5. Fungal Laccases: Production, Function, and Applications in Food Processing

    PubMed Central

    Brijwani, Khushal; Rigdon, Anne; Vadlani, Praveen V.

    2010-01-01

    Laccases are increasingly being used in food industry for production of cost-effective and healthy foods. To sustain this trend widespread availability of laccase and efficient production systems have to be developed. The present paper delineate the recent developments that have taken place in understanding the role of laccase action, efforts in overexpression of laccase in heterologous systems, and various cultivation techniques that have been developed to efficiently produce laccase at the industrial scale. The role of laccase in different food industries, particularly the recent developments in laccase application for food processing, is discussed. PMID:21048859

  6. Cold plasma processing to improve food safety

    USDA-ARS?s Scientific Manuscript database

    Cold plasma is an antimicrobial process being developed for application as a food processing technology. This novel intervention is the subject of an expanding research effort by groups around the world. A variety of devices can be used to generate cold plasma and apply it to the food commodity bein...

  7. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  8. Fish protein hydrolysates: application in deep-fried food and food safety analysis.

    PubMed

    He, Shan; Franco, Christopher; Zhang, Wei

    2015-01-01

    Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®

  9. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  10. Effects of chemical, physical, and technological processes on the nature of food allergens.

    PubMed

    Poms, Roland E; Anklam, Elke

    2004-01-01

    A review is presented of studies of different processing techniques and their effect on the allergenicity and antigenicity of certain allergenic foods. An overview of investigated technologies is given with regard to their impact on the protein structure and their potential application in the production of hypoallergenic foods. The use of physical processes (such as heating, high pressure, microparticulation, ultrafiltration, and irradiation), chemical processes (such as proteolysis, fermentation, and refining by extraction), and biotechnological approaches, as well as the effects of these processes on individual allergenic foods, are included. Additionally, the implications of food processing for food allergen analysis with respect to food safety assessment and industrial quality control are briefly discussed.

  11. Contact and non-contact ultrasonic measurement in the food industry: a review

    NASA Astrophysics Data System (ADS)

    Taufiq Mohd Khairi, Mohd; Ibrahim, Sallehuddin; Yunus, Mohd Amri Md; Faramarzi, Mahdi

    2016-01-01

    The monitoring of the food manufacturing process is vital since it determines the safety and quality level of foods which directly affect the consumers’ health. Companies which produce high quality products will gain trust from consumers. This factor helps the companies to make profits. The use of efficient and appropriate sensors for the monitoring process can also reduce cost. The food assessing process based on an ultrasonic sensor has attracted the attention of the food industry due to its excellent capabilities in several applications. The utilization of low or high frequencies for the ultrasonic transducer has provided an enormous benefit for analysing, modifying and guaranteeing the quality of food. The contact and non-contact ultrasonic modes for measurement also contributed significantly to the food processing. This paper presents a review of the application of the contact and non-contact mode of ultrasonic measurement focusing on safety and quality control areas. The results from previous researches are shown and elaborated.

  12. Opportunities and Challenges in Application of Forward Osmosis in Food Processing.

    PubMed

    Rastogi, Navin K

    2016-01-01

    Food processing and preservation technologies must maintain the fresh-like characteristics of food while providing an acceptable and convenient shelf life as well as assuring safety and nutritional value. Besides, the consumers' demand for the highest quality convenience foods in terms of natural flavor and taste, free from additives and preservatives necessitated the development of a number of membrane-based non-thermal approaches to the concentration of liquid foods, of which forward osmosis has proven to be the most valuable one. A series of recent publications in scientific journals have demonstrated novel and diverse uses of this technology for food processing, desalination, pharmaceuticals as well as for power generation. Its novel features, which include the concentration of liquid foods at ambient temperature and pressure without significant fouling of membrane, made the technology commercially attractive. This review aims to identify the opportunities and challenges associated with this technology. At the same time, it presents a comprehensive account of recent advances in forward osmosis technology as related to the major issues of concern in its rapidly growing applications in food processing such as concentration of fruit and vegetable juices (grape, pineapple, red raspberry, orange, and tomato juice and red radish juice) and natural food colorants (anthocyanin and betalains extracts). Several vibrant and vital issues such as recent developments in the forward osmosis membrane and concentration polarization aspects have been also addressed. The asymmetric membrane used for forward osmosis poses newer challenges to account both external and internal concentration polarization leading to significant reduction in flux. The recent advances and developments in forward osmosis membrane processes, mechanism of water transport, characteristics of draw solution and membranes as well as applications of forward osmosis in food processing have been discussed.

  13. Advances in feature selection methods for hyperspectral image processing in food industry applications: a review.

    PubMed

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An

    2015-01-01

    There is an increased interest in the applications of hyperspectral imaging (HSI) for assessing food quality, safety, and authenticity. HSI provides abundance of spatial and spectral information from foods by combining both spectroscopy and imaging, resulting in hundreds of contiguous wavebands for each spatial position of food samples, also known as the curse of dimensionality. It is desirable to employ feature selection algorithms for decreasing computation burden and increasing predicting accuracy, which are especially relevant in the development of online applications. Recently, a variety of feature selection algorithms have been proposed that can be categorized into three groups based on the searching strategy namely complete search, heuristic search and random search. This review mainly introduced the fundamental of each algorithm, illustrated its applications in hyperspectral data analysis in the food field, and discussed the advantages and disadvantages of these algorithms. It is hoped that this review should provide a guideline for feature selections and data processing in the future development of hyperspectral imaging technique in foods.

  14. Effect of Power Ultrasound on Food Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hyoungill; Feng, Hao

    Recent food processing technology innovations have been centered around producing foods with fresh-like attributes through minimal processing or nonthermal processing technologies. Instead of using thermal energy to secure food safety that is often accompanied by quality degradation in processed foods, the newly developed processing modalities utilize other types of physical energy such as high pressure, pulsed electric field or magnetic field, ultraviolet light, or acoustic energy to process foods. An improvement in food quality by the new processing methods has been widely reported. In comparison with its low-energy (high-frequency) counterpart which finds applications in food quality inspection, the use of high-intensity ultrasound, also called power ultrasound, in food processing is a relatively new endeavor. To understand the effect of high-intensity ultrasound treatment on food quality, it is important to understand the interactions between acoustic energy and food ingredients, which is covered in Chapter 10. In this chapter, the focus will be on changes in overall food quality attributes that are caused by ultrasound, such as texture, color, flavor, and nutrients.

  15. Emerging Food Processing Technologies and Factors Impacting their Industrial Adoption.

    PubMed

    Priyadarshini, Anushree; Rajauria, Gaurav; O'Donnell, Colm P; Tiwari, Brijesh K

    2018-06-04

    Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, its level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical for its commercial adoption.

  16. Application of ultra high pressure (UHP) in starch chemistry.

    PubMed

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  17. Impact of mechanical shear on Listeria monocytogenes survival on surfaces

    USDA-ARS?s Scientific Manuscript database

    Microbial inactivation using high temperatures is well known process and has contributed significantly toward food safety and shelf life extension for the food industry. Mechanical high pressure (hydrostatic) treatment is also gaining interest in food processing applications for achieving microbial...

  18. Nanotechnology in food science: Functionality, applicability, and safety assessment.

    PubMed

    He, Xiaojia; Hwang, Huey-Min

    2016-10-01

    Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted. Copyright © 2016. Published by Elsevier B.V.

  19. Off-farm applications of solar energy in agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R.E.

    1980-01-01

    Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promisemore » for commerical exploitation in future food processes.« less

  20. Agricultural and Food Processing Applications of Pulsed Power Technology

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi; Ihara, Satoshi

    Recent progress of agricultural and food processing applications of pulsed power is described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power have been developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as decontamination of air and liquid, germination promotion, inhabitation of saprophytes growth, extraction of juice from fruits and vegetables, and fertilization of liquid medium, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei.

  1. CURRENT STATUS OF APPLICATIONS IN THE PASTEURIZATION OF STERILIZATION OF FOODS BY IONIZING RADIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraybill, H.F.

    1960-04-01

    A comprehensive research and development program on radiation preservation of foods has revealed some products having potential for early commercialization. Radiation sterilization of some meats, especially beef, has been somewhat disappointing. Other items such as chicken, fish, and pork products show promise as completely sterile products. Surveys of the food industry have been made on these items but lack of a competitive position. radiation processing costs higher than thermal processing, and lack of Food & Drug clearance at this time have held up an immediate commercial advance in this area. Radiopasteurization currently, however, offers raore promise since effect on qualitymore » (flavor, texture. and color) is not encountered and processing cost now approaches that of conventional processing methods. Extension of shelf life, by radiopasteurization of fish, chicken, pork, and beef, is ready for industry- wide exploitation when Food & Drug clearance is provided. Elimination of parasites in meat by very-low dose treatment such as trichina in perk and tapeworm in beef has current interest in industry and may be the first industrial application. The wholesomeness clearance studies are progressing successfully with no evidence that would indicate any toxicity prevailing from eating irradiated foods in tests on animals and man. The ultimate development of " ionizing radiation centers" will advance radiation applications in the food industry since appraisal of performance and costs can be more satisfactorily made than in laboratory projects. Reduction in costs of gamma radiation sources should also hold much promise for a preferential competitive position for low- dose radiation treatment of meats, fruits, and vegetables. The unique opportunities afforded by radiation processing of foods in underdeveloped countries for reduction in food spoilage and waste and elimination of food poisoning are of current and immediate importance. (auth)« less

  2. Food irradiation and airline catering.

    PubMed

    Preston, F S

    1988-04-01

    Food poisoning from contaminated airline food can produce serious consequences for airline crew and passengers and can hazard flight. While irradiation of certain foodstuffs has been practised in a number of countries for some years, application of the process has not been made to complete meals. This paper considers the advantages, technical considerations, costs and possible application to airline meals. In addition, the need to educate the public in the advantages of the process in the wake of incidents such as Chernobyl is discussed.

  3. Applications of the bacteriocin, nisin.

    PubMed

    Delves-Broughton, J; Blackburn, P; Evans, R J; Hugenholtz, J

    1996-02-01

    Nisin was first introduced commercially as a food preservative in the UK approximately 30 years ago. First established use was as a preservative in processed cheese products and since then numerous other applications in foods and beverages have been identified. It is currently recognised as a safe food preservative in approximately 50 countries. The established uses of nisin as a preservative in processed cheese, various pasteurised dairy products, and canned vegetables will be briefly reviewed. More recent applications of nisin include its use as a preservative in high moisture, hot baked flour products (crumpets) and pasteurised liquid egg. Renewed interest is evident in the use of nisin in natural cheese production. Considerable research has been carried out on the antilisterial properties of nisin in foods and a number of applications have been proposed. Uses of nisin to control spoilage lactic acid bacteria have been identified in beer, wine, alcohol production and low pH foods such as salad dressings. Further developments of nisin are likely to include synergistic action of nisin with chelators and other bacteriocins, and its use as an adjunct in novel food processing technology such as higher pressure sterilisation and electroporation. Production of highly purified nisin preparations and enhancement by chelators has led to interest in the use of nisin for human ulcer therapy, and mastitis control in cattle.

  4. Nanotechnology: current uses and future applications in the food industry.

    PubMed

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  5. Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective.

    PubMed

    Bayer, Forrest L

    2002-01-01

    Studies were undertaken to determine the composition of five different types of post-consumer polyethylene terephthalate (PET) feedstreams to ascertain the relative amounts of food containers and non-food containers. Deposit post-consumer PET feedstreams contained approximately 100% food containers, whereas curbside feedstreams contained from 0.04 to 6% non-food containers. Analysis of the PET containers from the different type feedstreams after the containers were subjected to a commercial PET wash system and after processing with a proprietary decontamination technology was accomplished to determine the levels of compounds in the post-consumer PET after the various stages of processing. Comprehensive thermal desorption/GC/MS, purge and trap GC/MS purge and trap GC quantitation, PET dissolution and extraction GC analysis and PET dissolution HPLC analysis established the types and concentrations of compounds that absorb in the PET from the various types of postconsumer feedstreams. A total of 121 compounds were identified in the five different feedstreams. The concentration of absorbed compounds remaining in the deposit material and the non-food applications material after the commercial wash was 28 and 39mgkg(-1) respectively. Analysis of the feedstreams after subjecting the material to a proprietary decontamination process demonstrated the ability of removing all the absorbed compounds to a level below the level of the threshold of regulation. The safety of sourcing of post-consumer PET from food use applications verses non-food use applications of PET has been established.

  6. A Compilation of Information on Computer Applications in Nutrition and Food Service.

    ERIC Educational Resources Information Center

    Casbergue, John P.

    Compiled is information on the application of computer technology to nutrition food service. It is designed to assist dieticians and nutritionists interested in applying electronic data processing to food service and related industries. The compilation is indexed by subject area. Included for each subject area are: (1) bibliographic references,…

  7. Application of nutrient intake values (NIVs).

    PubMed

    Vorster, Hester H; Murphy, Suzanne P; Allen, Lindsay H; King, Janet C

    2007-03-01

    The process of applying nutrient intake values (NIVs) for dietary assessment, planning, and implementing programs is discussed in this paper. In addition to assessing, monitoring, and evaluating nutritional situations, applications include planning food policies, strategies, and programs for promotion of optimal nutrition and preventing and treating malnutrition (both over- and undernutrition). Other applications include nutrition education, food and nutrient legislation, marketing and labeling, research, product development, food procurement and trade (import and export), food aid, and therapeutic (clinical) nutrition. Specific examples of how NIVs are used to develop food labels, fortification policies, and food-based dietary guidelines are described. Applications in both developed and developing countries are also described. In summary, NIVs are the scientific backbone of all aspects of nutrition policy in countries and regions worldwide.

  8. Using Power Ultrasound to Accelerate Food Freezing Processes: Effects on Freezing Efficiency and Food Microstructure.

    PubMed

    Zhang, Peizhi; Zhu, Zhiwei; Sun, Da-Wen

    2018-05-31

    Freezing is an effective way of food preservation. However, traditional freezing methods have the disadvantages of low freezing efficiency and generation of large ice crystals, leading to possible damage of food quality. Power ultrasound assisted freezing as a novel technique can effectively reduce the adverse effects during freezing process. This paper gives an overview on recent researches of power ultrasound technique to accelerate the food freezing processes and illustrates the main principles of power ultrasound assisted freezing. The effects of power ultrasound on liquid food, model solid food as well as fruit and vegetables are discussed, respectively, from the aspects of increasing freezing rate and improving microstructure. It is shown that ultrasound assisted freezing can effectively improve the freezing efficiency and promote the formation of small and evenly distributed ice crystals, resulting in better food quality. Different inherent properties of food samples affect the effectiveness of ultrasound application and optimum ultrasound parameters depend on the nature of the samples. The application of ultrasound to the food industry is more likely on certain types of food products and more efforts are still needed to realize the industrial translation of laboratory results.

  9. Industrial Applications of High Power Ultrasonics

    NASA Astrophysics Data System (ADS)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  10. Evaluating natural antimicrobials for food application, in natural antimicrobials for food safety and quality

    USDA-ARS?s Scientific Manuscript database

    The microflora of foods is of practical significance to producers, processors and consumers. Food manufacturers and distributors are responding to consumers’ demand for food products that are safe, fresher and convenient for use. In some cases foods may be improperly processed and/or contaminated wi...

  11. MRI of plants and foods

    NASA Astrophysics Data System (ADS)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  12. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    PubMed

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  13. Modern supercritical fluid technology for food applications.

    PubMed

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  14. Life cycle assessment on food waste and its application in China

    NASA Astrophysics Data System (ADS)

    Gao, Si; Bao, Jingling; Liu, Xiaojie; Stenmarck, Asa

    2018-01-01

    Food waste causes tremendous problems in terms of environment and economy, twined with big social influence, thus studies on food waste are essential and meanwhile very complicated According to Food and Agriculture Organization of the United Nations (FAO), 1.3 billion ton/year of food are wasted globally, which has a total carbon footprint of 4.4 GtCO2 eq per year with a cost of USD 411 billion. According to statistics, China has roughly 195 million tons food waste per year, which is huge. Life Cycle Assessment (LCA), which is an internationally standardized method by ISO for assessment of product and process, has been applied in food sectors to evaluate the different environmental influence, energy use etc. This paper analyzed some of the LCA application on the different parts of the food supply chain (production, post-harvest handling, the storage and transportation, processing, the retail, and consumption) where food waste is generated and on the food waste disposal stage, looked into what has been studied in the context of China, and gave recommendations for LCA application for Chinese food waste problems: 1) More application of LCA on food waste should be made on the early stage of the food cycle rather than just the kitchen waste; 2) Besides global warming potentials, other environmental influences should be studied more at the same time; 3) Food waste treatment can be studied using LCA broadly considering mixture with other substrates and using different recycling methods; 4) LCA based on a local context with local data/inventory are strongly needed; 5) further more detailed studies to support an elevated food waste management, such as food waste profile can be developed.

  15. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nanotechnology in food processing sector-An assessment of emerging trends.

    PubMed

    Kalpana Sastry, R; Anshul, Shrivastava; Rao, N H

    2013-10-01

    Use of nanoscience based technology in the food industry is fast emerging as new area for research and development. Several research groups including private companies in the industry have initiated research programmes for exploring the wide scope of nanotechnology into the value chain of food processing and manufacturing. This paper discusses the current focus of research in this area and assesses its potential impacts. Using the developed relational database framework with R&D indicators like literature and patent documents for assessment of the potential of nanotechnology in food sector, a model to organize and map nanoresearch areas to the food processing sector was developed. The study indicates that the about five basic categories of nanotechnology applications and functionalities currently in the development of food sector, include food processing, packaging, nutraceuticals delivery, food safety and functional foods.

  17. Microbial food safety - modeling and applications

    USDA-ARS?s Scientific Manuscript database

    Microbial food safety is a key issue for the food processing industry, and enhancing food safety is everyone’s responsibility from food producers to consumers. Financial losses to the economy due to foodborne illness are in the billions of dollars, annually. Foodborne illness can be caused by patho...

  18. Tailoring Functional Chitosan-based Composites for Food Applications.

    PubMed

    Nunes, Cláudia; Coimbra, Manuel A; Ferreira, Paula

    2018-03-08

    Chitosan-based functional materials are emerging for food applications. The covalent bonding of molecular entities demonstrates to enhance resistance to the typical acidity of food assigning mechanical and moisture/gas barrier properties. Moreover, the grafting to chitosan of some functional molecules, like phenolic compounds or essential oils, gives antioxidant, antimicrobial, among others properties to chitosan. The addition of nanofillers to chitosan and other biopolymers improves the already mentioned required properties for food applications and can attribute electrical conductivity and magnetic properties for active and intelligent packaging. Electrical conductivity is a required property for the processing of food at low temperature using electric fields or for sensors application. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Locust bean gum: processing, properties and food applications--a review.

    PubMed

    Barak, Sheweta; Mudgil, Deepak

    2014-05-01

    Locust bean gum or carob gum is a galactomannan obtained from seed endosperm of carob tree i.e. Ceratonia siliqua. It is widely utilized as an additive in various industries such as food, pharmaceuticals, paper, textile, oil well drilling and cosmetics. Industrial applications of locust bean gum are due to its ability to form hydrogen bonding with water molecule. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer due to its dietary fiber action. This article focuses on production, processing, composition, properties, food applications and health benefits of locust bean gum. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Surface processing: existing and potential applications of ultraviolet light.

    PubMed

    Manzocco, Lara; Nicoli, Maria Cristina

    2015-01-01

    Solid foods represent optimal matrices for ultraviolet processing with effects well beyond nonthermal surface disinfection. UV radiation favors hormetic response in plant tissues and degradation of toxic compound on the product surface. Photoinduced reactions can also provide unexplored possibilities to steer structure and functionality of food biopolymers. The possibility to extensively exploit this technology will depend on availability of robust information about efficacious processing conditions and adequate strategies to completely and homogeneously process food surface.

  1. Development of an Edible Antimicrobial Coating for Perishable Foods

    USDA-ARS?s Scientific Manuscript database

    Foods, particularly fresh produces, are vulnerable to bacterial contamination during processing, transportation, and handling in grocery stores and at home. Food grade antimicrobial coating on perishable foods is promising new area of research and practical applications. In this study, we develope...

  2. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    PubMed Central

    Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba

    2010-01-01

    The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407

  3. Extremozymes from metagenome: Potential applications in food processing.

    PubMed

    Khan, Mahejibin; Sathya, T A

    2017-06-12

    The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.

  4. Perspective of Micro Process Engineering for Thermal Food Treatment

    PubMed Central

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature–time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured. PMID:29686990

  5. Landmarks in the historical development of twenty first century food processing technologies.

    PubMed

    Misra, N N; Koubaa, Mohamed; Roohinejad, Shahin; Juliano, Pablo; Alpas, Hami; Inácio, Rita S; Saraiva, Jorge A; Barba, Francisco J

    2017-07-01

    Over a course of centuries, various food processing technologies have been explored and implemented to provide safe, fresher-tasting and nutritive food products. Among these technologies, application of emerging food processes (e.g., cold plasma, pressurized fluids, pulsed electric fields, ohmic heating, radiofrequency electric fields, ultrasonics and megasonics, high hydrostatic pressure, high pressure homogenization, hyperbaric storage, and negative pressure cavitation extraction) have attracted much attention in the past decades. This is because, compared to their conventional counterparts, novel food processes allow a significant reduction in the overall processing times with savings in energy consumption, while ensuring food safety, and ample benefits for the industry. Noteworthily, industry and university teams have made extensive efforts for the development of novel technologies, with sound scientific knowledge of their effects on different food materials. The main objective of this review is to provide a historical account of the extensive efforts and inventions in the field of emerging food processing technologies since their inception to present day. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Extension of Space Food Shelf Life Through Hurdle Approach

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Sirmons, T. A.; Froio-Blumsack, D.; Mohr, L.; Young, M.; Douglas, G. L.

    2018-01-01

    The processed and prepackaged space food system is the main source of crew nutrition, and hence central to astronaut health and performance. Unfortunately, space food quality and nutrition degrade to unacceptable levels in two to three years with current food stabilization technologies. Future exploration missions will require a food system that remains safe, acceptable and nutritious through five years of storage within vehicle resource constraints. The potential of stabilization technologies (alternative storage temperatures, processing, formulation, ingredient source, packaging, and preparation procedures), when combined in hurdle approach, to mitigate quality and nutritional degradation is being assessed. Sixteen representative foods from the International Space Station food system were chosen for production and analysis and will be evaluated initially and at one, three, and five years with potential for analysis at seven years if necessary. Analysis includes changes in color, texture, nutrition, sensory quality, and rehydration ratio when applicable. The food samples will be stored at -20 C, 4 C, and 21 C. Select food samples will also be evaluated at -80 C to determine the impacts of ultra-cold storage after one and five years. Packaging film barrier properties and mechanical integrity will be assessed before and after processing and storage. At the study conclusion, if tested hurdles are adequate, formulation, processing, and storage combinations will be uniquely identified for processed food matrices to achieve a five-year shelf life. This study will provide one of the most comprehensive investigations of long duration food stability ever completed, and the achievement of extended food system stability will have profound impacts to health and performance for spaceflight crews and for relief efforts and military applications on Earth.

  7. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond

    PubMed Central

    Falenski, Alexander; Weiser, Armin A.; Thöns, Christian; Appel, Bernd; Käsbohrer, Annemarie; Filter, Matthias

    2015-01-01

    In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations. PMID:26247028

  8. Towards a Food Safety Knowledge Base Applicable in Crisis Situations and Beyond.

    PubMed

    Falenski, Alexander; Weiser, Armin A; Thöns, Christian; Appel, Bernd; Käsbohrer, Annemarie; Filter, Matthias

    2015-01-01

    In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential effects of a specific contamination event and thus enable them to deduce the appropriate mitigation measures. One efficient strategy supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety knowledge base concept will also be useful in food quality and safety investigations.

  9. Challenges of UV light processing of low UVT foods and beverages

    NASA Astrophysics Data System (ADS)

    Koutchma, Tatiana

    2010-08-01

    Ultraviolet (UV) technology holds promise as a low cost non-thermal alternative to heat pasteurization of liquid foods and beverages. However, its application for foods is still limited due to low UV transmittance (LUVT). LUVT foods have a diverse range of chemical (pH, Brix, Aw), physical (density and viscosity) and optical properties (absorbance and scattering) that are critical for systems and process designs. The commercially available UV sources tested for foods include low and medium pressure mercury lamps (LPM and MPM), excimer and pulsed lamps (PUV). The LPM and excimer lamps are monochromatic sources whereas emission of MPM and PUV is polychromatic. The optimized design of UV-systems and UV-sources with parameters that match to specific product spectra have a potential to make UV treatments of LUVT foods more effective and will serve its further commercialization. In order to select UV source for specific food application, processing effects on nutritional, quality, sensorial and safety markers have to be evaluated. This paper will review current status of UV technology for food processing along with regulatory requirements. Discussion of approaches and results of measurements of chemico-physical and optical properties of various foods (fresh juices, milk, liquid whey proteins and sweeteners) that are critical for UV process and systems design will follow. Available UV sources did not prove totally effective either resulting in low microbial reduction or UV over-dosing of the product thereby leading to sensory changes. Beam shaping of UV light presents new opportunities to improve dosage uniformity and delivery of UV photons in LUVT foods.

  10. Alternative Food Preservation Techniques, New Technology in Food Preparation and Appropriateness of Food Supply for the Permanently Manned Space Station

    NASA Technical Reports Server (NTRS)

    Whelan, R. H.

    1985-01-01

    Alternative food preservation techniques are defined as unique processes and combinations of currently used processes for food preservation. Food preservation is the extension of the useful shelf-life of normally perishable foods (from harvest to final consumption) by controlling micro-organisms, enzymes, chemical changes, changes in sensory characteristics and the prevention of subsequent recontamination. The resulting products must comply with all applicable food manufacturing practice regulations and be safe. Most of the foods currently used in both space and military feeding are stabilized either by dehydration or the use of a terminal sterilization process. Other available options would be formulation to reduce water activity, the refrigeration and freezing of perishable foods, chemical addition, and physical treatment (ionizing or nonionizing radiation or mechanical action). These alternatives are considered and proposals made.

  11. Applications of Electromigration Techniques: Applications of Electromigration Techniques in Food Analysis

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr; Ligor, Magdalena; Buszewski, Bogusław

    Electromigration techniques, including capillary electrophoresis (CE), are widely used for separation and identification of compounds present in food products. These techniques may also be considered as alternate and complementary with respect to commonly used analytical techniques, such as high-performance liquid chromatography (HPLC), or gas chromatography (GC). Applications of CE concern the determination of high-molecular compounds, like polyphenols, including flavonoids, pigments, vitamins, food additives (preservatives, antioxidants, sweeteners, artificial pigments) are presented. Also, the method developed for the determination of proteins and peptides composed of amino acids, which are basic components of food products, are studied. Other substances such as carbohydrates, nucleic acids, biogenic amines, natural toxins, and other contaminations including pesticides and antibiotics are discussed. The possibility of CE application in food control laboratories, where analysis of the composition of food and food products are conducted, is of great importance. CE technique may be used during the control of technological processes in the food industry and for the identification of numerous compounds present in food. Due to the numerous advantages of the CE technique it is successfully used in routine food analysis.

  12. Food applications of natural antimicrobial compounds.

    PubMed

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application.

  13. Food applications of natural antimicrobial compounds

    PubMed Central

    Lucera, Annalisa; Costa, Cristina; Conte, Amalia; Del Nobile, Matteo A.

    2012-01-01

    In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application. PMID:23060862

  14. Recent advances in applied nanoscience for food safety

    USDA-ARS?s Scientific Manuscript database

    Ongoing developments in nanotechnology offer potential to transform agriculture in several areas, including food safety, quality, packaging, product traceability, food processing, and bioactive delivery. These nanoscience-based applications utilize the unique properties of materials with a dimension...

  15. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.

    PubMed

    Sulakvelidze, Alexander

    2013-10-01

    Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. © 2013 Society of Chemical Industry.

  16. Inactivation of pathogenic bacteria in food matrices: high pressure processing, photodynamic inactivation and pressure-assisted photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Cunha, A.; Couceiro, J.; Bonifácio, D.; Martins, C.; Almeida, A.; Neves, M. G. P. M. S.; Faustino, M. A. F.; Saraiva, J. A.

    2017-09-01

    Traditional food processing methods frequently depend on the application of high temperature. However, heat may cause undesirable changes in food properties and often has a negative impact on nutritional value and organoleptic characteristics. Therefore, reducing the microbial load without compromising the desirable properties of food products is still a technological challenge. High-pressure processing (HPP) can be classified as a cold pasteurization technique, since it is a non-thermal food preservation method that uses hydrostatic pressure to inactivate spoilage microorganisms. At the same time, it increases shelf life and retains the original features of food. Photodynamic inactivation (PDI) is also regarded as promising approach for the decontamination of food matrices. In this case, the inactivation of bacterial cells is achieved by the cytotoxic effects of reactive oxygens species (ROS) produced from the combined interaction of a photosensitizer molecule, light and oxygen. This short review examines some recent developments on the application of HPP and PDI with food-grade photosensitizers for the inactivation of listeriae, taken as a food pathogen model. The results of a proof-of-concept trial of the use of high-pressure as a coadjutant to increase the efficiency of photodynamic inactivation of bacterial endospores is also addressed.

  17. Eating behaviour associated with differences in conflict adaptation for food pictures.

    PubMed

    Husted, Margaret; Banks, Adrian P; Seiss, Ellen

    2016-10-01

    The goal conflict model of eating (Stroebe, Mensink, Aarts, Schut, & Kruglanski, 2008) proposes differences in eating behaviour result from peoples' experience of holding conflicting goals of eating enjoyment and weight maintenance. However, little is understood about the relationship between eating behaviour and the cognitive processes involved in conflict. This study aims to investigate associations between eating behaviour traits and cognitive conflict processes, specifically the application of cognitive control when processing distracting food pictures. A flanker task using food and non-food pictures was used to examine individual differences in conflict adaptation. Participants responded to target pictures whilst ignoring distracting flanking pictures. Individual differences in eating behaviour traits, attention towards target pictures, and ability to apply cognitive control through adaptation to conflicting picture trials were analysed. Increased levels of external and emotional eating were related to slower responses to food pictures indicating food target avoidance. All participants showed greater distraction by food compared to non-food pictures. Of particular significance, increased levels of emotional eating were associated with greater conflict adaptation for conflicting food pictures only. Emotional eaters demonstrate greater application of cognitive control for conflicting food pictures as part of a food avoidance strategy. This could represent an attempt to inhibit their eating enjoyment goal in order for their weight maintenance goal to dominate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Food safety and nutritional quality for the prevention of non communicable diseases: the Nutrient, hazard Analysis and Critical Control Point process (NACCP).

    PubMed

    Di Renzo, Laura; Colica, Carmen; Carraro, Alberto; Cenci Goga, Beniamino; Marsella, Luigi Tonino; Botta, Roberto; Colombo, Maria Laura; Gratteri, Santo; Chang, Ting Fa Margherita; Droli, Maurizio; Sarlo, Francesca; De Lorenzo, Antonino

    2015-04-23

    The important role of food and nutrition in public health is being increasingly recognized as crucial for its potential impact on health-related quality of life and the economy, both at the societal and individual levels. The prevalence of non-communicable diseases calls for a reformulation of our view of food. The Hazard Analysis and Critical Control Point (HACCP) system, first implemented in the EU with the Directive 43/93/CEE, later replaced by Regulation CE 178/2002 and Regulation CE 852/2004, is the internationally agreed approach for food safety control. Our aim is to develop a new procedure for the assessment of the Nutrient, hazard Analysis and Critical Control Point (NACCP) process, for total quality management (TMQ), and optimize nutritional levels. NACCP was based on four general principles: i) guarantee of health maintenance; ii) evaluate and assure the nutritional quality of food and TMQ; iii) give correct information to the consumers; iv) ensure an ethical profit. There are three stages for the application of the NACCP process: 1) application of NACCP for quality principles; 2) application of NACCP for health principals; 3) implementation of the NACCP process. The actions are: 1) identification of nutritional markers, which must remain intact throughout the food supply chain; 2) identification of critical control points which must monitored in order to minimize the likelihood of a reduction in quality; 3) establishment of critical limits to maintain adequate levels of nutrient; 4) establishment, and implementation of effective monitoring procedures of critical control points; 5) establishment of corrective actions; 6) identification of metabolic biomarkers; 7) evaluation of the effects of food intake, through the application of specific clinical trials; 8) establishment of procedures for consumer information; 9) implementation of the Health claim Regulation EU 1924/2006; 10) starting a training program. We calculate the risk assessment as follows: Risk (R) = probability (P) × damage (D). The NACCP process considers the entire food supply chain "from farm to consumer"; in each point of the chain it is necessary implement a tight monitoring in order to guarantee optimal nutritional quality.

  19. Superchilling of muscle foods: Potential alternative for chilling and freezing.

    PubMed

    Banerjee, Rituparna; Maheswarappa, Naveena Basappa

    2017-12-05

    Superchilling is an attractive technique for preservation of muscle foods which freezes part of the water and insulate the food products from temperature fluctuations thereby enhancing the shelf-life during storage, transportation and retailing. Superchilling process synergistically improves the product shelf-life when used in combination with vacuum or modified atmospheric packaging. The shelf-life of muscle foods was reported to be increased by 1.5 to 4.0 times relative to traditional chilling technique. Advantages of superchilling and its ability to maintain the freshness of muscle foods over freezing has been discussed and its potential for Industrial application is highlighted. Present review also unravel the mechanistic bases for ice-crystal formation during superchilling and measures to ameliorate the drip loss. The future challenges especially automation in superchilling process for large scale Industrial application is presented.

  20. Modeling Land Application of Food-Processing Wastewater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.

    2007-12-01

    California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.

  1. Trends and advances in food analysis by real-time polymerase chain reaction.

    PubMed

    Salihah, Nur Thaqifah; Hossain, Mohammad Mosharraf; Lubis, Hamadah; Ahmed, Minhaz Uddin

    2016-05-01

    Analyses to ensure food safety and quality are more relevant now because of rapid changes in the quantity, diversity and mobility of food. Food-contamination must be determined to maintain health and up-hold laws, as well as for ethical and cultural concerns. Real-time polymerase chain reaction (RT-PCR), a rapid and inexpensive quantitative method to detect the presence of targeted DNA-segments in samples, helps in determining both accidental and intentional adulterations of foods by biological contaminants. This review presents recent developments in theory, techniques, and applications of RT-PCR in food analyses, RT-PCR addresses the limitations of traditional food analyses in terms of sensitivity, range of analytes, multiplexing ability, cost, time, and point-of-care applications. A range of targets, including species of plants or animals which are used as food ingredients, food-borne bacteria or viruses, genetically modified organisms, and allergens, even in highly processed foods can be identified by RT-PCR, even at very low concentrations. Microfluidic RT-PCR eliminates the separate sample-processing step to create opportunities for point-of-care analyses. We also cover the challenges related to using RT-PCR for food analyses, such as the need to further improve sample handling.

  2. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  3. Effect of high hydrostatic pressure on background microflora and furan formation in fruit purée based baby foods.

    PubMed

    Kultur, Gulcin; Misra, N N; Barba, Francisco J; Koubaa, Mohamed; Gökmen, Vural; Alpas, Hami

    2018-03-01

    The baby foods industry is currently seeking technologies to pasteurize products without formation of processing contaminants such as furan. This work demonstrates the applicability of high hydrostatic pressure (HHP) as a non-thermal decontamination intervention for fruit purée based baby foods. HHP processing was evaluated at 200, 300, and 400 MPa pressures, for 5, 10 and 15 min of treatment times at 25, 35 and 45 °C. HHP application at 400 MPa, 45 °C for 15 min ensured complete inactivation (about 6 log 10 ) of total mesophilic aerophiles, as well as yeasts and molds. No furan was detected in HHP processed products. Thus, the key advantage of HHP over thermal processing is the ability to achieve commercially acceptable microbiological inactivation while avoiding the formation of processing contaminants such as furan.

  4. Trends in Food Packaging.

    ERIC Educational Resources Information Center

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  5. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    PubMed

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  6. Mathematical modeling of heat treatment processes conserving biological activity of plant bioresources

    NASA Astrophysics Data System (ADS)

    Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.

    2018-05-01

    The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the evolution profiles of temperature fields, which enable one to analyze the efficiency of the regime parameters of heat treatment.

  7. Bacteriophage Applications for Food Production and Processing

    PubMed Central

    Moye, Zachary D.; Woolston, Joelle; Sulakvelidze, Alexander

    2018-01-01

    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods. PMID:29671810

  8. Microbial oil - A plausible alternate resource for food and fuel application.

    PubMed

    Bharathiraja, B; Sridharan, Sridevi; Sowmya, V; Yuvaraj, D; Praveenkumar, R

    2017-06-01

    Microbes have recourse to low-priced substrates like agricultural wastes and industrial efflux. A pragmatic approach towards an emerging field- the exploitation of microbial oils for biodiesel production, pharmaceutical and cosmetic applications, food additives, biopolymer production will be of immense remunerative significance in the near future. Due to high free fatty acid, nutritive content and simpler solvent extraction processes of microbial oils with plant oil, microbial oils can back plant oils in food applications. The purpose of this review is to evaluate the opulence of lipid production in native and standard micro-organisms and also to emphasize the vast array of applications including food and fuel by obtaining maximum yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides.

    PubMed

    Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K

    2016-02-01

    Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

  10. The threshold of regulation and its application to indirect food additive contaminants in recycled plastics.

    PubMed

    Bayer, F L

    1997-01-01

    Recycled plastics have been used in food-contact applications since 1990 in various countries around the world. To date, there have been no reported issues concerning health or off-taste resulting from the use of recycled plastics in food-contact applications. This is due to the fact that the criteria that have been established regarding safety and processing are based on extremely high standards that render the finished recycled material equivalent in virtually all aspects to virgin polymers. The basis for this conclusion is detailed in this document.

