Berlincourt, Maud; Arnould, John P Y
2015-01-01
Establishing patterns of movements of free-ranging animals in marine ecosystems is crucial for a better understanding of their feeding ecology, life history traits and conservation. As central place foragers, the habitat use of nesting seabirds is heavily influenced by the resources available within their foraging range. We tested the prediction that during years with lower resource availability, short-tailed shearwaters (Puffinus tenuirostris) provisioning chicks should increase their foraging effort, by extending their foraging range and/or duration, both when foraging in neritic (short trips) and distant oceanic waters (long trips). Using both GPS and geolocation data-loggers, at-sea movements and habitat use were investigated over three breeding seasons (2012-14) at two colonies in southeastern Australia. Most individuals performed daily short foraging trips over the study period and inter-annual variations observed in foraging parameters where mainly due to few individuals from Griffith Island, performing 2-day trips in 2014. When performing long foraging trips, this study showed that individuals from both colonies exploited similar zones in the Southern Ocean. The results of this study suggest that individuals could increase their foraging range while exploiting distant feeding zones, which could indicate that short-tailed shearwaters forage in Antarctic waters not only to maintain their body condition but may also do so to buffer against local environmental stochasticity. Lower breeding performances were associated with longer foraging trips to distant oceanic waters in 2013 and 2014 indicating they could mediate reductions in food availability around the breeding colonies by extending their foraging range in the Southern Ocean. This study highlights the importance of foraging flexibility as a fundamental aspect of life history in coastal/pelagic marine central place foragers living in highly variable environments and how these foraging strategies are use to buffer this variability.
Kowalczyk, Nicole D; Reina, Richard D; Preston, Tiana J; Chiaradia, André
2015-08-01
Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging 'hot spots' experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator-prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species.
Cox, Melissa D; Myerscough, Mary R
2003-07-21
This paper develops and explores a model of foraging in honey bee colonies. The model may be applied to forage sources with various properties, and to colonies with different foraging-related parameters. In particular, we examine the effect of five foraging-related parameters on the foraging response and consequent nectar intake of a homogeneous colony. The parameters investigated affect different quantities critical to the foraging cycle--visit rate (affected by g), probability of dancing (mpd and bpd), duration of dancing (mcirc), or probability of abandonment (A). We show that one parameter, A, affects nectar intake in a nonlinear way. Further, we show that colonies with a midrange value of any foraging parameter perform better than the average of colonies with high- and low-range values, when profitable sources are available. Together these observations suggest that a heterogeneous colony, in which a range of parameter values are present, may perform better than a homogeneous colony. We modify the model to represent heterogeneous colonies and use it to show that the most important effect of heterogeneous foraging behaviour within the colony is to reduce the variance in the average quantity of nectar collected by heterogeneous colonies.
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
2018-01-09
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
Edwards, Mark A; Derocher, Andrew E; Hobson, Keith A; Branigan, Marsha; Nagy, John A
2011-04-01
Categorizing animal populations by diet can mask important intrapopulation variation, which is crucial to understanding a species' trophic niche width. To test hypotheses related to intrapopulation variation in foraging or the presence of diet specialization, we conducted stable isotope analysis (δ(13)C, δ(15)N) on hair and claw samples from 51 grizzly bears (Ursus arctos) collected from 2003 to 2006 in the Mackenzie Delta region of the Canadian Arctic. We examined within-population differences in the foraging patterns of males and females and the relationship between trophic position (derived from δ(15)N measurements) and individual movement. The range of δ(15)N values in hair and claw (2.0-11.0‰) suggested a wide niche width and cluster analyses indicated the presence of three foraging groups within the population, ranging from near-complete herbivory to near-complete carnivory. We found no linear relationship between home range size and trophic position when the data were continuous or when grouped by foraging behavior. However, the movement rate of females increased linearly with trophic position. We used multisource dual-isotope mixing models to determine the relative contributions of seven prey sources within each foraging group for both males and females. The mean bear dietary endpoint across all foraging groups for each sex fell toward the center of the mixing polygon, which suggested relatively well-mixed diets. The primary dietary difference across foraging groups was the proportional contribution of herbaceous foods, which decreased for both males and females from 42-76 to 0-27% and 62-81 to 0-44%, respectively. Grizzlies of the Mackenzie Delta live in extremely harsh conditions and identifying within-population diet specialization has improved our understanding of varying habitat requirements within the population.
Nutrient foraging by mycorrhizas: From species functional traits to ecosystem processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weile; Koide, Roger T.; Eissenstat, David M.
1. Plant roots and the associated mycorrhizal fungal hyphae often selectively proliferate into patchily distributed soil nutrient hotspots, but interactions between these two components of a mycorrhizal root system are usually ignored or experimentally isolated in nutrient foraging studies. 2. From studies in which both roots and mycorrhizal hyphae had access to nutrient hotspots, we compiled data on root foraging precision (increase in roots in nutrient hotspots relative to outside hotspots) of plant species from different ecosystems, ranging from temperate grasslands to subtropical forests. We found that root for- aging precision across the wide range of plant species was stronglymore » influenced by root morphology and mycorrhizal type. 3. The precision of root nutrient foraging, as a plant functional trait, may coordinate with other root traits that are related to the economics of nutrient acquisition. High foraging precision is expected to associate with the strategy of fast return on the investment in roots, such as low construction cost, high metabolic rate and rapid turnover. 4. Nutrient foraging by mycorrhizal fungi alone may be influenced by functional traits such as hyphal exploration distance, hyphal turnover, and hyphal uptake capacity and efficiency, but such data are limited to a small portion of mycorrhizal fungal species. 5. We propose a conceptual framework in which to simulate nitrogen and phosphorus acquisition from both nutrient hotspots and outside hotspots in mixed-species plant communities. Simulation outputs suggest that plant species with varying root morphology and mycorrhizal type can be adaptive to a range of nutrient heterogeneity. 6. Although there are still knowledge gaps related to nutrient foraging, as well as many unexplored plant and fungal species, we suggest that scaling nutrient foraging from individual plants to communities would advance understanding of plant species interactions and below-ground ecosystem function.« less
Reed, J.A.; Flint, Paul L.
2007-01-01
We studied the movements and foraging effort of radio-marked Steller's Eiders (Polysticta stelleri) and Harlequin Ducks (Histrionicus histrionicus) to evaluate habitat quality in an area impacted by industrial activity near Dutch Harbor, Alaska. Foraging effort was relatively low, with Steller's Eiders foraging only 2.7 ± 0.6 (SE) hours per day and Harlequin Ducks 4.1 ± 0.5 hours per day. Low-foraging effort during periods of high-energetic demand generally suggests high food availability, and high food availability frequently corresponds with reductions in home range size. However, the winter ranges of Harlequin Ducks did not appear to be smaller than usual, with the mean range size in our study (5.5 ± 1.1 km2) similar to that reported by previous investigators. The mean size of the winter ranges of Steller's Eiders was similar (5.1 ± 1.3 km2), but no comparable estimates are available. Eutrophication of the waters near Dutch Harbor caused by seafood processing and municipal sewage effluent may have increased populations of the invertebrate prey of these sea ducks and contributed to their low-foraging effort. The threat of predation by Bald Eagles (Haliaeetus leucocephalus) that winter near Dutch Harbor may cause Steller's Eiders and Harlequin Ducks to move further offshore when not foraging, contributing to an increase in range sizes. Thus, the movement patterns and foraging behavior of these ducks likely represent a balance between the cost and benefits of wintering in a human-influenced environment.
Eating locally: Australasian gannets increase their foraging effort in a restricted range
Angel, Lauren P.; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P. Y.
2015-01-01
ABSTRACT During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. PMID:26369928
Eating locally: Australasian gannets increase their foraging effort in a restricted range.
Angel, Lauren P; Barker, Sophie; Berlincourt, Maud; Tew, Emma; Warwick-Evans, Victoria; Arnould, John P Y
2015-09-14
During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area. © 2015. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabedian, James E.
Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technicalmore » resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.« less
Sympatric cattle grazing and desert bighorn sheep foraging
Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.
2015-01-01
Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by feeding only in areas where adequate forage remains.
Adaptive collective foraging in groups with conflicting nutritional needs
Senior, Alistair M.; Lihoreau, Mathieu; Charleston, Michael A.; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2016-01-01
Collective foraging, based on positive feedback and quorum responses, is believed to improve the foraging efficiency of animals. Nutritional models suggest that social information transfer increases the ability of foragers with closely aligned nutritional needs to find nutrients and maintain a balanced diet. However, whether or not collective foraging is adaptive in a heterogeneous group composed of individuals with differing nutritional needs is virtually unexplored. Here we develop an evolutionary agent-based model using concepts of nutritional ecology to address this knowledge gap. Our aim was to evaluate how collective foraging, mediated by social retention on foods, can improve nutrient balancing in individuals with different requirements. The model suggests that in groups where inter-individual nutritional needs are unimodally distributed, high levels of collective foraging yield optimal individual fitness by reducing search times that result from moving between nutritionally imbalanced foods. However, where nutritional needs are highly bimodal (e.g. where the requirements of males and females differ) collective foraging is selected against, leading to group fission. In this case, additional mechanisms such as assortative interactions can coevolve to allow collective foraging by subgroups of individuals with aligned requirements. Our findings indicate that collective foraging is an efficient strategy for nutrient regulation in animals inhabiting complex nutritional environments and exhibiting a range of social forms. PMID:27152206
Traffic noise reduces foraging efficiency in wild owls
NASA Astrophysics Data System (ADS)
Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D.; Nakamura, Futoshi
2016-08-01
Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls’ ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls’ ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.
Traffic noise reduces foraging efficiency in wild owls.
Senzaki, Masayuki; Yamaura, Yuichi; Francis, Clinton D; Nakamura, Futoshi
2016-08-18
Anthropogenic noise has been increasing globally. Laboratory experiments suggest that noise disrupts foraging behavior across a range of species, but to reveal the full impacts of noise, we must examine the impacts of noise on foraging behavior among species in the wild. Owls are widespread nocturnal top predators and use prey rustling sounds for localizing prey when hunting. We conducted field experiments to examine the effect of traffic noise on owls' ability to detect prey. Results suggest that foraging efficiency declines with increasing traffic noise levels due to acoustic masking and/or distraction and aversion to traffic noise. Moreover, we estimate that effects of traffic noise on owls' ability to detect prey reach >120 m from a road, which is larger than the distance estimated from captive studies with bats. Our study provides the first evidence that noise reduces foraging efficiency in wild animals, and highlights the possible pervasive impacts of noise.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-07-07
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.
Péron, Clara; Weimerskirch, Henri; Bost, Charles-André
2012-01-01
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies. PMID:22378808
Palminteri, Suzanne; Powell, George V N; Peres, Carlos A
2016-05-01
Specialized seed predators in tropical forests may avoid seasonal food scarcity and interspecific feeding competition but may need to diversify their daily diet to limit ingestion of any given toxin. Seed predators may, therefore, adopt foraging strategies that favor dietary diversity and resource monitoring, rather than efficient energy intake, as suggested by optimal foraging theory. We tested whether fine-scale space use by a small-group-living seed predator-the bald-faced saki monkey (Pithecia irrorata)-reflected optimization of short-term foraging efficiency, maximization of daily dietary diversity, and/or responses to the threat of territorial encroachment by neighboring groups. Food patches across home ranges of five adjacent saki groups were widely spread, but areas with higher densities of stems or food species were not allocated greater feeding time. Foraging patterns-specifically, relatively long daily travel paths that bypassed available fruiting trees and relatively short feeding bouts in undepleted food patches-suggest a strategy that maximizes dietary diversification, rather than "optimal" foraging. Travel distance was unrelated to the proportion of seeds in the diet. Moreover, while taxonomically diverse, the daily diets of our study groups were no more species-rich than randomly derived diets based on co-occurring available food species. Sakis preferentially used overlapping areas of their HRs, within which adjacent groups shared many food trees, yet the density of food plants or food species in these areas was no greater than in other HR areas. The high likelihood of depletion by neighboring groups of otherwise enduring food sources may encourage monitoring of peripheral food patches in overlap areas, even if at the expense of immediate energy intake, suggesting that between-group competition is a key driver of fine-scale home range use in sakis. © 2015 Wiley Periodicals, Inc.
The forager oral tradition and the evolution of prolonged juvenility.
Scalise Sugiyama, Michelle
2011-01-01
The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge - e.g., warnings, advice - in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis.
The Forager Oral Tradition and the Evolution of Prolonged Juvenility
Scalise Sugiyama, Michelle
2011-01-01
The foraging niche is characterized by the exploitation of nutrient-rich resources using complex extraction techniques that take a long time to acquire. This costly period of development is supported by intensive parental investment. Although human life history theory tends to characterize this investment in terms of food and care, ethnographic research on foraging skill transmission suggests that the flow of resources from old-to-young also includes knowledge. Given the adaptive value of information, parents may have been under selection pressure to invest knowledge – e.g., warnings, advice – in children: proactive provisioning of reliable information would have increased offspring survival rates and, hence, parental fitness. One way that foragers acquire subsistence knowledge is through symbolic communication, including narrative. Tellingly, oral traditions are characterized by an old-to-young transmission pattern, which suggests that, in forager groups, storytelling might be an important means by which adults transfer knowledge to juveniles. In particular, by providing juveniles with vicarious experience, storytelling may expand episodic memory, which is believed to be integral to the generation of possible future scenarios (i.e., planning). In support of this hypothesis, this essay reviews evidence that: mastery of foraging knowledge and skill sets takes a long time to acquire; foraging knowledge is transmitted from parent to child; the human mind contains adaptations specific to social learning; full assembly of learning mechanisms is not complete in early childhood; and forager oral traditions contain a wide range of information integral to occupation of the foraging niche. It concludes with suggestions for tests of the proposed hypothesis. PMID:21897825
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
Evidence of Levy walk foraging patterns in human hunter-gatherers.
Raichlen, David A; Wood, Brian M; Gordon, Adam D; Mabulla, Audax Z P; Marlowe, Frank W; Pontzer, Herman
2014-01-14
When searching for food, many organisms adopt a superdiffusive, scale-free movement pattern called a Lévy walk, which is considered optimal when foraging for heterogeneously located resources with little prior knowledge of distribution patterns [Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters]. Although memory of food locations and higher cognition may limit the benefits of random walk strategies, no studies to date have fully explored search patterns in human foraging. Here, we show that human hunter-gatherers, the Hadza of northern Tanzania, perform Lévy walks in nearly one-half of all foraging bouts. Lévy walks occur when searching for a wide variety of foods from animal prey to underground tubers, suggesting that, even in the most cognitively complex forager on Earth, such patterns are essential to understanding elementary foraging mechanisms. This movement pattern may be fundamental to how humans experience and interact with the world across a wide range of ecological contexts, and it may be adaptive to food distribution patterns on the landscape, which previous studies suggested for organisms with more limited cognition. Additionally, Lévy walks may have become common early in our genus when hunting and gathering arose as a major foraging strategy, playing an important role in the evolution of human mobility.
Echolocation click rates and behavior of foraging Hawaiian spinner dolphins
NASA Astrophysics Data System (ADS)
Benoit-Bird, Kelly J.; Au, Whitlow W. L.
2004-05-01
Groups of spinner dolphins work together to actively aggregate small animals in the deep-scattering layer that serve as their prey. Detailed information on dolphin foraging behavior, obtained with a 200-kHz multibeam sonar (Simrad MS2000), made it possible to correlate echolocation and foraging. Fifty-six groups of spinner dolphins foraging at night within a midwater micronekton sound-scattering layer were observed with the sonar. During sonar surveys, the rates of whistles and echolocation clicks were measured using four hydrophones at 6-m depth intervals. Significant differences in click rates were found between depths and between the different stages of foraging. Groups of foraging dolphins ranged in size from 16 to 28 dolphins. Click rates were not significantly affected by the number of dolphins in a foraging group. Contrary to initial predictions, click rates were relatively low when sonar data indicated that pairs of dolphins were actively feeding. Highest echolocation rates occurred within the scattering layer, during transitions between foraging states. Whistles were only detected when dolphins were not in a foraging formation and when animals were surfacing. This suggests clicks may be used directly or indirectly to cue group movement during foraging.
Sherfy, Mark H.; Anteau, Michael J.; Shaffer, Terry L.; Sovada, Marsha A.; Stucker, Jennifer H.
2012-01-01
Federally listed least terns (Sternula antillarum) and piping plovers (Charadrius melodus) nest on riverine sandbars on many major midcontinent river systems. On the Central Platte River, availability of sandbar habitat is limited, and both species nest on excavated sandpits in the river's floodplain. However, the extent to which sandpit-nesting birds use riverine habitats for foraging is unknown. We evaluated use of foraging habitats by least terns and piping plovers by collecting data on movements, behavior, foraging habitat, and productivity. We radiomarked 16 piping plovers and 23 least terns in 2009-2010 and monitored their movements using a network of fixed telemetry dataloggers. Piping plovers were detected primarily by the datalogger located in their nesting sandpit, whereas least terns were more frequently detected on dataloggers outside of the nesting sandpit. Telemetry data and behavioral observations showed that least terns tended to concentrate at the Kearney Canal Diversion Gates, where forage fish were apparently readily available. Fish sampling data suggested that forage fish were more abundant in riverine than in sandpit habitats, and behavioral observations showed that least terns foraged more frequently in riverine than in sandpit habitats. Piping plovers tended to forage in wet substrates along sandpit shorelines, but also used dry substrates and sandpit interior habitats. The greater mobility of least terns makes a wider range of potential foraging habitats available during brood rearing, making them able to exploit concentrations of fish outside the nesting colony. Thus, our data suggest that different spatial scales should be considered in managing nesting and foraging habitat complexes for piping plovers and least terns.
Leung, Elaine S.; Chilvers, B. Louise; Nakagawa, Shinichi; Moore, Antoni B.; Robertson, Bruce C.
2012-01-01
Sexual segregation (sex differences in spatial organisation and resource use) is observed in a large range of taxa. Investigating causes for sexual segregation is vital for understanding population dynamics and has important conservation implications, as sex differences in foraging ecology may affect vulnerability to area-specific human activities. Although behavioural ecologists have proposed numerous hypotheses for this phenomenon, the underlying causes of sexual segregation are poorly understood. We examined the size-dimorphism and niche divergence hypotheses as potential explanations for sexual segregation in the New Zealand (NZ) sea lion (Phocarctos hookeri), a nationally critical, declining species impacted by trawl fisheries. We used satellite telemetry and linear mixed effects models to investigate sex differences in the foraging ranges of juvenile NZ sea lions. Male trip distances and durations were almost twice as long as female trips, with males foraging over the Auckland Island shelf and in further locations than females. Sex was the most important variable in trip distance, maximum distance travelled from study site, foraging cycle duration and percent time at sea whereas mass and age had small effects on these characteristics. Our findings support the predictions of the niche divergence hypothesis, which suggests that sexual segregation acts to decrease intraspecific resource competition. As a consequence of sexual segregation in foraging ranges, female foraging grounds had proportionally double the overlap with fisheries operations than males. This distribution exposes female juvenile NZ sea lions to a greater risk of resource competition and bycatch from fisheries than males, which can result in higher female mortality. Such sex-biased mortality could impact population dynamics, because female population decline can lead to decreased population fecundity. Thus, effective conservation and management strategies must take into account sex differences in foraging behaviour, as well as differential threat-risk to external impacts such as fisheries bycatch. PMID:23028978
Foraging depths of sea otters and implications to coastal marine communities
Bodkin, James L.; Esslinger, George G.; Monson, Daniel H.
2004-01-01
We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths ≤20 m on 0.85 of their foraging dives while male sea otters dove to depths ≥45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.
Pintor, L.M.; Sih, A.; Bauer, M.L.
2008-01-01
Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.
Lamb, Juliet S.; Satgé, Yvan G.; Jodice, Patrick G. R.
2017-01-01
Density-dependent competition for food resources influences both foraging ecology and reproduction in a variety of animals. The relationship between colony size, local prey depletion, and reproductive output in colonial central-place foragers has been extensively studied in seabirds; however, most studies have focused on effects of intraspecific competition during the breeding season, while little is known about whether density-dependent resource depletion influences individual migratory behavior outside the breeding season. Using breeding colony size as a surrogate for intraspecific resource competition, we tested for effects of colony size on breeding home range, nestling health, and migratory patterns of a nearshore colonial seabird, the brown pelican (Pelecanus occidentalis), originating from seven breeding colonies of varying sizes in the subtropical northern Gulf of Mexico. We found evidence for density-dependent effects on foraging behavior during the breeding season, as individual foraging areas increased linearly with the number of breeding pairs per colony. Contrary to our predictions, however, nestlings from more numerous colonies with larger foraging ranges did not experience either decreased condition or increased stress. During nonbreeding, individuals from larger colonies were more likely to migrate, and traveled longer distances, than individuals from smaller colonies, indicating that the influence of density-dependent effects on distribution persists into the nonbreeding period. We also found significant effects of individual physical condition, particularly body size, on migratory behavior, which in combination with colony size suggesting that dominant individuals remain closer to breeding sites during winter. We conclude that density-dependent competition may be an important driver of both the extent of foraging ranges and the degree of migration exhibited by brown pelicans. However, the effects of density-dependent competition on breeding success and population regulation remain uncertain in this system.
Hamilton, C.D.; Golightly, R.T.; Takekawa, John Y.
2011-01-01
At night during the breeding season, Xantus's Murrelets (Synthliboramphus hypoleucus) congregate on the water adjacent to nesting colonies. We examined relationships of attendance at these nocturnal congregations, breeding status, and daytime foraging locations of radio-marked Xantus's Murrelets from Anacapa Island (33 in 2002, 44 in 2003) and Santa Barbara Island (35 in 2002) in the California Channel Islands. Murrelets thatspent more nights attending congregations were located closer to the island during the day, so regular attendance at the congregations may have constrained daytime traveling distances to foraging locations. In mid-May 2003 home-range sizes increased while congregation attendance decreased, likely indicating the end of colony attendance and declining availability of prey near Anacapa Island. In both years, incubating murrelets foraged farther from the colony than did nonbreeding murrelets, suggesting that breeding and nonbreeding murrelets use different foraging strategies to meet their energetic requirements. Copyright ?? The Cooper Ornithological Society 2011.
Limb-use by foraging marine turtles, an evolutionary perspective
McLeish, Don; Brooks, Andrew J.; Gaskell, John; Van Houtan, Kyle S.
2018-01-01
The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history. PMID:29610708
Tool use, aye-ayes, and sensorimotor intelligence.
Sterling, E J; Povinelli, D J
1999-01-01
Humans, chimpanzees, capuchins and aye-ayes all display an unusually high degree of encephalization and diverse omnivorous extractive foraging. It has been suggested that the high degree of encephalization in aye-ayes may be the result of their diverse, omnivorous extractive foraging behaviors. In combination with certain forms of tool use, omnivorous extractive foraging has been hypothesized to be linked to higher levels of sensorimotor intelligence (stages 5 or 6). Although free-ranging aye-ayes have not been observed to use tools directly in the context of their extractive foraging activities, they have recently been reported to use lianas as tools in a manner that independently suggests that they may possess stage 5 or 6 sensorimotor intelligence. Although other primate species which display diverse, omnivorous extractive foraging have been tested for sensorimotor intelligence, aye-ayes have not. We report a test of captive aye-ayes' comprehension of tool use in a situation designed to simulate natural conditions. The results support the view that aye-ayes do not achieve stage 6 comprehension of tool use, but rather may use trial-and-error learning to develop tool-use behaviors. Other theories for aye-aye encephalization are considered.
Limb-use by foraging marine turtles, an evolutionary perspective.
Fujii, Jessica A; McLeish, Don; Brooks, Andrew J; Gaskell, John; Van Houtan, Kyle S
2018-01-01
The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.
Peinetti, H.R.; Baker, B.W.; Coughenour, M.B.
2009-01-01
Beaver-willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m-2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community.
Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana
2017-09-01
Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.
Social effects on foraging behavior and success depend on local environmental conditions
Marshall, Harry H; Carter, Alecia J; Ashford, Alexandra; Rowcliffe, J Marcus; Cowlishaw, Guy
2015-01-01
In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5-month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low-ranked individuals received more agonism, but this only translated into reduced foraging performances for low-ranked individuals in the high-competition experimental conditions. Our results suggest one possible reason for this pattern may be low-ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank-offsetting effect of this investment being overwhelmed in the higher-competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments. PMID:25691973
Bodkin, James L.; Ballachey, Brenda E.; Coletti, Heather A.; Esslinger, George G.; Kloecker, Kimberly A.; Rice, Stanley D.; Reed, John; Monson, Daniel H.
2012-01-01
The protracted recovery of some bird and mammal populations in western Prince William Sound (WPWS), Alaska, and the persistence of spilled 'Exxon Valdez' oil in intertidal sediments, suggests a pathway of exposure to consumers that occupy nearshore habitats. To evaluate the hypothesis that sea otter (Enhydra lutris) foraging allows access to lingering oil, we contrast spatial relations between foraging behavior and documented oil distribution. We recovered archival time-depth recorders implanted in 19 sea otters in WPWS, where lingering oil and delayed ecosystem recovery are well documented. Sea otter foraging dives ranged from +2.7 to -92 m below sea level (MLLW), with intertidal accounting for 5 to 38% of all foraging. On average, female sea otters made 16050 intertidal dives per year and 18% of these dives were at depths above the +0.80 m tidal elevation. Males made 4100 intertidal dives per year and 26% of intertidal foraging took place at depths above the +0.80 m tidal elevation. Estimated annual oil encounter rates ranged from 2 to 24 times yr-1 for females, and 2 to 4 times yr-1 for males. Exposure rates increased in spring when intertidal foraging doubled and females were with small pups. In summer 2008, we found sea otter foraging pits on 13.5 of 24.8 km of intertidal shoreline surveyed. Most pits (82%) were within 0.5 m of the zero tidal elevation and 15% were above 0.5 m, the level above which most (65%) lingering oil remains. In August 2008, we detected oil above background concentrations in 18 of 41 (44%) pits excavated by sea otters on beaches with prior evidence of oiling, with total PAH concentrations up to 56000 ng g−1 dry weight. Our estimates of intertidal foraging, the widespread presence of foraging pits in the intertidal, and the presence of oil in and near sea otter foraging pits documents a pathway of exposure from lingering intertidal oil to sea otters foraging in WPWS.
Floral odor learning within the hive affects honeybees' foraging decisions
NASA Astrophysics Data System (ADS)
Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.
2007-03-01
Honeybees learn odor cues quickly and efficiently when visiting rewarding flowers. Memorization of these cues facilitates the localization and recognition of food sources during foraging flights. Bees can also use information gained inside the hive during social interactions with successful foragers. An important information cue that can be learned during these interactions is food odor. However, little is known about how floral odors learned in the hive affect later decisions of foragers in the field. We studied the effect of food scent on foraging preferences when this learning is acquired directly inside the hive. By using in-hive feeders that were removed 24 h before the test, we showed that foragers use the odor information acquired during a 3-day stimulation period with a scented solution during a food-choice situation outside the nest. This bias in food preference is maintained even 24 h after the replacement of all the hive combs. Thus, without being previously collected outside by foragers, food odors learned within the hive can be used during short-range foraging flights. Moreover, correct landings at a dual-choice device after replacing the storing combs suggests that long-term memories formed within the colony can be retrieved while bees search for food in the field.
Sivinski, John; Aluja, Martin
2012-07-20
Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research.
Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.
2009-01-01
The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.
Food limitation of sea lion pups and the decline of forage off central and southern California
McClatchie, Sam; Field, John; Thompson, Andrew R.; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C.; Watson, William; Nieto, Karen M.; Vetter, Russell D.
2016-01-01
California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5–38° N) for a decade, suggesting that trends in forage are environmentally driven. PMID:27069651
Factors influencing elk recruitment across ecotypes in the Western United States
Lukacs, Paul M.; Mitchell, Michael S.; Hebblewhite, Mark; Johnson, Bruce K.; Johnson, Heather; Kauffman, Matthew J.; Proffitt, Kelly M.; Zager, Peter; Brodie, Jedediah; Hersey, Kent R.; Holland, A. Andrew; Hurley, Mark; McCorquodale, Scott; Middleton, Arthur; Nordhagen, Matthew; Nowak, J. Joshua; Walsh, Daniel P.; White, P.J.
2018-01-01
Ungulates are key components in ecosystems and economically important for sport and subsistence harvest. Yet the relative importance of the effects of weather conditions, forage productivity, and carnivores on ungulates are not well understood. We examined changes in elk (Cervus canadensis) recruitment (indexed as age ratios) across 7 states and 3 ecotypes in the northwestern United States during 1989–2010, while considering the effects of predator richness, forage productivity, and precipitation. We found a broad‐scale, long‐term decrease in elk recruitment of 0.48 juveniles/100 adult females/year. Weather conditions (indexed as summer and winter precipitation) showed small, but measurable, influences on recruitment. Forage productivity on summer and winter ranges (indexed by normalized difference vegetation index [NDVI] metrics) had the strongest effect on elk recruitment relative to other factors. Relationships between forage productivity and recruitment varied seasonally and regionally. The productivity of winter habitat was more important in southern parts of the study area, whereas annual variation in productivity of summer habitat had more influence on recruitment in northern areas. Elk recruitment varied by up to 15 juveniles/100 adult females across the range of variation in forage productivity. Areas with more species of large carnivores had relatively low elk recruitment, presumably because of increased predation. Wolves (Canis lupus) were associated with a decrease of 5 juveniles/100 adult females, whereas grizzly bears (Ursus arctos) were associated with an additional decrease of 7 juveniles/100 adult females. Carnivore species can have a critical influence on ungulate recruitment because their influence rivals large ranges of variation in environmental conditions. A more pressing concern, however, stems from persistent broad‐scale decreases in recruitment across the distribution of elk in the northwestern United States, irrespective of carnivore richness. Our results suggest that wildlife managers interested in improving recruitment of elk consider the combined effects of habitat and predators. Efforts to manage summer and winter ranges to increase forage productivity may have a positive effect on recruitment.
Forest Stands Selected by Foraging Red-Cockaded Woodpeckers
Robert G. Hooper; Richard F. Harlow
1986-01-01
Selection of forest stands by 18 clans of foraging red-cockaded woodpeckers was studied in their year-round home ranges. The foraging use of 276 stands relative to their availability within the home ranges was compared to several stand characteristics. Selection among stands with similar characteristics was highly vairable and red-cockadeds foraged in stands with a...
Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher
Bakian, Amanda V.; Sullivan, Kimberly A.; Paxton, Eben H.
2012-01-01
Animal resource selection is a complex, hierarchical decision-making process, yet resource selection studies often focus on the presence and absence of an animal rather than the animal's behavior at resource use locations. In this study, we investigate foraging and vocalization resource selection in a population of Willow Flycatchers, Empidonax traillii adastus, using Bayesian spatial generalized linear models. These models produce “behavioral landscapes” in which space use and resource selection is linked through behavior. Radio telemetry locations were collected from 35 adult Willow Flycatchers (n = 14 males, n = 13 females, and n = 8 unknown sex) over the 2003 and 2004 breeding seasons at Fish Creek, Utah. Results from the 2-stage modeling approach showed that habitat type, perch position, and distance from the arithmetic mean of the home range (in males) or nest site (in females) were important factors influencing foraging and vocalization resource selection. Parameter estimates from the individual-level models indicated high intraspecific variation in the use of the various habitat types and perch heights for foraging and vocalization. On the population level, Willow Flycatchers selected riparian habitat over other habitat types for vocalizing but used multiple habitat types for foraging including mountain shrub, young riparian, and upland forest. Mapping of observed and predicted foraging and vocalization resource selection indicated that the behavior often occurred in disparate areas of the home range. This suggests that multiple core areas may exist in the home ranges of individual flycatchers, and demonstrates that the behavioral landscape modeling approach can be applied to identify spatially and behaviorally distinct core areas. The behavioral landscape approach is applicable to a wide range of animal taxa and can be used to improve our understanding of the spatial context of behavior and resource selection.
GPS tracking devices reveal foraging strategies of black-legged kittiwakes
Kotzerka, Jana; Garthe, Stefan; Hatch, Scott A.
2010-01-01
The Black-legged Kittiwake Rissa tridactyla is the most abundant gull species in the world, but some populations have declined in recent years, apparently due to food shortage. Kittiwakes are surface feeders and thus can compensate for low food availability only by increasing their foraging range and/or devoting more time to foraging. The species is widely studied in many respects, but long-distance foraging and the limitations of conventional radio telemetry have kept its foraging behavior largely out of view. The development of Global Positioning System (GPS) loggers is advancing rapidly. With devices as small as 8 g now available, it is possible to use this technology for tracking relatively small species of oceanic birds like kittiwakes. Here we present the first results of GPS telemetry applied to Black-legged Kittiwakes in 2007 in the North Pacific. All but one individual foraged in the neritic zone north of the island. Three birds performed foraging trips only close to the colony (within 13 km), while six birds had foraging ranges averaging about 40 km. The maximum foraging range was 59 km, and the maximum distance traveled was 165 km. Maximum trip duration was 17 h (mean 8 h). An apparently bimodal distribution of foraging ranges affords new insight on the variable foraging behaviour of Black-legged Kittiwakes. Our successful deployment of GPS loggers on kittiwakes holds much promise for telemetry studies on many other bird species of similar size and provides an incentive for applying this new approach in future studies.
Assessing herbivore foraging behavior with GPS collars in a semiarid grassland.
Augustine, David J; Derner, Justin D
2013-03-15
Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. Understanding factors controlling the distribution of free-ranging livestock requires the ability to assess when and where they are foraging. For four years (2008-2011), we periodically collected GPS and activity sensor data together with direct observations of collared cattle grazing semiarid rangeland in eastern Colorado. From these data, we developed classification tree models that allowed us to discriminate between grazing and non-grazing activities. We evaluated: (1) which activity sensor measurements from the GPS collars were most valuable in predicting cattle foraging behavior, (2) the accuracy of binary (grazing, non-grazing) activity models vs. models with multiple activity categories (grazing, resting, traveling, mixed), and (3) the accuracy of models that are robust across years vs. models specific to a given year. A binary classification tree correctly removed 86.5% of the non-grazing locations, while correctly retaining 87.8% of the locations where the animal was grazing, for an overall misclassification rate of 12.9%. A classification tree that separated activity into four different categories yielded a greater misclassification rate of 16.0%. Distance travelled in a 5 minute interval and the proportion of the interval with the sensor indicating a head down position were the two most important variables predicting grazing activity. Fitting annual models of cattle foraging activity did not improve model accuracy compared to a single model based on all four years combined. This suggests that increased sample size was more valuable than accounting for interannual variation in foraging behavior associated with variation in forage production. Our models differ from previous assessments in semiarid rangeland of Israel and mesic pastures in the United States in terms of the value of different activity sensor measurements for identifying grazing activity, suggesting that the use of GPS collars to classify cattle grazing behavior will require calibrations specific to the environment and vegetation being studied.
NASA Astrophysics Data System (ADS)
Tejera, F.; Reyes, A.; Altshuler, E.
2016-07-01
It is well established that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we abduct leaf cutting ants of the species Atta insularis while they forage in their natural environment at a certain point of the foraging line, so ants make a "U" turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit "danger information" to other nestmates marching towards the abduction area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.
Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas
Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.
2004-01-01
In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to the study, when foraging trips of the large colony were very long, parents lost mass, and chick meals were smaller. In light of existing data on prey abundance in neritic waters in Antarctica suggesting that krill are relatively evenly distributed and in high abundance in the Southern Ross Sea, we conclude that penguins depleted or changed the availability of their prey, that the degree of alteration was a function of colony size, and that the large colony affected the location (and perhaps ultimately the size) of foraging areas for the smaller colonies. It appears, therefore, that foraging dynamics play a role in the geographic structuring of colonies in this species. ?? 2004 by the Ecological Society of America.
Stewart, Julia S; Hazen, Elliott L; Bograd, Steven J; Byrnes, Jarrett E K; Foley, David G; Gilly, William F; Robison, Bruce H; Field, John C
2014-06-01
Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Morra, K. E.; Ostrom, P. H.; Wiley, A. E.; James, H. F.; Stricker, C. A.; Gandhi, H.
2014-12-01
Stable isotope analysis of the endangered Hawaiian petrel's (Pterodroma sandwichensis, HAPE) feathers provides otherwise intractable information regarding non-breeding season foraging habits. Adult HAPE spend 3.5-6 months at sea during the non-breeding season, at which time they sequentially molt their flight feathers. Because feathers are metabolically inert once synthesized, they capture isotopic signals while they are grown, providing an opportunity to study foraging habits over time. Here we use stable hydrogen (δD), carbon (δ13C) and nitrogen (δ15N) isotopes to assess variation in foraging habits within and between individuals, and among four breeding colonies. δD is an indicator of prevalence of fish vs. invertebrates in the diet. In one analysis, we observed large variation in feather δD (125‰), with adults from Maui and Kauai having significantly higher δD values than corresponding hatch-year birds, indicating significant dietary differences between age groups. In a second analysis, we utilized δ13C and δ15N of Hawaii, Maui and Lanai adults, values which vary with trophic level and also at the base of the food web across HAPE's foraging range, potentially revealing information about feeding location, as well as diet. Furthermore, because the sequence of molt is known, we are able to determine whether individual foraging specialization (continued use of the same foraging behavior over time) exists in this species. To do this, we analyzed two primary feathers, P1 and P6, which reflect the beginning and the middle of the non-breeding season, respectively. We did not find significant differences in δ13C or δ15N between P1 and P6, suggesting consistent foraging habits within individuals over time. This provides evidence that individual foraging specialization exists within these populations. Analysis of a secondary feather grown late in the molt sequence would further illuminate the extent of foraging specialization. Finally, δ15N differs significantly between Hawaii and Maui adults, suggesting foraging segregation between these two populations. HAPE may be sensitive to changes in prey availability, given evidence of foraging specialization. However, conserving HAPE populations with apparently different foraging habits may be critical to preserve ecological diversity within the species.
Coping with copepods: do right whales (Eubalaena glacialis) forage visually in dark waters?
Fasick, Jeffry I.; Kezmoh, Lorren J.; Baumgartner, Mark F.
2017-01-01
North Atlantic right whales (Eubalaena glacialis) feed during the spring and early summer in marine waters off the northeast coast of North America. Their food primarily consists of planktonic copepods, Calanus finmarchicus, which they consume in large numbers by ram filter feeding. The coastal waters where these whales forage are turbid, but they successfully locate copepod swarms during the day at depths exceeding 100 m, where light is very dim and copepod patches may be difficult to see. Using models of E. glacialis visual sensitivity together with measurements of light in waters near Cape Cod where they feed and of light attenuation by living copepods in seawater, we evaluated the potential for visual foraging by these whales. Our results suggest that vision may be useful for finding copepod patches, particularly if E. glacialis searches overhead for silhouetted masses or layers of copepods. This should permit the whales to locate C. finmarchicus visually throughout most daylight hours at depths throughout their foraging range. Looking laterally, the whales might also be able to see copepod patches at short range near the surface. This article is part of the themed issue ‘Vision in dim light’. PMID:28193812
Coping with copepods: do right whales (Eubalaena glacialis) forage visually in dark waters?
Cronin, Thomas W; Fasick, Jeffry I; Schweikert, Lorian E; Johnsen, Sönke; Kezmoh, Lorren J; Baumgartner, Mark F
2017-04-05
North Atlantic right whales ( Eubalaena glacialis ) feed during the spring and early summer in marine waters off the northeast coast of North America. Their food primarily consists of planktonic copepods, Calanus finmarchicus , which they consume in large numbers by ram filter feeding. The coastal waters where these whales forage are turbid, but they successfully locate copepod swarms during the day at depths exceeding 100 m, where light is very dim and copepod patches may be difficult to see. Using models of E. glacialis visual sensitivity together with measurements of light in waters near Cape Cod where they feed and of light attenuation by living copepods in seawater, we evaluated the potential for visual foraging by these whales. Our results suggest that vision may be useful for finding copepod patches, particularly if E. glacialis searches overhead for silhouetted masses or layers of copepods. This should permit the whales to locate C. finmarchicus visually throughout most daylight hours at depths throughout their foraging range. Looking laterally, the whales might also be able to see copepod patches at short range near the surface.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).
Space use and resource selection by foraging Indiana bats at the northern edge of their distribution
Jachowski, David S.; Johnson, Joshua B.; Dobony, Christopher A.; Edwards, John W.; Ford, W. Mark
2014-01-01
Despite 4 decades of conservation concern, managing endangered Indiana bat (Myotis sodalis) populations remains a difficult wildlife resource issue facing natural resource managers in the eastern United States. After small signs of population recovery, the recent emergence of white-nose syndrome has led to concerns of local and/or regional extirpation of the species. Where Indiana bats persist, retaining high-quality foraging areas will be critical to meet physiological needs and ensure successful recruitment and overwinter survival. However, insight into foraging behavior has been lacking in the Northeast of the USA. We radio-tracked 12 Indiana bats over 2 summers at Fort Drum, New York, to evaluate factors influencing Indiana bat resource selection during night-time foraging. We found that foraging space use decreased 2% for every 100 m increase in distance to water and 6% for every 100 m away from the forest edge. This suggests high use of riparian areas in close proximity to forest and is somewhat consistent with the species’ foraging ecology in the Midwest and upper South. Given the importance of providing access to high-quality foraging areas during the summer maternity season, Indiana bat conservation at the northern extent of the species’ range will be linked to retention of forested habitat in close proximity to riparian zones.
