Science.gov

Sample records for forage crop breeding

  1. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed Central

    Wang, Zeng-Yu; Brummer, E. Charles

    2012-01-01

    Background Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Scope Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is ‘Roundup Ready’ (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed. PMID:22378838

  2. Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding?

    PubMed

    Wang, Zeng-Yu; Brummer, E Charles

    2012-11-01

    Genetic engineering offers the opportunity to generate unique genetic variation that is either absent in the sexually compatible gene pool or has very low heritability. The generation of transgenic plants, coupled with breeding, has led to the production of widely used transgenic cultivars in several major cash crops, such as maize, soybean, cotton and canola. The process for regulatory approval of genetically engineered crops is slow and subject to extensive political interference. The situation in forage grasses and legumes is more complicated. Most widely grown forage, turf and bioenergy species (e.g. tall fescue, perennial ryegrass, switchgrass, alfalfa, white clover) are highly self-incompatible and outcrossing. Compared with inbreeding species, they have a high potential to pass their genes to adjacent plants. A major biosafety concern in these species is pollen-mediated transgene flow. Because human consumption is indirect, risk assessment of transgenic forage, turf and bioenergy species has focused on their environmental or ecological impacts. Although significant progress has been made in genetic modification of these species, commercialization of transgenic cultivars is very limited because of the stringent and costly regulatory requirements. To date, the only transgenic forage crop deregulated in the US is 'Roundup Ready' (RR) alfalfa. The approval process for RR alfalfa was complicated, involving several rounds of regulation, deregulation and re-regulation. Nevertheless, commercialization of RR alfalfa is an important step forward in regulatory approval of a perennial outcrossing forage crop. As additional transgenic forage, turf and bioenergy crops are generated and tested, different strategies have been developed to meet regulatory requirements. Recent progress in risk assessment and deregulation of transgenic forage and turf species is summarized and discussed.

  3. Breeding for increased forage quality

    USDA-ARS?s Scientific Manuscript database

    Forage crops have a large number of benefits to society, including ecosystem services such as soil and water conservation, wildlife habitat, and diversification of the agricultural landscape. However, their principal function can only be realized when they are processed through livestock to produce ...

  4. Integrated forage crop refinery system

    SciTech Connect

    Barrier, J.W.; Broder, J.D.; Madewell, C.E.; Mays, D.A.

    1985-04-01

    The proposed program involves the development of an integrated agricultural-chemical refining system for converting forage crops to useful foods, feeds, fuels, and chemicals. TVA has facilities and resources available to support extensive research and development activities. Modification can easily be made in the existing experimental facility being used to develop acid hydrolysis of corn stover, to include production of products other than fuel ethanol from forages. These products include protein, lignin-derived products, chemicals, single-cell protein, methane, aquaculture feed, and distillers solids. Refining forage crops in this manner has potential to increase the value of that crop and produce an economical integrated system. The results of the program will also be directly applicable to other areas and regions of the US. 11 refs., 7 figs., 9 tabs.

  5. TILLING in forage grasses for gene discovery and breeding improvement.

    PubMed

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics.

  6. Reduction of foraging work and cooperative breeding.

    PubMed

    Toyoizumi, Hiroshi; Field, Jeremy

    2014-06-01

    Using simple stochastic models, we discuss how cooperative breeders, especially wasps and bees, can improve their productivity by reducing foraging work. In a harsh environment, where foraging is the main cause of mortality, such breeders achieve greater productivity by reducing their foraging effort below full capacity, and they may thrive by adopting cooperative breeding. This could prevent the population extinction of cooperative breeders under conditions where a population of lone breeders cannot be maintained.

  7. Perennial Forages as Second Generation Bioenergy Crops

    PubMed Central

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  8. Oxidative phenols in forage crops containing polyphenol oxidase enzymes.

    PubMed

    Parveen, Ifat; Threadgill, Michael D; Moorby, Jon M; Winters, Ana

    2010-02-10

    Polyphenol oxidases (PPOs) are copper-containing enzymes that catalyze oxidation of endogenous monophenols to ortho-dihydroxyaryl compounds and of ortho-dihydroxyaryl compounds to ortho-quinones. Subsequent nucleophilic addition reactions of phenols, amino acids, and proteins with the electrophilic ortho-quinones form brown-, black-, or red-colored secondary products associated with the undesired discolouration of fruit and vegetables. Several important forage plants also exhibit significant PPO activity, and a link with improved efficiency of ruminant production has been established. In ruminant animals, extensive degradation of forage proteins, following consumption, can result in high rates of excretion of nitrogen, which contributes to point-source and diffuse pollution. Reaction of quinones with forage proteins leads to the formation of protein-phenol complexes that are resistant to proteolytic activity during ensilage and during rumen fermentation. Thus, PPO in red clover (Trifolium pratense) has been shown to improve protein utilization by ruminants. While PPO activity has been demonstrated in a number of forage crops, little work has been carried out to identify substrates of PPO, knowledge of which would be beneficial for characterizing this trait in these forages. In general, a wide range of 1,2-dihydroxyarenes can serve as PPO substrates because these are readily oxidized because of the ortho positioning of the hydroxy groups. Naturally occurring phenols isolated from forage crops with PPO activity are reviewed. A large number of phenols, which may be directly or indirectly oxidized as a consequence of PPO activity, have been identified in several forage grass, legume, cereal, and brassica species; these include hydroxybenzoic acids, hydroxycinnamates, and flavonoids. In conclusion, a number of compounds are known or postulated to enable PPO activity in important PPO-expressing forage crops. Targeting the matching of these compounds with PPO activity

  9. Handling manure on forage crops

    USDA-ARS?s Scientific Manuscript database

    Manure application to alfalfa (and other perennial forages) is often necessary because of limited application windows during the year and limited land-to-livestock ratios to meet Comprehensive Nutrient Management Plan requirements. Manure applied before alfalfa planting or during production can impr...

  10. Improving tree establishment with forage crops

    Treesearch

    Eric J. Holzmueller; Carl W. Mize

    2003-01-01

    Tree establishment in Iowa can be difficult without adequate weed control. Although herbicides are effective at controlling weeds, they may not be desirable in riparian settings and some landowners are opposed to using them. An alternative to herbicides is the use of forage crops to control weeds. A research project was established in 1998 to evaluate the influence of...

  11. Field and Forage Crop Pests. MEP 310.

    ERIC Educational Resources Information Center

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  12. Selection methods in forage breeding: a quantitative appraisal

    USDA-ARS?s Scientific Manuscript database

    Forage breeding can be extraordinarily complex because of the number of species, perenniality, mode of reproduction, mating system, and the genetic correlation for some traits evaluated in spaced plants vs. performance under cultivation. Aiming to compare eight forage breeding methods for direct sel...

  13. Clark's Nutcracker Breeding Season Space Use and Foraging Behavior.

    PubMed

    Schaming, Taza D

    2016-01-01

    Considering the entire life history of a species is fundamental to developing effective conservation strategies. Decreasing populations of five-needle white pines may be leading to the decline of Clark's nutcrackers (Nucifraga columbiana). These birds are important seed dispersers for at least ten conifer species in the western U.S., including whitebark pine (Pinus albicaulis), an obligate mutualist of Clark's nutcrackers. For effective conservation of both Clark's nutcrackers and whitebark pine, it is essential to ensure stability of Clark's nutcracker populations. My objectives were to examine Clark's nutcracker breeding season home range size, territoriality, habitat selection, and foraging behavior in the southern Greater Yellowstone Ecosystem, a region where whitebark pine is declining. I radio-tracked Clark's nutcrackers in 2011, a population-wide nonbreeding year following a low whitebark pine cone crop, and 2012, a breeding year following a high cone crop. Results suggest Douglas-fir (Pseudotsuga menziesii) communities are important habitat for Clark's nutcrackers because they selected it for home ranges. In contrast, they did not select whitebark pine habitat. However, Clark's nutcrackers did adjust their use of whitebark pine habitat between years, suggesting that, in some springs, whitebark pine habitat may be used more than previously expected. Newly extracted Douglas-fir seeds were an important food source both years. On the other hand, cached seeds made up a relatively lower proportion of the diet in 2011, suggesting cached seeds are not a reliable spring food source. Land managers focus on restoring whitebark pine habitat with the assumption that Clark's nutcrackers will be available to continue seed dispersal. In the Greater Yellowstone Ecosystem, Clark's nutcracker populations may be more likely to be retained year-round when whitebark pine restoration efforts are located adjacent to Douglas-fir habitat. By extrapolation, whitebark pine restoration

  14. Resistance Genes in Global Crop Breeding Networks.

    PubMed

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-08-31

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  15. A high-throughput method for the quantification of proanthocyanidins in forage crops and its application in assessing variation in condensed tannin content in breeding programmes for Lotus corniculatus and Lotus uliginosus.

    PubMed

    Marshall, Athole; Bryant, David; Latypova, Galina; Hauck, Barbara; Olyott, Phil; Morris, Phillip; Robbins, Mark

    2008-02-13

    Lotus corniculatus and Lotus uliginosus are agronomically important forage crops used in ruminant livestock production. The condensed tannin (CT) content, dry matter (DM) production, and persistence of these species are key characteristics of interest for future exploitation of these crops. Here we present field data on 19 varieties of L. corniculatus, 2 varieties of L. uliginosus and, additionally, a glasshouse experiment using 6 varieties of L. corniculatus and 2 varieties of L. uliginosus. Current methods for the quantification of condensed tannins in crop species are slow and labor intensive and are generally based upon polymer hydrolysis following the extraction of chlorophyll in a liquid phase. Presented here is a high-throughput protocol for condensed tannin quantification suitable for microtiter plates based upon the precipitation of condensed tannin polymers in complex with bovine serum albumin (BSA) with subsequent hydrolysis of precipates using butan 1-ol/ hydrochloric acid.

  16. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  17. Breeding Better Forages to Help Feed Man and Preserve and Enhance the Environment

    ERIC Educational Resources Information Center

    Burton, Glenn W.

    1973-01-01

    Discusses the importance of forages in agriculture, and expresses the need for the same high level of technology that is used in the production of corn, wheat, and rice to be applied to forage production. Describes promising forage species, breeding objectives, and breeding procedures used in research. (JR)

  18. Breeding Better Forages to Help Feed Man and Preserve and Enhance the Environment

    ERIC Educational Resources Information Center

    Burton, Glenn W.

    1973-01-01

    Discusses the importance of forages in agriculture, and expresses the need for the same high level of technology that is used in the production of corn, wheat, and rice to be applied to forage production. Describes promising forage species, breeding objectives, and breeding procedures used in research. (JR)

  19. Variation in the foraging behaviors of two flycatchers: associations with stage of the breeding cycle

    Treesearch

    H.F. Sakai; B.R. Noon

    1990-01-01

    The foraging characteristics of Hammond’s and Western flycatchers in northwestern California varied with different stages of the breeding cycle during the breeding seasons (early April-mid August) in 1984 and 1985. The species’ behaviors did not always vary in parallel nor were all foraging behaviors distributed equally during the breeding cycle. For example, the...

  20. Crop scents affect the occurrence of trophallaxis among forager honeybees.

    PubMed

    Gil, M; Farina, W M

    2003-05-01

    Previous evidence indicates that the recognition of the nectar delivered by forager honeybees within the colony may have been a primitive method of communication on food resources. Thus, the association between scent and reward that nectar foragers establish while they collect on a given flower species should be retrieved during trophallaxis, i.e., the transfer of liquid food by mouth, and, accordingly, foraging experience could affect the occurrence of these interactions inside the nest. We used experimental arenas to analyze how crop scents carried by donor bees affect trophallaxis among foragers, i.e., donors and receivers, which differ in their foraging experience. Results showed that whenever the foragers had collected unscented sugar solution from a feeder the presence of scents in the solution carried by donors did not affect the occurrence of trophallaxis nor its dynamics. In contrast, whenever the foragers had previous olfactory information, new scents present in the crop of the donors negatively affected the occurrence, but not the dynamics of trophallaxis. Thus, the association learned at the food source seems to be retrieved during trophallaxis, and it is possible that known scents present in the mouthparts of nest-mates may operate as a triggering stimulus to elicit trophallactic behavior within the hive.

  1. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  2. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  3. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  4. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  5. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  6. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  7. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    PubMed

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  8. Geographic variation in foraging ecologies of breeding and nonbreeding birds in oak woodlands

    Treesearch

    William M. Block

    1990-01-01

    I studied geographic variation in the foraging ecology of four breeding and four non breeding species in three oak (Quercus spp.) woodlands of California. Variations were evident for all species. Variations in tree-species use, foraging tactics, substrates, and behaviors were species-specific. For example, White-breasted Nuthatches (Sitta carolinensis) used...

  9. Legume crops phylogeny and genetic diversity for science and breeding

    USDA-ARS?s Scientific Manuscript database

    Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal ...

  10. Alfalfa interseeded into silage corn can serve as a cover crop and subsequent forage crop

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) and corn (Zea mays) silage are commonly grown in rotation in dairy forage production systems throughout the northern regions of the USA. Alfalfa interseeded into silage corn could potentially serve two purposes: as a cover crop during the silage corn production year, and as...

  11. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  12. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  13. Foraging flexibility and search patterns are unlinked during breeding in a free-ranging seabird.

    PubMed

    Shoji, Akiko; Aris-Brosou, Stéphane; Owen, Ellie; Bolton, Mark; Boyle, Dave; Fayet, Annette; Dean, Ben; Kirk, Holly; Freeman, Robin; Perrins, Chris; Guilford, Tim

    In order to maximize foraging efficiency in a varying environment, predators are expected to optimize their search strategy. Environmental conditions are one important factor affecting these movement patterns, but variations in breeding constraints (self-feeding vs. feeding young and self-feeding) during different breeding stages (incubation vs. chick-rearing) are often overlooked, so that the mechanisms responsible for such behavioral shifts are still unknown. Here, to test how search patterns are affected at different breeding stages and to explore the proximate causes of these variations, we deployed data loggers to record both position (global positioning system) and dive activity (time-depth recorders) of a colonial breeding seabird, the razorbill Alca torda. Over a period of 3 years, our recordings of 56 foraging trips from 18 breeders show that while there is no evidence for individual route fidelity, razorbills exhibit higher foraging flexibility during incubation than during chick rearing, when foraging becomes more focused on an area of high primary productivity. We further show that this behavioral shift is not due to a shift in search patterns, as reorientations during foraging are independent of breeding stage. Our results suggest that foraging flexibility and search patterns are unlinked, perhaps because birds can read cues from their environment, including conspecifics, to optimize their foraging efficiency.

  14. Plums in temperate fruit crop breeding

    USDA-ARS?s Scientific Manuscript database

    This book is slanted towards molecular biologists working with fruit crops. The chapter on plums describes the characteristics and biology of European and Japanese type plums. Current status of molecular work on these crops is described. In general plums are amenable to regeneration and transform...

  15. Intersexual and temporal variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.

  16. Land or sea? Foraging area choice during breeding by an omnivorous gull.

    PubMed

    Isaksson, Natalie; Evans, Thomas J; Shamoun-Baranes, Judy; Åkesson, Susanne

    2016-01-01

    Generalist predators may vary their diet and use of habitat according to both internal state (e.g. breeding stage) and external (e.g. weather) factors. Lesser black-backed gulls Larus fuscus (Linnaeus 1758) are dietary generalists, foraging in both terrestrial and marine habitats during breeding. We investigate what affects the gulls' propensity to forage at sea or on land. We assess the importance of terrestrial foraging to gulls in the Baltic Sea (sub. sp. L. f. fuscus), looking especially at their use of agricultural fields. Through the GPS tracking of 19 individuals across 3 years we tracked 1038 foraging trips and found that 21.2 % of foraging trips were predominantly terrestrial, 9.0 % were a mix of terrestrial and marine, and 68.5 % were exclusively marine. Terrestrial trips were (1) more frequent when departing around sunrise, whereas marine trips occurred throughout the day. Additionally, trips with mostly land-based foraging decreased as the breeding season progressed, suggesting dietary switching coincident with the onset of chick provisioning. (2) During cloudy and cold conditions terrestrial foraging trips were more likely. (3) We found no differences between sexes in their land-based foraging strategy. (4) Gull individuals showed great variation in foraging strategy. Using observations of agricultural fields, carried out for one year, we found that (5) gulls preferentially foraged on fields with short vegetation, and there was a positive association with occurrence of waders and other species of gulls. (6) The availability and use of these preferred fields decreased through the breeding period. This study found high prevalence of terrestrial foraging during early breeding as well as support for dietary switching early in the breeding season. The overall tendency for marine or terrestrial foraging was consistent within individuals, with gull identity accounting for much of the variation observed in foraging trips. Our results suggest that

  17. Honey loading for pollen collection: regulation of crop content in honeybee pollen foragers on leaving hive

    NASA Astrophysics Data System (ADS)

    Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami

    2014-07-01

    Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.

  18. Honey loading for pollen collection: regulation of crop content in honeybee pollen foragers on leaving hive.

    PubMed

    Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami

    2014-07-01

    Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.

  19. Relationships between breeding status, social -congregation attendance, and foraging distance of xantus's murrelets

    USGS Publications Warehouse

    Hamilton, C.D.; Golightly, R.T.; Takekawa, John Y.

    2011-01-01

    At night during the breeding season, Xantus's Murrelets (Synthliboramphus hypoleucus) congregate on the water adjacent to nesting colonies. We examined relationships of attendance at these nocturnal congregations, breeding status, and daytime foraging locations of radio-marked Xantus's Murrelets from Anacapa Island (33 in 2002, 44 in 2003) and Santa Barbara Island (35 in 2002) in the California Channel Islands. Murrelets thatspent more nights attending congregations were located closer to the island during the day, so regular attendance at the congregations may have constrained daytime traveling distances to foraging locations. In mid-May 2003 home-range sizes increased while congregation attendance decreased, likely indicating the end of colony attendance and declining availability of prey near Anacapa Island. In both years, incubating murrelets foraged farther from the colony than did nonbreeding murrelets, suggesting that breeding and nonbreeding murrelets use different foraging strategies to meet their energetic requirements. Copyright ?? The Cooper Ornithological Society 2011.

  20. Forage radish winter cover crop suppresses winter annual weeds in fall and before corn planting

    USDA-ARS?s Scientific Manuscript database

    Forage radish (Raphanus sativus L. var. longipinnatus) is a new winter cover crop in the Mid-Atlantic region. The objective of this project was to characterize the repeatability, amount, and duration of weed suppression during and after a fall-planted forage radish cover crop and to quantify the sub...

  1. Foraging behavior of two cattle breeds, a whole-year study: II. Spatial distribution by breed and season.

    PubMed

    Dolev, A; Henkin, Z; Brosh, A; Yehuda, Y; Ungar, E D; Shabtay, A; Aharoni, Y

    2014-02-01

    Spatial distributions of 22 mature large-framed Beefmaster × Simford (BS) cross cows and 16 mature small-framed Baladi (BA) cows were determined. Cows were allocated to the same paddock of a Mediterranean pasture and monitored during 6 consecutive seasons: spring (April 2006), summer (June 2006), autumn (September 2006), winter (February 2007), early spring (March 2007), and summer (June 2007). The locations of the cows were determined at 5-min intervals for 3 to 4 d during each season by using Global Positioning System (GPS) collars. The distances between consecutive locations and the average locations of each breed at each hour of the day in each season were calculated. The Lateral Foraging Index (LFI) was calculated as the ratio between the average distance per day travelled by the cows of each breed and the perimeter of the diurnal itinerary of that breed, which was calculated from its hourly average locations. The 2 breeds maintained similar diurnal patterns of foraging and resting, characterized by morning and afternoon foraging, and resting at midday and during the night. In summer this pattern was more distinctive, with longer resting periods and more intense foraging periods than in winter, when the noon rest was shorter and only partial. The diurnal routes differed (P < 0.001) between the breeds in all seasons, in their locations, their travelling time, or both. The BA cows were more active than the BS cows in all seasons: they travelled longer distances (P < 0.001) and foraged for more hours during the day (P < 0.001). For both breeds the LFI was numerically greater in winter and spring (February, and March) than in summer (June and September), and it was numerically greater for BA than for BS cows in most seasons.

  2. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives.

    PubMed

    Rasheed, Awais; Hao, Yuanfeng; Xia, Xianchun; Khan, Awais; Xu, Yunbi; Varshney, Rajeev K; He, Zhonghu

    2017-08-07

    There is a rapidly rising trend in the development and application of molecular marker assays for gene mapping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop molecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype-phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Genetic engineering and breeding of drought-resistant crops.

    PubMed

    Hu, Honghong; Xiong, Lizhong

    2014-01-01

    Drought is one of the most important environmental stresses affecting the productivity of most field crops. Elucidation of the complex mechanisms underlying drought resistance in crops will accelerate the development of new varieties with enhanced drought resistance. Here, we provide a brief review on the progress in genetic, genomic, and molecular studies of drought resistance in major crops. Drought resistance is regulated by numerous small-effect loci and hundreds of genes that control various morphological and physiological responses to drought. This review focuses on recent studies of genes that have been well characterized as affecting drought resistance and genes that have been successfully engineered in staple crops. We propose that one significant challenge will be to unravel the complex mechanisms of drought resistance in crops through more intensive and integrative studies in order to find key functional components or machineries that can be used as tools for engineering and breeding drought-resistant crops.

  4. Breeding oilseed crops for climate change

    USDA-ARS?s Scientific Manuscript database

    Oilseed crops are the basis for biological systems that produce edible oils, contribute to renewable energy production, help stabilize greenhouse gases, and mitigate the risk of climate change. Their response to climate change will be dictated by reactions to temperature, carbon dioxide, solar radia...

  5. Working less to gain more: when breeding quality relates to foraging efficiency.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Toniolo, Viola; Barton, Kerry J; Wilson, Peter R; Lyver, Philip O'B; Ainley, David G

    2010-07-01

    In animal populations, a minority of individuals consistently achieves the highest breeding success and therefore contributes the most recruits to future generations. On average, foraging performance is important in determining breeding success at the population level, but evidence is scarce to show that more successful breeders (better breeders) forage differently than less successful ones (poorer breeders). To test this hypothesis, we used a 10-year, three-colony, individual-based longitudinal data set on breeding success and foraging parameters of a long-lived bird, the Adélie Penguin, Pygoscelis adeliae. Better breeders foraged more efficiently than poorer breeders under harsh environmental conditions and when offspring needs were higher, therefore gaining higher net energy profit to be allocated to reproduction and survival. These results imply that adverse "extrinsic" conditions might select breeding individuals on the basis of their foraging ability. Adélie Penguins show sufficient phenotypic plasticity that at least a portion of the population is capable of surviving and successfully reproducing despite extreme variability in their physical and biological environment, variability that is likely to be associated with climate change and, ultimately, with the species' evolution. This study is the first to demonstrate the importance of "extrinsic" conditions (in terms of environmental conditions and offspring needs) on the relationship between foraging behavior and individual quality.

  6. King eider foraging effort during the pre-breeding period in Alaska

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.

    2011-01-01

    For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.

  7. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop.

    PubMed

    Ordonio, Reynante; Ito, Yusuke; Morinaka, Yoichi; Sazuka, Takashi; Matsuoka, Makoto

    2016-01-01

    Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.

  8. Wetland selection by breeding and foraging black terns in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Steen, Valerie A.; Powell, Abby N.

    2012-01-01

    We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias by replacing occurrence of terns in the models with an index of density. Local wetland variables were more important than landscape variables in predictions of occurrence of breeding and foraging. Wetland size was more important to prediction of foraging than of breeding locations, while floating matted vegetation was more important to prediction of breeding than of foraging locations. The amount of seasonal wetland in the landscape was the only landscape variable important to prediction of both foraging and breeding. Models based on a density index indicated that wetland selection by foraging terns may be more area dependent than that by breeding terns. Our study provides some of the first evidence for differential breeding and foraging wetland selection by Black Terns and for a more limited role of landscape effects and area sensitivity than has been previously shown.

  9. Mercury bioaccumulation and risk to three waterbird foraging guilds is influenced by foraging ecology and breeding stage

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; de la Cruz, S.E.W.; Takekawa, John Y.

    2009-01-01

    We evaluated mercury (Hg) in five waterbird species representing three foraging guilds in San Francisco Bay, CA. Fish-eating birds (Forster's and Caspian terns) had the highest Hg concentrations in thier tissues, but concentrations in an invertebrate-foraging shorebird (black-necked stilt) were also elevated. Foraging habitat was important for Hg exposure as illustrated by within-guild differences, where species more associated with marshes and salt ponds had higher concentrations than those more associated with open-bay and tidal mudflats. Importantly, Hg concentrations increased with time spent in the estuary. Surf scoter concentrations tripled over six months, whereas Forster's terns showed an up to 5-fold increase between estuary arrival and breeding. Breeding waterbirds were at elevated risk of Hg-induced reproductive impairment, particularly Forster's terns, in which 48% of breeding birds were at high risk due to their Hg??levels. Our results highlight the importance of habitat and exposure timing, in addition to trophic position, on waterbird Hg bioaccumulation and risk.

  10. Advanced phenotyping offers opportunities for improved breeding of forage and turf species

    PubMed Central

    Walter, Achim; Studer, Bruno; Kölliker, Roland

    2012-01-01

    Background and Aims Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining resources. Scope This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour, spectral reflection, chlorophyll-fluorescence, temperature and other properties, from which traits such as biomass, architecture, photosynthetic efficiency, stomatal aperture or stress resistance can be derived. Applications of these methods in the context of forage and turf breeding are discussed. Conclusions Progress in cutting-edge molecular breeding tools is beginning to be matched by progress in automated non-destructive imaging methods. Joint application of precise phenotyping machinery and molecular tools in optimized breeding schemes will improve forage and turf breeding in the near future and will thereby contribute to amended performance of managed grassland agroecosystems. PMID:22362662

  11. Shallow groundwater quality on dairy farms with irrigated forage crops

    NASA Astrophysics Data System (ADS)

    Harter, Thomas; Davis, Harley; Mathews, Marsha C.; Meyer, Roland D.

    2002-04-01

    California's dairies are the largest confined animal industry in the state. A major portion of these dairies, which have an average herd size of nearly 1000 animal units, are located in low-relief valleys and basins. Large amounts of liquid manure are generated and stored in these dairies. In the semi-arid climate, liquid manure is frequently applied via flood or furrow irrigation to forage crops that are grown almost year-round. Little is known about the impact of manure management practices on water quality of the extensive alluvial aquifers underlying these basins. The objective of this work is to assess nitrate and salt leaching to shallow groundwater in a relatively vulnerable hydrogeologic region and to quantify the impact from individual sources on dairies. The complex array of potential point and nonpoint sources was divided into three major source areas representing farm management units: (1) manure water lagoons (ponds); (2) feedlot or exercise yard, dry manure, and feed storage areas (corrals); and (3) manure irrigated forage fields (fields). An extensive shallow groundwater-monitoring network (44 wells) was installed in five representative dairy operations in the northeastern San Joaquin Valley, CA. Water quality (electrical conductivity, nitrate-nitrogen, total Kjehldahl nitrogen) was observed over a 4-year period. Nitrate-N, reduced nitrogen and electrical conductivity (EC, salinity) were subject to large spatial and temporal variability. The range of observed nitrate-N and salinity levels was similar on all five dairies. Average shallow groundwater nitrate-N concentrations within the dairies were 64 mg/l compared to 24 mg/l in shallow wells immediately upgradient of these dairies. Average EC levels were 1.9 mS/cm within the dairies and 0.8 mS/cm immediately upgradient. Within the dairies, nitrate-N levels did not significantly vary across dairy management units. However, EC levels were significantly higher in corral and pond areas (2.3 mS/cm) than in

  12. Genome-editing technologies and their potential application in horticultural crop breeding

    PubMed Central

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  13. Annual variation in foraging ecology of prothonotary warblers during the breeding season

    USGS Publications Warehouse

    Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.

    1990-01-01

    We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) along the Tennessee River in west-central Tennessee during the breeding seasons of 1984-1987. We analyzed seven foraging variables to determine if this population exhibited annual variation in foraging behavior. Based on nearly 3,000 foraging maneuvers, most variables showed significant interyear variation during the four prenestling and three nestling periods we studied. This interyear variation probably was due -to proximate, environmental cues--such as distribution and abundance of arthropods--which, in turn, were influenced by local weather conditions. Researchers should consider the consequences of combining foraging behavior data collected in different years, because resolution of ecological trends may be sacrificed by considering only general patterns of foraging ecology and not the dynamics of those activities. In addition, because of annual variability, foraging data collected in only one year, regardless of the number of observations gathered, may not provide an accurate concept of the foraging ecology in insectivorous birds.

  14. Breeding crops for improved mineral nutrition under climate change conditions.

    PubMed

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.

  15. Implications of Perennial Biomass Energy Cropping Systems for Pasture and Forage Lands

    USDA-ARS?s Scientific Manuscript database

    The lignocellulose in forage crops represents large source of biomass feedstock for conversion into energy-related end products. With new technologies and processes for biomass production and conversion approaching commercial reality forages could once again fuel agriculture. Some of the most extens...

  16. Foraging dives by post-breeding northern pintails

    USGS Publications Warehouse

    Miller, Michael R.

    1983-01-01

    Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.

  17. Proceedings of the 7th International Symposium on the Molecular Breeding of Forage and Turf

    USDA-ARS?s Scientific Manuscript database

    The 7th International Symposium on the Molecular Breeding of Forage and Turf, MBFT2012, was held in Salt Lake City, UT, USA, from 4-7 June 2012. One-hundred and fifteen researchers from around the world presented oral and poster formats relating to ten general topics: Genetic mechanisms and applic...

  18. Breeding technologies to increase crop production in a changing world.

    PubMed

    Tester, Mark; Langridge, Peter

    2010-02-12

    To feed the several billion people living on this planet, the production of high-quality food must increase with reduced inputs, but this accomplishment will be particularly challenging in the face of global environmental change. Plant breeders need to focus on traits with the greatest potential to increase yield. Hence, new technologies must be developed to accelerate breeding through improving genotyping and phenotyping methods and by increasing the available genetic diversity in breeding germplasm. The most gain will come from delivering these technologies in developing countries, but the technologies will have to be economically accessible and readily disseminated. Crop improvement through breeding brings immense value relative to investment and offers an effective approach to improving food security.

  19. 25 CFR 166.813 - How will the BIA determine the value of forage or crops consumed or destroyed?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How will the BIA determine the value of forage or crops... LAND AND WATER GRAZING PERMITS Trespass Penalties, Damages, and Costs § 166.813 How will the BIA determine the value of forage or crops consumed or destroyed? We will determine the value of forage or...

  20. Targeted modification of plant genomes for precision crop breeding.

    PubMed

    Hilscher, Julia; Bürstmayr, Hermann; Stoger, Eva

    2017-01-01

    The development of gene targeting and gene editing techniques based on programmable site-directed nucleases (SDNs) has increased the precision of genome modification and made the outcomes more predictable and controllable. These approaches have achieved rapid advances in plant biotechnology, particularly the development of improved crop varieties. Here, we review the range of alterations which have already been implemented in plant genomes, and summarize the reported efficiencies of precise genome modification. Many crop varieties are being developed using SDN technologies and although their regulatory status in the USA is clear there is still a decision pending in the EU. DNA-free genome editing strategies are briefly discussed because they also present a unique regulatory challenge. The potential applications of genome editing in plant breeding and crop improvement are highlighted by drawing examples from the recent literature.

  1. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    PubMed Central

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-01-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km); (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area. PMID:27725734

  2. Multidimensional differentiation in foraging resource use during breeding of two sympatric top predators

    NASA Astrophysics Data System (ADS)

    Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido

    2016-10-01

    Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.

  3. Clark’s Nutcracker Breeding Season Space Use and Foraging Behavior

    PubMed Central

    Schaming, Taza D.

    2016-01-01

    Considering the entire life history of a species is fundamental to developing effective conservation strategies. Decreasing populations of five-needle white pines may be leading to the decline of Clark’s nutcrackers (Nucifraga columbiana). These birds are important seed dispersers for at least ten conifer species in the western U.S., including whitebark pine (Pinus albicaulis), an obligate mutualist of Clark’s nutcrackers. For effective conservation of both Clark’s nutcrackers and whitebark pine, it is essential to ensure stability of Clark’s nutcracker populations. My objectives were to examine Clark’s nutcracker breeding season home range size, territoriality, habitat selection, and foraging behavior in the southern Greater Yellowstone Ecosystem, a region where whitebark pine is declining. I radio-tracked Clark’s nutcrackers in 2011, a population-wide nonbreeding year following a low whitebark pine cone crop, and 2012, a breeding year following a high cone crop. Results suggest Douglas-fir (Pseudotsuga menziesii) communities are important habitat for Clark’s nutcrackers because they selected it for home ranges. In contrast, they did not select whitebark pine habitat. However, Clark’s nutcrackers did adjust their use of whitebark pine habitat between years, suggesting that, in some springs, whitebark pine habitat may be used more than previously expected. Newly extracted Douglas-fir seeds were an important food source both years. On the other hand, cached seeds made up a relatively lower proportion of the diet in 2011, suggesting cached seeds are not a reliable spring food source. Land managers focus on restoring whitebark pine habitat with the assumption that Clark’s nutcrackers will be available to continue seed dispersal. In the Greater Yellowstone Ecosystem, Clark’s nutcracker populations may be more likely to be retained year-round when whitebark pine restoration efforts are located adjacent to Douglas-fir habitat. By extrapolation

  4. Cooperative breeding and maternal energy expenditure among Aka foragers.

    PubMed

    Meehan, Courtney L; Quinlan, Robert; Malcom, Courtney D

    2013-01-01

    Previous research among foragers and theory suggests that nonmaternal caregivers offer essential assistance, which supports female reproduction and the costs associated with lengthy child development. Mothers' face trade-offs in energy allocation between work and childcare, particularly when mothers have an infant. These trade-offs likely have crucial impacts on the pace of reproduction and child health. Caregivers can help mothers with childcare or they can reduce a mother's nonchildcare workload. If caregivers assist mothers by substituting childcare, then maternal energy expenditure (EE) in other work activities should increase. If caregivers assist mothers by substituting labor, then maternal EE in work activities should decrease when caregivers are present. Utilizing detailed, quantitative behavioral observations and EE data, we test these propositions with data from 28 Aka forager mothers with children <35 months old. We isolate paternal, grandmaternal, and other caregiver effects on maternal EE and childcare in multivariate analyses. Our results show that caregivers (largely grandmothers) significantly reduce mothers' work EE by as much 216 kcal across a 9-hour observation period, while fathers and juveniles appear to increase maternal EE. Direct childcare from grandmothers decreases maternal direct care by about one-to-one indicating a labor substitution. Direct childcare from fathers decreases maternal care by almost 4 to 1, resulting in a net reduction of total direct care from all caregivers. Our results indicate that there are multiple pathways by which helpers offset maternal work/childcare trade-offs. Copyright © 2012 Wiley Periodicals, Inc.

  5. Alfalfa forage and seed crop tolerance to flumioxazin

    USDA-ARS?s Scientific Manuscript database

    Weed control is an important component of producing high quality and high yielding alfalfa seed and forage. Flumioxazin was evaluated for weed control in alfalfa forage and seed production in 2007 and 2008 in Washington State. Flumioxazin applied at 0.14 and 0.28 kg ai/ha plus paraquat in February t...

  6. Breeding chronology and social interactions affect ungulate foraging behavior at a concentrated food resource.

    PubMed

    Stone, David B; Cherry, Michael J; Martin, James A; Cohen, Bradley S; Miller, Karl V

    2017-01-01

    Prey species must balance predator avoidance behavior with other essential activities including foraging, breeding, and social interactions. Anti-predator behaviors such as vigilance can impede resource acquisition rates by altering foraging behavior. However, in addition to predation risk, foraging behavior may also be affected by socio-sexual factors including breeding chronology and social interactions. Therefore, we investigated how time-of-day, distance-to-forest, group size, social interactions (presence of different sex-age class), and breeding chronology (pre-breeding, breeding, post-breeding seasons) affected probability of feeding (hereafter: feeding) for different sex and age-classes (mature males, immature males, adult females, and juveniles) of white-tailed deer at feed sites. We developed a set of candidate models consisting of social, habitat, reproductive, and abiotic factors and combinations of these factors. We then used generalized linear mixed models (GLMMs) to estimate the probability of feeding and used model averaging of competing models for multimodel inference. Each adult sex-age class' feeding was influenced by breeding chronology. Juveniles were more likely to be feeding than adults in all seasons. Feeding increased with group size for all sex-age classes. The presence of a mature male negatively influenced the feeding of immature males and juveniles were more likely to be feeding when an adult female was present. Feeding decreased with increasing distance-to-forest for mature males but not for other sex-age classes. Our results indicate that each sex-age class modulates vigilance levels in response to socio-sexual factors according to the unique pressures placed upon them by their reproductive status and social rank.

  7. Row and forage crop rotation effects on maize mineral nutrition and yield

    USDA-ARS?s Scientific Manuscript database

    Extended crop rotations provide many attributes in support of sustainable agriculture. Objectives were to investigate rotations that included row crops and forages in terms of their effects on soil characteristics as well as on maize (Zea mays L.) stover biomass, grain yield, and mineral components...

  8. Are we ready for back-to-nature crop breeding?

    PubMed

    Palmgren, Michael G; Edenbrandt, Anna Kristina; Vedel, Suzanne Elizabeth; Andersen, Martin Marchman; Landes, Xavier; Østerberg, Jeppe Thulin; Falhof, Janus; Olsen, Lene Irene; Christensen, Søren Brøgger; Sandøe, Peter; Gamborg, Christian; Kappel, Klemens; Thorsen, Bo Jellesmark; Pagh, Peter

    2015-03-01

    Sustainable agriculture in response to increasing demands for food depends on development of high-yielding crops with high nutritional value that require minimal intervention during growth. To date, the focus has been on changing plants by introducing genes that impart new properties, which the plants and their ancestors never possessed. By contrast, we suggest another potentially beneficial and perhaps less controversial strategy that modern plant biotechnology may adopt. This approach, which broadens earlier approaches to reverse breeding, aims to furnish crops with lost properties that their ancestors once possessed in order to tolerate adverse environmental conditions. What molecular techniques are available for implementing such rewilding? Are the strategies legally, socially, economically, and ethically feasible? These are the questions addressed in this review.

  9. Foraging and nesting habitat of breeding male northern goshawks in the laurentian mixed forest province, Minnesota

    USGS Publications Warehouse

    Boal, C.W.; Andersen, D.E.; Kennedy, P.L.

    2005-01-01

    We used radiotelemetry to examine foraging habitat preferences of 17 breeding, male northern goshawks (Accipiter gentilis) in Minnesota from 1998-2000. We assessed habitat preference using radio relocation points and 50-m radius buffers of radio relocation points. Our data suggested that foraging male goshawks used early-successional upland conifer stands (???25 yrs old), early-successional upland deciduous stands (???50 yrs old), late-successional upland conifer stands (???50 yrs old), and late-successional upland deciduous stands (???50 yrs old) more frequently than expected based on the abundance of these vegetation types in the landscape. The 2 most available stand types, early-successional upland deciduous (<25 yrs old) and all ages of late-successional lowland conifer stands, were used less than expected by foraging goshawks. Late-successional lowland deciduous stands (???50 yrs old) were used in proportion to availability. Although analysis of relocation points suggested early-successional upland deciduous stands (25-49 yrs old) and late-successional upland conifer stands (???50 yrs old) were used in proportion to availability, analysis of buffers around relocation points indicated that these stand types were also used more than expected by foraging goshawks. Regardless of vegetation community type, stands used by goshawks were structurally similar with high canopy and understory stem densities, high canopy closure, substantial shrub cover, and large amounts of woody debris. Nest stands consisted of taller and larger diameter canopy trees and fewer understory trees than foraging stands, but stands were otherwise similar in structural features, suggesting goshawks used similar stands for nesting and foraging but that they tended to select the most mature stands for nesting. A commonality among nesting and foraging stands was the presence of open spaces between the canopy and understory foliage, and between understory and shrub layer foliage. In our study area

  10. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    USDA-ARS?s Scientific Manuscript database

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and...

  11. Relationship between reversed sexual dimorphism, breeding investment and foraging ecology in a pelagic seabird, the masked booby.

    PubMed

    Weimerskirch, Henri; Le Corre, Matthieu; Gadenne, Hélène; Pinaud, David; Kato, Akiko; Ropert-Coudert, Yan; Bost, Charles-André

    2009-09-01

    Reversed sexual dimorphism (RSD) may be related to different roles in breeding investment and/or foraging, but little information is available on foraging ecology. We studied the foraging behaviour and parental investment by male and female masked boobies, a species with RSD, by combining studies of foraging ecology using miniaturised activity and GPS data loggers of nest attendance, with an experimental study where flight costs were increased. Males attended the chick more often than females, but females provided more food to the chick than males. Males and females foraged during similar periods of the day, had similar prey types and sizes, diving depths, durations of foraging trips, foraging zones and ranges. Females spent a smaller proportion of the foraging trip sitting on the water and had higher diving rate than males, suggesting higher foraging effort by females. In females, trip duration correlated with mass at departure, suggesting a flexible investment through control by body mass. The experimental study showed that handicapped females and female partners of handicapped males lost mass compared to control birds, whereas there was no difference for males. These results indicate that the larger female is the main provisioner of the chick in the pair, and regulates breeding effort in relation to its own body mass, whereas males have a fixed investment. The different breeding investment between the sexes is associated with contrasting foraging strategies, but no clear niche differentiation was observed. The larger size of the females may be advantageous for provisioning the chick with large quantities of energy and for flexible breeding effort, while the smaller male invests in territory defence and nest guarding, a crucial task when breeding at high densities. In masked boobies, division of labour appears to be maximal during chick rearin-g-the most energy-demanding period--and may be related to evolution of RSD.

  12. Reconsidering Tree Fruit as Candidate Crops Through the Use of Rapid Cycle Crop Breeding Technologies

    NASA Technical Reports Server (NTRS)

    Graham, Gary Thomas

    2014-01-01

    Tree fruit, although desirable from a crew nutrition and menu diversity perspective, have long been dismissed as candidate crops based on their long juvenile phase, large architecture, low short-term harvest index, and dormancy requirements. Recent developments in Rapid Cycle Crop Breeding (RCCB) have overcome these historical limitations, opening the door to a new era in candidate crop research. Researchers at the United States Department of Agriculture (USDA) have developed FT-construct (Flowering Locus T) dwarf plum lines that have a very short juvenile phase, vine-like architecture, and no obligate dormancy period. In a collaborative research effort, NASA and the USDA are evaluating the performance of these FT-lines under controlled environment conditions relevant to spaceflight.