  11. Electroporation in food processing and biorefinery.

    PubMed

    Mahnič-Kalamiza, Samo; Vorobiev, Eugène; Miklavčič, Damijan

    2014-12-01

    Electroporation is a method of treatment of plant tissue that due to its nonthermal nature enables preservation of the natural quality, colour and vitamin composition of food products. The range of processes where electroporation was shown to preserve quality, increase extract yield or optimize energy input into the process is overwhelming, though not exhausted; e.g. extraction of valuable compounds and juices, dehydration, cryopreservation, etc. Electroporation is--due to its antimicrobial action--a subject of research as one stage of the pasteurization or sterilization process, as well as a method of plant metabolism stimulation. This paper provides an overview of electroporation as applied to plant materials and electroporation applications in food processing, a quick summary of the basic technical aspects on the topic, and a brief discussion on perspectives for future research and development in the field. The paper is a review in the very broadest sense of the word, written with the purpose of orienting the interested newcomer to the field of electroporation applications in food technology towards the pertinent, highly relevant and more in-depth literature from the respective subdomains of electroporation research.

  12. Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications.

    PubMed

    Puértolas, E; Luengo, E; Álvarez, I; Raso, J

    2012-01-01

    The mass transfer phenomenon occurs in many operations of the food industry with the purpose of obtaining a given substance of interest, removing water from foods, or introducing a given substance into the food matrix. Pretreatments that modify the permeability of the cell membranes, such as grinding, heating, or enzymatic treatment, enhance the mass transfer. However, these techniques may require a significant amount of energy and can cause losses of valuable food compounds. Pulsed electric field (PEF) technology is a nonthermal processing method that causes permeabilization of cell membranes using low energy requirements and minimizing quality deterioration of the food compounds. Many practical applications of PEF for enhancing mass transfer in the food industry have been investigated. The purpose of this chapter is to give an overview of the state of the art of application of PEF for improving mass transfer in the food industry.

  13. Questioning Reality, Questioning Science: Teaching Students in the Food and Agricultural Sciences about Epistemological, Ethical, and Empirical Controversies

    ERIC Educational Resources Information Center

    Chiles, Roburt; Coupland, John Neil

    2017-01-01

    The effective application of food science depends on social constraints, yet the training for food scientists does not adequately consider the contested social context under which food is processed, packaged, and prepared. We recently co-taught a new course ("Arguing about food") intended to introduce students to critical perspectives on…

  14. Applications of DART-MS for food quality and safety assurance in food supply chain.

    PubMed

    Guo, Tianyang; Yong, Wei; Jin, Yong; Zhang, Liya; Liu, Jiahui; Wang, Sai; Chen, Qilong; Dong, Yiyang; Su, Haijia; Tan, Tianwei

    2017-03-01

    Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017. © 2015 Wiley Periodicals, Inc.

  15. Electrostatic application of antimicrobial sprays to sanitize food handling and processing surfaces for enhanced food safety

    NASA Astrophysics Data System (ADS)

    Lyons, Shawn M.; Harrison, Mark A.; Law, S. Edward

    2011-06-01

    Human illnesses and deaths caused by foodborne pathogens (e.g., Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7, etc.) are of increasing concern globally in maintaining safe food supplies. At various stages of the food production, processing and supply chain antimicrobial agents are required to sanitize contact surfaces. Additionally, during outbreaks of contagious pathogenic microorganisms (e.g., H1N1 influenza), public health requires timely decontamination of extensive surfaces within public schools, mass transit systems, etc. Prior publications verify effectiveness of air-assisted, induction-charged (AAIC) electrostatic spraying of various chemical and biological agents to protect on-farm production of food crops...typically doubling droplet deposition efficiency with concomitant increases in biological control efficacy. Within a biosafety facility this present work evaluated the AAIC electrostatic-spraying process for application of antimicrobial liquids onto various pathogen-inoculated food processing and handling surfaces as a food safety intervention strategy. Fluoroanalysis of AAIC electrostatic sprays (-7.2 mC/kg charge-to-mass ratio) showed significantly greater (p<0.05) mass of tracer active ingredient (A.I.) deposited onto target surfaces at various orientations as compared both to a similar uncharged spray nozzle (0 mC/kg) and to a conventional hydraulic-atomizing nozzle. Per unit mass of A.I. dispensed toward targets, for example, A.I. mass deposited by AAIC electrostatic sprays onto difficult to coat backsides was 6.1-times greater than for similar uncharged sprays and 29.0-times greater than for conventional hydraulic-nozzle sprays. Even at the 56% reduction in peracetic acid sanitizer A.I. dispensed by AAIC electrostatic spray applications, they achieved equal or greater CFU population reductions of Salmonella on most target orientations and materials as compared to uncharged sprays and conventional full-rate hydraulic-nozzle sprays.

  16. Fabrication, functionalization, and application of electrospun biopolymer nanofibers.

    PubMed

    Kriegel, Christina; Arecchi, Alessandra; Arrechi, Alessandra; Kit, Kevin; McClements, D J; Weiss, Jochen

    2008-09-01

    The use of novel nanostructured materials has attracted considerable interest in the food industry for their utilization as highly functional ingredients, high-performance packaging materials, processing aids, and food quality and safety sensors. Most previous application interest has focused on the development of nanoparticles. However, more recently, the ability to produce non-woven mats composed of nanofibers that can be used in food applications is beginning to be investigated. Electrospinning is a novel fabrication technique that can be used to produce fibers with diameters below 100 nm from (bio-) polymer solutions. These nanofibers have been shown to possess unique properties that distinguish them from non-woven fibers produced by other methods, e.g., melt-blowing. This is because first the process involved results in a high orientation of polymers within the fibers that leads to mechanically superior properties, e.g., increased tensile strengths. Second, during the spinning of the fibers from polymer solutions, the solvent is rapidly evaporated allowing the production of fibers composed of polymer blends that would typically phase separate if spun with other processes. Third, the small dimensions of the fibers lead to very high specific surface areas. Because of this the fiber properties may be greatly influenced by surface properties giving rise to fiber functionalities not found in fibers of larger sizes. For food applications, the fibers may find uses as ingredients if they are composed solely of edible polymers and GRAS ingredients, (e.g., fibers could contain functional ingredients such as nutraceuticals, antioxidants, antimicrobials, and flavors), as active packaging materials or as processing aids (e.g., catalytic reactors, membranes, filters (Lala et al., 2007), and sensors (Manesh et al., 2007; Ren et al., 2006; Sawicka et al., 2005). This review is therefore intended to introduce interested food and agricultural scientists to the concept of nano-fiber manufacturing with a particular emphasis on the use of biopolymers. We will review typical fabrication set-ups, discuss the influence of process conditions on nanofiber properties, and then review previous studies that describe the production of biopolymer-based nanofibers. Finally we briefly discuss emerging methods to further functionalize fibers and discuss potential applications in the area of food science and technology.

  17. Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications

    USDA-ARS?s Scientific Manuscript database

    Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...

  18. Ozone processing of foods and beverages

    USDA-ARS?s Scientific Manuscript database

    Ozone has a long history of use as a disinfectant in food and beverage processing. In the United States, the application of ozone to disinfect bottled water was approved as Generally Recognized As Safe (GRAS) in 1982. Later it was approved as a sanitizing agent for bottled water treatment lines. Ozo...

  19. 50 CFR 260.90 - Compliance with other laws.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 11 2014-10-01 2014-10-01 false Compliance with other laws. 260.90... Fishery Products for Human Consumption Miscellaneous § 260.90 Compliance with other laws. None of the... municipal laws applicable to the operation of food processing establishments and to processed food products. ...

  20. Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing.

    PubMed

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2015-01-01

    High-power ultrasound is a versatile technology which can potentially be used in many food processing applications including food preservation. This is part 2 of a series of review articles dealing with the effectiveness of nonthermal food processing technologies in food preservation focusing on their effect on enzymes. Typically, ultrasound treatment alone does not efficiently cause microbial or enzyme inactivation sufficient for food preservation. However, combined with mild heat with or without elevated pressure (P ≤ 500 kPa), ultrasound can effectively inactivate enzymes and microorganisms. Synergistic effects between ultrasound and mild heat have been reported for the inactivation of both enzymes and microorganisms. The application of ultrasound has been shown to enhance the rate of inactivation of quality degrading enzymes including pectin methylesterase (PME), polygalacturonase (PG), peroxidase (POD), polyphenol oxidase (PPO), and lipoxygenase (LOX) at mild temperature by up to 400 times. Moreover, ultrasound enables the inactivation of relatively heat-resistant enzymes such as tomato PG1 and thermostable orange PME at mild temperature conditions. The extent to which ultrasound enhances the inactivation rate depends on the type of enzyme, the medium in which the enzyme is suspended, and the processing condition including frequency, ultrasonic intensity, temperature, and pressure. The physical and chemical effects of cavitation are considered to be responsible for the ultrasound-induced inactivation of enzymes, although the dominant mechanism depends on the structure of the enzyme.

  1. Review of the regulation and safety assessment of food substances in various countries and jurisdictions.

    PubMed

    Magnuson, Bernadene; Munro, Ian; Abbot, Peter; Baldwin, Nigel; Lopez-Garcia, Rebeca; Ly, Karen; McGirr, Larry; Roberts, Ashley; Socolovsky, Susan

    2013-01-01

    This review compares the regulations, definitions and approval processes for substances intentionally added to or unintentionally present in human food in the following specific countries/jurisdictions: Argentina, Australia, Brazil, Canada, China, the European Union, Japan, Mexico, New Zealand, and the United States. This includes direct food additives, food ingredients, flavouring agents, food enzymes and/or processing aids, food contact materials, novel foods, and nanoscale materials for food applications. The regulatory authority of each target jurisdiction/country uses its own regulatory framework and although the definitions, regulations and approval processes may vary among all target countries, in general there are many similarities. In all cases, the main purpose of each authority is to establish a regulatory framework and maintain/enforce regulations to ensure that food consumed and sold within its respective countries is safe. There is a move towards harmonisation of food regulations, as illustrated by Australia and New Zealand and by Mercosur. The European Union has also established regulations, which are applicable for all member states, to establish a common authorisation procedure for direct food additives, flavourings and enzymes. Although the path for approval of different categories of food additives varies from jurisdiction to jurisdiction, there are many commonalities in terms of the data requirements and considerations for assessment of the safety of use of food additives, including the use of positive lists of approved substances, pre-market approval, and a separation between science and policy decisions. The principles applied are largely reflective of the early work by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) committees and JECFA assessments of the safety of food additives for human and animal foods.

  2. Review of the regulation and safety assessment of food substances in various countries and jurisdictions

    PubMed Central

    Magnuson, Bernadene; Munro, Ian; Abbot, Peter; Baldwin, Nigel; Lopez-Garcia, Rebeca; Ly, Karen; McGirr, Larry; Roberts, Ashley; Socolovsky, Susan

    2013-01-01

    This review compares the regulations, definitions and approval processes for substances intentionally added to or unintentionally present in human food in the following specific countries/jurisdictions: Argentina, Australia, Brazil, Canada, China, the European Union, Japan, Mexico, New Zealand, and the United States. This includes direct food additives, food ingredients, flavouring agents, food enzymes and/or processing aids, food contact materials, novel foods, and nanoscale materials for food applications. The regulatory authority of each target jurisdiction/country uses its own regulatory framework and although the definitions, regulations and approval processes may vary among all target countries, in general there are many similarities. In all cases, the main purpose of each authority is to establish a regulatory framework and maintain/enforce regulations to ensure that food consumed and sold within its respective countries is safe. There is a move towards harmonisation of food regulations, as illustrated by Australia and New Zealand and by Mercosur. The European Union has also established regulations, which are applicable for all member states, to establish a common authorisation procedure for direct food additives, flavourings and enzymes. Although the path for approval of different categories of food additives varies from jurisdiction to jurisdiction, there are many commonalities in terms of the data requirements and considerations for assessment of the safety of use of food additives, including the use of positive lists of approved substances, pre-market approval, and a separation between science and policy decisions. The principles applied are largely reflective of the early work by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) committees and JECFA assessments of the safety of food additives for human and animal foods. PMID:23781843

  3. 7 CFR 252.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... means the price assigned by the Department to a donated food which reflects the Department's current acquisition price, transportation and, if applicable, processing costs related to the food. Distributing.... Donated food value return system means a system used by a processor or distributor to reduce the price of...

  4. Bacteriocins: Recent Trends and Potential Applications.

    PubMed

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Kennedy, John F

    2016-01-01

    In the modern era, there is great need for food preservation in both developing and developed countries due to increasing demand for extending shelf life and prevention of spoilage of food material. With the emergence of new pathogens and ability of micro-organisms to undergo changes, exploration of new avenues for the food preservation has gained importance. Moreover, awareness among consumers regarding harmful effects of chemical preservatives has been increased. Globally, altogether there is increasing demand by consumers for chemical-free and minimal processed food products. Potential of bacteriocin and its application in reducing the microbiological spoilages and in the preservation of food is long been recognized. Bacteriocins are normally specific to closely related species without disrupting the growth of other microbial populations. A number of applications of bacteriocin have been reported for humans, live stock, aquaculture etc. This review is focused on recent trends and applications of bacteriocins in different areas in addition to their biopreservative potential.

  5. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods.

    PubMed

    Bahado-Singh, P S; Wheatley, A O; Ahmad, M H; Morrison, E Y St A; Asemota, H N

    2006-09-01

    Glycaemic index (GI) values for fourteen commonly eaten carbohydrate-rich foods processed by various methods were determined using ten healthy subjects. The foods studied were round leaf yellow yam (Dioscorea cayenensis), negro and lucea yams (Dioscorea rotundata), white and sweet yams (Dioscorea alata), sweet potato (Solanum tuberosum), Irish potato (Ipomoea batatas), coco yam (Xanthosoma spp.), dasheen (Colocasia esculenta), pumpkin (Cucurbita moschata), breadfruit (Artocarpus altilis), green banana (Musa sapientum), and green and ripe plantain (Musa paradisiaca). The foods were processed by boiling, frying, baking and roasting where applicable. Pure glucose was used as the standard with a GI value of 100. The results revealed marked differences in GI among the different foods studied ranging from 35 (se 3) to 94 (se 8). The area under the glucose response curve and GI value of some of the roasted and baked foods were significantly higher than foods boiled or fried (P<0.05). The results indicate that foods processed by roasting or baking may result in higher GI. Conversely, boiling of foods may contribute to a lower GI diet.

  6. Bio-markers: traceability in food safety issues.

    PubMed

    Raspor, Peter

    2005-01-01

    Research and practice are focusing on development, validation and harmonization of technologies and methodologies to ensure complete traceability process throughout the food chain. The main goals are: scale-up, implementation and validation of methods in whole food chains, assurance of authenticity, validity of labelling and application of HACCP (hazard analysis and critical control point) to the entire food chain. The current review is to sum the scientific and technological basis for ensuring complete traceability. Tracing and tracking (traceability) of foods are complex processes due to the (bio)markers, technical solutions and different circumstances in different technologies which produces various foods (processed, semi-processed, or raw). Since the food is produced for human or animal consumption we need suitable markers to be stable and traceable all along the production chain. Specific biomarkers can have a function in technology and in nutrition. Such approach would make this development faster and more comprehensive and would make possible that food effect could be monitored with same set of biomarkers in consumer. This would help to develop and implement food safety standards that would be based on real physiological function of particular food component.

  7. Industrial storage applications overview

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.

    1980-01-01

    The implementation of a technology demonstration for the food processing industry, development and technology demonstrations for selected near-term, in-plant applications and advanced industrial applications of thermal energy storage are overviewed.

  8. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-03-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  9. High pressure processing and its application to the challenge of virus-contaminated foods.

    PubMed

    Kingsley, David H

    2013-03-01

    High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP's potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such as shellfish and produce. The sensitivity of a number of different picornaviruses to HPP is variable. Experiments suggest that HPP inactivates viruses via denaturation of capsid proteins which render the virus incapable of binding to its receptor on the surface of its host cell. Beyond the primary consideration of treatment pressure level, the effects of extending treatment times, temperature of initial pressure application, and matrix composition have been identified as critical parameters for designing HPP inactivation strategies. Research described here can serve as a preliminary guide to whether a current commercial process could be effective against HuNoV or HAV.

  10. Praedicere Possumus: An Italian web-based application for predictive microbiology to ensure food safety.

    PubMed

    Polese, Pierluigi; Torre, Manuela Del; Stecchini, Mara Lucia

    2018-03-31

    The use of predictive modelling tools, which mainly describe the response of microorganisms to a particular set of environmental conditions, may contribute to a better understanding of microbial behaviour in foods. In this paper, a tertiary model, in the form of a readily available and userfriendly web-based application Praedicere Possumus (PP) is presented with research examples from our laboratories. Through the PP application, users have access to different modules, which apply a set of published models considered reliable for determining the compliance of a food product with EU safety criteria and for optimising processing throughout the identification of critical control points. The application pivots around a growth/no-growth boundary model, coupled with a growth model, and includes thermal and non-thermal inactivation models. Integrated functionalities, such as the fractional contribution of each inhibitory factor to growth probability (f) and the time evolution of the growth probability (P t ), have also been included. The PP application is expected to assist food industry and food safety authorities in their common commitment towards the improvement of food safety.

  11. Solar energy in food processing-a critical appraisal.

    PubMed

    Eswara, Amruta R; Ramakrishnarao, M

    2013-04-01

    Increasing population and high cost of fuels have created opportunities for using alternate energies for post-harvest processing of foods. Solar food processing is an emerging technology that provides good quality foods at low or no additional fuel costs. A number of solar dryers, collectors and concentrators are currently being used for various steps in food processing and value addition. Society for Energy, Environment and Development (SEED) developed Solar Cabinet Dryer with forced circulation which has been used for dehydration and development of value added products from locally grown fruits, vegetables, leafy greens and forest produce. Drying under simulated shade conditions using UV-reducing Blue filter helps retain nutrients better. Its simple design and ease of handling makes SEED Solar Dryer an ideal choice for application of food processing in rural settings, closer to where the harvest is produced, eliminating the need for expensive transportation or storage of fresh produce. It also creates employment opportunities among the rural population, especially women. Other gadgets based on solar collectors and concentrators currently being used at various steps of food processing are reviewed.

  12. Food allergen selective thermal processing regimens may change oral tolerance in infancy.

    PubMed

    Kosti, R I; Triga, M; Tsabouri, S; Priftis, K N

    2013-01-01

    Food allergy can be considered a failure in the induction of oral tolerance. Recently, great interest has been focused on understanding the mechanisms and the contributing factors of oral tolerance development, hoping for new definitive interventions in the prevention and treatment of food allergy. Given that food processing may modify the properties and the nature of dietary proteins, several food processing methods could affect the allergenicity of these proteins and consequently may favour oral tolerance induction to food allergic children. Indeed, effective thermal food processing regimens of altering food proteins to reduce allergenicity have been recently reported in the literature. This article is mainly focused on the effect of selective thermal processing regimens on the main infant allergenic foods, with a potential clinical relevance on their allergenicity and therefore on oral tolerance induction. In the light of recent findings, the acquisition of tolerance in younger age and consequently the ability of young children to "outgrow" food allergy could be achieved through the application of selective thermal processing regimens on certain allergenic foods. Therefore, the ability of processed foods to circumvent clinical disease and at the same time to have an impact on the immune system and facilitate tolerance induction could be invaluable as a component of a successful therapeutic strategy. The opening in the new avenues of research in the use of processed foods in clinical practice for the amelioration of the impact on the quality of life of patients and possibly in food allergy prevention is warranted. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.

  13. A new perspective on microbial landscapes within food production

    PubMed Central

    Bokulich, Nicholas A; Lewis, Zachery T; Boundy-Mills, Kyria; Mills, David A

    2016-01-01

    High-throughput, ‘next-generation’ sequencing tools offer many exciting new possibilities for food research. From investigating microbial dynamics within food fermentations to the ecosystem of the food-processing built environment, amplicon sequencing, metagenomics, and transcriptomics present novel applications for exploring microbial communities in, on, and around our foods. This review discusses the many uses of these tools for food-related and food facility-related research and highlights where they may yield nuanced insight into the microbial world of food production systems. PMID:26773388

  14. Microbiological aspects related to the feasibility of PEF technology for food pasteurization.

    PubMed

    Saldaña, G; Álvarez, I; Condón, S; Raso, J

    2014-01-01

    Processing unit operations that seek to inactivate harmful microorganisms are of primary importance in ascertaining the safety of food. The capability of pulsed electric fields (PEF) to inactivate vegetative cells of microorganisms at temperatures below those used in thermal processing makes this technology very attractive as a nonthermal pasteurization process for the food industry. Commercial exploitation of this technology for food pasteurization requires the identification of the most PEF-resistant microorganisms that are of concern to public health. Then, the treatment conditions applicable at industrial scale that would reduce the population of these microorganisms to a level that guarantees food safety must be defined. The objective of this paper is to critically compile recent, relevant knowledge with the purpose of enhancing the feasibility of using PEF technology for food pasteurization and underlining the required research for designing PEF pasteurization processes.

  15. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review.

    PubMed

    De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier

    2016-12-01

    The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario.

    PubMed

    Camargo, Anderson Carlos; Woodward, Joshua John; Call, Douglas Ruben; Nero, Luís Augusto

    2017-11-01

    Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, utensils, floors, and drains, ultimately reaching final products by cross-contamination. This pathogen grows even under high salt conditions or refrigeration temperatures, remaining viable in various food products until the end of their shelf life. While the estimated incidence of listeriosis is lower than other enteric illnesses, infections caused by L. monocytogenes are more likely to lead to hospitalizations and fatalities. Despite the description of L. monocytogenes occurrence in Brazilian food-processing facilities and foods, there is a lack of consistent data regarding listeriosis cases and outbreaks directly associated with food consumption. Listeriosis requires rapid treatment with antibiotics and most drugs suitable for Gram-positive bacteria are effective against L. monocytogenes. Only a minority of clinical antibiotic-resistant L. monocytogenes strains have been described so far; whereas many strains recovered from food-processing facilities and foods exhibited resistance to antimicrobials not suitable against listeriosis. L. monocytogenes control in food industries is a challenge, demanding proper cleaning and application of sanitization procedures to eliminate this foodborne pathogen from the food-processing environment and ensure food safety. This review focuses on presenting the L. monocytogenes distribution in food-processing environment, food contamination, and control in the food industry, as well as the consequences of listeriosis to human health, providing a comparison of the current Brazilian situation with the international scenario.

  17. Uses of Laccases in the Food Industry

    PubMed Central

    Osma, Johann F.; Toca-Herrera, José L.; Rodríguez-Couto, Susana

    2010-01-01

    Laccases are an interesting group of multi copper enzymes, which have received much attention of researchers in the last decades due to their ability to oxidise both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. This makes these biocatalysts very useful for their application in several biotechnological processes, including the food industry. Thus, laccases hold great potential as food additives in food and beverage processing. Being energy-saving and biodegradable, laccase-based biocatalysts fit well with the development of highly efficient, sustainable, and eco-friendly industries. PMID:21048873

  18. Cereal bran fractionation: processing techniques for the recovery of functional components and their applications to the food industry.

    PubMed

    Soukoulis, Christos; Aprea, Eugenio

    2012-04-01

    Bran is the outer part of cereal grains that is separated during the cereals de-hulling and milling processes. It was considered in the past a by-product of cereal industry employed mainly as animal feed. Cereal bran, being particularly rich in different functional biopolymers, bio-active compounds and essential fatty acids, attracted the interest of pharmaceutical and food industry. Furthermore, the peculiar techno-functional properties of brans together with their particular physiological and nutritional aspects have led to a great interest in their incorporation as main or secondary components in different groups of food products including bakery and confectionery products, breakfast cereals and extruded foodstuffs, emulsions and functional dairy products and pasta products. In the first part of the present work the main fractionation processes, bran fractions properties and their physicochemical and technological properties are briefly reviewed. In the second part, relevant applications, with emphasis on patents, in food industry are reviewed as well.

  19. 40 CFR 407.80 - Applicability; description of the canned and miscellaneous specialties subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Miscellaneous Specialties Subcategory § 407.80...: Added ingredients; baby food; corn, potato, and tortilla chips; ethnic foods; jams and jellies...

  20. Proceedings of the 10th international symposium on polymer surface modification

    USDA-ARS?s Scientific Manuscript database

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. Although well-established in non-food applications for surface treatment and modification, cold plasma is a relatively new food safety intervention. As a nonthermal food processing te...

  1. Training Manual on Food Irradiation Technology and Techniques.

    ERIC Educational Resources Information Center

    United Nations Food and Agriculture Organization, Rome (Italy).

    This training manual consists of two parts. The first covers general information and outlines various applications of food irradiation technology. The second section details laboratory exercises used to demonstrate the principles of radiation processing and the effects of radiation treatment on certain types of food. The chapters outline…

  2. Plenary lecture: innovative modeling approaches applicable to risk assessments

    USDA-ARS?s Scientific Manuscript database

    Proper identification of safe and unsafe food at the processing plant is important for maximizing the public health benefit of food by ensuring both its consumption and safety. Risk assessment is a holistic approach to food safety that consists of four steps: 1) hazard identification; 2) exposure a...

  3. Radiation Preservation of Foods and Its Effect on Nutrients

    ERIC Educational Resources Information Center

    Josephson, Edward S.; Thomas, Miriam H.

    1970-01-01

    Presents a discussion of (1) some possible applications of ionizing radiation to the treatment and preservation of food and (2) the effects of irradiation on nutrients such as proteins, fats, oils, carbohydrates and vitamins. The authors suggest that the irradiation process has great potential in food technology. Bibliography. (LC)

  4. Emerging applications of low temperature gas plasmas in the food industry.

    PubMed

    Shaw, Alex; Shama, Gilbert; Iza, Felipe

    2015-06-16

    The global burden of foodborne disease due to the presence of contaminating micro-organisms remains high, despite some notable examples of their successful reduction in some instances. Globally, the number of species of micro-organisms responsible for foodborne diseases has increased over the past decades and as a result of the continued centralization of the food processing industry, outbreaks now have far reaching consequences. Gas plasmas offer a broad range of microbicidal capabilities that could be exploited in the food industry and against which microbial resistance would be unlikely to occur. In addition to reducing the incidence of disease by acting on the micro-organisms responsible for food spoilage, gas plasmas could also play a role in increasing the shelf-life of perishable foods and thereby reduce food wastage with positive financial and environmental implications. Treatment need not be confined to the food itself but could include food processing equipment and also the environment in which commercial food processing occurs. Moreover, gas plasmas could also be used to bring about the degradation of undesirable chemical compounds, such as allergens, toxins, and pesticide residues, often encountered on foods and food-processing equipment. The literature on the application of gas plasmas to food treatment is beginning to reveal an appreciation that attention needs also to be paid to ensuring that the key quality attributes of foods are not significantly impaired as a result of treatment. A greater understanding of both the mechanisms by which micro-organisms and chemical compounds are inactivated, and of the plasma species responsible for this is forming. This is significant, as this knowledge can then be used to design plasma systems with tailored compositions that will achieve maximum efficacy. Better understanding of the underlying interactions will also enable the design and implementation of control strategies capable of minimizing variations in plasma treatment efficacy despite perturbations in environmental and operational conditions.

  5. Application of elements of microbiological risk assessment in the food industry via a tiered approach.

    PubMed

    van Gerwen, Suzanne J C; Gorris, Leon G M

    2004-09-01

    Food safety control is a matter for concern for all parts of the food supply chain, including governments that develop food safety policy, food industries that must control potential hazards, and consumers who need to keep to the intended use of the food. In the future, food safety policy may be set using the framework of risk analysis, part of which is the development of (inter)national microbiological risk assessment (MRA) studies. MRA studies increase our understanding of the impact of risk management interventions and of the relationships among subsequent parts of food supply chains with regard to the safety of the food when it reaches the consumer. Application of aspects of MRA in the development of new food concepts has potential benefits for the food industry. A tiered approach to applying MRA can best realize these benefits. The tiered MRA approach involves calculation of microbial fate for a product and process design on the basis of experimental data (e.g., monitoring data on prevalence) and predictive microbiological models. Calculations on new product formulations and novel processing technologies provide improved understanding of microbial fate beyond currently known boundaries, which enables identification of new opportunities in process design. The outcome of the tiered approach focuses on developing benchmarks of potential consumer exposure to hazards associated with new products by comparison with exposure associated with products that are already on the market and have a safe history of use. The tiered prototype is a tool to be used by experienced microbiologists as a basis for advice to product developers and can help to make safety assurance for new food concepts transparent to food inspection services.

  6. Nanotechnologies in agriculture and food - an overview of different fields of application, risk assessment and public perception.

    PubMed

    Grobe, Antje; Rissanen, Mikko E

    2012-12-01

    Nanomaterials in agriculture and food are key issues of public and regulatory interest. Over the past ten years, patents for nanotechnological applications in the field of food and agriculture have become abundant. Uncertainty prevails however regarding their current development status and presence in the consumer market. Thus, the discussion on nanotechnologies in the food sector with its specific public perception of benefits and risks and the patterns of communication are becoming similar to the debate on genetically modified organisms. The food industry's silence in communication increased mistrust of consumer organisations and policy makers. The article discusses the background of the current regulatory debates, starting with the EU recommendation for defining nanomaterials, provides an overview of possible fields of application in agriculture and food industries and discusses risk assessment and the public debate on benefits and risks. Communicative recommendations are directed at researchers, the food industry and regulators in order to increase trust both in stakeholders, risk management and regulatory processes.

  7. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    PubMed

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  8. Constraint-based modeling in microbial food biotechnology

    PubMed Central

    Rau, Martin H.

    2018-01-01

    Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM. PMID:29588387

  9. Membrane applications and research in food processing: An assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, C.M.; Leeper, S.A.; Engelau, D.E.

    This assessment is intended to aid in planning separations research and development projects aimed at reducing energy consumption in the food industry. The food processing industry uses approximately 1.5 quadrillion Btu per year, 2% of the US national annual energy consumption. Food processing involves a variety of liquid feed, product, and waste streams and makes extensive use of thermal operations such as drying, evaporation, pasteurization, and distillation. As such, it is a candidate for energy conservation through the use of membrane separations. The assessment is organized according to Standard Industry Classification (SIC) Code for the food industry. Individual subindustries consideredmore » are: (a) Meat Processing, Dairy Products, Preserved Fruit and Vegetables, Grain Milling, Bakery Products, Sugar and Confectionery products, Edible Fats and Oils, and Beverages. Topics covered include: (a) background information on food processing and membrane separations, (b) a review of current and developing membrane separations for the food industry, (c) energy consumption and processes used in individual subindustries, (d) separations in the subindustries that could be augmented or replaced by membrane processes, (e) industry practices and market conditions that could affect adoption of new technologies, and (f) prioritized recommendations for DOE-OIP supported research to further use of membrane separations in the food industry. 435 refs.« less

  10. 7 CFR 52.7 - Information required in connection with application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... UNDER THE AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification...

  11. Surface modification of food contact materials for processing and packaging applications

    NASA Astrophysics Data System (ADS)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.

  12. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review.

    PubMed

    Nasri, M

    In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits. © 2017 Elsevier Inc. All rights reserved.

  13. Microencapsulation of Bacterial Cells by Emulsion Technique for Probiotic Application.

    PubMed

    Mandal, Surajit; Hati, Subrota

    2017-01-01

    Probiotics are dietary concepts to improve the dynamics of intestinal microbial balance favorably. Careful screening of probiotic strains for their technological suitability can also allow selection of strains with the best manufacturing and food technology characteristics. However, even the most robust probiotic bacteria are currently in the range of food applications to which they can be applied. Additionally, bacteria with exceptional functional heath properties are ruled out due to technological limitations. New process and formulation technologies will enable both expansion of the range of products in to which probiotics can be applied and the use of efficacious stains that currently cannot be manufactured or stored with existing technologies. Viability of probiotics has been both a marketing and technological concern for many industrial produces. Probiotics are difficult to work with, the bacteria often die during processing, and shelf life is unpredictable. Probiotics are extremely susceptible environmental conditions such as oxygen, processing and preservation treatments, acidity, and salt concentration, which collectively affect the overall viability of probiotics. Manufacturers have long been fortifying products with probiotics; they have faced significant processing challenges regarding the stability and survivability of probiotics during processing and preservation treatments, storage as well during their passage through GIT. Application of microencapsulation significantly improves the stability of probiotics during food processing and gastrointestinal transit.

  14. Electrostatic coating technologies for food processing.

    PubMed

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  15. A new perspective on microbial landscapes within food production.

    PubMed

    Bokulich, Nicholas A; Lewis, Zachery T; Boundy-Mills, Kyria; Mills, David A

    2016-02-01

    High-throughput, 'next-generation' sequencing tools offer many exciting new possibilities for food research. From investigating microbial dynamics within food fermentations to the ecosystem of the food-processing built environment, amplicon sequencing, metagenomics, and transcriptomics present novel applications for exploring microbial communities in, on, and around our foods. This review discusses the many uses of these tools for food-related and food facility-related research and highlights where they may yield nuanced insight into the microbial world of food production systems. Copyright © 2016. Published by Elsevier Ltd.

  16. 7 CFR 52.30 - Application to become a licensed sampler.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Licensing of Samplers...

  17. 40 CFR 180.1225 - Decanoic acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., breweries, wineries, beverage and food processing plants. [68 FR 7939, Feb. 19, 2003; 68 FR 17308, Apr. 9... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD... acid (up to 170 ppm per application) on food contact surfaces such as equipment, pipelines, tanks, vats...

  18. Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method

    USDA-ARS?s Scientific Manuscript database

    Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...

  19. 77 FR 11553 - Draft Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0080... Food and Drug Administration (FDA) is announcing the availability of a draft guidance entitled ``FDA... that address nearly all aspects of the FDA approval and surveillance processes, including application...

  20. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  1. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview.

    PubMed

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Śmigielski, Krzysztof

    2017-04-10

    The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.

  2. 7 CFR 52.10 - When application may be rejected.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Inspection Service § 52.10 When...

  3. 7 CFR 52.11 - When application may be withdrawn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Inspection Service § 52.11 When...

  4. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil.

    PubMed

    Monteiro, Carlos Augusto; Levy, Renata Bertazzi; Claro, Rafael Moreira; de Castro, Inês Rugani Ribeiro; Cannon, Geoffrey

    2011-01-01

    To assess time trends in the contribution of processed foods to food purchases made by Brazilian households and to explore the potential impact on the overall quality of the diet. Application of a new classification of foodstuffs based on extent and purpose of food processing to data collected by comparable probabilistic household budget surveys. The classification assigns foodstuffs to the following groups: unprocessed/minimally processed foods (Group 1); processed culinary ingredients (Group 2); or ultra-processed ready-to-eat or ready-to-heat food products (Group 3). Eleven metropolitan areas of Brazil. Households; n 13,611 in 1987-8, n 16,014 in 1995-5 and n 13,848 in 2002-3. Over the last three decades, the household consumption of Group 1 and Group 2 foods has been steadily replaced by consumption of Group 3 ultra-processed food products, both overall and in lower- and upper-income groups. In the 2002-3 survey, Group 3 items represented more than one-quarter of total energy (more than one-third for higher-income households). The overall nutrient profile of Group 3 items, compared with that of Group 1 and Group 2 items, revealed more added sugar, more saturated fat, more sodium, less fibre and much higher energy density. The high energy density and the unfavourable nutrition profiling of Group 3 food products, and also their potential harmful effects on eating and drinking behaviours, indicate that governments and health authorities should use all possible methods, including legislation and statutory regulation, to halt and reverse the replacement of minimally processed foods and processed culinary ingredients by ultra-processed food products.

  5. [Application of DNA extraction kit, 'GM quicker' for detection of genetically modified soybeans].

    PubMed

    Sato, Noriko; Sugiura, Yoshitsugu; Tanaka, Toshitsugu

    2012-01-01

    Several DNA extraction methods have been officially introduced to detect genetically modified soybeans, but the choice of DNA extraction kits depend on the nature of the samples, such as grains or processed foods. To overcome this disadvantage, we examined whether the GM quicker kit is available for both grains and processed foods. We compared GM quicker with four approved DNA extraction kits in respect of DNA purity, copy numbers of lectin gene, and working time. We found that the DNA quality of GM quicker was superior to that of the other kits for grains, and the procedure was faster. However, in the case of processed foods, GM quicker was not superior to the other kits. We therefore investigated an unapproved GM quicker 3 kit, which is available for DNA extraction from processed foods, such as tofu and boiled soybeans. The GM quicker 3 kit provided good DNA quality from both grains and processed foods, so we made a minor modification of the GM quicker-based protocol that was suitable for processed foods, using GM quicker and its reagents. The modified method enhanced the performance of GM quicker with processed foods. We believe that GM quicker with the modified protocol is an excellent tool to obtain high-quality DNA from grains and processed foods for detection of genetically modified soybeans.

  6. Novel technologies applied for recovery and value addition of high value compounds from plant byproducts: A review.

    PubMed

    Ran, Xin-Li; Zhang, Min; Wang, Yuchuan; Adhikari, Benu

    2017-09-18

    Plant byproducts of food processing industry line are undervalued yet important resource. These byproducts contain large percentage of high value functional substances such as antioxidants, pectin, polyphenols and so on. Recently, many research studies concentrated on innovative technologies that promise to overcome such issues as time consuming, inefficiency, and low yield, among others, which exist in most conventional techniques. Consequently, to achieve the recovery of nutraceuticals from high added-value by-products, it is necessary to have more knowledge of these novel technologies and more importantly explore the possibility of application of these latest technologies to the recovery downstream processing. The present work will summarize state-of-the-art technological approaches concerning extraction, superfine and drying applied to plant food processing residues. Simultaneously, the application of the bioactive components originated from byproducts in food industry will also be reviewed.