Geib, Jennifer C; Strange, James P; Galenj, Candace
2015-04-01
Recent reports of global declines in pollinator species imply an urgent need to assess the abundance of native pollinators and density-dependent benefits for linked plants. In this study, we investigated (1) pollinator nest distributions and estimated colony abundances, (2) the relationship between abundances of foraging workers and the number of nests they represent, (3) pollinator foraging ranges, and (4) the relationship between pollinator abundance and plant reproduction. We examined these questions in an alpine ecosystem in the Colorado Rocky Mountains, focusing on four alpine bumble bee species (Bombus balteatus, B. flavifrons, B. bifarius, and B. sylvicola), and two host plants that differ in their degrees of pollinator specialization (Trifolium dasyphyllum and T. parryi). Using microsatellites, we found that estimated colony abundances among Bombus species ranged from ~18 to 78 colonies/0.01 km2. The long-tongued species B. balteatus was most common, especially high above treeline, but the subalpine species B. bifarius was unexpectedly abundant for this elevation range. Nests detected among sampled foragers of each species were correlated with the number of foragers caught. Foraging ranges were smaller than expected for all Bombus species, ranging from 25 to 110 m. Fruit set for the specialized plant, Trifolium parryi, was positively related to the abundance of its Bombus pollinator. In contrast, fruit set for the generalized plant, T. dasyphyllum, was related to abundance of all Bombus species. Because forager abundance was related to nest abundance of each Bombus species and was an equally effective predictor of plant fecundity, forager inventories are probably suitable for assessing the health of outcrossing plant populations. However, nest abundance, rather than forager abundance, better reflects demographic and genetic health in populations of eusocial pollinators such as bumble bees. Development of models incorporating the parameters we have measured here (nest abundance, forager abundance, and foraging distance) could increase the usefulness of foraging worker inventories in nionitoring, managing, and conserving pollinator populations.
Sivinski, John; Aluja, Martin
2012-01-01
Ultimately, the success of augmentative fruit fly biological control depends upon the survival, dispersal, attack rate and multi-generational persistence of mass-reared parasitoids in the field. Foraging for hosts, food and mates is fundamental to the above and, at an operational level, the choice of the parasitoid best suited to control a particular tephritid in a certain environment, release rate estimates and subsequent monitoring of effectiveness. In the following we review landscape-level and microhabitat foraging preferences, host/fruit ranges, orientation through environmental cues, host vulnerabilities/ovipositor structures, and inter and intraspecific competition. We also consider tephritid parasitoid mating systems and sexual signals, and suggest the directions of future research. PMID:26466622
Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra
2015-11-01
Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.
Yandow, Leah H; Chalfoun, Anna D; Doak, Daniel F
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.
Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions. PMID:26244851
Yandow, Leah H.; Chalfoun, Anna D.; Doak, Daniel F.
2015-01-01
Some of the most compelling examples of ecological responses to climate change are elevational range shifts of individual species, which have been observed throughout the world. A growing body of evidence, however, suggests substantial mediation of simple range shifts due to climate change by other limiting factors. Understanding limiting factors for a species within different contexts, therefore, is critical for predicting responses to climate change. The American pika (Ochotona princeps) is an ideal species for investigating distributions in relation to climate because of their unusual and well-understood natural history as well as observed shifts to higher elevation in parts of their range. We tested three hypotheses for the climatic or habitat characteristics that may limit pika presence and abundance: summer heat, winter snowpack, and forage availability. We performed these tests using an index of pika abundance gathered in a region where environmental influences on pika distribution have not been well-characterized. We estimated relative pika abundance via scat surveys and quantified climatic and habitat characteristics across two North-Central Rocky Mountain Ranges, the Wind River and Bighorn ranges in Wyoming, USA. Pika scat density was highest at mid-elevations and increased linearly with forage availability in both ranges. Scat density also increased with temperatures conducive to forage plant growth, and showed a unimodal relationship with the number of days below -5°C, which is modulated by insulating snowpack. Our results provide support for both the forage availability and winter snowpack hypotheses. Especially in montane systems, considering the context-dependent nature of climate effects across regions and elevations as well as interactions between climatic and other critical habitat characteristics, will be essential for predicting future species distributions.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny
NASA Astrophysics Data System (ADS)
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Graystock, Peter; Hughes, William O.H.
2016-01-01
Foraging specialization allows social insects to more efficiently exploit resources in their environment. Recent research on honeybees suggests that specialization on pollen or nectar among foragers is linked to reproductive physiology and sensory tuning (the Reproductive Ground-Plan Hypothesis; RGPH). However, our understanding of the underlying physiological relationships in non-Apis bees is still limited. Here we show that the bumblebee Bombus terrestris has specialist pollen and nectar foragers, and test whether foraging specialization in B. terrestris is linked to reproductive physiology, measured as ovarian activation. We show that neither ovary size, sensory sensitivity, measured through proboscis extension response (PER), or whole-body lipid stores differed between pollen foragers, nectar foragers, or generalist foragers. Body size also did not differ between any of these three forager groups. Non-foragers had significantly larger ovaries than foragers. This suggests that potentially reproductive individuals avoid foraging. PMID:27812411
Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby.
Weimerskirch, Henri; Le Corre, Matthieu; Ropert-Coudert, Yan; Kato, Akiko; Marsac, Francis
2006-01-01
Most hypotheses attempting to explain the evolution of reversed sexual dimorphism (RSD) assume that size-related differences in foraging ability are of prime importance, but the studies on sex-specific differences in foraging behaviour remain scarce. We compare the foraging behaviour of males and females in a seabird species with a RSD by using several miniaturised activity and telemetry loggers. In red-footed boobies males are 5% smaller and 15% lighter than females, but have a longer tail than females. Both sexes spend similar time on the nest while incubating or brooding. When foraging at sea, males and females spend similar time foraging in oceanic waters, forage in similar areas, spend similar proportion of their foraging trip in flight, and feed on similar prey-flying fishes and flying squids-of similar size. However, compared to males, females range farther during incubation (85 km vs. 50 km), and furthermore feed mostly at the extremity of their foraging trip, whereas males actively forage throughout the trip. Males are much more active than females, landing and diving more often. During the study period, males lost mass, whereas females showed no significant changes. These results indicate that males and females of the red-footed boobies differ in several aspects in their foraging behaviour. Although some differences found in the study may be the direct result of the larger size of females, that is, the slightly higher speeds and deeper depths attained by females, others indicate clearly different foraging strategies between the sexes. The smaller size and longer tail of males confer them a higher agility, and could allow them to occupy a foraging niche different from that of females. The higher foraging effort of males related to its different foraging strategy is probably at the origin of the rapid mass loss of males during the breeding period. These results suggest that foraging differences are probably the reason for the differential breeding investment observed in boobies, and are likely to be involved in the evolution and maintenance of RSD.
Foraging niche segregation in Malaysian babblers (Family: Timaliidae)
Mansor, Mohammad Saiful; Ramli, Rosli
2017-01-01
Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause’ law of competitive exclusion, which states two species occupying the same niche will not stably coexist. PMID:28253284
Foraging niche segregation in Malaysian babblers (Family: Timaliidae).
Mansor, Mohammad Saiful; Ramli, Rosli
2017-01-01
Tropical rainforests are considered as hotspots for bird diversity, yet little is known about the system that upholds the coexistence of species. Differences in body size that are associated with foraging strategies and spatial distribution are believed to promote the coexistence of closely related species by reducing competition. However, the fact that many babbler species do not differ significantly in their morphology has challenged this view. We studied the foraging ecology of nine sympatric babbler species (i.e., Pellorneum capistratum, P. bicolor, P. malaccense, Malacopteron cinereum, M. magnum, Stachyris nigriceps, S. nigricollis, S. maculata, and Cyanoderma erythropterum) in the Krau Wildlife Reserve in Peninsular Malaysia. We investigated; i) how these babblers forage in the wild and use vegetation to obtain food, and ii) how these trophically similar species differ in spatial distribution and foraging tactics. Results indicated that most babblers foraged predominantly on aerial leaf litter and used gleaning manoeuvre in intermediate-density foliage but exhibited wide ranges of vertical strata usage, thus reducing interspecific competition. The principal component analysis indicated that two components, i.e., foraging height and substrate are important as mechanisms to allow the coexistence of sympatric babblers. The present findings revealed that these bird species have unique foraging niches that are distinct from each other, and this may apply to other insectivorous birds inhabiting tropical forests. This suggests that niche separation does occur among coexisting birds, thus following Gause' law of competitive exclusion, which states two species occupying the same niche will not stably coexist.
Determination of Tropical Forage Preferences Using Two Offering Methods in Rabbits
Safwat, A. M.; Sarmiento-Franco, L.; Santos-Ricalde, R. H.; Nieves, D.
2014-01-01
Two methods of feed preference trials were compared to evaluate the acceptability of 5 fresh foliages: Leucaena leucocephala, Moringa oleifera, Portulaca oleracea, Guazuma ulmifolia, and Brosimum alicastrum that was included as control. The evaluation included chemical analyses and forage intake by rabbits. The first method was a cafeteria trial; 12 California growing rabbits aged 8 wk, allocated in individual cages, were offered the five forage plants at the same time inside the cage, while in the second trial 60 California growing rabbits aged 8 wk, allocated individually, were randomly distributed into 5 experimental groups (n = 12/group); for each group just one forage species was offered at a time. The testing period for each method lasted for 7 d, preceded by one week of adaptation. The results showed that B. alicastrum and L. lecocephala were the most preferred forages while on the contrary G. ulmifolia was the least preferred one by rabbits. The results also revealed that the CV% value for the 2nd method (16.32%), which the tested forages were presented separately to rabbits, was lower and methodologically more acceptable than such value for the 1st method (34.28%), which all forages were presented together at the same time. It can be concluded that a range of tropical forages were consumed in acceptable quantities by rabbits, suggesting that diets based on such forages with a concentrate supplement could be used successfully for rabbit production. However, growth performance studies are still needed before recommendations could be made on appropriate ration formulations for commercial use. PMID:25049983
Movements of wintering surf scoters: Predator responses to different prey landscapes
Kirk, M.; Esler, Daniel N.; Iverson, S.A.; Boyd, W.S.
2008-01-01
The distribution of predators is widely recognized to be intimately linked to the distribution of their prey. Foraging theory suggests that predators will modify their behaviors, including movements, to optimize net energy intake when faced with variation in prey attributes or abundance. While many studies have documented changes in movement patterns of animals in response to temporal changes in food, very few have contrasted movements of a single predator species naturally occurring in dramatically different prey landscapes. We documented variation in the winter movements, foraging range size, site fidelity, and distribution patterns of a molluscivorous sea duck, the surf scoter (Melanitta perspicillata), in two areas of coastal British Columbia with very different shellfish prey features. Baynes Sound has extensive tidal flats with abundant clams, which are high-quality and temporally stable prey for scoters. Malaspina Inlet is a rocky fjord-like inlet where scoters consume mussels that are superabundant and easily accessible in some patches but are heavily depleted over the course of winter. We used radio telemetry to track surf scoter movements in both areas and found that in the clam habitats of Baynes Sound, surf scoters exhibited limited movement, small winter ranges, strong foraging site fidelity, and very consistent distribution patterns. By contrast, in mussel habitats in the Malaspina Inlet, surf scoters displayed more movement, larger ranges, little fidelity to specific foraging sites, and more variable distribution patterns. We conclude that features associated with the different prey types, particularly the higher depletion rates of mussels, strongly influenced seasonal space use patterns. These findings are consistent with foraging theory and confirm that predator behavior, specifically movements, is environmentally mediated. ?? 2008 Springer-Verlag.
Boldness predicts an individual's position along an exploration-exploitation foraging trade-off.
Patrick, Samantha C; Pinaud, David; Weimerskirch, Henri
2017-09-01
Individuals do not have complete information about the environment and therefore they face a trade-off between gathering information (exploration) and gathering resources (exploitation). Studies have shown individual differences in components of this trade-off but how stable these strategies are in a population and the intrinsic drivers of these differences is not well understood. Top marine predators are expected to experience a particularly strong trade-off as many species have large foraging ranges and their prey often have a patchy distribution. This environment leads these species to exhibit pronounced exploration and exploitation phases but differences between individuals are poorly resolved. Personality differences are known to be important in foraging behaviour but also in the trade-off between exploration and exploitation. Here we test whether personality predicts an individual exploration-exploitation strategy using wide ranging wandering albatrosses (Diomedea exulans) as a model system. Using GPS tracking data from 276 wandering albatrosses, we extract foraging parameters indicative of exploration (searching) and exploitation (foraging) and show that foraging effort, time in patch and size of patch are strongly correlated, demonstrating these are indicative of an exploration-exploitation (EE) strategy. Furthermore, we show these are consistent within individuals and appear stable in the population, with no reproductive advantage. The searching and foraging behaviour of bolder birds placed them towards the exploration end of the trade-off, whereas shy birds showed greater exploitation. This result provides a mechanism through which individual foraging strategies may emerge. Age and sex affected components of the trade-off, but not the trade-off itself, suggesting these factors may drive behavioural compensation to maintain resource acquisition and this was supported by the evidence that there were no fitness consequence of any EE trait nor the trade-off itself. These results demonstrate a clear trade-off between information gathering and exploitation of prey patches, and reveals for the first time that boldness may drive these differences. This provides a mechanism through which widely reported links between personality and foraging may emerge. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Effects of Climate Change on Range Forage Production in the San Francisco Bay Area
Chaplin-Kramer, Rebecca; George, Melvin R.
2013-01-01
The San Francisco Bay Area in California, USA is a highly heterogeneous region in climate, topography, and habitats, as well as in its political and economic interests. Successful conservation strategies must consider various current and future competing demands for the land, and should pay special attention to livestock grazing, the dominant non-urban land-use. The main objective of this study was to predict changes in rangeland forage production in response to changes in temperature and precipitation projected by downscaled output from global climate models. Daily temperature and precipitation data generated by four climate models were used as input variables for an existing rangeland forage production model (linear regression) for California’s annual rangelands and projected on 244 12 km x 12 km grid cells for eight Bay Area counties. Climate model projections suggest that forage production in Bay Area rangelands may be enhanced by future conditions in most years, at least in terms of peak standing crop. However, the timing of production is as important as its peak, and altered precipitation patterns could mean delayed germination, resulting in shorter growing seasons and longer periods of inadequate forage quality. An increase in the frequency of extremely dry years also increases the uncertainty of forage availability. These shifts in forage production will affect the economic viability and conservation strategies for rangelands in the San Francisco Bay Area. PMID:23472102
Range use and movements of California condors
Meretsky, V.J.; Snyder, N.F.R.
1992-01-01
Between 1982 and 1987, photographic and telemetric tracking of California Condors (Gymnogyps californianus) yielded information on use of the last known range of the species by 23 individual birds. Except for yearlings, most and possibly all individuals in the population used all major foraging zones. Use of the foraging zones was not uniform among individuals, however. Breeding pairs tended to forage most frequently in zones close to their nests (usually within 70 km, occasionally as far away as 180 km). Immatures (at least older immatures), unpaired birds, and paired birds that were not breeding foraged more widely. Male and female adults used the foraging range in a similar manner. Although most portions of the foraging range received some condor use throughout the year, use varied seasonally in accord with recent and historical patterns of food availability. Nesting areas were separated from foraging zones and were visited much less freely than foraging zones. Paired birds tended strongly to visit only their own and immediately adjacent nesting areas. Their nesting areas remained stable over the years. Unpaired adults and immatures ranged more widely among nesting areas. Condors were sometimes documented flying more than 200 km and traversing the entire range of the species during a day. Birds were variably social in movements. Pair members tended to stay together during long-distance travels. Immatures and unpaired birds sometimes traveled with other condors but often moved singly. In years when the population still included many breeders, the largest observed aggregations included one-half to two-thirds of the total population. The comparative strengths and weaknesses of photographic and telemetric methods are described for tracking and other research endeavors.
Redhead, John W; Dreier, Stephanie; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire
2016-04-01
Bumble bees (Bombus spp.) are important pollinators of both crops and wildflowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures, it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumble bees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics, and fine resolution remote sensing to estimate the locations of wild bumble bee nests and to infer foraging distances across a 20-km² agricultural landscape in southern England, UK. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius, and B. ruderatus exhibited significantly greater mean foraging distances (551, 536, and 501 m, respectively) than B. hortorum and B. pascuorum (336 and 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that management of landscape composition and configuration has the potential to reduce foraging distances across a range of bumble bee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumble bees and enhancing crop pollination services.
Kovac, Helmut; Stabentheiner, Anton
2011-01-01
1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated. 2. The bees (Apis mellifera carnica Pollman) were always endothermic. On average, the thorax surface temperature (Tth) was regulated at a high and rather constant level over a broad range of ambient temperatures (Tth = 33.7–35.7°C, Ta = 10–27°C). However, at a certain Ta, Tth showed a strong variation, depending on the plants from which the bees were foraging. At warmer conditions (Ta = 27–32°C) the Tth increased nearly linearly with Ta to a maximal average level of 42.6 °C. The thorax temperature excess decreased strongly with increasing Ta (Tth−Ta = 21.6 − 3.6°C). 3. The bees used the heat gain from solar radiation to elevate the temperature excess of thorax, head, and abdomen. Seasonal dependance was reflected in a 2.7 °C higher mean Tth in the spring than in the summer. An anova revealed that season had the greatest effect on Tth, followed by Ta and radiation. 4. It was presumed the foragers' motivational status to be the main factor responsible for the variation of Tth between seasons and different plants. PMID:22419834
Berlincourt, Maud; Angel, Lauren P; Arnould, John P Y
2015-01-01
Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1-70.0%) of time at sea resting on water and 18.2% (range: 2.3-49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8-237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey.
Social foraging with partial (public) information.
Mann, Ofri; Kiflawi, Moshe
2014-10-21
Group foragers can utilize public information to better estimate patch quality and arrive at more efficient patch-departure rules. However, acquiring such information may come at a cost; e.g. reduced search efficiency. We present a Bayesian group-foraging model in which social foragers do not require full awareness of their companions' foraging success; only of their number. In our model, patch departure is based on direct estimates of the number of remaining items. This is achieved by considering all likely combinations of initial patch-quality and group foraging-success; given the individual forager's experience within the patch. Slower rates of information-acquisition by our 'partially-aware' foragers lead them to over-utilize poor patches; more than fully-aware foragers. However, our model suggests that the ensuing loss in long-term intake-rates can be matched by a relatively low cost to the acquisition of full public information. In other words, we suggest that group-size offers sufficient information for optimal patch utilization by social foragers. We suggest, also, that our model is applicable to other situations where resources undergo 'background depletion', which is coincident but independent of the consumer's own utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence
Chang, J. J.; Oppenheimer, R. L.; Combes, S. A.
2017-01-01
Natural environments are characterized by variable wind that can pose significant challenges for flying animals and robots. However, our understanding of the flow conditions that animals experience outdoors and how these impact flight performance remains limited. Here, we combine laboratory and field experiments to characterize wind conditions encountered by foraging bumblebees in outdoor environments and test the effects of these conditions on flight. We used radio-frequency tags to track foraging activity of uniquely identified bumblebee (Bombus impatiens) workers, while simultaneously recording local wind flows. Despite being subjected to a wide range of speeds and turbulence intensities, we find that bees do not avoid foraging in windy conditions. We then examined the impacts of turbulence on bumblebee flight in a wind tunnel. Rolling instabilities increased in turbulence, but only at higher wind speeds. Bees displayed higher mean wingbeat frequency and stroke amplitude in these conditions, as well as increased asymmetry in stroke amplitude—suggesting that bees employ an array of active responses to enable flight in turbulence, which may increase the energetic cost of flight. Our results provide the first direct evidence that moderate, environmentally relevant turbulence affects insect flight performance, and suggest that flying insects use diverse mechanisms to cope with these instabilities. PMID:28163878
Foraging in an unsteady world: bumblebee flight performance in field-realistic turbulence.
Crall, J D; Chang, J J; Oppenheimer, R L; Combes, S A
2017-02-06
Natural environments are characterized by variable wind that can pose significant challenges for flying animals and robots. However, our understanding of the flow conditions that animals experience outdoors and how these impact flight performance remains limited. Here, we combine laboratory and field experiments to characterize wind conditions encountered by foraging bumblebees in outdoor environments and test the effects of these conditions on flight. We used radio-frequency tags to track foraging activity of uniquely identified bumblebee ( Bombus impatiens ) workers, while simultaneously recording local wind flows. Despite being subjected to a wide range of speeds and turbulence intensities, we find that bees do not avoid foraging in windy conditions. We then examined the impacts of turbulence on bumblebee flight in a wind tunnel. Rolling instabilities increased in turbulence, but only at higher wind speeds. Bees displayed higher mean wingbeat frequency and stroke amplitude in these conditions, as well as increased asymmetry in stroke amplitude-suggesting that bees employ an array of active responses to enable flight in turbulence, which may increase the energetic cost of flight. Our results provide the first direct evidence that moderate, environmentally relevant turbulence affects insect flight performance, and suggest that flying insects use diverse mechanisms to cope with these instabilities.
Comparisons of The Habitat Utilization Of Top Predators In The Southern Ocean And The North Pacific
NASA Astrophysics Data System (ADS)
Costa, D. P.; Robinson, P.; Huckstadt, L. E.; Crocker, D. E.; Goebel, M. E.
2010-12-01
Northern and Southern elephant seals (Mirounga angustirostris, M. leonina) separated some 4 MYA. While these congeners are physiologically very similar and thus have the potential to forage in similar ways they inhabit very different habitats. While southern elephant seals (SES) are distributed throughout the southern ocean, northern elephant seals (NES) are limited to the Northeast Pacific Ocean and range over lower latitudes than SES. In order to compare and contrast the physiological capability and response to different habitats we compared the foraging behavior of 167 adult female northern elephant seals (Año Nuevo and San Benitos Islands) and 55 southern elephant seals (Livingston Island, Antarctic Peninsula) using satellite telemetry and dive recorders. As expected both species carried out very similar dive depths (NES 509m ± 166 vs SES 345m±79) and dive durations (NES 23.0 min ± 6.7; SES 22.5 min ± 5.0). However, there were significant differences in their foraging pattern that we attribute to differences in the availability of continental shelf and suitable foraging habitat. While 85% of NES females foraged offshore, the dominant strategy for SES was benthic foraging on the continental shelf. Even with the differences in habitat, the fundamental components of their foraging patterns remained the same as when they foraged pelagically they both species relied on persistent large scale oceanographic features where mixing enhances productivity such as the North Pacific Transition zone (NES) and the Southern Antarctic Circumpolar Current Front (SES). Given the very different habitats and prey species consumed by these two species their overall foraging behavior is surprisingly similar suggesting that as a mesopelagic predator the elephant seal design is rather robust.
Peck-Richardson, Adam G.; Lyons, Donald E.; Roby, Daniel D.; Cushing, Daniel A.; Lerczak, James A.
2018-01-01
Ecological theory predicts that co-existing, morphologically similar species will partition prey resources when faced with resource limitations. We investigated local movements, foraging dive behavior, and foraging habitat selection by breeding adults of 2 closely related cormorant species, double-crested cormorants Phalacrocorax auritus and Brandt’s cormorants P. penicillatus. These species nest sympatrically at East Sand Island in the Columbia River estuary at the border of Oregon and Washington states, USA. Breeding individuals of each species were tracked using GPS tags with integrated temperature and depth data-loggers. The overall foraging areas and core foraging areas (defined as the 95% and 50% kernel density estimates of dive locations, respectively) of double-crested cormorants were much larger and covered a broader range of riverine, mixed-estuarine, and nearshore marine habitats. Brandt’s cormorant foraging areas were less expansive, were exclusively marine, and mostly overlapped with double-crested cormorant foraging areas. Within these areas of overlap, Brandt’s cormorants tended to dive deeper (median depth = 6.48 m) than double-crested cormorants (median depth = 2.67 m), and selected dive locations where the water was deeper. Brandt’s cormorants also utilized a deeper, more benthic portion of the water column than did double-crested cormorants. Nevertheless, the substantial overlap in foraging habitat between the 2 cormorant species in the Columbia River estuary, particularly for Brandt’s cormorants, suggests that superabundant prey resources allow these 2 large and productive cormorant colonies to coexist on a single island near the mouth of the Columbia River.
NASA Astrophysics Data System (ADS)
Gil, Mariana; Farina, Walter Marcelo
2002-05-01
This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.
Dehnhard, Nina; Ludynia, Katrin; Poisbleau, Maud; Demongin, Laurent; Quillfeldt, Petra
2013-01-01
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability. PMID:24236139
Berlincourt, Maud; Angel, Lauren P.; Arnould, John P. Y.
2015-01-01
Determining the foraging behaviour of free-ranging marine animals is fundamental for assessing their habitat use and how they may respond to changes in the environment. However, despite recent advances in bio-logging technology, collecting information on both at-sea movement patterns and activity budgets still remains difficult in small pelagic seabird species due to the constraints of instrument size. The short-tailed shearwater, the most abundant seabird species in Australia (ca 23 million individuals), is a highly pelagic procellariiform. Despite its ecological importance to the region, almost nothing is known about its at-sea behaviour, in particular, its foraging activity. Using a combination of GPS and tri-axial accelerometer data-loggers, the fine scale three-dimensional foraging behaviour of 10 breeding individuals from two colonies was investigated. Five at-sea behaviours were identified: (1) resting on water, (2) flapping flight, (3) gliding flight, (4) foraging (i.e., surface foraging and diving events), and (5) taking-off. There were substantial intra- and inter- individual variations in activity patterns, with individuals spending on average 45.8% (range: 17.1–70.0%) of time at sea resting on water and 18.2% (range: 2.3–49.6%) foraging. Individuals made 76.4 ± 65.3 dives (range: 8–237) per foraging trip (mean duration 9.0 ± 1.9 s), with dives also recorded during night-time. With the continued miniaturisation of recording devices, the use of combined data-loggers could provide us with further insights into the foraging behaviour of small procellariiforms, helping to better understand interactions with their prey. PMID:26439491
NASA Astrophysics Data System (ADS)
Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric
2015-03-01
Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.
Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris)
NASA Astrophysics Data System (ADS)
Raine, Nigel E.; Chittka, Lars
2007-06-01
To investigate how bumblebees (Bombus terrestris) learn the complex motor skills involved in pollen foraging, we observed naïve workers foraging on arrays of nectarless poppy flowers (Papaver rhoeas) in a greenhouse. Foraging skills were quantified by measuring the pollen load collected during each foraging bout and relating this to the number of flowers visited and bout duration on two consecutive days. The pollen standing crop (PSC) in each flower decreased drastically from 0530 to 0900 hours. Therefore, we related foraging performance to the changing levels of pollen available (per flower) and found that collection rate increased over the course of four consecutive foraging bouts (comprising between 277 and 354 individual flower visits), suggesting that learning to forage for pollen represents a substantial time investment for individual foragers. The pollen collection rate and size of pollen loads collected at the start of day 2 were markedly lower than at the end of day 1, suggesting that components of pollen foraging behaviour could be subject to imperfect overnight retention. Our results suggest that learning the necessary motor skills to collect pollen effectively from morphologically simple flowers takes three times as many visits as learning how to handle the most morphologically complex flowers to extract nectar, potentially explaining why bees are more specialised in their choice of pollen flowers.
Home Range and Habitat Use of Male Rafinesque's Big-Eared Bats (Corynorhinus rafinesquii)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menzel, M.A.; Menzel, J.M.; Ford, W.M.
We examined home range size and habitat use of four reproductively active male Rafinesque Big-eared bats in the upper Coastal Plain of South Carolina during August and September of 1999. Most foraging activity occurred during the first 4 hours after sunset and the first two hours before sunrise. Mean home range size was 93.1 hectares. Most foraging activity occurred in young pines even though large tracks of bottomland hardwood were available. Only 9% of foraging occurred in bottomland hardwoods.
Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori
2017-08-01
Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.
Adams, Josh; Takekawa, John Y.; Carter, Harry R.
2004-01-01
We radio-marked 99 Cassin's Auklets (Ptychoramphus aleuticus) nesting at two colonies, Prince Island and Scorpion Rock, separated by 90 km in the California Channel Islands to quantify foraging distance, individual home-range area, and colony-based foraging areas during three consecutive breeding seasons. Auklets generally foraged < 30 km from each colony in all years. Core foraging areas (50% fixed kernel) from Prince Island in 1999-2001 were north to northeast of the colony over the insular shelf near the shelfbreak. Core foraging areas from Scorpion Rock in 2000-2001 occurred in two focal areas: the Anacapa Passage, a narrow interisland passage adjacent to the colony, and over the southeastern Santa Barbara Channel. During 2000, intercolony foraging areas overlapped by 10%; however, auklets from each colony used the overlapping area at different times. Equivalent-sample-size resampling indicated Prince Island foraging area (1216 ?? 654 km2) was twice that of Scorpion Rock (598 ?? 204 km2). At Prince Island, mean individual distances, home-range areas, and colony-based activity areas were greater for females than males, especially during 2001. At Prince Island, core foraging areas of females and males, pooled separately, overlapped by 63% in 1999 and 2000, and by 35% in 2001. Postbreeding auklets from both colonies dispersed northward and moved to active upwelling centers off central California, coincident with decreased upwelling and sea-surface warming throughout the Santa Barbara Channel.
Hedd, April; Pollet, Ingrid L.; Mauck, Robert A.; Burke, Chantelle M.; Mallory, Mark L.; McFarlane Tranquilla, Laura A.; Montevecchi, William A.; Robertson, Gregory J.; Ronconi, Robert A.; Shutler, Dave; Wilhelm, Sabina I.; Burgess, Neil M.
2018-01-01
Despite their importance in marine food webs, much has yet to be learned about the spatial ecology of small seabirds. This includes the Leach’s storm-petrel Oceanodroma leucorhoa, a species that is declining throughout its Northwest Atlantic breeding range. In 2013 and 2014, we used global location sensors to track foraging movements of incubating storm-petrels from 7 eastern Canadian breeding colonies. We determined and compared the foraging trip and at-sea habitat characteristics, analysed spatial overlap among colonies, and determined whether colony foraging ranges intersected with offshore oil and gas operations. Individuals tracked during the incubation period made 4.0 ± 1.4 day foraging trips, travelling to highly pelagic waters over and beyond continental slopes which ranged, on average, 400 to 830 km from colonies. Cumulative travel distances ranged from ~900 to 2,100 km among colonies. While colony size did not influence foraging trip characteristics or the size of areas used at sea, foraging distances tended to be shorter for individuals breeding at the southern end of the range. Core areas did not overlap considerably among colonies, and individuals from all sites except Kent Island in the Bay of Fundy foraged over waters with median depths > 1,950 m and average chlorophyll a concentrations ≤ 0.6 mg/m3. Sea surface temperatures within colony core areas varied considerably (11–23°C), coincident with the birds’ use of cold waters of the Labrador Current or warmer waters of the Gulf Stream Current. Offshore oil and gas operations intersected with the foraging ranges of 5 of 7 colonies. Three of these, including Baccalieu Island, Newfoundland, which supports the species’ largest population, have experienced substantial declines in the last few decades. Future work should prioritize modelling efforts to incorporate information on relative predation risk at colonies, spatially explicit risks at-sea on the breeding and wintering grounds, effects of climate and marine ecosystem change, as well as lethal and sub-lethal effects of environmental contaminants, to better understand drivers of Leach’s storm-petrel populations trends in Atlantic Canada. PMID:29742124
Wiley, Anne E.; Ostrom, Peggy H.; Welch, Andreanna J.; Fleischer, Robert C.; Gandhi, Hasand; Southon, John R.; Stafford, Thomas W.; Penniman, Jay F.; Hu, Darcy; Duvall, Fern P.; James, Helen F.
2013-01-01
Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ15N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel. PMID:23671094
Wiley, Anne E; Ostrom, Peggy H; Welch, Andreanna J; Fleischer, Robert C; Gandhi, Hasand; Southon, John R; Stafford, Thomas W; Penniman, Jay F; Hu, Darcy; Duvall, Fern P; James, Helen F
2013-05-28
Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ(15)N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.
NASA Technical Reports Server (NTRS)
Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.
1975-01-01
A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.
Mineral constraints on arctic caribou (Rangifer tarandus): a spatial and phenological perspective
Oster, K. W.; Barboza, P.S.; Gustine, David D.; Joly, Kyle; Shively, R. D.
2018-01-01
Arctic caribou (Rangifer tarandus) have the longest terrestrial migration of any ungulate but little is known about the spatial and seasonal variation of minerals in summer forages and the potential impacts of mineral nutrition on the foraging behavior and nutritional condition of arctic caribou. We investigated the phenology, availability, and mechanistic relationships of calcium, phosphorus, magnesium, sodium, potassium, iron, manganese, copper, and zinc in three species of woody browse, three species of graminoids, and one forb preferred by caribou over two transects bisecting the ranges of the Central Arctic (CAH) and Western Arctic (WAH) caribou herds in Alaska. Transects traversed three ecoregions (Coastal Plain, Arctic Foothills and Brooks Range) along known migration paths in the summer ranges of both herds. Concentrations of mineral in forages were compared to estimated dietary requirements of lactating female caribou. Spatial distribution of the abundance of minerals in caribou forage was associated with interactions of soil pH and mineral content, while temporal variation was related to plant maturity, and thus nitrogen and fiber content of forages. Concentrations of sodium were below caribou requirements in all forage species for most of the summer and adequate only on the Coastal Plain during the second half of summer. Phosphorus declined in plants from emergence to senescence and was below requirements in all forages by mid‐summer, while concentrations of copper declined to marginal concentrations at plant senescence. Interactions of sodium with potassium, calcium with phosphorus, and copper with zinc in forages likely exacerbate the constraints of low concentrations sodium, phosphorus, and copper. Forages on the WAH contained significantly more phosphorus and copper than forages collected on the CAH transect. We suspect that migrations of caribou to the Arctic Coastal Plain may allow parturient females to replenish sodium stores depleted by foraging inland through the long arctic winters, while also extending the availability of adequate phosphorus, if animals are able to selectively track emerging waves of forage.
Evidence for acoustic communication among bottom foraging humpback whales
Parks, Susan E.; Cusano, Dana A.; Stimpert, Alison K.; Weinrich, Mason T.; Friedlaender, Ari S.; Wiley, David N.
2014-01-01
Humpback whales (Megaptera novaeangliae), a mysticete with a cosmopolitan distribution, demonstrate marked behavioural plasticity. Recent studies show evidence of social learning in the transmission of specific population level traits ranging from complex singing to stereotyped prey capturing behaviour. Humpback whales have been observed to employ group foraging techniques, however details on how individuals coordinate behaviour in these groups is challenging to obtain. This study investigates the role of a novel broadband patterned pulsed sound produced by humpback whales engaged in bottom-feeding behaviours, referred to here as a ‘paired burst' sound. Data collected from 56 archival acoustic tag deployments were investigated to determine the functional significance of these signals. Paired burst sound production was associated exclusively with bottom feeding under low-light conditions, predominantly with evidence of associated conspecifics nearby suggesting that the sound likely serves either as a communicative signal to conspecifics, a signal to affect prey behaviour, or possibly both. This study provides additional evidence for individual variation and phenotypic plasticity of foraging behaviours in humpback whales and provides important evidence for the use of acoustic signals among foraging individuals in this species. PMID:25512188
Evidence for acoustic communication among bottom foraging humpback whales.
Parks, Susan E; Cusano, Dana A; Stimpert, Alison K; Weinrich, Mason T; Friedlaender, Ari S; Wiley, David N
2014-12-16
Humpback whales (Megaptera novaeangliae), a mysticete with a cosmopolitan distribution, demonstrate marked behavioural plasticity. Recent studies show evidence of social learning in the transmission of specific population level traits ranging from complex singing to stereotyped prey capturing behaviour. Humpback whales have been observed to employ group foraging techniques, however details on how individuals coordinate behaviour in these groups is challenging to obtain. This study investigates the role of a novel broadband patterned pulsed sound produced by humpback whales engaged in bottom-feeding behaviours, referred to here as a 'paired burst' sound. Data collected from 56 archival acoustic tag deployments were investigated to determine the functional significance of these signals. Paired burst sound production was associated exclusively with bottom feeding under low-light conditions, predominantly with evidence of associated conspecifics nearby suggesting that the sound likely serves either as a communicative signal to conspecifics, a signal to affect prey behaviour, or possibly both. This study provides additional evidence for individual variation and phenotypic plasticity of foraging behaviours in humpback whales and provides important evidence for the use of acoustic signals among foraging individuals in this species.
Peery, M.Z.; Newman, S.H.; Storlazzi, C.D.; Beissinger, S.R.
2009-01-01
Seabirds maintain plasticity in their foraging behavior to cope with energy demands and foraging constraints that vary over the reproductive cycle, but behavioral studies comparing breeding and nonbreeding individuals are rare. Here we characterize how Marbled Murrelets (Brachyramphus marmoratus) adjust their foraging effort in response to changes in reproductive demands in an upwelling system in central California. We radio-marked 32 murrelets of known reproductive status (9 breeders, 12 potential breeders, and 11 nonbreeders) and estimated both foraging ranges and diving rates during the breeding season. Murrelets spent more time diving during upwelling than oceanographic relaxation, increased their foraging ranges as the duration of relaxation grew longer, and reduced their foraging ranges after transitions to upwelling. When not incubating, murrelets moved in a circadian pattern, spending nighttime hours resting near flyways used to reach nesting habitat and foraging during the daytime an average of 5.7 km (SD 6.7 km) from nighttime locations. Breeders foraged close to nesting habitat once they initiated nesting and nest attendance was at a maximum, and then resumed traveling longer distances following the completion of nesting. Nonbreeders had similar nighttime and daytime distributions and tended to be located farther from inland flyways. Breeders increased the amount of time they spent diving by 71-73% when they had an active nest by increasing the number of dives rather than by increasing the frequency of anaerobiosis. Thus, to meet reproductive demands during nesting, murrelets adopted a combined strategy of reducing energy expended commuting to foraging sites and increasing aerobic dive rates. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Tinker, M. Tim; Estes, James A.; Staedler, Michelle; Bodkin, James L.; Tinker, M. Tim; Estes, James A.; Ralls, Katherine; Williams, Terrie M.; Jessup, David A.; Costa, Daniel P.
2006-01-01
Longitudinal foraging data collected from 60 sea otters implanted with VHF radio transmitters at two study sites in Central California over a three-year period demonstrated even greater individual dietary specialization than in previous studies, with only 54% dietary overlap between individuals and the population.Multivariate statistical analyses indicated that individual diets could be grouped into three general "diet types" representing distinct foraging specializations. Type 1 specialists consumed large size prey but had low dive efficiency, Type 2 specialists consumed small to medium size prey with high dive efficiency, and Type 3 specialists consumed very small prey (mainly snails) with very high dive efficiency.The mean rate of energy gain for the population as a whole was low when compared to other sea otter populations in Alaska but showed a high degree of within- and betweenindividual variation, much of which was accounted for by the three foraging strategies. Type 1 specialists had the highest mean energy gain but also the highest withinindividual variance in energy gain. Type 2 specialists had the lowest mean energy gain but also the lowest variance. Type 3 specialists had an intermediate mean and variance. All three strategies resulted in very similar probabilities of exceeding a critical rate of energy gain on any given day.Correlational selection may help maintain multiple foraging strategies in the population: a fitness surface (using mean rate of energy gain as a proxy for fitness) fit to the first two principal components of foraging behavior suggested that the three foraging strategies occupy separate fitness peaks.Food limitation is likely an important ultimate factor restricting population growth in the center of the population’s range in California, although the existence of alternative foraging strategies results in different impacts of food limitation on individuals and thus may obscure expected patterns of density dependence.