  13. Whole wheat versus mixed layer diet as supplementary feed to layers foraging a sequence of different forage crops.

    PubMed

    Horsted, K; Hermansen, J E

    2007-05-01

    In many cases health and welfare problems are observed in organic egg production systems, as are high environmental risks related to nutrient leaching. These disadvantages might be reduced if the layers are allowed to utilise their ability to forage to a higher degree thereby reducing the import of nutrients into the system and stimulating the hens to perform a natural behaviour. However, very little is known about the ability of modern high-producing layers to take advantage of foraging to cover their nutritional needs, and the aim of the present work was to clarify this subject. Six flocks, each of 26 hens and one cock, were moved regularly in a rotation between different forage crops for a period of 130 days. Half of the flocks were fed typical layer feed for organic layers and half were fed whole wheat. The forage crops consisted of grass/clover, pea/vetch/oats, lupin and quinoa. At the beginning of the experiment, wheat-fed hens had a lower intake of supplementary feed (wheat) and a lower laying rate, egg weight and body weight. However, after a period of 6 to 7 weeks, the intake of wheat increased to approximately 100 g per hen per day and the laying rate increased to the same level as for the hens fed layer feed. For both groups of hens egg weight and body weight increased during the remaining part of the experiment. Crop analysis revealed different food preferences for hens fed layer feed and wheat-fed hens. Wheat-fed hens ate less of the cultivated seeds, whereas the amounts of plant material, oyster shells, insoluble grit stone and soil were larger in the crops from wheat-fed hens. Floor eggs were significantly more frequent in the hens fed layer feed, whereas wheat-fed hens only rarely laid floor eggs. Irrespective of treatment, hens were found to have excellent health and welfare. We conclude that nutrient-restricted, high-producing organic layers are capable of finding and utilising considerable amounts of different feed items from a cultivated

  14. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Basic Provisions, the contract change date is November 30 preceding the cancellation date for counties...) these Crop Provisions; and (4) the Basic Provisions with (1) controlling (2), etc. 1. Definitions Crop.... Planted acreage. In addition to the provisions in section 1 of the Basic Provisions, land on which seed is...

  15. Benefits of annual and perennial forages in row crop rotations

    USDA-ARS?s Scientific Manuscript database

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as corn and soybean stover dry weight, stover mineral concentrations, seed ...

  16. Assessment of reclaimed water irrigation on growth, yield, and water-use efficiency of forage crops

    NASA Astrophysics Data System (ADS)

    Alkhamisi, S. A.; Abdelrahman, H. A.; Ahmed, M.; Goosen, M. F. A.

    2011-09-01

    Field experiments were conducted to determine the effect of water quality (reclaimed and fresh water), water quantity, and their interactions on the growth, yield, and water use efficiency of forage maize during two winter seasons in the Arabian Gulf. The plants irrigated with the reclaimed water had higher plant height than those irrigated with the fresh water. The leaf length and leaf area (cm2) did not show any significant differences among the interaction. Reclaimed water had shorter time for 50% male and female flowering of forage maize plants, indicating earlier maturity. Plants irrigated with reclaimed water had higher chlorophyll content for all levels of water applications. A significant difference in green forage yield was found among the interactions. Reclaimed water gave the highest green forage yield of 72.12 and 59.40 t/ha at 1.4ETo and 1.0ETo, respectively. Plants irrigated with the reclaimed water used water more efficiently [3.65 kg/m3 of DM (dry matter)] than those irrigated with the fresh water [2.91 kg/m3 of DM (dry matter)] for all water quantities. The enhanced growth in wastewater-irrigated crops, compared with fresh water-irrigated crops, was attributed primarily to higher nutrient content (e.g., nitrogen) and lower salinity of the reclaimed water. The study concluded that treated wastewater irrigation increased yields of forage crops and their water use efficiency. Cost-benefit analysis, studies on the use these forage crops as animal feed, and more in depth evaluation of possible crop and soil contamination were recommended.

  17. Foraging time and dietary intake by breeding ross's and lesser snow geese

    USGS Publications Warehouse

    Gloutney, M.L.; Alisauskas, R.T.; Afton, A.D.; Slattery, S.M.

    2001-01-01

    We compared foraging times of female Ross's (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) breeding at Karrak Lake, NT, Canada and examined variation due to time of day and reproductive stage. We subsequently collected female geese that had foraged for known duration and we estimated mass of foods consumed during foraging bouts. Female Ross's Geese spent more time foraging (mean % ?? SE = 28.4 ?? 1.3%; P = 0.0002), on average, than did female Lesser Snow Geese (21.5 ?? 1.4%). Foraging time by female geese differed among reproductive stages, but differences were not consistent among time periods (stage-by-time block interaction, P=0.0003). Females spent considerably more time foraging during prelaying and laying than during incubation. Ross's Geese also spent a greater percent of time feeding (83.0??2.8%) during incubation recesses than did Lesser Snow Geese (60.9??3.6%). Consumption of organic matter during foraging bouts was minimal; estimated consumption averaged 9.6??4.0 and 12.4??4.6 g (mean ?? SE) dry mass/day before incubation and 5.9??2.0 and 5.7??2.1 g dry mass/day during incubation for Lesser Snow and Ross's Geese, respectively. Diets consisted primarily of mosses (bryophytes), Chickweed (Stellaria spp.) and Sedges (Carex spp.). Before incubation, eggshell consumption was estimated as 4.3??3.2 and 0.4??0.3 g dry mass/day for Lesser Snow and Ross's Geese, respectively; neither species consumed eggshell during incubation. We conclude that eggshell from nests of previous years is likely an important source of dietary calcium used to meet mineral demands of eggshell formation at Karrak Lake. Our findings of wide disparities between foraging time and food intake indicate that results from studies that do not directly measure intake rates remain equivocal. Finally, we propose four hypotheses accounting for foraging effort that evidently yields little nutritional or energetic benefit to geese nesting at Karrak Lake.

  18. Foraging time and dietary intake by breeding Ross's and Lesser Snow Geese.

    PubMed

    Gloutney, Mark L; Alisauskas, Ray T; Afton, Alan D; Slattery, Stuart M

    2001-03-01

    We compared foraging times of female Ross's (Chen rossii) and Lesser Snow Geese (Chen caerulescens caerulescens) breeding at Karrak Lake, NT, Canada and examined variation due to time of day and reproductive stage. We subsequently collected female geese that had foraged for known duration and we estimated mass of foods consumed during foraging bouts. Female Ross's Geese spent more time foraging (mean % ± SE =28.4±1.3%; P=0.0002), on average, than did female Lesser Snow Geese (21.5 ± 1.4%). Foraging time by female geese differed among reproductive stages, but differences were not consistent among time periods (stage-by-time block interaction, P=0.0003). Females spent considerably more time foraging during prelaying and laying than during incubation. Ross's Geese also spent a greater percent of time feeding (83.0±2.8%) during incubation recesses than did Lesser Snow Geese (60.9±3.6%). Consumption of organic matter during foraging bouts was minimal; estimated consumption averaged 9.6±4.0 and 12.4±4.6 g (mean ± SE) dry mass/day before incubation and 5.9±2.0 and 5.7±2.1 g dry mass/day during incubation for Lesser Snow and Ross's Geese, respectively. Diets consisted primarily of mosses (bryophytes), Chickweed (Stellaria spp.) and Sedges (Carex spp.). Before incubation, eggshell consumption was estimated as 4.3±3.2 and 0.4±0.3 g dry mass/day for Lesser Snow and Ross's Geese, respectively; neither species consumed eggshell during incubation. We conclude that eggshell from nests of previous years is likely an important source of dietary calcium used to meet mineral demands of eggshell formation at Karrak Lake. Our findings of wide disparities between foraging time and food intake indicate that results from studies that do not directly measure intake rates remain equivocal. Finally, we propose four hypotheses accounting for foraging effort that evidently yields little nutritional or energetic benefit to geese nesting at Karrak Lake.

  19. Terrestrial and Marine Foraging Strategies of an Opportunistic Seabird Species Breeding in the Wadden Sea.

    PubMed

    Garthe, Stefan; Schwemmer, Philipp; Paiva, Vitor H; Corman, Anna-Marie; Fock, Heino O; Voigt, Christian C; Adler, Sven

    2016-01-01

    Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5-26.4 h (mean 8.7 h), and ranges varied from 3.0-79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.

  20. Sustainable sorghum cropping systems for flexible forage/bio-energy use under limited irrigation

    USDA-ARS?s Scientific Manuscript database

    Sorghum, (Sorghum bicolor L.), a versatile and nutritious cereal grain crop is equally useful as forage and feedstock for livestock and bioenergy applications, respectively. Further, sorghum is highly suitable for the Ogallala Aquifer (OA) region because of its inherent water saving properties and ...

  1. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    USDA-ARS?s Scientific Manuscript database

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  2. The mechanism for weed suppression by a forage radish cover crop

    USDA-ARS?s Scientific Manuscript database

    In the Mid-Atlantic region, forage radish (Raphanus sativus L. var. longipinnatus) winter cover crops planted prior to 1 September suppress winter annual weeds from fall until early April. Little is known about the mechanism of this weed suppression. Published research reports suggest that allelopat...

  3. Age, sex, and breeding status shape a complex foraging pattern in an extremely long-lived seabird.

    PubMed

    Jaeger, Audrey; Goutte, Aurélie; Lecomte, Vincent J; Richard, Pierre; Chastel, Olivier; Barbraud, Christophe; Weimerskirch, Henri

    2014-08-01

    Evidence of age-dependent changes in foraging behavior of free-ranging individuals is scarce, especially at older stages. Using the isotopic niche as a proxy of the trophic niche during both the breeding (blood) and inter-nesting (feather) periods, we report here empirical evidence for age-, gender-, and breeding status-dependent foraging ecology and examine its potential consequences on subsequent reproduction and survival in an extremely long-lived species, the Wandering Albatross (Diomedea exulans). Immature Wandering Albatrosses of both sexes forage in the subtropics (delta13C) and feed at the same trophic position (delta15N) as the adults. In contrast to immature birds, adult females forage, on average, at more northern latitudes than males, with both sexes feeding in the subtropics during the internesting period, and males, not females, favoring subantarctic waters during incubation. In contrast to adult females, males show a unique pattern among birds and mammals of a continuous change with age in their main feeding habitat by foraging progressively farther south in colder waters during both the breeding and inter-nesting periods. In males, foraging at higher latitudes (lower feather delta13C values) is associated with a lower probability of breeding during the following years compared to other birds, but with no effect on their probability of surviving. Foraging in cold and windy waters may be linked to foraging impairment that might explain different life history trade-offs and lower investment in reproduction with age. This key point requires further longitudinal investigations and/or studies examining foraging success and the energy budget of birds feeding in different water masses.

  4. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) of the Basic Provisions (§ 457.8), the contract change date is June 30 preceding the cancellation... Special Provisions; (3) these Crop Provisions; and (4) the Basic Provisions with (1) controlling (2), etc... for Determining Indemnities) of the Basic Provisions (§ 457.8): (a) You may only select one price...

  5. Daily foraging patterns of adult Double-crested Cormorants during the breeding season

    USGS Publications Warehouse

    Coleman, J.T.H.; Richmond, M.E.

    2007-01-01

    We recorded the daily presence of Double-crested Cormorants (Phalacrocorax auritus) at the nesting island on Oneida Lake, New York, by monitoring the activities of 15 radio-tagged adults from July through September, 2000, using an automated data-logging receiver. A total of 24,464 acceptable detections was obtained for adult cormorants actively attempting to nest on the lake. Tagged cormorants had a bimodal dally activity pattern during the first month, with the fewest birds detected on the island at 09.00 h and 15.00 h Eastern daylight time. The pattern of activity appeared to change slightly in the second month of the study, representative of a post-breeding period for the colony, with a shift from a less synchronous pattern of departures to a greater focus on morning activity also centered around 09.30 h. These results correspond with daily observations of Great Cormorant (P. carbo) foraging activities reported for colonies in Africa and Poland. The data also support the possibility of nocturnal foraging activity, not previously reported for this species on their summer breeding grounds. No correlation was found between total number of daily detections and climatalogical factors or events.

  6. Grand challenges for crop science

    USDA-ARS?s Scientific Manuscript database

    Crop science is a highly integrative science using the disciplines of conventional plant breeding, transgenic crop improvement, plant physiology, and cropping system sciences to develop improved varieties of agronomic, turf, and forage crops to produce feed, food, fuel, and fiber for our world's gro...

  7. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    PubMed Central

    Ghatak, Arindam; Chaturvedi, Palak; Weckwerth, Wolfram

    2017-01-01

    Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet. PMID:28626463

  8. Assessing Honey Bee (Hymenoptera: Apidae) Foraging Populations and the Potential Impact of Pesticides on Eight U.S. Crops

    PubMed Central

    Frazier, Maryann T.; Mullin, Chris A.; Frazier, Jim L.; Ashcraft, Sara A.; Leslie, Tim W.; Mussen, Eric C.; Drummond, Frank A.

    2015-01-01

    Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009–2010, we assessed changes in the field force populations of 9–10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. PMID:26453703

  9. Assessing Honey Bee (Hymenoptera: Apidae) Foraging Populations and the Potential Impact of Pesticides on Eight U.S. Crops.

    PubMed

    Frazier, Maryann T; Mullin, Chris A; Frazier, Jim L; Ashcraft, Sara A; Leslie, Tim W; Mussen, Eric C; Drummond, Frank A

    2015-10-01

    Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009-2010, we assessed changes in the field force populations of 9-10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  10. Forage and breed effects on behavior and temperament of pregnant beef heifers

    PubMed Central

    2013-01-01

    Background Integration of behavioral observations with traditional selection schemes may lead to enhanced animal well-being and more profitable forage-based cattle production systems. Brahman-influenced (BR; n = 64) and Gelbvieh × Angus (GA; n = 64) heifers consumed either toxic endophyte-infected tall fescue (E+) or one of two nontoxic endophyte-infected tall fescue (NT) cultivars during two yr. Heifers were weighed at midpoint and termination of grazing. Grazing behavior (grazing, resting in the shade, lying, or standing without grazing) was recorded (n = 13 visual observations per yr in June and July) for each pasture. During yr 2, exit velocity (EV) and serum prolactin (PRL) were determined. Results Grazing behavior was influenced (P < 0.05) by an interaction between fescue cultivar and breed type. Gelbvieh × Angus heifers assigned to E+ pastures had the lowest percentage of animals grazing and the largest percentage of animals resting in the shade. Brahman-influenced heifers had faster EV (P < 0.001) than GA heifers (0.52 vs. 0.74 ± 0.04 s/m, respectively). Body weight (BW) was affected (P < 0.01) by an interaction of tall fescue cultivar and d, and an interaction of tall fescue cultivar and breed type. Heifers grazing NT pastures were heavier (P < 0.01) than heifers grazing E+ pastures at midpoint and termination. Gelbvieh × Angus heifers grazing NT pastures were heavier (P < 0.01) than GA and BR heifers grazing E+ and BR heifers grazing NT pastures. An interaction of forage cultivar and breed type occurred on serum PRL (P < 0.01). Conclusion Collectively fescue cultivar, EV, and concentrations of serum PRL were associated with grazing behavior. Heifers grazing NT pastures were observed to be grazing more than heifers assigned to E+ pastures, regardless of breed type, which may have contributed to changes in BW and average daily gain (ADG) in heifers. Integration of behavioral observations along with

  11. Breeding success of a marine central place forager in the context of climate change: A modeling approach.

    PubMed

    Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick

    2017-01-01

    In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups' growth and survival while female body length should increase.

  12. Breeding success of a marine central place forager in the context of climate change: A modeling approach

    PubMed Central

    Massardier-Galatà, Lauriane; Morinay, Jennifer; Bailleul, Frédéric; Wajnberg, Eric; Guinet, Christophe; Coquillard, Patrick

    2017-01-01

    In response to climate warming, a southward shift in productive frontal systems serving as the main foraging sites for many top predator species is likely to occur in Subantarctic areas. Central place foragers, such as seabirds and pinnipeds, are thus likely to cope with an increase in the distance between foraging locations and their land-based breeding colonies. Understanding how central place foragers should modify their foraging behavior in response to changes in prey accessibility appears crucial. A spatially explicit individual-based simulation model (Marine Central Place Forager Simulator (MarCPFS)), including bio-energetic components, was built to evaluate effects of possible changes in prey resources accessibility on individual performances and breeding success. The study was calibrated on a particular example: the Antarctic fur seal (Arctocephalus gazella), which alternates between oceanic areas in which females feed and the land-based colony in which they suckle their young over a 120 days rearing period. Our model shows the importance of the distance covered to feed and prey aggregation which appeared to be key factors to which animals are highly sensitive. Memorization and learning abilities also appear to be essential breeding success traits. Females were found to be most successful for intermediate levels of prey aggregation and short distance to the resource, resulting in optimal female body length. Increased distance to resources due to climate warming should hinder pups’ growth and survival while female body length should increase. PMID:28355282

  13. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding

    PubMed Central

    Varshney, Rajeev K.; Terauchi, Ryohei; McCouch, Susan R.

    2014-01-01

    Next generation sequencing (NGS) technologies are being used to generate whole genome sequences for a wide range of crop species. When combined with precise phenotyping methods, these technologies provide a powerful and rapid tool for identifying the genetic basis of agriculturally important traits and for predicting the breeding value of individuals in a plant breeding population. Here we summarize current trends and future prospects for utilizing NGS-based technologies to develop crops with improved trait performance and increase the efficiency of modern plant breeding. It is our hope that the application of NGS technologies to plant breeding will help us to meet the challenge of feeding a growing world population. PMID:24914810

  14. Terrestrial and Marine Foraging Strategies of an Opportunistic Seabird Species Breeding in the Wadden Sea

    PubMed Central

    Schwemmer, Philipp; Paiva, Vitor H.; Corman, Anna-Marie; Fock, Heino O.; Voigt, Christian C.; Adler, Sven

    2016-01-01

    Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10–19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5–26.4 h (mean 8.7 h), and ranges varied from 3.0–79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5–333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period. PMID:27525661

  15. The price of associating with breeders in the cooperatively breeding chestnut-crowned babbler: foraging constraints, survival and sociality.

    PubMed

    Sorato, Enrico; Griffith, Simon C; Russell, Andy F

    2016-09-01

    Understanding the costs of living with breeders might offer new insights into the factors that counter evolutionary transitions from selfish individuals to cooperative societies. While selection on early dispersal is well understood, it is less clear whether costs are also associated with remaining with family members during subsequent breeding, a prerequisite to the evolution of kin-based cooperation. We propose and test the hypothesis that living in groups containing breeders is costly and that such costs are exacerbated by increasing group size. For example, in group-living central-place foragers, group members might suffer from resource depletion when foraging in a restricted area during breeding and significant costs of repeatedly travelling between foraging patches and the site of offspring. Using the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps), for which grouping during breeding is obligatory, we show that reproduction is associated with substantially reduced foraging areas and evidence of resource depletion, particularly in larger groups. Such effects largely persisted from the onset of incubation through to offspring independence 4-5 months later. All group members, irrespective of their breeder or helper status, lost significant body mass over this period, and, in males, mass loss was associated with reduced interannual survival. Although babblers are constrained from living outside of breeding groups due to high risks of predation and the poor success of breeding without helpers, we suggest that the effects we describe may generally select against group living during breeding attempts in species where constraints to independent breeding and costs of dispersal are less acute.

  16. THE ROLE OF CROP/POLLINATOR RELATIONSHIP IN BREEDING FOR POLLINATOR FRIENDLY LEGUME VARIETIES:FROM A BREEDING PERSPECTIVE

    USDA-ARS?s Scientific Manuscript database

    Breeders are encouraged to develop breeding approaches that strive to integrate food production into the healthy functioning of agro-ecosystems. In the case of legumes, this approach should preserve bee fauna by providing suitable floral resources within the crops themselves. In parallel, legume b...

  17. Modelling terrestrial and marine foraging habitats in breeding Audouin's gulls Larus audouinii: timing matters.

    PubMed

    Bécares, Juan; García-Tarrasón, Manuel; Villero, Dani; Bateman, Santiago; Jover, Lluís; García-Matarranz, Víctor; Sanpera, Carolina; Arcos, José Manuel

    2015-01-01

    Although the breeding ecology of Audouin's gull has been widely studied, its spatial distribution patterns have received little attention. We assessed the foraging movements of 36 GPS-tracked adult Audouin's gulls breeding at the Ebro Delta (NW Mediterranean), coinciding with the incubation period (May 2011). This also coincided with a trawling moratorium northwards from the colony. We modelled the distribution of the gulls by combining these tracking data with environmental variables (including fishing activities from Vessel Monitoring System, VMS), using Maxent. The modelling range included both marine and terrestrial areas. Models were produced separately for every 2h time interval across the day, and for 2 fishing activity scenarios (workdays vs. weekends), allowing to assess the spatio-temporal distribution patterns of the gulls and the degree of association with fisheries. During workdays, gull distribution at sea fully matched with fishing activities, both trawling (daylight) and purse-seining (nightime). Gulls tended to avoid the area under trawling moratorium, confirming the high influence of fisheries on the distribution patterns of this species. On weekends, gulls made lesser use of the sea and tended to increase the use of rice fields. Overall, Audouin's gull activity was more intense during dailight hours, although birds also showed nocturnal activity, on both workdays and weekends. Nocturnal patterns at sea were more disperse during the latter, probably because these gulls are able to capture small pelagic fish at night in natural conditions, but tend to congregate around purse-seiners (which would enhance their foraging efficiency) in workdays. These results provide important insight for the management of this species. This is of particular relevance under the current scenario of European fisheries policies, since new regulations are aimed at eliminating discards, and this would likely influence Audouin's gull populations.

  18. Modelling Terrestrial and Marine Foraging Habitats in Breeding Audouin's Gulls Larus audouinii: Timing Matters

    PubMed Central

    Bécares, Juan; García-Tarrasón, Manuel; Villero, Dani; Bateman, Santiago; Jover, Lluís; García-Matarranz, Víctor; Sanpera, Carolina; Arcos, José Manuel

    2015-01-01

    Although the breeding ecology of Audouin’s gull has been widely studied, its spatial distribution patterns have received little attention. We assessed the foraging movements of 36 GPS-tracked adult Audouin’s gulls breeding at the Ebro Delta (NW Mediterranean), coinciding with the incubation period (May 2011). This also coincided with a trawling moratorium northwards from the colony. We modelled the distribution of the gulls by combining these tracking data with environmental variables (including fishing activities from Vessel Monitoring System, VMS), using Maxent. The modelling range included both marine and terrestrial areas. Models were produced separately for every 2h time interval across the day, and for 2 fishing activity scenarios (workdays vs. weekends), allowing to assess the spatio-temporal distribution patterns of the gulls and the degree of association with fisheries. During workdays, gull distribution at sea fully matched with fishing activities, both trawling (daylight) and purse-seining (nightime). Gulls tended to avoid the area under trawling moratorium, confirming the high influence of fisheries on the distribution patterns of this species. On weekends, gulls made lesser use of the sea and tended to increase the use of rice fields. Overall, Audouin’s gull activity was more intense during dailight hours, although birds also showed nocturnal activity, on both workdays and weekends. Nocturnal patterns at sea were more disperse during the latter, probably because these gulls are able to capture small pelagic fish at night in natural conditions, but tend to congregate around purse-seiners (which would enhance their foraging efficiency) in workdays. These results provide important insight for the management of this species. This is of particular relevance under the current scenario of European fisheries policies, since new regulations are aimed at eliminating discards, and this would likely influence Audouin’s gull populations. PMID:25875597

  19. `Akohekohe response to flower availability: seasonal abundance, foraging, breeding, and molt

    USGS Publications Warehouse

    Berlin, Kim E.; Simon, John C.; Pratt, T.K.; Kowalsky, James R.; Hatfield, J.S.; Scott, J.M.; Conant, S.; van Riper, C.=

    2001-01-01

    We studied the relationship of flower availability to the seasonality of life history events of the `Akohekohe (Palmeria dolei), a primarily nectarivorous and endangered Hawaiian honeycreeper from montane rain forests on Maui, Hawai`i. For comparison, we also investigated temporal bird density and foraging behavior of three other competing Hawaiian honeycreepers: `Apapane (Himatione sanguinea), `I`iwi (Vestiaria coccinea), and Hawai`i `Amakihi (Hemignathus virens). All species except `Amakihi fed primarily on nectar of `Ohi?a-lehua (Metrosideros polymorpha), which produced flowers year-round but had an annual flowering peak in January. Flowers of several subcanopy shrubs and trees were important components of the diet for all nectarivores, and these were available seasonally depending upon the species. `Akohekohe densities did not change temporally, suggesting a relatively stable population residing above 1,700 m. Monthly densities of `Apapane, `I`iwi, and Hawai`i `Amakihi were positively correlated with monthly `Ohi?a-lehua flower abundance, and 50-80% of these populations departed temporarily from our high-elevation site in July. There was a positive correlation with the timing of Akohekohe breeding and high abundance of `Ohi?a-lehua bloom. Molt followed breeding. From a conservation perspective, these results show that `Akohekohe maintain a relatively stable population above the mid-elevation zone of disease transmission, particularly during the fall when `Ohi?a-lehua bloom decreases and mosquitoes increase. `Akohekohe remain on their territories partly by switching their foraging to subcanopy trees and shrubs, most of which require protection from feral pigs (Sus scrofa).

  20. Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea

    NASA Astrophysics Data System (ADS)

    Kokubun, Nobuo; Yamamoto, Takashi; Sato, Nobuhiko; Watanuki, Yutaka; Will, Alexis; Kitaysky, Alexander S.; Takahashi, Akinori

    2016-04-01

    Subarctic environmental changes are expected to affect the foraging ecology of marine top predators, but the response to such changes may vary among species if they use food resources differently. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabird: common (Uria aalge: hereafter COMUs) and thick-billed (U. lomvia: hereafter TBMUs) murres breeding on St. George Island, located in the seasonal sea-ice region of the Bering Sea. We investigated their foraging trip and flight durations, diel patterns of dive depth, and underwater wing strokes, along with wing morphology and blood stable isotope signatures and stress hormones. Acceleration-temperature-depth loggers were attached to chick-guarding birds, and data were obtained from 7 COMUs and 12 TBMUs. Both species showed similar mean trip duration (13.2 h for COMUs and 10.5 h for TBMUs) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, the dive depths of COMUs had two peaks in shallow (18.1 m) and deep (74.2 m) depths, while those of TBMUs were 20.2 m and 59.7 m. COMUs showed more frequent wing strokes during the bottom phase of dives (1.90 s-1) than TBMUs (1.66 s-1). Fish occurred more frequently in the bill loads of COMUs (85 %) than those of TBMUs (56 %). The δ15N value of blood was significantly higher in COMUs (14.5 ‰) than in TBMUs (13.1 ‰). The relatively small wing area (0.053 m2) of COMUs compared to TBMUs (0.067 m2) may facilitate their increased agility while foraging and allow them to capture more mobile prey such as larger fishes that inhabit deeper depths. These differences in food resource use may lead to the differential responses of the two murre species to marine environmental changes in the Bering Sea.

  1. Bioenergy Crop Breeding and Production Research in the Southeast, Final Report for 1996 to 2001

    SciTech Connect

    Bouton, J.H.

    2003-05-30

    Switchgrass (Panicum virgatum L.) is a native grass species to much of the US. It has shown great potential for use in production of fuel ethanol from cellulosic biomass (Lynd et al., 1991). Work in Alabama demonstrated very high dry matter yields can be achieved with switchgrass (Maposse et al. 1995) in the southeastern US. Therefore, this region is thought to be an excellent choice for development of a switchgrass cropping system where farmers can produce the grass for either biomass or forage. Another report has shown success with selection and breeding to develop high yielding germplasm from adapted cultivars and ecotypes of switchgrass (Moser and Vogel 1995). In the mid 1990s, however, there was little plant breeding effort for switchgrass with a potential for developing a cultivar for the southeast region. The main goal of the project was to develop adaptive, high-yielding switchgrass cultivars for use in cropping systems for bioenergy production in the southeastern US. A secondary objective was to assess the potential of alternate herbaceous species such as bermudagrass (Cynodon dactylon L.), bahiagrass (Paspalum notatum Flugge.), and napiergrass (Pennisetum purpureum Schumach.) that may compete with switchgrass for herbaceous bioenergy production in the southeast. During the conduct of the project, another goal of developing molecular markers useful for genetic mapping was added. The ''lowland'' cultivars, Alamo and Kanlow, were found to be the highest yielding switchgrass cultivars. Although most summers during the project period were hot and dry, their annual dry matter yield continue to outperform the best ''upland'' cultivars such as Cave-in-Rock, Shawnee, NE Late, and Trailblazer. The use of a breeding procedure based on the ''honeycomb design'' and multi-location progeny testing, coupled with the solid heritability and genetic gain estimates for dry matter yield in lowland type switchgrass germplasm, indicated excellent potential to isolate parental

  2. Preliminary note on potential use of forage crops for soil phytoremediation of dieldrin.

    PubMed

    Donnarumma, L; Annesi, T; Pompi, V; Rosati, S; Conte, E

    2010-01-01

    The aim of this trial was to evaluate the feasibility of using tall fescue (Festuca arundinacea) and alfalfa (Medicago sativa) for phytoremediation of dieldrin. Experimental trial was carried out in greenhouse with temperature and light control. Each tested crop were seeded in individual pots (10 plants/pot) filled with contaminated soil (47 microg/kg dieldrin) and uncontaminated soil collected in sites located in the province of Latina (Italy). Samples of soil, root, and aerial part of plants were analysed at 3 and 6 months after seeding. The analytical determinations in soil and plant samples were carried out by GLC-ECD and confirmed by GLC-MS. After 6 months in the greenhouse, recoveries of dieldrin from soil planted with tall fescue and alfalfa were significantly lower than recoveries in unplanted control soil. Dieldrin residue values in root did not differ between the two different sampling times for each forage crop tested, but they were always higher in fescue than in alfalfa. Residue levels in aerial part were low (< 10 microg/kg) in the two forage crops. Preliminary results seem to confirm the ability of tested plants to enhance dissipation of dieldrin in soil at low level of contamination.

  3. Forage breeding and management to increase the beneficial fatty acid content of ruminant products.

    PubMed

    Dewhurst, R J; Scollan, N D; Lee, M R F; Ougham, H J; Humphreys, M O

    2003-05-01

    The declining consumption of ruminant products has been partly associated with their high proportion (but not necessarily content) of saturated fatty acids. Recent studies have focused on the less prominent fact that they are also important sources of beneficial fatty acids, including n-3 fatty acids and conjugated linoleic acids. alpha-Linolenic acid (18 : 3n-3) is of particular interest because it also contributes to improved flavour of beef and lamb. Many recent studies showed large effects of special concentrates on levels of fatty acids in milk and meat. However, the 'rumen protection' treatments, needed to ensure a worthwhile level of fatty acid in products, are expensive. Herbage lipids are the cheapest and safest source of these fatty acids and so breeding to increase delivery of fatty acids from plants into ruminant products is an important long-term strategy. Plant lipids usually contain high levels of polyunsaturated fatty acids, particularly 18 : 2n-6 and 18 : 3n-3 which are the precursors of beneficial fatty acids. Whilst some plants are particularly rich in individual fatty acids (e.g. 18 : 3n-3 in linseed), there are also useful levels in grass and clover (Trifolium Spp.). Levels of fatty acids in forages in relation to species and varieties are considered, as well as management and conservation methods. Relationships between levels of fatty acids and existing traits and genetic markers are identified. The effects of forage treatments on the fatty acid content of ruminant products are reviewed. The higher levels of polyunsaturated fatty acids in milk from cows fed clover silages show that the level of fatty acids in herbage is not the only factor affecting levels of fatty acids in ruminant products. Further effort is needed to characterise susceptibility of unsaturated fatty acids to oxidative loss during field wilting and biohydrogenation losses in the rumen, and the relative importance of plant and microbial processes in these losses. The pathways

  4. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems.

    PubMed

    Ghimire, Rajan; Norton, Jay B; Stahl, Peter D; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  5. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems

    PubMed Central

    Ghimire, Rajan; Norton, Jay B.; Stahl, Peter D.; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  6. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  7. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  8. Wood Storks of the Savannah River Plant: Foraging and breeding ecology: Comprehensive cooling water study final report

    SciTech Connect

    Coulter, M.C.

    1986-06-01

    This report presents the results of studies from 1983 through 1985 that deal with the use of the Savannah River Swamp System (SRSS) by Wood Storks. We examine the locations on the SRSS where storks have been observed foraging on the SRSS, and the time of year when birds were seen in the swamp. We compare measurements of habitat characteristics, water quality, vegetation and prey density at foraging sites on the SRSS with similar measurements at other foraging sites in east-central Georgia. Finally, we examine food demand of storks breeding at the Birdsville colony as an indication of the time of year when the birds would be most in need of food.

  9. The qualitative identification of different alfalfa breed in same forage series by the terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Guo, Shuai

    2016-01-01

    In order to enriching the means of discriminating alfalfa and achieving the goal of nondestructive testing, terahertz time-domain spectroscopy (THz-TDS) was applied to explore and reveal the property characteristic of different alfalfa varieties in the same series. Six kinds of alfalfa were prepared for experiment and analysis, and these samples are classed as two series, namely caoyuan series and gannong series. In the result, the time-domain spectra were tested, and then the refractive indices and absorption coefficients was calculated, respectively. These spectrums showed an apparent difference between these two series, and to verify this classification, two statistical methods, partial least squares (PLS) and cluster analysis (CA), were performed to investigate. Finally, these methods yielded a classification result, and we found it classified gannong series and caoyuan series. All these result showed THz technology combined with statistical method can be an effective method for nondestructive identification of alfalfa breed with tiny different properties, and lay a foundation for establishing a forage database.

  10. Molybdenum uptake by forage crops grown on sewage sludge -- Amended soils in the field and greenhouse

    SciTech Connect

    McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G.

    2000-06-01

    Molybdenum (Mo) is a plant-available element in soils that can adversely affect the health of farm animals. There is a need for more information on its uptake into forage crops from waste materials, such as sewage sludge, applied to agricultural land. Field and greenhouse experiments with several crops grown on long-term sewage sludge-amended soils as well as soils recently amended with dewatered (DW) and alkaline-stabilized (ALK) sludges indicated that Mo supplied from sludge is readily taken up by legumes in particular. Excessive uptake into red clover (Trifolium pratense L.) was seen in a soil that had been heavily amended with sewage sludge 20 yr earlier, where the soil contained about 3 mg Mo/kg soil, three times the background soil concentration. The greenhouse and field studies indicated that Mo can have a long residual availability in sludge-amended soils. The effect of sludge application was to decrease Cu to Mo ratios in legume forages, canola (Brassica napus var. napus) and soybeans [Glycine max (L.) Merr.] below the recommended limit of 2:1 for ruminant diets, a consequence of high bioavailability of Mo and low uptake of Cu added in sludge. Molybdenum uptake coefficients (UCs) for ALK sludge were higher than for DW sludge, presumably due to the greater solubility of Mo measured in the more alkaline sludges and soils. Based on these UCs, it is tentatively recommended that cumulative Mo loadings on forages grown on nonacid soils should not exceed 1.0 kg/ha from ALK sludge or 4.0 kg/ha from DW sludge.

  11. Accelerating Silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines

    USDA-ARS?s Scientific Manuscript database

    Silphium perfoliatum L. (cup plant, silphie) and S. integrifolium Michx. (rosinweed, silflower) are in the same sub-family and tribe as sunflower (Helianthus annuus L.). S. perfoliatum has been grown in many countries a forage or bioenergy crop with forage quality approaching that of alfalfa and bio...

  12. Genepool of Wild Populations of Forage and Grain Legume Crops of Northwest and Central Regions of Russia

    USDA-ARS?s Scientific Manuscript database

    An international plant collection expedition to the northwest and central regions of Russia was undertaken in 2007 to collect seed of wild-growing perennial grass and legume species that have potential for forage and turf applications. These collections are of interest in breeding and selection pro...

  13. DNA-informed breeding of rosaceous crops: promises, progress and prospects

    PubMed Central

    Peace, Cameron P

    2017-01-01

    Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the ‘chasm’ between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists. PMID:28326185

  14. The spatial distribution and size of rook (Corvus frugilegus) breeding colonies is affected by both the distribution of foraging habitat and by intercolony competition.

    PubMed Central

    Griffin, L R; Thomas, C J

    2000-01-01

    Explanations for the variation in the number of nests at bird colonies have focused on competitive or habitat effects without considering potential interactions between the two. For the rook, a colonial corvid which breeds seasonally but forages around the colony throughout the year, both the amount of foraging habitat and its interaction with the number of competitors from surrounding colonies are important predictors of colony size. The distance over which these effects are strongest indicates that, for rooks, colony size may be limited outside of the breeding season when colony foraging ranges are larger and overlap to a greater extent. PMID:10983832

  15. An evaluation of microbial health risks to livestock fed with wastewater-irrigated forage crops.

    PubMed

    Bevilacqua, P D; Bastos, R K X; Mara, D D

    2014-06-01

    This paper presents the results of five experiments in which animal health risks associated with the consumption of crops irrigated with domestic wastewater were evaluated. Forage maize and Tanner grass were irrigated with treated wastewater and used in goats and calves feeding trials. The irrigated crops presented high levels of surface contamination with E. coli (10(4) -10(7) 25 g(-1) ) and salmonellae (up to 1.6 × 10(4) 25 g(-1)), but none of the animals showed signs of infection or of disease. Further, the microbiological quality of animal products always complied with the Brazilian and European Union standards for food safety. It is suggested that the WHO guideline values for restricted irrigation (≤ 10(4) E. coli 100 ml(-1) and ≤ 1 helminth egg l(-1)), which were developed to protect the health of agricultural field workers, would be equally protective of the health of both animals fed with wastewater-irrigated crops and humans consuming products from such animals. © 2013 Blackwell Verlag GmbH.

  16. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production.

    PubMed

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 10(9) people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a 'saline agriculture' which will not compete in terms of resources with conventional agriculture.

  17. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production

    PubMed Central

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620

  18. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  19. Genotyping-by-Sequencing and Its Exploitation for Forage and Cool-Season Grain Legume Breeding

    PubMed Central

    Annicchiarico, Paolo; Nazzicari, Nelson; Wei, Yanling; Pecetti, Luciano; Brummer, Edward C.

    2017-01-01

    Genotyping-by-Sequencing (GBS) may drastically reduce genotyping costs compared with single nucleotide polymorphism (SNP) array platforms. However, it may require optimization for specific crops to maximize the number of available markers. Exploiting GBS-generated markers may require optimization, too (e.g., to cope with missing data). This study aimed (i) to compare elements of GBS protocols on legume species that differ for genome size, ploidy, and breeding system, and (ii) to show successful applications and challenges of GBS data on legume species. Preliminary work on alfalfa and Medicago truncatula suggested the greater interest of ApeKI over PstI:MspI DNA digestion. We compared KAPA and NEB Taq polymerases in combination with primer extensions that were progressively more selective on restriction sites, and found greater number of polymorphic SNP loci in pea, white lupin and diploid alfalfa when adopting KAPA with a non-selective primer. This protocol displayed a slight advantage also for tetraploid alfalfa (where SNP calling requires higher read depth). KAPA offered the further advantage of more uniform amplification than NEB over fragment sizes and GC contents. The number of GBS-generated polymorphic markers exceeded 6,500 in two tetraploid alfalfa reference populations and a world collection of lupin genotypes, and 2,000 in different sets of pea or lupin recombinant inbred lines. The predictive ability of GBS-based genomic selection was influenced by the genotype missing data threshold and imputation, as well as by the genomic selection model, with the best model depending on traits and data sets. We devised a simple method for comparing phenotypic vs. genomic selection in terms of predicted yield gain per year for same evaluation costs, whose application to preliminary data for alfalfa and pea in a hypothetical selection scenario for each crop indicated a distinct advantage of genomic selection. PMID:28536584

  20. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics.

    PubMed

    Bradford, Kent J; Van Deynze, Allen; Gutterson, Neal; Parrott, Wayne; Strauss, Steven H

    2005-04-01

    The costs of meeting regulatory requirements and market restrictions guided by regulatory criteria are substantial impediments to the commercialization of transgenic crops. Although a cautious approach may have been prudent initially, we argue that some regulatory requirements can now be modified to reduce costs and uncertainty without compromising safety. Long-accepted plant breeding methods for incorporating new diversity into crop varieties, experience from two decades of research on and commercialization of transgenic crops, and expanding knowledge of plant genome structure and dynamics all indicate that if a gene or trait is safe, the genetic engineering process itself presents little potential for unexpected consequences that would not be identified or eliminated in the variety development process before commercialization. We propose that as in conventional breeding, regulatory emphasis should be on phenotypic rather than genomic characteristics once a gene or trait has been shown to be safe.

  1. Invited review: Sustainable forage and grain crop production for the US dairy industry.

    PubMed

    Martin, N P; Russelle, M P; Powell, J M; Sniffen, C J; Smith, S I; Tricarico, J M; Grant, R J

    2017-10-04

    A resilient US dairy industry will be underpinned by forage and crop production systems that are economically, environmentally, and socially sustainable. Land use for production of perennial and annual forages and grains for dairy cattle must evolve in response to multiple food security and environmental sustainability issues. These include increasing global populations; higher incomes and demand for dairy and other animal products; climate change with associated temperature and moisture changes; necessary reductions in carbon and water footprints; maintenance of soil quality and soil nutrient concerns; and competition for land. Likewise, maintaining producer profitability and utilizing practices accepted by consumers and society generally must also be considered. Predicted changes in climate and water availability will likely challenge current feed and dairy production systems and their national spatial distribution, particularly the western migration of dairy production in the late 20th century. To maintain and stabilize profitability while reducing carbon footprint, particularly reductions in methane emission and enhancements in soil carbon sequestration, dairy production will need to capitalize on genetic and management innovations that enhance forage and grain production and nutritive value. Improved regional and on-farm integration of feed production and manure utilization is needed to reduce environmental nitrogen and phosphorus losses and mitigate greenhouse gas emissions. Resilient and flexible feed production strategies are needed to address each of these challenges and opportunities to ensure profitable feeding of dairy cattle and a sustainable dairy industry. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  2. Characterization and Identification of Pediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation

    PubMed Central

    Cai, Yimin; Kumai, Sumio; Ogawa, Masuhiro; Benno, Yoshimi; Nakase, Takashi

    1999-01-01

    Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants. PMID:10388681

  3. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops.

    PubMed

    Eggen, Trine; Heimstad, Eldbjørg S; Stuanes, Arne O; Norli, Hans Ragnar

    2013-07-01

    Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kow 2.59), triethyl-chloro-phosphate (TCEP) (log Kow 1.44), tributyl phosphate (TBP) (log Kow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log Kow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log Kow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6-1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10-20 and 1.7-4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015-0.110). Despite that DEET and NBBS have log Kow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to

  4. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.