  7. Quantitative microbiological risk assessment in food industry: Theory and practical application.

    PubMed

    Membré, Jeanne-Marie; Boué, Géraldine

    2018-04-01

    The objective of this article is to bring scientific background as well as practical hints and tips to guide risk assessors and modelers who want to develop a quantitative Microbiological Risk Assessment (MRA) in an industrial context. MRA aims at determining the public health risk associated with biological hazards in a food. Its implementation in industry enables to compare the efficiency of different risk reduction measures, and more precisely different operational settings, by predicting their effect on the final model output. The first stage in MRA is to clearly define the purpose and scope with stakeholders, risk assessors and modelers. Then, a probabilistic model is developed; this includes schematically three important phases. Firstly, the model structure has to be defined, i.e. the connections between different operational processing steps. An important step in food industry is the thermal processing leading to microbial inactivation. Growth of heat-treated surviving microorganisms and/or post-process contamination during storage phase is also important to take into account. Secondly, mathematical equations are determined to estimate the change of microbial load after each processing step. This phase includes the construction of model inputs by collecting data or eliciting experts. Finally, the model outputs are obtained by simulation procedures, they have to be interpreted and communicated to targeted stakeholders. In this latter phase, tools such as what-if scenarios provide an essential added value. These different MRA phases are illustrated through two examples covering important issues in industry. The first one covers process optimization in a food safety context, the second one covers shelf-life determination in a food quality context. Although both contexts required the same methodology, they do not have the same endpoint: up to the human health in the foie gras case-study illustrating here a safety application, up to the food portion in the brioche case-study illustrating here a quality application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Establishing Standards on Colors from Natural Sources.

    PubMed

    Simon, James E; Decker, Eric A; Ferruzzi, Mario G; Giusti, M Monica; Mejia, Carla D; Goldschmidt, Mark; Talcott, Stephen T

    2017-11-01

    Color additives are applied to many food, drug, and cosmetic products. With up to 85% of consumer buying decisions potentially influenced by color, appropriate application of color additives and their safety is critical. Color additives are defined by the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act) as any dye, pigment, or substance that can impart color to a food, drug, or cosmetic or to the human body. Under current U.S. Food and Drug Administration (FDA) regulations, colors fall into 2 categories as those subject to an FDA certification process and those that are exempt from certification often referred to as "natural" colors by consumers because they are sourced from plants, minerals, and animals. Certified colors have been used for decades in food and beverage products, but consumer interest in natural colors is leading market applications. However, the popularity of natural colors has also opened a door for both unintentional and intentional economic adulteration. Whereas FDA certifications for synthetic dyes and lakes involve strict quality control, natural colors are not evaluated by the FDA and often lack clear definitions and industry accepted quality and safety specifications. A significant risk of adulteration of natural colors exists, ranging from simple misbranding or misuse of the term "natural" on a product label to potentially serious cases of physical, chemical, and/or microbial contamination from raw material sources, improper processing methods, or intentional postproduction adulteration. Consistent industry-wide safety standards are needed to address the manufacturing, processing, application, and international trade of colors from natural sources to ensure quality and safety throughout the supply chain. © 2017 Institute of Food Technologists®.

  9. PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods.

    PubMed

    Tanabe, Soichi; Miyauchi, Eiji; Muneshige, Akemi; Mio, Kazuhiro; Sato, Chikara; Sato, Masahiko

    2007-07-01

    A PCR method to detect porcine DNA was developed for verifying the allergen labeling of foods and for identifying hidden pork ingredients in processed foods. The primer pair, F2/R1, was designed to detect the gene encoding porcine cytochrome b for the specific detection of pork with high sensitivity. The amplified DNA fragment (130 bp) was specifically detected from porcine DNA, while no amplification occurred with other species such as cattle, chicken, sheep, and horse. When the developed PCR method was used for investigating commercial food products, porcine DNA was clearly detected in those containing pork in the list of ingredients. In addition, 100 ppb of pork in heated gyoza (pork and vegetable dumpling) could be detected by this method. This method is rapid, specific and sensitive, making it applicable for detecting trace amounts of pork in processed foods.

  10. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications.

    PubMed

    Arrieta, Marina Patricia; Samper, María Dolores; Aldas, Miguel; López, Juan

    2017-08-29

    Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging.

  11. Challenges and solutions to incorporation of nutraceuticals in foods.

    PubMed

    Augustin, Mary Ann; Sanguansri, Luz

    2015-01-01

    Manufacturers often cannot simply add a nutraceutical to a food when formulating functional foods that have acceptable sensory appeal as well as the desired health benefits. The appropriate application of microencapsulation for stabilizing nutraceuticals enables their effective delivery through food. Careful design of the delivery system helps protect sensitive nutraceuticals from the environment and processing stresses encountered during food manufacture, and prevents undesirable interactions of the nutraceutical with components in the food matrix. Microencapsulation technologies overcome hurdles associated with the successful delivery of nutraceuticals in healthy foods if due consideration is given to challenges at all stages throughout the supply chain. This encompasses stabilizing and protecting nutraceuticals from degradation in ingredient formats, during processing, in the final food product, and during intestinal transit until they are released at the desired site in the gastrointestinal tract to impart their targeted health effects.

  12. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  13. 7 CFR 52.25 - When an application for an appeal inspection may be withdrawn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification...

  14. Optical fiber sensors for life support applications

    NASA Technical Reports Server (NTRS)

    Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.

    1992-01-01

    Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.

  15. Functionality and nutritional aspects of microcrystalline cellulose in food.

    PubMed

    Nsor-Atindana, John; Chen, Maoshen; Goff, H Douglas; Zhong, Fang; Sharif, Hafiz Rizwan; Li, Yue

    2017-09-15

    Microcrystalline cellulose (MCC) is among the most commonly used cellulose derivatives in the food industry. In order assess the recent advances of MCC in food product development and its associated nutraceutical implications, google scholar and database of journals subscribed by Jiangnan university, China were used to source literature. Recently published research articles that reported physicochemical properties of MCC for food application or potential application in food and nutraceutical functions were reviewed and major findings outlined. The selected literature reviewed demonstrated that the material has been extensively explored as a functional ingredient in food including meat products, emulsions, beverages, dairy products, bakery, confectionary and filling. The carbohydrate polymer also has many promising applications in functional and nutraceutical food industries. Though widely used as control for many dietary fiber investigations, MCC has been shown to provide positive effects on gastrointestinal physiology, and hypolipidemic effects, influencing the expression of enzymes involved in lipid metabolism. These techno-functional and nutraceutical properties of MCC are influenced by the physicochemical of the material, which are defined by the raw material source and processing conditions. Apart from these functional properties, this review also highlighted limitations and gaps regarding the application of material in food and nutritional realms. Functional, Nutritional and health claims of MCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and watermore » heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.« less

  17. Application of MALDI-TOF MS for the Identification of Food Borne Bacteria

    PubMed Central

    Pavlovic, Melanie; Huber, Ingrid; Konrad, Regina; Busch, Ulrich

    2013-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful tool for the routine identification of clinical isolates. MALDI-TOF MS based identification of bacteria has been shown to be more rapid, accurate and cost-efficient than conventional phenotypic techniques or molecular methods. Rapid and reliable identification of food-associated bacteria is also of crucial importance for food processing and product quality. This review is concerned with the applicability of MALDI-TOF MS for routine identification of foodborne bacteria taking the specific requirements of food microbiological laboratories and the food industry into account. The current state of knowledge including recent findings and new approaches are discussed. PMID:24358065

  18. Processed foods as an integral part of universal salt iodization programs: a review of global experience and analyses of Bangladesh and Pakistan.

    PubMed

    Spohrer, Rebecca; Garrett, Greg S; Timmer, Arnold; Sankar, Rajan; Kar, Basanta; Rasool, Faiz; Locatelli-Rossi, Lorenzo

    2012-12-01

    Despite the reference to salt for food processing in the original definition of universal salt iodization (USI), national USI programs often do not explicitly address food industry salt. This may affect program impact and sustainability, given the increasing consumption of processed foods in developing countries. To review experience of the use of iodized salt in the food industry globally, and analyze the market context in Bangladesh and Pakistan to test whether this experience may be applicable to inform improved national USI programming in developing countries. A review of relevant international experience was undertaken. In Bangladesh and Pakistan, local rural market surveys were carried out. In Bangladesh, structured face-to-face interviews with bakers and indepth interviews with processed food wholesalers and retailers were conducted. In Pakistan, face-to-face structured interviews were conducted with food retailers and food labels were checked. Experience from industrialized countries reveals impact resulting from the use of iodized salt in the food industry. In Bangladesh and Pakistan, bread, biscuits, and snacks containing salt are increasingly available in rural areas. In Bangladesh, the majority of bakers surveyed claimed to use iodized salt. In Pakistan, 6 of 362 unique product labels listed iodized salt. Successful experience from developed countries needs to be adapted to the developing country context. The increasing availability of processed foods in rural Bangladesh and Pakistan provides an opportunity to increase iodine intake. However, the impact of this intervention remains to be quantified. To develop better national USI programs, further data are required on processed food consumption across population groups, iodine contents of food products, and the contribution of processed foods to iodine nutrition.

  19. 9 CFR 381.224 - Designation of States under section 11 of the Act; application of sections of the Act and the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION... or for commerce) in (1) the business of slaughtering any poultry or processing, freezing, packaging, or labeling any poultry carcasses, or parts or products thereof, for use as human food or animal food...

  20. A Novel Dietary Assessment Method to Measure a Healthy and Sustainable Diet Using the Mobile Food Record: Protocol and Methodology.

    PubMed

    Harray, Amelia J; Boushey, Carol J; Pollard, Christina M; Delp, Edward J; Ahmad, Ziad; Dhaliwal, Satvinder S; Mukhtar, Syed Aqif; Kerr, Deborah A

    2015-07-03

    The world-wide rise in obesity parallels growing concerns of global warming and depleting natural resources. These issues are often considered separately but there may be considerable benefit to raising awareness of the impact of dietary behaviours and practices on the food supply. Australians have diets inconsistent with recommendations, typically low in fruit and vegetables and high in energy-dense nutrient-poor foods and beverages (EDNP). These EDNP foods are often highly processed and packaged, negatively influencing both health and the environment. This paper describes a proposed dietary assessment method to measure healthy and sustainable dietary behaviours using 4-days of food and beverage images from the mobile food record (mFR) application. The mFR images will be assessed for serves of fruit and vegetables (including seasonality), dairy, eggs and red meat, poultry and fish, ultra-processed EDNP foods, individually packaged foods, and plate waste. A prediction model for a Healthy and Sustainable Diet Index will be developed and tested for validity and reliability. The use of the mFR to assess adherence to a healthy and sustainable diet is a novel and innovative approach to dietary assessment and will have application in population monitoring, guiding intervention development, educating consumers, health professionals and policy makers, and influencing dietary recommendations.

  1. Microbial lipase mediated by health beneficial modification of cholesterol and flavors in food products: A review.

    PubMed

    Sharma, Ranjana; Sharma, Nivedita

    2017-06-14

    The tremendous need of lipase in varied applications in biotechnological increases its economical value in food and allied industries. Lipase has an impressive number of applications viz. enhancements of flavor in food products (Cheese, butter, alcoholic beverages, milk chocolate and diet control food stuffs), detergent industry in removing oil, grease stain, organic chemical processing, textile industry, oleochemical industry, cosmetic industry and also as therapeutic agents in pharmaceutical industries. This communication extends the frontier of lipase catalyzed benefits to human body by lowering serum cholesterol and enhancement of flavor in different food products. Among all, multiple innovations going on in the field of lipase applications are widening its scope in food industries consistently. Therefore in the present work an effort has been made to explore the utilization of lipase in the field of food product enhancement. Supplementation of food products with lipase results in modification of its physical, chemical and biochemical properties by enhancing its therapeutic activity. Lipases are the most important enzymes used in food industries. They are utilized as industrial catalysts for lipid hydrolysis. Because of lipases hydrolysis nature it is widely exploited to catalyze lipids or fats in different food products and enhancement of food flavors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Intervention strategies for control of foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Juneja, Vijay K.

    2004-03-01

    The increasing numbers of illnesses associated with foodborne pathogens such as Listeria monocytogenes and Escherichia coli O157:H7, has renewed concerns about food safety because of consumer preferences for minimally processed foods that offer convenience in availability and preparation. Accordingly, the need for better control of foodborne pathogens has been paramount in recent years. Mechanical removal of microorganisms from food can be accomplished by centrifugation, filtration, trimming and washing. Cleaning and sanitation strategies can be used for minimizing the access of microorganisms in foods from various sources. Other strategies for control of foodborne pathogens include established physical microbiocidal treatments such as ionizing radiation and heating. Research has continued to demonstrate that food irradiation is a suitable process to control and possibly eliminate foodborne pathogens, for example Listeria monocytogenes and Escherichia coli O157:H7, from a number of raw and cooked meat and poultry products. Heat treatment is the most common method in use today for the inactivation of microorganisms. Microorganisms can also be destroyed by nonthermal treatments, such as application of high hydrostatic pressure, pulsed electric fields, oscillating magnetic fields or a combination of physical processes such as heat-irradiation, or heat-high hydrostatic pressure, etc. Each of the non-thermal technologies has specific applications in terms of the types of food that can be processed. Both conventional and newly developed physical treatments can be used in combination for controlling foodborne pathogens and enhancing the safety and shelf life of foods. Recent research has focused on combining traditional preservation factors with emerging intervention technologies. However, many key issues still need to be addressed for combination preservation factors or technologies to be useful in the food industry to meet public demands for foods with enhanced safety, freshness and appeal. As a result of systematic study in these areas together with detailed assessment of technological performance of available preservatives and preservation technologies in real food formulations, new intervention processes and products are likely to be developed. The ultimate goal is to identify potential new approaches for the safer production of foods. The purpose of this presentation is to discuss key developmental activities concerning microbial reduction by intervention technologies.

  3. 9 CFR 381.303 - Critical factors and the application of the process schedule.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Critical factors and the application of the process schedule. 381.303 Section 381.303 Animals and Animal Products FOOD SAFETY AND...

  4. 75 FR 8970 - Guidance for Industry on Submission of Documentation in Applications for Parametric Release of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Veterinary Drug Products Terminally Sterilized by Moist Heat Processes; Availability AGENCY: Food and Drug... Release of Human and Veterinary Drug Products Terminally Sterilized by Moist Heat Processes.'' This... for sterile products terminally sterilized by moist heat when submitting a new drug application (NDA...

  5. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  6. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  7. Nanotechnology in meat processing and packaging: potential applications - a review.

    PubMed

    Ramachandraiah, Karna; Han, Sung Gu; Chin, Koo Bok

    2015-02-01

    Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

  8. Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review

    PubMed Central

    Ramachandraiah, Karna; Han, Sung Gu; Chin, Koo Bok

    2015-01-01

    Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food. PMID:25557827

  9. Applying the food technology neophobia scale in a developing country context. A case-study on processed matooke (cooking banana) flour in Central Uganda.

    PubMed

    De Steur, Hans; Odongo, Walter; Gellynck, Xavier

    2016-01-01

    The success of new food technologies largely depends on consumers' behavioral responses to the innovation. In Eastern Africa, and Uganda in particular, a technology to process matooke into flour has been introduced with limited success. We measure and apply the Food technology Neophobia Scale (FTNS) to this specific case. This technique has been increasingly used in consumer research to determine consumers' fear for foods produced by novel technologies. Although it has been successful in developed countries, the low number and limited scope of past studies underlines the need for testing its applicability in a developing country context. Data was collected from 209 matooke consumers from Central Uganda. In general, respondents are relatively neophobic towards the new technology, with an average FTNS score of 58.7%, which hampers the success of processed matooke flour. Besides socio-demographic indicators, 'risk perception', 'healthiness' and the 'necessity of technologies' were key factors that influenced consumer's preference of processed matooke flour. Benchmarking the findings against previous FTNS surveys allows to evaluate factor solutions, compare standardized FTNS scores and further lends support for the multidimensionality of the FTNS. Being the first application in a developing country context, this study provides a case for examining food technology neophobia for processed staple crops in various regions and cultures. Nevertheless, research is needed to replicate this method and evaluate the external validity of our findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of Sources of Nitrate Beneath Food Processing Wastewater-Application Sites near Umatilla, Oregon

    USGS Publications Warehouse

    Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt

    2009-01-01

    Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.

  11. Particular applications of food irradiation: Meat, fish and others

    NASA Astrophysics Data System (ADS)

    Ehlermann, Dieter A. E.

    2016-12-01

    It is surprising what all can be achieved by radiation processing of food; this chapter narrates a number of less obvious applications mostly hidden to the consumer. Also the labelling regulations differing world-wide are responsible for leaving the consumer uninformed. Several of the early proposals could not reach technological maturity or are commercially not competitive. Still considerable energy is spent in research for such applications. Other applications are serving a certain niche, companies mostly are reluctant to release reliable information about their activities. Labelling regulation vary world-wide significantly. Hence, the market place does not really give the full picture of irradiated food available to the consumer. Despite those restrictions, this report intends to give a full picture of the actual situation for meat, fish and others and of unique uses.

  12. Position of the American Dietetic Association: food irradiation.

    PubMed

    Wood, O B; Bruhn, C M

    2000-02-01

    Food irradiation has been identified a sa safe technology to reduce the risk of foodborne illness as part of high-quality food production, processing, handling, and preparation. Food irradiation's history of scientific research , evaluation, and testing spans more than 40 countries around the world and it has been endorsed or support by numerous national and international food and organizations and professional groups. Food irradiation utilizes a source of ionizing energy that passes through food to destroy harmful bacteria and other organism. Often referred to as "cold pasteurization," food irradiation offers negligible loss of nutrients or sensory qualities in food as it does not substantially raise the temperature of the food during processing. Food irradiation does not replace proper food production, processing, handling, or preparation, nor can it enhance the quality of or prevent contact with foodborne bacteria after irradiation. In the United States, manufacturers are required to identify irradiated food sold to consumers with an international symbol (Radura) and and terminology describing the process on product labels. In addiction, food irradiation facilities are thoroughly regulated and monitored for worker and environmental safety. Members of The American Dietetic Association (ADA) and other food, nutrition, and health professionals have a responsibility to educate consumers, food processors, manufacturers and retailers about the safety and application of the technology. When consumers are educated about food irradiation, many prefer irradiated products because of their increased safety. It is the position of ADA that food irradiation enhances the safety and quality of the food supply and helps protect consumers from foodborne illness. The ADA encourages the government, food manufactures, food commodity groups, and qualified food and nutrition professionals to work together to educate consumers about this additional food safety tool and make this choice available in the marketplace.

  13. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOOD STAMP AND FOOD DISTRIBUTION PROGRAM CERTIFICATION OF ELIGIBLE... income (working households). The State agency must provide timely, accurate, and fair service to... determined eligible. The State agency must make expedited service available to households in immediate need...

  14. 7 CFR 275.9 - Review process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOOD STAMP AND FOOD DISTRIBUTION PROGRAM PERFORMANCE REPORTING SYSTEM Management Evaluation (ME... problems and the causes of those problems. As each project area's operational structure will differ, State agencies shall review each program requirement applicable to the project area in a manner which will best...

  15. Multiobjective optimization approach: thermal food processing.

    PubMed

    Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R

    2009-01-01

    The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.

  16. General Urban Warfare Amphibious Logistics Applications. Volume 1. Technical Report.

    DTIC Science & Technology

    1983-06-23

    Support V-192 Dental V-194 Food Service V-196 Postal, Administration , and Band V-198 Exchange Service V-199 Special Service Clubs V-200 Ecclesiastical...AUTO DATA PROCESFING MILITARY POLICE LANDING SUPPORT FOOD SERVICE COMMUNICATIONS POSTAL MAINTENANCE ADMINISTRATION GRAVES REGISTRATION ECCLESIASTICAL...Impact * The CSS functions of Financial Management, Automated Data Processing, Food Service , Postal, Administration , Ecclesiastical Services , and

  17. Recent progress in sweetpotato breeding and cultivars for diverse applications in Japan

    PubMed Central

    Katayama, Kenji; Kobayashi, Akira; Sakai, Tetsufumi; Kuranouchi, Toshikazu; Kai, Yumi

    2017-01-01

    Sweetpotato (Ipomoea batatas (L.) Lam.) is an outcrossing hexaploid that is cultivated in the tropics and warm-temperate regions of the world. Sweetpotato has played an important role as a famine-relief crop during its long history and has recently been reevaluated as a health-promoting food. In Japan, sweetpotato is used for a wide range of applications, such as table use, processed foods, and alcohol and starch production, and two groups at National Agriculture Research Organization (NARO) undertake the breeding of cultivars for these applications. Sweetpotato breeders utilize breeding processes such as grafting for flower induction and the identification of incompatibility groups before crossing to conquer problems peculiar to sweetpotato. For table use, new cultivars with high sugar content were released recently and have become popular among Japanese consumers. New cultivars with high anthocyanin or β-carotene content were released for processed foods and use as colorants. As raw materials, new cultivars with high alcohol yield were released for the production of shochu spirits. In addition, new cultivars with high starch yield and a cultivar containing starch with excellent cold-storage ability were released for starch production. This review deals with recent progress in sweetpotato breeding and cultivars for diverse applications in Japan. PMID:28465663

  18. Food irradiation: Standards, regulations and world-wide trade

    NASA Astrophysics Data System (ADS)

    Roberts, Peter B.

    2016-12-01

    There is an established framework of international standards for food irradiation covering human health, plant protection, labelling, dose delivery, quality assurance and facility management. Approximately 60 countries permit irradiation of one or more food or food classes. National regulations are briefly reviewed. Decontamination of spices, herbs and condiments remains the single largest application of irradiation. However, in recent years the market for irradiated fresh and processed meat has become firmly established in several countries including China and the USA. At least 10 countries have recently established bi-lateral agreements for trade in irradiated fresh fruits and vegetables using phytosanitary irradiation. Irradiated fresh produce volumes now exceed 20,000 t per year. Rationalization and greater consistency in labelling regulations would be advantageous to the future growth of applications of food irradiation.

  19. A real time quality control application for animal production by image processing.

    PubMed

    Sungur, Cemil; Özkan, Halil

    2015-11-01

    Standards of hygiene and health are of major importance in food production, and quality control has become obligatory in this field. Thanks to rapidly developing technologies, it is now possible for automatic and safe quality control of food production. For this purpose, image-processing-based quality control systems used in industrial applications are being employed to analyze the quality of food products. In this study, quality control of chicken (Gallus domesticus) eggs was achieved using a real time image-processing technique. In order to execute the quality control processes, a conveying mechanism was used. Eggs passing on a conveyor belt were continuously photographed in real time by cameras located above the belt. The images obtained were processed by various methods and techniques. Using digital instrumentation, the volume of the eggs was measured, broken/cracked eggs were separated and dirty eggs were determined. In accordance with international standards for classifying the quality of eggs, the class of separated eggs was determined through a fuzzy implication model. According to tests carried out on thousands of eggs, a quality control process with an accuracy of 98% was possible. © 2014 Society of Chemical Industry.

  20. Enhancement of convective drying by application of airborne ultrasound - a response surface approach.

    PubMed

    Beck, Svenja M; Sabarez, Henry; Gaukel, Volker; Knoerzer, Kai

    2014-11-01

    Drying is one of the oldest and most commonly used processes in the food manufacturing industry. The conventional way of drying is by forced convection at elevated temperatures. However, this process step often requires a very long treatment time, is highly energy consuming and detrimental to the product quality. Therefore, an investigation of whether the drying time and temperature can be reduced with the assistance of an airborne ultrasound intervention is of interest. Previous studies have shown that contact ultrasound can accelerate the drying process. It is assumed that mechanical vibrations, creating micro channels in the food matrix or keeping these channels from collapsing upon drying, are responsible for the faster water removal. In food samples, due to their natural origin, drying is also influenced by fluctuations in tissue structure, varying between different trials. For this reason, a model food system with thermo-physical properties and composition (water, cellulose, starch, fructose) similar to those of plant-based foods has been used in this study. The main objective was, therefore, to investigate the influence of airborne ultrasound conditions on the drying behaviour of the model food. The impact of airborne ultrasound at various power levels, drying temperature, relative humidity of the drying air, and the air speed was analysed. To examine possible interactions between these parameters, the experiments were designed with a Response Surface Method using Minitab 16 Statistical Software (Minitab Inc., State College, PA, USA). In addition, a first attempt at improving the process conditions and performance for better suitability and applicability in industrial scale processing was undertaken by non-continuous/intermittent sonication. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biosensors for Sustainable Food Engineering: Challenges and Perspectives.

    PubMed

    Neethirajan, Suresh; Ragavan, Vasanth; Weng, Xuan; Chand, Rohit

    2018-03-12

    Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.

  2. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

    PubMed Central

    Arrieta, Marina Patricia; Samper, María Dolores; Aldas, Miguel; López, Juan

    2017-01-01

    Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging. PMID:28850102

  3. Cold plasma technology close-up

    USDA-ARS?s Scientific Manuscript database

    This month’s column discusses cold plasma, an emerging technology that has potential applications as an antimicrobial process for fresh and fresh-cut fruits and vegetables, low-moisture foods, and food contact surfaces. Brendan A. Niemira, the coauthor of this month’s column, is the research leader ...

  4. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  5. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  6. Recent Trends in Biosensors

    NASA Astrophysics Data System (ADS)

    Karube, Isao

    The determination of organic compounds in foods is very important in food industries. A various compounds are contained in foods, selective determination methods are required for food processing and analysis. Electrochemical monitoring devices (biosensors) employing immobilized biocatalysts such as immobilized enzymes, organelles, microorganisms, and tissue have definite advantages. The enzyme Sensors consisted of immobilized enzymes and electrochemical devices. Enzyme sensors could be used for the determination of sugars, amino acids, organic acids, alcohols, lipids, nucleic acid derivatives, etc.. Furthermore, a multifunctional biosensor for the determination of several compounds has been developed for food processing. On the other hand, microbial sensors consisted of immobilized microorganisms and electrodes have been used for industrial and environmental analysis. Microbial sensors were applied for the determination of sugars, organic acids, alcohols, amino acids, mutagens, me thane, ammonia, and BOD. Furthermore, micro-biosensors using immobilized biocatalysts and ion sensitive field effect transistor or microelectrodes prepared by silicon fabrication technologies have been developed for medical ap. plication and food processing. This review summarizes the design and application of biosensors.

  7. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods.

    PubMed

    Cutter, Catherine Nettles

    2006-09-01

    It has been well documented that vacuum or modified atmosphere packaging materials, made from polyethylene- or other plastic-based materials, have been found to improve the stability and safety of raw or further processed muscle foods. However, recent research developments have demonstrated the feasibility, utilization, and commercial application of a variety of bio-based polymers or bio-polymers made from a variety of materials, including renewable/sustainable agricultural commodities, and applied to muscle foods. A variety of these bio-based materials have been shown to prevent moisture loss, drip, reduce lipid oxidation and improve flavor attributes, as well as enhancing the handling properties, color retention, and microbial stability of foods. With consumers demanding more environmentally friendly packaging and a desire for more natural products, bio-based films or bio-polymers will continue to play an important role in the food industry by improving the quality of many products, including fresh or further processed muscle foods.

  8. Analysis of Food Contaminants, Residues, and Chemical Constituents of Concern

    NASA Astrophysics Data System (ADS)

    Ismail, Baraem; Reuhs, Bradley L.; Nielsen, S. Suzanne

    The food chain that starts with farmers and ends with consumers can be complex, involving multiple stages of production and distribution (planting, harvesting, breeding, transporting, storing, importing, processing, packaging, distributing to retail markets, and shelf storing) (Fig. 18.1). Various practices can be employed at each stage in the food chain, which may include pesticide treatment, agricultural bioengineering, veterinary drug administration, environmental and storage conditions, processing applications, economic gain practices, use of food additives, choice of packaging material, etc. Each of these practices can play a major role in food quality and safety, due to the possibility of contamination with or introduction (intentionally and nonintentionally) of hazardous substances or constituents. Legislation and regulation to ensure food quality and safety are in place and continue to develop to protect the stakeholders, namely farmers, consumers, and industry. [Refer to reference (1) for information on regulations of food contaminants and residues.

  9. Microbial transglutaminase and its application in the food industry. A review.

    PubMed

    Kieliszek, Marek; Misiewicz, Anna

    2014-05-01

    The extremely high costs of manufacturing transglutaminase from animal origin (EC 2.3.2.13) have prompted scientists to search for new sources of this enzyme. Interdisciplinary efforts have been aimed at producing enzymes synthesised by microorganisms which may have a wider scope of use. Transglutaminase is an enzyme that catalyses the formation of isopeptide bonds between proteins. Its cross-linking property is widely used in various processes: to manufacture cheese and other dairy products, in meat processing, to produce edible films and to manufacture bakery products. Transglutaminase has considerable potential to improve the firmness, viscosity, elasticity and water-binding capacity of food products. In 1989, microbial transglutaminase was isolated from Streptoverticillium sp. Its characterisation indicated that this isoform could be extremely useful as a biotechnological tool in the food industry. Currently, enzymatic preparations are used in almost all industrial branches because of their wide variety and low costs associated with their biotechnical production processes. This paper presents an overview of the literature addressing the characteristics and applications of transglutaminase.

  10. A Novel Dietary Assessment Method to Measure a Healthy and Sustainable Diet Using the Mobile Food Record: Protocol and Methodology

    PubMed Central

    Harray, Amelia J.; Boushey, Carol J.; Pollard, Christina M.; Delp, Edward J.; Ahmad, Ziad; Dhaliwal, Satvinder S.; Mukhtar, Syed Aqif; Kerr, Deborah A.

    2015-01-01

    The world-wide rise in obesity parallels growing concerns of global warming and depleting natural resources. These issues are often considered separately but there may be considerable benefit to raising awareness of the impact of dietary behaviours and practices on the food supply. Australians have diets inconsistent with recommendations, typically low in fruit and vegetables and high in energy-dense nutrient-poor foods and beverages (EDNP). These EDNP foods are often highly processed and packaged, negatively influencing both health and the environment. This paper describes a proposed dietary assessment method to measure healthy and sustainable dietary behaviours using 4-days of food and beverage images from the mobile food record (mFR) application. The mFR images will be assessed for serves of fruit and vegetables (including seasonality), dairy, eggs and red meat, poultry and fish, ultra-processed EDNP foods, individually packaged foods, and plate waste. A prediction model for a Healthy and Sustainable Diet Index will be developed and tested for validity and reliability. The use of the mFR to assess adherence to a healthy and sustainable diet is a novel and innovative approach to dietary assessment and will have application in population monitoring, guiding intervention development, educating consumers, health professionals and policy makers, and influencing dietary recommendations. PMID:26151176

  11. Application of microbial transglutaminase in meat foods: A review.

    PubMed

    Santhi, D; Kalaikannan, A; Malairaj, P; Arun Prabhu, S

    2017-07-03

    Microbial transglutaminase (MTG) is an enzyme isolated from a variant of Streptomyces mobaraensis that forms covalent cross-links between protein molecules. Studies are being conducted since last two decades on utilization of MTG in meat foods to improve their characteristics, such as gelation, water-binding, emulsion stability, purge loss, cooking loss, etc. MTG is one of the important topics of interest in meat processing industry due to its advantages in practical utilization and commercial exploitation. This review will discuss about the overall applications of MTG in manipulating the functional properties of meat and meat products by means of various processes such as restructuring, value addition, etc.

  12. Aptamer-based technology for food analysis.

    PubMed

    Liu, Xiaofei; Zhang, Xuewu

    2015-01-01

    Aptamers are short and functional single-stranded oligonucleotide sequences selected from systematic evolution of ligands by exponential enrichment (SELEX) process, which have the capacity to recognize various classes of target molecules with high affinity and specificity. Various analytical aptamers acquired by SELEX are widely used in many research fields, such as medicine, biology, and chemistry. However, the application of this innovative and emerging technology to food safety is just in infant stage. Food safety plays a very important role in our daily lives because varieties of poisonous and harmful substances in food affect human health. Aptamer technique is promising, which can overcome many disadvantages of existing detection methods in food safety, such as long detection time, low sensitivity, difficult, and expensive antibody preparation. This review provides an overview of various aptamer screening technologies and summarizes the recent applications of aptamers in food safety, and future prospects are also discussed.

  13. Useful byproducts from cellulosic wastes of agriculture and food industry--a critical appraisal.

    PubMed

    Das, Himanish; Singh, Sudhir Kumar

    2004-01-01

    Cellulose, an important cell wall polysaccharide, which is replenished constantly in nature by photosynthesis, goes waste in a lion's share in the form of pre-harvest and post-harvest agricultural losses and wastes of food processing industry. These cellulose wastes have an immense potential to be utilized for the production and recovery of several products and ingredients in food application. In this present study, a wide spectrum of researches in the arena of properties of cellulose, hemicellulose and lignin; their degradation; sources and composition of cellulosic and lignocellulosic wastes of agriculture and food industry; present status of converting them into value-added products of food applications; constraints in their conversions and future prospects therein has been reviewed in details. The study has encompassed production of biomass for various utilization and production and recovery of protein and amino acids, carbohydrates, lipids, organic acids, foods & feeds and other miscellaneous products.

  14. Applications of Computer Vision for Assessing Quality of Agri-food Products: A Review of Recent Research Advances.

    PubMed

    Ma, Ji; Sun, Da-Wen; Qu, Jia-Huan; Liu, Dan; Pu, Hongbin; Gao, Wen-Hong; Zeng, Xin-An

    2016-01-01

    With consumer concerns increasing over food quality and safety, the food industry has begun to pay much more attention to the development of rapid and reliable food-evaluation systems over the years. As a result, there is a great need for manufacturers and retailers to operate effective real-time assessments for food quality and safety during food production and processing. Computer vision, comprising a nondestructive assessment approach, has the aptitude to estimate the characteristics of food products with its advantages of fast speed, ease of use, and minimal sample preparation. Specifically, computer vision systems are feasible for classifying food products into specific grades, detecting defects, and estimating properties such as color, shape, size, surface defects, and contamination. Therefore, in order to track the latest research developments of this technology in the agri-food industry, this review aims to present the fundamentals and instrumentation of computer vision systems with details of applications in quality assessment of agri-food products from 2007 to 2013 and also discuss its future trends in combination with spectroscopy.

  15. Effective application of multiple locus variable number of tandem repeats analysis to tracing Staphylococcus aureus in food-processing environment.

    PubMed

    Rešková, Z; Koreňová, J; Kuchta, T

    2014-04-01

    A total of 256 isolates of Staphylococcus aureus were isolated from 98 samples (34 swabs and 64 food samples) obtained from small or medium meat- and cheese-processing plants in Slovakia. The strains were genotypically characterized by multiple locus variable number of tandem repeats analysis (MLVA), involving multiplex polymerase chain reaction (PCR) with subsequent separation of the amplified DNA fragments by an automated flow-through gel electrophoresis. With the panel of isolates, MLVA produced 31 profile types, which was a sufficient discrimination to facilitate the description of spatial and temporal aspects of contamination. Further data on MLVA discrimination were obtained by typing a subpanel of strains by multiple locus sequence typing (MLST). MLVA coupled to automated electrophoresis proved to be an effective, comparatively fast and inexpensive method for tracing S. aureus contamination of food-processing factories. Subspecies genotyping of microbial contaminants in food-processing factories may facilitate identification of spatial and temporal aspects of the contamination. This may help to properly manage the process hygiene. With S. aureus, multiple locus variable number of tandem repeats analysis (MLVA) proved to be an effective method for the purpose, being sufficiently discriminative, yet comparatively fast and inexpensive. The application of automated flow-through gel electrophoresis to separation of DNA fragments produced by multiplex PCR helped to improve the accuracy and speed of the method. © 2013 The Society for Applied Microbiology.

  16. Applications of prebiotics in food industry: A review.

    PubMed

    Singla, Vinti; Chakkaravarthi, S

    2017-12-01

    Benefits of prebiotics for stimulating a healthy intestinal tract are well known. From suppression of pathogens to proliferation of indigenous bacteria of intestines, prebiotics have it all. Since the research on the scope of prebiotics is expanding, new applications are coming up every day thus upgrading the choices consumer has for a healthy living. Incorporation of prebiotics in a wide range of products that food industry offers on shelf is an innovative way to replace fat and sugars along with enhancing the mouthfeel by providing better tongue lubrication. In some cases, the thermal stability of the product is improved along with other sensory, textural and physiological benefits. This paper gives an overview of the various prebiotics available from different sources and their applications in various segments of food industry, notably dairy, beverage, processed fruit-vegetable, bakery, confectionary, extruded snack, sweetener, infant formula, pet food and livestock industry. The effects observed on addition of various prebiotics are also elaborated.

  17. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.

  18. Constructing food choice decisions.

    PubMed

    Sobal, Jeffery; Bisogni, Carole A

    2009-12-01

    Food choice decisions are frequent, multifaceted, situational, dynamic, and complex and lead to food behaviors where people acquire, prepare, serve, give away, store, eat, and clean up. Many disciplines and fields examine decision making. Several classes of theories are applicable to food decision making, including social behavior, social facts, and social definition perspectives. Each offers some insights but also makes limiting assumptions that prevent fully explaining food choice decisions. We used constructionist social definition perspectives to inductively develop a food choice process model that organizes a broad scope of factors and dynamics involved in food behaviors. This food choice process model includes (1) life course events and experiences that establish a food choice trajectory through transitions, turning points, timing, and contexts; (2) influences on food choices that include cultural ideals, personal factors, resources, social factors, and present contexts; and (3) a personal system that develops food choice values, negotiates and balances values, classifies foods and situations, and forms/revises food choice strategies, scripts, and routines. The parts of the model dynamically interact to make food choice decisions leading to food behaviors. No single theory can fully explain decision making in food behavior. Multiple perspectives are needed, including constructionist thinking.

  19. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  20. Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests.