Effects of Fat and Protein Levels on Foraging Preferences of Tannin in Scatter-Hoarding Rodents
Wang, Bo; Chen, Jin
2012-01-01
Both as consumers and dispersers of seeds, scatter-hoarding rodents often play an important role in the reproductive ecology of many plant species. However, the seeds of many plant species contain tannins, which are a diverse group of water-soluble phenolic compounds that have a high affinity for proteins. The amount of tannins in seeds is expected to affect rodent foraging preferences because of their major impact on rodent physiology and survival. However, variable results have been obtained in studies that evaluated the effects of tannin on rodent foraging behavior. Hence, in this study, we aimed to explain these inconsistent results and proposed that a combination of seed traits might be important in rodent foraging behavior, because it is difficult to distinguish between the effects of individual traits on rodent foraging behavior and the interactions among them. By using a novel artificial seed system, we manipulated seed tannin and fat/protein levels to examine directly the univariate effects of each component on the seed preferences of free-ranging forest rats (Apodemus latronum and Apodemus chevrieri) during the behavioral process of scatter hoarding. Our results showed that both tannin and fat/protein had significant effects on rodent foraging behavior. Although only a few interactive effects of tannin and fat/protein were recorded, higher concentrations of both fat and protein could attenuate the exclusion of seeds with higher tannin concentrations by rodents, thus influencing seed fate. Furthermore, aside from the concentrations of tannin, fat, and protein, numerous other traits of plant seeds may also influence rodent foraging behavior. We suggest that by clarifying rodent foraging preferences, a better understanding of the evolution of plant seed traits may be obtained because of their strong potential for selective pressure. PMID:22808217
Ecological and biomechanical insights into the evolution of gliding in mammals.
Byrnes, Greg; Spence, Andrew J
2011-12-01
Gliding has evolved independently at least six times in mammals. Multiple hypotheses have been proposed to explain the evolution of gliding. These include the evasion of predators, economical locomotion or foraging, control of landing forces, and habitat structure. Here we use a combination of comparative methods and ecological and biomechanical data collected from free-ranging animals to evaluate these hypotheses. Our comparative data suggest that the origins of gliding are often associated with shifts to low-quality diets including leaves and plant exudates. Further, data from free-ranging colugos suggest that although gliding is not more energetically economical than moving through the canopy, it is much faster, allowing shorter times of transit between foraging patches and therefore more time available to forage in a given patch. In addition to moving quickly, gliding mammals spend only a small fraction of their overall time engaged in locomotion, likely offsetting its high cost. Kinetic data for both take-off and landing suggest that selection on these behaviors could also have shaped the evolution of gliding. Glides are initiated by high-velocity leaps that are potentially effective in evading arboreal predators. Further, upon landing, the ability to control aerodynamic forces and reduce velocity prior to impact is likely key to extending distances of leaps or glides while reducing the likelihood of injury. It is unlikely that any one of these hypotheses exclusively explains the evolution of gliding, but by examining gliding in multiple groups of extant animals in ecological and biomechanical contexts, new insights into the evolution of gliding can be gained.
Blue Oak Canopy Effect on Seasonal Forage Production and Quality
William E. Frost; Neil K. McDougald; Montague W. Demment
1991-01-01
Forage production and forage quality were measured seasonally beneath the canopy of blue oak (Quercus douglasii) and in open grassland at the San Joaquin Experimental Range. At the March and peak standing crop sampling dates forage production was significantly greater (p=.05) beneath blue oak compared to open grassland. At most sampling dates, the...
NASA Astrophysics Data System (ADS)
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Harano, Ken-ichi; Mitsuhata-Asai, Akiko; Sasaki, Masami
2014-07-01
Before foraging honeybees leave the hive, each bee loads its crop with some amount of honey "fuel" depending on the distance to the food source and foraging experience. For pollen collection, there is evidence that foragers carry additional honey as "glue" to build pollen loads. This study examines whether pollen foragers of the European honeybee Apis mellifera regulate the size of the crop load according to food-source distances upon leaving the hive and how foraging experience affects load regulation. The crop contents of bees foraging on crape myrtle Lagerstroemia indica, which has no nectary, were larger than those foraging on nectar from other sources, confirming a previous finding that pollen foragers carry glue in addition to fuel honey from the hive. Crop contents of both waggle dancers and dance followers showed a significant positive correlation with waggle-run durations. These results suggest that bees carry a distance-dependent amount of fuel honey in addition to a fixed amount of glue honey. Crop contents on leaving the hive were statistically larger in dancers than followers. Based on these results, we suggest that pollen foragers use information obtained through foraging experience to adjust crop contents on leaving the hive.
Kant, Rashmi; Minor, Maria A
2017-06-01
Parasitoid fitness depends on its ability to manipulate reproductive strategies when in competition. This study investigated the parasitism and sex allocation strategies of the parasitic wasp Diaeretiella rapae McIntosh at a range of host (Brevicoryne brassicae L.) and conspecific densities. The results suggest that D. rapae females adjust their progeny production and progeny sex ratio with changing competition. When foraging alone, female D. rapae parasitize larger number of B. brassicae nymphs when the number of available hosts is increased, but the overall proportion of parasitized hosts decreases with increase in host density. The proportion of female offspring also decreases with elevated host density. Increase in the number of female D. rapae foraging together increased total parasitism, but reduced relative contribution of each individual female. The number of female progeny decreased when multiple females competed for the same host. However, foraging experience in the presence of one or more conspecifics increased the parasitism rate and proportion of female progeny. Competing females were more active during oviposition and had shorter lives. The study suggests that both host and foundress (female parasitoid) densities have significant effect on progeny production, sex allocation, and longevity of foraging females. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lowther, Andrew D.; Harcourt, Robert G.; Page, Bradley; Goldsworthy, Simon D.
2013-01-01
The southern coastline of Australia forms part of the worlds' only northern boundary current system. The Bonney Upwelling occurs every austral summer along the south-eastern South Australian coastline, a region that hosts over 80% of the worlds population of an endangered endemic otariid, the Australian sea lion. We present the first data on the movement characteristics and foraging behaviour of adult male Australian sea lions across their South Australian range. Synthesizing telemetric, oceanographic and isotopic datasets collected from seven individuals enabled us to characterise individual foraging behaviour over an approximate two year time period. Data suggested seasonal variability in stable carbon and nitrogen isotopes that could not be otherwise explained by changes in animal movement patterns. Similarly, animals did not change their foraging patterns despite fine-scale spatial and temporal variability of the upwelling event. Individual males tended to return to the same colony at which they were tagged and utilized the same at-sea regions for foraging irrespective of oceanographic conditions or time of year. Our study contrasts current general assumptions that male otariid life history strategies should result in greater dispersal, with adult male Australian sea lions displaying central place foraging behaviour similar to males of other otariid species in the region. PMID:24086338
Brunstrom, Jeffrey M; Cheon, Bobby K
2018-02-19
Many people struggle to control their food intake and bodyweight. This is often interpreted as evidence that humans are generally predisposed to consume food when it is available, because adiposity offered insurance against the threat of starvation in our ancestral environment. In this paper we suggest that modern humans have actually inherited a far broader range of foraging skills that continue to influence our dietary behaviour. To evaluate this idea, we identify three challenges that would need to be addressed to achieve efficient foraging; (1) monitoring the 'procurement cost' of foods, (2) determining the energy content of foods, and (3) proactively adapting to perceived food insecurity. In each case, we review evidence drawn from controlled and observational studies of contemporary humans and conclude that psychological mechanisms that address these challenges are conserved. For contemporary humans who live in fast-paced obesogenic environments, this foraging 'toolkit' no longer serves the same function to which it was adapted, and in many cases, this leads to an increase in food intake. Understanding these forms of 'evolutionary mismatch' is important because it can provide a stronger theoretical basis for informed dietary interventions that leverage fundamental foraging goals rather than work against them. Copyright © 2018. Published by Elsevier Inc.
Vacquié-Garcia, Jade; Royer, François; Dragon, Anne-Cécile; Viviant, Morgane; Bailleul, Frédéric; Guinet, Christophe
2012-01-01
How non-echolocating deep diving marine predators locate their prey while foraging remains mostly unknown. Female southern elephant seals (SES) (Mirounga leonina) have vision adapted to low intensity light with a peak sensitivity at 485 nm. This matches the wavelength of bioluminescence produced by a large range of marine organisms including myctophid fish, SES’s main prey. In this study, we investigated whether bioluminescence provides an accurate estimate of prey occurrence for SES. To do so, four SES were satellite-tracked during their post-breeding foraging trip and were equipped with Time-Depth-Recorders that also recorded light levels every two seconds. A total of 3386 dives were processed through a light-treatment model that detected light events higher than ambient level, i.e. bioluminescence events. The number of bioluminescence events was related to an index of foraging intensity for SES dives deep enough to avoid the influence of natural ambient light. The occurrence of bioluminescence was found to be negatively related to depth both at night and day. Foraging intensity was also positively related to bioluminescence both during day and night. This result suggests that bioluminescence likely provides SES with valuable indications of prey occurrence and might be a key element in predator-prey interactions in deep-dark marine environments. PMID:22952706
Kirsch, E.M.; Ickes, B.; Olsen, D.A.
2008-01-01
Approximately 7,610 to 3,175 pairs of Great Blue Herons (Ardea herodias) nested along 420 river km of the Uppert Mississippi River (UMR) from 1993 to 2003. Numbers declined precipitously in the mid-1990s stabilizing somewhat in the early 2000s. The average number of nests in colonies was 349 (SD = 283). Annual colony turn over rate for the eleven year period was 0.15 and ranged from 0.06 to 0.29 each year. The number of years that a colony was active was positively correlated with the average number of nests present while the colony was active. Of the eight colonies active in 1993 that averaged more than 349 nests, four were abandoned by 2003. Only one colony grew to greater than 349 nests during the study period. Custer et al. (2004) suggested that herons on the UMR may be limited by forage resources or foraging habitat and social factors, as evidenced by the even spacing of colonies that reflects the maximum feeding range of herons on the river. To rule out nesting and foraging habitat limitation, landscape habitat features of terrestrial and aquatic areas were examined for colony areas and areas without colonies. Available fish monitoring data were used to examine potential interactions between herons and forage resources. Colony areas did not differ from areas without colonies in any habitat feature. Indices of potential heron forage fish increased from 1993 to 2002, although low indices of fish abundance in 1993 were likely influenced by flood conditions that year. Although fish availability to herons is related to flows and water levels, available data suggested that herons did not negatively impact their potential forage base. Numbers of herons were not correlated with indices of fish abundance from the preceding year on a pool-wide scale. Indices of fish abundance were higher within 5 km of colonies than farther than 5 km from colonies, and indices of fish abundance increased from June through August both near and far from colonies. Numbers of herons and locations and sizes of colonies varied annually, whereas landscape features typically vary little if at all from year to year. Indices of fish abundance also varied greatly by sample location and year. Disturbance, particularly by humans in this highly used river, should be examined in relation to limiting foraging opportunities and influencing behavior (colony and individual) and productivity in colonies.
Subalpine bumble bee foraging distances and densities in relation to flower availability.
Elliott, Susan E
2009-06-01
Bees feed almost exclusively on nectar and pollen from flowers. However, little is known about how food availability limits bee populations, especially in high elevation areas. Foraging distances and relationships between forager densities and resource availability can provide insights into the potential for food limitation in mobile consumer populations. For example, if floral resources are limited, bee consumers should fly farther to forage, and they should be more abundant in areas with more flowers. I estimated subalpine bumble bee foraging distances by calculating forager recapture probabilities at increasing distances from eight marking locations. I measured forager and flower densities over the flowering season in six half-hectare plots. Because subalpine bumble bees have little time to build their colonies, they may forage over short distances and forager density may not be constrained by flower density. However, late in the season, when floral resources dwindle, foraging distances may increase, and there may be stronger relationships between forager and flower densities. Throughout the flowering season, marked bees were primarily found within 100 m (and never >1,000 m) from their original marking location, suggesting that they typically did not fly far to forage. Although the density of early season foraging queens increased with early-season flower density, the density of mid- and late-season workers and males did not vary with flower density. Short foraging distances and no relationships between mid- and late-season forager and flower densities suggest that high elevation bumble bees may have ample floral resources for colony growth reproduction.
NASA Astrophysics Data System (ADS)
Tagmann-Ioset, Aline; Schaub, Michael; Reichlin, Thomas S.; Weisshaupt, Nadja; Arlettaz, Raphaël
2012-02-01
Most farmland birds have declined significantly throughout the world due to agricultural intensification. Agri-environmental policies could not halt the decline of ground-foraging insectivorous farmland birds in Europe, indicating a gap in knowledge of species' ecological requirements. This represents a major impediment to the development of efficient, evidence-based agri-environmental measures. Using radio-tracking we studied habitat selection by farmland Hoopoes, a rare terrestrially foraging bird in Central Europe, and assessed habitat preferences of their main prey (Molecrickets), with the aim to identify optimal foraging habitat profiles in order to guide farmland management. Hierarchical logistic regression modelling of habitat descriptors at actual foraging locations vs. random locations within the home ranges of 13 males showed that the availability of bare ground was the principal determinant of foraging activity, with an optimum of 60-70% bare ground at patch scale. This ideal habitat configuration, which facilitates birds' terrestrial hunting, was found primarily in intensively farmed fruit tree plantations which dominated the landscape matrix: this habitat offers extensive strips of bare ground due to systematic removal of ground vegetation along tree rows. In contrast, dense grassland and cropland were avoided. Another important habitat feature was the availability of nongravelly soil, which enabled Hoopoes to probe the earth with their long, curved bill in search of underground invertebrates. The role of Molecrickets, however, appeared secondary to foraging patch selection, suggesting that prey accessibility was per se more important than prey abundance. Creating patches of bare ground within modern farmland where sufficient supplies of suitable invertebrate prey exist will support Hoopoe populations.
USDA-ARS?s Scientific Manuscript database
Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...
Giorli, Giacomo; Neuheimer, Anna; Copeland, Adrienne; Au, Whitlow W L
2016-10-01
Beaked and sperm whales are top predators living in the waters off the Kona coast of Hawai'i. Temporal and spatial analyses of the foraging activity of these two species were studied with passive acoustics techniques. Three passive acoustics recorders moored to the ocean floor were used to monitor the foraging activity of these whales in three locations along the Kona coast of the island of Hawaii. Data were analyzed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), and custom-designed Matlab programs. The temporal variation in foraging activity was species-specific: beaked whales foraged more at night in the north, and more during the day-time off Kailua-Kona. No day-time/night-time preference was found in the southern end of the sampling range. Sperm whales foraged mainly at night in the north, but no day-time/night-time preference was observed off Kailua-Kona and in the south. A Generalized Linear Model was then applied to assess whether location and chlorophyll concentration affected the foraging activity of each species. Chlorophyll concentration and location influenced the foraging activity of both these species of deep-diving odontocetes.
Fractal analysis of behaviour in a wild primate: behavioural complexity in health and disease
MacIntosh, Andrew J. J.; Alados, Concepción L.; Huffman, Michael A.
2011-01-01
Parasitism and other stressors are ubiquitous in nature but their effects on animal behaviour can be difficult to identify. We investigated the effects of nematode parasitism and other indicators of physiological impairment on the sequential complexity of foraging and locomotion behaviour among wild Japanese macaques (Macaca fuscata yakui). We observed all sexually mature individuals (n = 28) in one macaque study group between October 2007 and August 2008, and collected two faecal samples/month/individual (n = 362) for parasitological examination. We used detrended fluctuation analysis (DFA) to investigate long-range autocorrelation in separate, binary sequences of foraging (n = 459) and locomotion (n = 446) behaviour collected via focal sampling. All behavioural sequences exhibited long-range autocorrelation, and linear mixed-effects models suggest that increasing infection with the nodular worm Oesophagostomum aculeatum, clinically impaired health, reproductive activity, ageing and low dominance status were associated with reductions in the complexity of locomotion, and to a lesser extent foraging, behaviour. Furthermore, the sequential complexity of behaviour increased with environmental complexity. We argue that a reduction in complexity in animal behaviour characterizes individuals in impaired or ‘stressed’ states, and may have consequences if animals cannot cope with heterogeneity in their natural habitats. PMID:21429908
Increasing evidence that bats actively forage at wind turbines
Foo, Cecily F.; Bennett, Victoria J.; Korstian, Jennifer M.; Schildt, Alison J.; Williams, Dean A.
2017-01-01
Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011–2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat (Lasiurus borealis) and 24 hoary bat (Lasiurus cinereus) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities. PMID:29114441
Increasing evidence that bats actively forage at wind turbines.
Foo, Cecily F; Bennett, Victoria J; Hale, Amanda M; Korstian, Jennifer M; Schildt, Alison J; Williams, Dean A
2017-01-01
Although the ultimate causes of high bat fatalities at wind farms are not well understood, several lines of evidence suggest that bats are attracted to wind turbines. One hypothesis is that bats would be attracted to turbines as a foraging resource if the insects that bats prey upon are commonly present on and around the turbine towers. To investigate the role that foraging activity may play in bat fatalities, we conducted a series of surveys at a wind farm in the southern Great Plains of the US from 2011-2016. From acoustic monitoring we recorded foraging activity, including feeding buzzes indicative of prey capture, in the immediate vicinity of turbine towers from all six bat species known to be present at this site. From insect surveys we found Lepidoptera, Coleoptera, and Orthoptera in consistently high proportions over several years suggesting that food resources for bats were consistently available at wind turbines. We used DNA barcoding techniques to assess bat diet composition of (1) stomach contents from 47 eastern red bat ( Lasiurus borealis ) and 24 hoary bat ( Lasiurus cinereus ) carcasses collected in fatality searches, and (2) fecal pellets from 23 eastern red bats that were found on turbine towers, transformers, and tower doors. We found that the majority of the eastern red bat and hoary bat stomachs, the two bat species most commonly found in fatality searches at this site, were full or partially full, indicating that the bats were likely killed while foraging. Although Lepidoptera and Orthoptera dominated the diets of these two bat species, both consumed a range of prey items with individual bats having from one to six insect species in their stomachs at the time of death. The prey items identified from eastern red bat fecal pellets showed similar results. A comparison of the turbine insect community to the diet analysis results revealed that the most abundant insects at wind turbines, including terrestrial insects such as crickets and several important crop pests, were also commonly eaten by eastern red and hoary bats. Collectively, these findings suggest that bats are actively foraging around wind turbines and that measures to minimize bat fatalities should be broadly implemented at wind facilities.
Boa constrictor (Boa constrictor): foraging behavior
Sorrell, G.G.; Boback, M.S.; Reed, R.N.; Green, S.; Montgomery, Chad E.; DeSouza, L.S.; Chiaraviglio, M.
2011-01-01
Boa constrictor is often referred to as a sit-and-wait or ambush forager that chooses locations to maximize the likelihood of prey encounters (Greene 1983. In Janzen [ed.], Costa Rica Natural History, pp. 380-382. Univ. Chicago Press, Illinois). However, as more is learned about the natural history of snakes in general, the dichotomy between active versus ambush foraging is becoming blurred. Herein, we describe an instance of diurnal active foraging by a B. constrictor, illustrating that this species exhibits a range of foraging behaviors.
NASA Technical Reports Server (NTRS)
Drew, J. V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. There appears to be a direct relationship between densitometry values obtained with MSS band 5 imagery and forage density for those range sites measured on the imagery, provided site category identification is indicated by other forms of imagery or ground truth. Overlap of density values for different site categories with differing forage condition classes does not allow assigning a given forage density value for a given densitometer value unless the range site category is known.
Kotzerka, J.; Hatch, Shyla A.; Garthe, S.
2011-01-01
The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.
Optimal Foraging in Semantic Memory
ERIC Educational Resources Information Center
Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.
2012-01-01
Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…
Casey, James P; James, Michael C; Williard, Amanda S
2014-07-01
Leatherback turtles in the Northwest Atlantic Ocean have a broad geographic range that extends from nesting beaches near the equator to seasonal foraging grounds as far north as Canada. The ability of leatherbacks to maintain core body temperature (Tb) higher than that of the surrounding water is thought to be a key element of their biology that permits them to exploit productive waters at high latitudes. We provide the first recordings of Tb from freely swimming leatherbacks at a northern foraging ground, and use these data to assess the importance of behavioral adjustments and metabolic sources of heat for maintenance of the thermal gradient (Tg). The mean Tb for individual leatherbacks ranged from 25.4 ± 1.7 to 27.3 ± 0.3 °C, and Tg ranged from 10.7 ± 2.4 to 12.1 ± 1.7 °C. Variation in mean Tb was best explained by the amount of time that turtles spent in the relatively warm surface waters. A diel trend in Tb was apparent, with daytime cooling suggestive of prey ingestion and night-time warming attributable to endogenous heat production. We estimate that metabolic rates necessary to support the observed Tg are ~3 times higher than resting metabolic rate, and that specific dynamic action is an important source of heat for foraging leatherbacks. © 2014. Published by The Company of Biologists Ltd.
Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry
Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard; Moskowitz, David; Roubik, David W.; Kays, Roland
2010-01-01
Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813
Individual Foraging Strategies Reveal Niche Overlap between Endangered Galapagos Pinnipeds
Villegas-Amtmann, Stella; Jeglinski, Jana W. E.; Costa, Daniel P.; Robinson, Patrick W.; Trillmich, Fritz
2013-01-01
Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0–80 m depth and mostly at 19–22 h. Most sea lion dives also occurred at night (63%), between 0–40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19–22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0–30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21–24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging “hot spot” for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods when prey availability is reduced. PMID:23967096
Fahr, Jakob; Abedi-Lartey, Michael; Esch, Thomas; Machwitz, Miriam; Suu-Ire, Richard; Wikelski, Martin; Dechmann, Dina K. N.
2015-01-01
Background Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats’ impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. Principal Findings During the wet season population low (~ 4000 individuals), bats foraged locally (3.5–36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1–87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. Conclusions and Significance Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation. PMID:26465139
Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis)
Silvis, Alexander; Kniowski, Andrew B.; Gehrt, Stanley D.; Ford, W. Mark
2014-01-01
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.
Fahr, Jakob; Abedi-Lartey, Michael; Esch, Thomas; Machwitz, Miriam; Suu-Ire, Richard; Wikelski, Martin; Dechmann, Dina K N
2015-01-01
Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats' impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas. During the wet season population low (~ 4000 individuals), bats foraged locally (3.5-36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1-87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees. Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.
Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis).
Silvis, Alexander; Kniowski, Andrew B; Gehrt, Stanley D; Ford, W Mark
2014-01-01
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.
Bartoń, Kamil A.; Scott, Beth E.; Travis, Justin M.J.
2014-01-01
Foraging in the marine environment presents particular challenges for air-breathing predators. Information about prey capture rates, the strategies that diving predators use to maximise prey encounter rates and foraging success are still largely unknown and difficult to observe. As well, with the growing awareness of potential climate change impacts and the increasing interest in the development of renewable sources it is unknown how the foraging activity of diving predators such as seabirds will respond to both the presence of underwater structures and the potential corresponding changes in prey distributions. Motivated by this issue we developed a theoretical model to gain general understanding of how the foraging efficiency of diving predators may vary according to landscape structure and foraging strategy. Our theoretical model highlights that animal movements, intervals between prey capture and foraging efficiency are likely to critically depend on the distribution of the prey resource and the size and distribution of introduced underwater structures. For multiple prey loaders, changes in prey distribution affected the searching time necessary to catch a set amount of prey which in turn affected the foraging efficiency. The spatial aggregation of prey around small devices (∼ 9 × 9 m) created a valuable habitat for a successful foraging activity resulting in shorter intervals between prey captures and higher foraging efficiency. The presence of large devices (∼ 24 × 24 m) however represented an obstacle for predator movement, thus increasing the intervals between prey captures. In contrast, for single prey loaders the introduction of spatial aggregation of the resources did not represent an advantage suggesting that their foraging efficiency is more strongly affected by other factors such as the timing to find the first prey item which was found to occur faster in the presence of large devices. The development of this theoretical model represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment. PMID:25250211
NASA Astrophysics Data System (ADS)
Fijn, R. C.; de Jong, J.; Courtens, W.; Verstraete, H.; Stienen, E. W. M.; Poot, M. J. M.
2017-09-01
Breeding success of seabirds critically depends on their foraging success offshore. However, studies combining at-sea tracking and visual provisioning observations are scarce, especially for smaller species of seabirds. This study is the first in which breeding Sandwich Terns were tracked with GPS-loggers to collect detailed data on foraging habitat use in four breeding seasons. The maximum home range of individual Sandwich Terns comprised approximately 1900 km2 and the average foraging range was 27 km. Trip durations were on average 135 min with average trip lengths of 67 km. Actual foraging behaviour comprised 35% of the time budget of a foraging trip. Substantial year-to-year variation was found in habitat use and trip variables, yet with the exception of 2012, home range size remained similar between years. Food availability, chick age and environmental conditions are proposed as the main driving factors between inter- and intra-annual variations in trip variables. Our multi-method approach also provided geo-referenced information on prey presence and we conclude that future combining of colony observations and GPS-loggers deployments can potentially provide a near complete insight into the feeding ecology of breeding Sandwich Terns, including the behaviour of birds at sea.
Harel, Roi; Spiegel, Orr; Getz, Wayne M; Nathan, Ran
2017-04-12
Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We tested several key prerequisites of the ICH in a social obligate scavenger, the Eurasian griffon vulture ( Gyps fulvus ), by tracking movements and behaviour of sympatric individuals over extended periods and across relatively large spatial scales, thereby precluding alternative explanations such as local enhancement. In agreement with the ICH, we found that 'informed' individuals returning to previously visited carcasses were followed by 'uninformed' vultures that consequently got access to these resources. When a dyad (two individuals that depart from the same roost within 2 min of each other) included an informed individual, they spent a higher proportion of the flight time close to each other at a shorter distance between them than otherwise. Although all individuals occasionally profited from following others, they differed in their tendencies to be informed or uninformed. This study provides evidence for 'following behaviour' in natural conditions and demonstrates differential roles and information states among foragers within a population. Moreover, demonstrating the possible reliance of vultures on following behaviour emphasizes that individuals in declining populations may suffer from reduced foraging efficiency. © 2017 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byers, David A.; Henrikson, L. Suzann; Breslawski, Ryan P.
Previous archaeological research in southern Idaho has suggested that climate change over the past 8000 years was not dramatic enough to alter long-term subsistence practices in the region. However, recent isotopic analyses of bison remains from cold storage caves on the Snake River Plain contest this hypothesis. Our results, when examined against an archaeoclimate model, suggest that cold storage episodes coincided with drier, warmer phases that likely reduced forage and water, and thus limited the availability of bison on the open steppe. Within this context we build a risk model to illustrate how environment might have motivated cold storage behaviors.more » Caching bison in cold lava tubes would have mitigated both intra-annual and inter-annual food shortages under these conditions. This analysis also suggests that skeletal fat, more than meat, may have influenced the selection, transport and storage of bison carcass parts. We deciphered when and how cold storage caves which was used to provide a more comprehensive understanding of foraging behaviors in a broad range of hunting-gathering economies.« less
Reseeding tarweed-infested ranges.
E.W. Stevenson
1950-01-01
Cluster tarweed(Madia glomerata) infests many livestock ranges in eastern Oregon, using soil moisture and nutrients that should be producing plants more valuable as forage and more effective in stabilizing watersheds. No completely satisfactory method of eliminating this obnoxious plant and replacing it, with forage has yet been found. Recent...
Demma, D.J.; Mech, L.D.
2009-01-01
We tested whether Wolf (Canis lupus) visits to individual female White-tailed Deer (Odocoileus virginianus) summer ranges during 2003 and 2004 in northeastern Minnesota were in accord with optimal-foraging theory. Using GPS collars with 10- to 30-minute location attempts on four Wolves and five female deer, plus eleven VHF-collared female deer in the Wolves' territory, provided new insights into the frequency of Wolf visits to summer ranges of female deer. Wolves made a mean 0.055 visits/day to summer ranges of deer three years and older, significantly more than their 0.032 mean visits/day to ranges of two-year-old deer, which generally produce fewer fawns, and most Wolf visits to ranges of older deer were much longer than those to ranges of younger deer. Because fawns comprise the major part of the Wolf's summer diet, this Wolf behavior accords with optimal-foraging theory.
Feeding behaviour of free-ranging walruses with notes on apparent dextrality of flipper use
Levermann, Nette; Galatius, Anders; Ehlme, Göran; Rysgaard, Søren; Born, Erik W
2003-01-01
Background Direct observations of underwater behaviour of free-living marine mammals are rare. This is particularly true for large and potentially dangerous species such as the walrus (Odobenus rosmarus). Walruses are highly specialised predators on benthic invertebrates – especially bivalves. The unique feeding niche of walruses has led to speculations as to their underwater foraging behaviour. Based on observations of walruses in captivity and signs of predation left on the sea floor by free-living walruses, various types of feeding behaviour have been suggested in the literature. In this study, however, the underwater feeding behaviour of wild adult male Atlantic walruses (O. r. rosmarus) is documented for the first time in their natural habitat by scuba-divers. The video recordings indicated a predisposition for use of the right front flipper during feeding. This tendency towards dextrality was explored further by examining a museum collection of extremities of walrus skeletons. Results During July and August 2001, twelve video-recordings of foraging adult male walruses were made in Young Sound (74°18 N; 20°15 V), Northeast Greenland. The recordings did not allow for differentiation among animals, however based on notes by the photographer at least five different individuals were involved. The walruses showed four different foraging behaviours; removing sediment by beating the right flipper, removing sediment by beating the left flipper, removing sediment by use of a water-jet from the mouth and rooting through sediment with the muzzle. There was a significant preference for using right flipper over left flipper during foraging. Measurements of the dimensions of forelimbs from 23 walrus skeletons revealed that the length of the right scapula, humerus, and ulna was significantly greater than that of the left, supporting our field observations of walruses showing a tendency of dextrality in flipper use. Conclusion We suggest that the four feeding behaviours observed are typical of walruses in general, although walruses in other parts of their range may have evolved other types of feeding behaviour. While based on small sample sizes both the underwater observations and skeletal measurements suggest lateralized limb use, which is the first time this has been reported in a pinniped. PMID:14572316
Dannemann, Teodoro; Boyer, Denis; Miramontes, Octavio
2018-04-10
Multiple-scale mobility is ubiquitous in nature and has become instrumental for understanding and modeling animal foraging behavior. However, the impact of individual movements on the long-term stability of populations remains largely unexplored. We analyze deterministic and stochastic Lotka-Volterra systems, where mobile predators consume scarce resources (prey) confined in patches. In fragile systems (that is, those unfavorable to species coexistence), the predator species has a maximized abundance and is resilient to degraded prey conditions when individual mobility is multiple scaled. Within the Lévy flight model, highly superdiffusive foragers rarely encounter prey patches and go extinct, whereas normally diffusing foragers tend to proliferate within patches, causing extinctions by overexploitation. Lévy flights of intermediate index allow a sustainable balance between patch exploitation and regeneration over wide ranges of demographic rates. Our analytical and simulated results can explain field observations and suggest that scale-free random movements are an important mechanism by which entire populations adapt to scarcity in fragmented ecosystems.
Shepherd, S; Lima, M A P; Oliveira, E E; Sharkh, S M; Jackson, C W; Newland, P L
2018-05-21
Extremely low frequency electromagnetic field (ELF EMF) pollution from overhead powerlines is known to cause biological effects across many phyla, but these effects are poorly understood. Honey bees are important pollinators across the globe and due to their foraging flights are exposed to relatively high levels of ELF EMF in proximity to powerlines. Here we ask how acute exposure to 50 Hz ELF EMFs at levels ranging from 20-100 µT, found at ground level below powerline conductors, to 1000-7000 µT, found within 1 m of the conductors, affects honey bee olfactory learning, flight, foraging activity and feeding. ELF EMF exposure was found to reduce learning, alter flight dynamics, reduce the success of foraging flights towards food sources, and feeding. The results suggest that 50 Hz ELF EMFs emitted from powerlines may represent a prominent environmental stressor for honey bees, with the potential to impact on their cognitive and motor abilities, which could in turn reduce their ability to pollinate crops.
Crowther, Liam P; Hein, Pierre-Louis; Bourke, Andrew F G
2014-01-01
Bumblebees (Bombus species) are major pollinators of commercial crops and wildflowers but factors affecting their abundance, including causes of recent population declines, remain unclear. Investigating the ecology of species with expanding ranges provides a potentially powerful means of elucidating these factors. Such species may also bring novel pollination services to their new ranges. We therefore investigated landscape-scale habitat use and foraging preferences of the Tree Bumblebee, B. hypnorum, a recent natural colonist that has rapidly expanded its range in the UK over the past decade. Counts of B. hypnorum and six other Bombus species were made in March-June 2012 within a mixed landscape in south-eastern Norfolk, UK. The extent of different landscape elements around each transect was quantified at three scales (250 m, 500 m and 1500 m). We then identified the landscape elements that best predicted the density of B. hypnorum and other Bombus species. At the best fitting scale (250 m), B. hypnorum density was significantly positively associated with extent of both urban and woodland cover and significantly negatively associated with extent of oilseed rape cover. This combination of landscape predictors was unique to B. hypnorum. Urban and woodland cover were associated with B. hypnorum density at three and two, respectively, of the three scales studied. Relative to other Bombus species, B. hypnorum exhibited a significantly higher foraging preference for two flowering trees, Crataegus monogyna and Prunus spinosa, and significantly lower preferences for Brassica napus, Glechoma hederacea and Lamium album. Our study provides novel, quantitative support for an association of B. hypnorum with urban and woodland landscape elements. Range expansion in B. hypnorum appears to depend, on exploitation of widespread habitats underutilised by native Bombus species, suggesting B. hypnorum will readily co-exist with these species. These findings suggest that management could target bumblebee species with distinctive habitat requirements to help maintain pollination services.
California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape
Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.
2017-01-01
Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.
Jennings, Bryan W.; Berry, Kristin H.
2015-01-01
Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants—including several frequently eaten species—were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter the availability of their preferred food plants.
Jennings, W Bryan; Berry, Kristin H
2015-01-01
Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants--including several frequently eaten species--were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter the availability of their preferred food plants.
Jennings, W. Bryan; Berry, Kristin H.
2015-01-01
Previous studies of desert tortoise foraging ecology in the western Mojave Desert suggest that these animals are selective herbivores, which alter their diet according to the temporal availability of preferred food plants. These studies, however, did not estimate availability of potential food plants by taking into account the spatial and temporal variability in ephemeral plant abundance that occurs within the spring season. In this study, we observed 18 free-ranging adult tortoises take 35,388 bites during the spring foraging season. We also estimated the relative abundance of potential food plants by stratifying our sampling across different phenological periods of the 3-month long spring season and by different habitats and microhabitats. This methodology allowed us to conduct statistical tests comparing tortoise diet against plant abundance. Our results show that tortoises choose food plants non-randomly throughout the foraging season, a finding that corroborates the hypothesis that desert tortoises rely on key plants during different phenological periods of spring. Moreover, tortoises only consumed plants in a succulent state until the last few weeks of spring, at which time most annuals and herbaceous perennials had dried and most tortoises had ceased foraging. Many species of food plants—including several frequently eaten species—were not detected in our plant surveys, yet tortoises located these rare plants in their home ranges. Over 50% of bites consumed were in the group of undetected species. Interestingly, tortoises focused heavily on several leguminous species, which could be nutritious foods owing to their presumably high nitrogen contents. We suggest that herbaceous perennials, which were rare on our study area but represented ~30% of tortoise diet, may be important in sustaining tortoise populations during droughts when native annuals are absent. These findings highlight the vulnerability of desert tortoises to climate change if such changes alter the availability of their preferred food plants. PMID:25635840
Climate change, multiple stressors, and the decline of ectotherms.
Rohr, Jason R; Palmer, Brent D
2013-08-01
Climate change is believed to be causing declines of ectothermic vertebrates, but there is little evidence that climatic conditions associated with declines have exceeded critical (i.e., acutely lethal) maxima or minima, and most relevant studies are correlative, anecdotal, or short-term (hours). We conducted an 11-week factorial experiment to examine the effects of temperature (22 °C or 27 °C), moisture (wet or dry), and atrazine (an herbicide; 0, 4, 40, 400 μg/L exposure as embryos and larvae) on the survival, growth, behavior, and foraging rates of postmetamorphic streamside salamanders (Ambystoma barbouri), a species of conservation concern. The tested climatic conditions were between the critical maxima and minima of streamside salamanders; thus, this experiment quantified the long-term effects of climate change within the noncritical range of this species. Despite a suite of behavioral adaptations to warm and dry conditions (e.g., burrowing, refuge use, huddling with conspecifics, and a reduction in activity), streamside salamanders exhibited significant loss of mass and significant mortality in all but the cool and moist conditions, which were closest to the climatic conditions in which they are most active in nature. A temperature of 27 °C represented a greater mortality risk than dry conditions; death occurred rapidly at this temperature and more gradually under cool and dry conditions. Foraging decreased under dry conditions, which suggests there were opportunity costs to water conservation. Exposure to the herbicide atrazine additively decreased water-conserving behaviors, foraging efficiency, mass, and time to death. Hence, the hypothesis that moderate climate change can cause population declines is even more plausible under scenarios with multiple stressors. These results suggest that climate change within the noncritical range of species and pollution may reduce individual performance by altering metabolic demands, hydration, and foraging effort and may facilitate population declines of amphibians and perhaps other ectothermic vertebrates. © 2013 Society for Conservation Biology.
Trade-offs between energy maximization and parental care in a central place forager, the sea otter
Thometz, N M; Staedler, M.M.; Tomoleoni, Joseph; Bodkin, James L.; Bentall, G.B.; Tinker, M. Tim
2016-01-01
Between 1999 and 2014, 126 archival time–depth recorders (TDRs) were used to examine the foraging behavior of southern sea otters (Enhydra lutris nereis) off the coast of California, in both resource-abundant (recently occupied, low sea otter density) and resource-limited (long-occupied, high sea otter density) locations. Following predictions of foraging theory, sea otters generally behaved as energy rate maximizers. Males and females without pups employed similar foraging strategies to optimize rates of energy intake in resource-limited habitats, with some exceptions. Both groups increased overall foraging effort and made deeper, longer and more energetically costly dives as resources became limited, but males were more likely than females without pups to utilize extreme dive profiles. In contrast, females caring for young pups (≤10 weeks) prioritized parental care over energy optimization. The relative importance of parental care versus energy optimization for adult females with pups appeared to reflect developmental changes as dependent young matured. Indeed, contrary to females during the initial stages of lactation, females with large pups approaching weaning once again prioritized optimizing energy intake. The increasing prioritization of energy optimization over the course of lactation was possible due to the physiological development of pups and likely driven by the energetic deficit incurred by females early in lactation. Our results suggest that regardless of resource availability, females at the end of lactation approach a species-specific ceiling for percent time foraging and that reproductive females in the central portion of the current southern sea otter range are disproportionately affected by resource limitation.
Sublethal imidacloprid effects on honey bee flower choices when foraging.
Karahan, Ahmed; Çakmak, Ibrahim; Hranitz, John M; Karaca, Ismail; Wells, Harrington
2015-11-01
Neonicotinoids, systemic neuro-active pesticides similar to nicotine, are widely used in agriculture and are being investigated for a role in honey bee colony losses. We examined one neonicotinoid pesticide, imidacloprid, for its effects on the foraging behavior of free-flying honey bees (Apis mellifera anatoliaca) visiting artificial blue and white flowers. Imidacloprid doses, ranging from 1/5 to 1/50 of the reported LD50, were fed to bees orally. The study consisted of three experimental parts performed sequentially without interruption. In Part 1, both flower colors contained a 4 μL 1 M sucrose solution reward. Part 2 offered bees 4 μL of 1.5 M sucrose solution in blue flowers and a 4 μL 0.5 M sucrose solution reward in white flowers. In Part 3 we reversed the sugar solution rewards, while keeping the flower color consistent. Each experiment began 30 min after administration of the pesticide. We recorded the percentage of experimental bees that returned to forage after treatment. We also recorded the visitation rate, number of flowers visited, and floral reward choices of the bees that foraged after treatment. The forager return rate declined linearly with increasing imidacloprid dose. The number of foraging trips by returning bees was also affected adversely. However, flower fidelity was not affected by imidacloprid dose. Foragers visited both blue and white flowers extensively in Part 1, and showed greater fidelity for the flower color offering the higher sugar solution reward in Parts 2 and 3. Although larger samples sizes are needed, our study suggests that imidacloprid may not affect the ability to select the higher nectar reward when rewards were reversed. We observed acute, mild effects on foraging by honey bees, so mild that storage of imidacloprid tainted-honey is very plausible and likely to be found in honey bee colonies.
NASA Astrophysics Data System (ADS)
Sutrisno; Subrata, A.; Surahmanto; Christiyanto, M.; Surono; Achmadi, J.; Wahyono, F.; Pangestu, E.
2018-02-01
The study was aimed to obtain information regarding feed given and mineralstatus (Ca, P) in fodder and beef cattle in Jratunseluna river basin. Feed and drinking water given by farmers identified for 14 days and extracted sampling for mineralanalysis, t-test was used to compare mineral status in upland and lowland. Results of the research showed that feed given by farmers were varying. The ratio of forage/concentrates in lowland and upland areas was different, i.e. 67: 33 and 30: 70, respectivelly. Ca content on forage given in upland areas ranged from 0.17 to 0.74%, and concentrates from 0.002 to 0.49%, while Ca content on forage given in lowland areas ranged from 0.33 to 0.52%, and concentrates ranged from 0.38 to 0.49%. P content on forage in upland areas ranged from 0.02 to 0.04%, concentrates ranged from 0.018 to 0.09%,while P content on forage in lowland areas ranged from 0.03 to 0.07%, and concentrates ranged from 0.04 to 0.07% . Ca and P consumption in upland areas were 301.06 and 54.73 g, and 391.92 and 65.70 g in lowland.Caand P content of beef cattle’s hair in upland were 0.14 and 0.01%, while in lowland areas were 0.11 and 0.03%.It can be concluded that Ca and P intakeof beef cattle in Jratunseluna river basin were less and mineral status of Ca and P in marginal condition.