    PubMed

    Saltzman, Amy; Birol, Ekin; Oparinde, Adewale; Andersson, Meike S; Asare-Marfo, Dorene; Diressie, Michael T; Gonzalez, Carolina; Lividini, Keith; Moursi, Mourad; Zeller, Manfred

    2017-02-01

    Biofortification is the process of increasing the density of vitamins and minerals in a crop through plant breeding-using either conventional methods or genetic engineering-or through agronomic practices. Over the past 15 years, conventional breeding efforts have resulted in the development of varieties of several staple food crops with significant levels of the three micronutrients most limiting in diets: zinc, iron, and vitamin A. More than 15 million people in developing countries now grow and consume biofortified crops. Evidence from nutrition research shows that biofortified varieties provide considerable amounts of bioavailable micronutrients, and consumption of these varieties can improve micronutrient deficiency status among target populations. Farmer adoption and consumer acceptance research shows that farmers and consumers like the various production and consumption characteristics of biofortified varieties, as much as (if not more than) popular conventional varieties, even in the absence of nutritional information. Further development and delivery of these micronutrient-rich varieties can potentially reduce hidden hunger, especially in rural populations whose diets rely on staple food crops. Future work includes strengthening the supply of and the demand for biofortified staple food crops and facilitating targeted investment to those crop-country combinations that have the highest potential nutritional impact.

  5. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    DOE PAGES

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; ...

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful inmore » enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.« less

  6. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects

    SciTech Connect

    Kole, Chittaranjan; Muthamiliarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelgabi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbannaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-08-11

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  7. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects

    PubMed Central

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J.; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W.; Iorizzo, Massimo; Ismail, Abdelbagi M.; Marshall, Athole; Mayes, Sean; Nguyen, Henry T.; Ogbonnaya, Francis C.; Ortiz, Rodomiro; Paterson, Andrew H.; Simon, Philipp W.; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K.; Wullschleger, Stan D.; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security. PMID:26322050

  8. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field.

    PubMed

    Shakoor, Nadia; Lee, Scott; Mockler, Todd C

    2017-08-01

    Effective implementation of technology that facilitates accurate and high-throughput screening of thousands of field-grown lines is critical for accelerating crop improvement and breeding strategies for higher yield and disease tolerance. Progress in the development of field-based high throughput phenotyping methods has advanced considerably in the last 10 years through technological progress in sensor development and high-performance computing. Here, we review recent advances in high throughput field phenotyping technologies designed to inform the genetics of quantitative traits, including crop yield and disease tolerance. Successful application of phenotyping platforms to advance crop breeding and identify and monitor disease requires: (1) high resolution of imaging and environmental sensors; (2) quality data products that facilitate computer vision, machine learning and GIS; (3) capacity infrastructure for data management and analysis; and (4) automated environmental data collection. Accelerated breeding for agriculturally relevant crop traits is key to the development of improved varieties and is critically dependent on high-resolution, high-throughput field-scale phenotyping technologies that can efficiently discriminate better performing lines within a larger population and across multiple environments. Copyright © 2017. Published by Elsevier Ltd.

  9. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.

    PubMed

    Kole, Chittaranjan; Muthamilarasan, Mehanathan; Henry, Robert; Edwards, David; Sharma, Rishu; Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Blakeney, Michael; Bryant, John; Cai, Hongwei; Cakir, Mehmet; Cseke, Leland J; Cockram, James; de Oliveira, Antonio Costa; De Pace, Ciro; Dempewolf, Hannes; Ellison, Shelby; Gepts, Paul; Greenland, Andy; Hall, Anthony; Hori, Kiyosumi; Hughes, Stephen; Humphreys, Mike W; Iorizzo, Massimo; Ismail, Abdelbagi M; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Simon, Philipp W; Tohme, Joe; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Wullschleger, Stan D; Yano, Masahiro; Prasad, Manoj

    2015-01-01

    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.

  10. Current patents and future development underlying marker-assisted breeding in major grain crops.

    PubMed

    Utomo, Herry S; Linscombe, Steve D

    2009-01-01

    Genomics and molecular markers provide new tools to assemble and mobilize important traits from different genetic backgrounds, including breeding lines and cultivars from different parts of the world and their related wild ancestors, to improve the quality and yield of the existing commercial cultivars to meet the increasing challenges of global food demand. The basic techniques of marker-assisted breeding, such as isolating DNA, amplifying DNA of interest using publicly available primers, and visualizing DNA fragments using standard polyacrylamid gel, have been described in the literature and, therefore, are available to scientists and breeders without any restrictions. A more sophisticated high-throughput system that includes proprietary chemicals and reagents, parts and equipments, software, and methods or processes, has been a subject of intensive patents and trade secrets. The high-throughput systems offer a more efficient way to discover associated QTLs for traits of economic importance. Therefore, an increasing number of patents of highly valued genes and QTLs is expected. This paper will discuss and review current patents associated with genes and QTLs utilized in marker-assisted breeding in major grain crops. The availability of molecular markers for important agronomic traits combined with more efficient marker detection systems will help reach the full benefit of MAS in the breeding effort to reassemble potential genes and recapture critical genes among the breeding lines that were lost during domestication to help boost crop production worldwide.

  11. Waterlogging Tolerance of Crops: Breeding, Mechanism of Tolerance, Molecular Approaches, and Future Prospects

    PubMed Central

    Ahmed, F.; Rafii, M. Y.; Ismail, M. R.; Juraimi, A. S.; Rahim, H. A.; Asfaliza, R.; Latif, M. A.

    2013-01-01

    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed. PMID:23484164

  12. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops

    PubMed Central

    van Nocker, Steve; Gardiner, Susan E

    2014-01-01

    Woody perennial plants, including trees that produce fruits and nuts of horticultural value, typically have long breeding cycles, and development and introduction of improved cultivars by plant breeders may require many breeding cycles and dozens of years. However, recent advances in biotechnologies and genomics have the potential to accelerate cultivar development greatly in all crops. This mini-review summarizes approaches to reduce the number and the duration of breeding cycles for horticultural tree crops, and outlines the challenges that remain to implement these into efficient breeding pipelines. PMID:26504538

  13. Hardwood energy crops and wildlife diversity: Investigating potential benefits for breeding birds and small mammals

    SciTech Connect

    Schiller, A.; Tolbert, V.R.

    1996-08-01

    Hardwood energy crops have the potential to provide a profit to growers as well as environmental benefits (for water quality, soil stabilization, chemical runoff, and wildlife habitat). Environmental considerations are important for both sustainable development of bioenergy technologies on agricultural lands, and for public support. The Environmental Task of the US DOE`s Biofuels feedstock Development Program (BFDP) is working with industry, universities and others to determine how to plant, manage and harvest these crops to maximize environmental advantages and minimize impacts while economically meeting production needs. One research objective is to define and improve wildlife habitat value of these energy crops by exploring how breeding birds and small mammals use them. The authors have found increased diversity of birds in tree plantings compared to row crops. However, fewer bird and small mammal species use the tree plantings than use natural forest. Bird species composition on hardwood crops studied to date is a mixture of openland and forest bird species. Restricted research site availability to date has limited research to small acreage sites of several years of age, or to a few larger acreage but young (1--2 year) plantings. Through industry collaboration, research began this season on bird use of diverse hardwood plantings (different ages, acreages, tree species) in the southeast. Together with results of previous studies, this research will help define practical energy crop guidelines to integrate native wildlife benefits with productive energy crops.

  14. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops

    PubMed Central

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095

  15. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  16. QTL mapping of forage yield and forage yield component traits in Sorghum bicolor x S. sudanense.

    PubMed

    Liu, Y L; Wang, L H; Li, J Q; Zhan, Q W; Zhang, Q; Li, J F; Fan, F F

    2015-04-22

    The sorghum-sudangrass hybrid (Sorghum bicolor x S. sudanense) is an important forage crop. However, little is known about the genetic mechanisms related to forage yield and the 4 forage yield component traits in this forage crop. In this study, a linkage map was constructed with 124 assigned SSR markers using an F2 mapping population derived from the crossing of sorghum Tx623A and sudangrass Sa. Nine quantitative trait loci (QTLs) were detected for forage yield and the 4 forage yield component traits using inclusive composite interval mapping. Five fresh weight QTLs were identified and contributed >50% of the total phenotypic variance. Of these QTLs, all showed additive and dominant effects, but most exhibited mainly dominant effects. These results will provide useful information for improvements in sorghum-sudangrass hybrid breeding.

  17. Breeding cereal crops for enhanced weed suppression: optimizing allelopathy and competitive ability.

    PubMed

    Worthington, Margaret; Reberg-Horton, Chris

    2013-02-01

    Interest in breeding grain crops with improved weed suppressive ability is growing in response to the evolution and rapid expansion of herbicide resistant populations in major weeds of economic importance, environmental concerns, and the unmet needs of organic producers and smallholder farmers without access to herbicides. This review is focused on plant breeding for weed suppression; specifically, field and laboratory screening protocols, genetic studies, and breeding efforts that have been undertaken to improve allelopathy and competition in rice, wheat, and barley. The combined effects of allelopathy and competition determine the weed suppressive potential of a given cultivar, and research groups worldwide have been working to improve both traits simultaneously to achieve maximum gains in weed suppression. Both allelopathy and competitive ability are complex, quantitatively inherited traits that are heavily influenced by environmental factors. Thus, good experimental design and sound breeding procedures are essential to achieve genetic gains. Weed suppressive rice cultivars are now commercially available in the U.S. and China that have resulted from three decades of research. Furthermore, a strong foundation has been laid during the past 10 years for the breeding of weed suppressive wheat and barley cultivars.

  18. Greenhouse evaluation of solum and substratum materials in the southern Illinois coal field: I. forage crops

    SciTech Connect

    Dancer, W.S.; Jansen, I.J.

    1981-09-01

    More than 75% of the surface-mined coal in Illinois is produced in southern counties, where soils have a very strongly acid and nutrient-deficient subsoil that limits root penetration and water availability. Slightly acid (pH 6.2) C/sub 1/-material and mildly alkaline glacial till (pH 7.5) overburden strata are readily available in these coal fields, and could be used in post-mining soil construction. The objective is to identify overburden materials that can be used as an alternative to the very strongly acid (pH 4.7) subsoil. This study compared the growth of three forage test crops on representative Weir silt loam topsoil (Ap) and subsoil (B/sub 2/), with deeper C/sub 1/-material (B/sub 3/ and C/sub 1/ strata), and Illinoian glacial till (IIIC stratum). All of the overburden materials studied significantly responded to lime and fertilizer with topsoil supporting the best plant growth without amendment. The very strongly acid subsoil was shown to be inferior to the leached C/sub 1/-material found immediately below it. Amendment with high levels of lime and fertilizer was required to achieve maximum productivity on the native subsoil. Blending the subsoil with the C/sub 1/-material was shown to be a viable alternative to liming it, and provided a more desirable texture as well.

  19. Forage and breed effects on behavior and temperament of pregnant beef heifers

    USDA-ARS?s Scientific Manuscript database

    Integration of behavioral observations with traditional selection schemes may lead to enhanced animal well-being and more profitable forage-based cattle production systems. Brahman-influenced (BR; n=64) and Gelbvieh x Angus (GA; n=64) heifers consumed either toxic endophyte-infected tall fescue (E+)...

  20. Use and breeding of forage grasses in the North Central USA

    USDA-ARS?s Scientific Manuscript database

    Forage grasses are used for conservation harvesting, usually hay or balage, and for grazing within the North Central region of the USA. Historically, smooth bromegrass, timothy, reed canarygrass, and orchardgrass have been important species and they still exist in many old hay fields. Tall fescue, m...

  1. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    PubMed Central

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  2. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  3. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  4. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    USGS Publications Warehouse

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  5. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica

    USGS Publications Warehouse

    Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.

    2011-01-01

    We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins,Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.

  6. The importance of reproductive barriers and the effect of allopolyploidization on crop breeding

    PubMed Central

    Tonosaki, Kaoru; Osabe, Kenji; Kawanabe, Takahiro; Fujimoto, Ryo

    2016-01-01

    Inter-specific hybrids are a useful source for increasing genetic diversity. Some reproductive barriers before and/or after fertilization prevent production of hybrid plants by inter-specific crossing. Therefore, techniques to overcome the reproductive barrier have been developed, and have contributed to hybridization breeding. In recent studies, identification of molecules involved in plant reproduction has been studied to understand the mechanisms of reproductive barriers. Revealing the molecular mechanisms of reproductive barriers may allow us to overcome reproductive barriers in inter-specific crossing, and to efficiently produce inter-specific hybrids in cross-combinations that cannot be produced through artificial techniques. Inter-specific hybrid plants can potentially serve as an elite material for plant breeding, produced through the merging of genomes of parental species by allopolyploidization. Allopolyploidization provides some benefits, such as heterosis, increased genetic diversity and phenotypic variability, which are caused by dynamic changes of the genome and epigenome. Understanding of allopolyploidization mechanisms is important for practical utilization of inter-specific hybrids as a breeding material. This review discusses the importance of reproductive barriers and the effect of allopolyploidization in crop breeding programs. PMID:27436943

  7. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B content of crops and soils.

    PubMed

    Warman, P R; Termeer, W C

    2005-06-01

    This is the second of two papers presenting the data from an experiment on the application of aerobically-digested sewage sludge (AES), anaerobic lagoon septic wastes (ANS), sewage sludge compost and fertilizer to soils for grass forage and feed corn production at two different sites in Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and 9 elements in the soil extracts. This paper describes the Ca, Mg, S, Fe, Mn, Cu, Zn and B content of the crops and the Mehlich-1 extractable content of the soils. The response to the amendments was not consistent at the two sites with the two different crops. We found that the septic sludge (ANS) produced the highest forage Fe, Cu and Zn levels and was equal to compost in elevating corn stover and forage S and the forage B content. The compost produced the highest forage Ca and corn Zn, the AES produced the highest corn Mn, and fertilizer produced the highest forage Mn. None of the amendments produced excessive levels of the above nutrients; rather, the amendments improved the feed quality of the forage and corn stover. Lastly, it was noted that the Mehlich-1 extract only had a significantly positive correlation with forage Cu content.

  8. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region.

    PubMed

    Patel, Samir H; Morreale, Stephen J; Saba, Vincent S; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R

    2016-01-01

    Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population.

  9. Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region

    PubMed Central

    Morreale, Stephen J.; Saba, Vincent S.; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R.

    2016-01-01

    Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°—45.8°N) for loggerhead turtles nesting in Greece will rise by 3–5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50–74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population. PMID:27332550

  10. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.

    PubMed

    Treutter, Dieter

    2010-03-02

    Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO(2), growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. The underlying mechanisms are discussed with respect to carbohydrate availability, trade-offs to competing demands as well as to regulatory elements. Outlines are given for genetic engineering and plant breeding. Constraints and possible physiological feedbacks are considered for successful and sustainable application of agricultural techniques with respect to management of plant phenol profiles and concentrations.

  11. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 3. Dryland Production of Grain and Forage Crops

    SciTech Connect

    Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Benson, Verel W.

    2005-05-31

    Here we simulate dryland agriculture in the United States with a suite of climate change projections. The total production of three major grain crops (corn, soybean, winter wheat) and two forage crops (alfalfa and clover hay) is calculated based on the Core Production Area (CPA) of each crop. Changes in production occur with each of the crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric CO2 increases production. The results varied depending on the General Circulation Model (GCM) used to simulate climate. Regional production followed trends similar to national production, but the magnitude of change was variable and substantially larger in some regions. An analysis of Currently Possible Production Areas (CPPA) for each crop indicates that the regions most likely to experience change with climate change are those on the edge of the area where the crop is currently grown. While national production of dryland agriculture does not change drastically, it is apparent that the regional impacts may be significant.

  12. Prohexadione-calcium improves the establishment and yield of alfalfa interseeded as a dual purpose cover-forage crop into silage corn

    USDA-ARS?s Scientific Manuscript database

    Interseeded alfalfa could serve as a dual purpose crop for providing groundcover during silage corn production and forage during subsequent years of production, but this system has been unworkable because competition between the co-planted crops often leads to stand failure of interseeded alfalfa an...

  13. Genetic characterization of Asian fine fescue identifies unique germplasm for forage and turf breeding

    USDA-ARS?s Scientific Manuscript database

    Evaluation of genetic structure and plant morphology are essential to better utilize introduced germplasm in fine-leaved fescue breeding. Recent collections (2006-2010) of fine-leaved Festuca valesiaca and Festuca rubra germplasm have been made by the USDA, ARS in Kyrgyzstan (KGZ) and the People's ...

  14. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.)

    PubMed Central

    Kantar, Michael B.; Sosa, Chrystian C.; Khoury, Colin K.; Castañeda-Álvarez, Nora P.; Achicanoy, Harold A.; Bernau, Vivian; Kane, Nolan C.; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H.

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation. PMID:26500675

  15. Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.).

    PubMed

    Kantar, Michael B; Sosa, Chrystian C; Khoury, Colin K; Castañeda-Álvarez, Nora P; Achicanoy, Harold A; Bernau, Vivian; Kane, Nolan C; Marek, Laura; Seiler, Gerald; Rieseberg, Loren H

    2015-01-01

    Crop wild relatives (CWR) are a rich source of genetic diversity for crop improvement. Combining ecogeographic and phylogenetic techniques can inform both conservation and breeding. Geographic occurrence, bioclimatic, and biophysical data were used to predict species distributions, range overlap and niche occupancy in 36 taxa closely related to sunflower (Helianthus annuus L.). Taxa lacking comprehensive ex situ conservation were identified. The predicted distributions for 36 Helianthus taxa identified substantial range overlap, range asymmetry and niche conservatism. Specific taxa (e.g., Helianthus deblis Nutt., Helianthus anomalus Blake, and Helianthus divaricatus L.) were identified as targets for traits of interest, particularly for abiotic stress tolerance, and adaptation to extreme soil properties. The combination of techniques demonstrates the potential for publicly available ecogeographic and phylogenetic data to facilitate the identification of possible sources of abiotic stress traits for plant breeding programs. Much of the primary genepool (wild H. annuus) occurs in extreme environments indicating that introgression of targeted traits may be relatively straightforward. Sister taxa in Helianthus have greater range overlap than more distantly related taxa within the genus. This adds to a growing body of literature suggesting that in plants (unlike some animal groups), geographic isolation may not be necessary for speciation.

  16. Advances towards a Marker-Assisted Selection Breeding Program in Prairie Cordgrass, a Biomass Crop

    PubMed Central

    Gedye, K. R.; Gonzalez-Hernandez, J. L.; Owens, V.; Boe, A.

    2012-01-01

    Prairie cordgrass (Spartina pectinata Bosc ex Link) is an indigenous, perennial grass of North America that is being developed into a cellulosic biomass crop suitable for biofuel production. Limited research has been performed into the breeding of prairie cordgrass; this research details an initial investigation into the development of a breeding program for this species. Genomic libraries enriched for four simple sequence repeat (SSR) motifs were developed, 25 clones from each library were sequenced, identifying 70 SSR regions, and primers were developed for these regions, 35 of which were amplified under standard PCR conditions. These SSR markers were used to validate the crossing methodology of prairie cordgrass and it was found that crosses between two plants occurred without the need for emasculation. The successful cross between two clones of prairie cordgrass indicates that this species is not self-incompatible. The results from this research will be used to instigate the production of a molecular map of prairie cordgrass which can be used to incorporate marker-assisted selection (MAS) protocols into a breeding program to improve this species for cellulosic biomass production. PMID:23227036

  17. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop.

    PubMed

    Ashkani, Sadegh; Rafii, Mohd Y; Shabanimofrad, Mahmoodreza; Miah, Gous; Sahebi, Mahbod; Azizi, Parisa; Tanweer, Fatah A; Akhtar, Mohd Sayeed; Nasehi, Abbas

    2015-01-01

    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

  18. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef).

    PubMed

    Cannarozzi, Gina; Plaza-Wüthrich, Sonia; Esfeld, Korinna; Larti, Stéphanie; Wilson, Yi Song; Girma, Dejene; de Castro, Edouard; Chanyalew, Solomon; Blösch, Regula; Farinelli, Laurent; Lyons, Eric; Schneider, Michel; Falquet, Laurent; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun

    2014-07-09

    Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.

  19. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop

    PubMed Central

    Ashkani, Sadegh; Rafii, Mohd Y.; Shabanimofrad, Mahmoodreza; Miah, Gous; Sahebi, Mahbod; Azizi, Parisa; Tanweer, Fatah A.; Akhtar, Mohd Sayeed; Nasehi, Abbas

    2015-01-01

    Rice is a staple and most important security food crop consumed by almost half of the world’s population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control. PMID:26635817

  20. Fatty acids of lamb meat from two breeds fed different forage: concentrate ratio.

    PubMed

    Demirel, G; Ozpinar, H; Nazli, B; Keser, O

    2006-02-01

    Lambs from two Turkish breeds, Kivircik a meat breed and Sakiz a breed used for milk and meat production, were fed a diet containing commercial concentrate and hay in the ratios of either 75:25 or 25:75. The effects on fatty acid composition were studied. After weaning (at about 8 weeks) a total of 40 male lambs (20 Kivircik, 20 Sakiz) were divided into four groups of 10 animals and fed either commercial concentrate or grass hay-based diets. The lambs were group fed indoors for 60 days. The mean intramuscular total fatty acid content of longissimus dorsi for Sakiz was lower than that for Kivircik lamb. Increasing the dried grass percentage in the ration decreased the final live weight of the lambs but intramuscular total fatty acid content increased (2088 vs. 1791mg/kg muscle, p<0.001). All n-3 polyunsaturated fatty acids were higher in muscle from lamb fed dried grass-based diets than from lambs fed concentrate-based diets whereas all n-6 were higher in the latter. Polyunsaturated:saturated ratios were higher in the latter animals; 0.26 compared with 0.16 in the lambs fed grass hay. Concentrate groups displayed a higher n-6/n-3 ratio in the same muscle, 7.11 compared with 1.28 in the lambs fed grass. Muscle from Kivircik lambs had higher concentrations of C18:2 n-6 and its metabolite C20:4 n-6 (p<0.001) and also C18:3 n-3.

  1. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.

  2. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering.

    PubMed

    Rommens, Caius M

    2007-05-30

    New crop varieties are developed by applying traditional breeding methods that rely on random genome modifications. These varieties combine multiple traits that support farm efficiency and acceptable yields but also contain genes associated with the production of toxins, allergens, and/or antinutritional compounds that were not considered during the selection process. Furthermore, existing cultivars frequently lack the functional genes required for specific sensory traits and the formation of health-promoting antioxidants. One new method efficiently addresses some of these issues by either silencing undesirable genes or enhancing the expression of genes that are linked to dormant beneficial traits. Rather than incorporating foreign DNA into the plant's genome, these methods transform crops with plant-derived transfer (P-) DNAs that consist of only native genetic elements. The genetic modification can be characterized molecularly so that any inadvertent transfer of undesirable DNA, as may be the case with traditional methods, is excluded. A recently developed intragenic potato plant is silenced for the polyphenol oxidase, dikinase R1, and phosphorylase-L genes in a tuber-specific manner. French fries derived from these tubers lack discolorations, display an enhanced potato flavor, and produce greatly reduced amounts of the suspected carcinogen acrylamide. It is argued that intragenic modification is unlikely to trigger phenotypic, biochemical, or physiological variation that is new to the species. Similarly, the targeted traits are similar to those that breeders select for and often have a history of domestication and reduced fitness. For these reasons, an updated regulatory system is proposed whereby intragenic crops are considered as low risk and should be cleared for commercial release in a timely and cost-effective manner. By using modern techniques to modify the same genetic material that is used by breeders, intragenic approaches may be perceived as an

  3. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation

    PubMed Central

    Kromdijk, Johannes; Long, Stephen P.

    2016-01-01

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  4. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.

    PubMed

    Kromdijk, Johannes; Long, Stephen P

    2016-03-16

    Global climate change is likely to severely impact human food production. This comes at a time when predicted demand for primary foodstuffs by a growing human population and changing global diets is already outpacing a stagnating annual rate of increase in crop productivity. Additionally, the time required by crop breeding and bioengineering to release improved varieties to farmers is substantial, meaning that any crop improvements needed to mitigate food shortages in the 2040s would need to start now. In this perspective, the rationale for improvements in photosynthetic efficiency as a breeding objective for higher yields is outlined. Subsequently, using simple simulation models it is shown how predicted changes in temperature and atmospheric [CO2] affect leaf photosynthetic rates. The chloroplast accounts for the majority of leaf nitrogen in crops. Within the chloroplast about 25% of nitrogen is invested in the carboxylase, Rubisco, which catalyses the first step of CO2 assimilation. Most of the remaining nitrogen is invested in the apparatus to drive carbohydrate synthesis and regenerate ribulose-1:5-bisphosphate (RuBP), the CO2-acceptor molecule at Rubisco. At preindustrial [CO2], investment in these two aspects may have been balanced resulting in co-limitation. At today's [CO2], there appears to be over-investment in Rubisco, and despite the counter-active effects of rising temperature and [CO2], this imbalance is predicted to worsen with global climate change. By breeding or engineering restored optimality under future conditions increased productivity could be achieved in both tropical and temperate environments without additional nitrogen fertilizer. Given the magnitude of the potential shortfall, better storage conditions, improved crop management and better crop varieties will all be needed. With the short time-scale at which food demand is expected to outpace supplies, all available technologies to improve crop varieties, from classical crop breeding to

  5. Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado

    PubMed Central

    Jung, Sook; Lee, Taein; Ficklin, Stephen; Yu, Jing; Cheng, Chun-Huai; Main, Dorrie

    2016-01-01

    The Genome Database for Rosaceae (GDR) and CottonGen are comprehensive online data repositories that provide access to integrated genomic, genetic and breeding data through search, visualization and analysis tools for Rosaceae crops and Gossypium (cotton). These online databases use Chado, an open-source, generic and ontology-driven database schema for biological data, as the primary data storage platform. Chado is highly normalized and uses ontologies to indicate the ‘types’ of data. Therefore, Chado is flexible such that it has been used to house genomic, genetic and breeding data for GDR and CottonGen. These data include whole genome sequence and annotation, transcripts, molecular markers, genetic maps, Quantitative Trait Loci, Mendelian Trait Loci, traits, germplasm, pedigrees, large scale phenotypic and genotypic data, ontologies and publications. We provide information about how to store these types of data in Chado using GDR and CottonGen as examples sites that were converted from an older legacy infrastructure. Database URL: GDR (www.rosaceae.org), CottonGen (www.cottongen.org) PMID:26989146

  6. Chado use case: storing genomic, genetic and breeding data of Rosaceae and Gossypium crops in Chado.

    PubMed

    Jung, Sook; Lee, Taein; Ficklin, Stephen; Yu, Jing; Cheng, Chun-Huai; Main, Dorrie

    2016-01-01

    The Genome Database for Rosaceae (GDR) and CottonGen are comprehensive online data repositories that provide access to integrated genomic, genetic and breeding data through search, visualization and analysis tools for Rosaceae crops and Gossypium (cotton). These online databases use Chado, an open-source, generic and ontology-driven database schema for biological data, as the primary data storage platform. Chado is highly normalized and uses ontologies to indicate the 'types' of data. Therefore, Chado is flexible such that it has been used to house genomic, genetic and breeding data for GDR and CottonGen. These data include whole genome sequence and annotation, transcripts, molecular markers, genetic maps, Quantitative Trait Loci, Mendelian Trait Loci, traits, germplasm, pedigrees, large scale phenotypic and genotypic data, ontologies and publications. We provide information about how to store these types of data in Chado using GDR and CottonGen as examples sites that were converted from an older legacy infrastructure. Database URL: GDR (www.rosaceae.org), CottonGen (www.cottongen.org).

  7. Evolutionary outcomes should inform plant breeding and transgenic approaches to drought tolerance in crop species: the importance of xylem traits

    USDA-ARS?s Scientific Manuscript database

    Genomic-assisted breeding and transgenic approaches to crop improvement are presently targeting phenotypic traits that allegedly confer drought tolerance. A news feature published in Nature Biotechnology last year suggests that these efforts may not be proceeding with sufficient haste, considering t...

  8. Soil nitrate and forage yields of corn grown with clover or grass companion crops and manure

    USDA-ARS?s Scientific Manuscript database

    Few studies have compared the agronomic performance of cover crop and living mulch systems for no-till silage corn (Zea mays L.). In a four-year Wisconsin study, we compared soil nitrate levels, dry matter yields (DMY) and crude protein yields (CPY) from five such corn-companion crop systems amended...

  9. Crop and livestock enterprise integration: Livestock impacts on forage, stover, and grain production

    USDA-ARS?s Scientific Manuscript database

    Enterprise diversity is the key to ensure productive and sustainable agriculture for the future. Integration of crops and livestock enterprises is one way to improve agricultural sustainability, and take advantage of beneficial enterprise synergistic effects. Our objectives were to develop cropping ...

  10. Crop rotations with annual and perennial forages under no-till soil management

    USDA-ARS?s Scientific Manuscript database

    Development of crop rotations that support sustainable agriculture depends on understanding complex relationships between soils, crops, and yield. Objectives were to measure how soil chemical and physical attributes as well as maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] stover dry weig...

  11. Improving phosphorus efficiency in cereal crops: Is breeding for reduced grain phosphorus concentration part of the solution?

    PubMed Central

    Rose, Terry J.; Liu, Lei; Wissuwa, Matthias

    2013-01-01

    Given the non-renewable nature of global phosphate reserves, there is a push to increase the phosphorus (P) efficiency of agricultural crops. Research has typically focussed on investigating P acquisition efficiency or internal P utilization efficiency to reduce crop fertilizer requirements. A novel option that would reduce the amount of P exported from fields at harvest, and may ultimately reduce P fertilizer requirements, would be to reduce the amount of P translocated to grains to minimize grain P concentrations. While such a trait has been mentioned in a number of studies over the years, there has not been a concerted effort to target this trait in breeding programs. In this perspective piece we explore the reasons why a low grain P trait has not been pursued, and discuss the potential benefits and drawbacks of such a trait in the context of breeding to improve the P efficiency of cropping systems. PMID:24204376

  12. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  13. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  14. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  15. Camelina as a sustainable oilseed crop: contributions of plant breeding and genetic engineering.

    PubMed

    Vollmann, Johann; Eynck, Christina

    2015-04-01

    Camelina is an underutilized Brassicaceae oilseed plant with a considerable agronomic potential for biofuel and vegetable oil production in temperate regions. In contrast to most Brassicaceae, camelina is resistant to alternaria black spot and other diseases and pests. Sequencing of the camelina genome revealed an undifferentiated allohexaploid genome with a comparatively large number of genes and low percentage of repetitive DNA. As there is a close relationship between camelina and the genetic model plant Arabidopsis, this review aims at exploring the potential of translating basic Arabidopsis results into a camelina oilseed crop for food and non-food applications. Recently, Arabidopsis genes for drought resistance or increased photosynthesis and overall productivity have successfully been expressed in camelina. In addition, gene constructs affecting lipid metabolism pathways have been engineered into camelina for synthesizing either long-chain polyunsaturated fatty acids, hydroxy fatty acids or high-oleic oils in particular camelina strains, which is of great interest in human food, industrial or biofuel applications, respectively. These results confirm the potential of camelina to serve as a biotechnology platform in biorefinery applications thus justifying further investment in breeding and genetic research for combining agronomic potential, unique oil quality features and biosafety into an agricultural production system.

  16. THE ROLE OF CROP/POLLINATOR RELATIONSHIP UNDERSTANDING IN BREEDING FOR POLLINATOR-FRIENDLY LEGUME VARIETIES; FROM A BREEDING PERSPECTIVE

    USDA-ARS?s Scientific Manuscript database

    Following the reports of the decline in solitary and social bees, breeders are encouraged to develop a breeding approach that strives to integrate food production into the healthy functioning of the agro-ecosystems. In the particular case of legumes, this approach should preserve bee fauna by provi...

  17. Development and Deployment of a Short Rotation Woody Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header

    SciTech Connect

    Eisenbies, Mark; Volk, Timothy; Abrahamson, Lawrence; Shuren, Richard; Stanton, Brian; Posselius, John; McArdle, Matt; Karapetyan, Samvel; Patel, Aayushi; Shi, Shun; Zerpa, Jose

    2014-10-03

    Biomass for biofuels, bioproducts and bioenergy can be sourced from forests, agricultural crops, various residue streams, and dedicated woody or herbaceous crops. Short rotation woody crops (SRWC), like willow and hybrid poplar, are perennial cropping systems that produce a number of environmental and economic development benefits in addition to being a renewable source of biomass that can be produced on marginal land. Both hybrid poplar and willow have several characteristics that make them an ideal feedstock for biofuels, bioproducts, and bioenergy; these include high yields that can be obtained in three to four years, ease of cultivar propagation from dormant cuttings, a broad underutilized genetic base, ease of breeding, ability to resprout after multiple harvests, and feedstock composition similar to other sources of woody biomass. Despite the range of benefits associated with SRWC systems, their deployment has been restricted by high costs, low market acceptance associated with inconsistent chip quality (see below for further explanation), and misperceptions about other feedstock characteristics (see below for further explanation). Harvesting of SRWC is the largest single cost factor (~1/3 of the final delivered cost) in the feedstock supply system. Harvesting is also the second largest input of primary fossil energy in the system after commercial N fertilizer, accounting for about one third of the input. Therefore, improving the efficiency of the harvesting system has the potential to reduce both cost and environmental impact. At the start of this project, we projected that improving the overall efficiency of the harvesting system by 25% would reduce the delivered cost of SRWC by approximately $0.50/MMBtu (or about $7.50/dry ton). This goal was exceeded over the duration of this project, as noted below.

  18. Aphidophagous Parasitoids can Forage Wheat Crops Before Aphid Infestation, Parana State, Brazil

    PubMed Central

    Ceolin Bortolotto, Orcial; de Oliveira Menezes Júnior, Ayres; Thibes Hoshino, Adriano

    2015-01-01

    Aphid parasitoids are common in Brazilian wheat fields, and parasitize aphids at the wheat tillering stage. However, there is little information available about when this natural enemy occurs in wheat crops. This study investigated the initial occurrence of aphid parasitoids in four commercial wheat crops in northern Paraná during the 2009 crop season. We installed two Malaise traps at each wheat farm, and 400 tillers were assessed weekly in each field for aphid abundance. During this study, we captured 4,355 aphid parasitoids and 197 aphids. Three species of braconid parasitoids were identified, including Aphidius colemani (Viereck 1912), Lysiphlebus testaceipes (Cresson 1880), and Diaeretiella rapae (McIntosh 1855). The aphids species identified were Rhopalosiphum padi (Linnaeus 1758) and Sitobion avenae (Fabricius 1775). This study showed that aphid parasitoids are present in wheat crops even when aphid densities are low, and in one farm, occurred before the aphids colonization. These reports can justified the high efficiency of these natural enemies against aphids in wheat fields. PMID:25843593

  19. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control

    USDA-ARS?s Scientific Manuscript database

    Omnivores are important consumers of both weed seeds and insect pests, and habitat provisions like cover crops are suggested to promote their ecosystem services in agricultural systems. However, few studies establish direct links between cover, food, and pest suppression because they are entangled a...

  20. Replacing fallow with forage triticale in dryland crop rotations increases profitability

    USDA-ARS?s Scientific Manuscript database

    A common dryland rotational cropping system in the semi-arid central Great Plains of the U.S. is wheat (Triticum aestivum L.)-corn (Zea mays L.)-fallow (WCF). However, the 12-month fallow period following corn production has been shown to be relatively inefficient in storing precipitation during the...

  1. Can reducing tillage and increasing crop diversity benefit grain and forage production?

    USDA-ARS?s Scientific Manuscript database

    Benefits of reduced tillage and diverse rotation cropping systems include reversing soil C loss, mitigating greenhouse gas production, and improving soil health. However, adoption of these strategies is lagging, particularly in the upper Midwest, due to a perception that reduced tillage reduces cro...

  2. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice.

    PubMed

    Shrestha, Rosemary; Matteis, Luca; Skofic, Milko; Portugal, Arllet; McLaren, Graham; Hyman, Glenn; Arnaud, Elizabeth

    2012-01-01

    The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP.

  3. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    PubMed Central

    Shrestha, Rosemary; Matteis, Luca; Skofic, Milko; Portugal, Arllet; McLaren, Graham; Hyman, Glenn; Arnaud, Elizabeth

    2012-01-01

    The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP. PMID:22934074

  4. Forage intake, meal patterns, and milk production of lactating dairy cows fed grass silage or pea-wheat bi-crop silages.

    PubMed

    Salawu, M B; Adesogan, A T; Dewhurst, R J

    2002-11-01

    This study investigated the feed intake, milk production, and plasma nutrient status in dairy cows fed inter-cropped pea-wheat (bi-crop) silages comprised of contrasting ratios of pea to wheat. Spring peas (cv. Magnus) and wheat (cv. Axona) sown at either high (75:25) or low (25:75) pea inclusion rates were harvested after 13 (Cut 1) or 15 (Cut 2) wk. Eighteen Holstein-Friesian cows between wk 9 and 10 of lactation were used in a cyclical changeover design with three 28-d periods. Cows were fed the bi-crop silages and 6 kg of concentrates or second-cut grass silage supplemented with 6 (GS6) or 9 (GS9) kg/d of concentrates. Forage intakes were higher when bi-crops were fed (10.3 to 11.4 kg dry matter [DM]/d) than when grass silage was fed (8.6 kg DM/d). Total DM intake was similar among cows fed the bi-crop silages and GS9 diets, but intakes for GS6 were at least 1.7 kg DM/d lower. Increasing the pea inclusion rate increased the crude protein (CP) content of the ration, but it did not enhance forage quality or animal performance. The rate of intake of the different forages was similar, so that the higher intakes of bi-crop silages were associated with more time spent at the feedbunk and an increased number of meals. Diet digestibility ranged from 531 to 650 g/kg, and the highest value was given by the Cut 1 bi-crop silage diet. Milk yield tended to be similar for cows fed the Cut 2 bi-crop and GS9 diets, and these values were at least 1.7 kg higher than those for cows fed on other treatments. Generally, the bi-crop diets resulted in higher milk fat contents and lower polyunsaturated fatty acid contents. Milk protein content was highest for cows fed the GS9 diet. Blood metabolite content was unaffected by treatment except for blood urea nitrogen content, which was higher in cows fed the bi-crop silages, reflecting reduced N-use efficiency with these diets. The study showed that pea-wheat bi-crop silages can be used to replace moderate-quality grass silage in dairy

  5. Genomic tools and and prospects for new breeding techniques in flower bulb crops

    USDA-ARS?s Scientific Manuscript database

    For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...

  6. Foraging behaviour, nutrient intake from pasture and performance of free-range growing pigs in relation to feed CP level in two organic cropping systems.

    PubMed

    Jakobsen, M; Kongsted, A G; Hermansen, J E

    2015-12-01

    In organic pig production one of the major challenges is to be able to fulfil amino acid requirements based on organic and locally grown protein feed crops. The pig is an opportunistic omnivore with a unique capacity for foraging above and below the soil surface. It is hypothesized that direct foraging in the range area can pose an important contribution in terms of fulfilling nutrient requirements of growing pigs. Foraging activity, lucerne nutrient intake and pig performance were investigated in 36 growing pigs, foraging on lucerne or grass and fed either a standard organic pelleted feed mixture (HP: high protein) or a grain mixture containing 48% less CP (LP: low protein) compared with the high protein feed mixture, from an average live weight of 58 kg to 90 kg in a complete block design in three replicates. The pigs were fed 80% of energy recommendations and had access to 4 m2 of pasture/pig per day during the 40 days experimental period from September to October 2013. Behavioural observations were carried out 12 times over the entire experimental period. For both crops, LP pigs rooted significantly more compared with HP pigs but the effect of CP level was more pronounced in grass (44% v. 19% of all observations) compared with lucerne (28% v. 16% of all observations). Feed protein level turned out not to have any significant effect on grazing behaviour but pigs foraging on lucerne grazed significantly more than pigs foraging on grass (10% v. 4% of all observations). Daily weight gain and feed conversion ratio were significantly affected by feed protein and forage crop interactions. Compared to HP pigs, LP treated pigs had 33% lower daily weight gain (589 v. 878 g) and 31% poorer feed conversion ratio (3.75 v. 2.59 kg feed/kg weight gain) in grass paddocks, whereas in lucerne paddocks LP pigs only had 18% lower daily weight gain (741 v. 900 g) and a 14% poorer feed conversion ratio (2.95 v. 2.54 kg feed/kg weight gain) compared with HP pigs. LP pigs foraging on

  7. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils.

    PubMed

    Warman, P R; Termeer, W C

    2005-05-01

    This paper presents the data from two years of experiments concerned with the application of aerobically-digested sewage sludge, anaerobic lagoon septic sludge, sewage sludge compost or fertilizer to soils for grass forage and feed corn (Zea mays L.) production at two different sites 45 km from Truro, Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and nine elements in the soil extracts. This paper describes the results of crop yields, plant N, P and K content and Mehlich-1 extractable P and K. The research demonstrated the fertilizer produced higher yields of grass forage than the sludge and the compost but equivalent to the sludge in corn yields. Forage and corn N, P and K contents, however, varied with treatment, crop and year, while the compost-amended soils were highest in extractable nutrients. Both sludges and the compost, therefore, could be effective sources of N, P and K for crop production. Compared to the conventional fertilizer, the nutrient availability from the organic amendments (especially N and P) was considerably lower than the 50% assumed at the start of the experiment; the sludges however, provided higher nutrient availability than the compost.

  8. The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops

    PubMed Central

    Damm, U.; O'Connell, R.J.; Groenewald, J.Z.; Crous, P.W.

    2014-01-01

    Colletotrichum destructivum is an important plant pathogen, mainly of forage and grain legumes including clover, alfalfa, cowpea and lentil, but has also been reported as an anthracnose pathogen of many other plants worldwide. Several Colletotrichum isolates, previously reported as closely related to C. destructivum, are known to establish hemibiotrophic infections in different hosts. The inconsistent application of names to those isolates based on outdated species concepts has caused much taxonomic confusion, particularly in the plant pathology literature. A multilocus DNA sequence analysis (ITS, GAPDH, CHS-1, HIS3, ACT, TUB2) of 83 isolates of C. destructivum and related species revealed 16 clades that are recognised as separate species in the C. destructivum complex, which includes C. destructivum, C. fuscum, C. higginsianum, C. lini and C. tabacum. Each of these species is lecto-, epi- or neotypified in this study. Additionally, eight species, namely C. americae-borealis, C. antirrhinicola, C. bryoniicola, C. lentis, C. ocimi, C. pisicola, C. utrechtense and C. vignae are newly described. PMID:25492986

  9. Organic and conventional farmers differ in their perspective on cover crop use and breeding

    USDA-ARS?s Scientific Manuscript database

    Cover crops play an important role in agricultural sustainability. Unlike commodity cash crops, however, there has been relatively little cover crop germplasm research and development. We conducted an online survey to evaluate a) the perspectives of organic and conventional farmers in the United Sta...