    PubMed

    Ito, Kaori; Yamamoto, Takayuki; Oyama, Yuriko; Tsuruma, Rieko; Saito, Eriko; Saito, Yoshikazu; Ozu, Takeshi; Honjoh, Tsutomu; Adachi, Reiko; Sakai, Shinobu; Akiyama, Hiroshi; Shoji, Masahiro

    2016-09-01

    Enzyme-linked immunosorbent assay (ELISA) is commonly used to determine food allergens in food products. However, a significant number of ELISAs give an erroneous result, especially when applied to highly processed food. Accordingly, an improved ELISA, which utilizes an extraction solution comprising the surfactant sodium lauryl sulfate (SDS) and reductant 2-mercaptoethanol (2-ME), has been specially developed to analyze food allergens in highly processed food by enhancing analyte protein extraction. Recently, however, the use of 2-ME has become undesirable. In the present study, a new extraction solution containing a human- and eco-friendly reductant, which is convenient to use at the food manufacturing site, has been established. Among three chemicals with different reducing properties, sodium sulfite, tris(3-hydroxypropyl)phosphine, and mercaptoethylamine sodium sulfite was selected as a 2-ME substitute. The protein extraction ability of SDS/0.1 M sodium sulfite solution was comparable to that of SDS/2-ME solution. Next, the ELISA performance for egg, milk, wheat, peanut, and buckwheat was evaluated by using model-processed foods and commercially available food products. The data showed that the SDS/0.1 M sulfite ELISA significantly correlated with the SDS/2-ME ELISA for all food allergens examined (p < 0.01), thereby establishing the validity of the SDS/0.1 M sulfite ELISA performance. Furthermore, the new SDS/0.1 M sulfite solution was investigated for its applicability to the lateral-flow (LF) test. The result demonstrated the successful analysis of food allergens in processed food, showing consistency with the SDS/0.1 M sulfite ELISA results. Accordingly, a harmonized analysis system for processed food comprising a screening LF test and a quantitative ELISA with identical extraction solution has been established. The ELISA based on the SDS/0.1 M sulfite extraction solution has now been authorized as the revised official method for food allergen analysis in Japan.

  1. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.

    PubMed

    Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori

    2017-09-01

    Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Processing- and product-related causes for food waste and implications for the food supply chain.

    PubMed

    Raak, Norbert; Symmank, Claudia; Zahn, Susann; Aschemann-Witzel, Jessica; Rohm, Harald

    2017-03-01

    Reducing food waste is one of the prominent goals in the current research, which has also been set by the United Nations to achieve a more sustainable world by 2030. Given that previous studies mainly examined causes for food waste generation related to consumers, e.g., expectations regarding quality or uncertainties about edibility, this review aims at providing an overview on losses in the food industry, as well as on natural mechanisms by which impeccable food items are converted into an undesired state. For this, scientific literature was reviewed based on a keyword search, and information not covered was gathered by conducting expert interviews with representatives from 13 German food processing companies. From the available literature, three main areas of food waste generation were identified and discussed: product deterioration and spoilage during logistical operations, by-products from food processing, and consumer perception of quality and safety. In addition, expert interviews revealed causes for food waste in the processing sector, which were categorised as follows: losses resulting from processing operations and quality assurance, and products not fulfilling quality demands from trade. The interviewees explained a number of strategies to minimise food losses, starting with alternative tradeways for second choice items, and ending with emergency power supplies to compensate for power blackouts. It became clear that the concepts are not universally applicable for each company, but the overview provided in the present study may support researchers in finding appropriate solutions for individual cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Decontamination formulations for disinfection and sterilization

    DOEpatents

    Tucker, Mark D.; Engler, Daniel E.

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  4. Petitioning process for irradiated foods and animal feeds in North America

    NASA Astrophysics Data System (ADS)

    Marcotte, Michelle; Kunstadt, Peter

    1993-07-01

    The lack of sufficient regulatory approvals continues to delay the commercial application of food irradiation in several countries. Often, the regulatory approval process itself appears too challenging and approvals are not even requested. We believe that petitions can be successful and want to encourage interested parties to submit good quality approval petitions to the regulatory authorities. The objective of this paper is to review petition requirements so that researchers and companies in other countries will be able to prepare petitions requesting approval for the import and sale of irradiated foods into North America.

  5. 21 CFR 210.2 - Applicability of current good manufacturing practice regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Applicability of current good manufacturing... AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE IN MANUFACTURING, PROCESSING, PACKING, OR HOLDING OF DRUGS; GENERAL § 210.2 Applicability of current good manufacturing...

  6. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    PubMed

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  7. Using food network unfolding to evaluate food-web complexity in terms of biodiversity: theory and applications.

    PubMed

    Kato, Yoshikazu; Kondoh, Michio; Ishikawa, Naoto F; Togashi, Hiroyuki; Kohmatsu, Yukihiro; Yoshimura, Mayumi; Yoshimizu, Chikage; Haraguchi, Takashi F; Osada, Yutaka; Ohte, Nobuhito; Tokuchi, Naoko; Okuda, Noboru; Miki, Takeshi; Tayasu, Ichiro

    2018-07-01

    Food-web complexity often hinders disentangling functionally relevant aspects of food-web structure and its relationships to biodiversity. Here, we present a theoretical framework to evaluate food-web complexity in terms of biodiversity. Food network unfolding is a theoretical method to transform a complex food web into a linear food chain based on ecosystem processes. Based on this method, we can define three biodiversity indices, horizontal diversity (D H ), vertical diversity (D V ) and range diversity (D R ), which are associated with the species diversity within each trophic level, diversity of trophic levels, and diversity in resource use, respectively. These indices are related to Shannon's diversity index (H'), where H' = D H  + D V  - D R . Application of the framework to three riverine macroinvertebrate communities revealed that D indices, calculated from biomass and stable isotope features, captured well the anthropogenic, seasonal, or other within-site changes in food-web structures that could not be captured with H' alone. © 2018 John Wiley & Sons Ltd/CNRS.

  8. Functional food and nutraceutical registration processes in Japan and China: a diffusion of innovation perspective.

    PubMed

    Patel, Darshika; Dufour, Yvon; Domigan, Neil

    2008-01-01

    Purpose - This paper looks into the functional food and nutraceutical registration processes in Japan and China. The Japanese have developed the Foods for Specified Health Use (FOSHU) registration process whereas the Chinese have put into place the Health Food (HF) registration process. The aim of this paper is to compare the regulation processes between the two countries in search for answers to three core empirical questions: (1) how have the registration processes developed and changed? (2) What are the similarities and differences between the processes of registration in the two countries investigated? (3) Why are the registration processes similar/different? Method - The study was conducted using secondary sources. The literature surveyed covered academic journals, trade journals, magazine and newspaper articles, market reports, proceedings, books and web pages of relevant regulatory authorities and regulatory consultants. Information from the more recently published sources was used preferentially over older sources. As well as using the most recent sources, information was selected on the basis of which source it was from. Official regulations and SFDA and MHLW websites would contain accurate and up to date information and information from here would be taken as true over other sources of information. Results - The two diagrams of the registration processes respectively in Japan and China clearly show that there are similarities and differences. There are six categories under which these can be found: (1) the scientific evidence required; (2) the application process; (3) the evaluation process; (4) the law and the categories of products; (5) the labels and the types of claims; and finally (6) the cost and the time involved. Conclusions -The data analysis suggests that the process of diffusion of innovation played a role in the development of the regulations. Further it was found that while Japan was at the outset a pioneer innovator in nutraceutical registration processes, there are indications that in more recent years it too imitated other countries. NOVELTY STATEMENT: The assortment of regulatory regimes creates much uncertainty for the firms and the lack of familiarity and poor knowledge of the regulatory situation increases the risk of failure. The research presented in this paper provides highly valuable information to any biotech/pharmaceutical/nutraceutical companies developing their market entry strategy in Japan and China. There are few national and international studies of drug registration application processes but even fewer comparative studies of functional food and neutraceutical registration application processes such as this one and none using a diffusion of innovation perspective.

  9. Multiple attribute decision making model and application to food safety risk evaluation.

    PubMed

    Ma, Lihua; Chen, Hong; Yan, Huizhe; Yang, Lifeng; Wu, Lifeng

    2017-01-01

    Decision making for supermarket food purchase decisions are characterized by network relationships. This paper analyzed factors that influence supermarket food selection and proposes a supplier evaluation index system based on the whole process of food production. The author established the intuitive interval value fuzzy set evaluation model based on characteristics of the network relationship among decision makers, and validated for a multiple attribute decision making case study. Thus, the proposed model provides a reliable, accurate method for multiple attribute decision making.

  10. Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Multari, Rosalie A; Cremers, David A; Dupre, Jo Anne M; Gustafson, John E

    2013-09-11

    The rapid detection of biological contaminants, such as Escherichia coli O157:H7 and Salmonella enterica , on foods and food-processing surfaces is important to ensure food safety and streamline the food-monitoring process. Laser-induced breakdown spectroscopy (LIBS) is an ideal candidate technology for this application because sample preparation is minimal and results are available rapidly (seconds to minutes). Here, multivariate regression analysis of LIBS data is used to differentiate the live bacterial pathogens E. coli O157:H7 and S. enterica on various foods (eggshell, milk, bologna, ground beef, chicken, and lettuce) and surfaces (metal drain strainer and cutting board). The type (E. coli or S. enterica) of bacteria could be differentiated in all cases studied along with the metabolic state (viable or heat killed). This study provides data showing the potential of LIBS for the rapid identification of biological contaminants using spectra collected directly from foods and surfaces.

  11. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada.

    PubMed

    Moubarac, Jean-Claude; Martins, Ana Paula Bortoletto; Claro, Rafael Moreira; Levy, Renata Bertazzi; Cannon, Geoffrey; Monteiro, Carlos Augusto

    2013-12-01

    To investigate consumption of ultra-processed products in Canada and to assess their association with dietary quality. Application of a classification of foodstuffs based on the nature, extent and purpose of food processing to data from a national household food budget survey. Foods are classified as unprocessed/minimally processed foods (Group 1), processed culinary ingredients (Group 2) or ultra-processed products (Group 3). All provinces and territories of Canada, 2001. Households (n 5643). Food purchases provided a mean per capita energy availability of 8908 (se 81) kJ/d (2129 (se 19) kcal/d). Over 61·7 % of dietary energy came from ultra-processed products (Group 3), 25·6 % from Group 1 and 12·7 % from Group 2. The overall diet exceeded WHO upper limits for fat, saturated fat, free sugars and Na density, with less fibre than recommended. It also exceeded the average energy density target of the World Cancer Research Fund/American Institute for Cancer Research. Group 3 products taken together are more fatty, sugary, salty and energy-dense than a combination of Group 1 and Group 2 items. Only the 20 % lowest consumers of ultra-processed products (who consumed 33·2 % of energy from these products) were anywhere near reaching all nutrient goals for the prevention of obesity and chronic non-communicable diseases. The 2001 Canadian diet was dominated by ultra-processed products. As a group, these products are unhealthy. The present analysis indicates that any substantial improvement of the diet would involve much lower consumption of ultra-processed products and much higher consumption of meals and dishes prepared from minimally processed foods and processed culinary ingredients.

  12. Potential Applications of Carbohydrases Immobilization in the Food Industry

    PubMed Central

    Contesini, Fabiano Jares; de Alencar Figueira, Joelise; Kawaguti, Haroldo Yukio; de Barros Fernandes, Pedro Carlos; de Oliveira Carvalho, Patrícia; Nascimento, Maria da Graça; Sato, Hélia Harumi

    2013-01-01

    Carbohydrases find a wide application in industrial processes and products, mainly in the food industry. With these enzymes, it is possible to obtain different types of sugar syrups (viz. glucose, fructose and inverted sugar syrups), prebiotics (viz. galactooligossacharides and fructooligossacharides) and isomaltulose, which is an interesting sweetener substitute for sucrose to improve the sensory properties of juices and wines and to reduce lactose in milk. The most important carbohydrases to accomplish these goals are of microbial origin and include amylases (α-amylases and glucoamylases), invertases, inulinases, galactosidases, glucosidases, fructosyltransferases, pectinases and glucosyltransferases. Yet, for all these processes to be cost-effective for industrial application, a very efficient, simple and cheap immobilization technique is required. Immobilization techniques can involve adsorption, entrapment or covalent bonding of the enzyme into an insoluble support, or carrier-free methods, usually based on the formation of cross-linked enzyme aggregates (CLEAs). They include a broad variety of supports, such as magnetic materials, gums, gels, synthetic polymers and ionic resins. All these techniques present advantages and disadvantages and several parameters must be considered. In this work, the most recent and important studies on the immobilization of carbohydrases with potential application in the food industry are reviewed. PMID:23344046

  13. Biotechnology

    NASA Image and Video Library

    2003-01-22

    ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include scanning chickens during processing to help prevent contaminated food from getting to the table. ProVision is working with Sanderson Farms of Mississippi and the U.S. Department of Agriculture. ProVision has a record in its spectral library of the unique spectral signature of fecal contamination, so chickens can be scanned and those with a positive reading can be separated. HSI sensors can also determine the quantity of surface contamination. Research in this application is quite advanced, and ProVision is working on a licensing agreement for the technology. The potential for future use of this equipment in food processing and food safety is enormous.

  14. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  15. Hyperspectral Imaging of fecal contamination on chickens

    NASA Technical Reports Server (NTRS)

    2003-01-01

    ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include scanning chickens during processing to help prevent contaminated food from getting to the table. ProVision is working with Sanderson Farms of Mississippi and the U.S. Department of Agriculture. ProVision has a record in its spectral library of the unique spectral signature of fecal contamination, so chickens can be scanned and those with a positive reading can be separated. HSI sensors can also determine the quantity of surface contamination. Research in this application is quite advanced, and ProVision is working on a licensing agreement for the technology. The potential for future use of this equipment in food processing and food safety is enormous.

  16. FODMAPs: food composition, defining cutoff values and international application.

    PubMed

    Varney, Jane; Barrett, Jacqueline; Scarlata, Kate; Catsos, Patsy; Gibson, Peter R; Muir, Jane G

    2017-03-01

    The low-FODMAP diet is a new dietary therapy for the management of irritable bowel syndrome that is gaining in popularity around the world. Developing the low-FODMAP diet required not only extensive food composition data but also the establishment of "cutoff values" to classify foods as low-FODMAP. These cutoff values relate to each particular FODMAP present in a food, including oligosaccharides (fructans and galacto-oligosaccharides), sugar polyols (mannitol and sorbitol), lactose, and fructose in excess of glucose. Cutoff values were derived by considering the FODMAP levels in typical serving sizes of foods that commonly trigger symptoms in individuals with irritable bowel syndrome, as well as foods that were generally well tolerated. The reliability of these FODMAP cutoff values has been tested in a number of dietary studies. The development of the techniques to quantify the FODMAP content of foods has greatly advanced our understanding of food composition. FODMAP composition is affected by food processing techniques and ingredient selection. In the USA, the use of high-fructose corn syrups may contribute to the higher FODMAP levels detected (via excess fructose) in some processed foods. Because food processing techniques and ingredients can vary between countries, more comprehensive food composition data are needed for this diet to be more easily implemented internationally. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  17. Apply Pesticides Correctly, A Guide for Commercial Applicators: Food Processing Pest Control.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide contains basic information to meet specific standards for pesticide applicators. Characteristics, life cycles and habits of pests such as roaches, beetles, flies, ants and rodents are discussed. Additionally, pest control measures, especially by application of aerosols, dusts, baits, fumigants or vapors, is presented. (CS)

  18. Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.

    NASA Astrophysics Data System (ADS)

    Narumiya, Tadaoki; Hagura, Yoshio

    Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.

  19. Biosensors for Sustainable Food Engineering: Challenges and Perspectives

    PubMed Central

    Ragavan, Vasanth; Weng, Xuan; Chand, Rohit

    2018-01-01

    Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized. PMID:29534552

  20. Application of xanthan gum as polysaccharide in tissue engineering: A review.

    PubMed

    Kumar, Anuj; Rao, Kummara Madhusudana; Han, Sung Soo

    2018-01-15

    Xanthan gum is a microbial high molecular weight exo-polysaccharide produced by Xanthomonas bacteria (a Gram-negative bacteria genus that exhibits several different species) and it has widely been used as an additive in various industrial and biomedical applications such as food and food packaging, cosmetics, water-based paints, toiletries, petroleum, oil-recovery, construction and building materials, and drug delivery. Recently, it has shown great potential in issue engineering applications and a variety of modification methods have been employed to modify xanthan gum as polysaccharide for this purpose. However, xanthan gum-based biomaterials need further modification for several targeted applications due to some disadvantages (e.g., processing and mechanical performance of xanthan gum), where modified xanthan gum will be well suited for tissue engineering products. In this review, the current scenario of the use of xanthan gum for various tissue engineering applications, including its origin, structure, properties, modification, and processing for the preparation of the hydrogels and/or the scaffolds is precisely reviewed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bioanalytical methods for food contaminant analysis.

    PubMed

    Van Emon, Jeanette M

    2010-01-01

    Foods are complex mixtures of lipids, carbohydrates, proteins, vitamins, organic compounds, and other naturally occurring substances. Sometimes added to this mixture are residues of pesticides, veterinary and human drugs, microbial toxins, preservatives, contaminants from food processing and packaging, and other residues. This milieu of compounds can pose difficulties in the analysis of food contaminants. There is an expanding need for rapid and cost-effective residue methods for difficult food matrixes to safeguard our food supply. Bioanalytical methods are established for many food contaminants such as mycotoxins and are the method of choice for many food allergens. Bioanalytical methods are often more cost-effective and sensitive than instrumental procedures. Recent developments in bioanalytical methods may provide more applications for their use in food analysis.

  2. Pre-aeration of food waste to augment acidogenic process at higher organic load: Valorizing biohydrogen, volatile fatty acids and biohythane.

    PubMed

    Sarkar, Omprakash; Venkata Mohan, S

    2017-10-01

    Application of pre-aeration (AS) to waste prior to feeding was evaluated on acidogenic process in a semi-pilot scale biosystem for the production of biobased products (biohydrogen, volatile fatty acids (VFA) and biohythane) from food waste. Oxygen assisted in pre-hydrolysis of waste along with the suppression of methanogenic activity resulting in enhanced acidogenic product formation. AS operation resulted in 97% improvement in hydrogen conversion efficiency (HCE) and 10% more VFA production than the control. Increasing the organic load (OL) of food waste in association with AS application improved the productivity. The application of AS also influenced concentration and composition of fatty acid. Highest fraction of acetic (5.3g/l), butyric (0.7g/l) and propionic acid (0.84g/l) was achieved at higher OL (100g COD/l) with good degree of acidification (DOA). AS strategy showed positive influence on biofuel (biohydrogen and biohythane) production along with the biosynthesis of short chain fatty acids functioning as a low-cost pretreatment strategy in a single stage bioprocess. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Liposomal Encapsulation Enzymes: From Medical Applications to Kinetic Characteristics.

    PubMed

    Jahadi, M; Khosravi-Darani, K

    2017-01-01

    Liposomes and nanoliposomes as small vesicles composed of phospholipid bilayer (entrapping one or more hydrophilic or lipophilic components) have recently found several potential applications in medicine and food industry. These vesicles may protect the core materials from moisture, heat and other extreme conditions. They may also provide controlled release of various bioactive agents, including food ingredients at the right place and time. Potential applications of enzyme-loaded liposomes are in the medical or biomedical field, particularly for the enzymereplacement therapy, as well as cheese industry for production of functional foods with improved health beneficial impacts on the consumer. Encapsulation process has a recondite impact on enzymes. In fact, liposome preparation techniques may alter the pH and temperature optima, affinity of the enzyme to substrate (Km), and maximum rate of reaction (Vmax). In addition, in this paper, the impact of process variables on the kinetic characteristics of enzymes encapsulated in liposomes was investigated. Also, the effects of enzyme entrapment in liposomes, prepared by different methods, on the catalytic efficiency of enzyme, as well as its kinetic properties and stability compared to native (free) enzymes has been reviewed.

  4. Economics of food irradiation

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter; Eng, P.; Steeves, Colyn; Beaulieu, Daniel; Eng, P.

    1993-07-01

    The number of products being radiation processed worldwide is constantly increasing and today includes such diverse items as medical disposables, fruits and vegetables, spices, meats, seafoods and waste products. This range of products to be processed has resulted in a wide range of irradiator designs and capital and operating cost requirements. This paper discusses the economics of low dose food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operating costs and annual throughputs. It is intended to provide the reader with a general knowledge of how unit processing costs are derived.

  5. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  6. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  7. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  8. Effects of food processing on the thermodynamic and nutritive value of foods: literature and database survey.

    PubMed

    Prochaska, L J; Nguyen, X T; Donat, N; Piekutowski, W V

    2000-02-01

    One of the goals of our society is to provide adequate nourishment for the general population of humans. In the strictness sense, the foodstuffs which we ingest are bundles of thermodynamic energy. In our post-industrial society, food producers provide society with the bioenergetic content of foods, while stabilizing the food in a non-perishable form that enables the consumer to access foods that are convenient and nutritious. As our modern society developed, the processing of foodstuffs increased to allow consumers flexibility in their choice in which foods to eat (based on nutritional content and amount of post-harvest processing). The thermodynamic energy content of foodstuffs is well documented in the literature by the use of bomb calorimetry measurements. Here, we determine the effects of processing (in most cases by the application of heat) on the thermodynamic energy content of foods in order to investigate the role of processing in daily nutritional needs. We also examine which processing procedures affect the nutritive quality (vitamin and mineral content) and critically assess the rational, advantages and disadvantages of additives to food. Finally, we discuss the role of endogenous enzymes in foods not only on the nutritive quality of the food but also on the freshness and flavor of the food. Our results show that a significant decrease in thermodynamic energy content occurs in fruits, vegetables, and meat products upon processing that is independent of water content. No significant change in energy content was observed in cereals, sugars, grains, fats and oils, and nuts. The vitamin content of most foods was most dramatically decreased by canning while smaller effects were observed upon blanching and freezing. We found that most food additives had very little effect on thermodynamic energy content due to their presence in minute quantities and that most were added to preserve the foodstuff or supplement its vitamin content. The endogenous food enzymes while aiding in digestibility of some foods (yogurt or grains) also helped some foods have a more palatable taste. Our conclusions are there is some scientific merit to the idea that enzymes in food can act synergistically with those in the human body to facilitate maximum nutritive value of foods. Copyright 2000 Harcourt Publishers Ltd.

  9. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    PubMed

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  11. Applications of High and Ultra High Pressure Homogenization for Food Safety

    PubMed Central

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide “fresh-like” products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350–400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered. PMID:27536270

  12. Nanocrystals: The preparation, precise control, and application toward the pharmaceutics and foods industry.

    PubMed

    Wu, Cao; Chen, Zhou; Hu, Ya; Rao, Zhiyuan; Wu, Wangping; Yang, Zhaogang

    2018-05-15

    Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Exergetic simulation of a combined infrared-convective drying process

    NASA Astrophysics Data System (ADS)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  14. NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning.

    PubMed

    Muñoz-Colmenero, Marta; Martínez, Jose Luis; Roca, Agustín; Garcia-Vazquez, Eva

    2017-01-01

    The Next Generation Sequencing methodologies are considered the next step within DNA-based methods and their applicability in different fields is being evaluated. Here, we tested the usefulness of the Ion Torrent Personal Genome Machine (PGM) in food traceability analyzing candies as a model of high processed foods, and compared the results with those obtained by PCR-cloning-sequencing (PCR-CS). The majority of samples exhibited consistency between methodologies, yielding more information and species per product from the PGM platform than PCR-CS. Significantly higher AT-content in sequences of the same species was also obtained from PGM. This together with some taxonomical discrepancies between methodologies suggest that the PGM platform is still pre-mature for its use in food traceability of complex highly processed products. It could be a good option for analysis of less complex food, saving time and cost per sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  16. Active and intelligent packaging: The indication of quality and safety.

    PubMed

    Janjarasskul, Theeranun; Suppakul, Panuwat

    2018-03-24

    The food industry has been under growing pressure to feed an exponentially increasing world population and challenged to meet rigorous food safety law and regulation. The plethora of media consumption has provoked consumer demand for safe, sustainable, organic, and wholesome products with "clean" labels. The application of active and intelligent packaging has been commercially adopted by food and pharmaceutical industries as a solution for the future for extending shelf life and simplifying production processes; facilitating complex distribution logistics; reducing, if not eliminating the need for preservatives in food formulations; enabling restricted food packaging applications; providing convenience, improving quality, variety and marketing features; as well as providing essential information to ensure consumer safety. This chapter reviews innovations of active and intelligent packaging which advance packaging technology through both scavenging and releasing systems for shelf life extension, and through diagnostic and identification systems for communicating quality, tracking and brand protection.

  17. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health.

    PubMed

    Smolkova, Bozena; El Yamani, Naouale; Collins, Andrew R; Gutleb, Arno C; Dusinska, Maria

    2015-03-01

    Disturbed epigenetic mechanisms, which developmentally regulate gene expression via modifications to DNA, histone proteins, and chromatin, have been hypothesized to play a key role in many human diseases. Recently it was shown that engineered nanoparticles (NPs), that already have a wide range of applications in various fields including food production, could dramatically affect epigenetic processes, while their ability to induce diseases remains poorly understood. Besides the obvious benefits of the new technologies, it is critical to assess their health effects before proceeding with industrial production. In this article, after surveying the applications of NPs in food technology, we review recent advances in the understanding of epigenetic pathological effects of NPs, and discuss their possible health impact with the aim of avoiding potential health risks posed by the use of nanomaterials in foods and food-packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Measurement of dielectric properties of whole and ground chicken breast meat over the frequency range from 500 MHz to 50 GHz

    USDA-ARS?s Scientific Manuscript database

    The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...

  19. Biomarkers: background, classification and guidelines for applications in nutritional epidemiology

    USDA-ARS?s Scientific Manuscript database

    One of the main problems in nutritional epidemiology is to assess food intake as well as nutrient/food component intake to a high level of validity and reliability. To help in this process, the need to have good biomarkers that more objectively allow us to evaluate the diet consumed in a more standa...

  20. 77 FR 71803 - Guidance on Food and Drug Administration Oversight of Positron Emission Tomography Drug Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0080... and Drug Administration (FDA) is announcing the availability of a guidance entitled ``FDA Oversight of... nearly all aspects of the FDA approval and surveillance processes, including application submission...

  1. A method for the determination of acrylamide in a broad variety of processed foods by GC-MS using xanthydrol derivatization.

    PubMed

    Yamazaki, Kumiko; Isagawa, Satoshi; Kibune, Nobuyuki; Urushiyama, Tetsuo

    2012-01-01

    A novel GC-MS method was developed for the determination of acrylamide, which is applicable to a variety of processed foods, including potato snacks, corn snacks, biscuits, instant noodles, coffee, soy sauces and miso (fermented soy bean paste). The method involves the derivatization of acrylamide with xanthydrol instead of a bromine compound. Isotopically labelled acrylamide (d₃-acrylamide) was used as the internal standard. The aqueous extract from samples was purified using Sep-Pak™ C₁₈ and Sep-Pak™ AC-2 columns. For amino acid-rich samples, such as miso or soy sauce, an Extrelut™ column was used for purification or extraction. After reaction with xanthydrol, the resultant N-xanthyl acrylamide was determined by GC-MS. The method was validated for various food matrices and showed good linearity, precision and trueness. The limit of detection and limit of quantification ranged 0.5-5 and 5-20 µg kg⁻¹), respectively. The developed method was applied as an exploratory survey of acrylamide in Japanese foods and the method was shown to be applicable for all samples tested.

  2. Structures, properties, modifications, and uses of oat starch.

    PubMed

    Zhu, Fan

    2017-08-15

    There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modelling transport phenomena in a multi-physics context

    NASA Astrophysics Data System (ADS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  4. Modelling transport phenomena in a multi-physics context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. Inmore » the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.« less

  5. PRESERVATION OF FOOD BY LOW-DOSE IONIZING ENERGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-01-01

    A review is presented of the current status of investigations on the radiation processing of foods. The technical feasibility of this preservation method is well established and the economic feasibility of the method appears promising, particularly in low-dose applications. The current status of development of radiation sources is discussed. Pork has responded best among the meats tested for radiation processing. Sausage, luncheon meats, and chicken demonstrate good potential. Beef appears acceptable at low radiation dose ranges but presents flavor problems at high dosages. The storage life of refrigerated and unrefrigerated marine products is increased by radiation processing, Vegetable s aremore » easily damaged by comparatively small doses of radiation. Shredded cabbage treated at 300,000 rad is an excellent product and asparagus, snap beans, lima beans, broccoli, carrots, and corn are promising vegetables for radiation processing. Radiation treatment inhibits sprouting of potatoes and onions. Radiation processing of strawberries, grapes, peaches, tomatoes, and citrus fruits at doses between 200,000 and 800,000 rad affects molds that cause rotting and increases the storage life of these fruits. Radiation processing of cereal grains, cereal products, and military ration components destroys adult insects, larvae, and eggs of insect pests that infest these foods. No radioactivity has been induced in food products by high radiation doses. Extensive studies have shown that radiation processing has no effect on the wholesomeness of foods. The economic feasibility and potentialities of the radiation processing of foods are discussed. (C.H.)« less

  6. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  7. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  8. Bioluminescence lights the way to food safety

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2003-07-01

    The food industry is increasingly adopting food safety and quality management systems that are more proactive and preventive than those used in the past which have tended to rely on end product testing and visual inspection. The regulatory agencies in many countries are promoting one such management tool, Hazard Analysis Critical Control Point (HACCP), as a way to achieve a safer food supply and as a basis for harmonization of trading standards. Verification that the process is safe must involve microbiological testing but the results need not be generated in real-time. Of all the rapid microbiological tests currently available, the only ones that come close to offering real-time results are bioluminescence-based methods. Recent developments in application of bioluminescence for food safety issues are presented in the paper. These include the use of genetically engineered microorganisms with bioluminescent and fluorescent phenotypes as a real time indicator of physiological state and survival of food-borne pathogens in food and food processing environments as well as novel bioluminescent-based methods for rapid detection of pathogens in food and environmental samples. Advantages and pitfalls of the methods are discussed.

  9. Emulsion design to improve the delivery of functional lipophilic components.

    PubMed

    McClements, David Julian

    2010-01-01

    The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.

  10. Microbial ecology and quality assurance in food fermentation systems. The case of kefir grains application.

    PubMed

    Plessas, S; Alexopoulos, A; Voidarou, C; Stavropoulou, E; Bezirtzoglou, E

    2011-12-01

    Fermentation technology has become a modern method for food production the last decades as a process for enhancing product stability, safety and sensory standards. The main reason for this development is the increasing consumers' demand for safe and high quality food products. The above has led the scientific community to the thorough study for the appropriate selection of specific microorganisms with desirable properties such as bacteriocin production, and probiotic properties. The main food products produced through fermentation activity are bread, wine, beer cheese and other dairy products. The microorganisms conducting the above processes are mainly yeasts and lactic acid bacteria. The end products of carbohydrate catabolism by these microorganisms contribute not only to preservation as it was believed years ago, but also to the flavour, aroma and texture and to the increase of the nutritional quality by thereby helping determine unique product characteristics. Thus, controlling the function of specific microorganisms or the succession of microorganisms that dominate the microflora is therefore advantageous, because it can increase product quality, functionality and value. Throughout the process of the discovery of microbiological diversity in various fermented food systems, the development of starter culture technology has gained more scientific attention, and it could be used for the control of the manufacturing operation, and management of product quality. In the frame of this review the presentation of the quality enhancement of most consumed fermented food products around the world is attempted and the new trends in production of fermented food products, such as bread is discussed. The review is focused in kefir grains application in bread production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Factors Affecting Bacterial Inactivation during High Hydrostatic Pressure Processing of Foods: A Review.

    PubMed

    Syed, Qamar-Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi

    2016-01-01

    Although, the High Hydrostatic Pressure (HHP) technology has been gaining gradual popularity in food industry since last two decades, intensive research is needed to explore the missing information. Bacterial inactivation in food by using HHP applications can be enhanced by getting deeper insights of the process. Some of these aspects have been already studied in detail (like pressure, time, and temperature, etc.), while some others still need to be investigated in more details (like pH, rates of compression, and decompression, etc.). Selection of process parameters is mainly dependent on type of matrix and target bacteria. This intensive review provides comprehensive information about the variety of aspects that can determine the bacterial inactivation potential of HHP process indicating the fields of future research on this subject including pH shifts of the pressure treated samples and critical limits of compression and decompression rates to accelerate the process efficacy.

  12. Pulsed electric fields for pasteurization: defining processing conditions

    USDA-ARS?s Scientific Manuscript database

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  13. Production of High-Value Nanoparticles via Biogenic Processes Using Aquacultural and Horticultural Food Waste

    PubMed Central

    Ghosh, Purabi R.; Fawcett, Derek; Sharma, Shashi B.; Poinern, Gerrard E. J.

    2017-01-01

    The quantities of organic waste produced globally by aquacultural and horticulture are extremely large and offer an attractive renewable source of biomolecules and bioactive compounds. The availability of such large and diverse sources of waste materials creates a unique opportunity to develop new recycling and food waste utilisation strategies. The aim of this review is to report the current status of research in the emerging field of producing high-value nanoparticles from food waste. Eco-friendly biogenic processes are quite rapid, and are usually carried out at normal room temperature and pressure. These alternative clean technologies do not rely on the use of the toxic chemicals and solvents commonly associated with traditional nanoparticle manufacturing processes. The relatively small number of research articles in the field have been surveyed and evaluated. Among the diversity of waste types, promising candidates and their ability to produce various high-value nanoparticles are discussed. Experimental parameters, nanoparticle characteristics and potential applications for nanoparticles in pharmaceuticals and biomedical applications are discussed. In spite of the advantages, there are a number of challenges, including nanoparticle reproducibility and understanding the formation mechanisms between different food waste products. Thus, there is considerable scope and opportunity for further research in this emerging field. PMID:28773212

  14. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry.

    PubMed

    Coughlan, Laura M; Cotter, Paul D; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing.

  15. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

    PubMed Central

    Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated with bacterial biofilms in the food industry and summarizes the recent strategies explored to inhibit biofilm formation, with special focus on those targeting quorum sensing. PMID:27803696

  16. [Applications of near infrared reflectance spectroscopy technique to determination of forage mycotoxins].

    PubMed

    Xu, Qing-Fang; Han, Jian-Guo; Yu, Zhu; Yue, Wen-Bin

    2010-05-01

    The near infrared reflectance spectroscopy technique (NIRS) has been explored at many fields such as agriculture, food, chemical, medicine, and so on, due to its rapid, effective, non-destructive, and on-line characteristics. Fungi invasion in forage materials during processing and storage would generate mycotoxins, which were harmful for people and animal through food chains. The determination of mycotoxins included the overelaborated pretreatments such as milling, extracting, chromatography and subsequent process such as enzyme linked immunosorbent assay, high performance liquid chromatography, and thin layer chromatography. The authors hope that high precision and low detection limit spectrum instrument, and software technology and calibration model of mycotoxins determination, will fast measure accurately the quality and quantity of mycotoxins, which will provide basis for reasonable process and utilization of forage and promote the application of NIRS in the safety livestock product.

  17. Fuel Cells and Other Emerging Manportable Power Technologies for the NATO Warfighter. Part 1: Power Sources for Manportable/Manwearable Applications (Piles a combustible et autres technologies portatives d’alimentation en energie pour les combattants de l’OTAN - Partie 1: Sources d’alimentation pour les applications transportables/portables par l’homme)

    DTIC Science & Technology

    2014-10-01

    increases, the power source weight budget has to be traded against traditional soldier commodities such as ammunition, water and food . As the...When one considers the other commodities he is required to carry such as food , water, ammunition, etc., the weight burden will undoubtedly have a...Others have flexible outer packaging similar to that used in food processing, which are flexible. Flexible packages are emerging which enable the

  18. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications. © 2018 Institute of Food Technologists®.

  19. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances.

    PubMed

    Massounga Bora, Awa Fanny; Ma, Shaojie; Li, Xiaodong; Liu, Lu

    2018-03-01

    Green tea has been associated with the prevention and reduction of a wide range of severe health conditions such as cancer, immune, and cardiovascular diseases. The health benefits associated with green tea consumption have been predominantly attributed to green tea polyphenols. The functional properties of green tea polyphenols are mainly anti-oxidative, antimutagenic, anticarcinogenic, anti-microbial, etc. These excellent properties have recently gained considerable attention in the food industry. However, their application is limited by their sensitivity to factors like temperature, light, pH, oxygen, etc. More, studies have reported the occurrence of unpleasant taste and color transfer during food processing. Lastly, the production of functional food requires to maintain the stability, bioactivity, and bioavailability of the active compounds. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of green tea-enriched food products. The present review discusses the novelty in microencapsulation techniques for the safe delivery of green tea polyphenols in food matrices. After a literature on the green tea polyphenols composition, and their health attributes, the encapsulation methods and the coating materials are presented. The application of green tea encapsulates in food matrices as well as their effect on food functional and sensory properties are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Numerical Control/Computer Aided Manufacturing (NC/CAM), A Descom Study

    DTIC Science & Technology

    1979-07-01

    CAM machines operate directly from computers, but most get instructions in the form of punched tape. The applications of NC/CAM are virtually...Although most NC/CAM equipment is metal working, its applications include electronics manufacturing, glass making, food processing, materiel handling...drafting, woodworking, plastics and inspection, just to name a few. Numerical control, like most technologies, is an advancing and evolutionary process

  1. Technologies and Applications of Airborne Power Ultrasound in Food Processing

    NASA Astrophysics Data System (ADS)

    Gallego-Juárez, Juan A.; Riera, Enrique

    Applications of ultrasonic waves are generally divided into two groups: low intensity and high intensity. Low-intensity applications are those wherein the objective is to obtain information about the propagation medium without producing any modification of its state. On the contrary, high-intensity applications are those wherein ultrasonic energy is used to produce permanent changes in the treated medium.

  2. Biosensing Based on Nanoparticles for Food Allergens Detection

    PubMed Central

    Gómez-Arribas, Lidia Nazaret; Hurtado-Sánchez, María del Carmen

    2018-01-01

    Food allergy is one of the major health threats for sensitized individuals all over the world and, over the years, the food industry has made significant efforts and investments to offer safe foods for allergic consumers. The analysis of the concentration of food allergen residues in processing equipment, in raw materials or in the final product, provides analytical information that can be used for risk assessment as well as to ensure that food-allergic consumers get accurate and useful information to make their food choices and purchasing decisions. The development of biosensors based on nanomaterials for applications in food analysis is a challenging area of growing interest in the last years. Research in this field requires the combined efforts of experts in very different areas including food chemistry, biotechnology or materials science. However, the outcome of such collaboration can be of significant impact on the food industry as well as for consumer’s safety. These nanobiosensing devices allow the rapid, selective, sensitive, cost-effective and, in some cases, in-field, online and real-time detection of a wide range of compounds, even in complex matrices. Moreover, they can also enable the design of novel allergen detection strategies. Herein we review the main advances in the use of nanoparticles for the development of biosensors and bioassays for allergen detection, in food samples, over the past few years. Research in this area is still in its infancy in comparison, for instance, to the application of nanobiosensors for clinical analysis. However, it will be of interest for the development of new technologies that reduce the gap between laboratory research and industrial applications. PMID:29617319

  3. Nanotechnology research: applications in nutritional sciences.

    PubMed

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  4. Functionalities and input methods for recording food intake: a systematic review.