Supplemental feeding alters migration of a temperate ungulate.
Jones, Jennifer D; Kauffman, Matthew J; Monteith, Kevin L; Scurlock, Brandon M; Albeke, Shannon E; Cross, Paul C
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
Supplemental feeding alters migration of a temperate ungulate
Jones, Jennifer D; Kauffman, Matthew J.; Monteith, Kevin L.; Scurlock, Brandon M.; Albeke, Shannon E.; Cross, Paul C.
2014-01-01
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
What currency do bumble bees maximize?
Charlton, Nicholas L; Houston, Alasdair I
2010-08-16
In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency.
What Currency Do Bumble Bees Maximize?
Charlton, Nicholas L.; Houston, Alasdair I.
2010-01-01
In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency. PMID:20808437
It's not black or white—on the range of vision and echolocation in echolocating bats
Boonman, Arjan; Bar-On, Yinon; Cvikel, Noam; Yovel, Yossi
2013-01-01
Around 1000 species of bats in the world use echolocation to navigate, orient, and detect insect prey. Many of these bats emerge from their roost at dusk and start foraging when there is still light available. It is however unclear in what way and to which extent navigation, or even prey detection in these bats is aided by vision. Here we compare the echolocation and visual detection ranges of two such species of bats which rely on different foraging strategies (Rhinopoma microphyllum and Pipistrellus kuhlii). We find that echolocation is better than vision for detecting small insects even in intermediate light levels (1–10 lux), while vision is advantageous for monitoring far-away landscape elements in both species. We thus hypothesize that, bats constantly integrate information acquired by the two sensory modalities. We suggest that during evolution, echolocation was refined to detect increasingly small targets in conjunction with using vision. To do so, the ability to hear ultrasonic sound is a prerequisite which was readily available in small mammals, but absent in many other animal groups. The ability to exploit ultrasound to detect very small targets, such as insects, has opened up a large nocturnal niche to bats and may have spurred diversification in both echolocation and foraging tactics. PMID:24065924
Bottom-up regulation of a pole-ward migratory predator population
van den Hoff, John; McMahon, Clive R.; Simpkins, Graham R.; Hindell, Mark A.; Alderman, Rachael; Burton, Harry R.
2014-01-01
As the effects of regional climate change are most pronounced at polar latitudes, we might expect polar-ward migratory populations to respond as habitat suitability changes. The southern elephant seal (Mirounga leonina L.) is a pole-ward migratory species whose populations have mostly stabilized or increased in the past decade, the one exception being the Macquarie Island population which has decreased continuously over the past 50 years. To explore probable causes of this anomalous trend, we counted breeding female seals annually between 1988 and 2011 in order to relate annual rates of population change (r) to foraging habitat changes that have known connections with atmospheric variability. We found r (i) varied annually from −0.016 to 0.021 over the study period, (ii) was most effected by anomalous atmospheric variability after a 3 year time lag was introduced (R = 0.51) and (iii) was associated with sea-ice duration (SID) within the seals’ foraging range at the same temporal lag. Negative r years may be extrapolated to explain, at least partially, the overall trend in seal abundance at Macquarie Island; specifically, increasing SID within the seals foraging range has a negative influence on their abundance at the island. Evidence is accruing that suggests southern elephant seal populations may respond positively to a reduced sea-ice field. PMID:24619437
Tárano, Zaida; López, Marie Charlotte
2015-01-01
The behavioural repertoires and time budgets of 2 captive groups and 1 semi-free-ranging group of Cebus olivaceus were determined with the aim to assess the impact of the zoo environment on behaviour. The repertoires were qualitatively similar between groups and to those reported for wild troops, but the captive groups showed self-directed and stereotyped behaviours not reported in the wild. The differences in repertoires between groups were easily associated with the opportunity to interact directly with the visitors, with particularities of the enclosure and with the severity of confinement. Overall, females spent more time foraging than males in the 2 captive groups, and adults rested and watched more than subadults in all the groups. Time budgets were dominated by foraging, resting, movement and affiliative interactions, but their relative importance varied between groups, with foraging being especially prominent in the most confined group. The time budgets also varied qualitatively from those reported for wild troops. We conclude the species is behaviourally able to adjust to captivity, but the slight differences along the continuum from wild to semi-free to captive are suggestive of mild stress or social tension probably due to unstimulating environmental conditions, high visitor pressure and deviations from typical sex-age group composition.
Melin, S.R.; DeLong, R.L.; Thomason, J.R.; VanBlaricom, G.R.
2000-01-01
The attendance patterns of California sea lions were studied during the non-breeding seasons from 1991 to 1994. Lactating females frequented the rookery to nurse their pups until weaning; most non-lactating females left the rookery for the season. Females spent over 70% of their time at sea except in 1993 when they spent 59% of their time at sea. The mean foraging trip length in the winter and spring ranged from 3.3 to 4.6 d; the mean nursing visit ranged from 1.2 to 1.4 d. The duration of foraging trips and nursing visits was variable over the season for individuals but no pattern of change was detected. Interannual and seasonal differences were not significant for time at sea, visits ashore, or foraging-trip duration before, during, or after the 1992-1993 El Nino event. Pups spent an average of 66.6% of their time ashore and up to three days away from the rookery during their mother's absence. Most females and pups stayed associated until April or May. The results suggest that seasonal movement of prey is more important in determining attendance patterns late in the lactation period than increasing energy demands of the pup.
Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko
2017-01-01
Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats' flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat's wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations, the acoustic sensing and flights of the bats showed narrower vertical ranges than horizontal ranges. This suggests that the bats control their acoustic sensing according to different schemes in the horizontal and vertical planes according to their surroundings. These findings suggest that echolocating bats coordinate their control of the acoustical field of view and flight for consecutive captures in 3D space during natural foraging.
Sumiya, Miwa; Fujioka, Emyo; Motoi, Kazuya; Kondo, Masaru; Hiryu, Shizuko
2017-01-01
Echolocating bats prey upon small moving insects in the dark using sophisticated sonar techniques. The direction and directivity pattern of the ultrasound broadcast of these bats are important factors that affect their acoustical field of view, allowing us to investigate how the bats control their acoustic attention (pulse direction) for advanced flight maneuvers. The purpose of this study was to understand the behavioral strategies of acoustical sensing of wild Japanese house bats Pipistrellus abramus in three-dimensional (3D) space during consecutive capture flights. The results showed that when the bats successively captured multiple airborne insects in short time intervals (less than 1.5 s), they maintained not only the immediate prey but also the subsequent one simultaneously within the beam widths of the emitted pulses in both horizontal and vertical planes before capturing the immediate one. This suggests that echolocating bats maintain multiple prey within their acoustical field of view by a single sensing using a wide directional beam while approaching the immediate prey, instead of frequently shifting acoustic attention between multiple prey. We also numerically simulated the bats’ flight trajectories when approaching two prey successively to investigate the relationship between the acoustical field of view and the prey direction for effective consecutive captures. This simulation demonstrated that acoustically viewing both the immediate and the subsequent prey simultaneously increases the success rate of capturing both prey, which is considered to be one of the basic axes of efficient route planning for consecutive capture flight. The bat’s wide sonar beam can incidentally cover multiple prey while the bat forages in an area where the prey density is high. Our findings suggest that the bats then keep future targets within their acoustical field of view for effective foraging. In addition, in both the experimental results and the numerical simulations, the acoustic sensing and flights of the bats showed narrower vertical ranges than horizontal ranges. This suggests that the bats control their acoustic sensing according to different schemes in the horizontal and vertical planes according to their surroundings. These findings suggest that echolocating bats coordinate their control of the acoustical field of view and flight for consecutive captures in 3D space during natural foraging. PMID:28085936
Ushitani, Tomokazu; Perry, Clint J; Cheng, Ken; Barron, Andrew B
2016-02-01
Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate. © 2016. Published by The Company of Biologists Ltd.
Short- and long-range cues used by ground-dwelling parasitoids to find their host
NASA Astrophysics Data System (ADS)
Goubert, C.; Josso, C.; Louâpre, P.; Cortesero, A. M.; Poinsot, D.
2013-02-01
Parasitoids of phytophagous insects face a detectability-reliability dilemma when foraging for hosts. Plant-related cues are easily detectable, but do not guarantee the presence of the host. Host-related cues are very reliable, but much harder to detect from a distance. Little is known in particular about the way coleopteran parasitoid females use these cues when foraging for a suitable place to lay their eggs. The question is of interest because, unlike hymenopteran larvae, coleopteran parasitoid larvae are highly mobile and able to forage for hosts on their own. We assessed whether females of the parasitoid rove beetle Aleochara bipustulata (L.) (Coleoptera: Staphylinidae) are attracted to plant (Swede roots, Brassica napus) and host-related cues [pupae of the cabbage root fly Delia radicum (L.) (Diptera: Anthomyiidae)]. In the field, A. bipustulata adult females were captured in selective pitfall traps containing pieces of roots damaged by D. radicum larvae, but not in traps containing pieces of healthy roots or D. radicum pupae. However, in the laboratory, the odour of D. radicum pupae attracted A. bipustulata females to mini-pitfalls. Video monitoring in the laboratory showed that foraging A. bipustulata females preferred a zone containing D. radicum pupae and larval tracks rather than one containing an extract of D. radicum-infested roots. Our results suggest a behavioural sequence where A. bipustulata females use plant-related cues at a distance, but then switch their preference to host-related cues at a close range. This would be the first observation of this behaviour in coleopteran parasitoids.
Hocking, David P.; Salverson, Marcia; Evans, Alistair R.
2015-01-01
During wild foraging, Australian fur seals (Arctocephalus pusillus doriferus) encounter many different types of prey in a wide range of scenarios, yet in captive environments they are typically provided with a narrower range of opportunities to display their full repertoire of behaviours. This study aimed to quantitatively explore the effect of foraging-based enrichment on the behaviour and activity patterns displayed by two captive Australian fur seals at Melbourne Zoo, Australia. Food was presented as a scatter in open water, in a free-floating ball device, or in a static box device, with each treatment separated by control trials with no enrichment. Both subjects spent more time interacting with the ball and static box devices than the scatter feed. The total time spent pattern swimming was reduced in the enrichment treatments compared to the controls, while the time spent performing random swimming behaviours increased. There was also a significant increase in the total number of bouts of behaviour performed in all three enrichment treatments compared to controls. Each enrichment method also promoted a different suit of foraging behaviours. Hence, rather than choosing one method, the most effective way to increase the diversity of foraging behaviours, while also increasing variation in general activity patterns, is to provide seals with a wide range of foraging scenarios where food is encountered in different ways. PMID:25946412
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... biological functions including, but not limited to, (1) Social interactions; (2) foraging; (3) orientation...). Pinnipeds produce a wide range of social signals, most occurring at relatively low frequencies (Southall et... piers or opportunistically foraging. Pinnipeds produce a wide range of social signals, most occurring at...
Landscape simulation of foraging by elk, mule deer, and cattle on summer range.
Alan A. Ager; Bruce K. Johnson; Priscilla K. Coe; Michael J. Wisdom
2004-01-01
Cattle, mule deer (Odocoileus hemionus) and elk (Cervus elaphus) share more area of spring, summer and fall range than any other combination of wild and domestic ungulates in western North America (Wisdom and Thomas 1996). Not surprisingly, conflicts over perceived competition for forage have a long history, yet knowledge about...
Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.
Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant
1988-01-01
An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.
NASA Astrophysics Data System (ADS)
Joyce, T. W.; Durban, J. W.; Fearnbach, H. H.; Claridge, D. E.; Ballance, L. T.
2016-02-01
Diving and spatial distribution data from small (55g) satellite transmitter tags attached to five species of deep-diving toothed whales were used to examine the physiological and ecological tradeoffs influencing vertical foraging ranges in the Bahamas. These tradeoffs have important consequences in terms of the ecological impacts of different toothed whale predators on meso- and bathypelagic prey populations, and also on relative vulnerabilities to human impacts (e.g., noise, vessel-strike). Within this assemblage, larger toothed-whales were hypothesized to more efficiently access deeper prey by having the capacity to sustain longer dives, based on a divergence of metabolic rates from oxygen storage capacity as mass increases. However, the observed vertical foraging ranges of melon-headed whales (Peponocephala electra, n=13), short-finned pilot whales (Globicephala macrorhynchus, n=15), Blainville's beaked whales (Mesoplodon densirostris, n=12), Cuvier's beaked whales (Ziphius cavirostris, n=7), and sperm whales (Physeter macrocephalus, n=27), only weakly support hypothesized increases in dive duration and depth as power law functions body mass (R2=0.36 & 0.23). In particular, the relatively small beaked whales (M.d. 853kg; Z.c. 1557kg) performed extremely long and deep foraging dives (M.d. max. 67mins & 1888m; Z.c. max. 103mins & 1888m) relative to expectations of simple allometric scaling. Based on foraging dive durations and post-foraging dive recovery patterns, both beaked whales appear to exceed aerobic dive limits, which enabled access to bathypelagic niches but at the cost of significantly longer recovery periods between foraging dives and comparatively low foraging time efficiency (<29% of time in foraging strata). The inclusion of aerobic and anaerobic dive strategies in allometric models of dive duration and depth yielded considerably greater explanatory power (R2=0.96 & 0.90), providing an improved framework for interpreting the tradeoffs between body size, diving efficiency, and access to different prey layers. Vertical foraging ranges in turn had important implications in terms of responses to diurnal variation in light intensity, and the relative affinities of different species to deep-scattering and benthic boundary layers of prey.
Nutritive value of mule deer forages on ponderosa pine summer range in Arizona
P. J. Urness; D. J. Neff; R. K. Watkins
1975-01-01
Chemical analyses and apparent in vitro dry matter digestibilities were obtained for mule deer (Odocoileus hemionus) forages appearing in monthly diets. Relative values among individual forage species were calculated based upon nutrient contents and percentage composition in the diet. These data provide land managers with the means to more precisely assess some impacts...
John G. Kie; Timothy S. Burton
1984-01-01
Range managers need easily measured indices of dietary quality to ensure high quality forage for deer. Levels of fecal nitrogen and fecal 2,6 diaminopimelic acid, which have been suggested as such indices, were monitored for two herds of black-tailed deer (Odocoileus hemionus columbianus) in northern California. Both values were highest in summer...
Sayers, Ken; Lovejoy, C. Owen
2014-01-01
Beginning with Darwin, some have argued that predation on other vertebrates dates to the earliest stages of hominid evolution, and can explain many uniquely human anatomical and behavioral characters. Other recent workers have focused instead on scavenging, or particular plant foods. Foraging theory suggests that inclusion of any food is influenced by its profitability and distribution within the consumer’s habitat. The morphology and likely cognitive abilities of Ardipithecus, Australopithecus, and early Homo suggest that while hunting and scavenging occurred, their profitability generally would have been considerably lower than in extant primates and/or modern human hunter-gatherers. On the other hand, early hominid diet modelers should not focus solely on plant foods, as this overlooks standard functional interpretations of the early hominid dentition, their remarkable demographic success, and the wide range of available food types within their likely day ranges. Any dietary model focusing too narrowly on any one food type or foraging strategy must be viewed with caution. We argue that early hominid diet can best be elucidated by consideration of their entire habitat-specific resource base, and by quantifying the potential profitability and abundance of likely available foods. PMID:25510078
Daly, Ryan; Froneman, Pierre W; Smale, Malcolm J
2013-01-01
As apex predators, sharks play an important role shaping their respective marine communities through predation and associated risk effects. Understanding the predatory dynamics of sharks within communities is, therefore, necessary to establish effective ecologically based conservation strategies. We employed non-lethal sampling methods to investigate the feeding ecology of bull sharks (Carcharhinus leucas) using stable isotope analysis within a subtropical marine community in the southwest Indian Ocean. The main objectives of this study were to investigate and compare the predatory role that sub-adult and adult bull sharks play within a top predatory teleost fish community. Bull sharks had significantly broader niche widths compared to top predatory teleost assemblages with a wide and relatively enriched range of δ(13)C values relative to the local marine community. This suggests that bull sharks forage from a more diverse range of δ(13)C sources over a wider geographical range than the predatory teleost community. Adult bull sharks appeared to exhibit a shift towards consistently higher trophic level prey from an expanded foraging range compared to sub-adults, possibly due to increased mobility linked with size. Although predatory teleost fish are also capable of substantial migrations, bull sharks may have the ability to exploit a more diverse range of habitats and appeared to prey on a wider diversity of larger prey. This suggests that bull sharks play an important predatory role within their respective marine communities and adult sharks in particular may shape and link ecological processes of a variety of marine communities over a broad range.
Daly, Ryan; Froneman, Pierre W.; Smale, Malcolm J.
2013-01-01
As apex predators, sharks play an important role shaping their respective marine communities through predation and associated risk effects. Understanding the predatory dynamics of sharks within communities is, therefore, necessary to establish effective ecologically based conservation strategies. We employed non-lethal sampling methods to investigate the feeding ecology of bull sharks (Carcharhinus leucas) using stable isotope analysis within a subtropical marine community in the southwest Indian Ocean. The main objectives of this study were to investigate and compare the predatory role that sub-adult and adult bull sharks play within a top predatory teleost fish community. Bull sharks had significantly broader niche widths compared to top predatory teleost assemblages with a wide and relatively enriched range of δ13C values relative to the local marine community. This suggests that bull sharks forage from a more diverse range of δ13C sources over a wider geographical range than the predatory teleost community. Adult bull sharks appeared to exhibit a shift towards consistently higher trophic level prey from an expanded foraging range compared to sub-adults, possibly due to increased mobility linked with size. Although predatory teleost fish are also capable of substantial migrations, bull sharks may have the ability to exploit a more diverse range of habitats and appeared to prey on a wider diversity of larger prey. This suggests that bull sharks play an important predatory role within their respective marine communities and adult sharks in particular may shape and link ecological processes of a variety of marine communities over a broad range. PMID:24205168
MOAB: a spatially explicit, individual-based expert system for creating animal foraging models
Carter, J.; Finn, John T.
1999-01-01
We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.
Fall-grown oat to extend the fall grazing season for replacement dairy heifers.
Coblentz, W K; Brink, G E; Hoffman, P C; Esser, N M; Bertram, M G
2014-03-01
Our objective was to assess the pasture productivity and forage characteristics of 2 fall-grown oat (Avena sativa L.) cultivars, specifically for extending the grazing season and reducing reliance on harvested forages by replacement dairy heifers. A total of 160 gravid Holstein heifers (80 heifers/yr) were stratified by weight, and assigned to 1 of 10 identical research pens (8 heifers/pen). Initial body weights were 480 ± 43.5 kg in 2011 and 509 ± 39.4 kg in 2012. During both years of the trial, four 1.0-ha pasture replicates were seeded in August with Ogle oat (Schumitsch Seed Inc., Antigo, WI), and 4 separate, but similarly configured, pasture replicates were seeded with Forage Plus oat (Kratz Farms, Slinger, WI). Heifer groups were maintained as units, assigned to specific pastures, and then allowed to graze fall-oat pastures for 6h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Two heifer groups were retained in confinement (without grazing) as controls and offered the identical total mixed ration as pasture groups. During 2011, available forage mass increased with strong linear and quadratic effects for both cultivars, peaking at almost 9 Mg/ha on October 31. In contrast, forage mass was not affected by evaluation date in 2012, remaining ≤ 2,639 kg/ha across all dates because of droughty climatic conditions. During 2012, Ogle exhibited greater forage mass than Forage Plus across all sampling dates (2,678 vs. 1,856 kg/ha), largely because of its more rapid maturation rate and greater canopy height. Estimates of energy density for oat forage ranged from 59.6 to 69.1% during 2011, and ranged narrowly from 68.4 to 70.4% during 2012. For 2011, responses for both cultivars had strong quadratic character, in which the most energy-dense forages occurred in mid November, largely due to accumulation of water-soluble carbohydrates that reached maximum concentrations of 18.2 and 15.1% for Forage Plus and Ogle, respectively. Across the 2-yr trial, average daily gain for grazing heifer groups tended to be greater than heifers remaining in confinement (0.85 vs. 0.74 kg/d), but both management strategies produced weight gains within reasonable proximity to normal targets for heifers in this weight range. Fall-grown oat should be managed as stockpiled forage for deferred grazing, and good utilization of fall-oat forage can be accomplished by a one-time removal of standing forage, facilitated by a single lead wire advanced daily to prevent waste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tan, Ken; Latty, Tanya; Dong, Shihao; Liu, Xiwen; Wang, Chao; Oldroyd, Benjamin P
2015-11-09
Animals may adjust their behavior according to their perception of risk. Here we show that free-flying honey bee (Apis cerana) foragers mitigate the risk of starvation in the field when foraging on a food source that offers variable rewards by carrying more 'fuel' food on their outward journey. We trained foragers to a feeder located 1.2 km from each of four colonies. On average foragers carried 12.7% greater volume of fuel, equivalent to 30.2% more glucose when foraging on a variable source (a random sequence of 0.5, 1.5 and 2.5 M sucrose solution, average sucrose content 1.5 M) than when forging on a consistent source (constant 1.5 M sucrose solution). Our findings complement an earlier study that showed that foragers decrease their fuel load as they become more familiar with a foraging place. We suggest that honey bee foragers are risk sensitive, and carry more fuel to minimize the risk of starvation in the field when a foraging trip is perceived as being risky, either because the forager is unfamiliar with the foraging site, or because the forage available at a familiar site offers variable rewards.
Inductive foraging: improving the diagnostic yield of primary care consultations.
Donner-Banzhoff, Norbert; Hertwig, Ralph
2014-03-01
Physicians attempting to make a diagnosis arrive at specific hypotheses early in their encounter with patients. Further data are collected in the light of these early hypotheses. While this hypothetico-deductive model has been accepted as both a description of physicians' data gathering and a norm, little attention has been paid to the preceding stage of the consultation. It is suggested that 'inductive foraging' is a relevant and appropriate mode of data acquisition for the first part of the patient encounter. Research evidence from cognitive psychology and medical reasoning research is discussed. With inductive foraging, 'pattern failure' rather than 'pattern recognition' is the mode of discovery. Largely, guidance should be left to the patient to lead the clinician into areas where departures from normality are to be found. This is in contrast to active and focused 'deductive inquiry,' which should be used only after most aetiologies, but a few have eliminated. Especially when the prevalence of serious disease is low, and a wide range of diagnoses must be evaluated, such as in General Practice, inductive foraging is a rational and efficient diagnostic strategy. Previously, too little attention has been paid to the initial stage of the consultation. Premature closure at this point may result in diagnostic error.
Krishna, Shivani; Keasar, Tamar
2018-06-06
Morphologically complex flowers are characterized by bilateral symmetry, tube-like shapes, deep corolla tubes, fused petals, and/or poricidal anthers, all of which constrain the access of insect visitors to floral nectar and pollen rewards. Only a subset of potential pollinators, mainly large bees, learn to successfully forage on such flowers. Thus, complexity may comprise a morphological filter that restricts the range of visitors and thereby increases food intake for successful foragers. Such pollinator specialization, in turn, promotes flower constancy and reduces cross-species pollen transfer, providing fitness benefits to plants with complex flowers. Since visual signals associated with floral morphological complexity are generally honest (i.e., indicate food rewards), pollinators need to perceive and process them. Physiological studies show that bees detect distant flowers through long-wavelength sensitive photoreceptors. Bees effectively perceive complex shapes and learn the positions of contours based on their spatial frequencies. Complex flowers require long handling times by naive visitors, and become highly profitable only for experienced foragers. To explore possible pathways towards the evolution of floral complexity, we discuss cognitive mechanisms that potentially allow insects to persist on complex flowers despite low initial foraging gains, suggest experiments to test these mechanisms, and speculate on their adaptive value.
Keller, Alexander; Härtel, Stephan; Steffan-Dewenter, Ingolf
2017-01-01
The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes. PMID:28854210
Danner, Nadja; Keller, Alexander; Härtel, Stephan; Steffan-Dewenter, Ingolf
2017-01-01
The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.
COMMUNICATION: Stochastic resonance and the evolution of Daphnia foraging strategy
NASA Astrophysics Data System (ADS)
Dees, Nathan D.; Bahar, Sonya; Moss, Frank
2008-12-01
Search strategies are currently of great interest, with reports on foraging ranging from albatrosses and spider monkeys to microzooplankton. Here, we investigate the role of noise in optimizing search strategies. We focus on the zooplankton Daphnia, which move in successive sequences consisting of a hop, a pause and a turn through an angle. Recent experiments have shown that their turning angle distributions (TADs) and underlying noise intensities are similar across species and age groups, suggesting an evolutionary origin of this internal noise. We explore this hypothesis further with a digital simulation (EVO) based solely on the three central Darwinian themes: inheritability, variability and survivability. Separate simulations utilizing stochastic resonance (SR) indicate that foraging success, and hence fitness, is maximized at an optimum TAD noise intensity, which is represented by the distribution's characteristic width, σ. In both the EVO and SR simulations, foraging success is the criterion, and the results are the predicted characteristic widths of the TADs that maximize success. Our results are twofold: (1) the evolving characteristic widths achieve stasis after many generations; (2) as a hop length parameter is changed, variations in the evolved widths generated by EVO parallel those predicted by SR. These findings provide support for the hypotheses that (1) σ is an evolved quantity and that (2) SR plays a role in evolution.
Keser, Lidewij H.; Visser, Eric J. W.; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark
2015-01-01
Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders. PMID:25964790
Effect of annual, growing season, and spring precipitation on peak standing crop at three locations
USDA-ARS?s Scientific Manuscript database
Ranchers and range managers in the West are at the mercy of climatic conditions that determine the amount of annual forage available on rangeland. Typically, stocking or de-stocking decisions need to be made before the final forage production level is known. Ranchers and range managers need a decisi...
Chapter 14. Nutritive principles in restoration and management
Bruce L. Welch
2004-01-01
Most range management or revegetation programs are aimed at providing forage to support the needs of range animals. Among these needs are supplying the nutrients required to drive the physiological processes of the animal body. One major principle in this report is that there is no "perfect forage species" that will supply all the nutrients needed by any...
Bruce McCune; Sarah Jovan; Amanda Hardman
2008-01-01
Forage lichens are pendulous, hairlike species eaten by a wide range of mammals. Our overall goal was to estimate losses of Bryoria, a genus of ecologically important forage species, in forests subjected to disease and fuel reduction treatments at Starkey Experimental Forest in the Blue Mountains of northeastern Oregon. Specific objectives were to...
Flint, Paul L.; Reed, John; Deborah Lacroix,; Richard Lanctot,
2016-01-01
From mid-July through September, 10 000 to 30 000 Long-tailed Ducks (Clangula hyemalis) use the lagoon systems of the central Beaufort Sea for remigial molt. Little is known about their foraging behavior and patterns of habitat use during this flightless period. We used radio transmitters to track male Long-tailed Ducks through the molt period from 2000 to 2002 in three lagoons: one adjacent to industrial oil field development and activity and two in areas without industrial activity. We found that an index to time spent foraging generally increased through the molt period. Foraging, habitat use, and home range size showed similar patterns, but those patterns were highly variable among lagoons and across years. Even with continuous daylight during the study period, birds tended to use offshore areas during the day for feeding and roosted in protected nearshore waters at night. We suspect that variability in behaviors associated with foraging, habitat use, and home range size are likely influenced by availability of invertebrate prey. Proximity to oil field activity did not appear to affect foraging behaviors of molting Long-tailed Ducks.
Predation by dipteran larvae on fairy shrimp (Crustacea: Anostraca) in Utah rock pools
Graham, T.B.
1994-01-01
A series of experiments examined how ecological factors affect notonectid foraging success on fairy shrimp. Variation in pond depth over natural ranges had no direct effect on notonectid ability to capture fairy shrimp. Decreases in water clarity over natural ranges led to decreased notonectid ability to capture fairy shrimp. This corresponds with the observation that six weeks after the fairy shrimp hatched they were more likely to be present in cloudy ponds than in ponds containing clearer water. If correct, this is a situation where physical factors have a major effect on how a biological interaction influences the local distribution of species. It appears water depth indirectly affects notonectid foraging rates, as shallow ponds are apparently made cloudy by wind-driven waves disturbing the bottom mud. These results suggest the notonectid-fairy shrimp interaction will not be a constant for any given pond, but will depend on abiotic factors like amount of rainfall and frequency of windy conditions.
Predatory fish sounds can alter crab foraging behaviour and influence bivalve abundance
Hughes, A. Randall; Mann, David A.; Kimbro, David L.
2014-01-01
The risk of predation can have large effects on ecological communities via changes in prey behaviour, morphology and reproduction. Although prey can use a variety of sensory signals to detect predation risk, relatively little is known regarding the effects of predator acoustic cues on prey foraging behaviour. Here we show that an ecologically important marine crab species can detect sound across a range of frequencies, probably in response to particle acceleration. Further, crabs suppress their resource consumption in the presence of experimental acoustic stimuli from multiple predatory fish species, and the sign and strength of this response is similar to that elicited by water-borne chemical cues. When acoustic and chemical cues were combined, consumption differed from expectations based on independent cue effects, suggesting redundancies among cue types. These results highlight that predator acoustic cues may influence prey behaviour across a range of vertebrate and invertebrate taxa, with the potential for cascading effects on resource abundance. PMID:24943367
Nectar quality perception by honey bees (Apis mellifera ligustica).
Sanderson, Charlotte E; Cook, Peyton; Hill, Peggy S M; Orozco, Benjamin S; Abramson, Charles I; Wells, Harrington
2013-11-01
In exploring how foragers perceive rewards, we often find that well-motivated individuals are not too choosy and unmotivated individuals are unreliable and inconsistent. Nevertheless, when given a choice we see that individuals can clearly distinguish between rewards. Here we develop the logic of using responses to two-choice problems as a derivative function of perceived reward, and utilize this model to examine honey bee perception of nectar quality. Measuring the derivative allows us to deduce the perceived reward function. The derivative function of the perceived reward equation gives the rate of change of the reward perceived for each reward value. This approach depends on presenting free-flying foragers with a series of two different rewards presented simultaneously (i.e., two-choice, binomial tests). We also examine how honey bees integrate information from a range of reward qualities to formulate a functional response. Results suggest that honey bees overestimate higher quality rewards and that direct comparison is an important step in the integration of information from a range of rewards.
Free range hens use the range more when the outdoor environment is enriched.
Nagle, T A D; Glatz, P C
2012-04-01
To evaluate the role of using forage, shade and shelterbelts in attracting birds into the range, three trials were undertaken with free range layers both on a research facility and on commercial farms. Each of the trials on the free range research facility in South Australia used a total of 120 laying hens (Hyline Brown). Birds were housed in an eco-shelter which had 6 internal pens of equal size with a free range area adjoining the shelter. The on-farm trials were undertaken on commercial free range layer farms in the Darling Downs in Southeast Queensland with bird numbers on farms ranging from 2,000-6,800 hens. The first research trial examined the role of shaded areas in the range; the second trial examined the role of forage and the third trial examined the influence of shelterbelts in the range. These treatments were compared to a free range area with no enrichment. Aggressive feather pecking was only observed on a few occasions in all of the trials due to the low bird numbers housed. Enriching the free range environment attracted more birds into the range. Shaded areas were used by 18% of the hens with a tendency (p = 0.07) for more hens to be in the paddock. When forage was provided in paddocks more control birds (55%) were observed in the range in morning than in the afternoon (30%) while for the forage treatments 45% of the birds were in the range both during the morning and afternoon. When shelterbelts were provided there was a significantly (p<0.05) higher % of birds in the range (43% vs. 24%) and greater numbers of birds were observed in areas further away from the poultry house. The results from the on-farm trials mirrored the research trials. Overall 3 times more hens used the shaded areas than the non shaded areas, with slightly more using the shade in the morning than in the afternoon. As the environmental temperature increased the number of birds using the outdoor shade also increased. Overall 17 times more hens used the shelterbelt areas than the control areas, with slightly more using the shelterbelts in the afternoon than in the morning. Approximately 17 times more birds used the forage areas compared to the control area in the corresponding range. There were 8 times more birds using a hay bale enriched area compared to the area with no hay bales. The use of forage sources (including hay bales) were the most successful method on-farm to attract birds into the range followed by shelterbelts and artificial shade. Free range egg farmers are encouraged to provide pasture, shaded areas and shelterbelts to attract birds into the free range.
Animal Foraging and the Evolution of Goal-Directed Cognition
ERIC Educational Resources Information Center
Hills, Thomas T.
2006-01-01
Foraging-and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor…
Fire, grazing history, lichen abundance, and winter distribution of caribou in Alaska's taiga
Collins, William B.; Dale, Bruce W.; Adams, Layne G.; McElwain, Darien E.; Joly, Kyle
2011-01-01
In the early 1990s the Nelchina Caribou (Rangifer tarandus) Herd (NCH) began a dramatic shift to its current winter range, migrating at least an additional 100 km beyond its historic range. We evaluated the impacts of fire and grazing history on lichen abundance and subsequent use and distribution by the NCH. Historic (prior to 1990) and current (2002) winter ranges of the NCH had similar vascular vegetation, lichen cover (P = 0.491), and fire histories (P = 0.535), but the former range had significantly less forage lichen biomass as a result of grazing by caribou. Biomass of forage lichens was twice as great overall (P = 0.031) and 4 times greater in caribou selected sites on the current range than in the historic range, greatly increasing availability to caribou. Caribou on the current range selected for stands with >20% lichen cover (P < 0.001), greater than 1,250 kg/ha (P < 0.001) forage lichen biomass and stands older than 80 yr postfire (P < 0.001). After fires, forage lichen cover and biomass seldom recovered sufficiently to attract caribou grazing until after ≥60 yr, and, as a group, primary forage lichen species did not reach maximum abundance until 180 yr postfire. Recovery following overgrazing can occur much more quickly because lichen cover, albeit mostly fragments, and organic substrates remain present. Our results provide benchmarks for wildlife managers assessing condition of caribou winter range and predicting effects of fires on lichen abundance and caribou distribution. Of our measurements of cover and biomass by species, densities and heights of trees, elevation, slope and aspect, only percentage cover by Cladonia amaurocraea, Cladina rangiferina, Flavocetraria cuculata, and lowbush cranberry (Vaccinium vitis‐idaea) were necessary for predicting caribou use of winter range.
Drew, Gary S.; Piatt, John F.; Hill, David J.
2013-01-01
Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.
Garber, P A; Gomes, D F; Bicca-Marques, J C
2012-04-01
Some populations of capuchins are reported to use tools to solve foraging problems in the wild. In most cases, this involves the act of pounding and digging. The use of probing tools by wild capuchins is considerably less common. Here we report on the results of an experimental field study conducted in southern Brazil designed to examine the ability of wild black-horned capuchins (Sapajus nigritus) to use a wooden dowel as a lever or a probe to obtain an embedded food reward. A group of eight capuchins was presented with two experimental platforms, each housing a clear Plexiglas box containing two bananas on a shelf and four inserted dowels. Depending on the conditions of the experiment, the capuchins were required either to pull (Condition I) or push (Conditions II and III) the dowels, in order to dislodge the food reward from the shelf so that it could be manually retrieved. In Condition I, four individuals spontaneously solved the foraging problem by pulling the dowels in 25% (72/291) of visits. In Conditions II and III, however, no capuchin successfully pushed the dowels forward to obtain the food reward. During these latter two experimental conditions, the capuchins continued to pull the dowels (41/151 or 27% of visits), even though this behavior did not result in foraging success. The results of these field experiments are consistent with an identical study conducted on wild Cebus capucinus in Costa Rica, and suggest that when using an external object as a probe to solve a foraging problem, individual capuchins were able to rapidly learn an association between the tool and the food reward, but failed to understand exactly how the tool functioned in accomplishing the task. The results also suggest that once a capuchin learned to solve this tool-mediated foraging problem, the individual persisted in using the same solution even in the face of repeated failure (slow rate of learning extinction). © 2011 Wiley Periodicals, Inc.
Integrating diverse forage sources reduces feed gaps on mixed crop-livestock farms.
Bell, L W; Moore, A D; Thomas, D T
2017-12-04
Highly variable climates induce large variability in the supply of forage for livestock and so farmers must manage their livestock systems to reduce the risk of feed gaps (i.e. periods when livestock feed demand exceeds forage supply). However, mixed crop-livestock farmers can utilise a range of feed sources on their farms to help mitigate these risks. This paper reports on the development and application of a simple whole-farm feed-energy balance calculator which is used to evaluate the frequency and magnitude of feed gaps. The calculator matches long-term simulations of variation in forage and metabolisable energy supply from diverse sources against energy demand for different livestock enterprises. Scenarios of increasing the diversity of forage sources in livestock systems is investigated for six locations selected to span Australia's crop-livestock zone. We found that systems relying on only one feed source were prone to higher risk of feed gaps, and hence, would often have to reduce stocking rates to mitigate these risks or use supplementary feed. At all sites, by adding more feed sources to the farm feedbase the continuity of supply of both fresh and carry-over forage was improved, reducing the frequency and magnitude of feed deficits. However, there were diminishing returns from making the feedbase more complex, with combinations of two to three feed sources typically achieving the maximum benefits in terms of reducing the risk of feed gaps. Higher stocking rates could be maintained while limiting risk when combinations of other feed sources were introduced into the feedbase. For the same level of risk, a feedbase relying on a diversity of forage sources could support stocking rates 1.4 to 3 times higher than if they were using a single pasture source. This suggests that there is significant capacity to mitigate both risk of feed gaps at the same time as increasing 'safe' stocking rates through better integration of feed sources on mixed crop-livestock farms across diverse regions and climates.
Barboza, Perry; Adams, Layne; Griffith, Brad; Whitten, Kenneth
2017-01-01
Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs. PMID:28231256
Gustine, David D.; Barboza, Perry; Adams, Layne G.; Griffith, Brad; Cameron, Raymond D.; Whitten, Kenneth R.
2017-01-01
Climate-induced shifts in plant phenology may adversely affect animals that cannot or do not shift the timing of their reproductive cycle. The realized effect of potential trophic “mismatches” between a consumer and its food varies with the degree to which species rely on dietary income and stored capital. Large Arctic herbivores rely heavily on maternal capital to reproduce and give birth near the onset of the growing season but are they vulnerable to trophic mismatch? We evaluated the long-term changes in the temperatures and characteristics of the growing seasons (1970–2013), and compared growing conditions and dynamics of forage quality for caribou at peak parturition, peak lactation, and peak forage biomass, and plant senescence between two distinct time periods over 36 years (1977 and 2011–13). Despite advanced thaw dates (7−12 days earlier), increased growing season lengths (15−21 days longer), and consistent parturition dates, we found no decline in forage quality and therefore no evidence within this dataset for a trophic mismatch at peak parturition or peak lactation from 1977 to 2011–13. In Arctic ungulates that use stored capital for reproduction, reproductive demands are largely met by body stores deposited in the previous summer and autumn, which reduces potential adverse effects of any mismatch between food availability and timing of parturition. Climate-induced effects on forages growing in the summer and autumn ranges, however, do correspond with the demands of female caribou and their offspring to gain mass for the next reproductive cycle and winter. Therefore, we suggest the window of time to examine the match-mismatch framework in Arctic ungulates is not at parturition but in late summer-autumn, where the multiplier effects of small changes in forage quality are amplified by forage abundance, peak forage intake, and resultant mass gains in mother-offspring pairs.
Byers, David A.; Henrikson, L. Suzann; Breslawski, Ryan P.
2016-06-04
Previous archaeological research in southern Idaho has suggested that climate change over the past 8000 years was not dramatic enough to alter long-term subsistence practices in the region. However, recent isotopic analyses of bison remains from cold storage caves on the Snake River Plain contest this hypothesis. Our results, when examined against an archaeoclimate model, suggest that cold storage episodes coincided with drier, warmer phases that likely reduced forage and water, and thus limited the availability of bison on the open steppe. Within this context we build a risk model to illustrate how environment might have motivated cold storage behaviors.more » Caching bison in cold lava tubes would have mitigated both intra-annual and inter-annual food shortages under these conditions. This analysis also suggests that skeletal fat, more than meat, may have influenced the selection, transport and storage of bison carcass parts. We deciphered when and how cold storage caves which was used to provide a more comprehensive understanding of foraging behaviors in a broad range of hunting-gathering economies.« less
Spatial organization of northern flying squirrels, Glaucomys sabrinus: Territoriality in females?
Smith, J.R.; Vuren, D.H.V.; Kelt, D.A.; Johnson, M.L.