  10. New carrot and garlic germplasm to advance breeding and understand crop origins

    USDA-ARS?s Scientific Manuscript database

    The genetic variation provided by diverse plant germplasm is the basic building material used for crop improvement that shapes the crops we grow today. Wild carrot from the U.S. provided the cytoplasm used to develop a reliable system to produce hybrid carrots that account for most of the commercial...

  11. Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate ratios.

    PubMed

    Barbosa, Aynoanne Leandro; Voltolini, Tadeu Vinhas; Menezes, Daniel Ribeiro; de Moraes, Salete Alves; Nascimento, Julio Cesar Silva; de Souza Rodrigues, Rafael Torres

    2017-09-29

    The aim of this study was to evaluate the intake, digestibility, growth performance, and enteric methane emissions of Brazilian semiarid non-descript breed goats (NDG) fed diets with different forage:concentrate ratios (100:0, 80:20, 60:40, 40:60, and 20:80) on a dry matter basis. Forty uncastrated male NDG with an average initial body weight of 13.3 kg ± 4.7 kg were distributed in a completely randomized design, with five treatments and eight replications. Ground Tifton-85 hay was used as forage and ground corn and soybean meal were used as concentrate. The sulfur hexafluoride tracer technique was used to measure methane emissions. The intake of dry matter, organic matter, crude protein, and ether extract increased linearly while the intake of neutral detergent fiber decreased linearly as the concentrate proportion increased (P < 0.05). The digestibility of dry matter and organic matter increased while the digestibility of neutral detergent fiber decreased as the concentrate level increased (P < 0.05). There were linear increases in final body weight, total weight gain, average daily gain, and feed efficiency (P < 0.0001). Methane emissions per unit of body weight (ranging from 1.9 to 0.5 g/kg), metabolic body weight (ranging from 3.9 to 1.2 g/kg), and dry matter intake (ranging from 58.8 to 21.9 g/kg) reduced linearly as the concentrate proportion increased (P < 0.01). Decreasing the forage to concentrate ratio in the diet decreased methane emission and increased growth performance of NDG. The 80:20 ratio could be considered more appropriate to reduce methane emissions from NDG, which did not change much at higher levels of concentrate.

  12. Offering a forage crop at pasture did not adversely affect voluntary cow traffic or milking visits in a pasture-based automatic milking system.

    PubMed

    Scott, V E; Kerrisk, K L; Garcia, S C

    2016-03-01

    Feed is a strong incentive for encouraging cows in automatic milking systems (AMS) to voluntarily move around the farm and achieve milkings distributed across the 24 h day. It has been reported that cows show preferences for some forages over others, and it is possible that offering preferred forages may increase cow traffic. A preliminary investigation was conducted to determine the effect of offering a forage crop for grazing on premilking voluntary waiting times in a pasture-based robotic rotary system. Cows were offered one of two treatments (SOYBEAN or GRASS) in a cross-over design. A restricted maximum likelihood procedure was used to model voluntary waiting times. Mean voluntary waiting time was 45.5±6.0 min, with no difference detected between treatments. High and mid-production cows spent 55 min/milking for low-production cows, whereas waiting time increased as queue length increased. Voluntary waiting time was 23% and 80% longer when cows were fetched from the paddock or had a period of forced waiting before volunteering for milking, respectively. The time it took cows to return to the dairy since last exiting was not affected by treatment, with a mean return time of 13.7±0.6 h. Although offering SOYBEAN did not encourage cows to traffic more readily through the premilking yard, the concept of incorporating forage crops in AMS still remains encouraging if the aim is to increase the volume or quantity of home-grown feed rather than improving cow traffic.

  13. Changes of vitamins A, E, and C and lipid peroxidation status of breeding and pregnant sheep during dry seasons on medium-to-low quality forages.

    PubMed

    Mohebbi-Fani, Mehdi; Mirzaei, Abdollah; Nazifi, Saeed; Shabbooie, Zahra

    2012-02-01

    This study assessed the changes of plasma vitamin A, E, and C and the lipid peroxidation status of sheep during breeding and pregnancy under drought conditions. The study was conducted on 105 cross-bred fat tailed ewes, 3-5 years old with body condition scores (BCS) of 2.5 to 3.5. The ewes were grazing on medium-to-low quality forages during summer and low quality forages within the succeeding months and had ad libitum access to a mixture of alfalfa hay (40%) and wheat straw (60%) in the afternoons. From 3 weeks before breeding till 1 month after the introduction of rams, 300 g of barley grain/head/day was offered to the ewes and then the supplemental grain was reduced to 100 g/head/day. For better synchronization of estrus cycles in ewes, they were isolated from the rams for at least 2 months and then kept in close proximity of the rams for 1 week before the introduction of the rams to the ewe flock. Then, whole blood samples were collected on days 1, 7, 21, and 120 after ram introduction. Vitamins A, E, and C were measured in plasma. Malondialdehyde (MDA) was measured in the hemolysate as a biomarker of lipid peroxidation. Plasma progesterone (P4) was measured in the samples of day 120 for assessing pregnancy status of the ewes. Vitamins A and C showed continuous and significant declines (P < 0.05) through days 1 to 120. Vitamin E declined only during the first 21 days of the study and remained almost constant till day 120. MDA concentration increased significantly at day 21. An elevated concentration of MDA was also detected at day 120. The difference between days 21 and 120 was not significant (P > 0.05). A positive correlation between vitamins E and C was detected at day 120 (r = 0.349, P < 0.01). Age and BCS did not affect the patterns of changes. Assuming that the ewes with P4 concentrations ≥2.5 ng/ml were pregnant, 95 out of 105 ewes (90.5%) were pregnant at day 120 of the study. Under the conditions of the present study with medium-to-low quality

  14. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation.

    PubMed

    Kaur, Parwinder; Appels, Rudi; Bayer, Philipp E; Keeble-Gagnere, Gabriel; Wang, Jiankang; Hirakawa, Hideki; Shirasawa, Kenta; Vercoe, Philip; Stefanova, Katia; Durmic, Zoey; Nichols, Phillip; Revell, Clinton; Isobe, Sachiko N; Edwards, David; Erskine, William

    2017-01-01

    Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia's key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H(2) = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant

  15. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from Uav-Based Images for Forage Monitoring in Grassland

    NASA Astrophysics Data System (ADS)

    Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G.

    2016-06-01

    Remote sensing of crop biomass is important in regard to precision agriculture, which aims to improve nutrient use efficiency and to develop better stress and disease management. In this study, multi-temporal crop surface models (CSMs) were generated from UAV-based dense imaging in order to derive plant height distribution and to determine forage mass. The low-cost UAV-based RGB imaging was carried out in a grassland experiment at the University of Bonn, Germany, in summer 2015. The test site comprised three consecutive growths including six different nitrogen fertilizer levels and three replicates, in sum 324 plots with a size of 1.5×1.5 m. Each growth consisted of six harvesting dates. RGB-images and biomass samples were taken at twelve dates nearly biweekly within two growths between June and September 2015. Images were taken with a DJI Phantom 2 in combination of a 2D Zenmuse gimbal and a GoPro Hero 3 (black edition). Overlapping images were captured in 13 to 16 m and overview images in approximately 60 m height at 2 frames per second. The RGB vegetation index (RGBVI) was calculated as the normalized difference of the squared green reflectance and the product of blue and red reflectance from the non-calibrated images. The post processing was done with Agisoft PhotoScan Professional (SfM-based) and Esri ArcGIS. 14 ground control points (GCPs) were located in the field, distinguished by 30 cm × 30 cm markers and measured with a RTK-GPS (HiPer Pro Topcon) with 0.01 m horizontal and vertical precision. The errors of the spatial resolution in x-, y-, z-direction were in a scale of 3-4 cm. From each survey, also one distortion corrected image was georeferenced by the same GCPs and used for the RGBVI calculation. The results have been used to analyse and evaluate the relationship between estimated plant height derived with this low-cost UAV-system and forage mass. Results indicate that the plant height seems to be a suitable indicator for forage mass. There is a

  16. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops.

    PubMed

    Genc, Yusuf; Oldach, Klaus; Taylor, Julian; Lyons, Graham H

    2016-04-01

    The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp. durum with and without the Na(+) exclusion gene Nax2) differing in Na(+) exclusion were grown in a potting mix under sodicity (Na(+) humate) and salinity (NaCl), and water use, leaf nutrient profiles and yield were determined. Under sodicity, Na(+)-excluding bread wheat and durum wheat with the Nax2 gene had higher yield than Na(+)-accumulating barley and durum wheat without the Nax2 gene. However, under salinity, despite a 100-fold difference in leaf Na(+), all species yielded similarly, indicating that osmotic stress negated the benefits of Na(+) exclusion. In conclusion, Na(+) exclusion can be an effective mechanism for sodicity tolerance, while osmoregulation and tissue tolerance to Na(+) and/or Cl(-) should be the main foci for further improvement of salinity tolerance in cereals. This represents a paradigm shift for breeding cereals with salinity tolerance.

  17. Characterization of in situ nitrogen and fiber digestion and bacterial nitrogen contamination of hay crop forages preserved at different dry matter percentages.

    PubMed

    Nocek, J E; Grant, A L

    1987-02-01

    Alfalfa, red clover, orchardgrass and timothy were harvested in the vegetative stage, wilted and stored as hay, or ensiled in small batch silos (20 kg) at 60, 40 or 20% (direct cut) dry matter and were analyzed for compositional differences. A ruminally cannulated lactating cow, consuming 50% of her dry matter intake from hay crop silage, was used to measure in situ dry matter, N, neutral detergent fiber and acid detergent fiber disappearance. Diaminopimelic acid was used as a bacterial marker to correct for bacterial N contamination for in situ residual N. Fibrous components tended to become concentrated as percent dry matter at preservation decreased, presumably associated with leaching of water solubles during storage. For most forages, as dry matter percentage of preservation decreased, water soluble dry matter and N increased, with a concomitant increase of ruminally nondigested dry matter. Specific trends in coefficients of digestion associated with forage type or preservation dry matter percentage were not observed for dry matter, N, neutral detergent fiber or acid detergent fiber. Correction for contamination by bacterial N decreased lag time in digestion and altered rates of N digestion compared with noncorrected rates. Linear and quadratic bacterial N contamination profiles were observed with time of ruminal incubation. Rate of digestion of N was highly correlated with fibrous component concentration, and to a lesser extent to rate of neutral and acid detergent fiber digestion. Dry matter percentage at preservation had a variable effect on ruminal digestion rate of dry matter and N, which varied with forage type and had no effect on neutral detergent and acid detergent fiber digestion rates. Correction for bacterial N contamination should be considered when establishing N digestion rates for forage by the in situ technique.

  18. Persistent organic pollutants in forage fish prey of rhinoceros auklets breeding in Puget Sound and the northern California Current.

    PubMed

    Good, Thomas P; Pearson, Scott F; Hodum, Peter; Boyd, Daryle; Anulacion, Bernadita F; Ylitalo, Gina M

    2014-09-15

    Organochlorine contaminants in upper trophic-level consumers inhabiting Puget Sound are consistently higher than in those species inhabiting other west coast locations. We analyzed persistent organic pollutants (POPs) in the six most common fish prey of rhinoceros auklets breeding on Protection Island (Puget Sound), Tatoosh Island (WA coast), and Destruction Island (WA coast). Wet-weight concentrations of POPs ranged widely (PCBs: 1.6-25.0 ng/g; DDTs: 0.2-56.0 ng/g; PBDEs:breeding auklets, their prey and other resident marine birds is needed to assess biomagnification impacts in the Puget Sound marine ecosystem.

  19. Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica, flow environment, and siphon-cropping fishes.

    PubMed

    Peterson, Charles H; Skilleter, Gregory A

    1994-12-01

    Macoma balthica (L.), an abundant clam, ubiquitous in temperate estuaries across the North Atlantic, is known to practice both alternative basic modes of feeding available to seafloor invertebrates. It either holds its feeding organ, the siphon, at a fixed position just above the sediment surface to filter out food particles suspended in the overlying water or else extends and moves its siphon around to vacuum up deposited food particles on the sediment surface. Previous laboratory experiments have established an understanding of the role of current flow in dictating the choice of whether suspension or deposit feeding will be used by marine invertebrates with the facultative flexibility to choose. Faster flows imply greater fluxes of suspended particles so that the energetic rewards of suspension feeding are enhanced. Slower flows imply reduced renewal rates of suspended foods in the bottom boundary layers and enhanced deposition of food particles on the seafloor so that a switch to deposit feeding is favored. Like early optimal foraging theory, this understanding is based on energetic considerations alone without incorporation of broader implications of how population interactions such as predation and competition influence individual foraging behavior. Feeding behavior of Macoma balthica is influenced in the Neuse River estuary by both hydrodynamics and siphon-cropping by juvenile demersal fishes. Under conditions of identical concentrations of suspended particulates in the water column and organic contents of surface sediments, Macoma exhibited much higher levels of deposit feeding where currents were slower. In addition, exclosure and fish inclosure experiments demonstrated that juvenile demersal fishes influence feeding behavior of Macoma by cropping exposed siphons and inducing reduction in deposit-feeding activity. Effects of croppers were substantial in early to midsummer, when juvenile fish abundances were greatest in trawl samples from this estuarine

  20. Red-cockaded woodpecker foraging behavior

    Treesearch

    D. Craig Rudolph; Richard N. Conner; Richard R. Schaefer; Nancy E. Koerth

    2007-01-01

    We studied Red-cockaded Woodpeckers (Picoides borealis) to examine the effect of status and gender on foraging behavior. Foraging behavior of breeding pairs extended beyond separation by foraging height to include zones (bole, trunk in crown, primary limb, secondary limb) of the tree used and foraging methods (scaling, probing, excavating). Helper...

  1. Comparison Between Ground Ant (Hymenoptera: Formicidae) Communities Foraging in the Straw Mulch of Sugarcane Crops and in the Leaf Litter of Neighboring Forests.

    PubMed

    Silva, N S; Saad, L P; Souza-Campana, D R; Bueno, O C; Morini, M S C

    2017-02-01

    In many sugarcane plantations in Brazil, the straw is left on the soil after harvesting, and vinasse, a by-product of the production of sugar and ethanol, is used for fertigation. Our goal was to compare ant community composition and species richness in the straw mulch of sugarcane crops with the leaf litter of neighboring forests. We tested the hypothesis that ant communities in the straw mulch of vinasse-irrigated sugarcane crops and in the forest leaf litter were similar, because the combination of straw mulching and vinasse irrigation has a positive effect on soil fauna. Straw mulch and leaf litter were collected from 21 sites and placed in Berlese funnels. In total, 61 species were found in the forest leaf litter, whereas 34 and 28 species were found in the straw mulch of sugarcane fields with and without vinasse, respectively. Ant communities differed between forest and crop fields, but the species in the sugarcane straw mulch were a subset of the species found in the forest leaf litter. Although vinasse is rich in organic matter, it did not increase ant diversity. Seven feeding and/or foraging types were identified and, among the different types, surface-foraging omnivorous ants were the most prevalent in all habitats. Vinasse-irrigated sugarcane straw mulch had more predatory species than mulch from vinasse-free fields, but fewer than forest leaf litter. However, this positive effect of vinasse irrigation should be carefully evaluated because vinasse has negative effects on the environment. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of sublethal doses of crop protection agents on honey bee (Apis mellifera) global colony vitality and its potential link with aberrant foraging activity.

    PubMed

    Beliën, T; Kellers, J; Heylen, K; Keulemans, W; Billen, J; Arckens, L; Huybrechts, R; Gobin, B

    2009-01-01

    Honey bees (Apis mellifera) are the most economically valuable pollinators of fruit crops worldwide. Taking into account bees' contributions to other flowering agricultural crops, about one-third of our total diet comes directly or indirectly from bee-pollinated plants. However, in recent years there increasingly have been worrisome alarm sounds on serious bee mortalities and mysterious disappearance of bees from beehives. Among several environmental factors (e.g. climate and bee pathogens), stress factors arising from agricultural practices can potentially play a role in bee losses. Detailed knowledge on the effects of plant protection products is essential to improve usage with minimal risks. In order to identify potential medium- and long-term effects, we followed up various sublethal contaminated hives during the prolongation of the fruit-growing season. More specifically, a large-scale experiment was conducted in which at four distinct locations (in the Limburg region of Belgium) four different bee colonies (representing three different contaminations -imidacloprid, fenoxycarb, indoxacarb- and a non-contaminated control hive) were thoroughly monitored every 2-7 days. Our observations point towards decays of overall colony vitality for several hives a couple of weeks after treatment, as indicated by a set of carefully assessed parameters including the total amount of active and dead bees, total surface of capped brood and overall colony weight. These outcomes could be linked to subtle differences in foraging activity between distinct hives. The implications of these results are discussed in terms of potential short-term and long-term consequences of disturbed foraging ability triggered by exaggerated exposure to sublethal doses of crop protection chemicals, and its potential impact on colony health.

  3. New Developments in Forage Varieties

    USDA-ARS?s Scientific Manuscript database

    Forage crops harvested for hay or haylage or grazed support dairy, beef, sheep and horse production. Additional livestock production from reduced forage acreage supports the need for forage variety improvement. The Consortium for Alfalfa Improvement is a partnership model of government, private no...

  4. Logging impacts on avian species richness and composition differ across latitudes relative to foraging and breeding habitat preferences

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.

  5. Logging impacts on avian species richness and composition differ across latitudes and foraging and breeding habitat preferences.

    PubMed

    LaManna, Joseph A; Martin, Thomas E

    2016-10-10

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.

  6. Accelerometers identify new behaviors and show little difference in the activity budgets of lactating northern fur seals (Callorhinus ursinus) between breeding islands and foraging habitats in the eastern Bering Sea.

    PubMed

    Battaile, Brian C; Sakamoto, Kentaro Q; Nordstrom, Chad A; Rosen, David A S; Trites, Andrew W

    2015-01-01

    We tagged 82 lactating northern fur seals (Callorhinus ursinus) with tri-axial accelerometers and magnetometers on two eastern Bering Sea islands (Bogoslof and St. Paul) with contrasting population trajectories. Using depth data, accelerometer data and spectral analysis we classified time spent diving (30%), resting (~7%), shaking and grooming their pelage (9%), swimming in the prone position (~10%) and two types of previously undocumented rolling behavior (29%), with the remaining time (~15%) unspecified. The reason for the extensive rolling behavior is not known. We ground-truthed the accelerometry signals for shaking and grooming and rolling behaviors--and identified the acceleration signal for porpoising--by filming tagged northern fur seals in captivity. Speeds from GPS interpolated data indicated that animals traveled fastest while in the prone position, suggesting that this behavior is indicative of destination-based swimming. Very little difference was found in the percentages of time spent in the categorical behaviors with respect to breeding islands (Bogoslof or St. Paul Island), forager type (cathemeral or nocturnal), and the region where the animals foraged (primarily on-shelf <200 m, or off-shelf > 200 m). The lack of significant differences between islands, regions and forager type may indicate that behaviors summarized over a trip are somewhat hardwired even though foraging trip length and when and where animals dive are known to vary with island, forager type and region.

  7. Accelerometers Identify New Behaviors and Show Little Difference in the Activity Budgets of Lactating Northern Fur Seals (Callorhinus ursinus) between Breeding Islands and Foraging Habitats in the Eastern Bering Sea

    PubMed Central

    Battaile, Brian C.; Sakamoto, Kentaro Q.; Nordstrom, Chad A.; Rosen, David A. S.; Trites, Andrew W.

    2015-01-01

    We tagged 82 lactating northern fur seals (Callorhinus ursinus) with tri-axial accelerometers and magnetometers on two eastern Bering Sea islands (Bogoslof and St. Paul) with contrasting population trajectories. Using depth data, accelerometer data and spectral analysis we classified time spent diving (30%), resting (~7%), shaking and grooming their pelage (9%), swimming in the prone position (~10%) and two types of previously undocumented rolling behavior (29%), with the remaining time (~15%) unspecified. The reason for the extensive rolling behavior is not known. We ground-truthed the accelerometry signals for shaking and grooming and rolling behaviors—and identified the acceleration signal for porpoising—by filming tagged northern fur seals in captivity. Speeds from GPS interpolated data indicated that animals traveled fastest while in the prone position, suggesting that this behavior is indicative of destination-based swimming. Very little difference was found in the percentages of time spent in the categorical behaviors with respect to breeding islands (Bogoslof or St. Paul Island), forager type (cathemeral or nocturnal), and the region where the animals foraged (primarily on-shelf <200m, or off-shelf > 200m). The lack of significant differences between islands, regions and forager type may indicate that behaviors summarized over a trip are somewhat hardwired even though foraging trip length and when and where animals dive are known to vary with island, forager type and region. PMID:25807552

  8. The effects of provisioning and crop-raiding on the diet and foraging activities of human-commensal white-faced capuchins (Cebus capucinus).

    PubMed

    McKinney, Tracie

    2011-05-01

    Non-human primates are coming into increasingly frequent contact with humans and with human-modified environments. The potential for monkeys to survive in such modified landscapes is questionable, and is likely related to a species' behavioral plasticity, particularly as it relates to diet. In this study, I explore the ways in which white-faced capuchins (Cebus capucinus) adjust their diet and foraging behaviors in response to anthropogenic impact. I compare a troop of human-commensal monkeys and a similar troop of wild-feeding monkeys living within the Curú Wildlife Refuge in western Costa Rica for differences in overall diet composition and activity budgets to evaluate the impact of habitat change in this context. The commensal-living white-faced capuchins rely on raided coconut (Cocos nucifera) and oil palm (Elaeis guineensis) crops and provisioned or stolen human foods for over one-half of their total diet. Regardless of this highly anthropogenic diet, the two study troops do not significantly differ in their activity budgets, and the human-commensal troop maintains wild-foraging activities consistent with those of the wild-feeding troop. These data suggest that the white-faced capuchins at this site are responding to anthropogenic disturbance primarily through the exploitation of human food resources, but they do not yet appear to have lost the foraging skills required to survive in this modified landscape on their own. This study adds to our growing body of knowledge on primate survival in matrix habitats, and will hopefully inform primate management plans throughout the Neotropics.

  9. Foraging segregation of two congeneric diving seabird species (common and thick-billed murres) breeding on St. George Island, Bering Sea

    NASA Astrophysics Data System (ADS)

    Kokubun, N.; Yamamoto, T.,; Sato, N.; Watanuki, Y.; Will, A.; Kitaysky, A. S.; Takahashi, A.

    2015-11-01

    Sub-arctic environmental changes are expected to affect the ecology of marine top predators. We examined the characteristics of foraging behavior of two sympatric congeneric diving seabirds, common (Uria aalge: hereafter COMU) and thick-billed (U. lomvia: hereafter TBMU) murres breeding on St. George Island located in the seasonal sea-ice region of the Bering Sea. We investigated their flight duration, diel patterns of dive depth, and underwater wing strokes, along with morphology and blood stable isotopes. Acceleration-temperature-depth data loggers were attached to chick-guarding birds, and behavioral data were obtained from 7 COMU and 12 TBMU. Both species showed similar trip duration (13.21 ± 4.79 h for COMU and 10.45 ± 7.09 h for TBMU) and similar diurnal patterns of diving (frequent dives to various depths in the daytime and less frequent dives to shallow depths in the nighttime). During the daytime, dive depths of COMU had two peaks in shallow (18.1 ± 6.0 m) and deep (74.2 ± 8.7 m) depths, while those of TBMU were 20.2 ± 7.4 m and 59.7 ± 7.9 m. COMU showed more frequent wing strokes during the bottom phase of dives (1.90 ± 0.11 s-1) than TBMU (1.66 ± 0.15 s-1). Fishes occurred with higher proportion in the bill-loads brought back to chicks in COMU (85 %) than in TBMU (56 %). δ15N value of blood was significantly higher in COMU (14.47 ± 0.27 ‰) than in TBMU (13.14 ± 0.36 ‰). Relatively small wing area (0.053 ± 0.007 m2) of COMU compared to TBMU (0.067 ± 0.007 m2) may make them more agile underwater and thus enable them to target more mobile prey including larger fishes that inhabit deeper depths. These differences in foraging behavior between COMU and TBMU might explain the differences in their responses to long-term marine environmental changes.

  10. Crop rotations with annual and perennial forages under no-till soil management: soil attributes, soybean mineral nutrition, and yield

    USDA-ARS?s Scientific Manuscript database

    Extensive use of sustainable and intensive agricultural systems would result in profitable farms producing greater yields while maintaining or enhancing natural resources. Development of sustainable crop and soil management systems depends on understanding complex relationships between soil managem...

  11. Runoff and initial erosion assessment in fruit tree crops and improved forage pastures in the slopes of the Irazu Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; González-Rodrigo, Beatriz

    2017-04-01

    Costa Rica is located in the Central American tropical isthmus. It presents high precipitations (ranging from 1400-8500 mm) and protection levels (27% of national territory). However, intensive land use and increasing population in headwaters are major threats for water resource management in this country. Birrís Basin is a 4800 hectares sub-watershed of the River Reventazón Basin, the major hydroelectric source in Costa Rica. Birrís Basin was selected for its high estimated erosion rates and its potential for demonstrative projects (ICE, 1999). Some pilot projects have been developed in this watershed starting from 1999, when major Costa Rican energy producer, Instituto Costarricense de Electricidad, began with a long term watershed management program for the Reventazón Basin. This study aims at measuring runoff and initial splash and sheet erosion to assess the hydrological response of two pilot land use projects. Erosion and runoff plots were established and monitored in a one year period for two pilot projects (fruit trees and forage pastures) and their respective traditional land uses (vegetable crops and extensive pastures). Improved forage pastures showed reduced runoff by 73% and split erosion by 55% compared to prior extensive pastures. Conversion of vegetable crop lands into fruit tree plantations (apricot and avocado) made possible a 97% reduction of soil initial erosion. Land use pilot projects have succeeded in runoff and soil erosion reduction. Now it is time for a wider technology transfer program to expand improved land uses within Birrís Basin.

  12. Farm Crop Production Technology: Field and Forage Crop and Fruit and Vine Production Options. A Suggested 2-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    Division of Vocational and Technical Education, BAVT.

    Prepared by a junior college under contract with the Office of Education, the curriculum materials are designed to assist school administrators, advisory committees, supervisors, and teachers in developing or evaluating postsecondary programs in farm crop production technology. Information was gathered by visits to the important farm regions and…

  13. Living Mulch Forage Yield and Botanical Composition in a Corn-Soybean-Forage Rotation

    USDA-ARS?s Scientific Manuscript database

    Managing forages as living mulches during row crop production requires suppressing the forages to produce economical crop yields. The objective of this research was to identify forage plants with varied growth habit, persistence, and yield potential to provide desirable ecosystem functions and high ...

  14. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  15. Tissue culture independent transformation of the forage crop sunnhemp (Crotalaria juncea L.): an easy method towards generation of transgenics.

    PubMed

    Rao, Jyothsna P; Agrawal, Pushpa; Mahmood, Riaz; Sreevathsa, Rohini; Rao, K Sankara; Reddy, G R; Suryanarayana, V V S

    2012-01-01

    A transformation system which is free of in vitro plant regeneration following Agrobacterium infection is established for the forage legume, Sunnhemp (Crotalaria juncea L.) where in the entire embryo axis of the germinating seed was used as the target tissue for transformation. After standardization of transformation conditions, the cotyledonary node of the embryo axis was infected with Agrobacterium host LBA 4404 harboring the recombinant vector pCAMBIA 2301. The bivalent 1D gene of the two major foot and mouth disease virus (FMDV) serotypes 'O' and 'A22' and the neomycin phosphotransferase (nptII) gene were used as the markers for optimization of the protocol. The embryo axes were pricked randomly on the cotyledonary node and co-cultivated with Agrobacterium. The germlings were then allowed to grow under standard growth room conditions in to mature fertile plants. 60 T0 plants were established from 3 separate experiments. Three hundred seeds from the 60 T0 plants were sown to raise the T1 generation of which 180 were analyzed for integration of bivalent FMDV gene 1D "O" and "A22" and the nptII gene. Eighteen out of these 180 plants amplified both the marker genes. Two independent transgenic lines 24 and 37, showed elevated levels of expression of 12 μg and 8 μg (per gm of fresh leaf) of the bivalent ID antigen "O" and "A22" . The results showed that the transformation efficiency was 3 %. To the best of our knowledge, this is the first successful attempt of Agrobacterium tumefaciens mediated transformation of Sunnhemp. The protocol can generate whole plant transformants with relative ease and should be compatible to all genotypes of Sunnhemp.

  16. A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops.

    PubMed

    Azuma, Mirai; Morimoto, Reina; Hirose, Mana; Morita, Yasumasa; Hoshino, Atsushi; Iida, Shigeru; Oshima, Yoshimi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Shiratake, Katsuhiro

    2016-01-01

    Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal-specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal-specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal-specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β-glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal-specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA-like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal-specific promoter in molecular breeding of floricultural crops.

  17. Forage and bioenergy feedstock production from hybrid forage sorghum and sorghum x sudangrass hybrids

    USDA-ARS?s Scientific Manuscript database

    As the bioenergy industry expands, producers choosing to shift current forage crop production to dedicated biomass crops will find it advantageous to grow low risk multi-purpose crops that maximize management options. Hybrid forage sorghums (HFS) and sorghum by sudangrass hybrids (SSG) are capable...

  18. On-farm solid state simultaneous saccharification and fermentation of whole crop forage rice in wrapped round bale for ethanol production.

    PubMed

    Horita, Mitsuo; Kitamoto, Hiroko; Kawaide, Tetsuo; Tachibana, Yasuhiro; Shinozaki, Yukiko

    2015-01-01

    In an attempt to reduce environmental loading during ethanol production from cellulosic plant biomass, we have previously proposed an on-site solid state fermentation (SSF) method for producing ethanol from whole crops, which at the same time provides cattle feed without producing wastes. During the ensiling of freshly harvested plant biomass with cellulase and glucoamylase, the added yeast and lactic acid bacteria induced simultaneous saccharification and production of ethanol and lactic acid in hermetically sealed containers on-farm. In a previous study, laboratory-scale SSF (using 250 g of fresh rice crop biomass) yielded 16.9 weight % ethanol in dry matter (DM) after 20 days of incubation. In this study, the fermentation volume was scaled up to a normal-sized round bale and the fermentation process (ethanol concentrations of the products) was monitored. The ethanol produced was recovered and the recovery efficiency was evaluated. SSF tests with forage rice round bales using polyethylene-wrapped whole plant materials (cultivar Leaf Star, average of 125.2 kg dry weight) were monitored in the field without temperature control. They yielded 14.0 weight % ethanol and 2.9 weight % lactic acid in DM after six months of incubation, and the ethanol ratio in the bale remained stable for 14 months after processing. SSF tests with three different rice cultivars were conducted for three years. Ethanol recovery from a fermented whole bale (244 kg fresh matter (FM) containing about 12.4 kg ethanol) by one-step distillation using vacuum distillation equipment yielded 86.3% ethanol collected from distilled solution (107 kg of 10.0 weight % ethanol). In addition, an average of 1.65 kg ethanol in 40.8 kg effluent per bale was recovered. Relative nitrogen content was higher in SSF products than in silage made from the same plant material, indicating that fermentation residue, whose quality is stabilized by the lactic acid produced, can be used as cattle feed. We have

  19. Regional hybrid broccoli trials provide a means to further breeding efforts of this increasingly important vegetable crop

    USDA-ARS?s Scientific Manuscript database

    A Coordinated Agricultural Project (CAP) entitled “Establishing an Eastern Broccoli Industry” is funded under the Specialty Crop Research Initiative (SCRI), and a primary component of the project is a system of regional hybrid broccoli trials conducted along the eastern seaboard. Hybrids currently ...

  20. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

    USDA-ARS?s Scientific Manuscript database

    Advances in sequencing and genotyping technologies have enabled generation of several thousand markers including SSRs, SNPs, DArTs, hundreds of thousands transcript reads and BAC-end sequences in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive tran...

  1. Plant breeding and genetics

    USDA-ARS?s Scientific Manuscript database

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  2. Forage Budgeting

    USDA-ARS?s Scientific Manuscript database

    Pasture management in tropical agro-ecosystems is challenging because of unique soil, climate, and animal interactions. Budgeting forage as part of the grazing system can be difficult because of the strong seasonality of forage production and rapidly changing forage quality. Planning, measuring, and...

  3. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance.

    PubMed

    Shabala, Sergey

    2011-04-01

    Waterlogging affects large areas of agricultural land, resulting in severe economic penalties because of massive losses in crop production. Traditionally, plant breeding for waterlogging tolerance has been based on the field assessment of a range of agronomic and morphological characteristics. This review argues for a need to move towards more physiologically based approaches by targeting specific cellular mechanisms underling key components of waterlogging tolerance in plants. Also, while the main focus of researchers was predominantly on plant anoxia tolerance, less attention was given to plant tolerance to phytotoxins under waterlogged conditions. This paper reviews the production of major elemental and organic phytotoxins in waterlogged soils and describes their adverse effects on plant performance. The critical role of plasma membrane transporters in plant tolerance to secondary metabolite toxicity is highlighted, and ionic mechanisms mediating the this tolerance are discussed. A causal link between the secondary metabolite-induced disturbances to cell ionic homeostasis and programmed cell death is discussed, and a new ethylene-independent pathway for aerenchyma formation is put forward. It is concluded that plant breeding for waterlogging tolerance may significantly benefit from targeting mechanisms of tolerance to phytotoxins.

  4. Genomic regions in crop–wild hybrids of lettuce are affected differently in different environments: implications for crop breeding

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H

    2012-01-01

    Many crops contain domestication genes that are generally considered to lower fitness of crop–wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness. We performed quantitative trait loci (QTL) analyses on fitness(-related) traits in two different field environments employing recombinant inbred lines from a cross between cultivated Lactuca sativa and its wild relative Lactuca serriola. We identified a region on linkage group 5 where the crop allele consistently conferred a selective advantage (increasing fitness to 212% and 214%), whereas on linkage group 7, a region conferred a selective disadvantage (reducing fitness to 26% and 5%), mainly through delaying flowering. The probability for a putative transgene spreading would therefore depend strongly on the insertion location. Comparison of these field results with greenhouse data from a previous study using the same lines showed considerable differences in QTL patterns. This indicates that care should be taken when extrapolating experiments from the greenhouse, and that the impact of domestication genes has to be assessed under field conditions. PMID:23028403

  5. Variation in sequences containing microsatellite motifs in the perennial biomass and forage grass, Phalaris arundinacea (Poaceae).

    PubMed

    Barth, Susanne; Jankowska, Marta Jolanta; Hodkinson, Trevor Roland; Vellani, Tia; Klaas, Manfred

    2016-03-22

    Forty three microsatellite markers were developed for further genetic characterisation of a forage and biomass grass crop, for which genomic resources are currently scarce. The microsatellite markers were developed from a normalized EST-SSR library. All of the 43 markers gave a clear banding pattern on 3% Metaphor agarose gels. Eight selected SSR markers were tested in detail for polymorphism across eleven DNA samples of large geographic distribution across Europe. The new set of 43 SSR markers will help future research to characterise the genetic structure and diversity of Phalaris arundinacea, with a potential to further understand its invasive character in North American wetlands, as well as aid in breeding work for desired biomass and forage traits. P. arundinacea is particularly valued in the northern latitude as a crop with high biomass potential, even more so on marginal lands.

  6. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    PubMed Central

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-01

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding. PMID:28146083

  7. Prioritisation of native legume species for further evaluation as potential forage crops in water-limited agricultural systems in South Africa.

    PubMed

    Müller, Francuois L; Raitt, Lincoln M; Chimphango, Samson B M; Samuels, M Igshaan; Cupido, Clement F; Boatwright, J Stephen; Knight, Richard; Trytsman, Marike

    2017-09-19

    In the face of climate change, identification of forage species suitable for dryland farming under low rainfall conditions in South Africa is needed. Currently, there are only a limited number of forage species suitable for dryland farming under such conditions. The objective of this study was to identify and prioritise native legume species that could potentially be used in dryland farming systems in water-limited agro-ecosystems in South Africa. Using a combination of ecological niche modelling techniques, plant functional traits, and indigenous knowledge, 18 perennial herbaceous or stem-woody legume species were prioritised for further evaluation as potential fodder species within water-limited agricultural areas. These species will be evaluated further for their forage quality and their ability to survive and produce enough biomass under water limitation and poor edaphic conditions.

  8. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels.

    PubMed

    Sarath, Gautam; Mitchell, Robert B; Sattler, Scott E; Funnell, Deanna; Pedersen, Jeffery F; Graybosch, Robert A; Vogel, Kenneth P

    2008-05-01

    This review focuses on the potential advantages and disadvantages of forages such as switchgrass (Panicum virgatum), and two small grains: sorghum (Sorghum bicolor), and wheat (Triticum aesitvum), as feedstocks for biofuels. It highlights the synergy provided by applying what is known from forage digestibility and wheat and sorghum starch properties studies to the biofuels sector. Opportunities therefore, exist to improve biofuel qualities in these crops via genetics and agronomics. In contrast to cereal crops, switchgrass still retains tremendous exploitable genetic diversity, and can be specifically improved to fit a particular agronomic, management, and conversion platform. Combined with emerging studies on switchgrass genomics, conversion properties and management, the future for genetic modification of this species through conventional and molecular breeding strategies appear to be bright. The presence of brown-midrib mutations in sorghum that alter cell wall composition by reducing lignin and other attributes indicate that sorghum could serve as an important model species for C(4)-grasses. Utilization of the brown-midrib traits could lead to the development of forage and sweet sorghums as novel biomass crops. Additionally, wheat crop residue, and wheat and sorghum with improved starch content and composition represent alternate biofuel sources. However, the use of wheat starch as a biofuel is unlikely but its value as a model to study starch properties on biofuel yields holds significant promise.

  9. Functional Invertebrate Prey Groups Reflect Dietary Responses to Phenology and Farming Activity and Pest Control Services in Three Sympatric Species of Aerially Foraging Insectivorous Birds

    PubMed Central

    Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz

    2014-01-01

    Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the

  10. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds.

    PubMed

    Orłowski, Grzegorz; Karg, Jerzy; Karg, Grzegorz

    2014-01-01

    Farming activity severely impacts the invertebrate food resources of farmland birds, with direct mortality to populations of above-ground arthropods thorough mechanical damage during crop harvests. In this study we assessed the effects of phenological periods, including the timing of harvest, on the composition and biomass of prey consumed by three species of aerial insectivorous birds. Common Swifts Apus apus, Barn Swallows Hirundo rustica and House Martins Delichon urbica breed sympatrically and most of their diet is obtained from agricultural sources of invertebrate prey, especially from oil-seed rape crops. We categorized invertebrate prey into six functional groups, including oil-seed rape pests; pests of other arable crops; other crop-provisioned taxa; coprophilous taxa; and taxa living in non-crop and mixed crop/non-crop habitats. Seasonality impacted functional groups differently, but the general direction of change (increase/decrease) of all groups was consistent as indexed by prey composition of the three aerial insectivores studied here. After the oil-seed rape crop harvest (mid July), all three species exhibited a dietary shift from oil-seed rape insect pests to other aerial invertebrate prey groups. However, Common Switfts also consumed a relative large quantity of oil-seed rape insect pests in the late summer (August), suggesting that they could reduce pest insect emigration beyond the host plant/crop. Since these aerially foraging insectivorous birds operate in specific conditions and feed on specific pest resources unavailable to foliage/ground foraging avian predators, our results suggest that in some crops like oil-seed rape cultivations, the potential integration of the insectivory of aerial foraging birds into pest management schemes might provide economic benefits. We advise further research into the origin of airborne insects and the role of aerial insectivores as agents of the biological control of crop insect pests, especially the

  11. Rangeland and warm-season forage grasses

    USDA-ARS?s Scientific Manuscript database

    Livestock ranchers depend on grassland grazing for a substantial part of their livestock management systems. Grassland forages make up to 85% of the feed supply for ruminant animal products, especially in warm climates. Grass breeding in general creates some unique breeding challenges ranging from...

  12. Yield gains in cool-season forage legumes, cool-season forage grasses, and switchgrass

    USDA-ARS?s Scientific Manuscript database

    Breeding new forage varieties has been an ongoing process for more than 100 years. Despite this sustained effort, little gain has been made for forage yield, with a few minor exceptions. Breeders have made significant improvements to persistence, disease resistance, and insect resistance, each of wh...

  13. Blue Oak Canopy Effect on Seasonal Forage Production and Quality

    Treesearch

    William E. Frost; Neil K. McDougald; Montague W. Demment

    1991-01-01

    Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...

  14. 7 CFR 407.13 - Group risk plan for forage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Group risk plan for forage. 407.13 Section 407.13..., DEPARTMENT OF AGRICULTURE GROUP RISK PLAN OF INSURANCE REGULATIONS § 407.13 Group risk plan for forage. The provisions of the Group Risk Plan for Forage for the 2000 and succeeding crop years are as follows: 1...

  15. Breeding objectives for Targhee sheep.

    PubMed

    Borg, R C; Notter, D R; Kuehn, L A; Kott, R W

    2007-11-01

    Breeding objectives were developed for Targhee sheep under rangeland production conditions. Traits considered were those for which EPD were available from the US National Sheep Improvement Program and included direct and maternal effects on 120-d weaning weight (WW and MM, respectively); yearling weight (YW); yearling fleece weight, fiber diameter, and staple length; and percent lamb crop (PLC), measured as the number of lambs born per 100 ewes lambing. A bioeconomic model was used to predict the effects of a change of 1 additive SD in EPD for each trait, holding all other traits constant at their mean, on animal performance, feed requirements, feed costs, and economic returns. Resulting economic weightings were then used to derive selection indexes. Indexes were derived separately for 3 prolificacy levels (1.41, 1.55, and 1.70 lambs/ewe lambing), 2 triplet survival levels (50 and 67%), 2 lamb pricing policies (with or without discounting of prices for heavy feeder lambs), and 3 forage cost scenarios (renting pasture, purchasing hay, or reducing flock size to accommodate increased nutrient requirements for production). Increasing PLC generally had the largest impact on profitability, although an increase in WW was equally important, with low feed costs and no discounting of prices for heavy feeder lambs. Increases in PLC were recommended at all 3 prolificacy levels, but with low triplet survival the value of increasing PLC eventually declined as the mean litter size increased to approximately 2.15 lambs/ewe lambing and above. Increasing YW (independent of WW) increased ewe maintenance costs and reduced profitability. Predicted changes in breeding values for WW and YW under index selection varied with lamb pricing policy and feed costs. With low feed costs or no discounts for heavy lambs, YW increased at a modest rate in association with increasing WW, but with high feed costs or discounting of heavy lambs, genetic trends in WW were reduced by approximately 50% to

  16. Foraging ecology

    USGS Publications Warehouse

    Tinker, M. Tim; Estes, James A.; Staedler, Michelle; Bodkin, James L.; Tinker, M. Tim; Estes, James A.; Ralls, Katherine; Williams, Terrie M.; Jessup, David A.; Costa, Daniel P.