    PubMed

    Rusin, Miroslav; Arsand, Eirik; Hartvigsen, Gunnar

    2013-08-01

    Increasing healthcare costs related to lifestyle-related chronic diseases require new solutions. Research on self-management tools is expanding and many new tools are emerging. Recording food intake is a key functionality in many of these tools. Nutrition monitoring is a relevant method to gain an overview of factors influencing health. However, keeping a food diary often constitutes a challenge for a patient, and developing a user-friendly and useful electronic food diary is not straightforward. To gain insight into the existing approaches to recording food intake, and to analyze current functionalities and input methods. We searched digital libraries, vendor markets and social networks focusing on nutrition. Selection criteria were publications written in English, and patient-oriented tools that offered recording of food intake or nutrition. The system properties that we searched for were types of data, types of terminal, target population, and types of reports and sharing functionalities. We summarized the properties based on their frequency in the reviewed sample. 31 publications met the selection criteria. The majority of the identified food recording systems (67%) facilitated entry of food type and the consumed quantity of food; 16% of the systems were able to record more than one type of data. The three most frequent target populations were people with obesity, diabetes and overweight. Mobile phones were used as terminals in 35% of the cases, personal computers (PCs) in 29%, and personal digital assistants in 23%. Only 10% supported both PCs and mobile phones. Data sharing was provided by 71% and reports by 51% of the systems. We searched for apps in Google Play and the Apple Store and tested 45 mobile applications that stored food intake data, of which 62% supported recording of types of food, 24% recording of carbohydrate intake and 15% recording of calorie intake. The majority of the mobile applications offered some kind of reports and data sharing, mainly via All of the tested social-network-enabled applications supported access from a personal computer and a mobile phone, search in a food database, reports, graphical presentation, listing of favorite foods, overview of own meals, and entering of consumed food type and quantity. The analyzed apps reflected a variety of approaches to recording food intake and nutrition using different terminals--mostly mobile phones (35%), followed by PCs (29%) and PDAs (23%) for older studies, designed mainly for users with obesity (45%), diabetes mellitus (42%) and overweight (32%), or people who want to stay healthy (10%). The majority of the reviewed applications (67%) offered only input of food type and quantity. All approaches (n=31), except for two, relied on manual input of data, either by typing or by selecting a food type from a database. The exceptions (n=2) used a barcode scanning function. Users of mobile phone applications were not limited to data recording, but could view their data on the screen and send it via email. The tested web applications offered similar functionalities for recording food intake. The systems studied provided some degree of personalization: users can access some systems via PCs or mobile phones and they can choose among various types of data input content for recording food intake. Many functions, such as search in a food database, reports, graphical presentation, listing of favorite foods, and overview of the user's own meals, are optimized to simplify the recording process and save time. Data sharing and reports are common features of the reviewed systems. However, none use the user's recorded food history to make suggestions on new nutritional intake, during the food recording process. This may be an area for future research. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Nanotechnology Research: Applications in Nutritional Sciences12

    PubMed Central

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  6. Food advertising on Argentinean television: are ultra-processed foods in the lead?

    PubMed

    Allemandi, Lorena; Castronuovo, Luciana; Tiscornia, M Victoria; Ponce, Miguel; Schoj, Veronica

    2018-01-01

    To describe the number of processed and ultra-processed food (PUPF) advertisements (ads) targeted to children on Argentinean television (TV), to analyse the advertising techniques used and the nutritional quality of the foods advertised, and to determine the potential exposure of children to unhealthy food advertising in our country. Five free-to-air channels and the three most popular children's cable networks were recorded from 07.00 to 22.00 hours for 6 weeks. Ads were classified by target audience, type of product, advertised food categories and advertising strategies used. The NOVA system was used to classify food products according to industrial food processing level. Nutritional quality was analysed using the Pan American Health Organization's nutrient profile model. Buenos Aires, Argentina. Results are considered applicable to most of the country. The study did not involve human subjects. Of the sample of food ads, PUPF products were more frequently advertised during children's programmes (98·9 %) v. programmes targeted to the general audience (93·7 %, χ 2=45·92, P<0·01). The top five food categories were desserts, dairy products, non-alcoholic sugary beverages, fast-food restaurants, and salty snacks. Special promotions and the appearance of cartoon characters were much more frequent in ads targeting children. Argentinean children are estimated to be exposed to sixty-one ads for unhealthy PUPF products per week. Our study showed that Argentinean children are exposed to a high number of unhealthy PUPF ads on TV. The Argentinean Government should build on this information to design and implement a comprehensive policy to reduce exposure to unhealthy food marketing that includes TV and other communication channels and places.

  7. Tracer techniques in aeolian research: Approaches, applications, and challenges

    USDA-ARS?s Scientific Manuscript database

    Aeolian processes, the entrainment, transport and deposition of sediments by wind, impacts climate, biogeochemical cycles, food security, environmental quality and human health. Considering the multitude of interactions between aeolian processes and all the major components of the Earth system, ther...

  8. Factors related to reduction in the consumption of fast food: application of the theory-based approaches.

    PubMed

    Zeinab, Jalambadani; Gholamreza, Garmaroudi; Mehdi, Yaseri; Mahmood, Tavousi; Korush, Jafarian

    2017-09-21

    The Trans-Theoretical model (TTM) and Theory of Planned Behaviour (TPB) may be promising models for understanding and predicting reduction in the consumption of fast food. The aim of this study was to examine the applicability of the Trans-Theoretical model (TTM) and the additional predictive role of the subjective norms and perceived behavioural control in predicting reduction consumption of fast food in obese Iranian adolescent girls. A cross sectional study design was conducted among twelve randomly selected schools in Sabzevar, Iran from 2015 to 2017. Four hundred eighty five randomly selected students consented to participate in the study. Hierarchical regression models used to predict the role of important variables that can influence the reduction in the consumption of fast food among students. using SPSS version 22. Variables Perceived behavioural control (r=0.58, P<0.001), Subjective norms (r=0.51, P<0.001), self-efficacy (r=0.49, P<0.001), decisional balance (pros) (r=0.29, P<0.001), decisional balance (cons) (r=0.25, P<0.001), stage of change (r=0.38, P<0.001), were significantly and positively correlated while experiential processes of change (r=0.08, P=0.135) and behavioural processes of change (r=0.09, P=0.145), were not significant. The study demonstrated that the TTM (except the experiential and behavioural processes of change) focusing on the perceived behavioural control and subjective norms are useful models for reduction in the consumption of fast food.

  9. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    PubMed

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  10. Information systems in food safety management.

    PubMed

    McMeekin, T A; Baranyi, J; Bowman, J; Dalgaard, P; Kirk, M; Ross, T; Schmid, S; Zwietering, M H

    2006-12-01

    Information systems are concerned with data capture, storage, analysis and retrieval. In the context of food safety management they are vital to assist decision making in a short time frame, potentially allowing decisions to be made and practices to be actioned in real time. Databases with information on microorganisms pertinent to the identification of foodborne pathogens, response of microbial populations to the environment and characteristics of foods and processing conditions are the cornerstone of food safety management systems. Such databases find application in: Identifying pathogens in food at the genus or species level using applied systematics in automated ways. Identifying pathogens below the species level by molecular subtyping, an approach successfully applied in epidemiological investigations of foodborne disease and the basis for national surveillance programs. Predictive modelling software, such as the Pathogen Modeling Program and Growth Predictor (that took over the main functions of Food Micromodel) the raw data of which were combined as the genesis of an international web based searchable database (ComBase). Expert systems combining databases on microbial characteristics, food composition and processing information with the resulting "pattern match" indicating problems that may arise from changes in product formulation or processing conditions. Computer software packages to aid the practical application of HACCP and risk assessment and decision trees to bring logical sequences to establishing and modifying food safety management practices. In addition there are many other uses of information systems that benefit food safety more globally, including: Rapid dissemination of information on foodborne disease outbreaks via websites or list servers carrying commentary from many sources, including the press and interest groups, on the reasons for and consequences of foodborne disease incidents. Active surveillance networks allowing rapid dissemination of molecular subtyping information between public health agencies to detect foodborne outbreaks and limit the spread of human disease. Traceability of individual animals or crops from (or before) conception or germination to the consumer as an integral part of food supply chain management. Provision of high quality, online educational packages to food industry personnel otherwise precluded from access to such courses.

  11. Applying a food processing-based classification system to a food guide: a qualitative analysis of the Brazilian experience.

    PubMed

    Davies, Vanessa Fernandes; Moubarac, Jean-Claude; Medeiros, Kharla Janinny; Jaime, Patricia Constante

    2018-01-01

    The present paper aimed to identify the stakeholders, as well as their arguments and recommendations, in the debate on the application of a food processing-based classification system to the new Brazilian Food Guide. Qualitative approach; an analysis was made of documents resulting from the consultation conducted for the development of the new Brazilian Food Guide, which uses the NOVA classification for its dietary recommendations. A thematic matrix was constructed and the resulting themes represented the main points for discussion raised during the consultation. Brazil. Actors from academia, government and associations/unions/professional bodies/organizations related to the area of nutrition and food security; non-profit institutions linked to consumer interests and civil society organizations; organizations, associations and food unions linked to the food industry; and individuals. Four themes were identified: (i) conflicting paradigms; (ii) different perceptions about the role and need of individuals; (iii) we want more from the new food guide; and (iv) a sustainable guide. There was extensive participation from different sectors of society. The debate generated by the consultation revealed two main conflicting opinions: a view aligned with the interests of the food industry and a view of healthy eating which serves the interests of the population. The first group was against the adoption of a food processing-based classification system in a public policy such as the new Brazilian Food Guide. The second group, although mostly agreeing with the new food guide, argued that it failed to address some important issues related to the food and nutrition agenda in Brazil.

  12. Study on energy-saving performance of a transcritical CO2 heat pump for food thermal process applications

    NASA Astrophysics Data System (ADS)

    Liu, Yefeng; Meng, Deren; Chen, Shen

    2018-02-01

    In food processing, there are significant simultaneous demands of cooling, warm water and hot water. Most of the heated water is used only once rather than recycled. Current heating and cooling systems consume much energy and emit lots of greenhouse gases. In order to reduce energy consumption and greenhouse gases emission, a transcritical CO2 heat pump system is proposed that can supply not only cooling, but also warm water and hot water simultaneously to meet the thermal demands of food processing. Because the inlet water temperature from environment varies through a year, the energy-saving performance for different seasons is simulated. The results showed that the potential primary energy saving rate of the proposed CO2 heat pump is 50% to 60% during a year.

  13. Fractals and foods.

    PubMed

    Peleg, M

    1993-01-01

    Fractal geometry and related concepts have had only a very minor impact on food research. The very few reported food applications deal mainly with the characterization of the contours of agglomerated instant coffee particles, the surface morphology of treated starch particles, the microstructure of casein gels viewed as a product limited diffusion aggregation, and the jagged mechanical signatures of crunchy dry foods. Fractal geometry describes objects having morphological features that are scale invariant. A demonstration of the self-similarity of fractal objects can be found in the familiar morphology of cauliflower and broccoli, both foods. Processes regulated by nonlinear dynamics can exhibit a chaotic behavior that has fractal characteristics. Examples are mixing of viscous fluids, turbulence, crystallization, agglomeration, diffusion, and possibly food spoilage.

  14. Starch--value addition by modification.

    PubMed

    Tharanathan, Rudrapatnam N

    2005-01-01

    Starch is one of the most important but flexible food ingredients possessing value added attributes for innumerable industrial applications. Its various chemically modified derivatives offer a great scope of high technological value in both food and non-food industries. Modified starches are designed to overcome one or more of the shortcomings, such as loss of viscosity and thickening power upon cooking and storage, particularly at low pH, retrogradation characteristics, syneresis, etc., of native starches. Oxidation, esterification, hydroxyalkylation, dextrinization, and cross-linking are some of the modifications commonly employed to prepare starch derivatives. In a way, starch modification provides desirable functional attributes as well as offering economic alternative to other hydrocolloid ingredients, such as gums and mucilages, which are unreliable in quality and availability. Resistant starch, a highly retrograded starch fractionformed upon food processing, is another useful starch derivative. It exhibits the beneficial physiological effects of therapeutic and nutritional values akin to dietary fiber. There awaits considerable opportunity for future developments, especially for tailor-made starch derivatives with multiple modifications and with the desired functional and nutritional properties, although the problem of obtaining legislative approval for the use of novel starch derivatives in processed food formulations is still under debate. Nevertheless, it can be predicted that new ventures in starch modifications and their diverse applications will continue to be of great interest in applied research.

  15. Determination of the profit rate of plasma treated production in the food sector

    NASA Astrophysics Data System (ADS)

    Gok, Elif Ceren; Uygun, Emre; Eren, Esin; Oksuz, Lutfi; Uygun Oksuz, Aysegul

    2017-10-01

    Recently, plasma is one of an emerging, green processing technologies used for diverse applications especially food industry. Plasma treatment proposes diverse opportunities in food industry such as surface decontamination, modification of surface properties and improvement in mass transfer with respect for foods and food-related compounds. Sometimes manufacturers use chemical treatment to demolish pathogenic flora, but its capabilities are rather limited. New methods of food sterilization consisting of ionizing radiation, exposure to magnetic fields, high-power ultrasonic treatment are needed expensive equipment or have not yet been developed for industrial use. Plasma could be used for the above mentioned reasons. In this study, the profit rate of plasma treated production in food sector was calculated.

  16. Oxytocin curbs calorie intake via food-specific increases in the activity of brain areas that process reward and establish cognitive control.

    PubMed

    Spetter, Maartje S; Feld, Gordon B; Thienel, Matthias; Preissl, Hubert; Hege, Maike A; Hallschmid, Manfred

    2018-02-09

    The hypothalamic neurohormone oxytocin decreases food intake via largely unexplored mechanisms. We investigated the central nervous mediation of oxytocin's hypophagic effect in comparison to its impact on the processing of generalized rewards. Fifteen fasted normal-weight, young men received intranasal oxytocin (24 IU) or placebo before functional magnetic resonance imaging (fMRI) measurements of brain activity during exposure to food stimuli and a monetary incentive delay task (MID). Subsequently, ad-libitum breakfast intake was assessed. Oxytocin compared to placebo increased activity in the ventromedial prefrontal cortex, supplementary motor area, anterior cingulate, and ventrolateral prefrontal cortices in response to high- vs. low-calorie food images in the fasted state, and reduced calorie intake by 12%. During anticipation of monetary rewards, oxytocin compared to placebo augmented striatal, orbitofrontal and insular activity without altering MID performance. We conclude that during the anticipation of generalized rewards, oxytocin stimulates dopaminergic reward-processing circuits. In contrast, oxytocin restrains food intake by enhancing the activity of brain regions that exert cognitive control, while concomitantly increasing the activity of structures that process food reward value. This pattern points towards a specific role of oxytocin in the regulation of eating behaviour in humans that might be of relevance for potential clinical applications.

  17. Recent developments in smart freezing technology applied to fresh foods.

    PubMed

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  18. ALL-UNION CONFERENCE ON APPLICATIONS OF RADIOACTIVE ISOTOPES AND NUCLEAR EMISSIONS IN THE NATIONAL INDUSTRY OF USSR (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-09-01

    Papers presented at the All-Union Conference on Industrial Applications of Radioactive Isotopes and Nuclear Emissions in the National Economy of USSR, April 12 to 16, 1960, in Riga are surveyed. Short summaries are given on applications of radioactive isotopes and nuclear emissions in prospecting, developing mineral resources, metallurgy, ore enrichment processes, machine construction technology, agriculture, food processing, and medicine. Sources of alpha , beta , and gamma radiation for control and automation of processes are also discussed. The full reports from the conference will be published in 1960. (R.V.J.)

  19. 21 CFR 207.20 - Who must register and submit a drug list.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., preparation, propagation, compounding, or processing of an animal feed bearing or containing an animal drug (i... drug application, a new animal drug application, an abbreviated new animal drug application, a... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Who must register and submit a drug list. 207.20...

  20. 21 CFR 207.20 - Who must register and submit a drug list.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., preparation, propagation, compounding, or processing of an animal feed bearing or containing an animal drug (i... drug application, a new animal drug application, an abbreviated new animal drug application, a... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Who must register and submit a drug list. 207.20...

  1. 21 CFR 207.20 - Who must register and submit a drug list.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., preparation, propagation, compounding, or processing of an animal feed bearing or containing an animal drug (i... drug application, a new animal drug application, an abbreviated new animal drug application, a... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Who must register and submit a drug list. 207.20...

  2. 21 CFR 207.20 - Who must register and submit a drug list.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., preparation, propagation, compounding, or processing of an animal feed bearing or containing an animal drug (i... drug application, a new animal drug application, an abbreviated new animal drug application, a... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Who must register and submit a drug list. 207.20...

  3. 21 CFR 207.20 - Who must register and submit a drug list.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., preparation, propagation, compounding, or processing of an animal feed bearing or containing an animal drug (i... drug application, a new animal drug application, an abbreviated new animal drug application, a... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Who must register and submit a drug list. 207.20...

  4. Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool

    PubMed Central

    Carter, Michelle C.; Hancock, Neil; Albar, Salwa A.; Brown, Helen; Greenwood, Darren C.; Hardie, Laura J.; Frost, Gary S.; Wark, Petra A.; Cade, Janet E.

    2016-01-01

    The current UK food composition tables are limited, containing ~3300 mostly generic food and drink items. To reflect the wide range of food products available to British consumers and to potentially improve accuracy of dietary assessment, a large UK specific electronic food composition database (FCDB) has been developed. A mapping exercise has been conducted that matched micronutrient data from generic food codes to “Back of Pack” data from branded food products using a semi-automated process. After cleaning and processing, version 1.0 of the new FCDB contains 40,274 generic and branded items with associated 120 macronutrient and micronutrient data and 5669 items with portion images. Over 50% of food and drink items were individually mapped to within 10% agreement with the generic food item for energy. Several quality checking procedures were applied after mapping including; identifying foods above and below the expected range for a particular nutrient within that food group and cross-checking the mapping of items such as concentrated and raw/dried products. The new electronic FCDB has substantially increased the size of the current, publically available, UK food tables. The FCDB has been incorporated into myfood24, a new fully automated online dietary assessment tool and, a smartphone application for weight loss. PMID:27527214

  5. Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool.

    PubMed

    Carter, Michelle C; Hancock, Neil; Albar, Salwa A; Brown, Helen; Greenwood, Darren C; Hardie, Laura J; Frost, Gary S; Wark, Petra A; Cade, Janet E

    2016-08-05

    The current UK food composition tables are limited, containing ~3300 mostly generic food and drink items. To reflect the wide range of food products available to British consumers and to potentially improve accuracy of dietary assessment, a large UK specific electronic food composition database (FCDB) has been developed. A mapping exercise has been conducted that matched micronutrient data from generic food codes to "Back of Pack" data from branded food products using a semi-automated process. After cleaning and processing, version 1.0 of the new FCDB contains 40,274 generic and branded items with associated 120 macronutrient and micronutrient data and 5669 items with portion images. Over 50% of food and drink items were individually mapped to within 10% agreement with the generic food item for energy. Several quality checking procedures were applied after mapping including; identifying foods above and below the expected range for a particular nutrient within that food group and cross-checking the mapping of items such as concentrated and raw/dried products. The new electronic FCDB has substantially increased the size of the current, publically available, UK food tables. The FCDB has been incorporated into myfood24, a new fully automated online dietary assessment tool and, a smartphone application for weight loss.

  6. Total reflection X-ray fluorescence as a tool for food screening

    NASA Astrophysics Data System (ADS)

    Borgese, Laura; Bilo, Fabjola; Dalipi, Rogerta; Bontempi, Elza; Depero, Laura E.

    2015-11-01

    This review provides a comprehensive overview of the applications of total reflection X-ray fluorescence (TXRF) in the field of food analysis. Elemental composition of food is of great importance, since food is the main source of essential, major and trace elements for animals and humans. Some potentially toxic elements, dangerous for human health may contaminate food, entering the food chain from the environment, processing, and storage. For this reason the elemental analysis of food is fundamental for safety assessment. Fast and sensitive analytical techniques, able to detect major and trace elements, are required as a result of the increasing demand on multi-elemental information and product screening. TXRF is suitable for elemental analysis of food, since it provides simultaneous multi-elemental identification in a wide dynamic range of concentrations. Several different matrices may be analyzed obtaining results with a good precision and accuracy. In this review, the most recent literature about the use of TXRF for the analysis of food is reported. The focus is placed on the applications within food quality monitoring of drinks, beverages, vegetables, fruits, cereals, animal derivatives and dietary supplements. Furthermore, this paper provides a critical outlook on the developments required to transfer these methods from research to the industrial and analytical laboratories contexts.

  7. Food drying process by power ultrasound.

    PubMed

    de la Fuente-Blanco, S; Riera-Franco de Sarabia, E; Acosta-Aparicio, V M; Blanco-Blanco, A; Gallego-Juárez, J A

    2006-12-22

    Drying processes, which have a great significance in the food industry, are frequently based on the use of thermal energy. Nevertheless, such methods may produce structural changes in the products. Consequently, a great emphasis is presently given to novel treatments where the quality will be preserved. Such is the case of the application of high-power ultrasound which represents an emergent and promising technology. During the last few years, we have been involved in the development of an ultrasonic dehydration process, based on the application of the ultrasonic vibration in direct contact with the product. Such a process has been the object of a detailed study at laboratory stage on the influence of the different parameters involved. This paper deals with the development and testing of a prototype system for the application and evaluation of the process at a pre-industrial stage. Such prototype is based on a high-power rectangular plate transducer, working at a frequency of 20 kHz, with a power capacity of about 100 W. In order to study mechanical and thermal effects, the system is provided with a series of sensors which permit monitoring the parameters of the process. Specific software has also been developed to facilitate data collection and analysis. The system has been tested with vegetable samples.

  8. Resveratrol in peanuts.

    PubMed

    Sales, Jocelyn M; Resurreccion, Anna V A

    2014-01-01

    Peanuts are important dietary food source of resveratrol with potent antioxidant properties implicated in reducing risk of cancer, cardiovascular and Alzheimer's disease, and delaying aging. Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound produced in response to a variety of biotic and abiotic stresses. This paper is a review of trans-resveratrol and related stilbenes from peanuts--their chemical structures, mechanisms for their biosynthesis, and concentrations in comparison with other major food sources. It will also discuss trans-resveratrol's absorption, bioavailability, and major health benefits; processes to enhance their biosynthesis in peanuts by biotic and abiotic stresses; process optimization for enhanced levels in peanuts and their potential food applications; and methods used for its extraction and analysis.

  9. Enzymatic Processes in Marine Biotechnology.

    PubMed

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  10. Enzymatic Processes in Marine Biotechnology

    PubMed Central

    Trincone, Antonio

    2017-01-01

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses. PMID:28346336

  11. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review.

    PubMed

    Chemat, Farid; Rombaut, Natacha; Sicaire, Anne-Gaëlle; Meullemiestre, Alice; Fabiano-Tixier, Anne-Sylvie; Abert-Vian, Maryline

    2017-01-01

    This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) in food ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It provides the necessary theoretical background and some details about extraction by ultrasound, the techniques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, and sonoporation), applications from laboratory to industry, security, and environmental impacts. In addition, the ultrasound extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assisted extraction is a research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that ultrasound-assisted extraction is a green and economically viable alternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO 2 emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  13. Food-chain contamination evaluations in ecological risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.

    Food-chain models have become increasingly important within the ecological risk assessment process. This is the case particularly when acute effects are not readily apparent, or the contaminants of concern are not readily detoxified, have a high likelihood for partitioning into lipids, or have specific target organs or tissues that may increase their significance in evaluating their potential adverse effects. An overview of food-chain models -- conceptual, theoretical, and empirical -- will be considered through a series of papers that will focus on their application within the ecological risk assessment process. Whether a food-chain evaluation is being developed to address relativelymore » simple questions related to chronic effects of toxicants on target populations, or whether a more complex food-web model is being developed to address questions related to multiple-trophic level transfers of toxicants, the elements within the food chain contamination evaluation can be generalized to address the mechanisms of toxicant accumulation in individual organisms. This can then be incorporated into more elaborate models that consider these organismal-level processes within the context of a species life-history or community-level responses that may be associated with long-term exposures.« less

  14. Technical Aspects of Use of Ultrasound for Intensification of Enzymatic Bio-Processing: New Path to "Green Chemistry"

    USDA-ARS?s Scientific Manuscript database

    Use of enzymatic processing in the food, textile, and bio-fuel applications is becoming increasingly popular, primarily because of rapid introduction of a new variety of highly efficient enzymes. In general, an enzymatic bio-processing generates less toxic and readily biodegradable wastewater efflue...

  15. 7 CFR 52.1009 - Character.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCESSED FRUITS AND VEGETABLES, PROCESSED PRODUCTS THEREOF, AND CERTAIN OTHER PROCESSED FOOD PRODUCTS 1... this classification shall not be graded above U.S. Grade B or U.S. Choice or U.S. Grade B (Dry) or U.S. Choice (Dry), whichever is applicable, regardless of the total score for the product (this is a limiting...

  16. Recent trends in SELEX technique and its application to food safety monitoring

    PubMed Central

    Mei, Zhanlong; Yao, Li; Wang, Xin; Zheng, Lei; Liu, Jian; Liu, Guodong; Peng, Chifang; Chen, Wei

    2014-01-01

    The method referred to as “systemic evolution of ligands by exponential enrichment” (SELEX) was introduced in 1990 and ever since has become an important tool for the identification and screening of aptamers. Such nucleic acids can recognize and bind to their corresponding targets (analytes) with high selectivity and affinity, and aptamers therefore have become attractive alternatives to traditional antibodies not the least because they are much more stable. Meanwhile, they have found numerous applications in different fields including food quality and safety monitoring. This review first gives an introduction into the selection process and to the evolution of SELEX, then covers applications of aptamers in the surveillance of food safety (with subsections on absorptiometric, electrochemical, fluorescent and other methods), and then gives conclusions and perspectives. The SELEX method excels by its features of in vitro, high throughput and ease of operation. This review contains 86 references. PMID:25419005

  17. Techno-commercial aspects of food irradiation in India

    NASA Astrophysics Data System (ADS)

    Sharma, Arun; Madhusoodanan, P.

    2012-08-01

    Research and development work has been carried out at Food Technology Division of Bhabha Atomic Research Center for more than past fifty years. After establishing potential commercial applications, a lot of time and efforts were spent on proving the wholesomeness and nutritional adequacy of irradiated foods. The first approval from health authorities came in 1994 for processing potato, onion and spices. Additional commodities were approved in 1998 and 2001, bringing the list of commodities to more than 20. Two technology demonstration plants were set up by the government, one for high dose applications like microbial decontamination of spices and dry vegetables in 2000, and another for low dose applications, like sprout inhibition and insect disinfestation, in 2003. In 2004, irradiation was approved as a quarantine measure. This enabled export of mango to USA after a gap of 18 years in 2007. More than a dozen plants have now been set up by private entrepreneurs in the country.

  18. Fructo-oligosaccharides: Production, Purification and Potential Applications.

    PubMed

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Panesar, Reeba

    2015-01-01

    The nutritional and therapeutic benefits of prebiotics have attracted the keen interest of consumers and food processing industry for their use as food ingredients. Fructo-oligosaccharides (FOS), new alternative sweeteners, constitute 1-kestose, nystose, and 1-beta-fructofuranosyl nystose produced from sucrose by the action of fructosyltransferase from plants, bacteria, yeast, and fungi. FOS has low caloric values, non-cariogenic properties, and help gut absorption of ions, decrease levels of lipids and cholesterol and bifidus-stimulating functionality. The purified linear fructose oligomers are added to various food products like cookies, yoghurt, infant milk products, desserts, and beverages due to their potential health benefits. This review is focused on the various aspects of biotechnological production, purification and potential applications of fructo-oligosaccharides.

  19. Behind the Match Process: Is There Any Financial Difference Lurking Below the Specialty of Choice?

    PubMed

    Oladeji, Lasun O; Raley, James A; Smith, Stephen; Perez, Jorge L; McGwin, Gerald; Ponce, Brent A

    2016-12-01

    The Match was developed in response to a chaotic residency selection process. While the match has remained relatively unchanged since it was introduced, the number of medical school graduates has increased at a rate outpacing the number of residency positions leading to a more competitive process for applicants. In May 2014, an 18-question mixed-response questionnaire was distributed to fourth year allopathic medical students via an E-mail distribution list for student affairs representatives. The individual surveys were accessible via SurveyMonkey and available for completion over the course of a 4-week period. Approximately 65.1 per cent of students performed at least one audition rotation and documented average expenditures of $2494 on housing, food, and transportation. The average applicant applied to 32 programs and attended 12 interviews while spending $4420 on the interview trail. Applicants for surgical programs applied to approximately 42 programs and attended 13 interviews compared with primary care applicants who averaged 23 programs (P < 0.001) and attended 12 interviews (P = 0.002). Surgical applicants averaged 20 days on the interview trail while spending $5500 ($423/interview) on housing, food, and transportation compared with primary care applicants averaged 19 days away from home (P < 0.05) and spending $3400 ($283/interview) on these same items (P < 0.001). The findings in our study indicate that the "Match process" contributes to the financial burden of graduating medical students and it is more expensive and time consuming for the candidates interested in surgical specialties.

  20. Intelligent Processing Equipment Projects at DLA

    NASA Technical Reports Server (NTRS)

    Obrien, Donald F.

    1992-01-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  1. Intelligent processing equipment projects at DLA

    NASA Astrophysics Data System (ADS)

    Obrien, Donald F.

    1992-04-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  2. Utilization of geothermal heat in tropical fruit-drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.H.; Lopez, L.P.; King, R.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits producedmore » on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.« less

  3. Bovine somatotropin supplementation of dairy cows. Is the milk safe?

    PubMed

    Daughaday, W H; Barbano, D M

    Complex, biologically active proteins (eg, enzymes and hormones) can be manufactured safely and cost-effectively through applications of biotechnology. Some of these proteins (eg, human insulin, human somatotropin, rennet for cheese manufacture) are currently approved for medical or food processing applications. Bovine somatotropin (bST) for lactating dairy cattle is another product that can be produced via biotechnology and may allow dairy farmers to produce milk at a lower cost. In 1985, based on an evaluation of toxicological data, the Food and Drug Administration concluded that milk and meat from bST-supplemented cows was safe and wholesome. The Food and Drug Administration has authorized the use of milk and meat from bST-supplemented cows in the commercial food supply. Its evaluation of the impact of bST supplementation on the long-term health of dairy cattle is near completion, and bST may be approved for commercial use in early 1991.

  4. Nanotechnology Applications in Functional Foods; Opportunities and Challenges.

    PubMed

    Singh, Harjinder

    2016-03-01

    Increasing knowledge on the link between diet and human health has generated a lot of interest in the development of functional foods. However, several challenges, including discovering of beneficial compounds, establishing optimal intake levels, and developing adequate food delivering matrix and product formulations, need to be addressed. A number of new processes and materials derived from nanotechnology have the potential to provide new solutions in many of these fronts. Nanotechnology is concerned with the manipulation of materials at the atomic and molecular scales to create structures that are less than 100 nm in size in one dimension. By carefully choosing the molecular components, it seems possible to design particles with different surface properties. Several food-based nanodelivery vehicles, such as protein-polysaccharide coacervates, multiple emulsions, liposomes and cochleates have been developed on a laboratory scale, but there have been very limited applications in real food systems. There are also public concerns about potential negative effects of nanotechnology-based delivery systems on human health. This paper provides an overview of the new opportunities and challenges for nanotechnology-based systems in future functional food development.

  5. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  6. Innovative food processing technology using ohmic heating and aseptic packaging for meat.

    PubMed

    Ito, Ruri; Fukuoka, Mika; Hamada-Sato, Naoko

    2014-02-01

    Since the Tohoku earthquake, there is much interest in processed foods, which can be stored for long periods at room temperature. Retort heating is one of the main technologies employed for producing it. We developed the innovative food processing technology, which supersede retort, using ohmic heating and aseptic packaging. Electrical heating involves the application of alternating voltage to food. Compared with retort heating, which uses a heat transfer medium, ohmic heating allows for high heating efficiency and rapid heating. In this paper we ohmically heated chicken breast samples and conducted various tests on the heated samples. The measurement results of water content, IMP, and glutamic acid suggest that the quality of the ohmically heated samples was similar or superior to that of the retort-heated samples. Furthermore, based on the monitoring of these samples, it was observed that sample quality did not deteriorate during storage. © 2013. Published by Elsevier Ltd on behalf of The American Meat Science Association. All rights reserved.

  7. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products.

    PubMed

    Oliveira, Pedro M; Zannini, Emanuele; Arendt, Elke K

    2014-02-01

    Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food market's trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Application of near-infrared spectroscopy to agriculture and food analysis].

    PubMed

    Wang, Duo-jia; Zhou, Xiang-yang; Jin, Tong-ming; Hu, Xiang-na; Zhong, Jiao-e; Wu, Qi-tang

    2004-04-01

    Near-Infrared Spectroscopy (NIRS) is the most rapidly developing and the most noticeable spectrographic technique in the 90's (the last century). Its principle and characteristics were explained in this paper, and the development of NIRS instrumentation, the methodology of spectrum pre-processing, as well as the chemical metrology were also introduced. The anthors mainly summarized the applications to agriculture and food, especially in-line analysis methods, which have been used in production procedure by fiber optics. The authors analyzed the NIRS application status in China, and made the first proposal to establish information sharing mode between central database and end-user by using network technology and concentrating valuable resources.

  9. Assessment of food processing and pharmaceutical industrial wastes as potential biosorbents: a review.

    PubMed

    El-Sayed, Hanan E M; El-Sayed, Mayyada M H

    2014-01-01

    There is a growing need for the use of low-cost and ecofriendly adsorbents in water/wastewater treatment applications. Conventional adsorbents as well as biosorbents from different natural and agricultural sources have been extensively studied and reviewed. However, there is a lack of reviews on biosorption utilizing industrial wastes, particularly those of food processing and pharmaceuticals. The current review evaluates the potential of these wastes as biosorbents for the removal of some hazardous contaminants. Sources and applications of these biosorbents are presented, while factors affecting biosorption are discussed. Equilibrium, kinetics, and mechanisms of biosorption are also reviewed. In spite of the wide spread application of these biosorbents in the treatment of heavy metals and dyes, more research is required on other classes of pollutants. In addition, further work should be dedicated to studying scaling up of the process and its economic feasibility. More attention should also be given to enhancing mechanical strength, stability, life time, and reproducibility of the biosorbent. Environmental concerns regarding disposal of consumed biosorbents should be addressed by offering feasible biosorbent regeneration or pollutant immobilization options.

  10. Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review

    PubMed Central

    El-Sayed, Hanan E. M.; El-Sayed, Mayyada M. H.

    2014-01-01

    There is a growing need for the use of low-cost and ecofriendly adsorbents in water/wastewater treatment applications. Conventional adsorbents as well as biosorbents from different natural and agricultural sources have been extensively studied and reviewed. However, there is a lack of reviews on biosorption utilizing industrial wastes, particularly those of food processing and pharmaceuticals. The current review evaluates the potential of these wastes as biosorbents for the removal of some hazardous contaminants. Sources and applications of these biosorbents are presented, while factors affecting biosorption are discussed. Equilibrium, kinetics, and mechanisms of biosorption are also reviewed. In spite of the wide spread application of these biosorbents in the treatment of heavy metals and dyes, more research is required on other classes of pollutants. In addition, further work should be dedicated to studying scaling up of the process and its economic feasibility. More attention should also be given to enhancing mechanical strength, stability, life time, and reproducibility of the biosorbent. Environmental concerns regarding disposal of consumed biosorbents should be addressed by offering feasible biosorbent regeneration or pollutant immobilization options. PMID:25110656

  11. DRAFT RESEARCH ON FOOD PRESERVATION BY IRRADIATION IN POLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pijanowrki, E.

    1962-07-01

    Applications of ionizing radiation in food processing in Poland are reviewed. Results are summarized from investigations on the effects of radiation on sprout inhibition in potatoes and onions, the effects of radiation processing on the storage life of blueberries, wild strawberries, and mushrooms, the use of radiation to slow down germination in barley used for making malt and in the treatment of milk for cheesemaking, the effects of radiation on the storage life of beef and pork, and the possibility of breaking down wood cellulose in sawdust to obtain glucides. (C.H.)

  12. Microbes versus microbes: control of pathogens in the food chain.

    PubMed

    Jordan, Kieran; Dalmasso, Marion; Zentek, Juergen; Mader, Anneluise; Bruggeman, Geert; Wallace, John; De Medici, Dario; Fiore, Alfonsina; Prukner-Radovcic, Estella; Lukac, Maja; Axelsson, Lars; Holck, Askild; Ingmer, Hanne; Malakauskas, Mindaugas

    2014-12-01

    Foodborne illness continues as a considerable threat to public health. Despite improved hygiene management systems and increased regulation, pathogenic bacteria still contaminate food, causing sporadic cases of illness and disease outbreaks worldwide. For many centuries, microbial antagonism has been used in food processing to improve food safety. An understanding of the mode of action of this microbial antagonism has been gained in recent years and potential applications in food and feed safety are now being explored. This review focuses on the potential opportunities presented, and the limitations, of using microbial antagonism as a biocontrol mechanism to reduce contamination along the food chain; including animal feed as its first link. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  13. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids.

    PubMed

    Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo

    2018-06-01

    Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Scientific Advances with Aspergillus Species that Are Used for Food and Biotech Applications.