2011-01-01
We determined home-range overlap among northern flying squirrels (Glaucomys sabrinus) to assess their spatial organization. We found extensive home-range overlap among females, and though this overlap could reflect social behavior, we found no evidence of attraction among females, with only one instance of den sharing. Instead, our results suggest that females share foraging areas but may be territorial in portions of the home range, especially around den trees and during young-rearing. Home-range overlap could also result from, the extrinsic effect of forest fragmentation due to timber harvest, which might impede dispersal and force squirrels to cluster on remaining fragments of suitable habitat.
Individual lifetime pollen and nectar foraging preferences in bumble bees
NASA Astrophysics Data System (ADS)
Hagbery, Jessica; Nieh, James C.
2012-10-01
Foraging specialization plays an important role in the ability of social insects to efficiently allocate labor. However, relatively little is known about the degree to which individual bumble bees specialize on collecting nectar or pollen, when such preferences manifest, and if individuals can alter their foraging preferences in response to changes in the colony workforce. Using Bombus impatiens, we monitored all foraging visits made by every bee in multiple colonies and showed that individual foragers exhibit consistent lifetime foraging preferences. Based upon the distribution of foraging preferences, we defined three forager types (pollen specialists, nectar specialists, and generalists). In unmanipulated colonies, 16-36 % of individuals specialized (≥90 % of visits) on nectar or pollen only. On its first day of foraging, an individual's foraging choices (nectar only, pollen only, or nectar and pollen) significantly predicted its lifetime foraging preferences. Foragers that only collected pollen on their first day of foraging made 1.61- to 1.67-fold more lifetime pollen foraging visits (as a proportion of total trips) than foragers that only collected nectar on their first foraging day. Foragers were significantly larger than bees that stayed only in the nest. We also determined the effect of removing pollen specialists at early (brood present) or later (brood absent) stages in colony life. These results suggest that generalists can alter their foraging preferences in response to the loss of a small subset of foragers. Thus, bumble bees exhibit individual lifetime foraging preferences that are established early in life, but generalists may be able to adapt to colony needs.
The role of foraging behaviour in the sexual segregation of the African elephant.
Shannon, Graeme; Page, Bruce R; Duffy, Kevin J; Slotow, Rob
2006-11-01
Elephants (Loxodonta africana) exhibit pronounced sexual dimorphism, and in this study we test the prediction that the differences in body size and sociality are significant enough to drive divergent foraging strategies and ultimately sexual segregation. Body size influences the foraging behaviour of herbivores through the differential scaling coefficients of metabolism and gut size, with larger bodied individuals being able to tolerate greater quantities of low-quality, fibrous vegetation, whilst having lower mass-specific energy requirements. We test two distinct theories: the scramble competition hypothesis (SCH) and the forage selection hypothesis (FSH). Comprehensive behavioural data were collected from the Pongola Game Reserve and the Phinda Private Game Reserve in South Africa over a 2.5-year period. The data were analysed using sex as the independent variable. Adult females targeted a wider range of species, adopted a more selective foraging approach and exhibited greater bite rates as predicted by the body size hypothesis and the increased demands of reproductive investment (lactation and pregnancy). Males had longer feeding bouts, displayed significantly more destructive behaviour (31% of observations, 11% for females) and ingested greater quantities of forage during each feeding bout. The independent ranging behaviour of adult males enables them to have longer foraging bouts as they experience fewer social constraints than females. The SCH was rejected as a cause of sexual segregation due to the relative abundance of low quality forage, and the fact that feeding heights were similar for both males and females. However, we conclude that the differences in the foraging strategies of the sexes are sufficient to cause spatial segregation as postulated by the FSH. Sexual dimorphism and the associated behavioural differences have important implications for the management and conservation of elephant and other dimorphic species, with the sexes effectively acting as distinct "ecological species".
Sadler, Nik; Nieh, James C
2011-02-01
Insects that regulate flight muscle temperatures serve as crucial pollinators in a broad range of ecosystems, in part because they forage over a wide span of temperatures. Honey bees are a classic example and maintain their thoracic muscles at temperatures (T(th)) tuned to the caloric benefits of floral resources. Using infrared thermography, we tested the hypothesis that forager motivation to recruit nestmates for a food source is positively correlated with T(th). We trained bees to a sucrose feeder located 5-100 m from the nest. Recruiting foragers had a significantly higher average T(th) (2.7°C higher) when returning from 2.5 mol l(-1) sucrose (65% w/w) than when returning from 1.0 mol l(-1) sucrose (31% w/w). Foragers exhibited significantly larger thermal fluctuations the longer they spent inside the nest between foraging trips. The difference between maximum and minimum temperatures during a nest visit (T(range)) increased with total duration of the nest visit (0.7°C increase per additional min spent inside the nest). Bees that recruited nestmates (waggle or round danced) were significantly warmer, with a 1.4-1.5 times higher ΔT(th) (difference between T(th) and nest ambient air temperature) than bees who tremble danced or simply walked on the nest floor without recruiting between foraging bouts. However, recruiter T(th) was not correlated with finer-scale measures of motivation: the number of waggle dance circuits or waggle dance return phase duration. These results support the hypothesis that forager T(th) within the nest is correlated to broad-scale differences in foraging motivation.
Avian predator buffers against variability in marine habitats with flexible foraging behavior
Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.
2018-01-01
How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.
Effect of Interactions between Harvester Ants on Forager Decisions
Davidson, Jacob D.; Arauco-Aliaga, Roxana P.; Crow, Sam; Gordon, Deborah M.; Goldman, Mark S.
2017-01-01
Harvester ant colonies adjust their foraging activity to day-to-day changes in food availability and hour-to-hour changes in environmental conditions. This collective behavior is regulated through interactions, in the form of brief antennal contacts, between outgoing foragers and returning foragers with food. Here we consider how an ant, waiting in the entrance chamber just inside the nest entrance, uses its accumulated experience of interactions to decide whether to leave the nest to forage. Using videos of field observations, we tracked the interactions and foraging decisions of ants in the entrance chamber. Outgoing foragers tended to interact with returning foragers at higher rates than ants that returned to the deeper nest and did not forage. To provide a mechanistic framework for interpreting these results, we develop a decision model in which ants make decisions based upon a noisy accumulation of individual contacts with returning foragers. The model can reproduce core trends and realistic distributions for individual ant interaction statistics, and suggests possible mechanisms by which foraging activity may be regulated at an individual ant level. PMID:28758093
Kang, Chang-Keun; Park, Hyun Je; Choy, Eun Jung; Choi, Kwang-Sik; Hwang, Kangseok; Kim, Jong-Bin
2015-01-01
We examined stable carbon and nitrogen isotope ratios for a large variety of consumers in intertidal and subtidal habitats, and their potential primary food sources [i.e., microphytobenthos (MPB), phytoplankton, and Phragmites australis] in a coastal bay system, Yeoja Bay of Korea, to test the hypothesis that the transfer of intertidal MPB-derived organic carbon to the subtidal food web can be mediated by motile consumers. Compared to a narrow δ13C range (−18 to −16‰) of offshore consumers, a broad δ13C range (−18 to −12‰) of both intertidal and subtidal consumers indicated that 13C-enriched sources of organic matter are an important trophic source to coastal consumers. In the intertidal areas, δ13C of most consumers overlapped with or was 13C-enriched relative to MPB. Despite the scarcity of MPB in the subtidal, highly motile consumers in subtidal habitat had nearly identical δ13C range with many intertidal foragers (including crustaceans and fish), overlapping with the range of MPB. In contrast, δ13C values of many sedentary benthic invertebrates in the subtidal areas were similar to those of offshore consumers and more 13C-depleted than motile foragers, indicating high dependence on phytoplankton-derived carbon. The isotopic mixing model calculation confirms that the majority of motile consumers and also some of subtidal sedentary ones depend on intertidal MPB for more than a half of their tissue carbon. Finally, although further quantitative estimates are needed, these results suggest that direct foraging by motile consumers on intertidal areas, and thereby biological transport of MPB-derived organic carbon to the subtidal areas, may provide important trophic connection between intertidal production and the nearshore shallow subtidal food webs. PMID:26448137
NASA Astrophysics Data System (ADS)
Scheffer, Annette; Trathan, Philip N.; Edmonston, Johnnie G.; Bost, Charles-André
2016-02-01
Investigating the responses of marine predators to environmental features is of key importance for understanding their foraging behaviour and reproductive success. In this study we examined the foraging behaviour of king penguins breeding at Kerguelen (southern Indian Ocean) in relation to oceanographic and bathymetric features within their foraging ambit. We used ARGOS and Global Positioning System tracking together with Time-Depth-Temperature-Recorders (TDR) to follow the at-sea movements of incubating and brooding king penguins. Combining the penguin behaviour with oceanographic data at the surface through satellite data and at depth through in-situ recordings by the TDRs enabled us to explore how these predators adjusted their horizontal and vertical foraging movements in response to their physical environment. Relating the observed behaviour and oceanographic patterns to local bathymetry lead to a comprehensive picture of the combined influence of bathymetry and meso-scale circulation on the foraging behaviour of king penguins. During both breeding stages king penguins foraged in the area to the south-east of Kerguelen, where they explored an influx of cold waters of southern origin interacting with the Kerguelen Plateau bathymetry. Foraging in the Polar Front and at the thermocline was associated with high prey capture rates. However, foraging trip orientation and water mass utilization suggested that bathymetrically entrained cold-water features provided the most favourable foraging locations. Our study explicitly reports the exploration of bathymetry-related oceanographic features by foraging king penguins. It confirms the presence of Areas of Ecological Significance for marine predators on the Kerguelen Plateau, and suggests the importance of further areas related to the cold-water flow along the shelf break of the Kerguelen Plateau.
Rossman, Sam; Ostrom, Peggy H.; Stolen, Megan; Barros, Nélio B.; Gandhi, Hasand; Stricker, Craig A.; Wells, Randall S.
2015-01-01
We examine individual specialization in foraging habits (foraging habitat and trophic level) of female bottlenose dolphins (Tursiops truncatus) resident in Sarasota Bay, Florida, USA, by analyzing time series of stable isotope (δ15N and δ13C) values in sequential growth layer groups within teeth. The isotope data provide a chronology of foraging habits over the lifetime of the individual and allowed us to show that female bottlenose dolphins exhibit a high degree of individual specialization in both foraging habitat and trophic level. The foraging habits used by adult females are similar to those they used as calves and may be passed down from mother to calf through social learning. We also characterized the foraging habits and home range of each individual by constructing standard ellipses from isotope values and dolphin sightings data (latitude and longitude), respectively. These data show that Sarasota Bay bottlenose dolphins forage within a subset of the habitats in which they are observed. Moreover, females with similar observational standard ellipses often possessed different foraging specializations. Female bottlenose dolphins may demonstrate individual specialization in foraging habits because it reduces some of the cost of living in groups, such as competition for prey.
Just follow your nose: homing by olfactory cues in ants.
Steck, Kathrin
2012-04-01
How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evaluating pasture and soil allowance of manganese for Kajli rams grazing in semi-arid environment.
Khan, Zafar Iqbal; Ahmad, Kafeel; Ashraf, Muhammad; Naqvi, Syed Ali Hassan; Seidavi, Alireza; Akram, Nudrat Aisha; Laudadio, Vito; Tufarelli, Vincenzo
2015-03-01
The current research on the manganese (Mn) transfer from soil to plant as well as to grazing Kajli rams in the form of sampling periods was carried out under semi-arid environmental conditions. Forage, soil and blood plasma samples were collected during 4 months of the year after a 1-month interval, and Mn concentrations were assessed after wet digestion using an atomic absorption spectrophotometer. Results showed that Mn concentration in soil ranged from 48.28 to 59.44 mg/kg, with incoherent augment and decline across sampling periods, and effect of sampling period on soil Mn was also found to be significant (P < 0.05). The mean levels of Mn in soil appeared higher than the critical value and sufficient for forage crop requirement. The Mn concentration in forage ranged between 24.8 and 37.2 mg/kg, resulting deficient based on the requirement allowance of Mn for livestock grazing animals, therein with almost unchanged forage Mn concentration. The Mn values in blood plasma of rams varied from 0.066 to 0.089 mg/l, with a consistent increase based on sampling period, and the effect of sampling periods on plasma Mn was found to be highly significant (P < 0.05). The Mn levels in ram blood plasma were lesser than the normal level suggesting reasonable need for supplementation. Our study revealed the role of Mn availability in soil and plant species amassing capability on the transport of Mn in the soil-plant-animal system. Results indicated a much higher accumulation rate at the sampling characterized by vegetation dominated by legumes in comparison to grasses, crop residues and mixed pasture and a pronounced seasonal supply of Mn at the four sampling period of grazing land of diverse botanical composition.
Hunter-Gatherer Energetics and Human Obesity
Pontzer, Herman; Raichlen, David A.; Wood, Brian M.; Mabulla, Audax Z. P.; Racette, Susan B.; Marlowe, Frank W.
2012-01-01
Western lifestyles differ markedly from those of our hunter-gatherer ancestors, and these differences in diet and activity level are often implicated in the global obesity pandemic. However, few physiological data for hunter-gatherer populations are available to test these models of obesity. In this study, we used the doubly-labeled water method to measure total daily energy expenditure (kCal/day) in Hadza hunter-gatherers to test whether foragers expend more energy each day than their Western counterparts. As expected, physical activity level, PAL, was greater among Hadza foragers than among Westerners. Nonetheless, average daily energy expenditure of traditional Hadza foragers was no different than that of Westerners after controlling for body size. The metabolic cost of walking (kcal kg−1 m−1) and resting (kcal kg−1 s−1) were also similar among Hadza and Western groups. The similarity in metabolic rates across a broad range of cultures challenges current models of obesity suggesting that Western lifestyles lead to decreased energy expenditure. We hypothesize that human daily energy expenditure may be an evolved physiological trait largely independent of cultural differences. PMID:22848382
Hunter-gatherer energetics and human obesity.
Pontzer, Herman; Raichlen, David A; Wood, Brian M; Mabulla, Audax Z P; Racette, Susan B; Marlowe, Frank W
2012-01-01
Western lifestyles differ markedly from those of our hunter-gatherer ancestors, and these differences in diet and activity level are often implicated in the global obesity pandemic. However, few physiological data for hunter-gatherer populations are available to test these models of obesity. In this study, we used the doubly-labeled water method to measure total daily energy expenditure (kCal/day) in Hadza hunter-gatherers to test whether foragers expend more energy each day than their Western counterparts. As expected, physical activity level, PAL, was greater among Hadza foragers than among Westerners. Nonetheless, average daily energy expenditure of traditional Hadza foragers was no different than that of Westerners after controlling for body size. The metabolic cost of walking (kcal kg(-1) m(-1)) and resting (kcal kg(-1) s(-1)) were also similar among Hadza and Western groups. The similarity in metabolic rates across a broad range of cultures challenges current models of obesity suggesting that Western lifestyles lead to decreased energy expenditure. We hypothesize that human daily energy expenditure may be an evolved physiological trait largely independent of cultural differences.
Sensory reception of the primer pheromone ethyl oleate
NASA Astrophysics Data System (ADS)
Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang
2012-05-01
Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.
Chase, T J; Nowicki, J P; Coker, D J
2018-06-06
In situ observations of diurnal foraging behaviour of a common site-attached shallow reef mesopredator Parapercis australis during late summer, revealed that although diet composition was unaffected by seawater temperature (range 28.3-32.4° C), feeding strikes and distance moved increased with temperature up to 30.5° C, beyond which they sharply declined, indicative of currently living beyond their thermal optimum. Diel feeding strikes and distance moved were however, tightly linked to ambient temperature as it related to the population's apparent thermal optimum, peaking at times when it was approached (1230 and 1700 hours) and declining up to four fold at times deviating from this. These findings suggest that although this population may be currently living beyond its thermal optimum, it copes by down regulating energetically costly foraging movement and consumption and under future oceanic temperatures, these behavioural modifications are probably insufficient to avoid deleterious effects on population viability without the aid of long-term acclimation or adaptation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chang, Lun-Hsien; Barron, Andrew B; Cheng, Ken
2015-06-01
Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline. © 2015. Published by The Company of Biologists Ltd.
Withers, Ginger S; Day, Nancy F; Talbot, Emily F; Dobson, Heidi E M; Wallace, Christopher S
2008-01-01
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.
Lewison, R.L.; Carter, J.
2004-01-01
Herbivore foraging theories have been developed for and tested on herbivores across a range of sizes. Due to logistical constraints, however, little research has focused on foraging behavior of megaherbivores. Here we present a research approach that explores megaherbivore foraging behavior, and assesses the applicability of foraging theories developed on smaller herbivores to megafauna. With simulation models as reference points for the analysis of empirical data, we investigate foraging strategies of the common hippopotamus (Hippopotamus amphibius). Using a spatially explicit individual based foraging model, we apply traditional herbivore foraging strategies to a model hippopotamus, compare model output, and then relate these results to field data from wild hippopotami. Hippopotami appear to employ foraging strategies that respond to vegetation characteristics, such as vegetation quality, as well as spatial reference information, namely distance to a water source. Model predictions, field observations, and comparisons of the two support that hippopotami generally conform to the central place foraging construct. These analyses point to the applicability of general herbivore foraging concepts to megaherbivores, but also point to important differences between hippopotami and other herbivores. Our synergistic approach of models as reference points for empirical data highlights a useful method of behavioral analysis for hard-to-study megafauna. ?? 2003 Elsevier B.V. All rights reserved.
Source levels of foraging humpback whale calls.
Fournet, Michelle E H; Matthews, Leanna P; Gabriele, Christine M; Mellinger, David K; Klinck, Holger
2018-02-01
Humpback whales produce a wide range of low- to mid-frequency vocalizations throughout their migratory range. Non-song "calls" dominate this species' vocal repertoire while on high-latitude foraging grounds. The source levels of 426 humpback whale calls in four vocal classes were estimated using a four-element planar array deployed in Glacier Bay National Park and Preserve, Southeast Alaska. There was no significant difference in source levels between humpback whale vocal classes. The mean call source level was 137 dB RMS re 1 μPa @ 1 m in the bandwidth of the call (range 113-157 dB RMS re 1 μPa @ 1 m), where bandwidth is defined as the frequency range from the lowest to the highest frequency component of the call. These values represent a robust estimate of humpback whale source levels on foraging grounds and should append earlier estimates.
Jaeggi, Adrian V; Dunkel, Lynda P; Van Noordwijk, Maria A; Wich, Serge A; Sura, Agnes A L; Van Schaik, Carel P
2010-01-01
Studies of social learning in the wild are important to complement findings from experiments in captivity. In this field study, immature Bornean orangutans rarely foraged independently but consistently followed their mothers' choices. Their diets were essentially identical to their mothers' even though not all mothers had the same diet. This suggests vertical transmission of diet by enhancement. Also, immatures selectively observed their mothers during extractive foraging, which increased goal-directed practice but not general manipulation of similar objects, suggesting observational forms of learning of complex skills. Teaching was not observed. These results are consistent with the reported presence of food traditions and skill cultures in wild orangutans. We suggest that food traditions can develop wherever association commonly allows for social learning. However, the capacity for observational learning, and thus more complex culture, is more likely to evolve among extractive foragers with prolonged association between adults and immatures. (c) 2009 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.
1977-01-01
A network of sampling sites throughout the annual grassland region was established to correlate plant growth in stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. Data were analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site, and changing growth conditions.
Seasonal regulation of condensed tannin consumption by free-ranging goats in a semi-arid savanna
Heitkӧnig, Ignas M. A.; Scogings, Peter F.; Hattas, Dawood; Dziba, Luthando E.; Prins, Herbert H. T.; de Boer, Willem F.
2018-01-01
Although condensed tannins (CTs) are known to reduce forage intake by mammalian herbivores in controlled experiments, few studies have tested these effects in the field. Thus the role of CTs on foraging ecology of free-ranging herbivores is inadequately understood. To investigate the effects of CTs under natural savanna conditions, we pre-dosed groups of goats with polyethylene glycol (PEG, a CT-neutralising chemical), CT powder or water before observing their foraging behaviour. While accounting for the effects of season and time of the day, we tested the hypothesis that herbivores forage in ways that reduce the intake rate (g DM per minute) of CTs. We expected pre-dosing goats with CTs to reduce CT intake rates by (1) consuming diets low in CTs, (2) reducing bite rates, (3) increasing the number of foraging bouts, or (4) reducing the length of foraging bouts. Lastly, (5) expected CT to have no influence the number of dietary forage species. In both wet and dry seasons, pre-dosing goats with CTs resulted in lower CT consumption rates compared to PEG goats which seemed relieved from the stress associated with CT consumption. During dry season, the number of dietary forage species was similar across treatments, although goats that were dosed with PEG significantly increased this number in the wet season. Dosing goats with PEG increased the number and length of browsing bouts compared to goats from the other treatments. Pre-loading goats with PEG also tended to increase bite rates on browse forages, which contributed to increased consumption rates of CTs. Based on the behavioural adjustments made by goats in this study and within the constraints imposed by chemical complexity in savanna systems, we concluded that herbivores under natural conditions foraged in ways that minimised CTs consumption. More research should further elucidate the mechanism through which CTs regulated feeding behaviour. PMID:29293513
Reinforcer Magnitude Attenuates Apomorphine's Effects on Operant Pecking
ERIC Educational Resources Information Center
Pinkston, Jonathan W.; Lamb, R. J.
2012-01-01
When given to pigeons, the direct-acting dopamine agonist apomorphine elicits pecking. The response has been likened to foraging pecking because it bears remarkable similarity to foraging behavior, and it is enhanced by food deprivation. On the other hand, other data suggest the response is not related to foraging behavior and may even interfere…
Fisher, Adrian; Colman, Chet; Hoffmann, Clint; Fritz, Brad; Rangel, Juliana
2018-04-02
The honey bee (Apis mellifera L. (Hymenoptera: Apidae)) contributes an essential role in the U.S. economy by pollinating major agricultural crops including almond, which depends entirely on honey bee pollination for successful nut set. Almond orchards are often treated with pesticides to control a variety of pests and pathogens, particularly during bloom. While the effects to honey bee health of some insecticides, particularly neonicotinoids, have received attention recently, the impact of other types of insecticides on honey bee health is less clear. In this study, we examined the effects to honey bee forager survival of three non-neonicotinoid pesticides widely used during the 2014 California almond bloom. We collected foragers from a local apiary and exposed them to three pesticides at the label dose, or at doses ranging from 0.5 to 3 times the label dose rate. The selected pesticides included the insect growth regulators methoxyfenozide and pyriproxyfen, and the acaricide bifenazate. We simulated field exposure of honey bees to these pesticides during aerial application in almond orchards by using a wind tunnel and atomizer set up with a wind speed of 2.9 m/s. Experimental groups consisting of 30-40 foragers each were exposed to either untreated controls or pesticide-laden treatments and were monitored every 24 hr over a 10-d period. Our results revealed a significant negative effect of all pesticides tested on forager survival. Therefore, we suggest increased caution in the application of these pesticides in almond orchards or any agricultural crop during bloom to avoid colony health problems.
Responses of horses offered a choice between stables containing single or multiple forages.
Goodwin, D; Davidson, H P B; Harris, P
2007-04-21
To investigate the choices of foraging location of horses, 10 to 12 horses were introduced for five minutes into each of two similar stables containing a single forage or six forages, in four replicated trials. The horses were then removed and released into the gangway between the stables, and allowed five minutes to choose between the stables. Their initial and final choices, mean duration in each stable and proportional frequency of change of location were compared. Most of the horses initially entered the closest stable on release (P<0.05); if the closest stable contained a single hay, most horses transferred to the stable containing multiple forages (P<0.001). The length of time spent by the horses in the two stables suggested that they preferred multiple forages in multiple locations (P<0.001). Eleven horses moved from one stable to the other on one or more occasions during trials when hay or a preferred forage was available in both stables, possibly indicating a motivation to move between foraging locations regardless of the palatability of the forages offered or the horses' preference for a forage.
Boal, C.W.; Andersen, D.E.; Kennedy, P.L.
2005-01-01
We used radiotelemetry to examine foraging habitat preferences of 17 breeding, male northern goshawks (Accipiter gentilis) in Minnesota from 1998-2000. We assessed habitat preference using radio relocation points and 50-m radius buffers of radio relocation points. Our data suggested that foraging male goshawks used early-successional upland conifer stands (???25 yrs old), early-successional upland deciduous stands (???50 yrs old), late-successional upland conifer stands (???50 yrs old), and late-successional upland deciduous stands (???50 yrs old) more frequently than expected based on the abundance of these vegetation types in the landscape. The 2 most available stand types, early-successional upland deciduous (<25 yrs old) and all ages of late-successional lowland conifer stands, were used less than expected by foraging goshawks. Late-successional lowland deciduous stands (???50 yrs old) were used in proportion to availability. Although analysis of relocation points suggested early-successional upland deciduous stands (25-49 yrs old) and late-successional upland conifer stands (???50 yrs old) were used in proportion to availability, analysis of buffers around relocation points indicated that these stand types were also used more than expected by foraging goshawks. Regardless of vegetation community type, stands used by goshawks were structurally similar with high canopy and understory stem densities, high canopy closure, substantial shrub cover, and large amounts of woody debris. Nest stands consisted of taller and larger diameter canopy trees and fewer understory trees than foraging stands, but stands were otherwise similar in structural features, suggesting goshawks used similar stands for nesting and foraging but that they tended to select the most mature stands for nesting. A commonality among nesting and foraging stands was the presence of open spaces between the canopy and understory foliage, and between understory and shrub layer foliage. In our study area, these spaces may have served as relatively unobstructed flight paths where foraging and nesting stands possessed stem densities at the upper end of that reported for goshawk habitat.
Exploratory behavior of a native anuran species with high invasive potential.
Miller, Amanda J; Page, Rachel A; Bernal, Ximena E
2018-01-01
Exploratory behavior can be a key component of survival in novel or changing environments, ultimately determining population establishment. While many studies have investigated the behavior of wild animals in response to novel food items or objects, our understanding of how they explore novel environments is limited. Here, we examine how experience affects the foraging behavior of a species with high invasive potential. In particular, we investigate the movement and behavior of cane toads as a function of experience in a novel environment, and how the presence of food modulates exploration. Cane toads, from a population in their native range, were repeatedly tested in a large, naturalistic arena with or without food present. Both groups exhibited significant but different changes in exploratory behavior. While toads in an environment without food reduced exploratory behavior over trials, those with food present increased both food intake per trial and the directness of their paths to food, resulting in fewer approaches to food patches over time. Our results suggest that cane toads learn patch location and provide preliminary evidence suggesting toads use spatial memory, not associative learning, to locate food. In sum, we show that with experience, cane toads alter their behavior to increase foraging efficiency. This study emphasizes the role of learning in foraging in cane toads, a characteristic that may have facilitated their success as invaders.
Sautin, Yuri Y.; Oliver, William J.; Roncal, Carlos; Mu, Wei; Sanchez-Lozada, L. Gabriela; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Benner, Steven A.
2009-01-01
Uric acid has historically been viewed as a purine metabolic waste product excreted by the kidney and gut that is relatively unimportant other than its penchant to crystallize in joints to cause the disease gout. In recent years, however, there has been the realization that uric acid is not biologically inert but may have a wide range of actions, including being both a pro- and anti-oxidant, a neurostimulant, and an inducer of inflammation and activator of the innate immune response. In this paper, we present the hypothesis that uric acid has a key role in the foraging response associated with starvation and fasting. We further suggest that there is a complex interplay between fructose, uric acid and vitamin C, with fructose and uric acid stimulating the foraging response and vitamin C countering this response. Finally, we suggest that the mutations in ascorbate synthesis and uricase that characterized early primate evolution were likely in response to the need to stimulate the foraging “survival” response and might have inadvertently had a role in accelerating the development of bipedal locomotion and intellectual development. Unfortunately, due to marked changes in the diet, resulting in dramatic increases in fructose- and purine-rich foods, these identical genotypic changes may be largely responsible for the epidemic of obesity, diabetes and cardiovascular disease in today’s society. PMID:18649082
de Jong, Carol; Field, Hume; Tagtag, Anson; Hughes, Tom; Dechmann, Dina; Jayme, Sarah; Epstein, Jonathan H; Epstein, Jonathan; Smith, Craig; Santos, Imelda; Catbagan, Davinio; Lim, Mundita; Benigno, Carolyn; Daszak, Peter; Newman, Scott
2013-01-01
Species of Old World fruit-bats (family Pteropodidae) have been identified as the natural hosts of a number of novel and highly pathogenic viruses threatening livestock and human health. We used GPS data loggers to record the nocturnal foraging movements of Acerodon jubatus, the Golden-crowned flying fox in the Philippines to better understand the landscape utilisation of this iconic species, with the dual objectives of pre-empting disease emergence and supporting conservation management. Data loggers were deployed on eight of 54 A. jubatus (two males and six females) captured near Subic Bay on the Philippine island of Luzon between 22 November and 2 December 2010. Bodyweight ranged from 730 g to 1002 g, translating to a weight burden of 3-4% of bodyweight. Six of the eight loggers yielded useful data over 2-10 days, showing variability in the nature and range of individual bat movements. The majority of foraging locations were in closed forest and most were remote from evident human activity. Forty-six discrete foraging locations and five previously unrecorded roost locations were identified. Our findings indicate that foraging is not a random event, with the majority of bats exhibiting repetitious foraging movements night-to-night, that apparently intact forest provides the primary foraging resource, and that known roost locations substantially underestimate the true number (and location) of roosts. Our initial findings support policy and decision-making across perspectives including landscape management, species conservation, and potentially disease emergence.
Food foraging of honey bees in a microwave field (2. 45 GHz CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary, N.E.; Westerdahl, B.B.
1982-02-15
Honey bees were trained to fly 400 m from their colony to an indoor laboratory foraging arena exposed to 2.45 GHz continuous wave microwaves at 5 power densities (0, 5, 10, 20, and 40 mW/cm/sup 2/). Foraging behavior did not differ from controls foraging within an unexposed sham arena in (1) number of round trips completed during a 3-h exposure session, (2) round trip time between the colony and the foraging arena, and (3) the length of time required to navigate the illuminated foraging arena. This study indicates that honey bees would not be adversely affected by foraging within amore » similar microwave field that would exist in future receiving antennae for the proposed solar power satellite energy transmission system in which power levels are expected to range from 23 mW/cm/sup 2/ at the antenna center to 1 mW/cm/sup 2/ at the edge.« less
NASA Astrophysics Data System (ADS)
Spitz, Jérôme; Rousseau, Yann; Ridoux, Vincent
2006-10-01
In aquatic ecosystems, competitive interactions are occasionally described. Violent attacks on harbour porpoises by bottlenose dolphins were reported and it was proposed that this behavior could result from competitive interactions for food. This hypothesis implies that the two predators should share all or part of they prey range. In this work, we describe the diets of each predator in the Bay of Biscay and adjacent areas from stomach content analysis of stranded animals. The diet of the harbour porpoise was mostly composed of small schooling fish living close to the seafloor (98 percent by mass). The diet of the bottlenose dolphin was characterised by the presence of large specimens of demersal fish (91 percent by mass) and cephalopods. Several prey species are common in the two diets and even the length distributions of some of them, such as sardine or scads, are very similar. However, global indices such as the Mantel test or the Pianka's index indicate no or weak overlap. The dietary results suggest that the two predators show partial dietary overlap over several major dimensions of the foraging niche: prey profile, foraging habitats, prey species and size range. We suggest interference competition is plausible at the scale of a prey school that would be exploited jointly by groups of the two predators.
Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R
2015-11-09
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.
Koda, Hiroki
2012-09-01
Heterospecific communication signals sometimes convey relevant information for animal survival. For example, animals use or eavesdrop on heterospecific alarm calls concerning common predators. Indeed, most observations have been reported regarding anti-predator strategies. Use of heterospecific signals has rarely been observed as part of a foraging strategy. Here, I report empirical evidence, collected using playback experiments, showing that Japanese sika deer, Cevus nippon, use heterospecific food calls of Japanese macaques, Macaca fuscata yakui, for foraging efficiency. The deer and macaques both inhabit the wild forest of Yakushima Island with high population densities and share many food items. Anecdotal observations suggest that deer often wait to browse fruit falls under the tree where a macaque group is foraging. Furthermore, macaques frequently produce food calls during their foraging. If deer effectively obtain fruit from the leftovers of macaques, browsing fruit fall would provide a potential benefit to the deer, and, further, deer are likely to associate macaque food calls with feeding activity. The results showed that playback of macaque food calls under trees gathered significantly more deer than silence control periods. These results suggest that deer can associate macaque food calls with foraging activities and use heterospecific calls for foraging efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.
Chouteau, Philippe
2009-06-01
Two ground-dwelling couas species, Coquerel's Coua Coua coquereli and Giant Coua Coua gigas, live in sympatry in the dry forest of Madagascar. These birds are typically insectivorous and mainly feed at ground level. The two species differ by size but have the same morphology, suggesting they have the same physical attributes for foraging and prey capture. To test if the two species have the same foraging behaviour, and also to know how habitat disturbance due to logging could affect their foraging behaviour, I compared and analysed the foraging strategies of both species in two different dry forest habitats: unlogged and logged. The two species differed in their foraging behaviour between the two habitats, mainly by the ability to climb in the vegetation, and by the technique used by both species. Coquerel's Coua used more often gleaning and probing in the unlogged forest, while Giant Coua used lunge more often in this habitat. The giant Coua used also more often leaves as a substrate in the logged forest. Some modifications in the diet have been recorded too. These results suggest that anthropogenic disturbance of forest does influence the foraging behaviour of the terrestrial couas species living in the dry forest in Madagascar.
Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.
2015-01-01
Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293
Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E
2013-01-01
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.
NASA Astrophysics Data System (ADS)
von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.
2016-11-01
Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.
Thuy Diep, A; Larsen, H; Rault, J-L
2018-04-01
Access to an outdoor area is believed to allow free-range hens to express a greater behavioural repertoire. However, very little research has been done in this area. We hypothesised that the type and frequency of behaviours would differ between areas that vary in their characteristics and distance from the shed. This preliminary study investigated the behaviour of free-range laying hens in indoor and outdoor areas on one commercial free-range farm, through video recordings and scan sampling of focal hens, with the aim of determining their behavioural repertoire and time budget. While ranging, hens spent most of their time foraging. Indoors, hens preened and rested. Behaviour in the wintergarden showed similarities to both the indoor and outdoor areas, with preening, resting and foraging behaviours. Differences were not in the main behavioural repertoire, but rather in terms of time budget, with access to the range and wintergarden encouraging exploration. There was no difference in the types of behaviours that hens performed in the outdoor range compared with inside the shed, but access to a wintergarden and the outdoor range were favoured by the hens for foraging. © 2018 Australian Veterinary Association.
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers.
Romanek, C S; Gaines, K F; Bryan, A L; Brisbin, I L
2000-12-01
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/ 12 C) and nitrogen ( 15 N/ 14 N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15 N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States.
Ranging Behaviour of Commercial Free-Range Laying Hens
Chielo, Leonard Ikenna; Pike, Tom; Cooper, Jonathan
2016-01-01
Simple Summary Commercial free-range production has become a significant sector of the fresh egg market due to legislation banning conventional cages and consumer preference for products perceived as welfare friendly, as access to outdoor range can lead to welfare benefits such as greater freedom of movement and enhanced behavioural opportunities. This study investigated dispersal patterns, feather condition and activity of laying hens in three distinct zones of the range area; the apron area near shed; enriched zone 10–50 m from shed; and outer range beyond 50 m, in six flocks of laying hens under commercial free-range conditions varying in size between 4000 and 24,000 hens. Each flock was visited for four days to record number of hens in each zone, their behaviour, feather condition and nearest neighbour distances (NND), as well as record temperature and relative humidity during the visit. Temperature and relative humidity varied across the study period in line with seasonal variations and influenced the use of range with fewer hens out of shed as temperature fell or relative humidity rose. On average, 12.5% of the hens were observed on the range and most of these hens were recorded in the apron zone as hen density decreased rapidly with increasing distance from the shed. Larger flocks appeared to have a lower proportion of hens on range. The hens used the range more in the early morning followed by a progressive decrease through to early afternoon. The NND was greatest in the outer range and decreased towards the shed. Feather condition was generally good and hens observed in the outer range had the best overall feather condition. Standing, pecking, walking and foraging were the most commonly recorded behaviours and of these, standing occurred most in the apron whereas walking and foraging behaviours were recorded most in the outer range. This study supported the findings of previous studies that reported few hens in the range and greater use of areas closer to the shed in free-range flocks. This study suggests that hens in the outer range engaged more in walking and foraging activities and showed signs of better welfare than those closer to the shed. Abstract In this study, the range use and behaviour of laying hens in commercial free-range flocks was explored. Six flocks were each visited on four separate days and data collected from their outdoor area (divided into zones based on distance from shed and available resources). These were: apron (0–10 m from shed normally without cover or other enrichments); enriched belt (10–50 m from shed where resources such as manmade cover, saplings and dust baths were provided); and outer range (beyond 50 m from shed with no cover and mainly grass pasture). Data collection consisted of counting the number of hens in each zone and recording behaviour, feather condition and nearest neighbour distance (NND) of 20 birds per zone on each visit day. In addition, we used techniques derived from ecological surveys to establish four transects perpendicular to the shed, running through the apron, enriched belt and outer range. Number of hens in each 10 m × 10 m quadrat was recorded four times per day as was the temperature and relative humidity of the outer range. On average, 12.5% of hens were found outside. Of these, 5.4% were found in the apron; 4.3% in the enriched zone; and 2.8% were in the outer range. This pattern was supported by data from quadrats, where the density of hens sharply dropped with increasing distance from shed. Consequently, NND was greatest in the outer range, least in the apron and intermediate in the enriched belt. Hens sampled in outer range and enriched belts had better feather condition than those from the apron. Standing, ground pecking, walking and foraging were the most commonly recorded activities with standing and pecking most likely to occur in the apron, and walking and foraging more common in the outer range. Use of the outer range declined with lower temperatures and increasing relative humidity, though use of apron and enriched belt was not affected by variation in these measures. These data support previous findings that outer range areas tend to be under-utilized in commercial free-range flocks and suggest positive relationships between range use, feather condition and increased behavioural opportunities and decline in the use of range in cold and/or damp conditions. PMID:27128946
Monsarrat, Sophie; Benhamou, Simon; Sarrazin, François; Bessa-Gomes, Carmen; Bouten, Willem; Duriez, Olivier
2013-01-01
Feeding stations are commonly used to sustain conservation programs of scavengers but their impact on behaviour is still debated. They increase the temporal and spatial predictability of food resources while scavengers have supposedly evolved to search for unpredictable resources. In the Grands Causses (France), a reintroduced population of Griffon vultures Gyps fulvus can find carcasses at three types of sites: 1. "light feeding stations", where farmers can drop carcasses at their farm (spatially predictable), 2. "heavy feeding stations", where carcasses from nearby farms are concentrated (spatially and temporally predictable) and 3. open grasslands, where resources are randomly distributed (unpredictable). The impact of feeding stations on vulture's foraging behaviour was investigated using 28 GPS-tracked vultures. The average home range size was maximal in spring (1272 ± 752 km(2)) and minimal in winter (473 ± 237 km(2)) and was highly variable among individuals. Analyses of home range characteristics and feeding habitat selection via compositional analysis showed that feeding stations were always preferred compared to the rest of the habitat where vultures can find unpredictable resources. Feeding stations were particularly used when resources were scarce (summer) or when flight conditions were poor (winter), limiting long-ranging movements. However, when flight conditions were optimal, home ranges also encompassed large areas of grassland where vultures could find unpredictable resources, suggesting that vultures did not lose their natural ability to forage on unpredictable resources, even when feeding stations were available. However during seasons when food abundance and flight conditions were not limited, vultures seemed to favour light over heavy feeding stations, probably because of the reduced intraspecific competition and a pattern closer to the natural dispersion of resources in the landscape. Light feeding stations are interesting tools for managing food resources, but don't prevent vultures to feed at other places with possibly high risk of intoxication (poison).
Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options
Islam, M. R.; Garcia, S. C.; Clark, C. E. F.; Kerrisk, K. L.
2015-01-01
One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty. PMID:25924963
Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options.
Islam, M R; Garcia, S C; Clark, C E F; Kerrisk, K L
2015-05-01
One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1-km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Niño years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.