    2006-01-01

    Longitudinal foraging data collected from 60 sea otters implanted with VHF radio transmitters at two study sites in Central California over a three-year period demonstrated even greater individual dietary specialization than in previous studies, with only 54% dietary overlap between individuals and the population.Multivariate statistical analyses indicated that individual diets could be grouped into three general "diet types" representing distinct foraging specializations. Type 1 specialists consumed large size prey but had low dive efficiency, Type 2 specialists consumed small to medium size prey with high dive efficiency, and Type 3 specialists consumed very small prey (mainly snails) with very high dive efficiency.The mean rate of energy gain for the population as a whole was low when compared to other sea otter populations in Alaska but showed a high degree of within- and betweenindividual variation, much of which was accounted for by the three foraging strategies. Type 1 specialists had the highest mean energy gain but also the highest withinindividual variance in energy gain. Type 2 specialists had the lowest mean energy gain but also the lowest variance. Type 3 specialists had an intermediate mean and variance. All three strategies resulted in very similar probabilities of exceeding a critical rate of energy gain on any given day.Correlational selection may help maintain multiple foraging strategies in the population: a fitness surface (using mean rate of energy gain as a proxy for fitness) fit to the first two principal components of foraging behavior suggested that the three foraging strategies occupy separate fitness peaks.Food limitation is likely an important ultimate factor restricting population growth in the center of the population’s range in California, although the existence of alternative foraging strategies results in different impacts of food limitation on individuals and thus may obscure expected patterns of density dependence.

  17. Living Mulch Nutritive Value in a Corn-Soybean-Forage Rotation

    USDA-ARS?s Scientific Manuscript database

    Living mulches can function to supply forage in multifunctional cropping systems. Information quantifying nutritive value of forage plants in living mulch cropping systems is limited. The objective of this research was to quantify the nutritive value of forages from different plant functional groups...

  18. Forage harvest representation in RUSLE2

    USDA-ARS?s Scientific Manuscript database

    The Revised Universal Soil Loss Equation (RUSLE and RUSLE2) has long been used by USDA and others for management planning based on soil erosion and sediment delivery estimates. It has worked well for normal annual agronomic crops, but proved to be awkward for forage crops. This is partly because RU...

  19. Mutation breeding by ion implantation

    NASA Astrophysics Data System (ADS)

    Yu, Zengliang; Deng, Jianguo; He, Jianjun; Huo, Yuping; Wu, Yuejin; Wang, Xuedong; Lui, Guifu

    1991-07-01

    Ion implantation as a new mutagenic method has been used in the rice breeding program since 1986, and for mutation breeding of other crops later. It has been shown, in principle and in practice, that this method has many outstanding advantages: lower damage rate; higher mutation rate and wider mutational spectrum. Many new lines of rice with higher yield rate; broader disease resistance; shorter growing period but higher quality have been bred from ion beam induced mutants. Some of these lines have been utilized for the intersubspecies hybridization. Several new lines of cotton, wheat and other crops are now in breeding. Some biophysical effects of ion implantation for crop seeds have been studied.

  20. RosBREED: Enabling Marker-Assisted Breeding in Rosaceae

    USDA-ARS?s Scientific Manuscript database

    Genomics research has not yet been translated into routine practical application in breeding Rosaceae fruit crops (peach, apple, strawberry, cherry, apricot, pear, raspberry, etc.). Through dedicated efforts of many researchers worldwide, a wealth of genomics resources has accumulated, including ES...

  1. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue.

    PubMed

    Guo, X S; Undersander, D J; Combs, D K

    2013-03-01

    This study evaluated the effects of Lactobacillus plantarum with or without Lactobacillus buchneri on the fermentation and aerobic stability of mixed tall fescue (Festuca arundinacea Schreb) and meadow fescue (Festuca pratensis Huds.) silage ensiled at different dry matter (DM) contents. The first cut was harvested at boot stage and second-cut grasses were harvested when 30- to 35-cm tall. Four DM content treatments of the first cut were 17.9, 24.9, 34.6, and 48.7%; and of the second cut were 29.1, 36.3, 44.1, and 49.2%. Chopped grasses at each DM content were treated with (1) deionized water (control), (2) Lb. plantarum MTD-1 (LP), or (3) a combination of Lb. plantarum MTD-1 and Lb. buchneri 40788 (LP+LB). The application amount of each inoculant to the fresh forage was 1 × 10(6) cfu/g. Grasses were ensiled in vacuum-sealed polyethylene bags containing 150 g of DM for 60 d, with 4 replicates for each treatment. Silages inoculated with LP+LB had greater pH compared with untreated or LP-treated silages. Lactate was greater in LP silage than control or LP+LB silages. As silage DM increased, lactate in untreated and LP-treated silages decreased, but increased in LP+LB-treated silage. Acetate concentration decreased with increased DM in all silages. The LP+LB-treated silage had the longest and control silage the shortest aerobic stability for both harvests. The greatest values in aerobic stability were observed in silages with highest DM content. In this study, aerobic stability of grass mixes ensiled between 18 and 44% DM content increased as the percentage of DM increased. The LP and LP+LB inoculants improved aerobic stability of silages harvested between 18 and 44% DM content.

  2. Use of fall-grown oats in dairy cropping systems

    USDA-ARS?s Scientific Manuscript database

    Recently, there has been new (or renewed) interest in alternative forage crops, double-cropping, and cover crops to meet a variety of different management objectives; however, the use of cereal-grain forages figures prominently in many of these management considerations. Work by the USDA-ARS and UW ...

  3. Breeding cassava for higher yield

    USDA-ARS?s Scientific Manuscript database

    Cassava is a root crop grown for food and for starch production. Breeding progress is slowed by asexual production and high levels of heterozygosity. Germplasm resources are rich and accessible to breeders through genebanks worldwide. Breeding objectives include high root yield, yield stability, dis...

  4. 7 CFR 407.13 - Group risk plan for forage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for the insured crop year is less than your trigger yield. (b) Payment yields will be determined prior... Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION... provisions of the Group Risk Plan for Forage for the 2000 and succeeding crop years are as follows: 1...

  5. Sex dependent risk management in face of perceived danger of socially foraging Bee-eaters (Merops apiaster) during migration.

    PubMed

    Yosef, Reuven; Fehervari, Peter; Yosef-Sukenik, Nufar

    2013-11-01

    The proximal reasons and ultimal consequences of decisions made during foraging by breeding individuals are widely studied in numerous avian systems. However, the effects of these decisions are more pronounced in migratory birds because they spend more time and energy foraging than on the actual journey itself. The peak flowering and pollination period of crops in southern Israel, when large numbers of hives are transported to the region, coincide with the peak migration of Bee-eaters. We hypothesized that Bee-eaters cue on conspecifics while foraging at a stopover site, react to perceived danger at a given foraging patch, and that the degree of risk taken by an individual was a function of body condition and sex. Bee-eaters were caught on 44 different mornings in spring 2004, 2005, and 2009. A sex-dependent trapping was noted and significantly more females were caught in the first bout. The sex ratio remained significantly male biased in bouts 3-8. Birds caught in the first bout were heavier in comparison to those caught in the second bout, and there was a significant interaction between sex and bouts. From the second bout onwards both sexes showed a significant increase in body mass, by 1.05g/bout on average (±0.6 SD), however wing lengths remained similar for both sexes. We conclude that migrant Bee-eaters cue on conspecifics to evaluate predation risks when socially foraging at a localized food patch and males, who we assume to be time-minimizers, are more likely to forage at a novel site and once danger of foraging is perceived only high energy demand individuals will attempt to hunt.

  6. Lignin: Characterization of a Multifaceted Crop Component

    PubMed Central

    2013-01-01

    Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines. PMID:24348159

  7. Habitat-specific foraging of prothonotary warblers: Deducing habitat quality

    USGS Publications Warehouse

    Lyons, J.E.

    2005-01-01

    Foraging behavior often reflects food availability in predictable ways. For example, in habitats where food availability is high, predators should attack prey more often and move more slowly than in habitats where food availability is low. To assess relative food availability and habitat quality, I studied the foraging behavior of breeding Prothonotary Warblers (Protonotaria citrea) in two forest habitat types, cypress-gum swamp forest and coastal-plain levee forest. I quantified foraging behavior with focal animal sampling and continuous recording during foraging bouts. I measured two aspects of foraging behavior: 1) prey attack rate (attacks per minute), using four attack maneuvers (glean, sally, hover, strike), and 2) foraging speed (movements per minute), using three types of movement (hop, short flight [???1 m], long flight [>1 m]). Warblers attacked prey more often in cypress-gum swamp forest than in coastal-plain levee forest. Foraging speed, however, was not different between habitats. I also measured foraging effort (% time spent foraging) and relative frequency of attack maneuvers employed in each habitat; neither of these variables was influenced by forest type. I conclude that Prothonotary Warblers encounter more prey when foraging in cypress-gum swamps than in coastal-plain levee forest, and that greater food availability results in higher density and greater reproductive success for birds breeding in cypress-gum swamp.

  8. Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins

    PubMed Central

    McInnes, Julie C.; Emmerson, Louise; Southwell, Colin; Faux, Cassandra; Jarman, Simon N.

    2016-01-01

    As central place foragers, breeding penguins are restricted in foraging range by the need to return to the colony to feed chicks. Furthermore, breeding birds must balance energetic gain from self-feeding with the costs of returning to provision young. Non-breeding birds, however, are likely to be less restricted in foraging range and lack the high energy demands of provisioning, therefore may consume different prey to breeders. We used DNA dietary analysis to determine whether there was a difference in provisioning and self-feeding diet by identifying prey DNA in scat samples from breeding and chick Adélie penguins at two locations in East Antarctica. We also investigated diet differences between breeders and non-breeders at one site. Although previous work shows changing foraging behaviour between chick provisioning and self-feeding, our results suggest no significant differences in the main prey groups consumed by chicks and breeders at either site or between breeding stages. This may reflect the inability of penguins to selectively forage when provisioning, or resources were sufficient for all foraging needs. Conversely, non-breeders were found to consume different prey groups to breeders, which may reflect less restricted foraging ranges, breeders actively selecting particular prey during breeding or reduced foraging experience of non-breeders. PMID:26909171

  9. Fall-grown oat forages: unique quality characteristics

    USDA-ARS?s Scientific Manuscript database

    For the dairy industry, the options for producing a late-summer emergency forage crop are limited, mostly because the growing season is relatively short. Recent research has shown that oats, seeded in late-summer, can provide an excellent source of emergency forage before winter. Furthermore, fall-g...

  10. Grazing management for fall-grown oat forages

    USDA-ARS?s Scientific Manuscript database

    For the dairy (or beef) industry, the options for producing a late-summer emergency forage crop are limited, mostly because the growing season in Wisconsin is relatively short. Recent research has shown that oat, seeded in late-summer, can provide an excellent source of emergency forage before winte...

  11. Summertime blues: August foraging leaves honey bees empty-handed.

    PubMed

    Couvillon, Margaret J; Fensome, Katherine A; Quah, Shaun Kl; Schürch, Roger

    2014-01-01

    A successful honey bee forager tells her nestmates the location of good nectar and pollen with the waggle dance, a symbolic language that communicates a distance and direction. Because bees are adept at scouting out profitable forage and are very sensitive to energetic reward, we can use the distance that bees communicate via waggle dances as a proxy for forage availability, where the further the bees fly, the less forage can be found locally. Previously we demonstrated that bees fly furthest in the summer compared with spring or autumn to bring back forage that is not necessarily of better quality. Here we show that August is also the month when significantly more foragers return with empty crops (P = 7.63e-06). This provides additional support that summer may represent a seasonal foraging challenge for honey bees.

  12. Spatial arrangement, population density and legume species effect of yield of forage sorghum-legume intercropping

    USDA-ARS?s Scientific Manuscript database

    Sorghum (Sorghum bicolor) is a stress tolerant forage crop grown extensively in the Southern High Plains. However, sorghum forage quality is lower than that of corn. Intercropping sorghum with legumes can improve quality and productivity of forage. However, tall statured sorghum limits the resources...

  13. Effects of rain damage on wilting forages

    USDA-ARS?s Scientific Manuscript database

    One of the most common problems faced by hay or silage producers is how to manage production schedules around unfavorable weather. Inevitably, some wilting forage crops are damaged by unexpected rainfall events each year, and producers often inquire about the effects of unexpected rain damage, and w...

  14. Collection of sugarcane crop residue for energy

    SciTech Connect

    Eiland, B.R.; Clayton, J.E.

    1982-12-01

    Crop residue left after sugarcane harvesting was recovered using a forage harvester and a large round baler. The quantity, bulk density and moisture content of the crop residue was determined in four fields. Crop residue from 7 ha was burned in boilers at a sugar mill. Samples of this residue were tested by a laboratory and compared to sugarcane bagasse.

  15. Partial decomposition of the genetic correlation between forage yield and fiber using semi-hybrids

    USDA-ARS?s Scientific Manuscript database

    Voluntary intake potential of a forage crop is generally considered to be the most important feed characteristic regulating animal performance. Efforts to develop forage crops with reduced bulk volume, measured by neutral detergent fiber (NDF) concentration, are associated with reduced plant fitness...

  16. Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters

    USDA-ARS?s Scientific Manuscript database

    Farmers are increasingly using forage radish as a winter cover crop to achieve multiple soil and environmental benefits. In this study, pilot-scale mixed digesters were used to quantify methane (CH4) and hydrogen sulfide (H2S) production when using forage radish, a sulfur-rich cover crop, as a co-d...

  17. Annual warm-season grasses vary for forage yield, quality, and competitiveness with weeds

    USDA-ARS?s Scientific Manuscript database

    Warm-season annual grasses may be suitable as herbicide-free forage crops. A two-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three war...

  18. Positive Genetic Correlation Between Forage Yield and Fiber of Smooth Bromegrass

    USDA-ARS?s Scientific Manuscript database

    Voluntary intake potential of a forage crop is generally considered to be the most important feed characteristic regulating animal performance. Efforts to develop forage crops with reduced bulk volume, measured by neutral detergent fiber (NDF) concentration, are associated with reduced plant fitnes...

  19. Breeding nursery tissue collection for possible genomic analysis

    USDA-ARS?s Scientific Manuscript database

    Phenotyping is considered a major bottleneck in breeding programs. With new genomic technologies, high throughput genotype schemes are constantly being developed. However, every genomic technology requires phenotypic data to inform prediction models generated from the technology. Forage breeders con...

  20. Accelerating plant breeding.

    PubMed

    De La Fuente, Gerald N; Frei, Ursula K; Lübberstedt, Thomas

    2013-12-01

    The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Evaluation of winter wheat breeding lines for traits related to nitrogen use under organic management

    USDA-ARS?s Scientific Manuscript database

    There is growing interest in breeding crop cultivars specifically for organic agriculture, based on recognized differences in environmental and management conditions. This study evaluated 12 diverse winter wheat breeding lines chosen from conventional and organic breeding nurseries, six historic var...

  2. Genetic manipulation of miR156 for improvement of biomass production and forage quality in red clover

    USDA-ARS?s Scientific Manuscript database

    Red clover (Trifolium pratense) is an important forage legume in the United States. Improving forage quality and biomass yield is an important goal of forage breeding programs. Plant development, particularly the transition from vegetative to reproductive growth, is an important factor affecting bio...

  3. Meeting reproductive demands in a dynamic upwelling system: foraging strategies of a pursuit-diving seabird, the marbled murrelet

    Treesearch

    M. Zachariah Peery; Scott H. Newman; Curt D. Storlazzi; Steven R. Beissinger

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes...

  4. Feasibility for improving phytonutrient content in vegetable crops using conventional breeding strategies: case study with carotenoids and tocopherols in sweet corn and broccoli.

    PubMed

    Ibrahim, Khalid E; Juvik, John A

    2009-06-10

    Among vegetables, sweet corn ( Zea mays L.) and broccoli ( Brassica oleracea L. ssp. italica) are important sources of dietary carotenoids and tocopherols. Because medical evidence suggests that carotenoid and tocopherol health-promoting activity acts in a dose-dependent manner, conventional breeding to develop elite sweet corn and broccoli germplasm with enhanced levels of these phytochemicals will potentially promote health among the consuming public. This investigation includes the quantitative analysis of carotenoid and tocopherol contents of 41 corn and 24 broccoli genotypes grown in multiple environments (years and seasons in one location) to partition the variation into genetic, environment, and genotype by environment interaction (GxE) components and measure the phenotypic stability of genotypes for these phytochemicals. The primary carotenoids and tocopherols in corn were lutein and gamma-tocopherol (65 and 73% of total carotenoid and tocopherol, respectively), whereas beta-carotene and alpha-tocopherol were dominant in broccoli (65 and 79% of total carotenoid and tocopherol, respectively). Partitioning of the variance indicated that genetic differences among the genotypes averaged for the primary compounds in corn (lutein, zeaxanthin, and alpha- and gamma-tocopherol) and broccoli (beta-carotene, lutein, and alpha- and gamma-tocopherol) accounted for the largest proportion of the variation (67 and 55% of total phenotypic variation averaged across the phytochemicals in sweet corn and broccoli, respectively). Stability analysis identified several corn (IL451b sh2 and IL2027-8 sh2) and broccoli ('Pirate' and 'Baccus') genotypes with relatively high mean concentrations for the various carotenoids and tocopherols that were comparatively stable across seasons and years. The results of this investigation suggest that sweet corn and broccoli germplasm with enhanced concentrations of carotenoids and tocopherols can be developed using conventional breeding protocols.

  5. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle.

    PubMed

    Hennicke, Janos C; James, David J; Weimerskirch, Henri

    2015-01-01

    In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi) were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas) allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle.

  6. Using pennycress, camelina, and canola cash crops to provision pollinators

    USDA-ARS?s Scientific Manuscript database

    As pollinator decline continues, the need to provide high value forage for insects continues to rise. Finding agricultural crops to diversify the landscape and provide forage is one way to improve pollinator health. Three winter industrial oilseed crops (pennycress, winter camelina, and winter canol...

  7. Heat Damaged Forages: Effects on Forage Quality

    USDA-ARS?s Scientific Manuscript database

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  8. Exploitation of interspecific diversity for monocot crop improvement

    PubMed Central

    King, J; Armstead, I; Harper, J; Ramsey, L; Snape, J; Waugh, R; James, C; Thomas, A; Gasior, D; Kelly, R; Roberts, L; Gustafson, P; King, I

    2013-01-01

    In many cultivated crop species there is limited genetic variation available for the development of new higher yielding varieties adapted to climate change and sustainable farming practises. The distant relatives of crop species provide a vast and largely untapped reservoir of genetic variation for a wide range of agronomically important traits that can be exploited by breeders for crop improvement. In this paper, in what we believe to be the largest introgression programme undertaken in the monocots, we describe the transfer of the entire genome of Festuca pratensis into Lolium perenne in overlapping chromosome segments. The L. perenne/F. pratensis introgressions were identified and characterised via 131 simple sequence repeats and 1612 SNPs anchored to the rice genome. Comparative analyses were undertaken to determine the syntenic relationship between L. perenne/F. pratensis and rice, wheat, barley, sorghum and Brachypodium distachyon. Analyses comparing recombination frequency and gene distribution indicated that a large proportion of the genes within the genome are located in the proximal regions of chromosomes which undergo low/very low frequencies of recombination. Thus, it is proposed that past breeding efforts to produce improved varieties have centred on the subset of genes located in the distal regions of chromosomes where recombination is highest. The use of alien introgression for crop improvement is important for meeting the challenges of global food supply and the monocots such as the forage grasses and cereals, together with recent technological advances in molecular biology, can help meet these challenges. PMID:23321705

  9. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Simulating the impact of genetic diversity of Medicago truncatula on germination and emergence using a crop emergence model for ideotype breeding

    PubMed Central

    Brunel-Muguet, S.; Aubertot, J.-N.; Dürr, C.

    2011-01-01

    Background and Aims Germination and heterotrophic growth are crucial steps for stand establishment. Numerical experiments based on the modelling of these early stages in relation to major environmental factors at sowing were used as a powerful tool to browse the effects of the genetic diversity of Medicago truncatula, one of the model legume species, under a range of agronomic scenarios, and to highlight the most important plant parameters for emergence. To this end, the emergence of several genotypes of M. truncatula was simulated under a range of sowing conditions with a germination and emergence simulation model. Methods After testing the predictive quality of the model by comparing simulations to field observations of several genotypes of M. truncatula, numerical experiments were performed under a wide range of environmental conditions (sowing dates × years × seedbed structure). Germination and emergence was simulated for a set of five genotypes previously parameterized and for two virtual genotypes engineered to maximize the potential effects of genetic diversity. Key Results The simulation results gave an average value of 5–10 % difference in final emergence between genotypes, which was low, but the analysis underlined considerable inter-annual variation. The effects of parameters describing germination and emergence processes were quantified and ranked according to their contribution to the variation in emergence. Seedling non-emergence was mainly related to mechanical obstacles (40–50 %). More generally, plant parameters that accelerated the emergence time course significantly contributed to limiting the risk of soil surface crusting occurring before seedling emergence. Conclusions The model-assisted analysis of the effects of genetic diversity demonstrated its usefulness in helping to identify the parameters which have most influence that could be improved by breeding programmes. These results should also enable a deeper analysis of the genetic

  11. Apricot Breeding

    USDA-ARS?s Scientific Manuscript database

    Apricot orchard area and fruit production are increasing worldwide. Breeding programs engage in apricot development to provide new varieties to meet needs of producers and consumers. Over the last 20 years, breeders have used new techniques to assist in variety development and to increase breeding...

  12. Molecular breeding

    USDA-ARS?s Scientific Manuscript database

    Use of molecular and genomic tools to assist selection of parents or progeny has become an integral part of modern cotton breeding. In this chapter, the basic components of molecular cotton breeding are described. These components include: molecular marker development, genetic and physical map const...

  13. New Developments in Grass Breeding for Hay and Haylage

    USDA-ARS?s Scientific Manuscript database

    ew forage varieties with improved traits are an essential component of best management practices for livestock agriculture. This paper discusses new varieties of several cool-season and warm-season forage grasses used for hay or haylage production and some with potential as biofuel crops....

  14. Eating locally: Australasian gannets increase their foraging effort in a restricted range

    PubMed Central

    Angel, Lauren P.; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P. Y.

    2015-01-01

    ABSTRACT During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. PMID:26369928

  15. Eating locally: Australasian gannets increase their foraging effort in a restricted range.

    PubMed

    Angel, Lauren P; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P Y

    2015-09-14

    During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area.

  16. Seasonal Variations in the Diet and Foraging Behaviour of Dunlins Calidris alpina in a South European Estuary: Improved Feeding Conditions for Northward Migrants

    PubMed Central

    Martins, Ricardo C.; Catry, Teresa; Santos, Carlos D.; Palmeirim, Jorge M.; Granadeiro, José P.

    2013-01-01

    During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway. PMID

  17. Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a south European estuary: improved feeding conditions for northward migrants.

    PubMed

    Martins, Ricardo C; Catry, Teresa; Santos, Carlos D; Palmeirim, Jorge M; Granadeiro, José P

    2013-01-01

    During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway.

  18. The evolution of potato breeding

    USDA-ARS?s Scientific Manuscript database

    Potato cultivars in most regions of the world are tetraploid and clonally propagated. For over a century, the breeding strategy has been phenotypic recurrent selection. However, the polyploid nature of the crop prevents breeders from eliminating deleterious alleles and assembling positive alleles fo...

  19. Among-and-Within-Family Selection in Eight Forage Grass Populations

    USDA-ARS?s Scientific Manuscript database

    Forage yields increased little during the 20th century, despite intensive breeding efforts in many species. Half-sib family (HSF) and/or among-and-within-family (AWF) selection methods may overcome this problem. The objective of this study was to compare HSF and AWF selection using forage yield of...

  20. Do naive juvenile seabirds forage differently from adults?

    PubMed Central

    Riotte-Lambert, Louise; Weimerskirch, Henri

    2013-01-01

    Foraging skills of young individuals are assumed to be inferior to those of adults. The reduced efficiency of naive individuals may be the primary cause of the high juvenile mortality and explain the deferment of maturity in long-lived species. However, the study of juvenile and immature foraging behaviour has been limited so far. We used satellite telemetry to compare the foraging movements of juveniles, immatures and breeding adult wandering albatrosses Diomedea exulans, a species where foraging success is positively influenced by the distance covered daily. We showed that juveniles are able to use favourable winds as soon as the first month of independence, but cover shorter distances daily and spend more time sitting on water than adults during the first two months after fledging. These reduced movement capacities do not seem to be the cause of higher juvenile mortality. Moreover, juveniles almost never restrict their movement to specific areas, as adults and immatures frequently do over shelf edges or oceanic zones, which suggest that the location of appropriate areas is learned through experience. Immatures and adults have equivalent movement capacities, but when they are central place foragers, i.e. when adults breed or immatures come to the colony to display and pair, immatures make shorter trips than adults. The long duration of immaturity in this species seems to be related to a long period of learning to integrate the foraging constraints associated with reproduction and central place foraging. Our results indicate that foraging behaviour of young albatrosses is partly innate and partly learned progressively over immaturity. The first months of learning appear critical in terms of survival, whereas the long period of immaturity is necessary for young birds to attain the skills necessary for efficient breeding without fitness costs. PMID:23926153

  1. Do naive juvenile seabirds forage differently from adults?

    PubMed

    Riotte-Lambert, Louise; Weimerskirch, Henri

    2013-10-07

    Foraging skills of young individuals are assumed to be inferior to those of adults. The reduced efficiency of naive individuals may be the primary cause of the high juvenile mortality and explain the deferment of maturity in long-lived species. However, the study of juvenile and immature foraging behaviour has been limited so far. We used satellite telemetry to compare the foraging movements of juveniles, immatures and breeding adult wandering albatrosses Diomedea exulans, a species where foraging success is positively influenced by the distance covered daily. We showed that juveniles are able to use favourable winds as soon as the first month of independence, but cover shorter distances daily and spend more time sitting on water than adults during the first two months after fledging. These reduced movement capacities do not seem to be the cause of higher juvenile mortality. Moreover, juveniles almost never restrict their movement to specific areas, as adults and immatures frequently do over shelf edges or oceanic zones, which suggest that the location of appropriate areas is learned through experience. Immatures and adults have equivalent movement capacities, but when they are central place foragers, i.e. when adults breed or immatures come to the colony to display and pair, immatures make shorter trips than adults. The long duration of immaturity in this species seems to be related to a long period of learning to integrate the foraging constraints associated with reproduction and central place foraging. Our results indicate that foraging behaviour of young albatrosses is partly innate and partly learned progressively over immaturity. The first months of learning appear critical in terms of survival, whereas the long period of immaturity is necessary for young birds to attain the skills necessary for efficient breeding without fitness costs.

  2. Individual foraging strategies of kleptoparasitic Roseate Terns

    USGS Publications Warehouse

    Shealer, D.A.; Spendelow, J.A.

    2002-01-01

    We describe the kleptoparasitic behavior of ten adult Roseate Terns (Sterna dougallii) breeding at a colony at Falkner Island, Connecticut, USA between 1995 and 1998. These birds were considered habitual kleptoparasites because they stole fish repeatedly from other terns in every year they were observed at the site. No other breeding individuals were observed attempting to steal fish during our study. Kleptoparasitic techniques included aerial piracy, ground-based attacks, and deceptive behavior, but with one exception, each individual used one method exclusively. Success varied among individuals, but overall, kleptoparasites obtained prey at a significantly higher rate than did 'honest' foragers. Eight of the ten kleptoparasites were females, suggesting a sex-biased tendency in Roseate Terns to engage in this behavior. Our observations indicate that kleptoparasitism by Roseate Terns is a specialized behavior, used regularly by only a few individuals at this breeding colony. This conclusion is consistent with a recent theoretical prediction regarding kleptoparasitism in birds.

  3. Recent advances in peanut breeding and genetics

    USDA-ARS?s Scientific Manuscript database

    Most previous advances in peanut cultivar development have been made using conventional breeding methods for self-pollinated crops. Peanut has lagged behind many other crops on use of molecular genetic technology for cultivar development in part due to lack of investment, but also because of low le...

  4. Departure time influences foraging associations in little penguins.

    PubMed

    Sutton, Grace J; Hoskins, Andrew J; Berlincourt, Maud; Arnould, John P Y

    2017-01-01

    Recent studies have documented that little penguins (Eudyptula minor) associate at sea, displaying synchronised diving behaviour throughout a foraging trip. However, previous observations were limited to a single foraging trip where only a small number of individuals were simultaneously tracked. Consequently, it is not known whether coordinated behaviour is consistent over time, or what factors influence it. In the present study, breeding adults were concurrently instrumented with GPS and dive behaviour data loggers for at least 2 consecutive foraging trips during guard and post-guard stage at two breeding colonies (London Bridge and Gabo Island, south-eastern Australia) of contrasting population size (approximately 100 and 30,000-40,000, respectively). At both colonies, individuals were sampled in areas of comparable nesting density and spatial area. At London Bridge, where individuals use a short (23 m) common pathway from their nests to the shoreline, > 90% (n = 42) of birds displayed foraging associations and 53-60% (n = 20) maintained temporally consistent associations with the same conspecifics. Neither intrinsic (sex, size or body condition) nor extrinsic (nest proximity) factors were found to influence foraging associations. However, individuals that departed from the colony at a similar time were more likely to associate during a foraging trip. At Gabo Island, where individuals use a longer (116 m) pathway with numerous tributaries to reach the shoreline, few individuals (< 31%; n = 13) from neighbouring nests associated at sea and only 1% (n = 1) maintained associations over subsequent trips. However, data from animal-borne video cameras indicated individuals at this colony displayed foraging associations of similar group size to those at London Bridge. This study reveals that group foraging behaviour occurs at multiple colonies and the pathways these individuals traverse with conspecifics may facilitate opportunistic group formation and resulting in

  5. The impact of weather on kingbird foraging behavior

    SciTech Connect

    Murphy, M.T.

    1987-01-01

    Foraging data on Eastern Kingbirds (Tyrannus tyrannus) were collected during the early breeding season in eastern Kansas to test the hypothesis that foraging rate and other aspects of foraging behavior vary with weather. Foraging characteristics of five additional kingbird species were also examined to assess Fitzpatrick's 1980 generalization that kingbirds (Tyrannus spp.) are aerial hawking specialists. In Eastern Kingbirds, total foraging rate was independent of air temperature, cloud cover, wind speed, and time of day, but the rate of aerial hawking varied directly with air temperature and inversely with cloud cover (both P < 0.05). Effects of the two variables were additive. The percentage of foraging movements that were aerial hawks also increased with temperature and declined with cloud cover, and hover-gleaning and perch-to-ground sallying were observed mainly during cloudy weather. Sally (i.e., foraging flight) distance correlated directly with perch height and air temperature, and large insects were captured almost exclusively in long upward or horizontal flights. I interpret these data to indicate that foraging behavior and the capture of large, flying insects depends on weather because of how it affects the activity of insect prey. Foraging data on kingbirds support Fitzpatrick's generalization, but the relative use of aerial hawking varies considerably among species. Resident Tropical Kingbirds (T. melancholicus) are the most specialized foragers, whereas the migrant and widely distributed Eastern Kingbird appears to be the most generalized. Certain habitats also appear to favor the use of particular foraging methods (e.g., outward striking in grasslands, and perch-to-ground sallying in drier, open habitats).

  6. Predicting foraging hotspots for Yelkouan Shearwater in the Black Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Ortega, María; İsfendiyaroğlu, Süreyya

    2017-07-01

    The Yelkouan shearwater (Puffinus yelkouan) is a vulnerable species endemic to the Mediterranean Region, but there is little information of its ecology particularly when at sea. In this study, we assessed the habitat use by Yelkouan shearwater in the Black Sea during the breeding (March-July) and non-breeding (August-February) periods of 2013, using boat-based surveys and shore-based counts. We created a species distribution model (SDM) based on the environmental variables that most accurately reflected the oceanographic habitat of this species in order to delineate foraging hotspots. Our habitat modelling analyses suggest that Yelkouan shearwaters respond to complex bio-physical coupling, as evidenced by their association with oceanographic variables. Foraging Yelkouan shearwaters mainly occurred on the western Black Sea continental shelf, indicating that Yelkouan shearwaters were foraging in shallow, cold and coastal waters. In the non-breeding period, Yelkouan Shearwater occurred beyond the Black Sea continental shelf, a wide pelagic extension of sea, indicating that shearwaters foraged in deep, warm and pelagic waters. These results are consistent with earlier studies, which identified the Black Sea as an important congregation site for Mediterranean Yelkouan shearwater populations outside the breeding season. This study demonstrates how the integration of boat-based survey data, shore-based counts and modelling can provide a wider understanding of the linkage between marine ecosystems that is mediated by marine megafauna such as pelagic seabirds.

  7. Foraging decisions, patch use, and seasonality in egrets (Aves: ciconiiformes)

    USGS Publications Warehouse

    Erwin, R.M.

    1985-01-01

    Feeding snowy (Egretta thula) and great (Casmerodius albus) egrets were observed during 2 breeding seasons in coastal New Jersey and 2 brief winter periods in northeast Florida (USA). A number of tests based on assumptions of foraging models, predictions from foraging theory, and earlier empirical tests concerning time allocation and movement in foraging patches was made. Few of the expectations based on foraging theory and/or assumptions were supported by the empirical evidence. Snowy egrets fed with greater intensity and efficiency during the breeding season (when young were being fed) than during winter. They also showed some tendency to leave patches when their capture rate declined, and they spent more time foraging in patches when other birds were present nearby. Great egrets showed few of these tendencies, although they did leave patches when their intercapture intervals increased. Satiation differences had some influence on feeding rates in snowy egrets, but only at the end of feeding bouts. Some individuals of both species revisited areas in patches that had recently been exploited, and success rates were usually higher after the 2nd visit. Apparently, for predators of active prey, short-term changes in resource availability ('resource depression') may be more important than resource depletion, a common assumption in most optimal foraging theory models.

  8. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    PubMed Central

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  9. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses.

    PubMed

    Talukder, Shyamal K; Saha, Malay C

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  10. Extending RosBREED in the Pacific Northwest for strawberry processing traits: year 1

    USDA-ARS?s Scientific Manuscript database

    In an effort to implement marker-assisted breeding in Rosaceae, many traits need to be characterized in diverse germplasm. The USDA-NIFA Specialty Crop Research Initiative-funded RosBREED project includes breeding programs of four Rosaceae crops (apple, peach, cherry, and strawberry). Phenotyping ea...

  11. Sheep grazing wheat summer fallow and the impact on soil nitrogen, moisture, and crop yield

    USDA-ARS?s Scientific Manuscript database

    When incorporating targeted grazing into farming systems, livestock producers and farm operators need assurance that the benefits from their activities are worth their investments. Cropping systems were once integrated with livestock production: livestock gained forage value from crop aftermath, c...

  12. Potential for double-cropping with winter camelina

    USDA-ARS?s Scientific Manuscript database

    Double-cropping camelina with a food or forage crop may offer a profitable means of producing a dedicated biofuel crop without jeopardizing food security. A 2-yr field study was conducted in west central Minnesota to evaluate the agronomic and economic viability of producing short-season cultivars o...

  13. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    In the Chesapeake Bay watershed, winter cereal cover crops are often planted in rotation with summer crops to reduce the loss of nutrients and sediment from agricultural systems. Cover crops can also improve soil health, control weeds and pests, supplement forage needs, and support resilient croppin...

  14. Sources of diel variation in energetic physiology in an Arctic-breeding, diving seaduck.

    PubMed

    Steenweg, Rolanda J; Hennin, Holly L; Bêty, Joël; Gilchrist, H Grant; Williams, Tony D; Crossin, Glenn T; Love, Oliver P

    2015-05-15

    Diel variation in baseline glucocorticoid (GC) secretion influences energetics and foraging behaviors. In temperate breeding, diurnal vertebrates, studies have shown that daily patterns of baseline GC secretion are influenced by environmental photoperiod, with baseline GCs peaking prior to sunrise to stimulate waking and foraging behaviors. Measures of physiological energy acquisition are also expected to peak in response to foraging activity, but their relationship to GC levels have not been well studied. In contrast to temperate breeding species, virtually nothing is known about diel GC and energetic metabolite secretion in Arctic breeding species, which experience almost constant photoperiods in spring and summer. Using a ten-year dataset, we examined the daily, 24-h pattern of baseline corticosterone (CORT) and triglyceride (TRIG) secretion in approximately 800 female pre-breeding Arctic-nesting common eiders (Somateria mollissima). We related these traits to environmental photoperiod and to tidal cycle. In contrast to temperate breeding species, we found that that neither time of day nor tidal trend predicted diel variation in CORT or TRIG secretion in Arctic-breeding eiders. Given the narrow window of opportunity for breeding in polar regions, we suggest that eiders must decouple their daily foraging activity from light and tidal cycles if they are to accrue sufficient energy for successful breeding. As CORT is known to influence foraging behavior, the absence of a distinct diel pattern of CORT secretion may therefore be an adaptation to optimize reproductive investment and likelihood for success in some polar-breeding species.

  15. Variability in foraging behaviour of red-footed boobies nesting on Europa Island

    NASA Astrophysics Data System (ADS)

    Mendez, Loriane; Cotté, Cédric; Prudor, Aurélien; Weimerskirch, Henri

    2016-04-01

    Seabirds are considered to be good indicators of the marine environment. However, little is known about the effects of environmental variability on the foraging behaviour of tropical seabirds. Red-footed boobies (RFB) nesting on Europa Island (Mozambique Channel) were fitted with GPS devices over four years and different breeding stages. We first show that the durations of foraging trips vary extensively according to the stage of the breeding, being short during brooding, intermediate during incubation and long during fledging. This result highlights the importance of considering breeding stage when conducting comparisons of foraging between sites or years. In addition, we show that RFB adjusted their foraging behaviour between years (2003, 2011, 2012 and 2013) according to the prevailing environmental conditions. During 2011, RFB made longer foraging trips with larger area-restricted search (ARS) zones over a larger total surface area, suggesting that the foraging conditions were probably poor. This year was characterized by a decrease of the major environmental drivers of the Mozambique Channel system, i.e. particularly low chlorophyll concentrations in the northern part of the Mozambique Channel, as well as a weak eddy activity. This observation suggests that environmental conditions may have altered the southward transport and concentration processes structuring the trophic chain, leading to adverse conditions for a central-place forager like the RFB. Our results emphasize that environmental and breeding stage variation should be taken into account to better understand the distribution of these predators in marine tropical ecosystems.

  16. Influence of density-dependent competition on foraging and migratory behavior of a subtropical colonial seabird.

    PubMed

    Lamb, Juliet S; Satgé, Yvan G; Jodice, Patrick G R

    2017-08-01

    Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density-dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding

  17. New modes of use and opportunities for research in forage plants

    USDA-ARS?s Scientific Manuscript database

    Forages play an important role in the production of meat and dairy throughout the world. Forages are not only an integral part of human protein production, but they can also improve row crop production management systems, play a role in reducing the dependence on fossil fuels and mitigate environme...

  18. Genomics and breeding in food crops

    USDA-ARS?s Scientific Manuscript database

    Plant biology is in the midst of a revolution. The generation of tremendous volumes of sequence information introduce new technical challenges into plant biology and agriculture. The relatively new field of bioinformatics addresses these challenges by utilizing efficient data management strategies;...

  19. Advances in maize genomics and their value for enhancing genetic gains from breeding.

    PubMed

    Xu, Yunbi; Skinner, Debra J; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L; Crouch, Jonathan H

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products.

  20. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  1. Simulated Breeding

    NASA Astrophysics Data System (ADS)

    Unemi, Tatsuo

    This chapter describes a basic framework of simulated breeding, a type of interactive evolutionary computing to breed artifacts, whose origin is Blind Watchmaker by Dawkins. These methods make it easy for humans to design a complex object adapted to his/her subjective criteria, just similarly to agricultural products we have been developing over thousands of years. Starting from randomly initialized genome, the solution candidates are improved through several generations with artificial selection. The graphical user interface helps the process of breeding with techniques of multifield user interface and partial breeding. The former improves the diversity of individuals that prevents being trapped at local optimum. The latter makes it possible for the user to fix features he/she already satisfied. These methods were examined through artistic applications by the author: SBART for graphics art and SBEAT for music. Combining with a direct genome editor and exportation to another graphical or musical tool on the computer, they can be powerful tools for artistic creation. These systems may contribute to the creation of a type of new culture.

  2. Blackberry breeding

    USDA-ARS?s Scientific Manuscript database

    Successful blackberry production and marketing depends on planting cultivars that are adapted to the region, efficiently produce high yields, and have the fruit quality the market, whether local or distant, demands. Blackberry breeding programs have developed cultivars that consumers like to eat and...

  3. Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain.

    PubMed

    Naug, Dhruba

    2014-11-01

    Parasites, by altering the nutritional and energetic state of their hosts, can significantly alter their foraging behaviour. In honeybees, an infection with Nosema ceranae has been shown to lower the energetic state of individual bees, bringing about changes in behaviours associated with foraging. Comparing the foraging trip times, hive times in between trips, and the crop contents of uninfected and infected foragers as they depart on foraging trips and return from them, this study examined how any differences in these variables influence alternative foraging currencies. The results show that infected bees take longer foraging trips, spend shorter time in the hive between successive trips and bring back less sugar from each trip. These changes have a stronger adverse effect on their efficiency of energetic gain as compared with their rate of energetic gain, which has important implications for individual and colony life history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    USDA-ARS?s Scientific Manuscript database

    Double- and relay-cropping offers a means to produce a biofuel and food or forage crop in a single season on the same land without sacrificing food security, while potentially boosting profits. Field studies were conducted between 2009 and 2012 in Morris, Minnesota (MN), and Prosper and Carrington, ...