    PubMed

    Biesebeke, Rob Te; Record, Erik

    2008-01-01

    Yeast and filamentous fungi have been used for centuries in diverse biotechnological processes. Fungal fermentation technology is traditionally used in relation to food production, such as for bread, beer, cheese, sake and soy sauce. Last century, the industrial application of yeast and filamentous fungi expanded rapidly, with excellent examples such as purified enzymes and secondary metabolites (e.g. antibiotics), which are used in a wide range of food as well as non-food industries. Research on protein and/or metabolite secretion by fungal species has focused on identifying bottlenecks in (post-) transcriptional regulation of protein production, metabolic rerouting, morphology and the transit of proteins through the secretion pathway. In past years, genome sequencing of some fungi (e.g. Aspergillus oryzae, Aspergillus niger) has been completed. The available genome sequences have enabled identification of genes and functionally important regions of the genome. This has directed research to focus on a post-genomics era in which transcriptomics, proteomics and metabolomics methodologies will help to explore the scientific relevance and industrial application of fungal genome sequences.

  15. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  16. Choices, choices: the application of multi-criteria decision analysis to a food safety decision-making problem.

    PubMed

    Fazil, A; Rajic, A; Sanchez, J; McEwen, S

    2008-11-01

    In the food safety arena, the decision-making process can be especially difficult. Decision makers are often faced with social and fiscal pressures when attempting to identify an appropriate balance among several choices. Concurrently, policy and decision makers in microbial food safety are under increasing pressure to demonstrate that their policies and decisions are made using transparent and accountable processes. In this article, we present a multi-criteria decision analysis approach that can be used to address the problem of trying to select a food safety intervention while balancing various criteria. Criteria that are important when selecting an intervention were determined, as a result of an expert consultation, to include effectiveness, cost, weight of evidence, and practicality associated with the interventions. The multi-criteria decision analysis approach we present is able to consider these criteria and arrive at a ranking of interventions. It can also provide a clear justification for the ranking as well as demonstrate to stakeholders, through a scenario analysis approach, how to potentially converge toward common ground. While this article focuses on the problem of selecting food safety interventions, the range of applications in the food safety arena is truly diverse and can be a significant tool in assisting decisions that need to be coherent, transparent, and justifiable. Most importantly, it is a significant contributor when there is a need to strike a fine balance between various potentially competing alternatives and/or stakeholder groups.

  17. Predicament of Chinese legislation on genetically modified food (GMF) labeling management and solutions - from the perspective of the new food safety law.

    PubMed

    Li, Wei; Li, Han

    2017-11-01

    This paper considers the background of Article 69 of the newly revised Food Safety Law in China in combination with the current situation of Chinese legislation on GMF labeling management, compared with a foreign genetically modified food labeling management system, revealing deficiencies in the Chinese legislation with respect to GMF labeling management, and noting that institutions should properly consider the GMF labeling management system in China. China adheres to the principle of mandatory labeling based on both product and processes in relation to GMFs and implements a system of process-centered mandatory labeling under a negotiation-construction form. However, China has not finally defined the supervision mode of mandatory labeling of GMFs through laws, and this remains a challenge for GMF labeling management when two mandatory labeling modes coexist. Since April 2015 and October 1, 2015 when the Food Safety Law was revised and formally implemented respectively, the applicable judicial interpretations and enforcement regulations have not made applicable revisions and only principle-based terms have been included in the Food Safety Law, it is still theoretically and practically difficult for mandatory labeling of GMFs in juridical practices and conflicts between the principle of GMF labeling and the purpose that safeguards consumers' right to know remain. The GMF labeling system should be legislatively and practically improved to an extent that protects consumers' right to know. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. 7 CFR 52.35 - Accessibility for sampling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Accessibility for sampling. 52.35 Section 52.35... PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Sampling § 52.35 Accessibility for sampling. Each applicant shall cause the processed products for which inspection is requested to...

  19. 7 CFR 52.35 - Accessibility for sampling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Accessibility for sampling. 52.35 Section 52.35... PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Sampling § 52.35 Accessibility for sampling. Each applicant shall cause the processed products for which inspection is requested to...

  20. Cold plasma processing technology makes advances

    USDA-ARS?s Scientific Manuscript database

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  1. Putting oysters under pressure

    USDA-ARS?s Scientific Manuscript database

    High pressure processing (HPP) is the most commercially important food processing technology in use now and is anticipated to remain of equal or greater importance during the next five to 10 years. This month’s column reviews the theory and current applications of HPP for oysters to improve their sa...

  2. Pulsed electric field processing for fruit and vegetables

    USDA-ARS?s Scientific Manuscript database

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  3. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers.

    PubMed

    Assadpour, Elham; Jafari, Seid Mahdi

    2018-06-08

    Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.

  4. Active food packaging evolution: transformation from micro- to nanotechnology.

    PubMed

    Imran, Muhammad; Revol-Junelles, Anne-Marie; Martyn, Agnieszka; Tehrany, Elmira Arab; Jacquot, Muriel; Linder, Michel; Desobry, Stéphane

    2010-10-01

    Predicting which attributes consumers are willing to pay extra for has become straightforward in recent years. The demands for the prime necessity of food of natural quality, elevated safety, minimally processed, ready-to-eat, and longer shelf-life have turned out to be matters of paramount importance. The increased awareness of environmental conservation and the escalating rate of foodborne illnesses have driven the food industry to implement a more innovative solution, i.e. bioactive packaging. Owing to nanotechnology application in eco-favorable coatings and encapsulation systems, the probabilities of enhancing food quality, safety, stability, and efficiency have been augmented. In this review article, the collective results highlight the food nanotechnology potentials with special focus on its application in active packaging, novel nano- and microencapsulation techniques, regulatory issues, and socio-ethical scepticism between nano-technophiles and nano-technophobes. No one has yet indicated the comparison of data concerning food nano- versus micro-technology; therefore noteworthy results of recent investigations are interpreted in the context of bioactive packaging. The next technological revolution in the domain of food science and nutrition would be the 3-BIOS concept enabling a controlled release of active agents through bioactive, biodegradable, and bionanocomposite combined strategy.

  5. Use of Smartphones to Estimate Carbohydrates in Foods for Diabetes Management.

    PubMed

    Huang, Jurong; Ding, Hang; McBride, Simon; Ireland, David; Karunanithi, Mohan

    2015-01-01

    Over 380 million adults worldwide are currently living with diabetes and the number has been projected to reach 590 million by 2035. Uncontrolled diabetes often lead to complications, disability, and early death. In the management of diabetes, dietary intervention to control carbohydrate intake is essential to help manage daily blood glucose level within a recommended range. The intervention traditionally relies on a self-report to estimate carbohydrate intake through a paper based diary. The traditional approach is known to be inaccurate, inconvenient, and resource intensive. Additionally, patients often require a long term of learning or training to achieve a certain level of accuracy and reliability. To address these issues, we propose a design of a smartphone application that automatically estimates carbohydrate intake from food images. The application uses imaging processing techniques to classify food type, estimate food volume, and accordingly calculate the amount of carbohydrates. To examine the proof of concept, a small fruit database was created to train a classification algorithm implemented in the application. Consequently, a set of fruit photos (n=6) from a real smartphone were applied to evaluate the accuracy of the carbohydrate estimation. This study demonstrates the potential to use smartphones to improve dietary intervention, although further studies are needed to improve the accuracy, and extend the capability of the smartphone application to analyse broader food contents.

  6. Food color and appearance measurement, specification and communication, can we do better?

    NASA Astrophysics Data System (ADS)

    Hutchings, John; Singleton, Mark; Plater, Keith; Dias, Benjamin

    2002-06-01

    Conventional methods of color specification demand a sample that is flat, uniformly colored, diffusely reflecting and opaque. Very many natural, processed and manufactured foods, on the other hand, are three-dimensional, irregularly shaped unevenly colored and translucent. Hence, spectrophotometers and tristimulus colorimeters can only be used for reliable and accurate color measurement in certain cases and under controlled conditions. These techniques are certainly unsuitable for specification of color patterning and other factors of total appearance in which, for example, surface texture and gloss interfere with the surface color. Hence, conventional techniques are more appropriate to food materials than to foods themselves. This paper reports investigations on the application of digital camera and screen technologies to these problems. Results indicated that accuracy sufficient for wide scale use in the food industry is obtainable. Measurement applications include the specification and automatic measurement and classification of total appearance properties of three-dimensional products. This will be applicable to specification and monitoring of fruit and vegetables within the growing, storage and marketing supply chain and to on-line monitoring. Applications to sensory panels include monitoring of color and appearance changes occurring during paneling and the development of physical reference scales based pigment chemistry changes. Digital technology will be extendable to the on-screen judging of real and virtual products as well as to the improvement of appearance archiving and communication.

  7. Food allergen extracts to diagnose food-induced allergic diseases: How they are made.

    PubMed

    David, Natalie A; Penumarti, Anusha; Burks, A Wesley; Slater, Jay E

    2017-08-01

    To review the manufacturing procedures of food allergen extracts and applicable regulatory requirements from government agencies, potential approaches to standardization, and clinical application of these products. The effects of thermal processing on allergenicity of common food allergens are also considered. A broad literature review was conducted on the natural history of food allergy, the manufacture of allergen extracts, and the allergenicity of heated food. Regulations, guidance documents, and pharmacopoeias related to food allergen extracts from the United States and Europe were also reviewed. Authoritative and peer-reviewed research articles relevant to the topic were chosen for review. Selected regulations and guidance documents are current and relevant to food allergen extracts. Preparation of a food allergen extract may require careful selection and identification of source materials, grinding, defatting, extraction, clarification, sterilization, and product testing. Although extractions for all products licensed in the United States are performed using raw source materials, many foods are not consumed in their raw form. Heating foods may change their allergenicity, and doing so before extraction may change their allergenicity and the composition of the final product. The manufacture of food allergen extracts requires many considerations to achieve the maximal quality of the final product. Allergen extracts for a select number of foods may be inconsistent between manufacturers or unreliable in a clinical setting, indicating a potential area for future improvement. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Non-dairy probiotic food products: An emerging group of functional foods.

    PubMed

    Min, Min; Bunt, Craig R; Mason, Susan L; Hussain, Malik A

    2018-04-09

    The functional food sector has shown tremendous growth in recent years with the application of probiotic bacteria as "food additives". The utilization of probiotic bacteria in food presents many challenges related to their growth, survival, viability, stability and functionality in food processing, storage and consumption as well as changes of sensory characteristics of probiotic foods. Although dairy foods are currently the most common food carrier to deliver probiotics, an increasing number of non-dairy food matrices exhibit potential for delivery of probiotics. This review provides more recent insight into the emergence of non-dairy probiotics products, the interactions between probiotics and different food matrices and the challenges in developing such products. Some of the technical issues are also reviewed and discussed. These issues include the efficacy of probiotic bacteria in non-chilled, low pH or high water activity foods; the potential loss of bacterial viability, additionally unwanted fermentation and changes of the sensory characteristics of food products which may result in poor microbiological quality and low acceptability to consumers.

  9. Alternative MyPlate Menus: Effects of Ultra-Processed Foods on Saturated Fat, Sugar, and Sodium Content.

    PubMed

    Tseng, Marilyn; Neill, Dawn B; Teaford, Stephanie F; Nazmi, Aydin

    2018-03-01

    Compare saturated fat, sugar, and sodium in the US Department of Agriculture sample menu with a version in which menu items were replaced with comparable ultra-processed foods. The authors modified 7 days of a US Department of Agriculture sample menu providing approximately 2,000 kcal/d by replacing foods with comparable ultra-processed alternatives and then visited 2 chain supermarkets in San Luis Obispo, CA (August, 2016) to locate shopping list items for the 2 menu versions. Product-specific bar codes were entered into an application for recording dietary intake and analyzing nutrient content. Paired t tests (with Bonferroni correction, α = .003) were performed to compare the menus' percent energy from saturated fat and sugar, and energy and sodium content. Mean energy was lower (1,618 vs 1,892 kcal/d; P = .002) whereas percent energy from sugar (24.9% vs 21.4%; P ≤ .001) and sodium content (2,784 vs 2,101 mg/d; P = .001) were higher in the ultra-processed vs original menu. In secondary analyses, mean cost of the ultra-processed version exceeded that of the original menu by $36.87. In a sample menu developed to meet US Dietary Guidelines, substituting items with ultra-processed foods provided fewer calories but more sugar and sodium. Distinguishing ultra-processed from less processed foods may help consumers make healthier choices when using MyPlate tools, particularly in a food environment that presents a wide range of alternatives. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  10. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  11. Marine biotechnology for production of food ingredients.

    PubMed

    Rasmussen, Rosalee S; Morrissey, Michael T

    2007-01-01

    The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.

  12. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling

    PubMed Central

    Paritosh, Kunwar; Kushwaha, Sandeep K.; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches. PMID:28293629

  13. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling.

    PubMed

    Paritosh, Kunwar; Kushwaha, Sandeep K; Yadav, Monika; Pareek, Nidhi; Chawade, Aakash; Vivekanand, Vivekanand

    2017-01-01

    Food wastage and its accumulation are becoming a critical problem around the globe due to continuous increase of the world population. The exponential growth in food waste is imposing serious threats to our society like environmental pollution, health risk, and scarcity of dumping land. There is an urgent need to take appropriate measures to reduce food waste burden by adopting standard management practices. Currently, various kinds of approaches are investigated in waste food processing and management for societal benefits and applications. Anaerobic digestion approach has appeared as one of the most ecofriendly and promising solutions for food wastes management, energy, and nutrient production, which can contribute to world's ever-increasing energy requirements. Here, we have briefly described and explored the different aspects of anaerobic biodegrading approaches for food waste, effects of cosubstrates, effect of environmental factors, contribution of microbial population, and available computational resources for food waste management researches.

  14. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  15. Application of vascular aquatic plants for pollution removal, energy, and food production in a biological system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; Barlow, R.M.; Mcdonald, R.C.

    1975-05-12

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications. (Author) (GRA)

  16. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology: Effect of pH and PEF on Aflatoxin Reduction.

    PubMed

    Vijayalakshmi, Subramanian; Nadanasabhapathi, Shanmugam; Kumar, Ranganathan; Sunny Kumar, S

    2018-03-01

    The presence of aflatoxin, a carcinogenic and toxigenic secondary metabolite produced by Aspergillus species, in food matrix has been a major worldwide problem for years now. Food processing methods such as roasting, extrusion, etc. have been employed for effective destruction of aflatoxins, which are known for their thermo-stable nature. The high temperature treatment, adversely affects the nutritive and other quality attributes of the food, leading to the necessity of application of non-thermal processing techniques such as ultrasonication, gamma irradiation, high pressure processing, pulsed electric field (PEF), etc. The present study was focused on analysing the efficacy of the PEF process in the reduction of the toxin content, which was subsequently quantified using HPLC. The process parameters of different pH model system (potato dextrose agar) artificially spiked with aflatoxin mix standard was optimized using the response surface methodology. The optimization of PEF process effects on the responses aflatoxin B1 and total aflatoxin reduction (%) by pH (4-10), pulse width (10-26 µs) and output voltage (20-65%), fitted 2FI model and quadratic model respectively. The response surface plots obtained for the processes were of saddle point type, with the absence of minimum or maximum response at the centre point. The implemented numerical optimization showed that the predicted and actual values were similar, proving the adequacy of the fitted models and also proved the possible application of PEF in toxin reduction.

  17. Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: adaptation of a Danish model.

    PubMed

    Guo, Chuanfa; Hoekstra, Robert M; Schroeder, Carl M; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J; Cole, Dana

    2011-04-01

    Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. © Mary Ann Liebert, Inc.

  18. Application of Bayesian Techniques to Model the Burden of Human Salmonellosis Attributable to U.S. Food Commodities at the Point of Processing: Adaptation of a Danish Model

    PubMed Central

    Guo, Chuanfa; Hoekstra, Robert M.; Schroeder, Carl M.; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G.; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J.

    2011-01-01

    Abstract Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. PMID:21235394

  19. The "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology.

    PubMed

    Slade, Louise; Levine, Harry

    2018-04-13

    This article reviews the application of the "Food Polymer Science" approach to the practice of industrial R&D, leading to patent estates based on fundamental starch science and technology. The areas of patents and patented technologies reviewed here include: (a) soft-from-the-freezer ice creams and freezer-storage-stable frozen bread dough products, based on "cryostabilization technology" of frozen foods, utilizing commercial starch hydrolysis products (SHPs); (b) glassy-matrix encapsulation technology for flavors and other volatiles, based on structure-function relationships for commercial SHPs; (c) production of stabilized whole-grain wheat flours for biscuit products, based on the application of "solvent retention capacity" technology to develop flours with reduced damaged starch; (d) production of improved-quality, low-moisture cookies and crackers, based on pentosanase enzyme technology; (e) production of "baked-not-fried," chip-like, starch-based snack products, based on the use of commercial modified-starch ingredients with selected functionality; (f) accelerated staling of a starch-based food product from baked bread crumb, based on the kinetics of starch retrogradation, treated as a crystallization process for a partially crystalline glassy polymer system; and (g) a process for producing an enzyme-resistant starch, for use as a reduced-calorie flour replacer in a wide range of grain-based food products, including cookies, extruded expanded snacks, and breakfast cereals.

  20. A review of acrylamide: an industry perspective on research, analysis, formation, and control.

    PubMed

    Taeymans, Dominique; Wood, John; Ashby, Peter; Blank, Imre; Studer, Alfred; Stadler, Richard H; Gondé, Pierre; Van Eijck, Paul; Lalljie, Sam; Lingnert, Hans; Lindblom, Marianne; Matissek, Reinhard; Müller, Detflef; Tallmadge, Dan; O'Brien, John; Thompson, Sara; Silvani, David; Whitmore, Tricia

    2004-01-01

    Acrylamide is a synthetic monomer with a wide scope of industrial applications, mainly as a precursor in the production of several polymers, such as polyacrylamide. The main uses of polyacrylamides are in water and wastewater treatment processes, pulp and paper processing, and mining and mineral processing. The announcement by the Swedish National Food Administration in April 2002 of the presence of acrylamide predominantly in heat-treated carbohydrate-rich foods sparked intensive investigations into acrylamide, encompassing the occurrence, chemistry, agricultural practices, and toxicology, in order to establish if there is a potential risk to human health from the presence of this contaminant in the human diet. The link of acrylamide in foods to the Maillard reaction and, in particular, to the amino acid asparagine has been a major step forward in elucidating the first feasible chemical route of formation during the preparation and processing of food. Other probably minor pathways have also been proposed, including acrolein and acrylic acid. This review addresses the analytical and mechanistic aspects of the acrylamide issue and summarizes the progress made to date by the European food industries in these key areas. Essentially, it presents experimental results generated under laboratory model conditions, as well as under actual food processing conditions covering different food categories, such as potatoes, biscuits, cereals, and coffee. Since acrylamide formation is closely linked to food composition, factors such as the presence of sugars and availability of free amino acids are also considered. Many new findings that contribute towards a better understanding of the formation and presence of acrylamide in foods are presented. Many national authorities across the world are assessing the dietary exposure of consumers to acrylamide, and scientific projects have commenced to gather new information about the toxicology of acrylamide. These are expected to provide new scientific knowledge that will help to clarify whether or not there is a risk to human health from the consumption of foods containing low amounts of acrylamide.

  1. Factors related to reduction in the consumption of fast food: application of the theory-based approaches

    PubMed Central

    Zeinab, Jalambadani; Gholamreza, Garmaroudi; Mehdi, Yaseri; Mahmood, Tavousi; Korush, Jafarian

    2017-01-01

    Background The Trans-Theoretical model (TTM) and Theory of Planned Behaviour (TPB) may be promising models for understanding and predicting reduction in the consumption of fast food. The aim of this study was to examine the applicability of the Trans-Theoretical model (TTM) and the additional predictive role of the subjective norms and perceived behavioural control in predicting reduction consumption of fast food in obese Iranian adolescent girls. Materials and Methods. A cross sectional study design was conducted among twelve randomly selected schools in Sabzevar, Iran from 2015 to 2017. Four hundred eighty five randomly selected students consented to participate in the study. Hierarchical regression models used to predict the role of important variables that can influence the reduction in the consumption of fast food among students. using SPSS version 22. Results Variables Perceived behavioural control (r=0.58, P<0.001), Subjective norms (r=0.51, P<0.001), self-efficacy (r=0.49, P<0.001), decisional balance (pros) (r=0.29, P<0.001), decisional balance (cons) (r=0.25, P<0.001), stage of change (r=0.38, P<0.001), were significantly and positively correlated while experiential processes of change (r=0.08, P=0.135) and behavioural processes of change (r=0.09, P=0.145), were not significant. Conclusions The study demonstrated that the TTM (except the experiential and behavioural processes of change) focusing on the perceived behavioural control and subjective norms are useful models for reduction in the consumption of fast food. Significance for public health The Ministries of Education and Public Health should cooperate in supporting the below-mentioned formal and non-formal school, family and community nutritional education and activities. Lastly, the Ministry of Public Health should conduct programmes with restaurant owners on healthy Iranian food and its hygienic presentation and promotion, to enhance their ability to compete with fast-food restaurants. PMID:29071252

  2. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for industrial processing of salmon: a case study.

    PubMed

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2008-05-01

    The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.

  3. Applicability of the quantification of genetically modified organisms to foods processed from maize and soy.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Matsuoka, Takeshi; Kodama, Takashi; Iida, Mayu; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Hino, Akihiro

    2005-03-23

    The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.

  4. The challenge of defining risk-based metrics to improve food safety: inputs from the BASELINE project.

    PubMed

    Manfreda, Gerardo; De Cesare, Alessandra

    2014-08-01

    In 2002, the Regulation (EC) 178 of the European Parliament and of the Council states that, in order to achieve the general objective of a high level of protection of human health and life, food law shall be based on risk analysis. However, the Commission Regulation No 2073/2005 on microbiological criteria for foodstuffs requires that food business operators ensure that foodstuffs comply with the relevant microbiological criteria. Such criteria define the acceptability of a product, a batch of foodstuffs or a process, based on the absence, presence or number of micro-organisms, and/or on the quantity of their toxins/metabolites, per unit(s) of mass, volume, area or batch. The same Regulation describes a food safety criterion as a mean to define the acceptability of a product or a batch of foodstuff applicable to products placed on the market; moreover, it states a process hygiene criterion as a mean indicating the acceptable functioning of the production process. Both food safety criteria and process hygiene criteria are not based on risk analysis. On the contrary, the metrics formulated by the Codex Alimentarius Commission in 2004, named Food Safety Objective (FSO) and Performance Objective (PO), are risk-based and fit the indications of Regulation 178/2002. The main aims of this review are to illustrate the key differences between microbiological criteria and the risk-based metrics defined by the Codex Alimentarius Commission and to explore the opportunity and also the possibility to implement future European Regulations including PO and FSO as supporting parameters to microbiological criteria. This review clarifies also the implications of defining an appropriate level of human protection, how to establish FSO and PO and how to implement them in practice linked to each other through quantitative risk assessment models. The contents of this review should clarify the context for application of the results collected during the EU funded project named BASELINE (www.baselineeurope.eu) as described in the papers of this special issue. Such results show how to derive POs for specific food/biological hazard combinations selected among fish, egg, dairy, meat and plant products. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cost modeling of biocontrol strains Pseudomonas chlororaphis and P. flurorescens for competitive exclusion of Salmonella enterica on tomatoes

    USDA-ARS?s Scientific Manuscript database

    Biological control of foodborne pathogens may complement postharvest intervention measures to enhance food safety of minimally processed produce. The purpose of this research was to develop cost model estimates for application of competitive exclusion process (CEM) using Pseudomonas chlororaphis and...

  6. Evaluation of an electronic nose for improved biosolids alkaline-stabilization treatment and odor management

    USDA-ARS?s Scientific Manuscript database

    Electronic nose sensors are designed to detect differences in complex air sample matrices. For example, they have been used in the food industry to monitor process performance and quality control. However, no information is available on the application of sensor arrays to monitor process performanc...

  7. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  8. Use of spent coffee grounds as food ingredient in bakery products.

    PubMed

    Martinez-Saez, Nuria; García, Alba Tamargo; Pérez, Inés Domínguez; Rebollo-Hernanz, Miguel; Mesías, Marta; Morales, Francisco J; Martín-Cabrejas, María A; Del Castillo, Maria Dolores

    2017-02-01

    The present research aimed to evaluate the use of spent coffee grounds (SCG) from instant coffee as a food ingredient and its application in bakery products. Data on physicochemical characterization, thermal stability and food safety of SCG were acquired. Evaluation of feasibility as dietary fibre was also determined. Results showed SCG are natural source of antioxidant insoluble fibre, essential amino acids, low glycaemic sugars, resistant to thermal food processing and digestion process, and totally safe. In the present work, SCG were incorporated in biscuit formulations for the first time. Low-calorie sweeteners and oligofructose were also included in the food formulations. Nutritional quality, chemical (acrylamide, hydroxymethylfurfural and advanced glycation end products) and microbiological safety and sensory tests of the biscuits were carried out. Innovative biscuits were obtained according to consumers' preferences with high nutritional and sensorial quality and potential to reduce the risk of chronic diseases such as obesity and diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Lipids in the Stomach - Implications for the Evaluation of Food Effects on Oral Drug Absorption.

    PubMed

    Koziolek, Mirko; Carrière, Frédéric; Porter, Christopher J H

    2018-02-08

    Food effects on oral drug bioavailability can have significant impact on the provision of safe and reliable oral pharmacotherapy. A mechanistic understanding of the events that contribute to the occurrence of food effects is therefore critical. An increased oral bioavailability is often seen for poorly water-soluble drugs after co-administration with lipids, including lipids in food, and is commonly explained by the ability of lipids to enhance drug solubility in intestinal luminal fluids. In contrast, the impact of lipids on drug solubilisation in the stomach has received less attention. This is in spite of the fact that lipid digestion is initiated in the stomach by human gastric lipase and that gastric events also initiate emulsification of lipids in the gastrointestinal tract. The stomach therefore acts to 'pre-process' lipids for subsequent events in the intestine and may significantly affect downstream events at intestinal drug absorption sites. In this article, the mechanisms by which lipids are processed in the stomach are reviewed and the potential impact of these processes on drug absorption discussed. Attention is also focused on in vitro methods that are used to assess gastric processing of lipids and their application to better understand food effects on drug release and absorption.

  10. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accept the household's application, except when a resident of a public institution is jointly applying...). Residents of public institutions who apply for foods stamps prior to their release from the institution..., Public Law 93-112, as amended by the Rehabilitation Act Amendments of 1974, Public Law 93-516, 29 U.S.C...

  11. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accept the household's application, except when a resident of a public institution is jointly applying...). Residents of public institutions who apply for foods stamps prior to their release from the institution..., Public Law 93-112, as amended by the Rehabilitation Act Amendments of 1974, Public Law 93-516, 29 U.S.C...

  12. 7 CFR 273.2 - Office operations and application processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accept the household's application, except when a resident of a public institution is jointly applying...). Residents of public institutions who apply for foods stamps prior to their release from the institution..., Public Law 93-112, as amended by the Rehabilitation Act Amendments of 1974, Public Law 93-516, 29 U.S.C...

  13. 9 CFR 352.3 - Application by official exotic animal establishment for inspection services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) Any person desiring to process an exotic animal, exotic animal carcasses, exotic animal meat and... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Application by official exotic animal establishment for inspection services. 352.3 Section 352.3 Animals and Animal Products FOOD SAFETY AND...

  14. 7 CFR 1599.4 - Application process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the activities in order to foster local capacity building and leadership; (6) A budget that details... statistics on poverty levels, food deficits, literacy rates, and any other required items set forth on the...

  15. Effects of the Food Manufacturing Chain on the Viability and Functionality of Bifidobacterium animalis through Simulated Gastrointestinal Conditions

    PubMed Central

    Jantama, Sirima Suvarnakuta; Prasitpuriprecha, Chutinun; Kanchanatawee, Sunthorn

    2016-01-01

    The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications. PMID:27333286

  16. Validity and reliability of food security measures.

    PubMed

    Cafiero, Carlo; Melgar-Quiñonez, Hugo R; Ballard, Terri J; Kepple, Anne W

    2014-12-01

    This paper reviews some of the existing food security indicators, discussing the validity of the underlying concept and the expected reliability of measures under reasonably feasible conditions. The main objective of the paper is to raise awareness on existing trade-offs between different qualities of possible food security measurement tools that must be taken into account when such tools are proposed for practical application, especially for use within an international monitoring framework. The hope is to provide a timely, useful contribution to the process leading to the definition of a food security goal and the associated monitoring framework within the post-2015 Development Agenda. © 2014 New York Academy of Sciences.

  17. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  18. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Technical Reports Server (NTRS)

    Wojnar, F.; Lunberg, W. L.

    1980-01-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  19. Electron irradiation of dry food products

    NASA Astrophysics Data System (ADS)

    Grünewald, Th.

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10∗∗4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50°C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the iradiation field in a closed conveyor system.

  20. Bioactive Peptides in Animal Food Products.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Della Malva, Antonella; Marino, Rosaria

    2017-05-09

    Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation) of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  1. Food Consumption and Handling Survey for Quantitative Microbiological Consumer Phase Risk Assessments.

    PubMed

    Chardon, Jurgen; Swart, Arno

    2016-07-01

    In the consumer phase of a typical quantitative microbiological risk assessment (QMRA), mathematical equations identify data gaps. To acquire useful data we designed a food consumption and food handling survey (2,226 respondents) for QMRA applications that is especially aimed at obtaining quantitative data. For a broad spectrum of food products, the survey covered the following topics: processing status at retail, consumer storage, preparation, and consumption. Questions were designed to facilitate distribution fitting. In the statistical analysis, special attention was given to the selection of the most adequate distribution to describe the data. Bootstrap procedures were used to describe uncertainty. The final result was a coherent quantitative consumer phase food survey and parameter estimates for food handling and consumption practices in The Netherlands, including variation over individuals and uncertainty estimates.

  2. Biological and biomedical aspects of genetically modified food.

    PubMed

    Celec, Peter; Kukucková, Martina; Renczésová, Veronika; Natarajan, Satheesh; Pálffy, Roland; Gardlík, Roman; Hodosy, Július; Behuliak, Michal; Vlková, Barbora; Minárik, Gabriel; Szemes, Tomás; Stuchlík, Stanislav; Turna, Ján

    2005-12-01

    Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.

  3. Application of near-infrared image processing in agricultural engineering

    NASA Astrophysics Data System (ADS)

    Chen, Ming-hong; Zhang, Guo-ping; Xia, Hongxing

    2009-07-01

    Recently, with development of computer technology, the application field of near-infrared image processing becomes much wider. In this paper the technical characteristic and development of modern NIR imaging and NIR spectroscopy analysis were introduced. It is concluded application and studying of the NIR imaging processing technique in the agricultural engineering in recent years, base on the application principle and developing characteristic of near-infrared image. The NIR imaging would be very useful in the nondestructive external and internal quality inspecting of agricultural products. It is important to detect stored-grain insects by the application of near-infrared spectroscopy. Computer vision detection base on the NIR imaging would be help to manage food logistics. Application of NIR imaging promoted quality management of agricultural products. In the further application research fields of NIR image in the agricultural engineering, Some advices and prospect were put forward.

  4. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Treatment of foods with high-energy X rays

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  6. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source.

    PubMed

    Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih

    2018-06-20

    Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Immunoglobulin E mediated food allergy.Modelling and application of diagnostic and predictive tests for existing and novel foods.

    PubMed

    Elizabeth I Opara Sarah L Oehlschlager A Bryan Hanley

    1998-01-01

    It is known that some foods cause an allergenic response in certain individuals. Clinical and immunological tests are available for the diagnosis of food allergy and identification of food allergens. However, there are no valid tests for the prediction of the allergenic potential of foods not normally recognized as allergenic. Such foods include: food products developed from foods which may not be recognizable as allergenic in their modified forms; foods produced using novel processes (novel foods), for example genetically modified foods; and foods not normally consumed but that are being used increasingly as alternatives to more traditional foods. Both the risks associated with food allergy and the fact that foods such as the ones described above will become available to the consumer, highlight the need for methods to screen for potential food allergens. This review provides a general overview of food allergy including mechanism, development and prevalence, but focuses on and discusses: 1) the possible risks (with specific reference to food allergy) associated with new and novel foods; and 2) the development/use of food allergy models (in vivo and in vitro) to assess the allergenic potential of new and novel foods.

  8. Biotechnological production and practical application of L-asparaginase enzyme.

    PubMed

    Vimal, Archana; Kumar, Awanish

    2017-04-01

    L-asparaginase is a vital enzyme of medical importance, and renowned as a chemotherapeutic agent. The relevance of this enzyme is not only limited as an anti-cancer agent, it also possesses a wide range of medical application. The application includes the antimicrobial property, treatment of infectious diseases, autoimmune diseases, canine and feline cancer. Apart from the health care industry, its significance is also established in the food sector as a food processing agent to reduce the acrylamide concentration. L-asparaginase is known to be produced from various bacterial, fungal and plant sources. However, there is a huge market demand due to its wide range of application. Therefore, the industry is still in the search of better-producing source in terms of high yield and low immunogenicity. It can be produced by both submerged and solid state fermentation, and each fermentation process has its own merits and demerits. This review paper focuses on its improved production strategy by adopting statistical experimental optimization techniques, development of recombinant strains, through mutagenesis and nanoparticle immobilization, adopting advanced and cost-effective purification techniques. Available research literature proves the competence and therapeutic potential of this enzyme. Therefore, research orientation toward the exploration of this clinical significant enzyme has to be accelerated. The objectives of this review are to discuss the high yielding sources, current production strategies, improvement of production, effective downstream processing and therapeutic application of L-asparaginase.

  9. Requirement analysis for the one-stop logistics management of fresh agricultural products

    NASA Astrophysics Data System (ADS)

    Li, Jun; Gao, Hongmei; Liu, Yuchuan

    2017-08-01

    Issues and concerns for food safety, agro-processing, and the environmental and ecological impact of food production have been attracted many research interests. Traceability and logistics management of fresh agricultural products is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for the supply chain, i.e., from farm to table. Application of one-stop logistics service focuses on the whole supply chain process integration for fresh agricultural products is studied. A collaborative research project for the supply and logistics of fresh agricultural products in Tianjin was performed. Requirement analysis for the one-stop logistics management information system is studied. The model-driven business transformation, an approach uses formal models to explicitly define the structure and behavior of a business, is applied for the review and analysis process. Specific requirements for the logistic management solutions are proposed. Development of this research is crucial for the solution of one-stop logistics management information system integration platform for fresh agricultural products.

  10. Detection of processed genetically modified food using CIM monolithic columns for DNA isolation.

    PubMed

    Jerman, Sergej; Podgornik, Ales; Cankar, Katarina; Cadet, Neza; Skrt, Mihaela; Zel, Jana; Raspor, Peter

    2005-02-11

    The availability of sufficient quantities of DNA of adequate quality is crucial in polymerase chain reaction (PCR)-based methods for genetically modified food detection. In this work, the suitability of anion-exchange CIM (Convective Interaction Media; BIA Separations, Ljubljana, Slovenia) monolithic columns for isolation of DNA from food was studied. Maize and its derivates corn meal and thermally pretreated corn meal were chosen as model food. Two commercially available CIM disk columns were tested: DEAE (diethylaminoethyl) and QA (quaternary amine). Preliminary separations were performed with standard solution of salmon DNA at different pH values and different NaCl concentrations in mobile phase. DEAE groups and pH 8 were chosen for further isolations of DNA from a complex matrix-food extract. The quality and quantity of isolated DNA were tested on agarose gel electrophoresis, with UV-scanning spectrophotometry, and by amplification with real-time PCR. DNA isolated in this way was of suitable quality for further PCR analyses. The described method is also applicable for DNA isolation from processed foods with decreased DNA content. Furthermore, it is more effective and less time-consuming in comparison with the existing proposed methods for isolation of DNA from plant-derived foods.

  11. The Ontario Food and Nutrition Strategy: identifying indicators of food access and food literacy for early monitoring of the food environment.

    PubMed

    Boucher, Beatrice A; Manafò, Elizabeth; Boddy, Meaghan R; Roblin, Lynn; Truscott, Rebecca

    2017-09-01

    To address challenges Canadians face within their food environments, a comprehensive, multistakeholder, intergovernmental approach to policy development is essential. Food environment indicators are needed to assess population status and change. The Ontario Food and Nutrition Strategy (OFNS) integrates the food, agriculture and nutrition sectors, and aims to improve the health of Ontarians through actions that promote healthy food systems and environments. This report describes the process of identifying indicators for 11 OFNS action areas in two strategic directions (SDs): Healthy Food Access, and Food Literacy and Skills. The OFNS Indicators Advisory Group used a five-step process to select indicators: (1) potential indicators from national and provincial data sources were identified; (2) indicators were organized by SD, action area and data type; (3) selection criteria were identified, pilot tested and finalized; (4) final criteria were applied to refine the indicator list; and (5) indicators were prioritized after reapplication of selection criteria. Sixty-nine potential indicators were initially identified; however, many were individual-level rather than system-level measures. After final application of the selection criteria, one individual-level indicator and six system-level indicators were prioritized in five action areas; for six of the action areas, no indicators were available. Data limitations suggest that available data may not measure important aspects of the food environment, highlighting the need for action and resources to improve system-level indicators and support monitoring of the food environment and health in Ontario and across Canada.

  12. Hemp as an Agricultural Commodity

    DTIC Science & Technology

    2014-02-14

    yarns and raw or processed spun fibers, paper, carpeting, home furnishings, construction and insulation materials, auto parts, and composites. The...interior stalk (hurd) is used in various applications such as animal bedding, raw material inputs, low-quality papers, and composites. Hemp seed and...oilcake are used in a range of foods and beverages, and can be an alternative food protein source. Oil from the crushed hemp seed is an ingredient in a

  13. Pesticides used in forest nursery management in the United States and the impact of the Food Quality Protection Act and other regulatory actions

    Treesearch

    Jesus A. Cota

    2002-01-01

    The Food Quality Protection Act (FQPA) of 1996 has placed new standards on the registration and regulation of pesticides intended to protect children. The most significant changed mandated by FQPA relate to the registration process termed the "Risk Cup." This approach to risk analysis has resulted in greater restrictions on the application of pesticides used...