Variability in foraging behaviour of red-footed boobies nesting on Europa Island
NASA Astrophysics Data System (ADS)
Mendez, Loriane; Cotté, Cédric; Prudor, Aurélien; Weimerskirch, Henri
2016-04-01
Seabirds are considered to be good indicators of the marine environment. However, little is known about the effects of environmental variability on the foraging behaviour of tropical seabirds. Red-footed boobies (RFB) nesting on Europa Island (Mozambique Channel) were fitted with GPS devices over four years and different breeding stages. We first show that the durations of foraging trips vary extensively according to the stage of the breeding, being short during brooding, intermediate during incubation and long during fledging. This result highlights the importance of considering breeding stage when conducting comparisons of foraging between sites or years. In addition, we show that RFB adjusted their foraging behaviour between years (2003, 2011, 2012 and 2013) according to the prevailing environmental conditions. During 2011, RFB made longer foraging trips with larger area-restricted search (ARS) zones over a larger total surface area, suggesting that the foraging conditions were probably poor. This year was characterized by a decrease of the major environmental drivers of the Mozambique Channel system, i.e. particularly low chlorophyll concentrations in the northern part of the Mozambique Channel, as well as a weak eddy activity. This observation suggests that environmental conditions may have altered the southward transport and concentration processes structuring the trophic chain, leading to adverse conditions for a central-place forager like the RFB. Our results emphasize that environmental and breeding stage variation should be taken into account to better understand the distribution of these predators in marine tropical ecosystems.
Herring, Garth; Collazo, Jaime
2009-01-01
We examined site characteristics and prey abundances where wintering Aythya affinis (Lesser Scaup; hereafter scaup) foraged within three regions of the Indian River Lagoon system in central Florida. We observed that scaup concentrated in the Indian and Banana rivers; however, density of prey items did not differ between foraging sites and random sites. We also found that site characteristics were similar between foraging and random sites. Differences in site characteristics between random points across all three regions did not explain the distribution of Foraging scaup (no scaup foraged in the Mosquito Lagoon); however, prey densities were approximately 3 times lower in the Mosquito Lagoon region. Our study suggests that current habitat conditions within the northern Indian River Lagoon system meet the overwintering requirements of scaup; however, prey densities in the Mosquito Lagoon may have been too low to be profitable for foraging scaup during the period of our study.
Do wintering Harlequin Ducks forage nocturnally at high latitudes?
Rizzolo, D.J.; Esler, Daniel N.; Roby, D.D.; Jarvis, R.L.
2005-01-01
We monitored radio-tagged Harlequin Ducks (Histrionicus histrionicus) to determine whether nocturnal feeding was part of their foraging strategy during winter in south-central Alaska. Despite attributes of our study site (low ambient temperatures, harsh weather, short day length) and study species (small body size, high daytime foraging rates) that would be expected to favor nocturnal foraging, we found no evidence of nocturnal dive-feeding. Signals from eight radio-tagged Harlequin Ducks never exhibited signal loss due to diving during a total of 780 minutes of nocturnal monitoring. In contrast, the same eight birds exhibited signal loss during 62 ± 7% (SE) of 5-minute diurnal monitoring periods (total of 365 minutes of monitoring). Our results suggest that Harlequin Ducks in south-central Alaska face a stringent time constraint on daytime foraging during midwinter. Harlequin Ducks wintering at high latitudes, therefore, may be particularly sensitive to factors that increase foraging requirements or decrease foraging efficiency.
Jennings, David E; Krupa, James J; Rohr, Jason R
2016-07-01
Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Foraging location and site fidelity of the Double-crested Cormorant on Oneida Lake, New York
Coleman, J.T.H.; Richmond, M.E.; Rudstam, L. G.; Mattison, P.M.
2005-01-01
We studied the foraging behavior of the Double-crested Cormorant (Phalacrocorax auritus) on Oneida Lake, New York, by monitoring the activities of 27 radio-tagged birds in July and August of 1999 and 2000. A total of 224 locations were obtained of cormorants actively diving, and presumed foraging, at the time of detection. A geographic information system was used to examine foraging distances from the nesting island, the water depth and type of substrate at preferred foraging sites, and to estimate kernel home ranges for analysis of individual foraging site fidelity. An explanatory model was developed to determine parameters affecting the distance to cormorant foraging sites. The mean distance to foraging locations of tagged cormorants from the colony site was 2,920 m (SE ?? 180 m, max = 14,190 m), and 52% of the locations were within 2,000 m of the nesting island. No cormorant was observed making daily foraging trips to outside water bodies. Mean foraging distance was greater during morning than in the afternoon, and there was a significant effect of the time of day on distance. There was no significant effect of sex date, a seasonal measure on distance to foraging location. Individual cormorants exhibited fidelity to specific foraging sites. Most cormorants foraged in close proximity to the nesting island much of the time, while those detected further from the island tended to return repeatedly to the same locations. Ninety percent of the foraging locations were in water depths ???7.5 m, and most were in water 2.5-5 m deep. Compositional analysis of habitat use revealed a preference for these depths, along with substrates of cobble with rubble, and silt with clay.
Lai, Sandra; Bêty, Joël; Berteaux, Dominique
2015-01-01
The scale at which animals perceive their environment is a strong fitness determinant, yet few empirical estimates of animal detection ranges exist, especially in mammalian predators. Using daily Argos satellite tracking of 26 adult arctic foxes (Vulpes lagopus) during a single winter in the High Canadian Arctic, we investigated the detection range of arctic foxes by detecting hotspots of fox activity on the sea ice. While maintaining territories in the tundra, these solitary foragers occasionally used the sea ice where they sometimes formed spatio-temporal hotspots, likely scavenging on marine mammal carcasses. We detected 35 movements by 13 individuals forming five hotspots. Foxes often traveled more than 10 km, and up to 40 km, to reach hotspots, which lasted one-two weeks and could gather up to 12 individuals. The likelihood of a fox joining a hotspot was neither influenced by its distance from the hotspot nor by the distance of its home range to the coast. Observed traveling distances may indicate a high detection range in arctic foxes, and our results suggest their ability to detect food sources on the sea ice from their terrestrial home range. While revealing a wide knowledge gap regarding resource detection abilities in mammalian predators, our study provides estimates of detection range useful for interpreting and modeling animal movements. It also allows a better understanding of foraging behavior and navigation capacity in terrestrial predators.
Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.
2017-01-01
Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine–energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC– and T3–energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management.
Habitat-specific foraging strategies in Australasian gannets
Wells, Melanie R.; Arnould, John P. Y.
2016-01-01
ABSTRACT Knowledge of top predator foraging adaptability is imperative for predicting their biological response to environmental variability. While seabirds have developed highly specialised techniques to locate prey, little is known about intraspecific variation in foraging strategies with many studies deriving information from uniform oceanic environments. Australasian gannets (Morus serrator) typically forage in continental shelf regions on small schooling prey. The present study used GPS and video data loggers to compare habitat-specific foraging strategies at two sites of contrasting oceanographic regimes (deep water near the continental shelf edge, n=23; shallow inshore embayment, n=26), in south-eastern Australia. Individuals from the continental shelf site exhibited pelagic foraging behaviours typical of gannet species, using local enhancement to locate and feed on small schooling fish; in contrast only 50% of the individuals from the inshore site foraged offshore, displaying the typical pelagic foraging strategy. The remainder adopted a strategy of searching sand banks in shallow inshore waters in the absence of conspecifics and other predators for large, single prey items. Furthermore, of the individuals foraging inshore, 93% were male, indicating that the inshore strategy may be sex-specific. Large inter-colony differences in Australasian gannets suggest strong plasticity in foraging behaviours, essential for adapting to environmental change. PMID:27305927
Suboptimal foraging behavior: A new perspective on gambling
Addicott, Merideth A.; Pearson, John M.; Kaiser, Nicole; Platt, Michael L.; McClernon, F. Joseph
2015-01-01
Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling – yearly (or less), monthly, and weekly – and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a patchy foraging task. Gambling-related beliefs negatively related to performance on the patchy foraging task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency- and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. PMID:26191945
Suboptimal foraging behavior: a new perspective on gambling.
Addicott, Merideth A; Pearson, John M; Kaiser, Nicole; Platt, Michael L; McClernon, F Joseph
2015-10-01
Why do people gamble? Conventional views hold that gambling may be motivated by irrational beliefs, risk-seeking, impulsive temperament, or dysfunction within the same reward circuitry affected by drugs of abuse. An alternate, unexplored perspective is that gambling is an extension of natural foraging behavior to a financial environment. However, when these foraging algorithms are applied to stochastic gambling outcomes, undesirable results may occur. To test this hypothesis, we recruited participants based on their frequency of gambling-yearly (or less), monthly, and weekly-and investigated how gambling frequency related to irrational beliefs, risk-taking/impulsivity, and foraging behavior. We found that increased gambling frequency corresponded to greater gambling-related beliefs, more exploratory choices on an explore/exploit foraging task, and fewer points earned on a Patchy Foraging Task. Gambling-related beliefs negatively related to performance on the Patchy Foraging Task, indicating that individuals with more gambling-related cognitions tended to leave a patch too quickly. This indicates that frequent gamblers have reduced foraging ability to maximize rewards; however, gambling frequency -and by extension, poor foraging ability- was not related to risk-taking or impulsive behavior. These results suggest that gambling reflects the application of a dysfunctional foraging process to financial outcomes. (c) 2015 APA, all rights reserved).
A global comparison of the nutritive values of forage plants grown in contrasting environments.
Lee, Mark A
2018-03-17
Forage plants are valuable because they maintain wild and domesticated herbivores, and sustain the delivery of meat, milk and other commodities. Forage plants contain different quantities of fibre, lignin, minerals and protein, and vary in the proportion of their tissue that can be digested by herbivores. These nutritive components are important determinants of consumer growth rates, reproductive success and behaviour. A dataset was compiled to quantify variation in forage plant nutritive values within- and between-plant species, and to assess variation between plant functional groups and bioclimatic zones. 1255 geo-located records containing 3774 measurements of nutritive values for 136 forage plant species grown in 30 countries were obtained from published articles. Spatial variability in forage nutritive values indicated that climate modified plant nutritive values. Forage plants grown in arid and equatorial regions generally contained less digestible material than those grown in temperate and tundra regions; containing more fibre and lignin, and less protein. These patterns may reveal why herbivore body sizes, digestion and migration strategies are different in warmer and drier regions. This dataset also revealed the capacity for variation in the nutrition provided by forage plants, which may drive consumer species coexistence. The proportion of the plant tissue that was digestible ranged between species from 2 to 91%. The amount of fibre contained within plant material ranged by 23-90%, protein by 2-36%, lignin by 1-21% and minerals by 2-22%. On average, grasses and tree foliage contained the most fibre, whilst herbaceous legumes contained the most protein and tree foliage contained the most lignin. However, there were individual species within each functional group that were highly nutritious. This dataset may be used to identify forage plant species or mixtures of species from different functional groups with useful nutritional traits which can be cultivated to enhance livestock productivity and inform wild herbivore conservation strategies.
To Eat or Not to Eat: An Easy Simulation of Optimal Diet Selection in the Classroom
ERIC Educational Resources Information Center
Ray, Darrell L.
2010-01-01
Optimal diet selection, a component of optimal foraging theory, suggests that animals should select a diet that either maximizes energy or nutrient consumption per unit time or minimizes the foraging time needed to attain required energy or nutrients. In this exercise, students simulate the behavior of foragers that either show no foraging…
Lead in mule deer forage in Rocky Mountain National Park, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, P.D.; Dyer, M.I.
1984-01-01
Mule deer (Odocoileus hemionus) forage collected from roadsides in Rocky Mountain National Park, Colorado, contained lead (Pb) concentrations ranging from 0.8 to >50 ..mu..g/g. Concentrations were inversely correlated with distance from the roadway. Equations developed to estimate deer absorption of Pb from contaminated roadside vegetation indicate that deer in some age-classes need only to consume 1.4% of their daily intake of forage from roadsides before consuming excessive amounts of Pb.
NASA Astrophysics Data System (ADS)
Singh, Leeth; Mutanga, Onisimo; Mafongoya, Paramu; Peerbhay, Kabir
2017-07-01
The concentration of forage fiber content is critical in explaining the palatability of forage quality for livestock grazers in tropical grasslands. Traditional methods of determining forage fiber content are usually time consuming, costly, and require specialized laboratory analysis. With the potential of remote sensing technologies, determination of key fiber attributes can be made more accurately. This study aims to determine the effectiveness of known absorption wavelengths for detecting forage fiber biochemicals, neutral detergent fiber, acid detergent fiber, and lignin using hyperspectral data. Hyperspectral reflectance spectral measurements (350 to 2500 nm) of grass were collected and implemented within the random forest (RF) ensemble. Results show successful correlations between the known absorption features and the biochemicals with coefficients of determination (R2) ranging from 0.57 to 0.81 and root mean square errors ranging from 6.97 to 3.03 g/kg. In comparison, using the entire dataset, the study identified additional wavelengths for detecting fiber biochemicals, which contributes to the accurate determination of forage quality in a grassland environment. Overall, the results showed that hyperspectral remote sensing in conjunction with the competent RF ensemble could discriminate each key biochemical evaluated. This study shows the potential to upscale the methodology to a space-borne multispectral platform with similar spectral configurations for an accurate and cost effective mapping analysis of forage quality.
Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
Wcislo, William T; Tierney, Simon M
2009-02-01
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats
Götze, Simone; Koblitz, Jens C.; Denzinger, Annette; Schnitzler, Hans-Ulrich
2016-01-01
Frequency shifts in signals of bats flying near conspecifics have been interpreted as a spectral jamming avoidance response (JAR). However, several prerequisites supporting a JAR hypothesis have not been controlled for in previous studies. We recorded flight and echolocation behavior of foraging Pipistrellus pipistrellus while flying alone and with a conspecific and tested whether frequency changes were due to a spectral JAR with an increased frequency difference, or whether changes could be explained by other reactions. P. pipistrellus reacted to conspecifics with a reduction of sound duration and often also pulse interval, accompanied by an increase in terminal frequency. This reaction is typical of behavioral situations where targets of interest have captured the bat’s attention and initiated a more detailed exploration. All observed frequency changes were predicted by the attention reaction alone, and do not support the JAR hypothesis of increased frequency separation. Reaction distances of 1–11 m suggest that the attention response may be elicited either by detection of the conspecific by short range active echolocation or by long range passive acoustic detection of echolocation calls. PMID:27502900
Studying sea otter foraging ecology: A review of some methodological approaches
Tinker, M.T.; Estes, J.A.; Bodkin, James L.; Staedler, M.M.; Monson, Daniel H.; Maldini, Daniela; Calkins, Donald; Atkinson, Shannon; Meehan, Rosa
2004-01-01
The study of foraging ecology plays a central role in our understanding of animal populations and natural communities, and can also provide information necessary for the effective conservation of rare or endangered species. Sea otter researchers are interested in foraging ecology for many different reasons, but for heuristic purposes we identify three general types of research questions: (1) questions about the implications of foraging decisions to individual fitness, the evolutionary significance of feeding strategies, and the selective forces and constraints that shape an individual’s diet and feeding behavior; (2) questions about the population- level implications of foraging ecology; for example, how is the status of a population (with respect to carrying capacity) reflected by the foraging success or diet composition of individuals within the population (Fig. 1); and (3) questions about the community-level consequences of sea otter foraging. Sea otters provide an excellent study system for all three types of questions because they are a tractable species to study (generally feeding near shore and bringing all prey to the surface to consume), they exhibit a wide range of diets and foraging strategies in different habitats and at different population densities, they tend to have strong trophic interactions with their prey species, and their foraging behavior can have profound effects on community structure in the nearshore marine community.
Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)
Lanan, Michele
2014-01-01
The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497
Young, Lindsay C; Vanderlip, Cynthia; Duffy, David C; Afanasyev, Vsevolod; Shaffer, Scott A
2009-10-28
When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been 'optimal' foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion.
NASA Astrophysics Data System (ADS)
Brischoux, F.; Bonnet, X.; Cherel, Y.; Shine, R.
2011-03-01
A predator's species, sex and body size can influence the types of prey that it consumes, but why? Do such dietary divergences result from differences in foraging habitats, or reflect differential ability to locate, capture or ingest different types of prey? That question is difficult to answer if foraging occurs in places that preclude direct observation. In New Caledonia, amphibious sea kraits ( Laticauda laticaudata and L. saintgironsi) mostly eat eels—but the species consumed differ between snake species and vary with snake body size and sex. Because the snakes capture eels within crevices on the sea floor, it is not possible to observe snake foraging on any quantitative basis. We used stable isotopes to investigate habitat-divergence and ontogenetic shifts in feeding habits of sympatric species of sea kraits. Similarities in δ15 N (~10.5‰) values suggest that the two snake species occupy similar trophic levels in the coral-reef foodweb. However, δ13C values differed among the eight eel species consumed by snakes, as well as between the two snake species, and were linked to habitat types. Specifically, δ13C differed between soft- vs. hard-substrate eel species, and consistently differed between the soft-bottom forager L. laticaudata (~ -14.7‰) and the hard-bottom forager L. saintgironsi (~ -12.5‰). Differences in isotopic signatures within and between the two sea krait species and their prey were consistent with the hypothesis of habitat-based dietary divergence. Isotopic composition varied with body size within each of the snake species and varied with body size within some eel species, reflecting ontogenetic shifts in feeding habits of both the sea kraits and their prey. Our results support the findings of previous studies based on snake stomach contents, indicating that further studies could usefully expand these isotopic analyses to a broader range of trophic levels, fish species and spatial scales.
Longer guts and higher food quality increase energy intake in migratory swans.
van Gils, Jan A; Beekman, Jan H; Coehoorn, Pieter; Corporaal, Els; Dekkers, Ten; Klaassen, Marcel; van Kraaij, Rik; de Leeuw, Rinze; de Vries, Peter P
2008-11-01
1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.
Storey, Anne E; Ryan, Morag G; Fitzsimmons, Michelle G; Kouwenberg, Amy-Lee; Takahashi, Linda S; Robertson, Gregory J; Wilhelm, Sabina I; McKay, Donald W; Herzberg, Gene R; Mowbray, Frances K; MacMillan, Luke; Walsh, Carolyn J
2017-01-01
Seabird parents use a conservative breeding strategy that favours long-term survival over intensive parental investment, particularly under harsh conditions. Here, we examine whether variation in several physiological indicators reflects the balance between parental investment and survival in common murres ( Uria aalge ) under a wide range of foraging conditions. Blood samples were taken from adults during mid-chick rearing from 2007 to 2014 and analysed for corticosterone (CORT, stress hormone), beta-hydroxybutyrate (BUTY, lipid metabolism reflecting ongoing mass loss), and haematocrit (reflecting blood oxygen capacity). These measures, plus body mass, were related to three levels of food availability (good, intermediate, and poor years) for capelin, the main forage fish for murres in this colony. Adult body mass and chick-feeding rates were higher in good years than in poor years and heavier murres were more likely to fledge a chick than lighter birds. Contrary to prediction, BUTY levels were higher in good years than in intermediate and poor years. Murres lose body mass just after their chicks hatch and these results for BUTY suggest that mass loss may be delayed in good years. CORT levels were higher in intermediate years than in good or poor years. Higher CORT levels in intermediate years may reflect the necessity of increasing foraging effort, whereas extra effort is not needed in good years and it is unlikely to increase foraging success in poor years. Haematocrit levels were higher in poor years than in good years, a difference that may reflect either their poorer condition or increased diving requirements when food is less available. Our long-term data set provided insight into how decisions about resource allocation under different foraging conditions are relating to physiological indicators, a relationship that is relevant to understanding how seabirds may respond to changes in marine ecosystems as ocean temperatures continue to rise.
Young, Lindsay C.; Vanderlip, Cynthia; Duffy, David C.; Afanasyev, Vsevolod; Shaffer, Scott A.
2009-01-01
When searching for prey, animals should maximize energetic gain, while minimizing energy expenditure by altering their movements relative to prey availability. However, with increasing amounts of marine debris, what once may have been ‘optimal’ foraging strategies for top marine predators, are leading to sub-optimal diets comprised in large part of plastic. Indeed, the highly vagile Laysan albatross (Phoebastria immutabilis) which forages throughout the North Pacific, are well known for their tendency to ingest plastic. Here we examine whether Laysan albatrosses nesting on Kure Atoll and Oahu Island, 2,150 km apart, experience different levels of plastic ingestion. Twenty two geolocators were deployed on breeding adults for up to two years. Regurgitated boluses of undigestable material were also collected from chicks at each site to compare the amount of plastic vs. natural foods. Chicks from Kure Atoll were fed almost ten times the amount of plastic compared to chicks from Oahu despite boluses from both colonies having similar amounts of natural food. Tracking data indicated that adults from either colony did not have core overlapping distributions during the early half of the breeding period and that adults from Kure had a greater overlap with the putative range of the Western Garbage Patch corroborating our observation of higher plastic loads at this colony. At-sea distributions also varied throughout the year suggesting that Laysan albatrosses either adjusted their foraging behavior according to constraints on time away from the nest or to variation in resources. However, in the non-breeding season, distributional overlap was greater indicating that the energy required to reach the foraging grounds was less important than the total energy available. These results demonstrate how a marine predator that is not dispersal limited alters its foraging strategy throughout the reproductive cycle to maximize energetic gain and how this has led to differences in plastic ingestion. PMID:19862322
Temporal fractals in seabird foraging behaviour: diving through the scales of time
MacIntosh, Andrew J. J.; Pelletier, Laure; Chiaradia, Andre; Kato, Akiko; Ropert-Coudert, Yan
2013-01-01
Animal behaviour exhibits fractal structure in space and time. Fractal properties in animal space-use have been explored extensively under the Lévy flight foraging hypothesis, but studies of behaviour change itself through time are rarer, have typically used shorter sequences generated in the laboratory, and generally lack critical assessment of their results. We thus performed an in-depth analysis of fractal time in binary dive sequences collected via bio-logging from free-ranging little penguins (Eudyptula minor) across full-day foraging trips (216 data points; 4 orders of temporal magnitude). Results from 4 fractal methods show that dive sequences are long-range dependent and persistent across ca. 2 orders of magnitude. This fractal structure correlated with trip length and time spent underwater, but individual traits had little effect. Fractal time is a fundamental characteristic of penguin foraging behaviour, and its investigation is thus a promising avenue for research on interactions between animals and their environments. PMID:23703258
Lewis, Matthew C; West, Adam G; O'Riain, M Justin
2018-01-01
Stable isotope analysis has been used to investigate consumption of marine resources in a variety of terrestrial mammals, including humans, but not yet in extant nonhuman primates. We sought to test the efficacy of stable isotope analysis as a tool for such studies by comparing isotope- and observation-based estimates of marine food consumption by a troop of noncommensal, free-ranging chacma baboons. We determined δ 13 C and δ 15 N values of baboon hair (n = 9) and fecal samples (n = 144), and principal food items (n = 362). These values were used as input for diet models, the outputs of which were compared to observation-based estimates of marine food consumption. Fecal δ 13 C values ranged from -29.3‰ to -25.6‰. δ 15 N values ranged from 0.9‰ to 6.3‰ and were positively correlated with a measure of marine foraging during the dietary integration period. Mean (± SD) δ 13 C values of adult male and female baboon hairs were -21.6‰ (± 0.1) and -21.8‰ (± 0.3) respectively, and corresponding δ 15 N values were 5.0‰ (± 0.3) and 3.9‰ (± 0.2). Models indicated that marine contributions were ≤10% of baboon diet within any season, and contributed ≤17% of dietary protein through the year. Model output and observational data were in agreement, both indicating that despite their abundance in the intertidal region, marine foods comprised only a small proportion of baboon diet. This suggests that stable isotope analysis is a viable tool for investigating marine food consumption by natural-foraging primates in temperate regions. © 2017 Wiley Periodicals, Inc.
Stopover ecology of a migratory ungulate
Sawyer, Hall; Kauffman, Matthew J.
2011-01-01
1. Birds that migrate long distances use stopover sites to optimize fuel loads and complete migration as quickly as possible. Stopover use has been predicted to facilitate a time-minimization strategy in land migrants as well, but empirical tests have been lacking, and alternative migration strategies have not been considered. 2. We used fine-scale movement data to evaluate the ecological role of stopovers in migratory mule deer Odocoileus hemionus— a land migrant whose fitness is strongly influenced by energy intake rather than migration speed. 3. Although deer could easily complete migrations (range 18–144 km) in several days, they took an average of 3 weeks and spent 95% of that time in a series of stopover sites that had higher forage quality than movement corridors. Forage quality of stopovers increased with elevation and distance from winter range. Mule deer use of stopovers corresponded with a narrow phenological range, such that deer occupied stopovers 44 days prior to peak green-up, when forage quality was presumed to be highest. Mule deer used one stopover for every 5∙3 and 6∙7 km travelled during spring and autumn migrations, respectively, and used the same stopovers in consecutive years. 4. Study findings indicate that stopovers play a key role in the migration strategy of mule deer by allowing individuals to migrate in concert with plant phenology and maximize energy intake rather than speed. Our results suggest that stopover use may be more common among non-avian taxa than previously thought and, although the underlying migration strategies of temperate ungulates and birds are quite different, stopover use is important to both. 5. Exploring the role of stopovers in land migrants broadens the scope of stopover ecology and recognizes that the applied and theoretical benefits of stopover ecology need not be limited to avian taxa.
Cunningham, Elena; Janson, Charles
2007-07-01
Most studies of spatial memory in primates focus on species that inhabit large home ranges and have dispersed, patchy resources. Researchers assume that primates use memory to minimize distances traveled between resources. We investigated the use of spatial memory in a group of six white-faced sakis (Pithecia pithecia) on 12.8-ha Round Island, Guri Lake, Venezuela during a period of fruit abundance. The sakis' movements were analyzed with logistic regressions, a predictive computer model and a computer model that simulates movements. We considered all the resources available to the sakis and compared observed distances to predicted distances from a computer model for foragers who know nothing about the location of resources. Surprisingly, the observed distances were four times greater than the predicted distances, suggesting that the sakis passed by a majority of the available fruit trees without feeding. The odds of visiting a food tree, however, were significantly increased if the tree had been visited in the previous 3 days and had more than 100 fruit. The sakis' preferred resources were highly productive fruit trees, Capparis trees, and trees with water holes. They traveled efficiently to these sites. The sakis choice of feeding sites indicate that they combined knowledge acquired by repeatedly traveling through their home range with 'what' and 'where' information gained from individual visits to resources. Although the sakis' foraging choices increased the distance they traveled overall, choosing more valued sites allowed the group to minimize intra-group feeding competition, maintain intergroup dominance over important resources, and monitor the state of resources throughout their home range. The sakis' foraging decisions appear to have used spatial memory, elements of episodic-like memory and social and nutritional considerations.
Toscano, Benjamin J; Gownaris, Natasha J; Heerhartz, Sarah M; Monaco, Cristián J
2016-09-01
Behavioral traits and diet were traditionally thought to be highly plastic within individuals. This view was espoused in the widespread use of optimality models, which broadly predict that individuals can modify behavioral traits and diet across ecological contexts to maximize fitness. Yet, research conducted over the past 15 years supports an alternative view; fundamental behavioral traits (e.g., activity level, exploration, sociability, boldness and aggressiveness) and diet often vary among individuals and this variation persists over time and across contexts. This phenomenon has been termed animal personality with regard to behavioral traits and individual specialization with regard to diet. While these aspects of individual-level phenotypic variation have been thus far studied in isolation, emerging evidence suggests that personality and individual specialization may covary, or even be causally related. Building on this work, we present the overarching hypothesis that animal personality can drive specialization through individual differences in various aspects of consumer foraging behavior. Specifically, we suggest pathways by which consumer personality traits influence foraging activity, risk-dependent foraging, roles in social foraging groups, spatial aspects of foraging and physiological drivers of foraging, which in turn can lead to consistent individual differences in food resource use. These pathways provide a basis for generating testable hypotheses directly linking animal personality to ecological dynamics, a major goal in contemporary behavioral ecology.
Bockoven, Alison A.; Wilder, Shawn M.; Eubanks, Micky D.
2015-01-01
Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior. PMID:26197456
NASA Astrophysics Data System (ADS)
Cox, S. L.; Miller, P. I.; Embling, C. B.; Scales, K. L.; Bicknell, A. W. J.; Hosegood, P. J.; Morgan, G.; Ingram, S. N.; Votier, S. C.
2016-09-01
Oceanic fronts are key habitats for a diverse range of marine predators, yet how they influence fine-scale foraging behaviour is poorly understood. Here, we investigated the dive behaviour of northern gannets Morus bassanus in relation to shelf-sea fronts. We GPS (global positioning system) tracked 53 breeding birds and examined the relationship between 1901 foraging dives (from time-depth recorders) and thermal fronts (identified via Earth Observation composite front mapping) in the Celtic Sea, Northeast Atlantic. We (i) used a habitat-use availability analysis to determine whether gannets preferentially dived at fronts, and (ii) compared dive characteristics in relation to fronts to investigate the functional significance of these oceanographic features. We found that relationships between gannet dive probabilities and fronts varied by frontal metric and sex. While both sexes were more likely to dive in the presence of seasonally persistent fronts, links to more ephemeral features were less clear. Here, males were positively correlated with distance to front and cross-front gradient strength, with the reverse for females. Both sexes performed two dive strategies: shallow V-shaped plunge dives with little or no active swim phase (92% of dives) and deeper U-shaped dives with an active pursuit phase of at least 3 s (8% of dives). When foraging around fronts, gannets were half as likely to engage in U-shaped dives compared with V-shaped dives, independent of sex. Moreover, V-shaped dive durations were significantly shortened around fronts. These behavioural responses support the assertion that fronts are important foraging habitats for marine predators, and suggest a possible mechanistic link between the two in terms of dive behaviour. This research also emphasizes the importance of cross-disciplinary research when attempting to understand marine ecosystems.
Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.
Pope, Nathaniel S; Jha, Shalene
2018-01-01
Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.
Brook, Rodney W.; Leafloor, James O.; Douglas, David C.; Abraham, Kenneth F.
2015-01-01
The extent to which species are plastic in the timing of their reproductive events relative to phenology suggests how change might affect their demography. An ecological mismatch between the timing of hatch for avian species and the peak availability in quality and quantity of forage for rapidly growing offspring might ultimately affect recruitment to the breeding population unless individuals can adjust the timing of breeding to adapt to changing phenology. We evaluated effects of goose density, hatch timing relative to forage plant phenology, and weather indices on annual growth of pre-fledging Canada geese (Branta canadensis) from 1993-2010 at Akimiski Island, Nunavut. We found effects of both density and hatch timing relative to forage plant phenology; the earlier that eggs hatched relative to forage plant phenology, the larger the mean gosling size near fledging. Goslings were smallest in years when hatch was latest relative to forage plant phenology, and when local abundance of breeding adults was highest. We found no evidence for a trend in relative hatch timing, but it was apparent that in early springs, Canada geese tended to hatch later relative to vegetation phenology, suggesting that geese were not always able to adjust the timing of nesting as rapidly as vegetation phenology was advanced. Analyses using forage biomass information revealed a positive relationship between gosling size and per capita biomass availability, suggesting a causal mechanism for the density effect. The effects of weather parameters explained additional variation in mean annual gosling size, although total June and July rainfall had a small additive effect on gosling size. Modelling of annual first year survival probability using mean annual gosling size as an annual covariate revealed a positive relationship, suggesting that reduced gosling growth negatively impacts recruitment.
Nagy-Reis, Mariana B; Setz, Eleonore Z F
2017-01-01
Many primates have to cope with a temporal scarcity in food availability that shapes their foraging strategies. Here we investigated the changes in diet, activity, and ranging behavior of a group of black-fronted titi monkeys (Callicebus nigrifrons) according to the availability of the main high-nutritional-density item in their diet and the foraging strategy adopted when this food is scarce. We monitored one habituated group using instantaneous scan sampling over 1 year (533 h of observation, 61 days) in a seasonal tropical forest fragment (245 ha). We simultaneously collected data on food availability with fruit traps. The titi monkeys consumed fleshy fruits, the main high-nutritional-density item of their diet, in accordance with its availability, and the availability of this item modulated the ingestion of vegetative plant parts, a relatively low-nutritional-density food. During high fleshy fruit availability, the titi monkeys consumed more fleshy fruits, flowers, and invertebrates. They also traveled more, but concentrated their activity in a central area of their home range. Conversely, during fleshy fruit scarcity, they increased the breadth of their diet, switching to one richer in seeds and vegetative plant parts, and with greater plant diversity. At the same time, they reduced most energy-demanding activities, traveling less and over shorter distances, but using their home range more broadly. Corroborating the optimal foraging theory, titi monkeys altered foraging strategies according to temporal food fluctuations and responded to low fleshy fruit availability by changing their diet, activity, and ranging behavior. The adoption of a low-cost/low-yield strategy allowed us to classify them as energy minimizers.
Vision and foraging in cormorants: more like herons than hawks?
White, Craig R; Day, Norman; Butler, Patrick J; Martin, Graham R
2007-07-25
Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons.
Influence of Soil Properties on Soldierless Termite Distribution.
Bourguignon, Thomas; Drouet, Thomas; Šobotník, Jan; Hanus, Robert; Roisin, Yves
2015-01-01
In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.
Geographic profiling applied to testing models of bumble-bee foraging.
Raine, Nigel E; Rossmo, D Kim; Le Comber, Steven C
2009-03-06
Geographic profiling (GP) was originally developed as a statistical tool to help police forces prioritize lists of suspects in investigations of serial crimes. GP uses the location of related crime sites to make inferences about where the offender is most likely to live, and has been extremely successful in criminology. Here, we show how GP is applicable to experimental studies of animal foraging, using the bumble-bee Bombus terrestris. GP techniques enable us to simplify complex patterns of spatial data down to a small number of parameters (2-3) for rigorous hypothesis testing. Combining computer model simulations and experimental observation of foraging bumble-bees, we demonstrate that GP can be used to discriminate between foraging patterns resulting from (i) different hypothetical foraging algorithms and (ii) different food item (flower) densities. We also demonstrate that combining experimental and simulated data can be used to elucidate animal foraging strategies: specifically that the foraging patterns of real bumble-bees can be reliably discriminated from three out of nine hypothetical foraging algorithms. We suggest that experimental systems, like foraging bees, could be used to test and refine GP model predictions, and that GP offers a useful technique to analyse spatial animal behaviour data in both the laboratory and field.
Group foraging by a stream minnow: shoals or aggregations?
Freeman, Mary C.; Grossman, G.D.
1992-01-01
The importance of social attraction in the formation of foraging groups was examined for a stream-dwelling cyprinid, the rosyside dace, Clinostomus funduloides. Dace arrivals and departures at natural foraging sites were monitored and tested for (1) tendency of dace to travel in groups, and (2) dependency of arrival and departure rates on group size. Dace usually entered and departed foraging sites independently of each other. Group size usually affected neither arrival rate nor departure probability. Thus, attraction among dace appeared weak; foraging groups most often resulted from dace aggregating in preferred foraging sites. The strongest evidence of social attraction was during autumn, when dace departure probability often decreased with increasing group size, possibly in response to increased threat of predation by a seasonally occurring predator. Dace also rarely avoided conspecifics, except when an aggressive individual defended a foraging site. Otherwise, there was little evidence of exploitative competition among dace for drifting prey or of foraging benefits in groups, because group size usually did not affect individual feeding rates. These results suggest that the benefits of group foraging demonstrated under laboratory conditions in other studies may not always apply to field conditions.
Hart, Kristen M.; Iverson, Autumn; Benscoter, Allison M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy
2017-01-01
Satellite tracking in marine turtle studies can reveal much about their spatial use of breeding areas, migration zones, and foraging sites. We assessed spatial habitat-use patterns of 10 adult female green turtles (Chelonia mydas) nesting at Buck Island Reef National Monument, U.S. Virgin Islands (BIRNM) from 2011 – 2014. Turtles ranged in size from 89.0 – 115.9 cm CCL (mean + SD = 106.8 + 7.7 cm). The inter-nesting period across all turtles ranged from 31 July to 4 November, and sizes of the 50% core-use areas during inter-nesting ranged from 4.2 – 19.0 km2. Inter-nesting core-use areas were located up to1.4 km from shore and had bathymetry values ranging from -17.0 to -13.0 m. Seven of the ten turtles remained locally resident after the nesting season. Five turtles (50%) foraged around Buck Island, two foraged around the island of St. Croix, and the other three (30%) made longer-distance migrations to Antigua, St. Kitts & Nevis, and Venezuela. Further, five turtles had foraging centroids within protected areas. Delineating spatial areas and identifying temporal periods of nearshore habitat-use can be useful for natural resource managers with responsibility for overseeing vulnerable habitats and protected marine turtle populations.
Visual Foraging With Fingers and Eye Gaze
Thornton, Ian M.; Smith, Irene J.; Chetverikov, Andrey; Kristjánsson, Árni
2016-01-01
A popular model of the function of selective visual attention involves search where a single target is to be found among distractors. For many scenarios, a more realistic model involves search for multiple targets of various types, since natural tasks typically do not involve a single target. Here we present results from a novel multiple-target foraging paradigm. We compare finger foraging where observers cancel a set of predesignated targets by tapping them, to gaze foraging where observers cancel items by fixating them for 100 ms. During finger foraging, for most observers, there was a large difference between foraging based on a single feature, where observers switch easily between target types, and foraging based on a conjunction of features where observers tended to stick to one target type. The pattern was notably different during gaze foraging where these condition differences were smaller. Two conclusions follow: (a) The fact that a sizeable number of observers (in particular during gaze foraging) had little trouble switching between different target types raises challenges for many prominent theoretical accounts of visual attention and working memory. (b) While caveats must be noted for the comparison of gaze and finger foraging, the results suggest that selection mechanisms for gaze and pointing have different operational constraints. PMID:27433323
The Social Cognition of Social Foraging: Partner Selection by Underlying Valuation
DELTON, ANDREW W.; ROBERTSON, THERESA E.
2012-01-01
Humans and other animals have a variety of psychological abilities tailored to the demands of asocial foraging, that is, foraging without coordination or competition with other conspecifics. Human foraging, however, also includes a unique element, the creation of resource pooling systems. In this type of social foraging, individuals contribute when they have excess resources and receive provisioning when in need. Is this behavior produced by the same psychology as asocial foraging? If so, foraging partners should be judged by the same criteria used to judge asocial patches of resources: the net energetic benefits they provide. The logic of resource pooling speaks against this. Maintaining such a system requires the ability to judge others not on their short-term returns, but on the psychological variables that guide their behavior over the long-term. We test this idea in a series of five studies using an implicit measure of categorization. Results showed that (1) others are judged by the costs they incur (a variable not relevant to asocial foraging) whereas (2) others are not judged by the benefits they provide when benefits provided are unrevealing of underlying psychological variables (despite this variable being relevant to asocial foraging). These results are suggestive of a complex psychology designed for both social and asocial foraging. PMID:23162372
Niche separation in flycatcher-like species in the lowland rainforests of Malaysia.
Mansor, Mohammad Saiful; Ramli, Rosli
2017-07-01
Niche theory suggests that sympatric species reduce interspecific competition through segregation of shared resources by adopting different attack manoeuvres. However, the fact that flycatcher-like bird species exclusively use the sally manoeuvre may thus challenge this view. We studied the foraging ecology of three flycatcher-like species (i.e. Paradise-flycatcher Terpsiphone sp., Black-naped Monarch Hypothymis azurea, and Rufous-winged Philentoma Philentoma pyrhoptera) in the Krau Wildlife Reserve in central Peninsular Malaysia. We investigated foraging preferences of each bird species and the potential niche partitioning via spatial or behavioural segregation. Foraging substrate was important parameter that effectively divided paradise-flycatcher from Black-naped Monarch and Rufous-winged Philentoma, where monarch and philentoma foraged mainly on live green leaves, while paradise-flycatcher foraged on the air. They also exhibited different foraging height preferences. Paradise-flycatcher, for instance, preferred the highest studied strata, while Black-naped Monarch foraged mostly in lower strata, and Rufous-winged Philentoma made use of the lowest strata. This study indicates that niche segregation occurs among sympatric species through foraging substrate and attack manoeuvres selection. Copyright © 2017 Elsevier B.V. All rights reserved.
The ecological economics of kleptoparasitism: pay-offs from self-foraging versus kleptoparasitism.
Flower, Tom P; Child, Matthew F; Ridley, Amanda R
2013-01-01
Animals commonly steal food from other species, termed interspecific kleptoparasitism, but why animals engage in kleptoparasitism compared with alternate foraging tactics, and under what circumstances they do so, is not fully understood. Determining what specific benefits animals gain from kleptoparasitism could provide valuable insight into its evolution. Here, we investigate the benefits of kleptoparasitism for a population of individually recognizable and free-living fork-tailed drongos (Dicrurus adsimilis) in the southern Kalahari Desert. Drongos engaged in two foraging behaviours: self-foraging for small insects or following other species which they kleptoparasitized for larger terrestrial prey that they could not capture themselves. Kleptoparasitism consequently enabled drongos to exploit a new foraging niche. Kleptoparasitism benefitted drongos most in the morning and on colder days because at these times pay-offs from kleptoparasitism remained stable, while those from self-foraging declined. However, drongos engaged in kleptoparasitism less than expected given the overall high (but more variable) pay-offs from this behaviour, suggesting that kleptoparasitism is a risky foraging tactic and may incur additional foraging costs compared with self-foraging. This is the first study to comprehensively investigate the benefits of facultatively engaging in kleptoparasitism, demonstrating that animals may switch to kleptoparasitism to exploit a new foraging niche when pay-offs exceed those from alternate foraging behaviours. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Effects of selection for honey bee worker reproduction on foraging traits.