  5. Personality, foraging and fitness consequences in a long lived seabird.

    PubMed

    Patrick, Samantha C; Weimerskirch, Henri

    2014-01-01

    While personality differences in animals are defined as consistent behavioural variation between individuals, the widely studied field of foraging specialisation in marine vertebrates has rarely been addressed within this framework. However there is much overlap between the two fields, both aiming to measure the causes and consequences of consistent individual behaviour. Here for the first time we use both a classic measure of personality, the response to a novel object, and an estimate of foraging strategy, derived from GPS data, to examine individual personality differences in black browed albatross and their consequences for fitness. First, we examine the repeatability of personality scores and link these to variation in foraging habitat. Bolder individuals forage nearer the colony, in shallower regions, whereas shyer birds travel further from the colony, and fed in deeper oceanic waters. Interestingly, neither personality score predicted a bird's overlap with fisheries. Second, we show that both personality scores are correlated with fitness consequences, dependent on sex and year quality. Our data suggest that shyer males and bolder females have higher fitness, but the strength of this relationship depends on year quality. Females who forage further from the colony have higher breeding success in poor quality years, whereas males foraging close to the colony always have higher fitness. Together these results highlight the potential importance of personality variation in seabirds and that the fitness consequences of boldness and foraging strategy may be highly sex dependent.

  6. Personality, Foraging and Fitness Consequences in a Long Lived Seabird

    PubMed Central

    Patrick, Samantha C.; Weimerskirch, Henri

    2014-01-01

    While personality differences in animals are defined as consistent behavioural variation between individuals, the widely studied field of foraging specialisation in marine vertebrates has rarely been addressed within this framework. However there is much overlap between the two fields, both aiming to measure the causes and consequences of consistent individual behaviour. Here for the first time we use both a classic measure of personality, the response to a novel object, and an estimate of foraging strategy, derived from GPS data, to examine individual personality differences in black browed albatross and their consequences for fitness. First, we examine the repeatability of personality scores and link these to variation in foraging habitat. Bolder individuals forage nearer the colony, in shallower regions, whereas shyer birds travel further from the colony, and fed in deeper oceanic waters. Interestingly, neither personality score predicted a bird’s overlap with fisheries. Second, we show that both personality scores are correlated with fitness consequences, dependent on sex and year quality. Our data suggest that shyer males and bolder females have higher fitness, but the strength of this relationship depends on year quality. Females who forage further from the colony have higher breeding success in poor quality years, whereas males foraging close to the colony always have higher fitness. Together these results highlight the potential importance of personality variation in seabirds and that the fitness consequences of boldness and foraging strategy may be highly sex dependent. PMID:24504180

  7. Plant biotechnology: transgenic crops.

    PubMed

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  8. Regulation of foraging trips and incubation routine in male and female wandering albatrosses.

    PubMed

    Weimerskirch, Henri

    1995-04-01

    The resolution of the conflict between eggcare and foraging was studied in male and female wandering albatrosses. The foraging zone and range, duration of incubation shifts and foraging trips, and associated changes in body mass were studied. Costs during incubation, expressed as the time spent incubating and the proportional loss of body mass, were similar for both sexes. The mass gained at sea was related to the duration of foraging trips, but the relationship was much less significant in males, where foraging ranges, though similar on average to those of females, were very variable. Males foraged in more southerly waters than females, and gained mass more rapidly. Only females appeared to regulate the duration of foraging trips, and this compensated for the mass lost during the incubation fast. Previous breeding experience had no influence on foraging efficiency. Egg desertion because of depletion of body reserves was very rare because birds have a wide "safety margin", i.e. the difference between the average body mass when relieved and that at nest desertion. This safety margin enables the birds to compensate for the high variability in the duration of foraging trips, and is probably a reason for the high breeding success of wandering albatrosses. Decisions to return from the sea to the nest or to desert the nest are probably related to the status of body reserves, and have been selected in the large wandering albatross so that both present and future reproductive success are maximised.

  9. Foraging Experiences with Children

    ERIC Educational Resources Information Center

    Russell, Helen Ross

    1976-01-01

    Provided are foraging experiences and wild foods information for utilization in the urban school curriculum. Food uses are detailed for roses, dandelions, wild onions, acorns, cattails, violets and mints. (BT)

  10. Foraging Experiences with Children

    ERIC Educational Resources Information Center

    Russell, Helen Ross

    1976-01-01

    Provided are foraging experiences and wild foods information for utilization in the urban school curriculum. Food uses are detailed for roses, dandelions, wild onions, acorns, cattails, violets and mints. (BT)

  11. Foraging search: Prototypical intelligence

    NASA Astrophysics Data System (ADS)

    Mobus, George

    2000-05-01

    We think because we eat. Or as Descartes might have said, on a little more reflection, "I need to eat, therefore I think." Animals that forage for a living repeatedly face the problem of searching for a sparsely distributed resource in a vast space. Furthermore, the resource may occur sporadically and episodically under conditions of true uncertainty (nonstationary, complex and non-linear dynamics). I assert that this problem is the canonical problem solved by intelligence. It's solution is the basis for the evolution of more advanced intelligence in which the space of search includes that of concepts (objects and relations) encoded in cortical structures. In humans the conscious experience of searching through concept space we call thinking. The foraging search model is based upon a higher-order autopoeitic system (the forager) employing anticipatory processing to enhance its success at finding food while avoiding becoming food or having accidents in a hostile world. I present a semi-formal description of the general foraging search problem and an approach to its solution. The latter is a brain-like structure employing dynamically adaptive neurons. A physical robot, MAVRIC, embodies some principles of foraging. It learns cues that lead to improvements in finding targets in a dynamic and nonstationary environment. This capability is based on a unique learning mechanism that encodes causal relations in the neural-like processing element. An argument is advanced that searching for resources in the physical world, as per the foraging model, is a prototype for generalized search for conceptual resources as when we think. A problem represents a conceptual disturbance in a homeostatic sense. The finding of a solution restores the homeostatic balance. The establishment of links between conceptual cues and solutions (resources) and the later use of those cues to think through to solutions of quasi-isomorphic problems is, essentially, foraging for ideas. It is a quite

  12. Sex-Specific Habitat Utilization and Differential Breeding Investments in Christmas Island Frigatebirds throughout the Breeding Cycle

    PubMed Central

    Hennicke, Janos C.; James, David J.; Weimerskirch, Henri

    2015-01-01

    In seabirds, equal bi-parental care is the rule, as it is considered crucial for raising chicks successfully because seabirds forage in an environment with unpredictable and highly variable food supply. Frigatebirds forage in poor tropical waters, yet males reduce and even stop parental care soon after chick brooding, leaving the female to provision the chick alone for an extended fledging period. Using bird-borne tracking devices, male and female Christmas Island Frigatebirds (Fregata andrewsi) were investigated during the brooding, late chick rearing and post-fledging period to examine whether sexes exhibit foraging strategies that may be linked to differential breeding investments. During brooding, males and females showed similar foraging behaviour under average marine productivity of oceanic waters close to the colony, but males shifted to more distant and more productive habitats when conditions deteriorated to continue with reduced chick provisioning. During the late chick rearing period, females progressively increased their foraging range to the more distant but productive marine areas that only males had visited during brooding. Birds spent the non-breeding period roosting in highly productive waters of the Sunda Shelf. The sex-specific utilisation of three different foraging habitats with different primary productivity (oceanic, coastal, and shelf areas) allowed for temporal and spatial segregation in the exploitation of favourable habitats which seems to enable each sex to optimise its foraging profitability. In addition, post-fledging foraging movements of females suggest a biennial breeding cycle, while limited information on males suggests the possibility of an annual breeding cycle. PMID:26098941

  13. Fall Growth Potential of Cereal Grain Forages in Northern Arkansas

    USDA-ARS?s Scientific Manuscript database

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not harvest a grain crop the following summer. This contrasts sharply from practices observed commonly in neighboring Oklahoma, and allows for much wider latitude with respect to management strategies, especia...

  14. Broiler litter effects on forage quality in tall fescue

    USDA-ARS?s Scientific Manuscript database

    Land application of broiler chicken (Gallus gallus) litter to forage crops is one of the most obvious methods of recycling nutrients. However, manure management remains one of the greatest challenges for livestock producers, particularly where animals are produced on relatively small land areas. Tal...

  15. Fall Growth Potential of Cereal-Grain Forages

    USDA-ARS?s Scientific Manuscript database

    In Arkansas, producers utilizing cereal grains as fall forage for weaned calves usually do not produce a grain crop the following summer. Our objectives were to evaluate eight diverse varieties of wheat (Triticum aestivum L.), oat (Avena sativa L.), rye (Secale cereale L.), and triticale (X Triticos...

  16. Improving yield and protein content of forages under flooded condition

    USDA-ARS?s Scientific Manuscript database

    Flooding can have catastrophic impacts on the productivity of arable farmland, grassland pastures, as most crops including forages are intolerant to excess water. The objectives of this study were to determine the effect of flooding duration and nitrogen (N) fertilization on dry matter yield (DMY) a...

  17. Food limitation of sea lion pups and the decline of forage off central and southern California

    PubMed Central

    McClatchie, Sam; Field, John; Thompson, Andrew R.; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C.; Watson, William; Nieto, Karen M.; Vetter, Russell D.

    2016-01-01

    California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5–38° N) for a decade, suggesting that trends in forage are environmentally driven. PMID:27069651

  18. Food limitation of sea lion pups and the decline of forage off central and southern California.

    PubMed

    McClatchie, Sam; Field, John; Thompson, Andrew R; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C; Watson, William; Nieto, Karen M; Vetter, Russell D

    2016-03-01

    California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5-38° N) for a decade, suggesting that trends in forage are environmentally driven.

  19. Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies.

    PubMed

    Soanes, L M; Arnould, J P Y; Dodd, S G; Milligan, G; Green, J A

    2014-01-01

    Seabird tracking has become an ever more popular tool to aid environmental procedures such as the designation of marine protected areas and environmental impact assessments. However, samples used are usually small and little consideration is given to experimental design and sampling protocol. European shags Phalacrocorax aristotelis were tracked using GPS technology over three breeding seasons and the following foraging trip characteristics: trip duration, trip distance, maximum distance travelled from the colony, size of area used and direction travelled from colony were determined for each foraging trip. The effect of sex, year of study, breeding site, number and age of chicks and the timing of tracking on foraging behaviour were investigated using a General Estimation Equation model. A range of sampling scenarios reflecting likely field sampling were also tested to compare how foraging behaviour differed depending on composition of the sample of birds tracked. Trip distance, trip duration, maximum distance travelled and size of area used were all significantly affected by the breeding site, and the number of chicks a tracked adult was raising. The effect of sex was also seen when examining trip distance, trip duration and the maximum distance travelled. The direction travelled on a foraging trip was also significantly affected by breeding site. This study highlights the importance of sampling regime and the influence that year, sex, age, number of chicks and breeding site can have on the foraging trip characteristics for this coastal feeding seabird. Given the logistical and financial constraints in tracking large numbers of individuals, this study identifies the need for researchers to consider the composition of their study sample to ensure any identified foraging areas are as representative as possible of the whole colony's foraging area.

  20. Adverse foraging conditions may impact body mass and survival of a high Arctic seabird

    USGS Publications Warehouse

    Harding, A.M.A.; Welcker, J.; Steen, H.; Hamer, K.C.; Kitaysky, A.S.; Fort, J.; Talbot, S.L.; Cornick, L.A.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.

    2011-01-01

    Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005-2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species. ?? 2011 Springer-Verlag.

  1. Forage quantity and quality

    USGS Publications Warehouse

    Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.

  2. Cover Crops

    USDA-ARS?s Scientific Manuscript database

    Cover crops are a beneficial tool for use in conservation tillage systems. Cover crop residues reduce soil erosion from water and wind, increase soil water availability for subsequent crops, enhance soil organic matter and biological activity, and can decrease labor and energy inputs. Cover crop...

  3. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico.

    PubMed

    Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  4. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico

    PubMed Central

    Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.

    2017-01-01

    During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird

  5. Scavenging pullets in Burkina Faso: effect of season, location and breed on feed and nutrient intake.

    PubMed

    Pousga, S; Boly, H; Lindberg, J E; Ogle, B

    2005-11-01

    A study on scavenging local (n = 64) and crossbred (n = 64) pullets was undertaken in the dry and rainy seasons in two villages in Burkina Faso: Korea in the arid northern Sahelian region and Bounouna in the sub-humid south. After 4 weeks of scavenging, the birds were killed and the crop contents were subjected to physical and chemical analysis. Cereal grains, brans, green and dry forages, insects/worms and household leftovers were the main physical components. The proportion of cereal grains was higher in the rainy season, whereas the proportion of bran, peanut and sand/grit was higher in the dry season (p < 0.05). The proportion of kitchen waste and millet/milo grains was higher in local than in crossbred birds, whereas the opposite was the case for millet/milo bran (p < 0.05). Rice and local beer residues were not found in the crops of birds from Korea. Dry matter, ash, crude fibre and potassium contents were higher in the dry season (p < 0.05), while calculated metabolizable energy content was higher in the rainy season (p < 0.05). There were no location or breed effects on chemical composition parameters (p > 0.05), except that potassium content was higher in Korea. Mean live weight at slaughter was 806 +/- 22.0 g (local breed) and 881 +/- 22.0 g (crossbreds) (p < 0.05). Digestive organ weights, including contents, were higher for crossbred birds (p < 0.05). Gastrointestinal tract percentage was higher in the rainy season and in Bounouna (p < 0.05). The nutrient composition of the crop contents indicates the need for supplementation, particularly of protein, for higher levels of production.

  6. The Physics of Foraging

    NASA Astrophysics Data System (ADS)

    Viswanathan, Gandhimohan. M.; da Luz, Marcos G. E.; Raposo, Ernesto P.; Stanley, H. Eugene

    2011-06-01

    Part I. Introduction: Movement: 1. Empirical motivation for studying movement; 2. Statistical physics of biological motion; 3. Random walks and Lévy flights; 4. Wandering albatrosses; Part II. Experimental Findings: 5. Early studies; 6. Evidence of anomalous diffusion; 7. Human dispersal; 8. How strong is the evidence?; Part III. Theory of Foraging: 9. Optimizing encounter rates; 10. Lévy flight foraging; 11. Other search models; Part IV. Finale: A Broader Context: 12. Superdiffusive random searches; 13. Adaptational versus emergent superdiffusion; 14. Perspectives and open problems; Appendices; References; Index.

  7. Redesigning forages with condensed tannins

    USDA-ARS?s Scientific Manuscript database

    Maximizing protein content in forages and minimizing protein loss during silage fermentation and rumen digestion are concerns for livestock and dairy producers. Substantial amounts of forage protein undergo proteolysis (breakdown) during the ensiling process and during rumen fermentation, transforme...

  8. Potential for increased use of cereal grain forages on dairy operations

    USDA-ARS?s Scientific Manuscript database

    Farmers are increasingly using cereal grain cover crops, which allows them to take advantage of additional growing days in early spring and late fall. The use of cereal grain forages, such as rye, wheat, or triticale as cover crops helps to reduce soil and nutrient losses, and also allows for addit...

  9. The Bacterial Communities Associated with Honey Bee (Apis mellifera) Foragers

    PubMed Central

    Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E.

    2014-01-01

    The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation. PMID:24740297

  10. The bacterial communities associated with honey bee (Apis mellifera) foragers.

    PubMed

    Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E

    2014-01-01

    The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  11. Optimal Foraging in Semantic Memory

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  12. Optimal Foraging in Semantic Memory

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  13. Resiliency in forage and grazinglands

    USDA-ARS?s Scientific Manuscript database

    This manuscript is a combined effort of the speakers at the 2017 C6 Forage and Grazinglands Division Symposia which was titled “Resiliency in Forage and Grazinglands.” Developing more resilient agroecosystems, including those that produce forage and livestock, will become necessary to maintain agric...

  14. Inferring foraging areas of nesting loggerhead turtles using satellite telemetry and stable isotopes.

    PubMed

    Ceriani, Simona A; Roth, James D; Evans, Daniel R; Weishampel, John F; Ehrhart, Llewellyn M

    2012-01-01

    In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf-constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ(13)C and δ(15)N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ(13)C and δ(15)N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level.

  15. Inferring Foraging Areas of Nesting Loggerhead Turtles Using Satellite Telemetry and Stable Isotopes

    PubMed Central

    Ceriani, Simona A.; Roth, James D.; Evans, Daniel R.; Weishampel, John F.; Ehrhart, Llewellyn M.

    2012-01-01

    In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf–constrained migratory pattern along the northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both δ13C and δ15N among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well δ13C and δ15N predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level. PMID:23028943

  16. Food habits of Bald Eagles breeding in the Arizona desert

    Treesearch

    Teryl G. Grubb

    1995-01-01

    Of 1814 foraging attempts, prey captures, or nest deliveries by Bald Eagles (Haliaeetus leucocephalus) in 14 Arizona breeding areas during 1983-1985, 1471 observations were identifiable to at least class: fish (76%), mammal (18%), bird (4%), and reptile/amphibian (2%). Forty-five species were recorded: catfish (Ictalurus punctatus, Pylodictis olivaris), suckers (...

  17. Effects of breed and diet on beef quality characteristics

    USDA-ARS?s Scientific Manuscript database

    Progeny (n=63) from six grandsire breeds were utilized to evaluate grandsire, sex, and postweaning management effects on sensory characteristics and quality of steaks from forage-fed with short-fed finishing (SF) vs. conventional concentrate (CC) finished cattle. Fatty acid (FA) profiles, Warner-Br...

  18. Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas

    USGS Publications Warehouse

    Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.

    2004-01-01

    In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to

  19. Developing resources for diploid potato breeding and genetics

    USDA-ARS?s Scientific Manuscript database

    The cultivated potato (Solanum tuberosum Gp. tuberosum) is an asexually propagated cross-pollinated autotetraploid crop, for which breeding methodology has not changed in 100 years. Current methods for breeding potato cultivars are genetically inefficient due to polyploidy, resource intensive due to...

  20. Genotypic Variation in a Breeding Population of Yellow Sweet Clover (Melilotus officinalis)

    PubMed Central

    Luo, Kai; Jahufer, M. Z. Z.; Wu, Fan; Di, Hongyan; Zhang, Daiyu; Meng, Xuanchen; Zhang, Jiyu; Wang, Yanrong

    2016-01-01

    Yellow sweet clover is a widely spread legume species that has potential to be used as a forage crop in Western China. However, limited information is available on the genetic variation for herbage yield, key morphological traits, and coumarin content. In this study, 40 half sib (HS) families of M. officinalis were evaluated for genotypic variation and phenotypic and genotypic correlation for the traits: LS (leaf to stem ratio), SV (spring vigor), LA (leaf area), PH (plant height), DW (herbage dry weight), SD (stem diameter), SN (stem number), Cou (coumarin content), SY (seed yield), across two locations, Yuzhong and Linze, in Western China. There was significant (P < 0.05) genotypic variation among the HS families for all traits. There was also significant (P < 0.05) genotype-by-environment interaction for the traits DW, PH, SD, SN, and SV. The estimates of HS family mean repeatability across two locations ranged from 0.32 for SN to 0.89 for LA. Pattern analysis generated four HS family groups where group 3 consisted of families with above average expression for DW and below average expression for Cou. The breeding population developed by polycrossing the selected HS families within group 3 will provide a significant breeding pool for M. officinalis cultivar development in China. PMID:27462321

  1. Development of Switchgrass Into a Biomass Energy Crop

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) is a North American prairie grass that is being developed into a biomass energy crop in the USA and other countries. Research on switchgrass as a pasture and forage crop was initiated in the mid-1930's in an U.S. Department of Agriculture and University of Nebraska ...

  2. Space use by Forster's Terns breeding in South San Francisco Bay

    USGS Publications Warehouse

    Bluso-Demers, J.; Colwell, M.A.; Takekawa, J.Y.; Ackerman, J.T.

    2008-01-01

    Parental care behaviors often differ in dimorphic seabirds, leading to sex-specific differences in foraging behaviors. However, few studies have examined sex-specific foraging behaviors in monomorphic seabirds. Using radio-telemetry, we studied Forster's Terns (Sterna forsteri) - a monomorphic and socially monogamous seabird - breeding in the South San Francisco Bay, California. Space use did not differ between males and females. Instead, space use varied by breeding stage and colony affiliation. Forster's Terns were located farthest from the nest during pre-breeding and post-breeding time periods, and closest to the nest during incubation and chick-rearing. Home-range size and core-use areas decreased as the breeding season progressed and were most concentrated in the post-breeding stage. The results of this and other studies indicate that tems, unlike other monomorphic seabirds studied, do not exhibit sex-specific differences in space use.

  3. Season and landscape composition affect pollen foraging distances and habitat use of honey bees.

    PubMed

    Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf

    2016-09-01

    Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources.

  4. Nurse crop

    Treesearch

    Wayne D. Shepperd; John R. Jones

    1985-01-01

    In forestry, a nurse crop generally is a crop of trees or shrubs that fosters the development of another tree species, usually by protecting the second species, during its youth, from frost, insolation, or wind (Ford-Robertson 1971). Aspen may be a nurse crop for shade-tolerant tree species that do not become established in full sunlight (e.g., Engelmann spruce)....

  5. Cover Crops

    USDA-ARS?s Scientific Manuscript database

    Cover crops are great tools to improve soil quality and health, and great tools to increase carbon sequestration. They are nutrient management tools that can help scavenge nitrate, cycle nitrogen to the following crop, mine NO3 from groundwater, and increase nitrogen use efficiency of cropping syste...

  6. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    PubMed Central

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation. PMID:26085591

  7. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    USGS Publications Warehouse

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  8. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals.

    PubMed

    Peterson, Sarah H; Ackerman, Joshua T; Costa, Daniel P

    2015-07-07

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200-1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ(13)C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  9. Genomics to feed a switchgrass breeding program

    USDA-ARS?s Scientific Manuscript database

    Development of improved cultivars is one of three pillars, along with sustainable production and efficient conversion, required for dedicated cellulosic bioenergy crops to succeed. Breeding new cultivars is a long, slow process requiring patience, dedication, and motivation to realize gains and adva...

  10. Observations of geese foraging for clam shells during spring on the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Flint, P.L.; Fowler, A.C.; Bottitta, G.E.; Schamber, J.

    1998-01-01

    We studied the behavior of geese on exposed river ice during spring on the Yukon-Kuskokwim Delta. The predominant behavior while on the ice for both sexes was foraging; however, females foraged more than males. Visual inspection of the ice revealed no potential plant or animal food items. However, numerous small (<20 man) clam shells (Macoma balthica) and pieces of shell were noted. It appeared that geese were foraging on empty clam shells. This potential source of calcium was available to breeding geese just prior to egg formation and geese likely stored this calcium in the form of medullary bone for use during egg formation.

  11. Does grazing of cover crops impact biologically active soil C and N fractions under inversion and no tillage management

    USDA-ARS?s Scientific Manuscript database

    Cover crops are a key component of conservation cropping systems. They can also be a key component of integrated crop-livestock systems by offering high-quality forage during short periods between cash crops. The impact of cattle grazing on biologically active soil C and N fractions has not receiv...

  12. From Crop Domestication to Super-domestication

    PubMed Central

    Vaughan, D. A.; Balázs, E.; Heslop-Harrison, J. S.

    2007-01-01

    Research related to crop domestication has been transformed by technologies and discoveries in the genome sciences as well as information-related sciences that are providing new tools for bioinformatics and systems' biology. Rapid progress in archaeobotany and ethnobotany are also contributing new knowledge to understanding crop domestication. This sense of rapid progress is encapsulated in this Special Issue, which contains 18 papers by scientists in botanical, crop sciences and related disciplines on the topic of crop domestication. One paper focuses on current themes in the genetics of crop domestication across crops, whereas other papers have a crop or geographic focus. One feature of progress in the sciences related to crop domestication is the availability of well-characterized germplasm resources in the global network of genetic resources centres (genebanks). Germplasm in genebanks is providing research materials for understanding domestication as well as for plant breeding. In this review, we highlight current genetic themes related to crop domestication. Impressive progress in this field in recent years is transforming plant breeding into crop engineering to meet the human need for increased crop yield with the minimum environmental impact – we consider this to be ‘super-domestication’. While the time scale of domestication of 10 000 years or less is a very short evolutionary time span, the details emerging of what has happened and what is happening provide a window to see where domestication might – and can – advance in the future. PMID:17940074

  13. Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird.

    PubMed

    Corman, Anna-Marie; Mendel, Bettina; Voigt, Christian C; Garthe, Stefan

    2016-02-01

    Reducing resource competition is a crucial requirement for colonial seabirds to ensure adequate self- and chick-provisioning during breeding season. Spatial segregation is a common avoidance strategy among and within species from neighboring breeding colonies. We determined whether the foraging behaviors of incubating lesser black-backed gulls (Larus fuscus) differed between six colonies varying in size and distance to mainland, and whether any differences could be related to the foraging habitats visited. Seventy-nine incubating individuals from six study colonies along the German North Sea coast were equipped with GPS data loggers in multiple years. Dietary information was gained by sampling food pellets, and blood samples were taken for stable isotope analyses. Foraging patterns clearly differed among and within colonies. Foraging range increased with increasing colony size and decreased with increasing colony distance from the mainland, although the latter might be due to the inclusion of the only offshore colony. Gulls from larger colonies with consequently greater density-dependent competition were more likely to forage at land instead of at sea. The diets of the gulls from the colonies furthest from each other differed, while the diets from the other colonies overlapped with each other. The spatial segregation and dietary similarities suggest that lesser black-backed gulls foraged at different sites and utilized two main habitat types, although these were similar across foraging areas for all colonies except the single offshore island. The avoidance of intraspecific competition results in colony-specific foraging patterns, potentially causing more intensive utilization of terrestrial foraging sites, which may offer more predictable and easily available foraging compared with the marine environment.

  14. Using general and specific combining ability to further advance strawberry (Fragaria sp.) breeding

    USDA-ARS?s Scientific Manuscript database

    Strawberry is one of the five fruit crops included in the USDA-funded multi-institutionaland trans-disciplinary project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae”. A Crop Reference Set (CRS) was developed of 900 genotypes and seedlings from 40 crosses representing the breadth of rele...

  15. Response of seabirds to fluctuations in forage fish density

    USGS Publications Warehouse

    Piatt, John F.

    2002-01-01

    Following the Exxon Valdez Oil Spill (EVOS), one concern was that prevailing ecological conditions in the Gulf of Alaska (GOA) would not favor recovery of damaged seabird populations. To address this issue, we examined relationships between oceanography, forage fish and seabirds near three seabird colonies in lower Cook Inlet (LCI) in 1995-1999 (some colony work continued until 2001). Upwelling of cold, nutrient-rich GOA waters at the entrance to the shallow LCI estuary supports a high density of juvenile pollock, sand lance, and capelin; which in turn are exploited by high densities of breeding seabirds (murres, kittiwakes, puffins, etc.) on the east side of LCI. Waters on the west side of LCI are oceanographically distinct (warmer, less saline, outflowing), and much less productive for forage fish and seabirds. Patterns of seabird foraging behavior, productivity and population change reflected patterns of forage fish abundance and distribution, which in turn depended on local oceanography. Most seabird parameters varied with forage fish density in a non-linear (e.g., sigmoidal, exponential) fashion, and in some areas and years, productivity was limited by food availability.  Current and projected ecological conditions favor recovery of seabirds from the EVOS at some colonies. In 14 chapters, this report summarizes data and compiles it into 247 tables, figures and appendices. Chapter 14 provides a thorough synthesis of overall project findings. Final analyses and interpretations of data will be published later in peer-reviewed journals (in addition to 61 articles already completed).

  16. The tomato genome: implications for plant breeding, genomics and evolution

    PubMed Central

    2012-01-01

    The genome sequence of tomato (Solanum lycopersicum), one of the most important vegetable crops, has recently been decoded. We address implications of the tomato genome for plant breeding, genomics and evolutionary studies, and its potential to fuel future crop biology research. PMID:22943138

  17. Advances in molecular breeding of flowering dogwood (Cornus florida L.)

    USDA-ARS?s Scientific Manuscript database

    Although the production and sales of ornamental crops represent significant contributions to the global economy, breeding and selection of ornamental plants using molecular markers lags far behind that used for agronomic crops. However, with the recent advances in molecular technologies including r...

  18. Bacterial Artificial Chromosome Libraries of Pulse Crops: Characteristics and Applications

    PubMed Central

    Yu, Kangfu

    2012-01-01

    Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops. PMID:21811383

  19. Are seabirds foraging for unpredictable resources?

    NASA Astrophysics Data System (ADS)

    Weimerskirch, Henri

    2007-02-01

    : predictability is dependent on the spatial and temporal scale considered, and especially on the marine habitat of foraging interest. I discuss the potential consequences of these results for the breeding success and life history of seabirds.

  20. Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris)

    NASA Astrophysics Data System (ADS)

    Raine, Nigel E.; Chittka, Lars

    2007-06-01

    To investigate how bumblebees (Bombus terrestris) learn the complex motor skills involved in pollen foraging, we observed naïve workers foraging on arrays of nectarless poppy flowers (Papaver rhoeas) in a greenhouse. Foraging skills were quantified by measuring the pollen load collected during each foraging bout and relating this to the number of flowers visited and bout duration on two consecutive days. The pollen standing crop (PSC) in each flower decreased drastically from 0530 to 0900 hours. Therefore, we related foraging performance to the changing levels of pollen available (per flower) and found that collection rate increased over the course of four consecutive foraging bouts (comprising between 277 and 354 individual flower visits), suggesting that learning to forage for pollen represents a substantial time investment for individual foragers. The pollen collection rate and size of pollen loads collected at the start of day 2 were markedly lower than at the end of day 1, suggesting that components of pollen foraging behaviour could be subject to imperfect overnight retention. Our results suggest that learning the necessary motor skills to collect pollen effectively from morphologically simple flowers takes three times as many visits as learning how to handle the most morphologically complex flowers to extract nectar, potentially explaining why bees are more specialised in their choice of pollen flowers.

  1. Body size affects individual winter foraging strategies of thick-billed murres in the Bering Sea.

    PubMed

    Orben, Rachael A; Paredes, Rosana; Roby, Daniel D; Irons, David B; Shaffer, Scott A

    2015-11-01

    Foraging and migration often require different energetic and movement strategies. Though not readily apparent, constraints during one phase might influence the foraging strategies observed in another. For marine birds that fly and dive, body size constraints likely present a trade-off between foraging ability and migration as smaller bodies reduce flight costs, whereas larger bodies are advantageous for diving deeper. This study examines individual wintering strategies of deep diving thick-billed murres (Uria lomvia) breeding at three colonies in the south-eastern Bering Sea: St Paul, St George and Bogoslof. These colonies, arranged north to south, are located such that breeding birds forage in a gradient from shelf to deep-water habitats. We used geolocation time-depth recorders and stable isotopes from feathers to determine differences in foraging behaviour and diet of murres during three non-breeding periods, 2008-2011. Body size was quantified by a principal component analysis (wing, culmen, head+bill and tarsus length). A hierarchical cluster analysis identified winter foraging strategies based on individual movement, diving behaviour and diet (inferred from stable isotopes). Structural body size differed by breeding island. Larger birds from St Paul had higher wing loading than smaller birds from St George. Larger birds, mainly from St Paul, dove to deeper depths, spent more time in the Bering Sea, and likely consumed higher trophic-level prey in late winter. Three winter foraging strategies were identified. The main strategy, employed by small birds from all three breeding colonies in the first 2 years, was characterized by high residency areas in the North Pacific south of the Aleutians and nocturnal diving. In contrast, 31% of birds from St Paul remained in the Bering Sea and foraged mainly during the day, apparently feeding on higher trophic-level prey. Throat feather stable isotopes indicated that individuals exhibited flexibility in the use of this

  2. Evaluation of Cowpea Germplasm Lines Adapted for Use as a Cover Crop in the Southeastern US

    USDA-ARS?s Scientific Manuscript database

    Cowpeas (Vigna unguiculata) are desirable as a cover crop, because they are tolerant of heat, drought and poor soils, grow vigorously and compete well against weeds, and provide nitrogen for rotational crops. Cowpeas were grown extensively as a forage and green manure crop in the southeastern U.S. ...

  3. The scientific grand challenges of the 21st century for the Crop Science Society of America

    USDA-ARS?s Scientific Manuscript database

    Crop science is a highly integrative science field employing expertise from multiple disciplines to broaden our understanding of agronomic, turf, and forage crops. A major goal of crop science is to ensure an adequate and sustainable production of food, feed, fuel, and fiber for our world’s growing ...

  4. Evaluating potential dryland cropping systems adapted to climate change in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Climate in the semi-arid Central Great Plains is expected to become warmer and drier in coming decades, with potentially greater variability in precipitation and temperature. Cropping systems that include forages and allow flexibility for determining if a crop should be planted and which crop to pla...

  5. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.

    PubMed

    López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente

    2013-01-01

    Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new

  6. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  7. Breeding for plant heat tolerance at vegetative and reproductive stages.

    PubMed

    Driedonks, Nicky; Rieu, Ivo; Vriezen, Wim H

    2016-06-01

    Thermotolerant crop research. Global warming has become a serious worldwide threat. High temperature is a major environmental factor limiting crop productivity. Current adaptations to high temperature via alterations to technical and management systems are insufficient to sustain yield. For this reason, breeding for heat-tolerant crops is in high demand. This review provides an overview of the effects of high temperature on plant physiology, fertility and crop yield and discusses the strategies for breeding heat-tolerant cultivars. Generating thermotolerant crops seems to be a challenging task as heat sensitivity is highly variable across developmental stages and processes. In response to heat, plants trigger a cascade of events, switching on numerous genes. Although breeding has made substantial advances in developing heat-tolerant lines, the genetic basis and diversity of heat tolerance in plants remain largely unknown. The development of new varieties is expensive and time-consuming, and knowledge of heat tolerance mechanisms would aid the design of strategies to screen germplasm for heat tolerance traits. However, gains in heat tolerance are limited by the often narrow genetic diversity. Exploration and use of wild relatives and landraces in breeding can increase useful genetic diversity in current crops. Due to the complex nature of plant heat tolerance and its immediate global concern, it is essential to face this breeding challenge in a multidisciplinary holistic approach involving governmental agencies, private companies and academic institutions.

  8. Learning foraging thresholds for lizards

    SciTech Connect

    Goldberg, L.A.; Hart, W.E.; Wilson, D.B.

    1996-01-12

    This work gives a proof of convergence for a randomized learning algorithm that describes how anoles (lizards found in the Carribean) learn a foraging threshold distance. This model assumes that an anole will pursue a prey if and only if it is within this threshold of the anole`s perch. This learning algorithm was proposed by the biologist Roughgarden and his colleagues. They experimentally confirmed that this algorithm quickly converges to the foraging threshold that is predicted by optimal foraging theory our analysis provides an analytic confirmation that the learning algorithm converses to this optimal foraging threshold with high probability.

  9. The Dynamics of Foraging Ants

    NASA Astrophysics Data System (ADS)

    Baxter, G. William

    2009-03-01

    We experimentally study the foraging of small black ants, Formicinae lasius flavus, in order to describe their foraging behavior mathematically. Individual ants are allowed to forage on a two-dimensional surface in the absence of any food sources. The position of the ant as a function of time is determined using a high-resolution digital camera. Analysis of the average square displacements of many ants suggests that the foraging strategy is a non-reversing random walk. Moreover, the ants do not retrace their steps to return home but instead continue the random walk until it brings them back near their starting point.

  10. Forage polyphenol oxidase and ruminant livestock nutrition

    PubMed Central

    Lee, Michael R. F.

    2014-01-01

    Polyphenol oxidase (PPO) is predominately associated with the detrimental effect of browning fruit and vegetables, however, interest within PPO containing forage crops (crops to be fed to animals) has grown since the browning reaction was associated with reduced nitrogen (N) losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage) increased the quality of protein, improving N-use efficiency [feed N into product N (e.g., Milk): NUE] when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis (cleaving of glycerol-based lipid) in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA) in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalyzing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP). If the protein is an enzyme (e.g., protease or lipase) the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase undegraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated

  11. Parameterization and application of the AquaCrop model for simulating bioenergy crops in Oklahoma

    NASA Astrophysics Data System (ADS)

    Bilga, Navneet Kaur

    The objective of this study was to parameterize the AquaCrop model for two bioenergy crops, switchgrass and forage sorghum, using field measurements from Stillwater, Oklahoma in 2011. The parameterized model was then validated for additional sites at Chickasha and Woodward, Oklahoma. After parameterization at Stillwater, the simulated canopy cover closely matched the measured canopy cover dynamics with a RMSE of 6% in switchgrass and 5% in forage sorghum. The water stress thresholds for canopy expansion and stomatal conductance were similar for switchgrass and forage sorghum, but senescence was induced at 35% available water depletion for forage sorghum compared to 85% for switchgrass. The maximum rooting depth of switchgrass was estimated at 190 cm and that of forage sorghum at 120 cm. The normalized water productivity of switchgrass was found to be 14 g m-2, approximately half that of forage sorghum which was 27 g m-2. The parameterized model reasonably simulated soil water depletion at Stillwater (RMSE < 34 mm) and canopy cover at Chickasha and Woodward (RMSE < 11%) for both crops. This calibrated model was then used to predict ethanol yields as a simulation study at Goodwell, Oklahoma. The corn, forage sorghum and switchgrass were simulated using AquaCrop five water levels: rainfed with initial soil moisture conditions of 60% available water capacity, 80% available water capacity, 100% available water capacity, and irrigation treatments at 70% allowable depletion, and at 50% allowable depletion. The simulation study was done over a period of ten years 2002-2011 to assess the long term performance. County average yields were consistent with simulated grain yields for corn under irrigated and rainfed conditions. Forage sorghum produced 30 % higher theoretical ethanol yields than corn under irrigated environments but not under rainfed environments. Switchgrass did not produce significantly higher theoretical ethanol yields than corn at any water level. Based on

  12. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  13. Forage legumes - untrapped resource

    SciTech Connect

    Barnes, R.F.

    1985-02-01

    Legumes are important in nutrition, nitrogen fixation and in reducing dependence on nitrogen fertilizers. At a meeting between scientists from Australia, New Zealand and the United States the role of legumes was assessed and coordinated research programs set up to deal with problems such as disease, soil, climate and selective breeding.

  14. Southern Elephant Seals Replenish Their Lipid Reserves at Different Rates According to Foraging Habitat

    PubMed Central

    Richard, Gaëtan; Cox, Samantha L.; Picard, Baptiste; Vacquié-Garcia, Jade; Guinet, Christophe

    2016-01-01

    Assessing energy gain and expenditure in free ranging marine predators is difficult. However, such measurements are critical if we are to understand how variation in foraging efficiency, and in turn individual body condition, is impacted by environmentally driven changes in prey abundance and/or accessibility. To investigate the influence of oceanographic habitat type on foraging efficiency, ten post-breeding female southern elephant seals Mirounga leonina (SES) were equipped and tracked with bio-loggers to give continuous information of prey catch attempts, body density and body activity. Variations in these indices of foraging efficiency were then compared between three different oceanographic habitats, delineated by the main frontal structures of the Southern Ocean. Results show that changes in body density are related not only to the number of previous prey catch attempts and to the body activity (at a 6 day lag), but also foraging habitat type. For example, despite a lower daily prey catch attempt rate, SESs foraging north of the sub-Antarctic front improve their body density at a higher rate than individuals foraging south of the sub-Antarctic and polar fronts, suggesting that they may forage on easier to catch and/or more energetically rich prey in this area. Our study highlights a need to understand the influence of habitat type on top predator foraging behaviour and efficiency when attempting a better comprehension of marine ecosystems. PMID:27902786

  15. Southern Elephant Seals Replenish Their Lipid Reserves at Different Rates According to Foraging Habitat.

    PubMed

    Richard, Gaëtan; Cox, Samantha L; Picard, Baptiste; Vacquié-Garcia, Jade; Guinet, Christophe

    2016-01-01

    Assessing energy gain and expenditure in free ranging marine predators is difficult. However, such measurements are critical if we are to understand how variation in foraging efficiency, and in turn individual body condition, is impacted by environmentally driven changes in prey abundance and/or accessibility. To investigate the influence of oceanographic habitat type on foraging efficiency, ten post-breeding female southern elephant seals Mirounga leonina (SES) were equipped and tracked with bio-loggers to give continuous information of prey catch attempts, body density and body activity. Variations in these indices of foraging efficiency were then compared between three different oceanographic habitats, delineated by the main frontal structures of the Southern Ocean. Results show that changes in body density are related not only to the number of previous prey catch attempts and to the body activity (at a 6 day lag), but also foraging habitat type. For example, despite a lower daily prey catch attempt rate, SESs foraging north of the sub-Antarctic front improve their body density at a higher rate than individuals foraging south of the sub-Antarctic and polar fronts, suggesting that they may forage on easier to catch and/or more energetically rich prey in this area. Our study highlights a need to understand the influence of habitat type on top predator foraging behaviour and efficiency when attempting a better comprehension of marine ecosystems.

  16. Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

    PubMed Central

    Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.

    2015-01-01

    One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty. PMID:25924963

  17. Using Ancient Traits to Convert Soil Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function

    PubMed Central

    Schmidt, Jennifer E.; Bowles, Timothy M.; Gaudin, Amélie C. M.

    2016-01-01

    The effect of domestication and modern breeding on aboveground traits in maize (Zea mays) has been well-characterized, but the impact on root systems and the rhizosphere remain unclear. The transition from wild ecosystems to modern agriculture has focused on selecting traits that yielded the largest aboveground production with increasing levels of crop management and nutrient inputs. Root morphology, anatomy, and ecophysiological processes may have been affected by the substantial environmental and genetic shifts associated with this transition. As a result, root and rhizosphere traits that allow more efficient foraging and uptake in lower synthetic input environments might have been lost. The development of modern maize has led to a shift in microbiome community composition, but questions remain as to the dynamics and drivers of this change during maize evolution and its implications for resource acquisition and agroecosystem functioning under different management practices. Better understanding of how domestication and breeding affected root and rhizosphere microbial traits could inform breeding strategies, facilitate the sourcing of favorable alleles, and open new frontiers to improve resource use efficiency through greater integration of root development and ecophysiology with agroecosystem functioning. PMID:27066028

  18. Foraging movements of great frigatebirds from Aldabra Island: Relationship with environmental variables and interactions with fisheries

    NASA Astrophysics Data System (ADS)

    Weimerskirch, Henri; Corre, Matthieu Le; Kai, Emilie Tew; Marsac, Francis

    2010-07-01

    Great Frigatebirds ( Fregata minor) are large tropical seabirds that rely primarily on sub-surface predators such as tunas or cetaceans to capture their prey. We studied the foraging movements of 14 Great Frigatebirds breeding on Aldabra Island (9.4°S, 46.4°E), the largest colony in the Indian Ocean. This colony is located at more than 500 km from the main fishing grounds of a very important industrial purse-seine fishery targeting surface-dwelling tunas. Despite their slow flight speeds (16 km h -1), frigatebirds are able to forage at more than 1000 km from the colonies when breeding, using 2500-4750 km long foraging loops over oceanic waters. All trips were directed to the north of the island up to the equator. Foraging bouts, indicated by reduced flight speeds, were rare and located throughout the trips. Foraging spots tended to be more frequent on higher surface chlorophyll concentration and in association with some cyclonic vortices. However, mesoscale activity is relatively weak between Aldabra and the equator and the chlorophyll variability is mostly the result of wind-mixing processes during the southwest monsoon. These results suggest that frigatebirds forage for widely distributed resources to the north of Aldabra. The northernmost foraging bouts were located in the vicinity of the purse-seine fishing grounds, but without a significant overlap between frigatebirds and tuna fleets. The results of the study are compared with those from another population at Europa Island (22.3°S, 40.3°E) where birds were foraging on predictable features, the edge of cyclonic eddies that are marked in the Mozambique Channel. We discuss the consequences of the reliance of populations on contrasted oceanographic conditions on foraging strategies and on the evolution of life histories in these long-lived animals in a changing climate, as well as the possible effects of overfishing on frigatebird populations.