  14. The Use of Films as Suitable Packaging Materials for Minimally Processed Foods

    DTIC Science & Technology

    1994-08-01

    subway stations. Many of these lunch box vending machines are serving lunches with no refrigeration. Ihe secret is the application of antimicrobial...Ooating: Convenience foods with different components bearing different water activity, oil content, or other migrating components (e.g., a sandwich ...growing in the barrier properties of edible film such as protein/lipid complexes that prevent dehydration of cut vegetables or a sandwich filling from

  15. Validation of Thermal Lethality against Salmonella enterica in Poultry Offal during Rendering.

    PubMed

    Jones-Ibarra, Amie-Marie; Acuff, Gary R; Alvarado, Christine Z; Taylor, T Matthew

    2017-09-01

    Recent outbreaks of human disease following contact with companion animal foods cross-contaminated with enteric pathogens, such as Salmonella enterica, have resulted in increased concern regarding the microbiological safety of animal foods. Additionally, the U.S. Food and Drug Administration Food Safety Modernization Act and its implementing rules have stipulated the implementation of current good manufacturing practices and food safety preventive controls for livestock and companion animal foods. Animal foods and feeds are sometimes formulated to include thermally rendered animal by-product meals. The objective of this research was to determine the thermal inactivation of S. enterica in poultry offal during rendering at differing temperatures. Raw poultry offal was obtained from a commercial renderer and inoculated with a mixture of Salmonella serovars Senftenberg, Enteritidis, and Gallinarum (an avian pathogen) prior to being subjected to heating at 150, 155, or 160°F (65.5, 68.3, or 71.1°C) for up to 15 min. Following heat application, surviving Salmonella bacteria were enumerated. Mean D-values for the Salmonella cocktail at 150, 155, and 160°F were 0.254 ± 0.045, 0.172 ± 0.012, and 0.086 ± 0.004 min, respectively, indicative of increasing susceptibility to increased application of heat during processing. The mean thermal process constant (z-value) was 21.948 ± 3.87°F. Results indicate that a 7.0-log-cycle inactivation of Salmonella may be obtained from the cumulative lethality encountered during the heating come-up period and subsequent rendering of raw poultry offal at temperatures not less than 150°F. Current poultry rendering procedures are anticipated to be effective for achieving necessary pathogen control when completed under sanitary conditions.

  16. The status of food irradiation technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivinski, J.S.

    1989-01-01

    Irradiation is a mature technology for many uses, such as medical product sterilization, crosslinking of plastics, application of coatings, stabilization of natural and synthetic rubbers prior to vulcanization, and in plant genetics. It also has many potential applications in the food and agriculture industries, especially in the postharvest activities associated with processing, storing, and distribution and in utilization and consumption. The safety of food irradiation has been thoroughly studied and established by distinguished scientists of international stature and unimpeachable credentials. Approximately 30 countries permit food irradiation and it is commercially used in 21. Parasites are of serious concern since theirmore » impact on human health and economic productivity is significant, especially in developing countries with sanitation and food control problems. Parasites in meat and fish can be rendered sterile or inactivated with irradiation, and the potential for improved human health is significant. The second area for immediate use of irradiation is in meeting plant quarantine requirements. The benefits described above and the approval of the scientific community are moving the technology toward greater utilization.« less

  17. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application.

    PubMed

    Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette

    2013-01-30

    Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.

  18. Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow

    NASA Astrophysics Data System (ADS)

    Stading, Mats

    2008-07-01

    Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.

  19. Salt reduction in vegetable fermentation: reality or desire?

    PubMed

    Bautista-Gallego, J; Rantsiou, K; Garrido-Fernández, A; Cocolin, L; Arroyo-López, F N

    2013-08-01

    NaCl is a widely used chemical in food processing which affects sensory characteristics and safety; in fact, its presence is frequently essential for the proper preservation of the products. Because the intake of high contents of sodium is linked to adverse effects on human health, consumers demand foods with low-sodium content. A 1st step to reduce the use of salt would imply the proper application of this compound, reducing its levels to those technologically necessary. In addition, different chloride salts have been evaluated as replacers for NaCl, but KCl, CaCl2 , and ZnCl2 show the most promising perspectives of use. However, prior to any food reformulation, there is a need for exhaustive research before its application at industrial level. Salt reduction may lead to an increased risk in the survival/ growth of pathogens and may also alter food flavor and cause economic losses. This review deals with the technological, microbiological, sensorial, and health aspects of the potential low-salt and salt-substituted vegetable products and how this important segment of the food industry is responding to consumer demand. © 2013 Institute of Food Technologists®

  20. Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: a review and future perspectives.

    PubMed

    Crews, C; Chiodini, A; Granvogl, M; Hamlet, C; Hrnčiřík, K; Kuhlmann, J; Lampen, A; Scholz, G; Weisshaar, R; Wenzl, T; Jasti, P R; Seefelder, W

    2013-01-01

    Esters of 2 - and 3-monochloropropane-1,2-diol (MCPD) and glycidol esters are important contaminants of processed edible oils used as foods or food ingredients. This review describes the occurrence and analysis of MCPD esters and glycidol esters in vegetable oils and some other foods. The focus is on the analytical methods based on both direct and indirect methods. Methods of analysis applied to oils and lipid extracts of foods have been based on transesterification to free MCPD and determination by gas chromatography-mass spectrometry (indirect methods) and by high-performance liquid chromatography-mass spectrometry (direct methods). The evolution and performance of the different methods is described and their advantages and disadvantages are discussed. The application of direct and indirect methods to the analysis of foods and to research studies is described. The metabolism and fate of MCPD esters and glycidol esters in biological systems and the methods used to study these in body tissues studies are described. A clear understanding of the chemistry of the methods is important when choosing those suitable for the desired application, and will contribute to the mitigation of these contaminants.

  1. Pesticide uptake in potatoes: model and field experiments.

    PubMed

    Juraske, Ronnie; Vivas, Carmen S Mosquera; Velásquez, Alexander Erazo; Santos, Glenda García; Moreno, Mónica B Berdugo; Gomez, Jaime Diaz; Binder, Claudia R; Hellweg, Stefanie; Dallos, Jairo A Guerrero

    2011-01-15

    A dynamic model for uptake of pesticides in potatoes is presented and evaluated with measurements performed within a field trial in the region of Boyacá, Colombia. The model takes into account the time between pesticide applications and harvest, the time between harvest and consumption, the amount of spray deposition on soil surface, mobility and degradation of pesticide in soil, diffusive uptake and persistence due to crop growth and metabolism in plant material, and loss due to food processing. Food processing steps included were cleaning, washing, storing, and cooking. Pesticide concentrations were measured periodically in soil and potato samples from the beginning of tuber formation until harvest. The model was able to predict the magnitude and temporal profile of the experimentally derived pesticide concentrations well, with all measurements falling within the 90% confidence interval. The fraction of chlorpyrifos applied on the field during plant cultivation that eventually is ingested by the consumer is on average 10(-4)-10(-7), depending on the time between pesticide application and ingestion and the processing step considered.

  2. Preparation and characterization of semi-refined kappa carrageenan-based edible film for nano coating application on minimally processed food

    NASA Astrophysics Data System (ADS)

    Manuhara, Godras Jati; Praseptiangga, Danar; Muhammad, Dimas Rahadian Aji; Maimuni, Bawani Hindami

    2016-02-01

    Shorter and easier processing of semi-refined kappa carrageenan extracted from Euchema cottonii red seaweed result in cheaper price of the polysaccharide. In this study, edible film was prepared from the semi-refined carrageenan without any salt addition. The effect of the carrageenan concentration (1.0, 1.5, and 2.0% w/v) on physical and mechanical properties of the edible film was studied. Edible film thickness and tensile strength increased but elongation at break and water vapor transmission rate (WVTR) decreased as the concentration increased. Based on the characteristic of the edible film, formulation using 2% carrageenan was recommended. The edible film demonstrated the characteristic as follow: 0.054 mm thickness, 21.14 MPa tensile strength, 12.36% elongation at break, and 9.56 g/m2.hour WVTR. It was also noted the carrageenan-based edible film indicated potential physical and mechanical characteristics for nano coating applications on minimally processed food.

  3. A conceptual framework for the collection of food products in a Total Diet Study.

    PubMed

    Turrini, Aida; Lombardi-Boccia, Ginevra; Aureli, Federica; Cubadda, Francesco; D'Addezio, Laura; D'Amato, Marilena; D'Evoli, Laura; Darnerud, PerOla; Devlin, Niamh; Dias, Maria Graça; Jurković, Marina; Kelleher, Cecily; Le Donne, Cinzia; López Esteban, Maite; Lucarini, Massimo; Martinez Burgos, Maria Alba; Martínez-Victoria, Emilio; McNulty, Breige; Mistura, Lorenza; Nugent, Anne; Oktay Basegmez, Hatice Imge; Oliveira, Luisa; Ozer, Hayrettin; Perelló, Gemma; Pite, Marina; Presser, Karl; Sokolić, Darja; Vasco, Elsa; Volatier, Jean-Luc

    2018-02-01

    A total diet study (TDS) provides representative and realistic data for assessing the dietary intake of chemicals, such as contaminants and residues, and nutrients, at a population level. Reproducing the diet through collection of customarily consumed foods and their preparation as habitually eaten is crucial to ensure representativeness, i.e., all relevant foods are included and all potential dietary sources of the substances investigated are captured. Having this in mind, a conceptual framework for building a relevant food-shopping list was developed as a research task in the European Union's 7th Framework Program project, 'Total Diet Study Exposure' (TDS-Exposure), aimed at standardising methods for food sampling, analyses, exposure assessment calculations and modelling, priority foods, and selection of chemical contaminants. A stepwise approach following the knowledge translation (KT) model for concept analysis is proposed to set up a general protocol for the collection of food products in a TDS in terms of steps (characterisation of the food list, development of the food-shopping list, food products collection) and pillars (background documentation, procedures, and tools). A simple model for structuring the information in a way to support the implementation of the process, by presenting relevant datasets, forms to store inherent information, and folders to record the results is also proposed. Reproducibility of the process and possibility to exploit the gathered information are two main features of such a system for future applications.

  4. Side Streams of Plant Food Processing As a Source of Valuable Compounds: Selected Examples.

    PubMed

    Schieber, Andreas

    2017-02-28

    Industrial processing of plant-derived raw materials generates enormous amounts of by-products. On one hand, these by-products constitute a serious disposal issue because they often emerge seasonally and are prone to microbial decay. On the other hand, they are an abundant source of valuable compounds, in particular secondary plant metabolites and cell wall materials, which may be recovered and used to functionalize foods and replace synthetic additives with ingredients of natural origin. This review covers 150 references and presents select studies performed between 2001 and 2016 on the recovery, characterization, and application of valuable constituents from grape pomace, apple pomace, potato peels, tomato pomace, carrot pomace, onion peels, by-products of citrus, mango, banana, and pineapple processing, side streams of olive oil production, and cereal by-products. The criteria used were economic importance, amounts generated, relevance of side streams as a source of valuable compounds, and reviews already published. Despite a plethora of studies carried out on the utilization of side streams, relatively few processes have yet found industrial application.

  5. Real-Time Food Authentication Using a Miniature Mass Spectrometer.

    PubMed

    Gerbig, Stefanie; Neese, Stephan; Penner, Alexander; Spengler, Bernhard; Schulz, Sabine

    2017-10-17

    Food adulteration is a threat to public health and the economy. In order to determine food adulteration efficiently, rapid and easy-to-use on-site analytical methods are needed. In this study, a miniaturized mass spectrometer in combination with three ambient ionization methods was used for food authentication. The chemical fingerprints of three milk types, five fish species, and two coffee types were measured using electrospray ionization, desorption electrospray ionization, and low temperature plasma ionization. Minimum sample preparation was needed for the analysis of liquid and solid food samples. Mass spectrometric data was processed using the laboratory-built software MS food classifier, which allows for the definition of specific food profiles from reference data sets using multivariate statistical methods and the subsequent classification of unknown data. Applicability of the obtained mass spectrometric fingerprints for food authentication was evaluated using different data processing methods, leave-10%-out cross-validation, and real-time classification of new data. Classification accuracy of 100% was achieved for the differentiation of milk types and fish species, and a classification accuracy of 96.4% was achieved for coffee types in cross-validation experiments. Measurement of two milk mixtures yielded correct classification of >94%. For real-time classification, the accuracies were comparable. Functionality of the software program and its performance is described. Processing time for a reference data set and a newly acquired spectrum was found to be 12 s and 2 s, respectively. These proof-of-principle experiments show that the combination of a miniaturized mass spectrometer, ambient ionization, and statistical analysis is suitable for on-site real-time food authentication.

  6. Free standing graphene oxide film for hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  7. Merging Dietary Assessment with the Adolescent Lifestyle

    PubMed Central

    Schap, TusaRebecca E; Zhu, Fengqing M; Delp, Edward J; Boushey, Carol J

    2013-01-01

    The use of image-based dietary assessment methods shows promise for improving dietary self-report among children. The Technology Assisted Dietary Assessment (TADA) food record application is a self-administered food record specifically designed to address the burden and human error associated with conventional methods of dietary assessment. Users would take images of foods and beverages at all eating occasions using a mobile telephone or mobile device with an integrated camera, (e.g., Apple iPhone, Google Nexus One, Apple iPod Touch). Once the images are taken, the images are transferred to a back-end server for automated analysis. The first step in this process is image analysis, i.e., segmentation, feature extraction, and classification, allows for automated food identification. Portion size estimation is also automated via segmentation and geometric shape template modeling. The results of the automated food identification and volume estimation can be indexed with the Food and Nutrient Database for Dietary Studies (FNDDS) to provide a detailed diet analysis for use in epidemiologic or intervention studies. Data collected during controlled feeding studies in a camp-like setting have allowed for formative evaluation and validation of the TADA food record application. This review summarizes the system design and the evidence-based development of image-based methods for dietary assessment among children. PMID:23489518

  8. Technology Prospecting on Enzymes: Application, Marketing and Engineering

    PubMed Central

    Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning

    2012-01-01

    Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658

  9. The role of food quality assurance and product certification systems on marketing aspects

    NASA Astrophysics Data System (ADS)

    Petrović, Z.; Milićević, D.; Nastasijević, I.; Đorđević, V.; Trbović, D.; Velebit, B.

    2017-09-01

    The level of quality that a product offers to consumers is a fundamental aspect of competition in many markets. Consumers’ confidence in the safety and quality of foods they buy and consume is a significant support to the economic development of production organizations of this type, and therefore the overall economic development. Consumer concerns about food safety as well as the globalization of food production have also led to the existence of a global internationally linked food production and distribution system. The necessity demanded by the consumer population to provide safe food with consistent quality at an attractive price imposes a choice of an appropriate quality assurance model in accordance with the specific properties of the product and the production processes. Modern trends, especially for the last ten years in quality assurance within specific production, such as the food industry, have marked the trend of hyperproduction and a number of production and safety standards, as well as a change of approach in the certification process of organizations according to one or more standards. This can be an additional source of costs for organizations, and can burden the food business operator`s budget in order to ensure their consistent application and maintenance. Quality assurance (QA) standards are considered to be a proven mechanism for delivering quality of product.

  10. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells.

    PubMed

    Lichtenstein, Dajana; Ebmeyer, Johanna; Knappe, Patrick; Juling, Sabine; Böhmert, Linda; Selve, Sören; Niemann, Birgit; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2015-11-01

    Because of the rising application of nanoparticles in food and food-related products, we investigated the influence of the digestion process on the toxicity and cellular uptake of silver nanoparticles for intestinal cells. The main food components--carbohydrates, proteins and fatty acids--were implemented in an in vitro digestion process to simulate realistic conditions. Digested and undigested silver nanoparticle suspensions were used for uptake studies in the well-established Caco-2 model. Small-angle X-ray scattering was used to estimate particle core size, size distribution and stability in cell culture medium. Particles proved to be stable and showed radii from 3.6 to 16.0 nm. Undigested particles and particles digested in the presence of food components were comparably taken up by Caco-2 cells, whereas the uptake of particles digested without food components was decreased by 60%. Overall, these findings suggest that in vivo ingested poly (acrylic acid)-coated silver nanoparticles may reach the intestine in a nanoscaled form even if enclosed in a food matrix. While appropriate for studies on the uptake into intestinal cells, the Caco-2 model might be less suited for translocation studies. Moreover, we show that nanoparticle digestion protocols lacking food components may lead to misinterpretation of uptake studies and inconclusive results.

  11. Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.

    Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.

  12. Bacteriocins from lactic acid bacteria: production, purification, and food applications.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2007-01-01

    In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.

  13. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities.

    PubMed

    Kim, Dae-Young; Kadam, Avinash; Shinde, Surendra; Saratale, Rijuta Ganesh; Patra, Jayanta; Ghodake, Gajanan

    2018-02-01

    The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial-based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well-known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Novel natural food antimicrobials.

    PubMed

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  15. Protein engineering and its applications in food industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  16. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    PubMed

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Recycled poly(ethylene terephthalate) for direct food contact applications: challenge test of an inline recycling process.

    PubMed

    Franz, R; Welle, F

    2002-05-01

    Of all the plastics used for packaging, due to its low diffusivity and chemical inertness, poly(ethylene terephthalate) (PET) is one of the favoured candidate plastics for closed-loop recycling for new packaging applications. In the work reported here, a PET-recycling process was investigated with respect to its cleaning efficiency and compliance of the PET recyclate with food law. The key technology of the investigated PET-recycling process to remove contaminants consists of a predecontamination-extruder combination. At the end of the recycling process, there is either a pelletizing system or downstream equipment to produce preforms or flat sheets. Therefore, the process has two process options, an inline production of PET preforms and a batch option producing PET pellets. In the case of possible misuse of PET bottles by the consumer, the inline process produces higher concentrations in the bottle wall of the recyclate containing preforms. Owing to the dilution of the PET output material by large amounts of uncontaminated PET, the batch option is the less critical process in terms of consumer protection. Regarding an appropriate testing procedure for the evaluation of a bottle-to-bottle recycling process, both process options have their own specific requirements with respect to the design of a challenge test. A novel challenge test approach to the inline mode of a recycling process is presented here.

  18. Nutritional Translation Blended With Food Science: 21st Century Applications1234

    PubMed Central

    Ferruzzi, Mario G.; Peterson, Devin G.; Singh, R. Paul; Schwartz, Steven J.; Freedman, Marjorie R.

    2012-01-01

    This paper, based on the symposium “Real-World Nutritional Translation Blended With Food Science,” describes how an integrated “farm-to-cell” approach would create the framework necessary to address pressing public health issues. The paper describes current research that examines chemical reactions that may influence food flavor (and ultimately food consumption) and posits how these reactions can be used in health promotion; it explains how mechanical engineering and computer modeling can study digestive processes and provide better understanding of how physical properties of food influence nutrient bioavailability and posits how this research can also be used in the fight against obesity and diabetes; and it illustrates how an interdisciplinary scientific collaboration led to the development of a novel functional food that may be used clinically in the prevention and treatment of prostate cancer. PMID:23153735

  19. Exploitation of molecular profiling techniques for GM food safety assessment.

    PubMed

    Kuiper, Harry A; Kok, Esther J; Engel, Karl-Heinz

    2003-04-01

    Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.

  20. Downstream processing of stevioside and its potential applications.

    PubMed

    Puri, Munish; Sharma, Deepika; Tiwari, Ashok K

    2011-01-01

    Stevioside is a natural sweetener extracted from leaves of Stevia rebaudiana Bertoni, which is commercially produced by conventional (chemical/physical) processes. This article gives an overview of the stevioside structure, various analysis technique, new technologies required and the advances achieved in recent years. An enzymatic process is established, by which the maximum efficacy and benefit of the process can be achieved. The efficiency of the enzymatic process is quite comparable to that of other physical and chemical methods. Finally, we believe that in the future, the enzyme-based extraction will ensure more cost-effective availability of stevioside, thus assisting in the development of more food-based applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Application of NASA-developed technology to the automatic control of municipal sewage treatment plants

    NASA Technical Reports Server (NTRS)

    Hiser, L. L.; Herrera, W. R.

    1973-01-01

    A search was made of NASA developed technology and commercial technology for process control sensors and instrumentation which would be applicable to the operation of municipal sewage treatment plants. Several notable items were found from which process control concepts were formulated that incorporated these items into systems to automatically operate municipal sewage treatment plants. A preliminary design of the most promising concept was developed into a process control scheme for an activated sludge treatment plant. This design included process control mechanisms for maintaining constant food to sludge mass (F/M) ratio, and for such unit processes as primary sedimentation, sludge wastage, and underflow control from the final clarifier.

  2. The Application of Statistical Process Control in Non-Manufacturing Activities

    DTIC Science & Technology

    1988-01-01

    food and lodging, legal, medical, fin- ancial, communication, engineering, architecture, and consultation. Also included would be education...sequence of pro- duction events and an output that is a product or the completion of a 9 service. A good example of this is a fast food restaurant. A...of quality improvement, and how they relate to each other. In discussing the definition of quality, the character- istics of both good and bad

  3. Directions on the use of stevia leaves (Stevia Rebauidana) as an additive in food products.

    PubMed

    Kobus-Moryson, Małgorzata; Gramza-Michałowska, Anna

    2015-01-01

    Due to the high intake of sugars, especially sucrose, global trends in food processing have encouraged producers to use sweeteners, particularly synthetic ones, to a wide extent. For several years, increasing attention has been paid in the literature to the stevia (Stevia rebauidana), containing glycosidic diterpenes, for which sweetening properties have been identified. Chemical composition, nutritional value and application of stevia leaves are briefl y summarized and presented.

  4. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    NASA Astrophysics Data System (ADS)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral precipitation and ion exchange. The calibrated model was then re-run assuming different evapotranspiration and crop growth regimes, and different seasonally-adjusted applied water compositions, to elucidate possible impacts to salt loading reactive chemistry. The results of the predictive modeling indicate the extent to which salts could be redistributed within the soil column as a consequence of climate change. The degree to which these findings are applicable to process waste land application operations at other sites was explored by varying the soil unsaturated flow parameters as a model sensitivity assessment. Taken together, the model results help to quantify operational changes to land application that may be necessary to avoid future adverse environmental impacts to soil and groundwater.

  5. Application of the microbiological method DEFT/APC to detect minimally processed vegetables treated with gamma radiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Duarte, R. C.; Silva, P. V.; Marchioni, E.; Villavicencio, A. L. C. H.

    2009-07-01

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a 60Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.

  6. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  7. 7 CFR 205.681 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Secretary. (1) If the Administrator or State organic program sustains a certification applicant's or..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative Adverse Action Appeal Process § 205.681 Appeals. (a...

  8. Development of an IrO x micro pH sensor array on flexible polymer substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding; Wang, Jianqun; Ativanichayaphong, Thermpon; Chiao, Mu; Chiao, J. C.

    2008-03-01

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages in specific applications. It is difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to size limitation and no deformability. In this paper, we present design and fabrication processes of a miniature iridium oxide thin film pH sensor array on flexible polymer substrates. The amorphous iridium oxide thin film was used as the sensing material. A sol-gel dip-coating process of iridium oxide film was demonstrated in this paper. A super-Nernstian response has been measured on individual sensors of the array with a slope of -71.6+/-3 mV/pH at 25°C within the pH range between 2.83 and 11.04.

  9. Underwater Shockwave Pretreatment Process to Improve the Scent of Extracted Citrus junos Tanaka (Yuzu) Juice

    PubMed Central

    Touyama, Akiko; Nakada, Shina; Higa, Osamu; Itoh, Shigeru

    2017-01-01

    Citrus junos Tanaka (yuzu) has a strong characteristic aroma and thus its juice is used in various Japanese foods. Herein, we evaluate the volatile compounds in yuzu juice to investigate whether underwater shockwave pretreatment affects its scent. A shockwave pretreatment at increased discharge and energy of 3.5 kV and 4.9 kJ, respectively, increased the content of aroma-active compounds. Moreover, the underwater shockwave pretreatment afforded an approximate tenfold increase in the scent intensity of yuzu juice cultivated in Rikuzentakata. The proposed treatment method exhibited reliable and good performance for the extraction of volatile and aroma-active compounds from the yuzu fruit. The broad applicability and high reliability of this technique for improving the scent of yuzu fruit juice were demonstrated, confirming its potential for application to a wide range of food extraction processes. PMID:28761874

  10. Development of a universally applicable household food insecurity measurement tool: process, current status, and outstanding issues.

    PubMed

    Swindale, Anne; Bilinsky, Paula

    2006-05-01

    The United States Public Law 480 Title II food aid program is the largest U.S. government program directed at reducing hunger, malnutrition, and food insecurity in the developing world. USAID and Title II implementing partners face challenges in measuring the success of Title II programs in reducing household food insecurity because of the technical difficulty and cost of collecting and analyzing data on traditional food security indicators, such as per capita income and caloric adequacy. The Household Food Insecurity Access Scale (HFIAS) holds promise as an easier and more user-friendly approach for measuring the access component of household food security. To support the consistent and comparable collection of the HFIAS, efforts are under way to develop a guide with a standardized questionnaire and data collection and analysis instructions. A set of domains have been identified that is deemed to capture the universal experience of the access component of household food insecurity across countries and cultures. Based on these domains, a set of questions has been developed with wording that is deemed to be universally appropriate, with minor adaptation to local contexts. These underlying suppositions, based on research in multiple countries, are being verified by potential users of the guide. The key remaining issue relates to the process for creating a categorical indicator of food insecurity status from the HFIAS.

  11. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  12. Technological progress as a driver of innovation in infant foods.

    PubMed

    Ferruzzi, Mario G; Neilson, Andrew P

    2010-01-01

    Advances in nutrition and food sciences are interrelated components of the innovative framework for infant formula and foods. While nutrition science continues to define the composition and functionality of human milk as a reference, food ingredient, formulation and processing technologies facilitate the design and delivery of nutritional and functional concepts to infant products. Expanding knowledge of both nutritive and non-nutritive components of human milk and their functionality guides selection and development of novel ingredient, formulation and processing methods to generate enhanced infant products targeting benefits including healthy growth, development as well as protection of health through the life cycle. In this chapter, identification and application of select novel ingredients/technologies will be discussed in the context of how these technological advancements have stimulated innovation in infant foods. Special focus will be given to advancements in protein technologies, as well as bioactive long-chain polyunsaturated fatty acids, prebiotics, probiotics that have allowed infant formula composition, and more critically functionality, to more closely align with that of human milk. Copyright © 2010 S. Karger AG, Basel.

  13. Validation of a mass spectrometry-based method for milk traces detection in baked food.

    PubMed

    Lamberti, Cristina; Cristina, Lamberti; Acquadro, Elena; Elena, Acquadro; Corpillo, Davide; Davide, Corpillo; Giribaldi, Marzia; Marzia, Giribaldi; Decastelli, Lucia; Lucia, Decastelli; Garino, Cristiano; Cristiano, Garino; Arlorio, Marco; Marco, Arlorio; Ricciardi, Carlo; Carlo, Ricciardi; Cavallarin, Laura; Laura, Cavallarin; Giuffrida, Maria Gabriella; Gabriella, Giuffrida Maria

    2016-05-15

    A simple validated LC-MS/MS-based method was set up to detect milk contamination in bakery products, taking the effects of food processing into account for the evaluation of allergen recovery and quantification. Incurred cookies were prepared at eight levels of milk contamination and were cooked to expose all milk components, including allergenic proteins, to food processing conditions. Remarkable results were obtained in term of sufficiently low LOD and LOQ (1.3 and 4 mg/kg cookies, respectively). Precision was calculated as intra-day repeatability (RSD in the 5-20% range) and inter-day repeatability (4 days; RSD never exceeded 12%). The extraction recovery values ranged from 20% to 26%. Method applicability was evaluated by analysing commercial cookies labelled either as "milk-free" or "may contain milk". Although the ELISA methodology is considered the gold standard for detecting allergens in foods, this robust LC-MS/MS approach should be a useful confirmatory method for assessing and certifying "milk-free" food products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Validation of a sensitive DNA walking strategy to characterise unauthorised GMOs using model food matrices mimicking common rice products.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Van Nieuwerburgh, Filip; Deforce, Dieter; Roosens, Nancy H

    2015-04-15

    To identify unauthorised GMOs in food and feed matrices, an integrated approach has recently been developed targeting pCAMBIA family vectors, highly present in transgenic plants. Their presence is first assessed by qPCR screening and is subsequently confirmed by characterising the transgene flanking regions, using DNA walking. Here, the DNA walking performance has been thoroughly tested for the first time, regarding the targeted DNA quality and quantity. Several assays, on model food matrices mimicking common rice products, have allowed to determine the limit of detection as well as the potential effects of food mixture and processing. This detection system allows the identification of transgenic insertions as low as 10 HGEs and was not affected by the presence of untargeted DNA. Moreover, despite the clear impact of food processing on DNA quality, this method was able to cope with degraded DNA. Given its specificity, sensitivity, reliability, applicability and practicability, the proposed approach is a key detection tool, easily implementable in enforcement laboratories. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Bactericidal and antibiofilm activity of bactenecin-derivative peptides against the food-pathogen Listeria monocytogenes: New perspectives for food processing industry.

    PubMed

    Palmieri, Gianna; Balestrieri, Marco; Capuano, Federico; Proroga, Yolande T R; Pomilio, Francesco; Centorame, Patrizia; Riccio, Alessia; Marrone, Raffaele; Anastasio, Aniello

    2018-08-20

    Antimicrobial peptides have received great attention for their potential benefits to extend the shelf-life of food-products. Innate defense regulator peptide-1018 (IDR-1018) represents a promising candidate for such applications, due to its broad-spectrum antimicrobial activity, although food-isolated pathogens have been poorly investigated. Herein, we describe the design and the structural-functional characterization of a new 1018-derivative peptide named 1018-K6, in which the alanine in position 6 was replaced with a lysine. Spectroscopic analysis revealed a noticeable switch from β-sheet to helical conformations of 1018-K6 respect to IDR-1018, with a faster folding kinetic and increased structural stability. Moreover, 1018-K6 evidenced a significant antibiofilm/bactericidal efficiency specifically against Listeria monocytogenes isolates from food-products and food-processing environments, belonging to serotype 4b involved in the majority of human-listeriosis cases, with EC 50 values two- five-fold lower than those measured for IDR-1018. Therefore, a single amino-acid substitution in IDR-1018 sequence produced severe changes in peptide conformation and antimicrobial performances. Published by Elsevier B.V.

  16. A Short Review of Membrane Fouling in Forward Osmosis Processes

    PubMed Central

    Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.

    2017-01-01

    Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649

  17. Sonocrystallization and Its Application in Food and Bioprocessing

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    The chapter aims at understanding in detail, the application of ultrasound for intensification of crystallization operation and covers different aspects such as basic mechanism of expected intensification, reactor designs and overview of existing literature related to food and bioprocess industry applications with an objective of presenting optimum guidelines for maximizing the efficacy of using ultrasound. A case study of lactose recovery from whey has also been discussed in details so as to give quantitative information about the effects of ultrasound in different stages of the crystallization operation and guidelines for optimization of different geometric and operating parameters. Overall it appears that use of ultrasound can significantly improve the crystallization operation by significant reduction in the processing time with generation of better quality crystals and also the recent developments in the design of large scale sonochemical reactors have enhanced the possibility of the application in actual commercial practice.

  18. Near Real-time Operational Use of eMODIS Expedited NDVI for Monitoring Applications and Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Budde, M. E.

    2010-12-01

    The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.

  19. Application of radiation processing in asia and the pacific region: Focus on malaysia

    NASA Astrophysics Data System (ADS)

    Mohd Dahlan, Khairul Zaman HJ.

    1995-09-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation curing of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials.

  20. Cold Plasma Technology-principles and applications

    USDA-ARS?s Scientific Manuscript database

    Contamination of fresh and fresh-cut fruits and vegetables by foodborne pathogens has prompted research into novel interventions. Cold plasma is a nonthermal food processing technology which uses energetic, reactive gases to inactivate contaminating microbes. This flexible sanitizing method uses ele...

  1. Application of microbial α-amylase in industry - A review.

    PubMed

    de Souza, Paula Monteiro; de Oliveira Magalhães, Pérola

    2010-10-01

    Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  2. Mechanism of Food Ordering in A Restaurant Using Android Technology

    NASA Astrophysics Data System (ADS)

    Aulia, Rachmat; Zakir, Ahmad; Dafitri, Haida; Siregar, Dodi; Hasdiana

    2017-12-01

    A Restaurant is a gathering place for many people to taste the favorite foods are in there. The restaurant which visited many people sure will increase the attraction of them to visit it. Of course, the owner will get more benefit. However, what happens when a restaurant is famous still uses a service without technology, such as making orders using pens and paper, inspects the food stocks manually, and delivering orders to the kitchen using manpower, and more. Therefore, it designed a system that can accelerate the ordering and processing food in the restaurant. This system replaces the use of pen and paper with digital devices such as tablets/smartphones based on Android. Not only that, order data can be sent through a wireless network which connects tablets/smartphones with the kitchen's computer. It can be read by kitcheners and showed directly on the LCD screen. By the application is expected to reduce the level of error in the processing of the consumer's order.

  3. Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum).

    PubMed

    Sandoval-Castro, Claudia Jaqueline; Valdez-Morales, Maribel; Oomah, B Dave; Gutiérrez-Dorado, Roberto; Medina-Godoy, Sergio; Espinosa-Alonso, L Gabriela

    2017-06-01

    Bioactive compounds and antioxidant activity were evaluated from industrial Jalapeño pepper byproducts and simulated non processed byproducts from two Mexican states (Chihuahua and Sinaloa) to determine their value added potential as commercial food ingredients. Aqueous 80% ethanol produced about 13% of dry extract of polar compounds. Total phenolic content increased and capsaicin and dihydrocapsaicin decreased on scalding samples (80 °C, 2 min) without affecting ascorbic acid. The major phenolic compounds, rutin, epicatechin and catechin comprised 90% of the total compounds detected by HPLC of each Jalapeño pepper byproducts. ORAC analysis showed that the origin and scalding process affected the antioxidant activity which correlated strongly with capsaicin content. Although scalding decreased capsaicinoids (up to 42%), phenolic content by (up to 16%), and the antioxidant activity (variable). Jalapeño pepper byproduct is a good source of compounds with antioxidant activity, and still an attractive ingredient to develop useful innovative products with potential food/non-food applications simultaneously reducing food loss and waste.

  4. Ion mobility spectrometry for food quality and safety.

    PubMed

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during the production of polymeric materials; and (5) the characterization of products - wine being an example. The challenges of such applications were operation in humid air, fast on-line analyses of complex mixtures, high sensitivity - detection limits have to be, for example, in the range of the odour limits - and, in some cases, the necessity of mobile instrumentation. It can be shown that ion mobility spectrometry is optimally capable of fulfilling those challenges for many applications.

  5. Application of pretreatment methods on agricultural products prior to frying: a review.

    PubMed

    Oladejo, Ayobami Olayemi; Ma, Haile; Qu, Wenjuan; Zhou, Cunshan; Wu, Bengang; Uzoejinwa, Benjamin Bernard; Onwude, Daniel I; Yang, Xue

    2018-01-01

    Frying is one of the methods of processing foods, which imparts flavour, taste, colour and crispness in the fried foods. In spite of an increase in the demand for fried foods by consumers all over the world, the danger posed by consuming too much fat is still a challenge. Many researchers have put forward many ideas on how to reduce the oil uptake and improve the nutritional and organoleptic qualities of foods during frying. Several pretreatment techniques applied to food materials prior to frying have been investigated by researchers in a bid to reduce the oil uptake and improve the quality parameters of fried foods. Therefore, this review focuses on the various pretreatment methods and the recent novel methods like ultrasound, infrared, superheated steam drying, microwave technique and pulsed electric field applied to foods prior to frying and its effects on the qualities of fried foods. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Can Food be Addictive? Public Health and Policy Implications

    PubMed Central

    Gearhardt, Ashley N.; Grilo, Carlos M.; DiLeone, Ralph J.; Brownell, Kelly D.; Potenza, Marc N.

    2011-01-01

    Aims Data suggest that hyperpalatable foods may be capable of triggering an addictive process. Although the addictive potential of foods continues to be debated, important lessons learned in reducing the health and economic consequences of drug addiction may be especially useful in combating food-related problems. Methods In the current paper, we review the potential application of policy and public health approaches that have been effective in reducing the impact of addictive substances to food-related problems. Results Corporate responsibility, public health approaches, environmental change, and global efforts all warrant strong consideration in reducing obesity and diet-related disease. Conclusions Although there exist important differences between foods and addictive drugs, ignoring analogous neural and behavioral effects of foods and drugs of abuse may result in increased food-related disease and associated social and economic burdens. Public health interventions that have been effective in reducing the impact of addictive drugs may have a role in targeting obesity and related diseases. PMID:21635588

  7. Can food be addictive? Public health and policy implications.

    PubMed

    Gearhardt, Ashley N; Grilo, Carlos M; DiLeone, Ralph J; Brownell, Kelly D; Potenza, Marc N

    2011-07-01

    Data suggest that hyperpalatable foods may be capable of triggering an addictive process. Although the addictive potential of foods continues to be debated, important lessons learned in reducing the health and economic consequences of drug addiction may be especially useful in combating food-related problems. In the current paper, we review the potential application of policy and public health approaches that have been effective in reducing the impact of addictive substances to food-related problems. Corporate responsibility, public health approaches, environmental change and global efforts all warrant strong consideration in reducing obesity and diet-related disease. Although there exist important differences between foods and addictive drugs, ignoring analogous neural and behavioral effects of foods and drugs of abuse may result in increased food-related disease and associated social and economic burdens. Public health interventions that have been effective in reducing the impact of addictive drugs may have a role in targeting obesity and related diseases. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  8. Application of probiotics in food products--challenges and new approaches.