Oldroyd, Benjamin P; Beekman, Madeleine
2008-03-04
The "reproductive ground plan" hypothesis (RGPH) proposes that reproductive division of labour in social insects had its antecedents in the ancient gene regulatory networks that evolved to regulate the foraging and reproductive phases of their solitary ancestors. Thus, queens express traits that are characteristic of the reproductive phase of solitary insects, whereas workers express traits characteristic of the foraging phase. The RGPH has also been extended to help understand the regulation of age polyethism within the worker caste and more recently to explain differences in the foraging specialisations of individual honey bee workers. Foragers that specialise in collecting proteinaceous pollen are hypothesised to have higher reproductive potential than individuals that preferentially forage for nectar because genes that were ancestrally associated with the reproductive phase are active. We investigated the links between honey bee worker foraging behaviour and reproductive traits by comparing the foraging preferences of a line of workers that has been selected for high rates of worker reproduction with the preferences of wild-type bees. We show that while selection for reproductive behaviour in workers has not altered foraging preferences, the age at onset of foraging of our selected line has been increased. Our findings therefore support the hypothesis that age polyethism is related to the reproductive ground plan, but they cast doubt on recent suggestions that foraging preferences and reproductive traits are pleiotropically linked.
Petit, L.J.; Petit, D.R.; Petit, K.E.; Fleming, W.J.
1990-01-01
We studied foraging ecology of Prothonotary Warblers (Protonotaria citrea) over four breeding seasons to determine if this species exhibited sex-specific or temporal variation in foraging behavior. Significant differences between sexes during the prenestling period were found for foraging height and substrate height (foraging method, plant species/substrate, perch diameter, horizontal location from trunk, and prey location were not significantly different). During the nestling period, this divergence between sexes was evident for foraging height, substrate height, substrate / tree species, and prey location. Additionally, male warblers significantly altered their behavior for all seven foraging variables between the two periods, whereas females exhibited changes similar to those of males for five of the foraging variables. This parallel shift suggests a strong behavioral response by both sexes to proximate factors (such as vegetation structure, and prey abundance and distribution) that varied throughout the breeding season. Sex-specific foraging behavior during the prenestling period was best explained by differences in reproductive responsibilities rather than by the theory of intersexual competition for limited resources. During the nestling period, neither hypothesis by itself explained foraging divergences adequately. However, when integrated with the temporal responses of the warblers to changes in prey availability, reproductive responsibilities seemed to be of primary importance in explaining intersexual niche partitioning during the nestling period. We emphasize the importance of considering both intersexual and intraseasonal variation when quantifying a species' foraging ecology.
Life history and status of shortnose sturgeon (Acipenser brevirostrum) in the potomac river
Kynard, B.; Breece, M.; Atcheson, M.; Kieffer, M.; Mangold, M.
2009-01-01
We collected the first life history information on shortnose sturgeon (Acipenser brevirostrum) in any of the rivers to Chesapeake Bay, the geographic center of the species range. In the Potomac River, two telemetry-tagged adult females used 124 km of river: A saltwater/freshwater reach at river km (rkm) 63-141 was the foraging-wintering concentration area, and one female migrated to spawn at rkm 187 in Washington, DC. The spawning migration explained the life history context of an adult captured 122 years ago in Washington, DC, supporting the idea that a natal population once lived in the river. Repeated homing migrations to foraging and wintering areas suggested the adults were residents, not transient coastal migrants. All habitats that adults need to complete life history are present in the river. The Potomac River shortnose sturgeon offers a rare opportunity to learn about the natural rebuilding of a sturgeon population. ?? 2009 Blackwell Verlag, Berlin.
Life history and status of shortnose sturgeon (Acipenser brevirostrum) in the Potomac River
Kieffer, Micah
2009-01-01
We collected the first life history information on shortnose sturgeon (Acipenser brevirostrum) in any of the rivers to Chesapeake Bay, the geographic center of the species range. In the Potomac River, two telemetry-tagged adult females used 124 km of river: a saltwater/freshwater reach at river km (rkm) 63-141 was the foraging-wintering concentration area, and one female migrated to spawn at rkm 187 in Washington, DC. The spawning migration explained the life history context of an adult captured 122 years ago in Washington, DC, supporting the idea that a natal population once lived in the river. Repeated homing migrations to foraging and wintering areas suggested the adults were residents, not transient coastal migrants. All habitats that adults need to complete life history are present in the river. The Potomac River shortnose sturgeon offers a rare opportunity to learn about the natural rebuilding of a sturgeon population.
"Freshwater killer whales": beaching behavior of an alien fish to hunt land birds.
Cucherousset, Julien; Boulêtreau, Stéphanie; Azémar, Frédéric; Compin, Arthur; Guillaume, Mathieu; Santoul, Frédéric
2012-01-01
The behavioral strategies developed by predators to capture and kill their prey are fascinating, notably for predators that forage for prey at, or beyond, the boundaries of their ecosystem. We report here the occurrence of a beaching behavior used by an alien and large-bodied freshwater predatory fish (Silurus glanis) to capture birds on land (i.e. pigeons, Columbia livia). Among a total of 45 beaching behaviors observed and filmed, 28% were successful in bird capture. Stable isotope analyses (δ(13)C and δ(15)N) of predators and their putative prey revealed a highly variable dietary contribution of land birds among individuals. Since this extreme behavior has not been reported in the native range of the species, our results suggest that some individuals in introduced predator populations may adapt their behavior to forage on novel prey in new environments, leading to behavioral and trophic specialization to actively cross the water-land interface.
Emergence of Lévy Walks from Second-Order Stochastic Optimization
NASA Astrophysics Data System (ADS)
Kuśmierz, Łukasz; Toyoizumi, Taro
2017-12-01
In natural foraging, many organisms seem to perform two different types of motile search: directed search (taxis) and random search. The former is observed when the environment provides cues to guide motion towards a target. The latter involves no apparent memory or information processing and can be mathematically modeled by random walks. We show that both types of search can be generated by a common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based search with noisy observations. No explicit switching mechanism is required—instead, continuous transitions between the directed and random motions emerge depending on the Hessian matrix of the cost function. For a wide range of scenarios, the Lévy tail index is α =1 , consistent with previous observations in foraging organisms. These results suggest that adopting a second-order optimization method can be a useful strategy to combine efficient features of directed and random search.
Griffin, L R; Thomas, C J
2000-01-01
Explanations for the variation in the number of nests at bird colonies have focused on competitive or habitat effects without considering potential interactions between the two. For the rook, a colonial corvid which breeds seasonally but forages around the colony throughout the year, both the amount of foraging habitat and its interaction with the number of competitors from surrounding colonies are important predictors of colony size. The distance over which these effects are strongest indicates that, for rooks, colony size may be limited outside of the breeding season when colony foraging ranges are larger and overlap to a greater extent. PMID:10983832
Effect of supplemental protein source during the winter on pre- and postpartum glucose metabolism
USDA-ARS?s Scientific Manuscript database
Circulating serum glucose concentrations as well as glucose utilization have been shown to be affected by forage quality. Supplemental protein provided to grazing range cows while consuming low quality forage may improve glucose metabolism. The objective of our study was to determine the effects of ...
Grazing and Land Management Strategies for Hardwood Rangelands
Melvin R. George
1991-01-01
Annual rangelands produce 84 percent of California's range forage which are used all year by sedentary ranching operations and seasonally by migratory operations. Environmental policy, energy and water costs may reduce traditional summer forage sources, resulting in increased grazing pressure on hardwood and annual rangelands. However, the landowner's...
Calculating foraging area using gloal navigation satellite system (GNSS) technology
USDA-ARS?s Scientific Manuscript database
Adjusting stocking rate to changing forage conditions is a critical part of pro-active range management. In general stocking rate approaches tend to assume more optimal landscape use patterns than will actually occur. Today we can monitor spatio-temporal landscape use on a 24/7 basis using animals...
Baigrie, Bruce D.; Thompson, Alex M.; Flower, Tom P.
2014-01-01
Interspecific communication is common in nature, particularly between mutualists. However, whether signals evolved for communication with other species, or are in fact conspecific signals eavesdropped upon by partners, is often unclear. Fork-tailed drongos (Dicrurus adsimilis) associate with mixed-species groups and often produce true alarms at predators, whereupon associating species flee to cover, but also false alarms to steal associating species' food (kleptoparasitism). Despite such deception, associating species respond to drongo non-alarm calls by increasing their foraging and decreasing vigilance. Yet, whether these calls represent interspecific sentinel signals remains unknown. We show that drongos produced a specific sentinel call when foraging with a common associate, the sociable weaver (Philetairus socius), but not when alone. Weavers increased their foraging and decreased vigilance when naturally associating with drongos, and in response to sentinel call playback. Further, drongos sentinel-called more often when weavers were moving, and weavers approached sentinel calls, suggesting a recruitment function. Finally, drongos sentinel-called when weavers fled following false alarms, thereby reducing disruption to weaver foraging time. Results therefore provide evidence of an ‘all clear’ signal that mitigates the cost of inaccurate communication. Our results suggest that drongos enhance exploitation of a foraging mutualist through coevolution of interspecific sentinel signals. PMID:25080343
Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency
Amaya-Márquez, Marisol; Hill, Peggy S. M.; Abramson, Charles I.; Wells, Harrington
2014-01-01
Learning facilitates behavioral plasticity, leading to higher success rates when foraging. However, memory is of decreasing value with changes brought about by moving to novel resource locations or activity at different times of the day. These premises suggest a foraging model with location- and time-linked memory. Thus, each problem is novel, and selection should favor a maximum likelihood approach to achieve energy maximization results. Alternatively, information is potentially always applicable. This premise suggests a different foraging model, one where initial decisions should be based on previous learning regardless of the foraging site or time. Under this second model, no problem is considered novel, and selection should favor a Bayesian or pseudo-Bayesian approach to achieve energy maximization results. We tested these two models by offering honey bees a learning situation at one location in the morning, where nectar rewards differed between flower colors, and examined their behavior at a second location in the afternoon where rewards did not differ between flower colors. Both blue-yellow and blue-white dimorphic flower patches were used. Information learned in the morning was clearly used in the afternoon at a new foraging site. Memory was not location-time restricted in terms of use when visiting either flower color dimorphism. PMID:26462587
Foraging across the life span: is there a reduction in exploration with aging?
Mata, Rui; Wilke, Andreas; Czienskowski, Uwe
2013-01-01
Does foraging change across the life span, and in particular, with aging? We report data from two foraging tasks used to investigate age differences in search in external environments as well as internal search in memory. Overall, the evidence suggests that foraging behavior may undergo significant changes across the life span across internal and external search. In particular, we find evidence of a trend toward reduced exploration with increased age. We discuss these findings in light of theories that postulate a link between aging and reductions in novelty seeking and exploratory behavior. PMID:23616741
Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D
2017-11-01
Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.
Eadie, Elizabeth Christine
2015-01-01
Which factors select for long juvenile periods in some species is not well understood. One potential reason to delay the onset of reproduction is slow food acquisition rates, either due to competition (part of the ecological risk avoidance hypothesis), or due to a decreased foraging efficiency (a version of the needing to learn hypothesis). Capuchins provide a useful genus to test the needing to learn hypothesis because they are known for having long juvenile periods and a difficult-to-acquire diet. Generalized, linear, mixed models with data from 609 fruit forage focal follows on 49, habituated, wild Cebus capucinus were used to test two predictions from the needing-to-learn hypothesis as it applies to fruit foraging skills: 1) capuchin monkeys do not achieve adult foraging return rates for difficult-to-acquire fruits before late in the juvenile period; and 2) variance in return rates for these fruits is at least partially associated with differences in foraging skill. In support of the first prediction, adults, compared with all younger age classes, had significantly higher foraging return rates when foraging for fruits that were ranked as difficult-to-acquire (return rates relative to adults: 0.30-0.41, p-value range 0.008-0.016), indicating that the individuals in the group who have the most foraging experience also achieve the highest return rates. In contrast, and in support of the second prediction, there were no significant differences between age classes for fruits that were ranked as easy to acquire (return rates relative to adults: 0.97-1.42, p-value range 0.086-0.896), indicating that strength and/or skill are likely to affect return rates. In addition, fruits that were difficult to acquire were foraged at nearly identical rates by adult males and significantly smaller (and presumably weaker) adult females (males relative to females: 1.01, p = 0.978), while subadult females had much lower foraging efficiency than the similarly-sized but more experienced adult females (subadults relative to adults: 0.34, p = 0.052), indicating that skill, specifically, is likely to have an effect on return rates. These results are consistent with the needing to learn hypothesis and indicate that long juvenile periods in capuchins may be the result of selection for more time to learn foraging skills for difficult-to-acquire fruits.
Machovsky-Capuska, Gabriel E; Miller, Mark G R; Silva, Fabiola R O; Amiot, Christophe; Stockin, Karen A; Senior, Alistair M; Schuckard, Rob; Melville, David; Raubenheimer, David
2018-06-05
1.Our understanding of the niche concept will remain limited while the quantity and range of different food types eaten remains a dominant proxy for niche breadth, as this does not account for the broad ecological context that governs diet. Linking nutrition, physiology and behaviour are critical to predict the extent to which a species adjusts its nutritional niche breadth at the levels of prey ("prey composition niche", defined as the range of prey compositions eaten), and diet ("realized nutritional niche" is the range of diets composed through feeding on the prey). 2.Here we studied adult-chick rearing Australasian gannets (Morus serrator) to propose an integrative approach using sea surface temperature anomalies (SSTa), geographic location and bathymetry over different years, to explore their relationship with the nutritional composition of prey and diets (i.e., prey composition and nutritional niche breadth), habitat use and foraging behavior. 3.We found that gannets feed on prey that varied widely in their nutritional composition (have a broad prey composition niche), and composed diets from these prey that likewise varied in composition (have a broad realized nutritional niche), suggesting generalism at two levels of macronutrient selection. 4.Across seasons, we established "nutritional landscapes" (hereafter nutriscapes), linking the nutritional content of prey (wet mass protein to-lipid ratio -P:L-) to the most likely geographic area of capture and bathymetry. Nutriscapes varied in their P:L from 6.06 to 15.28, over time, space and bathymetry (0 to 150 m). 5.During warm water events (strong positive SSTa), gannets expanded their foraging habitat, increased their foraging trip duration and consumed prey and diets with low macronutrient content (wet mass proportions of P and L). They were also constrained to the smallest prey composition and realized nutritional niche breadths. 6.Our findings are consistent with previous suggestions that dietary generalism evolves in heterogeneous environments, and provide a framework for understanding the nutritional goals in wild marine predators and how these goals drive ecological interactions and are, in turn, ultimately shaped by environmental fluctuations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Linking landscape-scale differences in forage to ungulate nutritional ecology.
Proffitt, Kelly M; Hebblewhite, Mark; Peters, Wibke; Hupp, Nicole; Shamhart, Julee
2016-10-01
Understanding how habitat and nutritional condition affect ungulate populations is necessary for informing management, particularly in areas experiencing carnivore recovery and declining ungulate population trends. Variations in forage species availability, plant phenological stage, and the abundance of forage make it challenging to understand landscape-level effects of nutrition on ungulates. We developed an integrated spatial modeling approach to estimate landscape-level elk (Cervus elaphus) nutritional resources in two adjacent study areas that differed in coarse measures of habitat quality and related the consequences of differences in nutritional resources to elk body condition and pregnancy rates. We found no support for differences in dry matter digestibility between plant samples or in phenological stage based on ground sampling plots in the two study areas. Our index of nutritional resources, measured as digestible forage biomass, varied among land cover types and between study areas. We found that altered plant composition following fires was the biggest driver of differences in nutritional resources, suggesting that maintaining a mosaic of fire history and distribution will likely benefit ungulate populations. Study area, lactation status, and year affected fall body fat of adult female elk. Elk in the study area exposed to lower summer range nutritional resources had lower nutritional condition entering winter. These differences in nutritional condition resulted in differences in pregnancy rate, with average pregnancy rates of 89% for elk exposed to higher nutritional resources and 72% for elk exposed to lower nutritional resources. Summer range nutritional resources have the potential to limit elk pregnancy rate and calf production, and these nutritional limitations may predispose elk to be more sensitive to the effects of harvest or predation. Wildlife managers should identify ungulate populations that are nutritionally limited and recognize that these populations may be more impacted by recovering carnivores or harvest than populations inhabiting more productive summer habitats. © 2016 by the Ecological Society of America.
Mysterud, Atle; Vike, Brit Karen; Meisingset, Erling L; Rivrud, Inger Maren
2017-06-01
Large herbivores gain nutritional benefits from following the sequential flush of newly emergent, high-quality forage along environmental gradients in the landscape, termed green wave surfing. Which landscape characteristics underlie the environmental gradient causing the green wave and to what extent landscape characteristics alone explain individual variation in nutritional benefits remain unresolved questions. Here, we combine GPS data from 346 red deer ( Cervus elaphus ) from four partially migratory populations in Norway with the satellite-derived normalized difference vegetation index (NDVI), an index of plant phenology. We quantify whether migratory deer had access to higher quality forage than resident deer, how landscape characteristics within summer home ranges affected nutritional benefits, and whether differences in landscape characteristics could explain differences in nutritional gain between migratory and resident deer. We found that migratory red deer gained access to higher quality forage than resident deer but that this difference persisted even after controlling for landscape characteristics within the summer home ranges. There was a positive effect of elevation on access to high-quality forage, but only for migratory deer. We discuss how the landscape an ungulate inhabits may determine its responses to plant phenology and also highlight how individual behavior may influence nutritional gain beyond the effect of landscape.
Widespread kelp-derived carbon in pelagic and benthic nearshore fishes
von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.
2016-01-01
Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.
Buttemer, William A; Dawson, William R
1993-10-01
We observed a colony of marine iguanas (Amblyrhynchus cristatus) on Isla Fernandina, Galápagos, Ecuador, while measuring local micrometeorological and tidal conditions. We found size-related differences in foraging mode, with smaller iguanas feeding intertidally during daytime low tides and larger iguanas feeding subtidally. Despite having greater opportunity, subtidal foragers did not time their foraging bouts or exploit their environment in ways that optimized their period at high body temperature. Instead, the foraging schedule of these iguanas served to maximize their rate of rewarming following emergence from the cool sea. Intertidal feeders, by contrast, showed much greater behavioral flexibility in attempting to exploit their thermal environment. We suggest that size-ordered differences in marine iguana thermoregulatory behavior reflect underlying ontogenetic changes in costs and benefits of thermoregulation due to differences in predator pressure, quantity of food and electrolytes taken at each feeding, mode of foraging, and agonistic tendencies.
Flower constancy in insect pollinators
Ratnieks, Francis L.W.
2011-01-01
As first noted by Aristotle in honeybee workers, many insect pollinators show a preference to visit flowers of just one species during a foraging trip. This “flower constancy” probably benefits plants, because pollen is more likely to be deposited on conspecific stigmas. But it is less clear why insects should ignore rewarding alternative flowers. Many researchers have argued that flower constancy is caused by constraints imposed by insect nervous systems rather than because flower constancy is itself an efficient foraging method. We argue that this view is unsatisfactory because it both fails to explain why foragers flexibly adjust the degree of flower constancy and does not explain why foragers of closely related species show different degrees of constancy. While limitations of the nervous system exist and are likely to influence flower constancy to some degree, the observed behavioural flexibility suggests that flower constancy is a successful foraging strategy given the insect’s own information about different foraging options. PMID:22446521
Walrus foraging marks on the seafloor in Bristol Bay, Alaska: A reconnaissance survey
Bornhold, Brian D.; Jay, Chadwick V.; McConnaughey, Robert; Rathwell, Glenda; Rhynas, Karl; Collins, William
2005-01-01
A reconnaissance sidescan sonar survey in Bristol Bay, Alaska revealed extensive areas of seafloor with features related to walrus foraging. They are similar to those seen in areas such as the outer Bering Sea and Chukchi Sea. Two types of feature were observed: (a) small (≪1 m diameter) shallow pits, often in clusters ranging in density from 5 pits per hectare to 35 pits per hectare; and, (b) more abundant, narrow, sinuous furrows, typically 5 to 10 m long with some reaching 20 m or more. Most foraging marks were in less than 60 m water depth in areas of sandy seafloor that were smooth, hummocky or characterized by degraded bedforms; the absence of foraging marks in other areas may be related, in part, to their more dynamic nature. The distribution of foraging marks was consistent in a general way with walrus locations from satellite telemetry studies.
Is there an endogenous tidal foraging rhythm in marine iguanas?
Wikelski, M; Hau, M
1995-12-01
As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related stimuli may be used as tidal zeitgebers in synchronizing the foraging rhythms of these reptiles under natural conditions.
Arimitsu, Mayumi L.; Piatt, John F.; Romano, Marc D.; Madison, E.N.; Conaway, Jeffrey S.
2010-01-01
Kittlitz’s murrelets (Brachyramphus brevirostris) and marbled murrelets (B. marmoratus) are small diving seabirds and are of management concern because of population declines in coastal Alaska. In 2006–08, we conducted a study in Kenai Fjords National Park, south-central Alaska, to estimate the recent population size of Brachyramphus murrelets, to evaluate productivity based on juvenile to adult ratios during the fledgling season, and to describe and compare their use of marine habitat. We also attempted a telemetry study to examine Kittlitz’s murrelet nesting habitat requirements and at-sea movements. We estimated that the Kittlitz’s murrelet population was 671 ± 144 birds, and the marbled murrelet population was 5,855 ± 1,163 birds. Kittlitz’s murrelets were limited to the heads of three fjords with tidewater glaciers, whereas marbled murrelets were more widely distributed. Population estimates for both species were lower in 2007 than in 2006 and 2008, possibly because of anomalous oceanographic conditions that may have delayed breeding phenology. During late season surveys, we observed few hatch-year marbled murrelets and only a single hatch-year Kittlitz’s murrelet over the course of the study. Using radio telemetry, we found a likely Kittlitz’s murrelet breeding site on a mountainside bordering one of the fjords. We never observed radio-tagged Kittlitz’s murrelets greater than 10 kilometer from their capture sites, suggesting that their foraging range during breeding is narrow. We observed differences in oceanography between fjords, reflecting differences in sill characteristics and orientation relative to oceanic influence. Acoustic biomass, a proxy for zooplankton and small schooling fish, generally decreased with distance from glaciers in Northwestern Lagoon, but was more variable in Aialik Bay where dense forage fish schools moved into glacial areas late in the summer. Pacific herring (Clupea pallasii), capelin (Mallotus villosus) and Pacific sand lance (Ammodytes hexapterus) were important forage species for murrelets in Kenai Fjords. Euphausiids also may have been an important forage resource for Kittlitz’s murrelets in turbid glacial outflows in shallow waters during daytime. Marbled murrelets generally were more tolerant to a wider range of foraging habitat conditions although they tended to avoid the ice-covered silty waters close to glaciers. In contrast, Kittlitz’s murrelets preferred areas where the influence of tidewater glaciers was the greatest and where their distribution was determined largely by prey availability. This work highlights an important link between interannual variability in murrelet counts at sea and mesoscale oceanographic conditions that influence marine productivity and prey distribution.
Efficiency of converting nutrient dry matter to milk in Holstein herds.
Britt, J S; Thomas, R C; Speer, N C; Hall, M B
2003-11-01
Production of milk from feed dry matter intakes (DMI), called dairy or feed efficiency, is not commonly measured in dairy herds as is feed conversion to weight gain in swine, beef, and poultry; however, it has relevance to conversion of purchased input to salable product and proportion of dietary nutrients excreted. The purpose of this study was to identify some readily measured factors that affect dairy efficiency. Data were collected from 13 dairy herds visited 34 times over a 14-mo period. Variables measured included cool or warm season (high ambient temperature <21 degrees C or >21 degrees C, respectively), days in milk, DMI, milk yield, milk fat percent, herd size, dietary concentrations (DM basis) and kilograms of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and forage. Season, days in milk, CP % and forage % of diet DM, and kilograms of dietary CP affected dairy efficiency. When evaluated using a model containing the significant variables, dairy efficiency was lower in the warm season (1.31) than in the cool season (1.40). In terms of simple correlations, dairy efficiency was negatively correlated with days in milk (r = -0.529), DMI (r = -0.316), forage % (r = -0.430), NDF % (r = -0.308), and kilograms of forage (r = -0.516), NDF (r = -0.434), and ADF (r = -0.313), in the diet, respectively. Dairy efficiency was positively correlated with milk yield (r = 0.707). The same relative patterns of significance and correlation were noted for dairy efficiency calculated with 3.5% fat-corrected milk yield. Diets fed by the herds fell within such a small range of variation (mean +/- standard deviation) for CP % (16.3 +/- 0.696), NDF % (33.2 +/- 2.68), and forage % (46.9 +/- 5.56) that these would not be expected to be useful to evaluate the effect of excessive underfeeding or overfeeding of these dietary components. The negative relationships of dairy efficiency with increasing dietary fiber and forage may reflect the effect of decreased diet digestibility. The results of this study suggest that managing herd breeding programs to reduce average days in milk and providing a cooler environment for the cows may help to maximize dairy efficiency. The mechanisms for the effects of the dietary variables on dairy efficiency need to be understood and evaluated over a broader range of diets and conditions before more firm conclusions regarding their impact can be drawn.
Kappes, Michelle A; Shaffer, Scott A; Tremblay, Yann; Foley, David G; Palacios, Daniel M; Bograd, Steven J; Costa, Daniel P
2015-01-01
The spatiotemporal distribution of animals is dependent on a suite of factors, including the distribution of resources, interactions within and between species, physiological limitations, and requirements for reproduction, dispersal, or migration. During breeding, reproductive constraints play a major role in the distribution and behavior of central place foragers, such as pelagic seabirds. We examined the foraging behavior and marine habitat selection of Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses throughout their eight month breeding cycle at Tern Island, Northwest Hawaiian Islands to evaluate how variable constraints of breeding influenced habitat availability and foraging decisions. We used satellite tracking and light-based geolocation to determine foraging locations of individuals, and applied a biologically realistic null usage model to generate control locations and model habitat preference under a case-control design. Remotely sensed oceanographic data were used to characterize albatross habitats in the North Pacific. Individuals of both species ranged significantly farther and for longer durations during incubation and chick-rearing compared to the brooding period. Interspecific segregation of core foraging areas was observed during incubation and chick-rearing, but not during brooding. At-sea activity patterns were most similar between species during brooding; neither species altered foraging effort to compensate for presumed low prey availability and high energy demands during this stage. Habitat selection during long-ranging movements was most strongly associated with sea surface temperature for both species, with a preference for cooler ocean temperatures compared to overall availability. During brooding, lower explanatory power of habitat models was likely related to the narrow range of ocean temperatures available for selection. Laysan and black-footed albatrosses differ from other albatross species in that they breed in an oligotrophic marine environment. During incubation and chick-rearing, they travel to cooler, more productive waters, but are restricted to the low-productivity environment near the colony during brooding, when energy requirements are greatest. Compared to other albatross species, Laysan and black-footed albatrosses spend a greater proportion of time in flight when foraging, especially during the brooding period; this strategy may be adaptive for locating dispersed prey in an oligotrophic environment.
Woo, Kerry J; Elliott, Kyle Hamish; Davidson, Melissa; Gaston, Anthony J; Davoren, Gail K
2008-11-01
1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology, specialization likely represents learning and memorizing optimal feeding locations and behaviours. 6. There was no difference in survival or reproductive success between specialists and generalists, suggesting these are largely equivalent strategies in terms of evolutionary fitness, presumably because different strategies were advantageous at different levels of prey abundance or predictability. The development of individual specialization may be an important precursor to diversification among seabirds.
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making
Lenow, Jennifer K.; Constantino, Sara M.
2017-01-01
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. PMID:28483979
Rutz, Christian; Bluff, Lucas A; Weir, Alex A S; Kacelnik, Alex
2007-11-02
New Caledonian crows (Corvus moneduloides) are renowned for using tools for extractive foraging, but the ecological context of this unusual behavior is largely unknown. We developed miniaturized, animal-borne video cameras to record the undisturbed behavior and foraging ecology of wild, free-ranging crows. Our video recordings enabled an estimate of the species' natural foraging efficiency and revealed that tool use, and choice of tool materials, are more diverse than previously thought. Video tracking has potential for studying the behavior and ecology of many other bird species that are shy or live in inaccessible habitats.
Foraging mode and evolution of strike-induced chemosensory searching in lizards.
Cooper, William E
2003-04-01
Strike-induced chemosensory searching (SICS) in lizards and snakes is a means of relocating prey by scent-trailing. The two main components of SICS are an elevated tongue-flick rate for vomerolfactory sampling after biting prey (PETF) and searching movements. In combination, these behaviors permit scent-trailing. Prey chemical discrimination, which is a prerequisite for SICS, is present in active foragers, but not in ambush foragers. Using comparative data. I show that searching movements and SICS have undergone correlated evolution with foraging mode and with prey chemical discrimination in lizards. This suggests that active foraging selects for prey chemical discrimination, which is then employed to search for escaped prey using the typical movements and tongue-flicking behaviors of active foragers. SICS in lizards is simply heightened active foraging after biting prey. In nonvenomous snakes, SICS is similar to that in lizards but is not restricted to active foragers. Only highly venomous snakes voluntarily release dangerous prey upon envenomation, pause to let the venom incapacitate the prey, and then relocate the prey by scent-trailing. PETF was observed in two ambush foragers and is not evolutionarily correlated with foraging mode or searching movements. Because it occurs in species lacking prey chemical discrimination, such PETF may be a response to gustatory cues or to internal chemicals not encountered on surfaces or trails of uninjured prey.
USDA-ARS?s Scientific Manuscript database
This paper reviews the literature and reports on the current state of knowledge regarding the potential for managers to use visual (VC), auditory (AC), and olfactory (OC) cues to manage foraging behavior and spatial distribution of rangeland livestock. We present evidence that free-ranging livestock...
Notes on foraging activity of female Myotis leibii in Maryland
Joshua B. Johnson; J. Edward Gates; W. Mark Ford
2009-01-01
Information on home range and habitat characteristics of eastern small-footed myotis (Myotis leibii) consist only of anecdotal accounts and unpublished research despite the need for such data for conservation of this rare species. We used radio telemetry to determine foraging site selection of four female eastern small-footed myotis in Allegany...
W. F. Mueggler
1985-01-01
The extensive forests and isolated clones of quaking aspen in the western United States have been valued for many years as wildlife habitat and livestock summer range (Sampson 1919). The actual amount of forage produced beneath the aspen trees differs appreciably among sites. Houston (1954) indicated that although many sites produce 1,000 to 2,000 pounds per acre (1,...
Poor Returns from Ozark Woodland Grazing
Ardell J. Bjugstad; Dean A. Murphy; Hewlette S. Crawford
1968-01-01
Sixty-tree percent of the area in Missouri's National Forests produces forage at the rate of about 50 pounds per acre per year. Forage production on the other 37 percent ranges from a low near 75 pounds per acre in the pine stands to a high of about 200 pounds in the redcedar stands.
Kolbe, Jason J.
2015-01-01
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly. PMID:26384236
The foraging benefits of being fat in a highly migratory marine mammal
Adachi, Taiki; Maresh, Jennifer L.; Robinson, Patrick W.; Peterson, Sarah H.; Costa, Daniel P.; Naito, Yasuhiko; Watanabe, Yuuki Y.; Takahashi, Akinori
2014-01-01
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. PMID:25377461
Multiple-stage decisions in a marine central-place forager
NASA Astrophysics Data System (ADS)
Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.
2016-05-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.
Multiple-stage decisions in a marine central-place forager.
Friedlaender, Ari S; Johnston, David W; Tyson, Reny B; Kaltenberg, Amanda; Goldbogen, Jeremy A; Stimpert, Alison K; Curtice, Corrie; Hazen, Elliott L; Halpin, Patrick N; Read, Andrew J; Nowacek, Douglas P
2016-05-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator-prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.
Foraging enrichment for stabled horses: effects on behaviour and selection.
Goodwin, D; Davidson, H P B; Harris, P
2002-11-01
The restricted access to pasture experienced by many competition horses has been linked to the exhibition of stereotypic and redirected behaviour patterns. It has been suggested that racehorses provided with more than one source of forage are less likely to perform these patterns; however, the reasons for this are currently unclear. To investigate this in 4 replicated trials, up to 12 horses were introduced into each of 2 identical stables containing a single forage, or 6 forages for 5 min. To detect novelty effects, in the first and third trials the single forage was hay. In the second and fourth, it was the preferred forage from the preceding trial. Trials were videotaped and 12 mutually exclusive behaviour patterns compared. When hay was presented as the single forage (Trials 1 and 3), all recorded behaviour patterns were significantly different between stables; e.g. during Trial 3 in the 'Single' stable, horses looked over the stable door more frequently (P<0.001), moved for longer (P<0.001), foraged on straw bedding longer (P<0.001), and exhibited behaviour indicative of motivation to search for alternative resources (P<0.001) more frequently. When a previously preferred forage was presented as the single forage (Trials 2 and 4) behaviour was also significantly different between stables, e.g in Trial 4 horses looked out over the stable door more frequently (P<0.005) and foraged for longer in their straw bedding (P<0.005). Further study is required to determine whether these effects persist over longer periods. However, these trials indicate that enrichment of the stable environment through provision of multiple forages may have welfare benefits for horses, in reducing straw consumption and facilitating the expression of highly motivated foraging behaviour.
Population-level plasticity in foraging behavior of western gulls (Larus occidentalis)
Shaffer, Scott A.; Cockerham, Sue; Warzybok, Pete; Bradley, Russell W.; Jahncke, Jaime; Clatterbuck, Corey A.; Lucia, Magali; Jelincic, Jennifer A.; Cassell, Anne L.; Kelsey, Emily; Adams, Josh
2017-01-01
BackgroundPlasticity in foraging behavior among individuals, or across populations may reduce competition. As a generalist carnivore, western gulls (Larus occidentalis) consume a wide range of marine and terrestrial foods. However, the foraging patterns and habitat selection (ocean or land) of western gulls is not well understood, despite their ubiquity in coastal California. Here, we used GPS loggers to compare the foraging behavior and habitat use of western gulls breeding at two island colonies in central California.ResultsGulls from offshore Southeast Farallon Island (SFI; n = 41 gulls) conducted more oceanic trips (n = 90) of shorter duration (3.8 ± 3.3 SD hours) and distance (27.1 ± 20.3 km) than trips to the mainland (n = 41) which were nearly 4 times longer and 2 times farther away. In contrast, gulls from coastal Año Nuevo Island (ANI; n = 20 gulls) foraged at sites on land more frequently (n = 103) but trip durations (3.6 ± 2.4 h) and distances (20.8 ± 9.4 km) did not differ significantly from oceanic trips (n = 42) where trip durations were only slightly shorter (2.9 ± 2.7 h) and equidistant (20.6 ± 12.1 km). Gulls from both colonies visited more sites while foraging at sea but spent significantly longer (3–5 times) durations at each site visited on land. Foraging at sea was also more random compared to foraging trips over land where gulls from both colonies visited the same sites on multiple trips. The total home range of gulls from SFI (14,230 km2) was 4.5 times larger than that of gulls from ANI, consistent with greater resource competition resulting from a larger abundance of seabirds at SFI.ConclusionsPopulation-level plasticity in foraging behavior was evident and dependent on habitat type. In addition, gulls from SFI were away foraging longer than gulls from ANI (22% vs. 7.5%, respectively), which impacts the defense of territories and attempts at nest predation by conspecifics. Our results can be used to explain lower chick productivity at SFI, and can provide insight into increased gull activity in urban areas.
Prey selection and foraging period of the predaceous rocky intertidal snail, Acanthina punctulata.
Menge, Jane Lubchenco
1974-12-01
The diet and foraging period of the neogastropod Acanthina punctulata were investigated in order to test various aspects of recent optimal foraging strategy models. This intertidal snail is an actively searching predator which preys on snails and barnacles by boring a hole in the shell and rasping out the flesh. Unlike many gastropod predators, Acanthina drill its gastropod prey at a very specific location on the columella, the thickest portion of the shell. Acanthina's foraging period can be interpreted as a compromise between maximizing the energy obtained by feeding and minimizing risk of mortality from exposure to wave action. That foraging period minimizing risk of being dislodged by waves appears to be during low tide when the predators can be in shallow pools. However, prey cannot be captured and consumed during one low tide. Thus Acanthina must be exposed during some high tides, and its strategy appears to be to restrict movement while exposed. Thus search is not initiated during high tide, but drilling and prey consumption are continued during that time. A snail not drilling or consuming prey seeks the protection of crevices or large anemones during high tide. A model is presented to indicate the relative amounts of risk and net energy for Acanthina at successive low and high tides. Predictions from the model, e.g., minimizing search time to avoid being exposed for an additional high tide and no movement during high tide are supported by field data. Acanthina commences foraging at the beginning of low tide, searches initially for preferred prey, but if unsuccessful, settles for a less preferred prey and begins drilling this prey before the end of low tide. Drilling and ingestion of prey occur during the following high and sometimes low tides. These "handling times" take 95% of the total foraging time in the field, while search time takes only 5% (pursuit time is negligible). Drilling alone accounts for 48-70% of the total drilling and eating time. In the laboratory, drilling and eating time for littorine food ranged from 15-60 hrs per item. The time to drill and eat a littorine increases exponentially with prey length. Since handling and processing prey items represents such a large investment of time, Acanthina would be expected to be very selective with respect to choice of prey items. Electivity coefficients from field data suggest that littorines are preferred over barnacles. Acanthina in the laboratory optimizes the amount of biomass ingested per time by choosing larger littorines over smaller ones and by preferring the more readily drilled species.It is suggested that Acanthina obtains information about the range of prey available initially by encountering and evaluating quite a few prey before making a selection, but usually by comparing an item of prey encountered to the prey it recently ingested. This latter method should provide a basis for evaluating prey encountered and has the advantage of reducing search time, the total amount of time spent feeding and thus the high-tide time exposed to wave action.In a similar manner, the decrease in the level of acceptability of prey as search time increases represents a compromise between maximizing energy obtained and minimizing risk from mortality.
A Clustering-Based Approach to Enriching Code Foraging Environment.
Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu
2016-09-01
Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools.
Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.).
Scheiner, R; Erber, J; Page, R E
1999-07-01
Using the proboscis extension response we conditioned pollen and nectar foragers of the honey bee (Apis mellifera L.) to tactile patterns under laboratory conditions. Pollen foragers demonstrated better acquisition, extinction, and reversal learning than nectar foragers. We tested whether the known differences in response thresholds to sucrose between pollen and nectar foragers could explain the observed differences in learning and found that nectar foragers with low response thresholds performed better during acquisition and extinction than ones with higher thresholds. Conditioning pollen and nectar foragers with similar response thresholds did not yield differences in their learning performance. These results suggest that differences in the learning performance of pollen and nectar foragers are a consequence of differences in their perception of sucrose. Furthermore, we analysed the effect which the perception of sucrose reward has on associative learning. Nectar foragers with uniform low response thresholds were conditioned using varying concentrations of sucrose. We found significant positive correlations between the concentrations of the sucrose rewards and the performance during acquisition and extinction. The results are summarised in a model which describes the relationships between learning performance, response threshold to sucrose, concentration of sucrose and the number of rewards.
Couvillon, Margaret J; Fitzpatrick, Ginny; Dornhaus, Anna
Bumble bees are important pollinators of crops and other plants. However, many aspects of their basic biology remain relatively unexplored. For example, one important and unusual natural history feature in bumble bees is the massive size variation seen between workers of the same nest. This size polymorphism may be an adaptation for division of labor, colony economics, or be nonadaptive. It was also suggested that perhaps this variation allows for niche specialization in workers foraging at different temperatures: larger bees might be better suited to forage at cooler temperatures and smaller bees might be better suited to forage at warmer temperatures. This we tested here using a large, enclosed growth chamber, where we were able to regulate the ambient temperature. We found no significant effect of ambient or nest temperature on the average size of bees flying to and foraging from a suspended feeder. Instead, bees of all sizes successfully flew and foraged between 16°C and 36°C. Thus, large bees foraged even at very hot temperatures, which we thought might cause overheating. Size variation therefore could not be explained in terms of niche specialization for foragers at different temperatures.
Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.
Sommerfeld, Julia; Kato, Akiko; Ropert-Coudert, Yan; Garthe, Stefan; Hindell, Mark A.