  19. Shadowed by scale: subtle behavioral niche partitioning in two sympatric, tropical breeding albatross species.

    PubMed

    Conners, Melinda G; Hazen, Elliott L; Costa, Daniel P; Shaffer, Scott A

    2015-01-01

    To meet the minimum energetic requirements needed to support parents and their provisioned offspring, the timing of breeding in birds typically coincides with periods of high food abundance. Seasonality and synchrony of the reproductive cycle is especially important for marine species that breed in high latitudes with seasonal booms in ocean productivity. Laysan and black-footed albatrosses breeding in the northwestern Hawaiian Islands have a dual reliance on both seasonally productive waters of high latitudes and on nutrient-poor waters of low latitudes, because their foraging ranges contract during the short but critical brood-guard stage. Therefore, these species face an additional constraint of having to negotiate nutrient-poor waters during the most energetically-demanding stage of the breeding cycle. This constriction of foraging range likely results in a higher density of foraging competitors. Thus, our aim was to understand how Hawaiian albatross partition resources both between and within species in this highly constrained breeding stage while foraging in less productive waters and simultaneously experiencing increased competition. High-precision GPS dataloggers were deployed on black-footed (Phoebastria nigripes, n=20) and Laysan (Phoebastria immutabilis, n=18) albatrosses during the brood-guard stage of the breeding season in 2006 (n=8), 2009 (n=13), 2010 (n=16) and 2012 (n=1). We used GPS data and movement analyses to identify six different behavioral states in foraging albatrosses that we then used to characterize foraging trips across individuals and species. We examined whether variations in behavior were correlated with both intrinsic factors (sex, body size, body condition) and extrinsic factors (lunar phase, wind speed, year). Behavioral partitioning was revealed both between and within species in Hawaiian albatrosses. Both species were highly active during chick-brooding trips and foraged across day and night; however, Laysan albatrosses relied

  20. Foraging competition in larger groups overrides harassment avoidance benefits in female reindeer (Rangifer tarandus).

    PubMed

    Uccheddu, Stefania; Body, Guillaume; Weladji, Robert B; Holand, Øystein; Nieminen, Mauri

    2015-11-01

    Male harassment toward females during the breeding season may have a negative effect on their reproductive success by disturbing their foraging activity, thereby inducing somatic costs. Accordingly, it is predicted that females will choose mates based on their ability to provide protection or will aggregate into large groups to dilute per capita harassment level. Conversely, increasing group size may also lead to a decrease in foraging activity by increasing foraging competition, but this effect has rarely been considered in mating tactic studies. This study examined the importance of two non-exclusive hypotheses in explaining the variations of the female activity budget during the breeding season: the male harassment hypothesis, and the female foraging competition hypothesis. We used focal observations of female activity from known mating groups collected during the breeding season from a long-term (15 years) study on reindeer Rangifer tarandus. We found that females were more disturbed (i.e., spent less time feeding) in the presence of young dominant males, and marginally disturbed in the presence of satellite males, which supports the male harassment hypothesis. We also found that female disturbance level increased with group size, being independent of the adult sex ratio. Consequently, these results rejected the dilution effect, but strongly supported the foraging competition hypothesis. This study therefore highlights a potential conflict in female behaviour. Indeed, any gains from harassment protection were negated by an increase of 6-7 females, since adult males lead larger groups than young males.

  1. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability

    PubMed Central

    Xie, Yuhuai; Li, Jing.; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of ‘b’ fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater ‘a’ fraction, ‘b’ fraction, ‘c’ values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn

  2. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    Intercropping legume with cereal is an extensively applied planting pattern in crop cultivation. However, forage potential and the degradability of harvested mixtures from intercropping system remain unclear. To investigate the feasibility of applying an intercropping system as a forage supply source to ruminants, two consecutive experiments (experiments 1 and 2) involving a field cultivation trial and a subsequent in vivo degradable experiment were conducted to determine the forage production performance and the ruminally degradable characteristics of a harvested mixture from an alfalfa/corn-rye intercropping system. In experiment 1, the intercropping system was established by alternating alfalfa and corn or rye with a row ratio of 5:2. Dry matter (DM) and nutrient yields were determined. In experiment 2, forages harvested from the different treatments were used as feedstuff to identify nutrient degradation kinetics and distribution of components between the rapidly degradable (a), potentially degradable (b) and the degradation rate constant (c) of 'b' fraction by in sacco method in Small-Tail Han wether Sheep. The intercropping system of alfalfa and corn-rye provided higher forage production performance with net increases of 9.52% and 34.81% in DM yield, 42.13% and 16.74% in crude protein (CP) yield, 25.94% and 69.99% in degradable DM yield, and 16.96% and 5.50% in degradable CP yield than rotation and alfalfa sole cropping systems, respectively. In addition, the harvest mixture from intercropping system also had greater 'a' fraction, 'b' fraction, 'c' values, and effective degradability (E value) of DM and CP than corn or rye hay harvested from rotation system. After 48-h exposure to rumen microbes, intercropping harvest materials were degraded to a higher extent than separately degraded crop stems from the sole system as indicated by visual microscopic examination with more tissues disappeared. Thus, the intercropping of alfalfa and corn-rye exhibited a greater

  3. Gene flow from herbicide-resistant crops: it's not just for transgenes.

    PubMed

    Mallory-Smith, Carol A; Sanchez Olguin, Elena

    2011-06-08

    Gene flow was raised as one of the first issues related to the development and release of genetically engineered (GE) crops. Gene flow has remained a topic of discussion for more than 20 years and is still used as an argument against the release of transgenic crops. With respect to herbicide-resistant crops, gene flow does not differ whether the herbicide resistance trait is introduced via genetic engineering or via conventional breeding techniques. Conventional breeding and genetic engineering techniques have been used to produce herbicide resistance in many of the same crop species. In addition, conventional breeding has been used to produce a broader range of herbicide-resistant crops than have been genetically engineered for herbicide resistance. Economic, political, and social concerns center on the breeding technique, but the results of gene flow for weed management are the same irrespective of breeding technique. This paper will focus on gene flow from nonGE herbicide-resistant crops in North America.

  4. Forage kochia: Friend or foe

    Treesearch

    Blair L. Waldron; R. Deane Harrison; N. Jerry Chatterton; Burke W. Davenport

    2001-01-01

    Perennial forage kochia (Kochia prostrata) is a halfshrub valuable for reclamation, fire breaks, and livestock and wildlife forage on semiarid and saline rangelands. Interest is mounting about this species, but some are concerned that it will become an invader of perennial communities. Only one cultivar (Immigrant) has been released in the United States. Eighty-one...

  5. Foraging ecology of Nuttall's Woodpecker

    Treesearch

    William M. Block

    1991-01-01

    I studied relative abundances, foraging behavior, and foraging habitats of Nuttall's Woodpeckers (Picoides nuttallii# at three California locations. Population sizes at two areas in the foothills of the Sierra Nevada were larger than the population in the Tehachapi Mountains. These differences were attributed to habitat and weather differences. The two areas in...

  6. Spatial memory in foraging games.

    PubMed

    Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T

    2016-03-01

    Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging.

  7. Relative importance of social status and physiological need in determining leadership in a social forager.

    PubMed

    Öst, Markus; Jaatinen, Kim

    2013-01-01

    Group decisions on the timing of mutually exclusive activities pose a dilemma: monopolized decision-making by a single leader compromises the optimal timing of activities by the others, while independent decision-making by all group members undermines group coherence. Theory suggests that initiation of foraging should be determined by physiological demand in social foragers, thereby resolving the dilemma of group coordination. However, empirical support is scant, perhaps because intrinsic qualities predisposing individuals to leadership (social status, experience or personality), or their interactions with satiation level, have seldom been simultaneously considered. Here, we examine which females initiated foraging in eider (Somateria mollissima) brood-rearing coalitions, characterized by female dominance hierarchies and potentially large individual differences in energy requirements due to strenuous breeding effort. Several physiological and social factors, except for female breeding experience and boldness towards predators, explained foraging initiation. Initiators spent a larger proportion of time submerged during foraging bouts, had poorer body condition and smaller structural size, but they were also aggressive and occupied central positions. Initiation probability also declined with female group size as expected given random assignment of initiators. However, the relative importance of physiological predictors of leadership propensity (active foraging time, body condition, structural size) exceeded those of social predictors (aggressiveness, spatial position) by an order of magnitude. These results confirm recent theoretical work suggesting that 'leading according to need' is an evolutionary viable strategy regardless of group heterogeneity or underlying dominance structure.

  8. Relative Importance of Social Status and Physiological Need in Determining Leadership in a Social Forager

    PubMed Central

    Öst, Markus; Jaatinen, Kim

    2013-01-01

    Group decisions on the timing of mutually exclusive activities pose a dilemma: monopolized decision-making by a single leader compromises the optimal timing of activities by the others, while independent decision-making by all group members undermines group coherence. Theory suggests that initiation of foraging should be determined by physiological demand in social foragers, thereby resolving the dilemma of group coordination. However, empirical support is scant, perhaps because intrinsic qualities predisposing individuals to leadership (social status, experience or personality), or their interactions with satiation level, have seldom been simultaneously considered. Here, we examine which females initiated foraging in eider (Somateria mollissima) brood-rearing coalitions, characterized by female dominance hierarchies and potentially large individual differences in energy requirements due to strenuous breeding effort. Several physiological and social factors, except for female breeding experience and boldness towards predators, explained foraging initiation. Initiators spent a larger proportion of time submerged during foraging bouts, had poorer body condition and smaller structural size, but they were also aggressive and occupied central positions. Initiation probability also declined with female group size as expected given random assignment of initiators. However, the relative importance of physiological predictors of leadership propensity (active foraging time, body condition, structural size) exceeded those of social predictors (aggressiveness, spatial position) by an order of magnitude. These results confirm recent theoretical work suggesting that ‘leading according to need’ is an evolutionary viable strategy regardless of group heterogeneity or underlying dominance structure. PMID:23691258

  9. Implementation of Genomic Prediction in Lolium perenne (L.) Breeding Populations

    PubMed Central

    Grinberg, Nastasiya F.; Lovatt, Alan; Hegarty, Matt; Lovatt, Andi; Skøt, Kirsten P.; Kelly, Rhys; Blackmore, Tina; Thorogood, Danny; King, Ross D.; Armstead, Ian; Powell, Wayne; Skøt, Leif

    2016-01-01

    Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield. Genetic gain for traits such as biomass yield has been relatively modest. This has been attributed to its long breeding cycle, and the necessity to use population based breeding methods. Thanks to recent advances in genotyping techniques there is increasing interest in genomic selection from which genomically estimated breeding values are derived. In this paper we compare the classical RRBLUP model with state-of-the-art machine learning techniques that should yield themselves easily to use in GS and demonstrate their application to predicting quantitative traits in a breeding population of L. perenne. Prediction accuracies varied from 0 to 0.59 depending on trait, prediction model and composition of the training population. The BLUP model produced the highest prediction accuracies for most traits and training populations. Forage quality traits had the highest accuracies compared to yield related traits. There appeared to be no clear pattern to the effect of the training population composition on the prediction accuracies. The heritability of the forage quality traits was generally higher than for the yield related traits, and could partly explain the difference in accuracy. Some population structure was evident in the breeding populations, and probably contributed to the varying effects of training population on the predictions. The average linkage disequilibrium between adjacent markers ranged from 0.121 to 0.215. Higher marker density and larger training population closely related with the test population are likely to improve the prediction accuracy. PMID:26904088

  10. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species.

    PubMed

    Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2016-04-01

    Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest

  11. Evaluating shade effects on crop productivity in sorghum-legume intercropping systems using support vector machines

    USDA-ARS?s Scientific Manuscript database

    Sorghum-legume intercropping has the potential to improve forage productivity, resource use efficiency, and forage quality under irrigation in the Southern High Plains of the United States. Crop production is conversion of solar radiation into biomass and solar radiation is wasted early in the seaso...

  12. At-sea associations in foraging little penguins.

    PubMed

    Berlincourt, Maud; Arnould, John P Y

    2014-01-01

    Prey distribution, patch size, and the presence of conspecifics are important factors influencing a predator's feeding tactics, including the decision to feed individually or socially. Little is known about group behaviour in seabirds as they spend most of their lives in the marine environment where it is difficult to observe their foraging activities. In this study, we report on at-sea foraging associations of little penguins (Eudyptula minor) during the breeding season. Individuals could be categorised as (1) not associating; (2) associating when departing from and/or returning to the colony; or (3) at sea when travelling, diving or performing synchronised dives. Out of 84 separate foraging tracks, 58 (69.0%) involved associations with conspecifics. Furthermore, in a total of 39 (46.4%), individuals were found to dive during association and in 32 (38.1%), individuals were found to exhibit synchronous diving. These behaviours suggest little penguins forage in groups, could synchronise their underwater movements and potentially cooperate to concentrate their small schooling prey.

  13. Effects of irrigation on crops and soils with Raft River geothermal water

    SciTech Connect

    Stanley, N.E.; Schmitt, R.C.

    1980-01-01

    The Raft River Irrigation Experiment investigated the suitability of using energy-expended geothermal water for irrigation of selected field-grown crops. Crop and soil behavior on plots sprinkled or surface irrigated with geothermal water was compared to crop and soil behavior on plots receiving water from shallow irrigation wells and the Raft River. In addition, selected crops were produced, using both geothermal irrigation water and special management techniques. Crops irrigated with geothermal water exhibited growth rates, yields, and nutritional values similar to comparison crops. Cereal grains and surface-irrigated forage crops did not exhibit elevated fluoride levels or accumulations of heavy metals. However, forage crops sprinkled with geothermal water did accumulate fluorides, and leaching experiments indicate that new soils receiving geothermal water may experience increased salinity, exchangeable sodium, and decreased permeability. Soil productivity may be maintained by leaching irrigations.

  14. Ecophysiological response of Adelie penguins facing an experimental increase in breeding constraints.

    PubMed

    Beaulieu, M; Spée, M; Lazin, D; Ropert-Coudert, Y; le Maho, Y; Ancel, A; Raclot, T

    2010-01-01

    Foraging strategies play a key role in breeding effort. Little is known, however, about their connection with hormonal and nutritional states, especially when breeding constraints vary. Here, we experimentally increased foraging costs and thus breeding constraints by handicapping Adélie penguins (Pygoscelis adeliae) with dummy devices representing 3-4% of the penguins' cross-sectional area. We examined food-related stress (via plasma corticosterone concentration) and nutritional state (via metabolite levels). Concurrently, we investigated the use of ecological niches via the isotopic signature of red blood cells indicating the trophic position (delta(15)N) and the spatial distribution (delta(13)C) of penguins. Handicapped birds performed approximately 70% longer foraging trips and lost approximately 60% more body mass than controls and their partners. However, corticosterone levels and the nutritional state were unchanged. The isotopic signature revealed that males and females differed in their foraging behaviour: upper trophic levels contributed more in the males' diet, who foraged in more pelagic areas. Handicapped and partner birds adopted the same strategy at sea: a shift towards higher delta(13)C values suggested that they foraged in more coastal areas than controls. This change in foraging decisions may optimize feeding time by decreasing travelling time. This may partly compensate for the presumed lower foraging efficiency of handicapped birds and for the energetic debt of their partners who had to fast approximately 70% longer on the nest. We propose that this flexible use of ecological niches may allow birds facing increased breeding constraints to avoid chronic stress and to minimize the impact on their body condition.

  15. Mercury contamination and stable isotopes reveal variability in foraging ecology of generalist California gulls

    USGS Publications Warehouse

    Peterson, Sarah; Ackerman, Josh; Eagles-Smith, Collin A.

    2017-01-01

    Environmental contaminants are a concern for animal health, but contaminant exposure can also be used as a tracer of foraging ecology. In particular, mercury (Hg) concentrations are highly variable among aquatic and terrestrial food webs as a result of habitat- and site-specific biogeochemical processes that produce the bioaccumulative form, methylmercury (MeHg). We used stable isotopes and total Hg (THg) concentrations of a generalist consumer, the California gull (Larus californicus), to examine foraging ecology and illustrate the utility of using Hg contamination as an ecological tracer under certain conditions. We identified four main foraging clusters of gulls during pre-breeding and breeding, using a traditional approach based on light stable isotopes. The foraging cluster with the highest δ15N and δ34S values in gulls (cluster 4) had mean blood THg concentrations 614% (pre-breeding) and 250% (breeding) higher than gulls with the lowest isotope values (cluster 1). Using a traditional approach of stable-isotope mixing models, we showed that breeding birds with a higher proportion of garbage in their diet (cluster 2: 63–82% garbage) corresponded to lower THg concentrations and lower δ15N and δ34S values. In contrast, gull clusters with higher THg concentrations, which were more enriched in 15N and 34S isotopes, consumed a higher proportion of more natural, estuarine prey. δ34S values, which change markedly across the terrestrial to marine habitat gradient, were positively correlated with blood THg concentrations in gulls. The linkage we observed between stable isotopes and THg concentrations suggests that Hg contamination can be used as an additional tool for understanding animal foraging across coastal habitat gradients.

  16. Adélie Penguin Foraging Location Predicted by Tidal Regime Switching

    PubMed Central

    Oliver, Matthew J.; Irwin, Andrew; Moline, Mark A.; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator. PMID:23383091

  17. Adélie penguin foraging location predicted by tidal regime switching.

    PubMed

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  18. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  19. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  20. Thamnophis hammondii foraging behavior

    USGS Publications Warehouse

    Ervin, Edward L.; Fisher, Robert N.

    2007-01-01

    Thamnophis hammondii is considered one of the most aquatic of the gartersnakes and is closely associated with creeks and impoundments (Fitch 1940. Univ. California Publ. Zool. 44:1–150) with a diet consisting largely of both the larvae and transformed stages of amphibians (Spea, Bufo, Rana, Pseudacris) and small fish (Oncorhynchus, Gasterosteus, Eucyclogobius, and Cottus) (Jennings and Hayes 1994. Amphibian and Reptile Species of Special Concern in California. Final report contract no. 8023, California Department of Fish Game. 255 pp.; Rossman et al. 1996. The Garter Snakes: Evolution and Ecology. Univ. of Oklahoma Press, Norman. 332 pp.). Little is known regarding the foraging behavior of T. hammondii (Rossman et al., op. cit.). Herein, we describe the details of a predation sequence (approach, strike, and capture) observed in a natural setting.

  1. Genotyping-by-sequencing through transcriptomics: Implementation in a range of crop species with varying reproductive habits and ploidy levels.

    PubMed

    Malmberg, Michelle M; Pembleton, Luke W; Baillie, Rebecca C; Drayton, Michelle C; Sudheesh, Shimna; Kaur, Sukhjiwan; Shinozuka, Hiroshi; Verma, Preeti; Spangenberg, German C; Daetwyler, Hans D; Forster, John W; Cogan, Noel O I

    2017-09-15

    The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker-dense tools have been developed but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often sub-optimal and routinely fails to effectively balance cost-effectiveness and sample throughput. Genotyping-by-sequencing (GBS) encompasses a range of protocols including re-sequencing of the transcriptome. The present study describes a skim GBS-transcriptomics (GBS-t) approach developed to be broadly applicable, cost-effective and high-throughput while still assaying a significant number of SNP loci. A range of crop species with differing levels of ploidy and degree of inbreeding/outbreeding were chosen, including; perennial ryegrass, a diploid outbreeding forage grass; phalaris, a putative segmental allotetraploid outbreeding forage grass; lentil, a diploid inbreeding grain legume; and canola, an allotetraploid partially outbreeding oilseed. GBS-t was validated as a simple and largely automated, cost-effective method which generates sufficient SNPs (from 89,738 to 231,977) with acceptable levels of missing data and even genome coverage from c. 3 million sequence reads per sample. GBS-t is therefore a broadly applicable system suitable for many crops, offering advantages over other systems. The correct choice of subsequent sequence analysis software is important, and the bioinformatics process should be iterative and tailored to the specific challenges posed by ploidy variation and extent of heterozygosity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Physiological effects of increased foraging effort in a small passerine.

    PubMed

    Yap, Kang Nian; Kim, Oh Run; Harris, Karilyn C; Williams, Tony D

    2017-09-25

    Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provision offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches (Taeniopygia guttata) using the technique described by Koetsier and Verhulst (2011). Birds in the "high foraging effort" (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically-expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10min whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour we documented few short- or long-term effects of "training" (3 days and 90 days of "training" respectively) and some of these effects were sex-specific. There were no effects of treatment on BMR, hematocrit, hemoglobin, or plasma glycerol, triglyceride, glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared to controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total antioxidant capacity (OXY), birds in the HF treatment had higher oxidative stress. © 2017. Published by The Company of Biologists Ltd.

  3. Determination of Phytoestrogen Content in Fresh-Cut Legume Forage

    PubMed Central

    Hloucalová, Pavlína; Skládanka, Jiří; Horký, Pavel; Klejdus, Bořivoj; Pelikán, Jan; Knotová, Daniela

    2016-01-01

    Simple Summary Phytoestrogens comprise a group of substances negatively influencing the development and function of animal reproductive organs. Their appearance in forage crops can reduce feeding values, cause dietary disorders, and lead to animal health damage. This study evaluated the occurrence of individual phytoestrogens in various species of annual and perennial legumes and their levels in dry forage. It appeared that feeding large amounts of red clover presents a potential risk, but red clover can be replaced with the annual Persian clover, in which markedly lower phytoestrogen levels were detected. Abstract The aim of the study was to determine phytoestrogen content in fresh-cut legume forage. This issue has been much discussed in recent years in connection with the health and safety of feedstuffs and thus livestock health. The experiments were carried out on two experimental plots at Troubsko and Vatín, Czech Republic during June and July in 2015. Samples were collected of the four forage legume species perennial red clover (variety “Amos”), alfalfa (variety “Holyně”), and annuals Persian clover and Alexandrian clover. Forage was sampled twice at regular three to four day intervals leading up to harvest and a third time on the day of harvest. Fresh and wilted material was analyzed using liquid chromatography–mass spectrometry (LC-MS). Higher levels (p < 0.05) of isoflavones biochanin A (3.697 mg·g−1 of dry weight) and formononetin (4.315 mg·g−1 of dry weight) were found in red clover than in other species. The highest isoflavone content was detected in red clover, reaching 1.001% of dry matter (p < 0.05), representing a risk for occurrence of reproduction problems and inhibited secretion of animal estrogen. The phytoestrogen content was particularly increased in wilted forage. Significant isoflavone reduction was observed over three to four day intervals leading up to harvest. PMID:27429009

  4. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Changes In accordance with section 4 of the Basic Provisions, the contract change date is November 30... the Basic Provisions, the cancellation and termination dates are: State and county Cancellation and... other states March 15. 6. Report of Acreage In lieu of the provisions of section 6(a) of the Basic...

  5. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure of the irrigation water... stand. 14. Late and Prevented Planting The late and prevented planting provisions of the...

  6. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... measures; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of the irrigation water... appraisals conducted after the normal time for each cutting for the area. 11. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  7. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... measures; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of the irrigation water... appraisals conducted after the normal time for each cutting for the area. 11. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  8. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... insufficient or improper application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic... 75 percent but more than 55 percent of a normal stand. 14. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  9. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... measures; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of the irrigation water... appraisals conducted after the normal time for each cutting for the area. 11. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  10. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... insufficient or improper application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic... 75 percent but more than 55 percent of a normal stand. 14. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  11. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... measures; (5) Wildlife; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of the irrigation water... appraisals conducted after the normal time for each cutting for the area. 11. Late and Prevented Planting The late and prevented planting provisions of the Basic Provisions are not applicable....

  12. Leucaena: promising forage and tree crop for the tropics

    SciTech Connect

    Not Available

    1984-01-01

    A report mainly on L. leucocephala with similar chapters to those found in the first edition, and additional chapters on: experiences with Leucaena - illustrating the growth and use of L. leucocephala throughout the tropics and subtropics; and other Leucaena species - giving very brief descriptions of L. diversifolia, L. esulenta, L. macrophylla, L. pulverulenta, L. shannoni, L. retusa, L. lanceolata, L. collinsii and L. trichodes. 34 references.

  13. Canadian regulatory perspectives on genome engineered crops.

    PubMed

    Smyth, Stuart J

    2017-01-02

    New breeding techniques in plant agriculture exploded upon the scene about two years ago, in 2014. While these innovative plant breeding techniques, soon to be led by CRISPR/Cas9, initially appear to hold tremendous promise for plant breeding, if not a revolution for the industry, the question of how the products of these technologies will be regulated is rapidly becoming a key aspect of the technology's future potential. Regulation of innovative technologies and products has always lagged that of the science, but in the past decade, regulatory systems in many jurisdictions have become gridlocked as they try to regulate genetically modified (GM) crops. This regulatory incapability to efficiently assess and approve innovative new agricultural products is particularly important for new plant breeding techniques as if these techniques are classified as genetically modified breeding techniques, then their acceptance and future will diminish considerably as they will be rejected by the European Union. Conversely, if the techniques are accepted as conventional plant breeding, then the future is blindingly bright. This article examines the international debate about the regulation of new plant breeding techniques and then assesses how the Canadian regulatory system has approached the regulation of these technologies through two more public product approvals, GM apples and GM potatoes, then discusses other crop variety approval and those in the regulatory pipeline.

  14. Conservation priorities for tree crop wild relatives in the United States

    USDA-ARS?s Scientific Manuscript database

    Our native crop wild relatives have proved useful as genetic resources in breeding more productive, nutritious, and resilient crops. Their utilization is expected only to increase with better information on the species and improving breeding tools, but may well be constrained by their limited repres...

  15. Soil Organic Carbon Response to Cover Crop and Nitrogen Fertilization under Bioenergy Sorghum

    NASA Astrophysics Data System (ADS)

    Sainju, U. M.; Singh, H. P.; Singh, B. P.

    2015-12-01

    Removal of aboveground biomass for bioenergy/feedstock in bioenergy cropping systems may reduce soil C storage. Cover crop and N fertilization may provide additional crop residue C and sustain soil C storage compared with no cover crop and N fertilization. We evaluated the effect of four winter cover crops (control or no cover crop, cereal rye, hairy vetch, and hairy vetch/cereal rye mixture) and two N fertilization rates (0 and 90 kg N ha-1) on soil organic C (SOC) at 0-5, 5-15, and 15-30 cm depths under forage and sweet sorghums from 2010 to 2013 in Fort Valley, GA. Cover crop biomass yield and C content were greater with vetch/rye mixture than vetch or rye alone and the control, regardless of sorghum species. Soil organic C was greater with vetch/rye than rye at 0-5 and 15-30 cm in 2011 and 2013 and greater with vetch than rye at 5-15 cm in 2011 under forage sorghum. Under sweet sorghum, SOC was greater with cover crops than the control at 0-5 cm, but greater with vetch and the control than vetch/rye at 15-30 cm. The SOC increased at the rates of 0.30 Mg C ha-1 yr-1 at 0-5 cm for rye and the control to 1.44 Mg C ha-1 yr-1 at 15-30 cm for vetch/rye and the control from 2010 to 2013 under forage sorghum. Under sweet sorghum, SOC also increased linearly at all depths from 2010 to 2013, regardless of cover crops. Nitrogen fertilization had little effect on SOC. Cover crops increased soil C storage compared with no cover crop due to greater crop residue C returned to the soil under forage and sweet sorghum and hairy vetch/cereal rye mixture had greater C storage than other cover crops under forage sorghum.

  16. Hormones and territorial behavior during breeding in snow buntings (Plectrophenax nivalis): an Arctic-breeding songbird.

    PubMed

    Romero, L M; Soma, K K; O'Reilly, K M; Suydam, R; Wingfield, J C

    1998-02-01

    We examined hormonal profiles and behavior associated with maintaining a single-purpose territory in an Arctic-breeding songbird-the snow bunting (Plectrophenax nivalis). Snow buntings differ from many other Arctic-breeding passerines by using nest cavities, an uncommon and defended resource, but not relying upon the surrounding territory for forage. Circulating levels of testosterone in males were high when territories were established and then decreased over the breeding season. LH secretion was enhanced in females while laying eggs, followed by detectable levels of estradiol during incubation. Both sexes showed equivalent corticosterone responses to the stress of being captured and held. Male snow buntings vigorously defended territories in response to a simulated territorial intrusion both when initiating breeding and when feeding young. Exogenous testosterone implants surprisingly inhibited physical aggression but enhanced singing when birds were feeding young, thus suggesting that song and physical aggression are mediated by different hormonal mechanisms at this time of year. Together, these results contrast with hormonal profiles and behavior in other Arctic-breeding passerines.

  17. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  18. Root Foraging Influences Plant Growth Responses to Earthworm Foraging

    PubMed Central

    Cameron, Erin K.; Cahill, James F.; Bayne, Erin M.

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants. PMID:25268503

  19. Analysis of Inter- and Intra-individual Variation in Foraging Habits of the Endangered Hawaiian Petrel Using Stables Isotopes

    NASA Astrophysics Data System (ADS)

    Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.

    2014-12-01

    Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs

  20. Breeding for high water-use efficiency.

    PubMed

    Condon, A G; Richards, R A; Rebetzke, G J; Farquhar, G D

    2004-11-01

    There is a pressing need to improve the water-use efficiency of rain-fed and irrigated crop production. Breeding crop varieties with higher water-use efficiency is seen as providing part of the solution. Three key processes can be exploited in breeding for high water-use efficiency: (i) moving more of the available water through the crop rather than it being wasted as evaporation from the soil surface or drainage beyond the root zone or being left behind in the root zone at harvest; (ii) acquiring more carbon (biomass) in exchange for the water transpired by the crop, i.e. improving crop transpiration efficiency; (iii) partitioning more of the achieved biomass into the harvested product. The relative importance of any one of these processes will vary depending on how water availability varies during the crop cycle. However, these three processes are not independent. Targeting specific traits to improve one process may have detrimental effects on the other two, but there may also be positive interactions. Progress in breeding for improved water-use efficiency of rain-fed wheat is reviewed to illustrate the nature of some of these interactions and to highlight opportunities that may be exploited in other crops as well as potential pitfalls. For C3 species, measuring carbon isotope discrimination provides a powerful means of improving water-use efficiency of leaf gas exchange, but experience has shown that improvements in leaf-level water-use efficiency may not always translate into higher crop water-use efficiency or yield. In fact, the reverse has frequently been observed. Reasons for this are explored in some detail. Crop simulation modelling can be used to assess the likely impact on water-use efficiency and yield of changing the expression of traits of interest. Results of such simulations indicate that greater progress may be achieved by pyramiding traits so that potential negative effects of individual traits are neutralized. DNA-based selection techniques may

  1. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat.

    PubMed

    Basler, Ryan

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops.

  2. Diversity of Fusarium species isolated from UK forage maize and the population structure of F. graminearum from maize and wheat

    PubMed Central

    2016-01-01

    Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cerealis, F. equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae, F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize and DON in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops. PMID:27366645

  3. Feather corticosterone during non-breeding correlates with multiple measures of physiology during subsequent breeding in a migratory seabird.

    PubMed

    Fairhurst, Graham D; Champoux, Louise; Hobson, Keith A; Rail, Jean-François; Verreault, Jonathan; Guillemette, Magella; Montevecchi, William A; Brousseau, Pauline; Soos, Catherine

    2017-02-24

    Carry-over effects in migratory birds are likely mediated by physiological processes that are activated in response to environmental variation. Such processes affect body condition and/or reproductive success, and can include corticosterone (CORT) because this hormone responds to environmental stressors and influences energy balance. Few studies have considered how CORT levels during non-breeding relate to a broader physiological profile during subsequent breeding, and fewer still have considered measures other than body condition. To explore CORT's potential role in carry-over effects, we investigated the relationship between CORT and foraging ecology of northern gannets (Morus bassanus) during the non-breeding period, and tested for associations between these factors and variation in a suite of physiological and biochemical metrics during subsequent breeding. Northern gannets are the largest seabird top predator in the North Atlantic and were among the hardest hit by the Deepwater Horizon oil blowout in the Gulf of Mexico in 2010. We used light-level geolocators to confirm winter origins of individuals in our study. No interrelationships were found among levels of CORT from feathers grown during non-breeding (CORTf) and variation in foraging ecology, measured by stable isotopes of carbon (δ(13)C) and nitrogen (δ(15)N) from the same feathers. CORTf was correlated negatively with hematocrit and positively with triglyceride measured during subsequent incubation, and explained more variation in these variables than did body mass during incubation. These findings provide support for the hypothesis that energy management, measured using CORTf, during non-breeding carries over to influence physiological measures other than body condition. Gannets that previously wintered within the Gulf of Mexico in the years following the Deepwater Horizon oil blowout had higher levels of CORTf compared to birds that wintered along the Atlantic coast, suggesting an increased

  4. (Reinforcement?) Learning to forage optimally.

    PubMed

    Kolling, Nils; Akam, Thomas

    2017-09-14

    Foraging effectively is critical to the survival of all animals and this imperative is thought to have profoundly shaped brain evolution. Decisions made by foraging animals often approximate optimal strategies, but the learning and decision mechanisms generating these choices remain poorly understood. Recent work with laboratory foraging tasks in humans suggest their behaviour is poorly explained by model-free reinforcement learning, with simple heuristic strategies better describing behaviour in some tasks, and in others evidence of prospective prediction of the future state of the environment. We suggest that model-based average reward reinforcement learning may provide a common framework for understanding these apparently divergent foraging strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby.

    PubMed

    Weimerskirch, Henri; Le Corre, Matthieu; Ropert-Coudert, Yan; Kato, Akiko; Marsac, Francis

    2006-01-01

    Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey-flying fishes and flying squids-of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding

  6. Good Days, Bad Days: Wind as a Driver of Foraging Success in a Flightless Seabird, the Southern Rockhopper Penguin

    PubMed Central

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing

  7. Good days, bad days: wind as a driver of foraging success in a flightless seabird, the southern rockhopper penguin.

    PubMed

    Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra

    2013-01-01

    Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing

  8. Sulfur dioxide and ozone effects on crops

    SciTech Connect

    Amundson, R.G. ); Kress, L. )

    1990-04-01

    In order to determine if exposure to O{sub 3} and SO{sub 2} in combination produce greater-than-additive effects on yields of economically important crops, corn, wheat, soybean, alfalfa, and a mixed forage crop of timothy and red clover were exposed to SO{sub 2} and O{sub 3} using open-top chambers in six separate experiments during three field seasons. In five of the six studies changes in physiology and/or growth were also assessed to help determine short-term responses of the plants to the exposures. Monitoring of several physiological responses of the crops provided a means of assessing short term effects of the SO{sub 2} exposures on the crops and helped in interpretation of the effects on yields. 4 refs., 46 figs., 49 tabs.

  9. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  10. Annual Forages: Influence on Animal Performance and Water/Nutrient Management

    USDA-ARS?s Scientific Manuscript database

    Annuals can provide short-term grazing between crop rotations or can be interseeded into perennial pastures to increase forage quality and productivity. They provide an opportunity to increase the economic and environmental sustainability of traditional grazing systems. However, to be profitable, an...

  11. Enhancing forage yields and soil conservation by interseeding alfalfa into silage corn

    USDA-ARS?s Scientific Manuscript database

    Recent field studies have identified prohexadione-calcium (PHD) as an effective plant growth regulator for enhancing the establishment of alfalfa interseeded into corn as a dual-purpose cover and forage crop. Foliar applications of PHD on seedlings doubled or tripled stand survival of interseeded al...

  12. Soil nutrient evaluation from swine effluent application to five forage-system practices

    USDA-ARS?s Scientific Manuscript database

    A 3-yr study was conducted to investigate the impact of forage double-cropping on nutrient accumulation and leaching in Mantachie fine loam soil fertilized with swine (Sus scrofa domesticus) waste lagoon effluent as the sole source of plant nutrients. Plots of Tifton 44 bermudagrass [Cynodon dactylo...

  13. Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure

    USDA-ARS?s Scientific Manuscript database

    Forage radish cover crops were investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Lab-scale batch digesters (300 mL) were operated under mesophilic conditions during two experiments. In the first experiment, the optimal co-digestion ratio for ...

  14. Dissecting the genetics of rhizomatousness: Towards sustainable food, forage, and bioenergy

    USDA-ARS?s Scientific Manuscript database

    Rhizomatousness is a key trait influencing both the perenniality and biomass partitioning of plants. Increased understanding of the genetic control of rhizome growth offers potential towards the creation of more sustainable grain, forage, and bioenergy cropping systems. It is also applicable to th...

  15. Fall-grown oat forages: cultivars, planting dates, and expected yields

    USDA-ARS?s Scientific Manuscript database

    For the dairy industry, the options for producing a late-summer emergency forage crop are limited, mostly because the growing season is relatively short. Recent work conducted at Prairie du Sac (WI) has demonstrated that some cereal grains (primarily oats) planted in early August will joint, elongat...

  16. Production and nitrogen-use efficiency of oat forage receiving slurry or urea

    USDA-ARS?s Scientific Manuscript database

    Recently, several research projects have evaluated fall-grown oat for use as emergency fall forage throughout the north-central US; however, using fall-grown oat in cropping programs also allows the practical benefit of summer manure distribution that is completely de-coupled from corn production. ‘...

  17. Opportunities and roadblocks in utilizing forages and small grains for liquid fuels

    USDA-ARS?s Scientific Manuscript database

    Forages and small grains represent unique and potentially sustainable feedstocks for the nascent biomass fuels sector. Biorefineries will require feedstocks of the required quality on a year-around basis. Opportunities exist to enhance crops such as switchgrass, sorghum and wheat as sources of bi...

  18. Forage use to improve environmental sustainability of ruminant production.

    PubMed

    Guyader, J; Janzen, H H; Kroebel, R; Beauchemin, K A

    2016-08-01

    Ruminants raised for meat and milk are important sources of protein in human diets worldwide. Their unique digestive system allows them to derive energy and nourishment from forages, making use of vast areas of grazing lands not suitable for arable cropping or biofuel production and avoiding direct competition for grain that can be used as human food. However, sustaining an ever-growing population of ruminants consuming forages poses a dilemma: while exploiting their ecological niche, forage-fed ruminants produce large amount of enteric methane, a potent greenhouse gas. Resolving this quandary would allow ruminants an expanded role in meeting growing global demands for livestock products. One way around the dilemma is to devise forage-based diets and feeding systems that reduce methane emissions per unit of milk or meat produced. Ongoing research has made significant strides toward this objective. A wider opportunity is to look beyond methane emissions alone and consider all greenhouse gas emissions from the entire livestock-producing system. For example, by raising ruminants in systems using forages, some of the methane emissions can be offset by preserving or enhancing soil carbon reserves, thereby withholding carbon dioxide from the air. Similarly, well-managed systems based on forages may reduce synthetic fertilizer use by more effective use of manure and nitrogen-fixing plants, thereby curtailing nitrous oxide emissions. The potential environmental benefits of forage-based systems may be expanded even further by considering their other ecological benefits, such as conserving biodiversity, improving soil health, enhancing water quality, and providing wildlife habitat. The quandary, then, can be alleviated by managing ruminants within a holistic land-livestock synchrony that considers not only methane emissions but also suppression of other greenhouse gases as well as other ecological benefits. Given the complexity of such systems, there likely are no singular

  19. An inventory of crop wild relatives of the United States

    USDA-ARS?s Scientific Manuscript database

    The use of crop wild relatives (CWR) in breeding is likely to continue to intensify as utilization techniques improve and crop adaptation to climate change becomes more pressing. Significant gaps remain in the conservation of these genetic resources, constraining availability for research. As a fi...

  20. Genomics of Tropical Fruit Tree Crops

    USDA-ARS?s Scientific Manuscript database

    The genetic improvement of tropical fruit trees is limited when compared to progress achieved in temperate fruit trees and annual crops. Tropical fruit tree breeding programs require significant resources to develop new cultivars that are adapted to modern shipping and storage requirements. The use...

  1. Trophallaxis in forager honeybees (Apis mellifera): resource uncertainty enhances begging contacts?

    PubMed

    De Marco, R J; Farina, W M

    2003-02-01

    Trophallaxis among adult worker honeybees is the transfer of liquid food by mouth from one individual to another. Within the colony, nectar foragers perform offering contacts (as food-donors) to transfer the contents of their crops to recipient nest-mates and, in addition, they also perform begging contacts (as food-receivers). The biological relevance of these last interactions remains unknown. Previous evidence suggests that begging may be involved in the exchange of information on food resources that occurs naturally between employed foragers and nest-mates. This work was aimed to reveal possible connections between the information obtained while foraging and the begging behavior displayed inside the nest. Experiments were intended to (1) analyze whether chemosensory information obtained while foraging, i.e., odors and sucrose concentrations, affects begging behavior, and (2) determine whether resource uncertainty enhances begging contacts. Results showed that: (1) most begging contacts lasted less than 1 s, a duration which only allows receiving food samples from nest-mates; (2) the diversity of odors and sucrose concentrations at the feeding place enhances the occurrence of begging contacts; and (3) an increased resource uncertainty enhances the forager begging behavior. In addition, results suggest that foragers may direct their begging contacts frequently to other employed nectar foragers.

  2. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism.

    PubMed

    Chardonnet, Floriane; Capdevielle-Dulac, Claire; Chouquet, Bastien; Joly, Nicolas; Harry, Myriam; Le Ru, Bruno; Silvain, Jean-François; Kaiser, Laure

    2014-10-01

    The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management.