    PubMed

    Jankovic, I; Sybesma, W; Phothirath, P; Ananta, E; Mercenier, A

    2010-04-01

    The probiotic research conducted over the past 20 years has resulted in a valuable source of data related to health beneficial effects of probiotics. Nevertheless, documentation of probiotic benefits remains challenging, especially in functional foods that are designed for the generally healthy population that, however, regularly experiences episodes of 'suboptimal' health. In addition, in view of today's application of probiotics in an increasing variety of food matrixes, process optimization and product design need to take into account cell viability and probiotic function altogether. To meet this challenge, medium to high-throughput bioassays - based on the identification of active compounds and their mechanism of action - have to be developed and their predictive value established. Together with validated biomarkers for health and disease, this should help rationalize probiotic product development and associated health claim substantiation in human studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Bioprotective Role of Yeasts

    PubMed Central

    Muccilli, Serena; Restuccia, Cristina

    2015-01-01

    The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance. PMID:27682107

  10. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products.

    PubMed

    Foschia, Martina; Horstmann, Stefan W; Arendt, Elke K; Zannini, Emanuele

    2017-02-28

    The increasing demand for gluten-free food products from consumers has triggered food technologists to investigate a wide range of gluten-free ingredients from different sources to reproduce the unique network structure developed by gluten in a wheat-dough system. In recent times, the attention has been focused on novel application of legume flour or ingredients. The interest in this crop category is mainly attributed to their functional properties, such as solubility and water-binding capacity, which play an important role in gluten-free food formulation and processing. Their nutritional profile may also counteract the lack of nutrients commonly highlighted in commercial gluten-free bakery and pasta products, providing valuable sources of protein, dietary fiber, vitamins, minerals, and complex carbohydrates, which in turn have a positive impact on human health. This review reports the main chemical and functional characteristics of legumes and their functional application in gluten-free products.

  11. New functionalities of Maillard reaction products as emulsifiers and encapsulating agents, and the processing parameters: a brief review.

    PubMed

    Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Lai, Oi-Ming

    2017-03-01

    Non-enzymatic browning has been a wide and interesting research area in the food industry, ranging from the complexity of the reaction to its applications in the food industry as well as its ever-debatable health effects. This review provides a new perspective to the Maillard reaction apart from its ubiquitous function in enhancing food flavour, taste and appearance. It focuses on the recent application of Maillard reaction products as an inexpensive and excellent source of emulsifiers as well as superior encapsulating matrices for the entrapment of bioactive compounds. Additionally, it will also discuss the latest approaches employed to perform the Maillard reaction as well as several important reaction parameters that need to be taken into consideration when conducting the Maillard reaction. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Processing of polyphenolic composites with supercritical fluid anti-solvent technology

    NASA Astrophysics Data System (ADS)

    Kurniawansyah, Firman; Mammucari, Raffaella; Foster, Neil R.

    2017-05-01

    Polyphenols have been developed, primarily exploiting their robust antioxidant properties, for medical and food applications. In spite of their advantages, polyphenolic compounds have drawbacks from their natural characteristics of being poorly soluble in aqueous solutions, thermo-labile and low oral bioavailaibility. In this article, strategy of processing with supercritical fluid (SCF) anti-solvent to improve the shortcomings is overviewed. Information obtained from the existing studies commonly confirms SCF technology applicability to produce composites of polyphenols with various morphology, size distributions and crystallinity. The application of SCF technology also enables to develop polyphenolic composites for alternative drug delivery such as in the pulmonary administrations.

  13. Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7 prevalence on hides and carcasses

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing faci...

  14. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods.

    PubMed

    Goodman, Richard E; Tetteh, Afua O

    2011-08-01

    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety.

  15. cDNA Microarray Screening in Food Safety

    PubMed Central

    ROY, SASHWATI; SEN, CHANDAN K

    2009-01-01

    The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests. PMID:16466843

  16. Metabolomic Technologies for Improving the Quality of Food: Practice and Promise.

    PubMed

    Johanningsmeier, Suzanne D; Harris, G Keith; Klevorn, Claire M

    2016-01-01

    It is now well documented that the diet has a significant impact on human health and well-being. However, the complete set of small molecule metabolites present in foods that make up the human diet and the role of food production systems in altering this food metabolome are still largely unknown. Metabolomic platforms that rely on nuclear magnetic resonance (NMR) and mass spectrometry (MS) analytical technologies are being employed to study the impact of agricultural practices, processing, and storage on the global chemical composition of food; to identify novel bioactive compounds; and for authentication and region-of-origin classifications. This review provides an overview of the current terminology, analytical methods, and compounds associated with metabolomic studies, and provides insight into the application of metabolomics to generate new knowledge that enables us to produce, preserve, and distribute high-quality foods for health promotion.

  17. Componential distribution analysis of food using near infrared ray image

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroki; Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko; Ohba, Kimie

    2008-11-01

    The components of the food related to the "deliciousness" are usually evaluated by componential analysis. The component content and type of components in the food are determined by this analysis. However, componential analysis is not able to analyze measurements in detail, and the measurement is time consuming. We propose a method to measure the two-dimensional distribution of the component in food using a near infrared ray (IR) image. The advantage of our method is to be able to visualize the invisible components. Many components in food have characteristics such as absorption and reflection of light in the IR range. The component content is measured using subtraction between two wavelengths of near IR light. In this paper, we describe a method to measure the component of food using near IR image processing, and we show an application to visualize the saccharose in the pumpkin.

  18. The pilot plant for electron beam food processing

    NASA Astrophysics Data System (ADS)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  19. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. All Natural and Clean-Label Preservatives and Antimicrobial Agents Used during Poultry Processing and Packaging.

    PubMed

    Grant, Ar'quette; Parveen, Salina

    2017-04-01

    The poultry industry is faced with compounding pressures of maintaining product safety and wholesomeness while keeping up with consumer trends of all-natural foods and label accuracy. Consumers are increasingly demanding that their foods be minimally processed and contain compounds that are easily read and recognized, i.e., products must be clean labeled. The purpose of this review is to briefly describe several natural antimicrobial agents that can be incorporated into poultry processing. These compounds and their essential oils were included in this mini-review because they are generally recognized as safe by the U.S. Food and Drug Administration and are considered clean label: thyme extract, rosemary extract, garlic, and oregano. This list of natural antimicrobial agents by no means includes all of the options available to poultry processors. Rather, this review provides a brief glance at the potential these natural antimicrobial agents have in terms of reduced pathogenicity, increased shelf stability, and sensory acceptability through direct product application or as part of the product packaging.

  1. Assessing the Nutritional Quality of Diets of Canadian Adults Using the 2014 Health Canada Surveillance Tool Tier System.

    PubMed

    Jessri, Mahsa; Nishi, Stephanie K; L'Abbé, Mary R

    2015-12-12

    The 2014 Health Canada Surveillance Tool (HCST) was developed to assess adherence of dietary intakes with Canada's Food Guide. HCST classifies foods into one of four Tiers based on thresholds for sodium, total fat, saturated fat and sugar, with Tier 1 representing the healthiest and Tier 4 foods being the unhealthiest. This study presents the first application of HCST to assess (a) dietary patterns of Canadians; and (b) applicability of this tool as a measure of diet quality among 19,912 adult participants of Canadian Community Health Survey 2.2. Findings indicated that even though most of processed meats and potatoes were Tier 4, the majority of reported foods in general were categorized as Tiers 2 and 3 due to the adjustable lenient criteria used in HCST. Moving from the 1st to the 4th quartile of Tier 4 and "other" foods/beverages, there was a significant trend towards increased calories (1876 kcal vs. 2290 kcal) and "harmful" nutrients (e.g., sodium) as well as decreased "beneficial" nutrients. Compliance with the HCST was not associated with lower body mass index. Future nutrient profiling systems need to incorporate both "positive" and "negative" nutrients, an overall score and a wider range of nutrient thresholds to better capture food product differences.

  2. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery.

    PubMed

    Atuonwu, J C; Tassou, S A

    2018-01-23

    The enormous magnitude and variety of microwave applications in household, commercial and industrial food processing creates a strong motivation for improving the energy efficiency and hence, sustainability of the process. This review critically assesses key energy issues associated with microwave food processing, focusing on previous energy performance studies, energy performance metrics, standards and regulations. Factors affecting energy-efficiency are categorised into source, load and source-load matching factors. This highlights the need for highly-flexible and controllable power sources capable of receiving real-time feedback on load properties, and effecting rapid control actions to minimise reflections, heating non-uniformities and other imperfections that lead to energy losses. A case is made for the use of solid-state amplifiers as alternatives to conventional power sources, magnetrons. By a full-scale techno-economic analysis, including energy aspects, it is shown that the use of solid-state amplifiers as replacements to magnetrons is promising, not only from an energy and overall technical perspective, but also in terms of economics.

  3. Emerging trends in nutraceutical applications of whey protein and its derivatives.

    PubMed

    Patel, Seema

    2015-11-01

    The looming food insecurity demands the utilization of nutrient-rich residues from food industries as value-added products. Whey, a dairy industry waste has been characterized to be excellent nourishment with an array of bioactive components. Whey protein comprises 20 % of total milk protein and it is rich in branched and essential amino acids, functional peptides, antioxidants and immunoglobulins. It confers benefits against a wide range of metabolic diseases such as cardiovascular complications, hypertension, obesity, diabetes, cancer and phenylketonuria. The protein has been validated to boost recovery from resistance exercise-injuries, stimulate gut physiology and protect skin against detrimental radiations. Apart from health invigoration, whey protein has proved its suitability as fat replacer and emulsifier. Further, its edible and antimicrobial packaging potential renders its highly desirable in food as well as pharmaceutical sectors. Considering the enormous nutraceutical worth of whey protein, this review emphasizes on its established and emerging biological roles. Present and future scopes in food processing and dietary supplement formulation are discussed. Associated hurdles are identified and how technical advancement might augment its applications are explored. This review is expected to provide valuable insight on whey protein-fortified functional foods, associated technical hurdles and scopes of improvement.

  4. Merging dietary assessment with the adolescent lifestyle.

    PubMed

    Schap, T E; Zhu, F; Delp, E J; Boushey, C J

    2014-01-01

    The use of image-based dietary assessment methods shows promise for improving dietary self-report among children. The Technology Assisted Dietary Assessment (TADA) food record application is a self-administered food record specifically designed to address the burden and human error associated with conventional methods of dietary assessment. Users would take images of foods and beverages at all eating occasions using a mobile telephone or mobile device with an integrated camera [e.g. Apple iPhone, Apple iPod Touch (Apple Inc., Cupertino, CA, USA); Nexus One (Google, Mountain View, CA, USA)]. Once the images are taken, the images are transferred to a back-end server for automated analysis. The first step in this process is image analysis (i.e. segmentation, feature extraction and classification), which allows for automated food identification. Portion size estimation is also automated via segmentation and geometric shape template modeling. The results of the automated food identification and volume estimation can be indexed with the Food and Nutrient Database for Dietary Studies to provide a detailed diet analysis for use in epidemiological or intervention studies. Data collected during controlled feeding studies in a camp-like setting have allowed for formative evaluation and validation of the TADA food record application. This review summarises the system design and the evidence-based development of image-based methods for dietary assessment among children. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  5. Industrial Applications of Pulsed Power Technology

    NASA Astrophysics Data System (ADS)

    Takaki, Koichi; Katsuki, Sunao

    Recent progress of the industrial applications of pulsed power is reviewed in this paper. Repetitively operated pulsed power generators with a moderate peak power have been developed for industrial applications. These generators are reliable and low maintenance. Development of the pulsed power generators helps promote industrial applications of pulsed power for such things as food processing, medical treatment, water treatment, exhaust gas treatment, ozone generation, engine ignition, ion implantation and others. Here, industrial applications of pulsed power are classified by application for biological effects, for pulsed streamer discharges in gases, for pulsed discharges in liquid or liquid-mixture, and for bright radiation sources.

  6. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  7. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 7 CFR 1599.4 - Application process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... associations, community infrastructure, and health, nutrition, water and sanitation conditions; (3) Information... improvements in the learning environment; (iii) Improved maternal, child and student health and nutrition; (iv... OF AGRICULTURE McGOVERN-DOLE INTERNATIONAL FOOD FOR EDUCATION AND CHILD NUTRITION PROGRAM § 1599.4...

  9. 7 CFR 1599.4 - Application process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... associations, community infrastructure, and health, nutrition, water and sanitation conditions; (3) Information... improvements in the learning environment; (iii) Improved maternal, child and student health and nutrition; (iv... OF AGRICULTURE McGOVERN-DOLE INTERNATIONAL FOOD FOR EDUCATION AND CHILD NUTRITION PROGRAM § 1599.4...

  10. 7 CFR 1599.4 - Application process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... associations, community infrastructure, and health, nutrition, water and sanitation conditions; (3) Information... improvements in the learning environment; (iii) Improved maternal, child and student health and nutrition; (iv... OF AGRICULTURE McGOVERN-DOLE INTERNATIONAL FOOD FOR EDUCATION AND CHILD NUTRITION PROGRAM § 1599.4...

  11. 7 CFR 1599.4 - Application process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... associations, community infrastructure, and health, nutrition, water and sanitation conditions; (3) Information... improvements in the learning environment; (iii) Improved maternal, child and student health and nutrition; (iv... OF AGRICULTURE McGOVERN-DOLE INTERNATIONAL FOOD FOR EDUCATION AND CHILD NUTRITION PROGRAM § 1599.4...

  12. Infrared heating

    USDA-ARS?s Scientific Manuscript database

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  13. Assessment of a High Purity Zein Product from Commercial Zein

    USDA-ARS?s Scientific Manuscript database

    Successful utilization of commercial zein products for food, pharmaceutical, cosmetic and medical applications requires a decolorized/deodorized zein that is substantially undenatured protein. A zein protein product with those qualifications has already been developed by a patent pending process. ...

  14. wksl3, a New Biocontrol Agent for Salmonella enterica Serovars Enteritidis and Typhimurium in Foods: Characterization, Application, Sequence Analysis, and Oral Acute Toxicity Study

    PubMed Central

    Kang, Hyun-Wol; Kim, Jae-Won; Jung, Tae-Sung

    2013-01-01

    Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination. PMID:23335772

  15. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging.

    PubMed

    Siegrist, Michael; Stampfli, Nathalie; Kastenholz, Hans; Keller, Carmen

    2008-09-01

    Nanotechnology has the potential to generate new food products and new food packaging. In a mail survey in the German speaking part of Switzerland, lay people's (N=337) perceptions of 19 nanotechnology applications were examined. The goal was to identify food applications that are more likely and food applications that are less likely to be accepted by the public. The psychometric paradigm was employed, and applications were described in short scenarios. Results suggest that affect and perceived control are important factors influencing risk and benefit perception. Nanotechnology food packaging was assessed as less problematic than nanotechnology foods. Analyses of individual data showed that the importance of naturalness in food products and trust were significant factors influencing the perceived risk and the perceived benefit of nanotechnology foods and nanotechnology food packaging.

  16. Conflict of interest from a Romanian geneticist's perspective.

    PubMed

    Ispas, Ioana

    2002-07-01

    This paper examines Romanian bioethics regulations for biomedical sciences, looking in particular at the genetics area as a source for conflict of interest. The analysis is focused on the organizational level, national regulations, the sources for generating conflicts of interest, and management of conflicts. Modern biotechnology and gene technology are among the key technologies of the twenty-first century. The application of gene technology for medical and pharmaceutical purposes is widely accepted by society, but the same cannot be said of the development and application of gene technology in agriculture and food processing. Because the use of a technology in the production and processing of food is regarded more sceptically than in the production of biomedical products, there can be areas of conflict in many cases when communication is undertaken about gene technology in the agro-food sector. Ethical concerns play an important factor in this, but a society's attitude to a developing technology is an amalgam of many effects which are beyond ethics as such. This paper contains a study carried out by the author for the Romanian Association for Consumer Protection about the attitudes of consumers towards genetically modified (GM) foods. This study revealed that in Romania more than 98% of consumers did not know anything about GM foods and frequently were confused about the definitions of these terms. In conclusion, it is necessary to say that there is a low level of knowledge regarding biotechnology in Romania and this is an important reason why there is neither public acceptance of gene technology products nor is there a rejection.

  17. Synthesis and Characterization of Antimicrobial Nanomaterials

    DTIC Science & Technology

    2013-01-01

    coatings have broad application in medical and food processing fields. Additional potential exists for active disinfection/decontamination processes as well...technique to form homogenous silica nanoparticles. The reaction also provides a method to entrap additional enzyme in silica matrices. When additional ...elucidate the mechanism of lysozyme-mediated silica formation.22 The biocidal spectrum of the material can be broadened by addition of other

  18. Supercritical fluid processing: opportunities for new resist materials and processes

    NASA Astrophysics Data System (ADS)

    Gallagher-Wetmore, Paula M.; Ober, Christopher K.; Gabor, Allen H.; Allen, Robert D.

    1996-05-01

    Over the past two decades supercritical fluids have been utilized as solvents for carrying out separations of materials as diverse as foods, polymers, pharmaceuticals, petrochemicals, natural products, and explosives. More recently they have been used for non-extractive applications such as recrystallization, deposition, impregnation, surface modification, and as a solvent alternative for precision parts cleaning. Today, supercritical fluid extraction is being practiced in the foods and beverage industries; there are commercial plants for decaffeinating coffee and tea, extracting beer flavoring agents from hops, and separating oils and oleoresins from spices. Interest in supercritical fluid processing of polymers has grown over the last ten years, and many new purification, fractionation, and even polymerization techniques have emerged. One of the most significant motivations for applying this technology to polymers has been increased performance demands. More recently, with increasing scrutiny of traditional solvents, supercritical fluids, and in particular carbon dioxide, are receiving widespread attention as 'environmentally conscious' solvents. This paper describes several examples of polymers applications, including a few involving photoresists, which demonstrate that as next- generation advanced polymer systems emerge, supercritical fluids are certain to offer advantages as cutting edge processing tools.

  19. European regulations on nutraceuticals, dietary supplements and functional foods: a framework based on safety.

    PubMed

    Coppens, Patrick; da Silva, Miguel Fernandes; Pettman, Simon

    2006-04-03

    This article describes the legislation that is relevant in the marketing of functional foods in the European Union (EU), how this legislation was developed as well as some practical consequences for manufacturers, marketers and consumers. It also addresses some concrete examples of how the EU's safety requirements for food products have impacted a range of product categories. In the late nineties, research into functional ingredients was showing promising prospects for the use of such ingredients in foodstuffs. Due mainly to safety concerns, these new scientific developments were accompanied by an urgent call for legislation. The European Commission 2000 White Paper on Food Safety announced some 80 proposals for new and improved legislation in this field. Among others, it foresaw the establishment of a General Food Law Regulation, laying down the principles of food law and the creation of an independent Food Authority endowed with the task of giving scientific advice on issues based upon scientific risk assessment with clearly separated responsibilities for risk assessment, risk management and risk communication. Since then, more than 90% of the White Paper proposals have been implemented. However, there is not, as such, a regulatory framework for 'functional foods' or 'nutraceuticals' in EU Food Law. The rules to be applied are numerous and depend on the nature of the foodstuff. The rules of the general food law Regulation are applicable to all foods. In addition, legislation on dietetic foods, on food supplements or on novel foods may also be applicable to functional foods depending on the nature of the product and on their use. Finally, the two proposals on nutrition and health claims and on the addition of vitamins and minerals and other substances to foods, which are currently in the legislative process, will also be an important factor in the future marketing of 'nutraceuticals' in Europe. The cornerstone of EU legislation on food products, including functional foods and nutraceuticals is 'safety'. Decisions on the safety-basis of legislation are based on risk analysis, in which scientific risk assessment is performed by the European Food Safety Authority and risk management is performed by the European Commission, the Member States, and in case of legislation, together with the European Parliament. In the risk management phase, both the precautionary principle and other legitimate factors may be considered in choosing the best way of dealing with an issue. Due to the numerous pieces of legislation applying and to the different procedures to be followed, the process of having 'functional foods' ready for the market is certainly a costly and time-consuming task. However, it may also be clearly worth it in terms of market success and improved consumer health.

  20. Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications.

    PubMed

    Cherpinski, Adriane; Torres-Giner, Sergio; Cabedo, Luis; Lagaron, Jose M

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are one of the most researched family of biodegradable polymers based on renewable materials due to their thermoplastic nature and moisture resistance. The present study was targeted to investigate the preparation and characterization of poly(3-hydroxybutyrate) (PHB) films obtained through the electrospinning technique. To convert them into continuous films and then to increase their application interest in packaging, the electrospun fiber mats were subsequently post-processed by different physical treatments. Thus, the effect of annealing time and cooling method on morphology, molecular order, thermal, optical, mechanical, and barrier properties of the electrospun submicron PHB fibers was studied. Annealing at 160°C, well below the homopolyester melting point, was found to be the minimum temperature at which homogeneous transparent films were produced. The film samples that were cooled slowly after annealing showed the lowest permeability to oxygen, water vapor, and limonene. The optimally post-processed electrospun PHB fibers exhibited similar rigidity to conventional compression-molded PHA films, but with enhanced elongation at break and toughness. Films made by this electrospinning technique have many potential applications, such as in the design of barrier layers, adhesive interlayers, and coatings for fiber- and plastic-based food packaging materials.

  1. Recent developments and applications of hyperspectral imaging for rapid detection of mycotoxins and mycotoxigenic fungi in food products.

    PubMed

    Xing, Fuguo; Yao, Haibo; Liu, Yang; Dai, Xiaofeng; Brown, Robert L; Bhatnagar, Deepak

    2017-08-28

    Mycotoxins are the foremost naturally occurring contaminants of food products such as corn, peanuts, tree nuts, and wheat. As the secondary metabolites, mycotoxins are mainly synthesized by many species of the genera Aspergillus, Fusarium and Penicillium, and are considered highly toxic and carcinogenic to humans and animals. Most mycotoxins are detected and quantified by analytical chemistry-based methods. While mycotoxigenic fungi are usually identified and quantified by biological methods. However, these methods are time-consuming, laborious, costly, and inconsistent because of the variability of the grain-sampling process. It is desirable to develop rapid, non-destructive and efficient methods that objectively measure and evaluate mycotoxins and mycotoxigenic fungi in food. In recent years, some spectroscopy-based technologies such as hyperspectral imaging (HSI), Raman spectroscopy, and Fourier transform infrared spectroscopy have been extensively investigated for their potential use as tools for the detection, classification, and sorting of mycotoxins and toxigenic fungal contaminants in food. HSI integrates both spatial and spectral information for every pixel in an image, making it suitable for rapid detection of large quantities of samples and more heterogeneous samples and for in-line sorting in the food industry. In order to track the latest research developments in HSI, this paper gives a brief overview of the theories and fundamentals behind the technology and discusses its applications in the field of rapid detection and sorting of mycotoxins and toxigenic fungi in food products. Additionally, advantages and disadvantages of HSI are compared, and its potential use in commercial applications is reported.

  2. Food irradiation: after 35 years, have we made progress. A government perspective.

    PubMed

    Young, Alvin L

    2003-01-01

    The use of irradiation to improve the safety, protect the nutritional benefits, and preserve the quality of fresh and processed foods is a well established and proven technology. Over the past 35 years, the United States Government has invested in the science to confirm safety and in the technology to show application. The United States Department of Agriculture (USDA) and the Food and Drug Administration have approved sources of ionizing radiation for the treatment of foods, and their application to most meats, fruits, vegetables, and spices. Despite the value of this technology to the food industry and to the health and welfare of the public, only minimal application of this technology occurs. This underscores the importance of increasing the public's understanding of radiation risks relative to other hazards. Accordingly, in 1995, the Committee on Interagency Radiation Research and Policy Coordination of the Executive Office of the President made recommendations for the creation of a centralized National Radiation Information Center that would work closely with Federal departments and agencies in responding to public queries about radiation issues and Federal programs. This article updates a commentary published in 1996 (Young 1996). In the past six years, some progress has been made, including the establishment of a government operated Food Irradiation Information Center, and the completion of final rule making by USDA, thus permitting the safe treatment of meats and poultry. Despite these actions, little progress has been made on the public acceptance of this technology. The need for an informed public and for a better understanding of risks, i.e., risk communication, is noted.

  3. EFSA's scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead.

    PubMed

    Devos, Yann; Aguilera, Jaime; Diveki, Zoltán; Gomes, Ana; Liu, Yi; Paoletti, Claudia; du Jardin, Patrick; Herman, Lieve; Perry, Joe N; Waigmann, Elisabeth

    2014-02-01

    Genetically modified organisms (GMOs) and derived food and feed products are subject to a risk analysis and regulatory approval before they can enter the market in the European Union (EU). In this risk analysis process, the role of the European Food Safety Authority (EFSA), which was created in 2002 in response to multiple food crises, is to independently assess and provide scientific advice to risk managers on any possible risks that the use of GMOs may pose to human and animal health and the environment. EFSA's scientific advice is elaborated by its GMO Panel with the scientific support of several working groups and EFSA's GMO Unit. This review presents EFSA's scientific activities and highlights its achievements on the risk assessment of GMOs for the first 10 years of its existence. Since 2002, EFSA has issued 69 scientific opinions on genetically modified (GM) plant market registration applications, of which 62 for import and processing for food and feed uses, six for cultivation and one for the use of pollen (as or in food), and 19 scientific opinions on applications for marketing products made with GM microorganisms. Several guidelines for the risk assessment of GM plants, GM microorganisms and GM animals, as well as on specific issues such as post-market environmental monitoring (PMEM) were elaborated. EFSA also provided scientific advice upon request of the European Commission on safeguard clause and emergency measures invoked by EU Member States, annual PMEM reports, the potential risks of new biotechnology-based plant breeding techniques, evaluations of previously assessed GMOs in the light of new scientific publications, and the use of antibiotic resistance marker genes in GM plants. Future challenges relevant to the risk assessment of GMOs are discussed. EFSA's risk assessments of GMO applications ensure that data are analysed and presented in a way that facilitates scientifically sound decisions that protect human and animal health and the environment.

  4. [Introduction of Functional Foods--Types, Manufacturing Methods and Quality Assurance].

    PubMed

    Budai, Kinga Anna; Hankó, Balázs; AntalL, István; Zelkó, Romána

    2015-01-01

    Because of the beneficial effects to health functional foods are important elements of health promotion. The positive effect of the functional components should be based on scientific evidence-based. In addition to the traditional food processing technology new technologies have appeared, e.g. microencapsulation, edible coatings and orodispersible films, nano-technology, vacuum impregnation. In the present study, probiotics and the structure, the production and the impact of prebiotic functional cereals are discussed in more detail. In addition to their numerous advantages in connection with the safe application, several questions arise because of inadequate quality control measures prior to coming onto the market.

  5. A novel processed food classification system applied to Australian food composition databases.

    PubMed

    O'Halloran, S A; Lacy, K E; Grimes, C A; Woods, J; Campbell, K J; Nowson, C A

    2017-08-01

    The extent of food processing can affect the nutritional quality of foodstuffs. Categorising foods by the level of processing emphasises the differences in nutritional quality between foods within the same food group and is likely useful for determining dietary processed food consumption. The present study aimed to categorise foods within Australian food composition databases according to the level of food processing using a processed food classification system, as well as assess the variation in the levels of processing within food groups. A processed foods classification system was applied to food and beverage items contained within Australian Food and Nutrient (AUSNUT) 2007 (n = 3874) and AUSNUT 2011-13 (n = 5740). The proportion of Minimally Processed (MP), Processed Culinary Ingredients (PCI) Processed (P) and Ultra Processed (ULP) by AUSNUT food group and the overall proportion of the four processed food categories across AUSNUT 2007 and AUSNUT 2011-13 were calculated. Across the food composition databases, the overall proportions of foods classified as MP, PCI, P and ULP were 27%, 3%, 26% and 44% for AUSNUT 2007 and 38%, 2%, 24% and 36% for AUSNUT 2011-13. Although there was wide variation in the classifications of food processing within the food groups, approximately one-third of foodstuffs were classified as ULP food items across both the 2007 and 2011-13 AUSNUT databases. This Australian processed food classification system will allow researchers to easily quantify the contribution of processed foods within the Australian food supply to assist in assessing the nutritional quality of the dietary intake of population groups. © 2017 The British Dietetic Association Ltd.

  6. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry

    PubMed Central

    Das, Gitishree; Patra, Jayanta Kumar; Lee, Sun-Young; Kim, Changgeon; Park, Jae Gyu

    2017-01-01

    Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions. PMID:28704842

  7. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry.

    PubMed

    Das, Gitishree; Patra, Jayanta Kumar; Lee, Sun-Young; Kim, Changgeon; Park, Jae Gyu; Baek, Kwang-Hyun

    2017-01-01

    Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions.

  8. Melanin-templated rapid synthesis of silver nanostructures

    PubMed Central

    2014-01-01

    Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food packaging materials and antimicrobials for stored fruits and foods. PMID:24885756

  9. Proteomics in food: Quality, safety, microbes, and allergens.

    PubMed

    Piras, Cristian; Roncada, Paola; Rodrigues, Pedro M; Bonizzi, Luigi; Soggiu, Alessio

    2016-03-01

    Food safety and quality and their associated risks pose a major concern worldwide regarding not only the relative economical losses but also the potential danger to consumer's health. Customer's confidence in the integrity of the food supply could be hampered by inappropriate food safety measures. A lack of measures and reliable assays to evaluate and maintain a good control of food characteristics may affect the food industry economy and shatter consumer confidence. It is imperative to create and to establish fast and reliable analytical methods that allow a good and rapid analysis of food products during the whole food chain. Proteomics can represent a powerful tool to address this issue, due to its proven excellent quantitative and qualitative drawbacks in protein analysis. This review illustrates the applications of proteomics in the past few years in food science focusing on food of animal origin with some brief hints on other types. Aim of this review is to highlight the importance of this science as a valuable tool to assess food quality and safety. Emphasis is also posed in food processing, allergies, and possible contaminants like bacteria, fungi, and other pathogens. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Production of Fungal Glucoamylase for Glucose Production from Food Waste

    PubMed Central

    Lam, Wan Chi; Pleissner, Daniel; Lin, Carol Sze Ki

    2013-01-01

    The feasibility of using pastry waste as resource for glucoamylase (GA) production via solid state fermentation (SSF) was studied. The crude GA extract obtained was used for glucose production from mixed food waste. Our results showed that pastry waste could be used as a sole substrate for GA production. A maximal GA activity of 76.1 ± 6.1 U/mL was obtained at Day 10. The optimal pH and reaction temperature for the crude GA extract for hydrolysis were pH 5.5 and 55 °C, respectively. Under this condition, the half-life of the GA extract was 315.0 minutes with a deactivation constant (kd) 2.20 × 10−3 minutes−1. The application of the crude GA extract for mixed food waste hydrolysis and glucose production was successfully demonstrated. Approximately 53 g glucose was recovered from 100 g of mixed food waste in 1 h under the optimal digestion conditions, highlighting the potential of this approach as an alternative strategy for waste management and sustainable production of glucose applicable as carbon source in many biotechnological processes. PMID:24970186

  11. Inhibition of the pituitary-adrenal response to stress during deprivation-induced feeding

    NASA Technical Reports Server (NTRS)

    Heybach, J. P.; Vernikos-Danellis, J.

    1979-01-01

    Plasma corticosterone and plasma and pituitary ACTH concentrations were determined during feeding and after application of an acute stress at various times after food and water presentation to male rats maintained on a restricted feeding and watering schedule. Both plasma corticosterone and ACTH concentrations fell after the presentation of food and water, and this fall was accompanied by increased levels of ACTH in the pituitary gland. In addition, a rise in plasma levels of ACTH was inhibited in response to an acute stress applied at 0-5 min after presentation of food and water, but ACTH synthesis was not. This inhibition of ACTH and corticosterone secretion in response to stress was transient and dissipated as a relatively linear function of the interval between food presentation and application of the stress. The results suggest that this feeding-induced, corticosteroid-independent inhibition of pituitary-adrenal activity involves active inhibitory mechanisms operating initially on ACTH secretory processes of the pituitary and later on the synthesis of ACTH or on the secretion of hypothalamic corticotropin-releasing factor.

  12. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty.

  13. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.

  14. Food irradiation: regulatory aspects in the Asia and Pacific region

    NASA Astrophysics Data System (ADS)

    Luckman, Gary James

    2002-03-01

    Irradiation treatment of food is becoming an increasingly accepted processing option for countries in the Asia Pacific region wishing to meet growing sanitary and phytosanitary requirements in international trade. There remain however, large differences between the regulatory requirements in the countries in this region. This paper gives an outline on existing food irradiation regulations in the separate countries of the Asia Pacific region. New developments such as the recent decision by the Australia New Zealand Food Authority to start assessing applications for food irradiation treatment are discussed. Australia's intention to regulate the export of food treated by irradiation will also be outlined. Details of the decision to harmonise food irradiation regulations by 13 countries in the Asia Pacific region based on conformance with Codex requirements is outlined. The likelihood of other Asia Pacific countries enacting similar harmonisation of their regulations will be examined. Future development such as certification of irradiation as a sanitary treatment for food are discussed. The expected result of these initiatives is a likely increase in irradiated foods traded within the Asia Pacific region.

  15. Detection of soy proteins in processed foods: literature overview and new experimental work.

    PubMed

    Koppelman, Stef J; Lakemond, Catriona M M; Vlooswijk, Riek; Hefle, Susan L

    2004-01-01

    Several tests for the detection of soy proteins in foods have been described in the literature, and some are commercially available. This article gives an overview of these methods and discusses the advantages and disadvantages of each individual method. Based on the conclusions of this inventory, an experimental approach was designed to improve the sensitivity of measuring soy protein in processed foods. The aimed sensitivity is 10 ppm (10 microg soy protein in 1 g solid sample), which is over 100-fold lower than presently available tests. The aimed sensitivity is this low because levels of food allergens at 10 ppm and above may provoke reactions in food allergic persons. Native soybean meal, soy protein isolate, soy protein concentrate, and textured soy flakes were used as test materials. Several extraction procedures were compared and a new method using high pH was selected. Polyclonal antibodies were raised in rabbits and goats, and immunopurified antibodies were used in sandwich and inhibition enzyme-linked immunosorbent assay (ELISA). Extraction at pH 12 resulted in good yields for all tested samples, both quantitatively (Bradford) and qualitatively by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunopurified rabbit antibodies against this extract used in a competition ELISA format resulted in a sensitive test with a detection limit of 0.02 microg/mL, corresponding to 0.4 microg/g (0.4 ppm) in food samples. Cross-reactivity with some main food ingredients was measured and appeared to be negative in all cases. The presently developed test is applicable for soy ingredients and soy-containing foods that are processed in different ways. The limit of quantitation is 1 ppm, which is an enormous improvement over earlier described methods.

  16. Carotenoids of Microalgae Used in Food Industry and Medicine.

    PubMed

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2017-01-01

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative microalgal sources used for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Improving food safety within the dairy chain: an application of conjoint analysis.

    PubMed

    Valeeva, N I; Meuwissen, M P M; Lansink, A G J M Oude; Huirne, R B M

    2005-04-01

    This study determined the relative importance of attributes of food safety improvement in the production chain of fluid pasteurized milk. The chain was divided into 4 blocks: "feed" (compound feed production and its transport), "farm" (dairy farm), "dairy processing" (transport and processing of raw milk, delivery of pasteurized milk), and "consumer" (retailer/catering establishment and pasteurized milk consumption). The concept of food safety improvement focused on 2 main groups of hazards: chemical (antibiotics and dioxin) and microbiological (Salmonella, Escherichia coli, Mycobacterium paratuberculosis, and Staphylococcus aureus). Adaptive conjoint analysis was used to investigate food safety experts' perceptions of the attributes' importance. Preference data from individual experts (n = 24) on 101 attributes along the chain were collected in a computer-interactive mode. Experts perceived the attributes from the "feed" and "farm" blocks as being more vital for controlling the chemical hazards; whereas the attributes from the "farm" and "dairy processing" were considered more vital for controlling the microbiological hazards. For the chemical hazards, "identification of treated cows" and "quality assurance system of compound feed manufacturers" were considered the most important attributes. For the microbiological hazards, these were "manure supply source" and "action in salmonellosis and M. paratuberculosis cases". The rather high importance of attributes relating to quality assurance and traceability systems of the chain participants indicates that participants look for food safety assurance from the preceding participants. This information has substantial decision-making implications for private businesses along the chain and for the government regarding the food safety improvement of fluid pasteurized milk.

  18. Ultrasound Applications in Food Processing

    NASA Astrophysics Data System (ADS)

    Bermúdez-Aguirre, Daniela; Mobbs, Tamara; Barbosa-Cánovas, Gustavo V.

    Food scientists today are focused on the development of not only microbiologically safe products with a long storage life, but, at the same time, products that have fresh-like characteristics and a high quality in taste, flavor, and texture. This focus is based on the needs of the consumer, which is one of the main reasons for constant research in the so-called area of emerging technologies. Traditionally, thermal treatments have been used to produce safe food products. Pasteurization of juice, milk, beer, and wine is a common process in which the final product has a storage life of some weeks (generally under refrigeration). However, vitamins, taste, color, and other sensorial characteristics are decreased with this treatment. High temperature is responsible for these effects and can be observed in the loss of nutritional components and changes in flavor, taste, and texture, often creating the need for additives to improve the product.

  19. Authentication of Closely Related Fish and Derived Fish Products Using Tandem Mass Spectrometry and Spectral Library Matching.

    PubMed

    Nessen, Merel A; van der Zwaan, Dennis J; Grevers, Sander; Dalebout, Hans; Staats, Martijn; Kok, Esther; Palmblad, Magnus

    2016-05-11

    Proteomics methodology has seen increased application in food authentication, including tandem mass spectrometry of targeted species-specific peptides in raw, processed, or mixed food products. We have previously described an alternative principle that uses untargeted data acquisition and spectral library matching, essentially spectral counting, to compare and identify samples without the need for genomic sequence information in food species populations. Here, we present an interlaboratory comparison demonstrating how a method based on this principle performs in a realistic context. We also increasingly challenge the method by using data from different types of mass spectrometers, by trying to distinguish closely related and commercially important flatfish, and by analyzing heavily contaminated samples. The method was found to be robust in different laboratories, and 94-97% of the analyzed samples were correctly identified, including all processed and contaminated samples.

  20. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies.

    PubMed

    Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek

    2018-07-24

    Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.

Top