  3. Haploids: Constraints and opportunities in plant breeding.

    PubMed

    Dwivedi, Sangam L; Britt, Anne B; Tripathi, Leena; Sharma, Shivali; Upadhyaya, Hari D; Ortiz, Rodomiro

    2015-11-01

    The discovery of haploids in higher plants led to the use of doubled haploid (DH) technology in plant breeding. This article provides the state of the art on DH technology including the induction and identification of haploids, what factors influence haploid induction, molecular basis of microspore embryogenesis, the genetics underpinnings of haploid induction and its use in plant breeding, particularly to fix traits and unlock genetic variation. Both in vitro and in vivo methods have been used to induce haploids that are thereafter chromosome doubled to produce DH. Various heritable factors contribute to the successful induction of haploids, whose genetics is that of a quantitative trait. Genomic regions associated with in vitro and in vivo DH production were noted in various crops with the aid of DNA markers. It seems that F2 plants are the most suitable for the induction of DH lines than F1 plants. Identifying putative haploids is a key issue in haploid breeding. DH technology in Brassicas and cereals, such as barley, maize, rice, rye and wheat, has been improved and used routinely in cultivar development, while in other food staples such as pulses and root crops the technology has not reached to the stage leading to its application in plant breeding. The centromere-mediated haploid induction system has been used in Arabidopsis, but not yet in crops. Most food staples are derived from genomic resources-rich crops, including those with sequenced reference genomes. The integration of genomic resources with DH technology provides new opportunities for the improving selection methods, maximizing selection gains and accelerate cultivar development. Marker-aided breeding and DH technology have been used to improve host plant resistance in barley, rice, and wheat. Multinational seed companies are using DH technology in large-scale production of inbred lines for further development of hybrid cultivars, particularly in maize. The public sector provides support to

  4. Exploring natural selection to guide breeding for agriculture.

    PubMed

    Henry, Robert James; Nevo, Eviatar

    2014-08-01

    Climate change threatens reduced crop production and poses major challenges to food security. The breeding of climate-resilient crop varieties is increasingly urgent. Wild plant populations evolve to cope with changes in their environment due to the forces of natural selection. This adaptation may be followed over time in populations at the same site or explored by examining differences between populations growing in different environments or across an environmental gradient. Survival in the wild has important differences to the objective of agriculture to maximize crop yields. However, understanding the nature of adaptation in wild populations at the whole genome level may suggest strategies for crop breeding to deliver agricultural production with more resilience to climate variability. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Diving deeper into individual foraging specializations of a large marine predator, the southern sea lion.

    PubMed

    Baylis, A M M; Orben, R A; Arnould, J P Y; Peters, K; Knox, T; Costa, D P; Staniland, I J

    2015-12-01

    Despite global declines in the abundance of marine predators, knowledge of foraging ecology, necessary to predict the ecological consequences of large changes in marine predator abundance, remains enigmatic for many species. Given that populations suffering severe declines are of conservation concern, we examined the foraging ecology of southern sea lions (SSL) (Otaria flavescens)-one of the least studied otariids (fur seal and sea lions)-which have declined by over 90% at the Falkland Islands since the 1930s. Using a combination of biologging devices and stable isotope analysis of vibrissae, we redress major gaps in the knowledge of SSL ecology and quantify patterns of individual specialization. Specifically, we revealed two discrete foraging strategies, these being inshore (coastal) and offshore (outer Patagonian Shelf). The majority of adult female SSL (72% or n = 21 of 29 SSL) foraged offshore. Adult female SSL that foraged offshore travelled further (92 ± 20 vs. 10 ± 4 km) and dived deeper (75 ± 23 vs. 21 ± 8 m) when compared to those that foraged inshore. Stable isotope analysis revealed long-term fidelity (years) to these discrete foraging habitats. In addition, we found further specialization within the offshore group, with adult female SSL separated into two clusters on the basis of benthic or mixed (benthic and pelagic) dive behavior (benthic dive proportion was 76 ± 9 vs. 51 ± 8%, respectively). We suggest that foraging specialization in depleted populations such as SSL breeding at the Falkland Islands, are influenced by foraging site fidelity, and could be independent of intraspecific competition. Finally, the behavioral differences we describe are crucial to understanding population-level dynamics, impediments to population recovery, and threats to population persistence.

  6. Does greed help a forager survive?

    NASA Astrophysics Data System (ADS)

    Bhat, U.; Redner, S.; Bénichou, O.

    2017-06-01

    We investigate the role of greed on the lifetime of a random-walking forager on an initially resource-rich lattice. Whenever the forager lands on a food-containing site, all the food there is eaten and the forager can hop S more steps without food before starving. Upon reaching an empty site, the forager comes one time unit closer to starvation. The forager is also greedy—given a choice to move to an empty or to a food-containing site in its local neighborhood, the forager moves preferentially toward food. Surprisingly, the forager lifetime varies nonmonotonically with greed, with different senses of the nonmonotonicity in one and two dimensions. Also unexpectedly, the forager lifetime in one dimension has a huge peak for very negative greed where the forager is food averse.

  7. Does location really matter? An inter-colony comparison of seabirds breeding at varying distances from productive oceanographic features in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Harding, Ann; Paredes, Rosana; Suryan, Robert; Roby, Daniel; Irons, David; Orben, Rachael; Renner, Heather; Young, Rebecca; Barger, Christopher; Dorresteijn, Ine; Kitaysky, Alexander

    2013-10-01

    Central place foragers, such as breeding seabirds, need to commute between their nests and foraging grounds, thus close proximity of the breeding colony to productive oceanographic features might be beneficial for seabird reproduction. We tested this hypothesis by investigating the at-sea foraging and breeding behavior of thick-billed murres (Uria lomvia) nesting at three colonies (Bogoslof, St. Paul, and St. George Islands) in the Bering Sea located at different distances from the productive continental shelf-break. We found that distances to feeding areas differed only during night trips among colonies. St. Paul murres foraged entirely on the shelf, whereas St. George murres commuted to the continental shelf-break at night and foraged on the shelf during the day. Bogoslof murres foraged in oceanic waters in close proximity to the colony. Murres breeding at the both Pribilof colonies spent less time attending nests and had higher levels of stress hormone corticosterone compared to murres breeding at Bogoslof, although chick-provisioning rates and fledging success were similar among the three colonies. Lower nest attendance and higher corticosterone suggest lower food availability in the Pribilof domain compared to the Bogoslof region. Murres breeding at the Pribilofs used different foraging strategies to buffer effects of food shortages on their reproduction: flight costs associated with longer distance night trips at St. George were presumably balanced by benefits of higher density and/or more lipid rich prey in the continental shelf-break regions, whereas the additional distance of St. Paul from the continental shelf-break may have outweighed any energetic gain. Murres exhibited a remarkable degree of plasticity of foraging strategies in response to changes in their food availability, but the breeding success of murres did not reflect either food limitations or the colony proximity to productive oceanographic features.

  8. Sunflower crop

    SciTech Connect

    Beard, B.H.

    1981-05-01

    A review of the sunflower as a major commercial crop, including its history, cultivation, hybridization and uses. It is grown principally for its oil which is high in polyunsaturated fatty acids and used in a variety of foods. Recently it has been tested in diesel engines and a high protein meal is produced from the seed residues.

  9. Global seabird responses to forage fish depletion: one-third for the birds

    USGS Publications Warehouse

    Cury, P.M.; Boyd, I.L.; Bonhommeau, S.; Anker-Nilssen, T.; Crawford, R.J.M.; Furness, R.W.; Mills, J.A.; Murphy, E.J.; Osterblom, H.; Paleczny, M.; Piatt, John F.; Roux, J.-P.; Shannon, L.; Sydeman, W.J.

    2011-01-01

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  10. Global seabird response to forage fish depletion - One-third for the birds

    USGS Publications Warehouse

    Cury, P.M.; Boyd, I.L.; Bonhommeau, S.; Anker-Nilssen, T.; Crawford, R.J.M.; Furness, R.W.; Mills, J.A.; Murphy, E.J.; Osterblom, H.; Paleczny, M.; Piatt, J.F.; Roux, J.-P.; Shannon, L.; Sydeman, W.J.

    2011-01-01

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  11. Breeding productivity of Smith Island black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Jorde, Dennis G.; Olsen, G.H.; Stotts, D.B.; Harrison, M.K.; Perry, M.C.

    2002-01-01

    We investigated the breeding performance of American black ducks (Anas rubripes) on Smith Island, Chesapeake Bay, to improve our understanding of island black duck breeding ecology and to make management recommendations to enhance productivity. During 1995-96, we implanted 56 female black ducks with 20-g radio transmitters and tracked 35 of the individuals through the breeding season to locate nests, determine nest fate, and identify brood habitat. We also increased preseason banding efforts and compared capture characteristics over 12 years with those from the Deal Island Wildlife Management Area, a banding site on the mainland of Tangier Sound. A low rate of nesting (37%), lack of renesting, and poor hatching success (31%) indicated that island salt marsh habitats present a harsh environment for breeding black ducks. Black ducks located 11 of 13 nests (85%) in black needlerush (Juncus roemerianus) marsh where they were vulnerable to flooding from extreme tides and to egg predators. No nests were found on forested tree hammocks, a feature that distinguishes Smith Island from nearby South Marsh and Bloodsworth Islands. Nest predators included red foxes (Vulpes vulpes), herring gulls (Larus argentams), fish crows (Corvus ossifragus), and, potentially, Norway rats (Rattus norvegicus). Unlike mainland red foxes, foxes radio tracked on Smith Island were found to be capable swimmers and effective low marsh predators. We found shoreline meadows of widgeon grass (Ruppia maritima) to be important foraging sites for black ducks and suspected that the virtual absence of fresh water in this high salinity environment (1217+ ppt) to incur some cost in terms of growth and survival of ducklings. Preseason bandings revealed a high proportion of banded adults and a strong positive correlation in age ratios with the Deal Island banding site. This latter finding strongly suggests a negative universal effect of storm tides on nest success for Tangier Sound black ducks. Management to

  12. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems.

    PubMed

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-06-05

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits.

  13. Effect of protein supplementation and forage allowance on the growth and reproduction of beef heifers grazing stockpiled tall fescue.

    PubMed

    Lyons, S E; Shaeffer, A D; Drewnoski, M E; Poore, M H; Poole, D H

    2016-04-01

    Stockpiled tall fescue can provide adequate winter forage for beef cattle, although unsupplemented replacement heifers may display marginal performance before breeding. The objective of this study was to determine if protein supplementation and/or additional forage improves growth and reproductive performance of replacement heifers grazing stockpiled fescue. Cattle averaging 272 ± 1.59 kg were stratified by BW and then randomly assigned to 1 of 4 plots within a pasture replication. Treatment combinations were assigned in a 2 × 2 factorial arrangement and included 1) a conservative forage allocation ("normal," targeting 85% forage use) and mineral supplement (normal forage allocation with mineral supplement [FM]), 2) normal forage allocation with protein tub (FT), 3) more liberal forage allocation ("extra," targeting 70% forage use) and mineral supplement (extra forage allocation with mineral supplement [EM]), and 4) "extra forage allocation with protein tub (ET). Treatments were administered for 8 wk from early November to early January. Heifers were fed fescue hay for 1 wk before breeding in late January. Heifers were synchronized with the 7-d CO-Synch + controlled internal drug release device protocol and inseminated in late January. Heifers were checked for pregnancy by ultrasonography at 35 and 90 d after AI. Main and interaction effects between the 2 treatments were determined. Total supplement intake was greater for protein tub than mineral supplement (0.36 vs. 0.11 kg·heifer·d, respectively; < 0.0001), and the additional dietary protein in the tub groups resulted in greater serum urea N concentrations ( < 0.0001; 8.15 vs. 10.4 mg/dL for mineral and protein tub, respectively). Forage utilization efficiency was greater for normal than extra forage allocation (74.7 vs. 65.8%, respectively; < 0.0001). Main effects of both treatments on ADG were significant ( < 0.0001; 0.28, 0.43, 0.43, and 0.51 kg·heifer·d for FM, FT, EM, and ET, respectively). There was

  14. Modeling Nonresident Seabird Foraging Distributions to Inform Ocean Zoning in Central California

    PubMed Central

    Hines, Ellen; Elliott, Meredith L.; Howar, Julie; Holzman, Barbara; Nur, Nadav; Jahncke, Jaime

    2017-01-01

    Seabird aggregations at sea have been shown to be associated with concentrations of prey. Previous research identified Central California as a highly used foraging area for seabirds, with locally breeding seabirds foraging close to their colonies on Southeast Farallon Island. Herein, we focus on nonresident (i.e. non-locally breeding) seabird species off of Central California. We hypothesized that high-use foraging areas for nonresident seabirds would be influenced by oceanographic and bathymetric factors and that spatial and temporal distributions would be similar within planktivorous and generalist foraging guilds but would differ between them. With data collected by the Applied California Current Ecosystem Studies (ACCESS) partnership during cruises between April and October from 2004–2013, we developed generalized linear models to identify high-use foraging areas for each of six nonresident seabird species. The four generalist species are Phoebastria nigripes (black-footed albatross), Ardenna griseus (sooty shearwater), Ardenna creatopus (pink-footed shearwater), and Fulmarus glacialis (northern fulmar). The two planktivorous species are Phalaropus lobatus (red-necked phalarope) and Phalaropus fulicarius (red phalarope). Sea surface temperature was significant for generalist species and sea surface salinity was important for planktivorous species. The distance to the 200-m isobath was significant in five of six models, Pacific Decadal Oscillation with a 3-month lag in four models, and sea surface fluorescence, the distance to Cordell Bank, and depth in three models. We did not find statistically significant differences between distributions of individual seabird species within a foraging guild or between guilds, with the exception of the sooty shearwater. Model results for a multi-use seabird foraging area highlighted the continental shelf break, particularly within the vicinity of Cordell Bank, as the highest use areas as did Marxan prioritization. Our

  15. Modeling Nonresident Seabird Foraging Distributions to Inform Ocean Zoning in Central California.

    PubMed

    Studwell, Anna J; Hines, Ellen; Elliott, Meredith L; Howar, Julie; Holzman, Barbara; Nur, Nadav; Jahncke, Jaime

    2017-01-01

    Seabird aggregations at sea have been shown to be associated with concentrations of prey. Previous research identified Central California as a highly used foraging area for seabirds, with locally breeding seabirds foraging close to their colonies on Southeast Farallon Island. Herein, we focus on nonresident (i.e. non-locally breeding) seabird species off of Central California. We hypothesized that high-use foraging areas for nonresident seabirds would be influenced by oceanographic and bathymetric factors and that spatial and temporal distributions would be similar within planktivorous and generalist foraging guilds but would differ between them. With data collected by the Applied California Current Ecosystem Studies (ACCESS) partnership during cruises between April and October from 2004-2013, we developed generalized linear models to identify high-use foraging areas for each of six nonresident seabird species. The four generalist species are Phoebastria nigripes (black-footed albatross), Ardenna griseus (sooty shearwater), Ardenna creatopus (pink-footed shearwater), and Fulmarus glacialis (northern fulmar). The two planktivorous species are Phalaropus lobatus (red-necked phalarope) and Phalaropus fulicarius (red phalarope). Sea surface temperature was significant for generalist species and sea surface salinity was important for planktivorous species. The distance to the 200-m isobath was significant in five of six models, Pacific Decadal Oscillation with a 3-month lag in four models, and sea surface fluorescence, the distance to Cordell Bank, and depth in three models. We did not find statistically significant differences between distributions of individual seabird species within a foraging guild or between guilds, with the exception of the sooty shearwater. Model results for a multi-use seabird foraging area highlighted the continental shelf break, particularly within the vicinity of Cordell Bank, as the highest use areas as did Marxan prioritization. Our

  16. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors.

    PubMed

    Couvillon, Margaret J; Al Toufailia, Hasan; Butterfield, Thomas M; Schrell, Felix; Ratnieks, Francis L W; Schürch, Roger

    2015-11-02

    In pollination, plants provide food reward to pollinators who in turn enhance plant reproduction by transferring pollen, making the relationship largely cooperative; however, because the interests of plants and pollinators do not always align, there exists the potential for conflict, where it may benefit both to cheat the other [1, 2]. Plants may even resort to chemistry: caffeine, a naturally occurring, bitter-tasting, pharmacologically active secondary compound whose main purpose is to detract herbivores, is also found in lower concentrations in the nectar of some plants, even though nectar, unlike leaves, is made to be consumed by pollinators. [corrected]. A recent laboratory study showed that caffeine may lead to efficient and effective foraging by aiding honeybee memory of a learned olfactory association [4], suggesting that caffeine may enhance bee reward perception. However, without field data, the wider ecological significance of caffeinated nectar remains difficult to interpret. Here we demonstrate in the field that caffeine generates significant individual- and colony-level effects in free-flying worker honeybees. Compared to a control, a sucrose solution with field-realistic doses of caffeine caused honeybees to significantly increase their foraging frequency, waggle dancing probability and frequency, and persistency and specificity to the forage location, resulting in a quadrupling of colony-level recruitment. An agent-based model also demonstrates how caffeine-enhanced foraging may reduce honey storage. Overall, caffeine causes bees to overestimate forage quality, tempting the colony into sub-optimal foraging strategies, which makes the relationship between pollinator and plant less mutualistic and more exploitative. VIDEO ABSTRACT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction

    PubMed Central

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M.; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world’s largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  18. Nocturnal Foraging by Red-Legged Kittiwakes, a Surface Feeding Seabird That Relies on Deep Water Prey During Reproduction.

    PubMed

    Kokubun, Nobuo; Yamamoto, Takashi; Kikuchi, Dale M; Kitaysky, Alexander; Takahashi, Akinori

    2015-01-01

    Narrow foraging specialization may increase the vulnerability of marine predators to climate change. The red-legged kittiwake (Rissa brevirostris) is endemic to the Bering Sea and has experienced drastic population fluctuations in recent decades, presumably due to climate-driven changes in food resources. Red-legged kittiwakes are presumed to be a nocturnal surface-foraging seabird that feed almost entirely on deep water Myctophidae fishes. However, there is little empirical evidence confirming their nocturnal foraging activity during the breeding season. This study investigated the foraging behavior of red-legged kittiwakes by combining GPS tracking, accelerometry, and dietary analyses at the world's largest breeding colony of red-legged kittiwakes on St. George I. GPS tracking of 5 individuals revealed that 82.5% of non-flight behavior (including foraging and resting) occurred over the ocean basin (bottom depth >1,000 m). Acceleration data from 4 birds showed three types of behaviors during foraging trips: (1) flight, characterized by regular wing flapping, (2) resting on water, characterized by non-active behavior, and (3) foraging, when wing flapping was irregular. The proportions of both foraging and resting behaviors were higher at night (14.1 ± 7.1% and 20.8 ± 14.3%) compared to those during the day (6.5 ± 3.0% and 1.7 ± 2.7%). The mean duration of foraging (2.4 ± 2.9 min) was shorter than that of flight between prey patches (24.2 ± 53.1 min). Dietary analyses confirmed myctophids as the dominant prey (100% by occurrence and 98.4 ± 2.4% by wet-weight). Although the sample size was limited, these results suggest that breeding red-legged kittiwakes concentrated their foraging on myctophids available at the surface during nighttime in deep water regions. We propose that the diel patterns and ephemeral nature of their foraging activity reflected the availability of myctophids. Such foraging specialization may exacerbate the vulnerability of red

  19. Foraging distance and home range of Cassin's Auklets nesting at two colonies in the California Channel Islands

    USGS Publications Warehouse

    Adams, Josh; Takekawa, John Y.; Carter, Harry R.

    2004-01-01

    We radio-marked 99 Cassin's Auklets (Ptychoramphus aleuticus) nesting at two colonies, Prince Island and Scorpion Rock, separated by 90 km in the California Channel Islands to quantify foraging distance, individual home-range area, and colony-based foraging areas during three consecutive breeding seasons. Auklets generally foraged < 30 km from each colony in all years. Core foraging areas (50% fixed kernel) from Prince Island in 1999-2001 were north to northeast of the colony over the insular shelf near the shelfbreak. Core foraging areas from Scorpion Rock in 2000-2001 occurred in two focal areas: the Anacapa Passage, a narrow interisland passage adjacent to the colony, and over the southeastern Santa Barbara Channel. During 2000, intercolony foraging areas overlapped by 10%; however, auklets from each colony used the overlapping area at different times. Equivalent-sample-size resampling indicated Prince Island foraging area (1216 ?? 654 km2) was twice that of Scorpion Rock (598 ?? 204 km2). At Prince Island, mean individual distances, home-range areas, and colony-based activity areas were greater for females than males, especially during 2001. At Prince Island, core foraging areas of females and males, pooled separately, overlapped by 63% in 1999 and 2000, and by 35% in 2001. Postbreeding auklets from both colonies dispersed northward and moved to active upwelling centers off central California, coincident with decreased upwelling and sea-surface warming throughout the Santa Barbara Channel.

  20. Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin.

    PubMed

    Pelletier, Laure; Chiaradia, André; Kato, Akiko; Ropert-Coudert, Yan

    2014-10-01

    Competition for food resources can result in spatial and dietary segregation among individuals from the same species. Few studies have looked at such segregations with the combined effect of sex and age in species with short foraging ranges. In this study we examined the 3D spatial use of the environment in a species with a limited foraging area. We equipped 26 little penguins (Eudyptula minor) of known age, sex, and breeding output with GPS (location) and accelerometer (body acceleration and dive depth) loggers. We obtained dietary niche information from the isotopic analysis of blood tissue. We controlled for confounding factors of foraging trip length and food availability by sampling adults at guard stage when parents usually make one-day trips. We observed a spatial segregation between old (>11 years old) and middle-aged penguins (between 5 and 11 years old) in the foraging area. Old penguins foraged closer to the shore, in shallower water. Despite observing age-specific spatial segregation, we found no differences in the diving effort and foraging efficiency between age classes and sexes. Birds appeared to target similar prey types, but showed age-specific variation in their isotopic niche width. We hypothesize that this age-specific segregation was primarily determined by a "cohort effect" that would lead individuals sharing a common life history (i.e. having fledged and dispersed around the same age) to forage preferentially together or to share similar foraging limitations.

  1. The Development and Evolution of Division of Labor and Foraging Specialization in a Social Insect (Apis mellifera L.)

    PubMed Central

    Page, Robert E.; Scheiner, Ricarda; Erber, Joachim; Amdam, Gro V.

    2008-01-01

    How does complex social behavior evolve? What are the developmental building blocks of division of labor and specialization, the hallmarks of insect societies? Studies have revealed the developmental origins in the evolution of division of labor and specialization in foraging worker honeybees, the hallmarks of complex insect societies. Selective breeding for a single social trait, the amount of surplus pollen stored in the nest (pollen hoarding) revealed a phenotypic architecture of correlated traits at multiple levels of biological organization in facultatively sterile female worker honeybees. Verification of this phenotypic architecture in “wild-type” bees provided strong support for a “pollen foraging syndrome” that involves increased senso-motor responses, motor activity, associative learning, reproductive status, and rates of behavioral development, as well as foraging behavior. This set of traits guided further research into reproductive regulatory systems that were co-opted by natural selection during the evolution of social behavior. Division of labor, characterized by changes in the tasks performed by bees, as they age, is controlled by hormones linked to ovary development. Foraging specialization on nectar and pollen results also from different reproductive states of bees where nectar foragers engage in prereproductive behavior, foraging for nectar for self-maintenance, while pollen foragers perform foraging tasks associated with reproduction and maternal care, collecting protein. PMID:16860670

  2. Do crabeater seals forage cooperatively?

    NASA Astrophysics Data System (ADS)

    Gales, Nicholas J.; Fraser, William R.; Costa, Daniel P.; Southwell, Colin

    2004-08-01

    Crabeater seals are abundant pack-ice predators that feed almost exclusively on krill. They have a circumpolar distribution and are generally sighted hauled out on ice floes alone or in pairs. Here we report our observations of a sighting of 150-200 crabeater seals, which were synchronised in their diving and surfacing behaviour, along with a summary of similar observations from western Antarctica of large groups of crabeater seals in synchronous dive cycles. We report on the low frequency of sightings of such groups during Antarctic pack-ice seal surveys in eastern (Greater) Antarctica. We examine plausible hypotheses to explain these observations, and suggest this behaviour is likely to represent some form of cooperative foraging behaviour, whereby a net advantage in individual energy intake rates is conferred to each seal. Current research on crabeater seal foraging using satellite-linked dive recorders is unlikely to provide sufficiently fine-scale data to examine this hypothesis. Nor will this approach indicate if a seal is foraging with conspecifics. The use of remote or animal-borne camera systems is more likely to provide an insight into fine-scale foraging tactics, as well as the possible, occasional use of cooperative foraging strategies.

  3. Tritium breeding in fusion reactors

    SciTech Connect

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

  4. Double-cropping annual ryegrass and bermudagrass to reduce phosphorus levels in soil with history of poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Double-cropping forages may help to ameliorate excess soil nutrients in manure-impacted fields. Studies were conducted on Savannah soil with a 30+ yr history of broiler litter to determine the yield of biomass and P in bermudagrass (summer) and ryegrass-bermudagrass (year-round) forage systems. Duri...

  5. Aggregate Carbon Pools after 13 Years of Integrated Crop-Livestock Management in Semiarid Soils

    USDA-ARS?s Scientific Manuscript database

    Semi-arid regions have the potential to sequester soil organic carbon (SOC) but the magnitude and rate of sequestration is highly management specific. Integrated crop-livestock (ICL) systems that utilize perennial or high-residue no-till annual forage crops as part of the overall agronomic system ma...

  6. Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops.

    PubMed Central

    Champion, G T; May, M J; Bennett, S; Brooks, D R; Clark, S J; Daniels, R E; Firbank, L G; Haughton, A J; Hawes, C; Heard, M S; Perry, J N; Randle, Z; Rossall, M J; Rothery, P; Skellern, M P; Scott, R J; Squire, G R; Thomas, M R

    2003-01-01

    The Farm Scale Evaluations of genetically modified herbicide-tolerant crops (GMHT) were conducted in the UK from 2000 to 2002 on beet (sugar and fodder), spring oilseed rape and forage maize. The management of the crops studied is described and compared with current conventional commercial practice. The distribution of field sites adequately represented the areas currently growing these crops, and the sample contained sites operated at a range of management intensities, including low intensity. Herbicide inputs were audited, and the active ingredients used and the rates and the timings of applications compared well with current practice for both GMHT and conventional crops. Inputs on sugar beet were lower than, and inputs on spring oilseed rape and forage maize were consistent with, national averages. Regression analysis of herbicide-application strategies and weed emergence showed that inputs applied by farmers increased with weed densities in beet and forage maize. GMHT crops generally received only one herbicide active ingredient per crop, later and fewer herbicide sprays and less active ingredient (for beet and maize) than the conventional treatments. The audit of inputs found no evidence of bias. PMID:14561315

  7. Finger millet: An alternative crop for the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    In the Southern High Plains, dairies are expanding to take advantage of favorable climatic conditions. Currently, corn (Zea mays L.) and forage sorghum [Sorghum bicolor (L.) Moench] are the two major crops grown in the region to meet silage demands for the expanding dairy industry, but they have rel...

  8. Meeting reproductive demands in a dynamic upwelling system: Foraging strategies of a pursuit-diving seabird, the marbled murrelet

    USGS Publications Warehouse

    Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.

    2009-01-01

    Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.

  9. Sexual Reproduction and Breeding

    USDA-ARS?s Scientific Manuscript database

    In the second edition of Plant Propagation Concepts and Laboratory Exercises, we have combined the first edition chapters 36: Sexual Reproduction in Angiosperms and 37: Breeding Horticultural Plants into the present single chapter Sexual Reproduction and Breeding. These topics are so closely relate...

  10. Tritium breeding materials

    SciTech Connect

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  11. Breeding and genetic diversity

    USDA-ARS?s Scientific Manuscript database

    Corn breeding has been historically remarkably successful. Much research has investigated optimal breeding procedures, which are detailed here. A smaller effort has been put into identifying useful genetic resources for maize and how to best use them, but results from long-term base broadening effor...

  12. Breeding bird communities

    Treesearch

    Vanessa L. Artman; Randy Dettmers

    2003-01-01

    Prescribed burning is being applied on an experimental basis to restore and maintain mixed-oak communities in southern Ohio. This chapter describes baseline conditions for the breeding bird community prior to prescribed burning. We surveyed breeding bird populations at four study areas using the territory-mapping method. We observed 35 bird species during the surveys....

  13. Age-related variation in foraging behaviour in the wandering albatross at South Georgia: no evidence for senescence.

    PubMed

    Froy, Hannah; Lewis, Sue; Catry, Paulo; Bishop, Charles M; Forster, Isaac P; Fukuda, Akira; Higuchi, Hiroyoshi; Phalan, Ben; Xavier, Jose C; Nussey, Daniel H; Phillips, Richard A

    2015-01-01

    Age-related variation in demographic rates is now widely documented in wild vertebrate systems, and has significant consequences for population and evolutionary dynamics. However, the mechanisms underpinning such variation, particularly in later life, are less well understood. Foraging efficiency is a key determinant of fitness, with implications for individual life history trade-offs. A variety of faculties known to decline in old age, such as muscular function and visual acuity, are likely to influence foraging performance. We examine age-related variation in the foraging behaviour of a long-lived, wide-ranging oceanic seabird, the wandering albatross Diomedea exulans. Using miniaturised tracking technologies, we compared foraging trip characteristics of birds breeding at Bird Island, South Georgia. Based on movement and immersion data collected during the incubation phase of a single breeding season, and from extensive tracking data collected in previous years from different stages of the breeding cycle, we found limited evidence for age-related variation in commonly reported trip parameters, and failed to detect signs of senescent decline. Our results contrast with the limited number of past studies that have examined foraging behaviour in later life, since these have documented changes in performance consistent with senescence. This highlights the importance of studies across different wild animal populations to gain a broader perspective on the processes driving variation in ageing rates.

  14. Age-Related Variation in Foraging Behaviour in the Wandering Albatross at South Georgia: No Evidence for Senescence

    PubMed Central

    Froy, Hannah; Lewis, Sue; Catry, Paulo; Bishop, Charles M.; Forster, Isaac P.; Fukuda, Akira; Higuchi, Hiroyoshi; Phalan, Ben; Xavier, Jose C.; Nussey, Daniel H.; Phillips, Richard A.

    2015-01-01

    Age-related variation in demographic rates is now widely documented in wild vertebrate systems, and has significant consequences for population and evolutionary dynamics. However, the mechanisms underpinning such variation, particularly in later life, are less well understood. Foraging efficiency is a key determinant of fitness, with implications for individual life history trade-offs. A variety of faculties known to decline in old age, such as muscular function and visual acuity, are likely to influence foraging performance. We examine age-related variation in the foraging behaviour of a long-lived, wide-ranging oceanic seabird, the wandering albatross Diomedea exulans. Using miniaturised tracking technologies, we compared foraging trip characteristics of birds breeding at Bird Island, South Georgia. Based on movement and immersion data collected during the incubation phase of a single breeding season, and from extensive tracking data collected in previous years from different stages of the breeding cycle, we found limited evidence for age-related variation in commonly reported trip parameters, and failed to detect signs of senescent decline. Our results contrast with the limited number of past studies that have examined foraging behaviour in later life, since these have documented changes in performance consistent with senescence. This highlights the importance of studies across different wild animal populations to gain a broader perspective on the processes driving variation in ageing rates. PMID:25574995

  15. A future scenario of the global regulatory landscape regarding genome-edited crops.

    PubMed

    Ishii, Tetsuya; Araki, Motoko

    2017-01-02

    The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance.

  16. Does testosterone affect foraging behavior in male frogs?

    PubMed

    Desprat, Julia L; Mondy, Nathalie; Lengagne, Thierry

    2017-02-19

    During the breeding season, males often produce costly and extravagant displays or physical ornaments to attract females. Numerous studies have established that testosterone could directly influence the expression of certain sexual signals. However, few of these studies have focused on the indirect role that testosterone could play in modulating prey detection and visual performance to improve the foraging ability of males and hence their acquisition of nutritional resource. In the present study, we experimentally modified the testosterone levels of European tree frog males (Hyla arborea), staying in the natural range previously measured in the field, and we investigated the effect of testosterone on the foraging ability of individuals. Foraging capacities were measured on males placed in an arena with a virtual cricket moving on a computer screen. Our results demonstrated a significant effect of testosterone on the hunting behavior of H. arborea. We observed that testosterone reduced the orientation latency to virtual prey for supplemented males compared to controls. In addition, testosterone significantly increased the attack promptness of male frogs. Finally, our experiment did not demonstrate any impact of testosterone on male attack success.

  17. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.

    PubMed

    Guo, Qinghua; Wu, Fangfang; Pang, Shuxin; Zhao, Xiaoqian; Chen, Linhai; Liu, Jin; Xue, Baolin; Xu, Guangcai; Li, Le; Jing, Haichun; Chu, Chengcai

    2017-12-06

    With the growing population and the reducing arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging (LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional (3D) data accurately, and has a great potential in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR sensor, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform, and briefly discussed the potential applications and future development of the platform in phenotyping. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.

  18. Genetic Enhancement of Polyploid Crops Using Tools of Classical Cytogenetics and Modern Biotechnology

    USDA-ARS?s Scientific Manuscript database

    Traditional plant breeding has been mainly instrumental in the genetic improvement of crop plants. Sustained improvement of crop species has been achieved through hybridization with landraces and allied species resulting in high-yielding, superior cultivars of staple food crops. Although plant bre...

  19. Glyphosate sustainability in South American cropping systems.

    PubMed

    Christoffoleti, Pedro J; Galli, Antonio J B; Carvalho, Saul J P; Moreira, Murilo S; Nicolai, Marcelo; Foloni, Luiz L; Martins, Bianca A B; Ribeiro, Daniela N

    2008-04-01

    South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.

  20. Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies.

    PubMed

    Phocas, F; Belloc, C; Bidanel, J; Delaby, L; Dourmad, J Y; Dumont, B; Ezanno, P; Fortun-Lamothe, L; Foucras, G; Frappat, B; González-García, E; Hazard, D; Larzul, C; Lubac, S; Mignon-Grasteau, S; Moreno, C R; Tixier-Boichard, M; Brochard, M

    2016-11-01

    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could

  1. Can non-breeding be a cost of breeding dispersal?

    USGS Publications Warehouse

    Danchin, E.; Cam, E.

    2002-01-01

    Breeding habitat selection and dispersal are crucial processes that affect many components of fitness. Breeding dispersal entails costs, one of which has been neglected: dispersing animals may miss breeding opportunities because breeding dispersal requires finding a new nesting site and mate, two time- and energy-consuming activities. Dispersers are expected to be prone to non-breeding. We used the kittiwake (Rissa tridactyla) to test whether breeding dispersal influences breeding probability. Breeding probability was associated with dispersal, in that both were negatively influenced by private information (previous individual reproductive success) and public information (average reproductive success of conspecifics) about patch quality. Furthermore, the probability of skipping breeding was 1.7 times higher in birds that settled in a new patch relative to those that remained on the same patch. Finally, non-breeders that resumed breeding were 4.4 times more likely to disperse than birds that bred in successive years. Although private information may influence breeding probability directly, the link between breeding probability and public information may be indirect, through the influence of public information on breeding dispersal, non-breeding thus being a cost of dispersal. These results support the hypothesis that dispersal may result in not being able to breed. More generally, non-breeding (which can be interpreted as an extreme form of breeding failure) may reveal costs of various previous activities. Because monitoring the non-breeding portion of a population is difficult, non-breeders have been neglected in many studies of reproduction trade-offs.

  2. Low breeding propensity and wide-ranging movements by marbled murrelets in Washington

    Treesearch

    Teresa J. Lorenz; Martin G. Raphael; Thomas D. Bloxton; Patrick G. Cunningham

    2016-01-01

    The marbled murrelet (Brachyramphus marmoratus) is a threatened seabird that forages in nearshore marine waters but nests inland, commonly in older coniferous forests. Information on ranging behavior and breeding propensity can be useful for informing management, especially when comparisons can be made between declining or threatened populations...

  3. Using Near Infrared Spectroscopy to Rapidly Ascertain Seedling Establishment Potential in Red Clover Breeding Programs

    USDA-ARS?s Scientific Manuscript database

    Establishing and maintaining forage legumes in grazed pastures is important to many grazing operations. To ascertain plant breeding progress in red clover (Trifolium pratense) over the past 50 years, persistence under rotational grazing in mixture with tall fescue (Festuca arundinacea) of 220 red cl...

  4. Switchgrass biomass composition altered by six generations of divergent breeding for digestibility

    USDA-ARS?s Scientific Manuscript database

    Biomass composition of perennial grasses such as switchgrass can affect its utilization by ruminants and its conversion to liquid fuels in a biorefinery. The objective of this study was to evaluate the effects of six generations of divergent breeding for forage in vitro dry matter digestibility (IV...

  5. Changes in feed intake, growth, feed efficiency, and body composition of beef cattle fed forage then concentrate diets

    USDA-ARS?s Scientific Manuscript database

    The objective of this experiment was to determine changes in production traits and body composition of beef steers and heifers when fed a forage-based ration followed by a concentrate-based ration. Cattle were progeny of composite breed cows bred to Charolais, Simmental, and Red Angus bulls. Appro...

  6. Forage characteristics affecting meat goat preferences for forage chicory cultivars

    USDA-ARS?s Scientific Manuscript database

    Concentration of bitter sesquiterpene lactones (SL), lactucin, lactucopicrin, and 8-deoxylactucin, has been associated with low soil phosphorus fertility and reduced livestock preference for forage chicory (Cichorium intybus L.). We evaluated the effect of cultivar and available soil P (ASP) on mea...

  7. Gene discovery and molecular pre-breeding for insect resistance in wheat and barley

    USDA-ARS?s Scientific Manuscript database

    Pre-breeding research has a significant role in linking between genetic resources and breeding as it shortens the time frame between genetic enhancement and the development of new, improved crop varieties. The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of w...

  8. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    SciTech Connect

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G.

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  9. Breeding avifauna of the south San Francisco Bay estuary

    USGS Publications Warehouse

    Gill, Robert E.

    1977-01-01

    San Francisco Bay represents one of the largest estuarine areas on the Pacific Coast of North America. Its open waters, tidal flats, tidal marshes and solar evaporation ponds provide critical foraging, resting and breeding habitat for migratory and resident birds. The avifauna of San Francisco Bay has received considerable attention; however, little of it has been directed toward assessing the overall importance of the Bay as a nesting area. Works by Grinnell and Wythe (1927), Grinnell and Miller (1944) and Sibley (1952) are the only comprehensive studies of San Francisco Bay avifauna. These studies, while major contributions, are broad in scope as they relate to the breeding avifauna of the Bay's estuarine areas. Several studies by Johnston (1955, 1956a, b), Marshall (1948a, b), DeGroot (1927, 1931) and Zucca (1954) have concentrated on the breeding biology of individual species; however, much of the marsh reclamation and Bay fill has occurred since. The present breeding status of many resident and migratory birds is poorly known for San Francisco Bay. Included among these are three rare or endangered forms: California Black Rail, California Clapper Rail and California Least Tern. In addition, some species now found in the area represent recent breeding range extensions. This study, undertaken from March to September 1971 and including a few more recent data, presents a quantitative assessment of the present breeding bird populations in the South San Francisco Bay area.

  10. Time allocation by northern fulmars during the breeding season

    USGS Publications Warehouse

    Hatch, Scott A.

    1990-01-01

    Averaged over the whole breeding cycle (pre-laying through mid-chick stage), breeding fulmars spent about 39% of their time at the breeding site and 61% of their time at sea. Annual means of site occupancy before egg-laying were positively correlated with breeding success, suggesting that time allocation was a sensitive indicator of food availability in different years. Nonbreeding site-holders spent about half as much time at the colony as breeders; their attendance was highest early in the season when pair bonds and site ownership were established. The attendance of failed birds after egg or chick loss was positively correlated with colony-wide breeding success in six years. Males spent more time at the breeding site than females at every stage of the season. Most days were devoted to foraging in the pre-laying period (69% in males, 82% in females). An extended absence from the colony just before laying (the pre-laying exodus) averaged 12.2 d in males and 17.6 d in females. Changes in body weight indicated that neither sex incurred an energy deficit on a seasonal basis. A greater investment by the male in site attendance during incubation offset the female's investment in egg production and assured that both sexes entered the demanding chick-feeding stage in good condition.

  11. Embodied crop calories in animal products

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  12. Thiamethoxam: Assessing flight activity of honeybees foraging on treated oilseed rape using radio frequency identification technology.

    PubMed

    Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah

    2016-02-01

    The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive.

  13. Cowpea Breeding in the USA, New Varieties and Improved Germplasm

    USDA-ARS?s Scientific Manuscript database

    Cowpeas are utilized in the U.S. as both a vegetable crop and a dry bean, and breeding efforts are focused on development of cultivars for specific end uses. Blackeye cultivars are developed for production of dry beans for national and international markets. ‘California Blackeye No. 50' (CB50), a ...

  14. Selection and Breeding of Plant Cultivars to Minimize Cadmium Accumulation

    USDA-ARS?s Scientific Manuscript database

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding ...

  15. Molecular marker-assisted breeding for maize improvement in Asia

    USDA-ARS?s Scientific Manuscript database

    Maize is one of the most important food and feed crops in Asia, and is a source of income for several million farmers. Despite impressive progress made in the last few decades through conventional breeding in the “Asia-7” (China, India, Indonesia, Nepal, Philippines, Thailand and Vietnam), average m...

  16. Assessing genomic selection prediction accuracy in a dynamic barley breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection is a method to improve quantitative traits in crops and livestock by estimating breeding values of selection candidates using phenotype and genome-wide marker data sets. Prediction accuracy has been evaluated through simulation and cross-validation, however validation based on prog...

  17. Development of male-sterile lines for breeding hybrid rice

    USDA-ARS?s Scientific Manuscript database

    Rice is a self-pollinated crop that depends on male-sterility for F1 hybrid seed production. As an alternative to accessing existing male-sterile lines from other hybrid breeding programs, the program in Arkansas has created its own novel male-sterile sources. These were developed out of germplasm...

  18. Plant breeding for harmony between agriculture and the environment

    USDA-ARS?s Scientific Manuscript database

    Crop improvements made since the 1950’s coupled with inexpensive agronomic inputs (fertilizers, herbicides, etc.) have resulted in agricultural production that has kept pace with population growth. Breeding programs primarily focus on improving a crop’s environmental adaptability and biotic stress t...

  19. Genomic selection & association mapping in rice: effect of trait genetic architecture, training population composition, marker number & statistical model on accuracy of rice genomic selection in elite, tropical rice breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its ef...

  20. Humpback Whale Song and Foraging Behavior on an Antarctic Feeding Ground

    PubMed Central

    Stimpert, Alison K.; Peavey, Lindsey E.; Friedlaender, Ari S.; Nowacek, Douglas P.

    2012-01-01

    Reports of humpback whale (Megaptera novaeangliae) song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations. PMID:23284666