2013-01-01
Identification of Area-restricted search (ARS) behaviour is used to better understand foraging movements and strategies of marine predators. Track-based descriptive analyses are commonly used to detect ARS behaviour, but they may be biased by factors such as foraging trip duration or non-foraging behaviours (i.e. resting on the water). Using first-passage time analysis we tested if (I) daylight resting at the sea surface positions falsely increase the detection of ARS behaviour and (II) short foraging trips are less likely to include ARS behaviour in Masked Boobies Sula dactylatra. We further analysed whether ARS behaviour may be used as a proxy to identify important feeding areas. Depth-acceleration and GPS-loggers were simultaneously deployed on chick-rearing adults to obtain (1) location data every 4 minutes and (2) detailed foraging activity such as diving rates, time spent sitting on the water surface and in flight. In 82% of 50 foraging trips, birds adopted ARS behaviour. In 19.3% of 57 detected ARS zones, birds spent more than 70% of total ARS duration resting on the water, suggesting that these ARS zones were falsely detected. Based on generalized linear mixed models, the probability of detecting false ARS zones was 80%. False ARS zones mostly occurred during short trips in close proximity to the colony, with low or no diving activity. This demonstrates the need to account for resting on the water surface positions in marine animals when determining ARS behaviour based on foraging locations. Dive rates were positively correlated with trip duration and the probability of ARS behaviour increased with increasing number of dives, suggesting that the adoption of ARS behaviour in Masked Boobies is linked to enhanced foraging activity. We conclude that ARS behaviour may be used as a proxy to identify important feeding areas in this species. PMID:23717471
Gedir, Jay V; Cain, James W; Krausman, Paul R; Allen, Jamison D; Duff, Glenn C; Morgart, John R
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8-55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep.
Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.
2016-01-01
Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during water-stressed periods may not be necessary for desert bighorn sheep. PMID:26894504
Sommerfeld, Julia; Kato, Akiko; Ropert-Coudert, Yan; Garthe, Stefan; Hindell, Mark A
2013-01-01
Identification of Area-restricted search (ARS) behaviour is used to better understand foraging movements and strategies of marine predators. Track-based descriptive analyses are commonly used to detect ARS behaviour, but they may be biased by factors such as foraging trip duration or non-foraging behaviours (i.e. resting on the water). Using first-passage time analysis we tested if (I) daylight resting at the sea surface positions falsely increase the detection of ARS behaviour and (II) short foraging trips are less likely to include ARS behaviour in Masked Boobies Sula dactylatra. We further analysed whether ARS behaviour may be used as a proxy to identify important feeding areas. Depth-acceleration and GPS-loggers were simultaneously deployed on chick-rearing adults to obtain (1) location data every 4 minutes and (2) detailed foraging activity such as diving rates, time spent sitting on the water surface and in flight. In 82% of 50 foraging trips, birds adopted ARS behaviour. In 19.3% of 57 detected ARS zones, birds spent more than 70% of total ARS duration resting on the water, suggesting that these ARS zones were falsely detected. Based on generalized linear mixed models, the probability of detecting false ARS zones was 80%. False ARS zones mostly occurred during short trips in close proximity to the colony, with low or no diving activity. This demonstrates the need to account for resting on the water surface positions in marine animals when determining ARS behaviour based on foraging locations. Dive rates were positively correlated with trip duration and the probability of ARS behaviour increased with increasing number of dives, suggesting that the adoption of ARS behaviour in Masked Boobies is linked to enhanced foraging activity. We conclude that ARS behaviour may be used as a proxy to identify important feeding areas in this species.
Shearwater Foraging in the Southern Ocean: The Roles of Prey Availability and Winds
Raymond, Ben; Shaffer, Scott A.; Sokolov, Serguei; Woehler, Eric J.; Costa, Daniel P.; Einoder, Luke; Hindell, Mark; Hosie, Graham; Pinkerton, Matt; Sagar, Paul M.; Scott, Darren; Smith, Adam; Thompson, David R.; Vertigan, Caitlin; Weimerskirch, Henri
2010-01-01
Background Sooty (Puffinus griseus) and short-tailed (P. tenuirostris) shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. Methodology/Principal Findings Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140°E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. Conclusions/Significance The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem. PMID:20532034
Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.
2011-01-01
We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins,Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.
Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.
2011-01-01
We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.
Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico
Lamont, Margaret M.; Fujisaki, Ikuko; Stephens, Brail S.; Hackett, Caitlin
2015-01-01
Conclusions: Green turtles in St. Joseph Bay have relatively small home ranges and many contain multiple activity centers. The frequent use of channels by turtles suggests bathymetry plays a major role in habitat selection of juvenile green turtles, particularly as temperatures drop in winter. The quality and density of seagrass habitat in St. Joseph Bay and its proximity to deep channels appears to provide ideal conditions for juvenile greens. The results of this study help define characteristics of foraging habitat utilized by juvenile greens in the northern Gulf of Mexico that managers can use in creating protected areas such as aquatic preserves.
Coblentz, W K; Nellis, S E; Hoffman, P C; Hall, M B; Weimer, P J; Esser, N M; Bertram, M G
2013-01-01
Sixty samples of 'ForagePlus' oat were selected from a previous plot study for analysis of in vitro gas production (IVGP) on the basis of 2 factors: (1) high (n=29) or low (n=31) neutral detergent fiber (NDF; 62.7±2.61 and 45.1±3.91%, respectively); and (2) the range of water-soluble carbohydrates (WSC) within the high- and low-NDF groups. For the WSC selection factor, concentrations ranged from 4.7 to 13.4% (mean=7.9±2.06%) and from 3.5 to 19.4% (mean=9.7±4.57%) within high- and low-NDF forages, respectively. Our objectives were to assess the relationships between IVGP and various agronomic or nutritional characteristics for high- and low-NDF fall-oat forages. Cumulative IVGP was fitted to a single-pool nonlinear regression model: Y=MAX × (1 - e ([-)(K)(× (t - lag)])), where Y=cumulative gas produced (mL), MAX=maximum cumulative gas produced with infinite incubation time (mL), K=rate constant, t=incubation time (h), and lag=discrete lag time (h). Generally, cumulative IVGP after 12, 24, 36, or 48h within high-NDF fall-oat forages was negatively correlated with NDF, hemicellulose, lignin, and ash, but positively correlated with WSC, nonfiber carbohydrate (NFC), and total digestible nutrients (TDN). For low-NDF fall-grown oat forages, IVGP was positively correlated with growth stage, canopy height, WSC, NFC, and TDN; negative correlations were observed with ash and crude protein (CP) but not generally with fiber components. These responses were also reflected in multiple regression analysis for high- and low-NDF forages. After 12, 24, or 36h of incubation, cumulative IVGP within high-NDF fall-oat forages was explained by complex regression equations utilizing (lignin:NDF)(2), lignin:NDF, hemicellulose, lignin, and TDN(2) as independent variables (R(2)≥0.43). Within low-NDF fall-grown oat forages, cumulative IVGP at these incubation intervals was explained by positive linear relationships with NFC that also exhibited high coefficients of determination (R(2)≥0.75). Gas production was accelerated at early incubation times within low-NDF forages, specifically in response to large pools of WSC that were most likely to be present as forages approached boot stage by late-fall. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Coombs, G.; Dold, A. P.; Brassine, E. I.; Peter, C. I.
2012-07-01
The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.
Habitat use of bats in relation to wind turbines revealed by GPS tracking
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C.
2016-01-01
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided. PMID:27373219
Habitat use of bats in relation to wind turbines revealed by GPS tracking
NASA Astrophysics Data System (ADS)
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C.
2016-07-01
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided.
Habitat use of bats in relation to wind turbines revealed by GPS tracking.
Roeleke, Manuel; Blohm, Torsten; Kramer-Schadt, Stephanie; Yovel, Yossi; Voigt, Christian C
2016-07-04
Worldwide, many countries aim at countering global climate change by promoting renewable energy. Yet, recent studies highlight that so-called green energy, such as wind energy, may come at environmental costs, for example when wind turbines kill birds and bats. Using miniaturized GPS loggers, we studied how an open-space foraging bat with high collision risk with wind turbines, the common noctule Nyctalus noctula (Schreber, 1774), interacts with wind turbines. We compared actual flight trajectories to correlated random walks to identify habitat variables explaining the movements of bats. Both sexes preferred wetlands but used conventionally managed cropland less than expected based on availability. During midsummer, females traversed the land on relatively long flight paths and repeatedly came close to wind turbines. Their flight heights above ground suggested a high risk of colliding with wind turbines. In contrast, males recorded in early summer commuted straight between roosts and foraging areas and overall flew lower than the operating range of most turbine blades, suggesting a lower collision risk. Flight heights of bats suggest that during summer the risk of collision with wind turbines was high for most studied bats at the majority of currently installed wind turbines. For siting of wind parks, preferred bat habitats and commuting routes should be identified and avoided.
Underwater, low-frequency noise in a coastal sea turtle habitat.
Samuel, Y; Morreale, S J; Clark, C W; Greene, C H; Richmond, M E
2005-03-01
Underwater sound was recorded in one of the major coastal foraging areas for juvenile sea turtles in the Peconic Bay Estuary system in Long Island, New York. The recording season of the underwater environment coincided with the sea turtle activity season in an inshore area where there is considerable boating and recreational activity, especially during the summer between Independence Day and Labor Day. Within the range of sea turtle hearing, average noise pressure reached 110 dB during periods of high human activity and diminished proportionally, down to 80 dB, with decreasing human presence. Therefore, during much of the season when sea turtles are actively foraging in New York waters, their coastal habitats are flooded with underwater noise. During the period of highest human activity, average noise pressures within the range of frequencies heard by sea turtles were greater by over two orders of magnitude (26 dB) than during the lowest period of human activity. Sea turtles undoubtedly are exposed to high levels of noise, most of which is anthropogenic. Results suggest that continued exposure to existing high levels of pervasive anthropogenic noise in vital sea turtle habitats and any increase in noise could affect sea turtle behavior and ecology.
Jacques, C.N.; Jenks, J.A.; Klaver, R.W.
2009-01-01
Knowledge of seasonal movements by pronghorns (Antilocapra americana) within the easternmost extension of sagebrush-steppe communities is limited. Current hypotheses regarding movement patterns suggest that pronghorns initiate seasonal movements in response to severe winter weather, snowfall patterns, spatial and temporal variation in forage abundance, and availability of water. From January 2002 to August 2005, we monitored movements of 76 adult (≥1.5 years) female pronghorns on 2 study areas (Harding and Fall River counties) in western South Dakota. We collected 8,750 visual locations, calculated 204 home ranges, and documented 17 seasonal movements. Eighty-four percent (n = 55) of pronghorns were nonmigratory and 10% (n = 6) were conditional migrators. Mean distance between summer and winter range was 23.1 km (SE = 2.8 km, n = 13). Five adult pronghorns (8%) dispersed a mean distance of 37.6 km (SE = 12.4 km); of which 1 female moved a straight-line distance of 75.0 km. Winter and summer home-range size varied (P < 0.0001) between study sites. Mean 95% adaptive kernel winter and summer home-range size of pronghorns was 55.5 and 19.7 km2, respectively, in Harding County and 127.2 and 65.9 km2, respectively, in Fall River County. Nonmigratory behavior exhibited by pronghorns was likely associated with minimal snow cover and moderate temperatures during winter 2002–2004. Variation in size of adult seasonal home ranges between sites was likely associated with differences in forage distribution and availability between regions.
O'Daniels, Sean T; Kesler, Dylan C; Mihail, Jeanne D; Webb, Elisabeth B; Werner, Scott J
2017-05-15
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms. Published by Elsevier Inc.
O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.
2017-01-01
Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.
Hamilton, Charmain D; Lydersen, Christian; Ims, Rolf A; Kovacs, Kit M
2015-11-01
Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a 'tipping point', subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Loreto, Raquel G.; Hart, Adam G.; Pereira, Thairine M.; Freitas, Mayara L. R.; Hughes, David P.; Elliot, Simon L.
2013-10-01
Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants ( Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.
Selective food preferences of walleyes of the 1959 year class in Lake Erie
Parsons, John W.
1971-01-01
Stomachs were examined from 1,473 walleyes (Stizostedion vitreum vitreum) of the 1959 year class collected in western Lake Erie from June 1959 to October 1960. In the same period, the relative abundance and lengths of potential forage species were determined from trawl catches. The walleye fed almost entirely on fish. In 1959 the food was dominated first (in June and July) by yellow perch (Perca flavescens) and then, in sequence, by spottail shiners (Notropis hudsonius) and emerald shiners (Notropis atherinoides). In 1960, the walleyes fed mostly on yearling spottail shiners and emerald shiners in the spring and summer but young alewives (Alosa pseudoharengus) became the dominant food in the fall. The length of forage fish increased with the length of walleyes and walleyes of a given length usually ate forage fish within a restricted range of lengths. This size preference was shown by walleyes of the same length in the same and different months. The increased in length of forage fish with length of walleye was not proportionate. Walleyes 2.5 inches long ate forage fish 0.44 times their length whereas walleyes 15.5 inches long ate forage fish only 0.28 times their length. The diet of the walleyes changed according to species and lengths of forage fish available. Since young of several species hatched in different months and grew at different rates, abundance and suitability as forage sometimes changed rapidly.
Hoskins, Andrew J.; Arnould, John P. Y.
2013-01-01
Across an individual's life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500–1600 m·h−1) and a reduction in postdive duration (111–90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (<2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (>2.9 d) effort increased up to 2–3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4–5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this species. PMID:24244511
Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity
Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.
2014-01-01
Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.
Wilcox, Rebecca C; Fletcher, Robert J
2016-01-01
Identifying impacts of exotic species on native populations is central to ecology and conservation. Although the effects of exotic predators on native prey have received much attention, the role of exotic prey on native predators is poorly understood. Determining if native predators actively prefer invasive prey over native prey has implications for interpreting invasion impacts, identifying the presence of evolutionary traps, and predator persistence. One of the world's most invasive species, Pomacea maculata, has recently established in portions of the endangered Everglade snail kite's (Rostrhamus sociabilis plumbeus) geographic range. Although these exotic snails could provide additional prey resources, they are typically much larger than the native snail, which can lead to lower foraging success and the potential for diminished energetic benefits in comparison to native snails. Nonetheless, snail kites frequently forage on exotic snails. We used choice experiments to evaluate snail kite foraging preference in relation to exotic species and snail size. We found that snail kites do not show a preference for native or exotic snails. Rather, snail kites generally showed a preference for medium-sized snails, the sizes reflective of large native snails. These results suggest that while snail kites frequently forage on exotic snails in the wild, this behavior is likely driven simply by the abundance of exotic snails rather than snail kites preferring exotics. This lack of preference offers insights to hypotheses regarding effects of exotic species, guidance regarding habitat and invasive species management, and illustrates how native-exotic relationships can be misleading in the absence of experimental tests of such interactions.
Vessel Noise Affects Beaked Whale Behavior: Results of a Dedicated Acoustic Response Study
Pirotta, Enrico; Milor, Rachael; Quick, Nicola; Moretti, David; Di Marzio, Nancy; Tyack, Peter; Boyd, Ian; Hastie, Gordon
2012-01-01
Some beaked whale species are susceptible to the detrimental effects of anthropogenic noise. Most studies have concentrated on the effects of military sonar, but other forms of acoustic disturbance (e.g. shipping noise) may disrupt behavior. An experiment involving the exposure of target whale groups to intense vessel-generated noise tested how these exposures influenced the foraging behavior of Blainville’s beaked whales (Mesoplodon densirostris) in the Tongue of the Ocean (Bahamas). A military array of bottom-mounted hydrophones was used to measure the response based upon changes in the spatial and temporal pattern of vocalizations. The archived acoustic data were used to compute metrics of the echolocation-based foraging behavior for 16 targeted groups, 10 groups further away on the range, and 26 non-exposed groups. The duration of foraging bouts was not significantly affected by the exposure. Changes in the hydrophone over which the group was most frequently detected occurred as the animals moved around within a foraging bout, and their number was significantly less the closer the whales were to the sound source. Non-exposed groups also had significantly more changes in the primary hydrophone than exposed groups irrespective of distance. Our results suggested that broadband ship noise caused a significant change in beaked whale behavior up to at least 5.2 kilometers away from the vessel. The observed change could potentially correspond to a restriction in the movement of groups, a period of more directional travel, a reduction in the number of individuals clicking within the group, or a response to changes in prey movement. PMID:22880022
Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity
NASA Astrophysics Data System (ADS)
Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.
2014-08-01
Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.
Forage composition, productivity, and utilization in the eastern Washington Cascade Range
John F. Lehmkuhl; Andrea L. Lyons; Edd Bracken; Jodi Leingang; William L. Gaines; Erich K. Dodson; Peter H. Singleton
2013-01-01
Provision of forage for wild and domestic ungulates, and the associated impacts of their herbivory, are contentious issues for wildland management in western North America. We quantified the composition, above-ground net production (ANP), and utilization of herbaceous and shrub vegetation in five non-forest and seven forest cover types across the core springsummer-...
Forage composition, productivity, and utilization in the Eastern Washington Cascade Range
John F. Lehmkuhl; Andrea L. Lyons; Edd Bracken; Jodi Leingang; William L. Gaines; Erich Kyle Dodson; Peter H. Singleton
2013-01-01
Provision of forage for wild and domestic ungulates, and the associated impacts of their herbivory, are contentious issues for wildland management in western North America. We quantified the composition, above-ground net production (ANP), and utilization of herbaceous and shrub vegetation in five non-forest and seven forest cover types across the core spring-...
Daniel W. Uresk; Deborah D. Paulson
1988-01-01
Carrying capacities for cattle competing with black-tailed prairie dogs (Cynomys ludovicianus) were estimated by a linear programming technique for management of cool-season grasses in western South Dakota. Forage utilization was allowed to range from 20% to 80%. Under management for cool-season grasses (western wheatgrass (Agropyron smithii...
Martínez-Pérez, M F; Calderón-Mendoza, D; Islas, A; Encinias, A M; Loya-Olguín, F; Soto-Navarro, S A
2013-03-01
Two experiments were conducted to evaluate effects of corn dry distiller grains plus condensed solubles (DDGS) supplementation level on performance digestion characteristics of steers grazing native range during the forage growing season. In the performance study, 72 (206 ± 23.6 kg; 2008) and 60 (230 ± 11.3 kg; 2009) English crossbred steer calves were used in a randomized complete block design replicated over 2 yr. The grazing periods lasted 56 and 58 d and started on August 11 and 18 for 2008 and 2009, respectively. Each year, steers were blocked by BW (light, medium, and heavy), stratified by BW within blocks, and randomly assigned to 1 of 4 grazing groups. Each grazing group (6 steers in 2008 and 5 in 2009) was assigned to a DDGS supplementation levels (0, 0.2, 0.4, and 0.6% BW). Grazing group served as the experimental unit with 12 groups per year receiving 1 of 4 treatments for 2 yr (n = 6). In the metabolism study, 16 English crossbred steers (360 ± 28.9 kg) fitted with ruminal cannulas grazing native range during the summer growing season were used in a completely randomized design to evaluate treatment effects on forage intake and digestion. The experiment was conducted during the first and second weeks of October 2008. Steers were randomly assigned to supplement level (0, 0.2, 0.4, and 0.6% BW; n = 4) and grazed a single native range pasture with supplements offered individually once daily at 0700 h. In the performance study, ADG (0.64, 0.75, 0.80, and 0.86 ± 0.03 kg/d for 0, 0.2, 0.4, and 0.6% BW, respectively) increased linearly (P = 0.01) with increasing DDGS supplementation level. In the metabolism study, forage OM, NDF, CP, and ether extract (EE) intake decreased (P ≤ 0.05) linearly with increasing DDGS supplementation level. Total CP and EE intake increased (P ≤ 0.002) with increasing DDGS supplementation level. Digestibility of OM, NDF, and EE increased (linear; P ≤ 0.008) whereas the soluble CP fraction of forage masticate sample linearly increased (P = 0.01) and slowly degradable CP fraction linearly decreased (P = 0.05) with increasing DDGS supplementation level. Forage in situ masticate DM and NDF disappearance rate decreased (quadratic; P ≤ 0.05) and DDGS in situ DM disappearance rate increased (linear; P = 0.03) with increasing supplementation levels. These results indicate that DDGS supplementation enhanced grazing performance and total-tract digestion of steers grazing native range during the forage growing season.
Tsuruda, Jennifer M; Page, Robert E
2009-12-14
In honey bees, the sensory system can be measured by touching sugar water to the antennae, eliciting the extension of the proboscis. The proboscis extension response (PER) [6,13] is closely associated with complex behavioral traits involving foraging and learning [30-32,34-36,43-49]. Bees specializing in pollen foraging are more responsive to low concentrations of sucrose solution and, as a consequence, perform better in associative learning assays [4,43,46-48]. An important unanswered question is whether sensory-motor differences between pollen and nectar specialists are restricted to the gustatory modality or whether pollen foragers are in general more sensitive to sensory stimuli associated with foraging. We used an assay designed to test responsiveness to varying intensities of light [11] and tested responsiveness to varying concentrations of sucrose in wild-type pollen and non-pollen foragers and bees artificially-selected for differences in pollen-hoarding behavior [27]. Workers of the high pollen-hoarding strain are more likely to specialize on collecting pollen. In wild-type bees, pollen foragers were more responsive to sucrose and light than non-pollen foragers. In the selected strains, high pollen-hoarding pre-foragers were more responsive to sucrose and light than low pollen-hoarding pre-foragers. These PER and light assays demonstrate a positive relationship between the gustatory and visual sensory modalities with respect to foraging behavior and genotype. We propose that light responsiveness, in addition to sucrose responsiveness, is a component of a pollen-hoarding behavioral syndrome - a suite of traits that covary with hoarding behavior [51,52] - previously described for honey bees [14,37,41]. We suggest that the modulation of the sensory system may be partially constrained by the interdependent modulation of multiple sensory modalities associated with hoarding and foraging.
Increased energy expenditure by a seabird in response to higher food abundance
Jodice, P.G.R.; Roby, D.D.; Suryan, R.M.; Irons, D.B.; Turco, K.R.; Brown, E.D.; Thedinga, J.F.; Visser, G. Henk
2006-01-01
Variability in forage fish abundance strongly affects seabird behavior and reproductive success, although details of this relationship are unclear. During 1997 and 1998, we measured (1) daily energy expenditure (DEE) of 80 parent black-legged kittiwakes Rissa tridactyla at 2 colonies in Prince William Sound, Alaska (North Icy Bay and Shoup Bay), (2) abundance of surface-schooling forage fishes within the foraging range of each colony, and (3) diet composition, energy delivery rates to nestlings, and reproductive success of kittiwakes at these same colonies. Female DEE was highest at North Icy Bay in 1998, while male DEE did not differ by colony year. Abundances of Pacific herring Clupea pallasi and sand lance Ammodytes hexapterus were highest near North Icy Bay in 1998 and nearly egual in density, although Age 1+ herring comprised the majority of the diet there. Energy delivery rates to nestlings, nestling growth rates, and productivity were also highest at North Icy Bay in 1998. We suggest that female kittiwakes responded to the increased abundance of Age 1+ herring near North Icy Bay in 1998 by increasing their DEE, which in turn positively affected reproductive success. Given that adult kittiwakes have been shown to suffer decreased survival as a response to increased energy expenditure during brood rearing, the positive correlation we observed between increased abundance of a high quality food source, parental effort, and productivity is consistent with maximizing lifetime reproductive success. The lack of a response in male DEE suggests that brood-rearing roles in kittiwakes differ between genders. ?? Inter-Research 2006.
Mitkus, Mindaugas; Nevitt, Gabrielle A; Danielsen, Johannis; Kelber, Almut
2016-11-01
Procellariiform or 'tubenosed' seabirds are challenged to find prey and orient over seemingly featureless oceans. Previous studies have found that life-history strategy (burrow versus surface nesting) was correlated to foraging strategy. Burrow nesters tended to track prey using dimethyl sulphide (DMS), a compound associated with phytoplankton, whereas surface-nesting species did not. Burrow nesters also tended to be smaller and more cryptic, whereas surface nesters were larger with contrasting plumage coloration. Together these results suggested that differences in life-history strategy might also be linked to differences in visual adaptations. Here, we used Leach's storm petrel, a DMS-responder, and northern fulmar, a non-responder, as model species to test this hypothesis on their sensory ecology. From the retinal ganglion cell density and photoreceptor dimensions, we determined that Leach's storm petrels have six times lower spatial resolution than the northern fulmars. However, the optical sensitivity of rod photoreceptors is similar between species. These results suggest that under similar atmospheric conditions, northern fulmars have six times the detection range for similarly sized objects. Both species have extended visual streaks with a central area of highest spatial resolution, but only the northern fulmar has a central fovea. The prediction that burrow-nesting DMS-responding procellariiforms should differ from non-responding species nesting in the open holds true for spatial resolution, but not for optical sensitivity. This result may reflect the fact that both species rely on olfaction for their nocturnal foraging activity, but northern fulmars might use vision more during daytime. © 2016. Published by The Company of Biologists Ltd.
The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus.
Gordon, Deborah M
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4-8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony's trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.
Pierre-Olivier, Jean; Bradley, Robert L; Tremblay, Jean-Pierre; Côté, Steeve D
2015-09-01
An important asset for the management of wild ungulates is recognizing the spatial distribution of forage quality across heterogeneous landscapes. To do so typically requires knowledge of which plant species are eaten, in what abundance they are eaten, and what their nutritional quality might be. Acquiring such data, however, may be difficult and time consuming. Here, we are proposing a rapid and cost-effective forage quality monitoring tool that combines near infrared (NIR) spectra of fecal samples and easily obtained data on plant community composition. Our approach rests on the premise that NIR spectra of fecal samples collected within low population density exclosures reflect the optimal forage quality of a given landscape. Forage quality can thus be based on the Mahalanobis distance of fecal spectral scans across the landscape relative to fecal spectral scans inside exclosures (referred to as DISTEX). The Gi* spatial autocorrelation statistic can then be applied among neighboring DISTEX values to detect and map "hot spots" and "cold spots" of nutritional quality over the landscape. We tested our approach in a heterogeneous boreal landscape on Anticosti Island (Québec, Canada), where white-tailed deer (Odocoileus virginianus) populations over the landscape have ranged from 20 to 50 individuals/km2 for at least 80 years, resulting in a loss of most palatable and nutritious plant species. Our results suggest that hot spots of forage quality occur when old-growth balsam fir stands comprise >39.8% of 300 ha neighborhoods, whereas cold spots occur in laggs (i.e., transition zones from forest to peatland). In terms of ground-level indicator plant species, the presence of Canada bunchberry (Cornus canadensis) was highly correlated with hot spots, whereas tamarack (Larix laricina) was highly correlated with cold spots. Mean DISTEX values were positively and significantly correlated with the neutral detergent fiber and acid detergent lignin contents of feces. While our approach would need more independent field trials before it is fully validated, its low cost and ease of execution should make it a valuable tool for advancing both the basic and applied ecology of large herbivores.
Vision and Foraging in Cormorants: More like Herons than Hawks?
White, Craig R.; Day, Norman; Butler, Patrick J.; Martin, Graham R.
2007-01-01
Background Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. Methodology/Principal Findings We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). Conclusions/Significance We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons. PMID:17653266
Alternative foraging strategies enable a mountain ungulate to persist after migration loss
Courtemanch, Alyson B.; Kauffman, Matthew J.; Kilpatrick, Steve; Dewey, Sarah R.
2017-01-01
The persistence of many migratory ungulate populations worldwide is threatened due to anthropogenic impacts to seasonal ranges and migration routes. While many studies have linked migratory ungulate declines to migration disruption or loss, very few have explored the underlying factors that determine whether a population perishes or persists. In some cases, populations undergo severe declines and extirpation after migration loss; however, others appear able to persist as residents. We predict that to persist, populations must replace the traditional benefits of migration by altering the foraging strategies they employ as residents within one seasonal range. We propose the alternative foraging strategies (AFS) hypothesis as a framework for identifying various behavioral strategies that populations may use to cope with migration loss. We tested the hypothesis using the formerly migratory Teton bighorn sheep population in northwest Wyoming, which ceased migrating over 60 yr ago, but has persisted as a resident population. We used global positioning system data to evaluate winter and summer habitat selection and seasonal elevational movements for 28 adult female bighorn sheep (Ovis canadensis) from 2008 to 2010. Resource selection functions revealed that bighorn sheep employ winter foraging strategies to survive as residents by seeking out rugged, high-elevation, windswept ridgelines. Seasonal movement analyses indicated that bighorn sheep undergo a newly documented “abbreviated migration” strategy that is closely synchronized with vegetation green-up patterns within their one range. Bighorn sheep descend 500 m in elevation and travel up to 10 km in spring, gaining access to newly emergent forage approximately 30 d before it appears on their high-elevation winter and summer ranges. Our findings indicate that the Teton bighorn sheep population has persisted due to its habitat selection, AFS, and unique movement patterns, which allow migration loss to be mediated to some extent. The identification of AFS and the habitats that support them can help reveal the underlying benefits of migration and conserve populations in the face of future migration loss.
Nutritional status influences socially regulated foraging ontogeny in honey bees.
Toth, Amy L; Kantarovich, Sara; Meisel, Adam F; Robinson, Gene E
2005-12-01
In many social insects, including honey bees, worker energy reserve levels are correlated with task performance in the colony. Honey bee nest workers have abundant stored lipid and protein while foragers are depleted of these reserves; this depletion precedes the shift from nest work to foraging. The first objective of this study was to test the hypothesis that lipid depletion has a causal effect on the age at onset of foraging in honey bees (Apis mellifera L.). We found that bees treated with a fatty acid synthesis inhibitor (TOFA) were more likely to forage precociously. The second objective of this study was to determine whether there is a relationship between social interactions, nutritional state and behavioral maturation. Since older bees are known to inhibit the development of young bees into foragers, we asked whether this effect is mediated nutritionally via the passage of food from old to young bees. We found that bees reared in social isolation have low lipid stores, but social inhibition occurs in colonies in the field, whether young bees are starved or fed. These results indicate that although social interactions affect the nutritional status of young bees, social and nutritional factors act independently to influence age at onset of foraging. Our findings suggest that mechanisms linking internal nutritional physiology to foraging in solitary insects have been co-opted to regulate altruistic foraging in a social context.
The foraging benefits of being fat in a highly migratory marine mammal.
Adachi, Taiki; Maresh, Jennifer L; Robinson, Patrick W; Peterson, Sarah H; Costa, Daniel P; Naito, Yasuhiko; Watanabe, Yuuki Y; Takahashi, Akinori
2014-12-22
Foraging theory predicts that breath-hold divers adjust the time spent foraging at depth relative to the energetic cost of swimming, which varies with buoyancy (body density). However, the buoyancy of diving animals varies as a function of their body condition, and the effects of these changes on swimming costs and foraging behaviour have been poorly examined. A novel animal-borne accelerometer was developed that recorded the number of flipper strokes, which allowed us to monitor the number of strokes per metre swam (hereafter, referred to as strokes-per-metre) by female northern elephant seals over their months-long, oceanic foraging migrations. As negatively buoyant seals increased their fat stores and buoyancy, the strokes-per-metre increased slightly in the buoyancy-aided direction (descending), but decreased significantly in the buoyancy-hindered direction (ascending), with associated changes in swim speed and gliding duration. Overall, the round-trip strokes-per-metre decreased and reached a minimum value when seals achieved neutral buoyancy. Consistent with foraging theory, seals stayed longer at foraging depths when their round-trip strokes-per-metre was less. Therefore, neutrally buoyant divers gained an energetic advantage via reduced swimming costs, which resulted in an increase in time spent foraging at depth, suggesting a foraging benefit of being fat. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Littlefield, Carroll D.; Johnson, Douglas H.
2013-01-01
Unlike most raptors, the Swainson's Hawk (Buteo swainsoni) migrates long distances between breeding and wintering ranges, which elevates the importance of stopover sites for foraging. We conducted three years of fall surveys in the Southern High Plains of Texas. Migrant Swainson's Hawks moved through the area mostly between July and mid-October, peaking in September. Subadults tended to migrate earlier than adults, and light morphs before dark morphs. Favored foraging habitats included silage corn, green beans, and alfalfa, but the hawks foraged primarily where ongoing agricultural activities disturbed prey and made them more available.
Nutritional Characteristics of Forage Grown in South of Benin
Musco, Nadia; Koura, Ivan B.; Tudisco, Raffaella; Awadjihè, Ghislain; Adjolohoun, Sebastien; Cutrignelli, Monica I.; Mollica, Maria Pina; Houinato, Marcel; Infascelli, Federico; Calabrò, Serena
2016-01-01
In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries. PMID:26732328
Ostrand, William D.; Drew, G.S.; Suryan, R.M.; McDonald, L.L.
1998-01-01
We compared strip transect and radio-tracking methods of determining foraging range of Black-legged Kittiwakes (Rissa tridactyla). The mean distance birds were observed from their colony determined by radio-tracking was significantly greater than the mean value calculated from strip transects. We determined that this difference was due to two sources of bias: (1) as distance from the colony increased, the area of available habitat also increased resulting in decreasing bird densities (bird spreading). Consequently, the probability of detecting birds during transect surveys also would decrease as distance from the colony increased, and (2) the maximum distance birds were observed from the colony during radio-tracking exceeded the extent of the strip transect survey. We compared the observed number of birds seen on the strip transect survey to the predictions of a model of the decreasing probability of detection due to bird spreading. Strip transect data were significantly different from modeled data; however, the field data were consistently equal to or below the model predictions, indicating a general conformity to the concept of declining detection at increasing distance. We conclude that radio-tracking data gave a more representative indication of foraging distances than did strip transect sampling. Previous studies of seabirds that have used strip transect sampling without accounting for bird spreading or the effects of study-area limitations probably underestimated foraging range.
Harano, Ken-Ichi; Nakamura, Jun
2016-06-01
When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (<1 s) begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts.
Gálvez, Dumas; Añino, Yostin; De la O, Jorge M
2018-02-26
Spiders show a repertoire of strategies to increase their foraging success. In particular, some orb-weaver spiders use attractive body colorations to lure prey. Interestingly, coloration varies with age in many species, which may result in ontogenetic variation of foraging success. By using field observations, laboratory experiments and spectrophotometric analysis, we investigated whether pale juveniles and bright adults of the orb-weaver Alpaida tuonabo use different foraging strategies due to ontogenetic variation in coloration. Field observations revealed that foraging success of juveniles and adults was influenced by web properties. However, foraging success increased with body size only in adults, supporting the idea that larger individuals produce a stronger visual signal for prey. The attractiveness of the adult coloration for prey was confirmed in the laboratory with frame-web-choice experiments, in which webs bearing a spider intercepted more bees than empty webs. Our spectrophotometric analysis suggests that the yellow coloration may produce the deceiving signal for prey. Moreover, we identified potential alternative foraging strategies: cryptic juveniles at higher heights and 'attractive' adults at lower heights. This study reveals how ontogenetic colour variation may favour the use of alternative foraging strategies in orb-weaver spiders and reduces intraspecific competition.
NASA Astrophysics Data System (ADS)
Friedemann, Guilad; Leshem, Yossi; Kerem, Lior; Shacham, Boaz; Bar-Massada, Avi; McClain, Krystaal M.; Bohrer, Gil; Izhaki, Ido
2016-10-01
Ecologically-similar species were found to develop specific strategies to partition their resources, leading to niche differentiation and divergence, in order to avoid interspecific competition. Our study determines multi-dimensional differentiation of two sympatric top-predators, long-legged buzzards (LLB) and short-toed eagles (STE), which recently became sympatric during their breeding season in the Judean Foothills, Israel. By combining information from comprehensive diet and movement analyses we found four dimensions of differentiation: (1) Geographic foraging area: LLB tended to forage relatively close to their nests (2.35 ± 0.62 km), while STE forage far from their nest (13.03 ± 2.20 km) (2) Foraging-habitat type: LLBs forage at low natural vegetation, avoiding cultivated fields, whereas STEs forage in cultivated fields, avoiding low natural vegetation; (3) Diurnal dynamics of foraging: LLBs are uniformly active during daytime, whereas STEs activity peaks in the early afternoon; and (4) Food-niche: while both species largely rely on reptiles (47.8% and 76.3% for LLB and STE, respectively), LLB had a more diverse diet and consumed significantly higher percentages of lizards, while STE consumed significantly higher percentages of snakes. Our results suggest that this multidimensional differentiation allows the spatial coexistence of these two dense populations in the study area.
Grazing Potential of Louisiana Pine Forest-Ranges
Herbert S. Sternitzke
1975-01-01
Louisiana's 5 million acres of pine forest-range have an estimated forage potential for 135,776 yearlong cow-calf units. Two-thirds of the units can be sustained on loblolly-shortleaf pine ranges; the rest, on longleaf-slash pine ranges.
Evaluating the impacts of wildland fires on caribou in interior Alaska
Joly, Kyle; Adams, Layne G.; Dale, Bruce W.; Collins, William
2002-01-01
Caribou are found throughout the boreal forests of interior Alaska, a region subject to chronic and expansive wildland fires. Fruticose lichens, if available, constitute the majority of the winter diet of caribou throughout their range and are common in mature boreal forests but largely absent from early successional stages. Fire, the dominant ecological driving force, increases vegetative diversity and productivity across the landscape but may reduce the availability of caribou winter forage for decades.Increasingly, wildland fire regimes are influenced by humans seeking to reduce fire hazards or mitigate the effects of years of fire suppression. Consequently, biologists have debated the importance of forage lichens to the dynamics of caribou populations, and land managers have questioned the importance of fire regime to wintering caribou. To better understand the impacts of wildland fire on caribou, we are simultaneously investigating the relationships between fire history, caribou movements, forage lichen availability, and caribou nutritional performance on their winter range.
Bogan, Michael A.; Cryan, Paul; Weise, Christa D.; Valdez, Ernest W.
2017-01-01
Animals often migrate to exploit seasonally ephemeral food. Three species of nectar-feeding phyllostomid bats migrate north from Mexico into deserts of the United States each spring and summer to feed on blooms of columnar cactus and century plants (Agave spp.). However, the habitat needs of these important desert pollinators are poorly understood. We followed the nighttime movements of 2 species of long-nosed bats (Leptonycteris yerbabuenae and L. nivalis) in an area of late-summer sympatry at the northern edges of their migratory ranges. We radio-tracked bats in extreme southwestern New Mexico during 22 nights over 2 summers and acquired location estimates for 31 individuals. Both species cohabitated 2 major day roosts that were 30 km apart and in different mountain ranges, and individual bats sometimes moved between the roosts. Sampling was opportunistic and limited, but there were no obvious qualitative differences in observed patterns of movement between species or years, or among sex, age, and reproductive groups. Both species were observed foraging most often in the mountain range that had a relatively higher observed density of presumed food plants (Agave palmeri); when roosting in an adjacent mountain range, bats sometimes commuted >20 km one way to forage. Contrary to evidence indicating these species partition resources farther south in Mexico, our findings suggest that L. yerbabuenae and L. nivalis seasonally share common roost and food resources during late summer in this northern area of sympatry.
King eider foraging effort during the pre-breeding period in Alaska
Oppel, Steffen; Powell, Abby N.; Butler, Malcolm G.
2011-01-01
For reproduction, many arctic-nesting migratory birds rely on nutrients obtained on the breeding grounds, so they devote sufficient time to foraging immediately prior to nesting. However, little is known about the increase in foraging effort necessary to meet the energetic requirements of reproduction. In early June 2006 and 2008, we quantified the proportion of time spent foraging before breeding by a large sea duck, the King Eider (Somateria spectabilis), on its breeding grounds in northern Alaska. During >235 hours of behavioral observations, both male and female King Eiders spent >50% of the day loafing (resting, sleeping, comfort behavior, or being alert). Females foraged on average 30% of the time (mean 7.2 hr day-1,95% CI 6.0-8.4 hr day-1), three times as much as males (9%; 2.3 hr day-1, 95% CI 1.5–2.8 hr day-1). The most common prey in ponds where the eiders foraged were chironomid larvae and worms ranging in length from 1 to 30 mm. If the King Eider's daily energy expenditure on its breeding grounds is similar to values published for related species, it would need to ingest only 0.2–0.6 g dry mass of invertebrates per minute of foraging to meet its energetic requirements. Males did not lose body mass before breeding, and we assume that their foraging effort was sufficient for energy balance. Therefore, female King Eiders appear to triple their foraging effort over maintenance requirements to meet the energetic challenges of egg formation.
A Practical Technique for Measuring the Behavior of Foraging Animals.
ERIC Educational Resources Information Center
Smith, Rosemary J.; Brown, Joel S.
1991-01-01
An indirect procedure that uses the foraging behavior of animals at experimental food patches to address questions in animal behavior is discussed. Suggested projects that include the concepts of predation risk, harvest rates and metabolic costs, missed opportunity costs, and competition are described. (KR)
Sunagawa, Katsunori; Nagamine, Itsuki
2016-01-01
The goats raised in the barn are usually fed on fresh grass. As dry forage can be stored for long periods in large amounts, dry forage feeding makes it possible to feed large numbers of goats in barns. This review explains the physiological factors involved in suppressing dry forage intake and the cause of drinking following dry forage feeding. Ruminants consume an enormous amount of dry forage in a short time. Eating rates of dry forage rapidly decreased in the first 40 min of feeding and subsequently declined gradually to low states in the remaining time of the feeding period. Saliva in large-type goats is secreted in large volume during the first hour after the commencement of dry forage feeding. It was elucidated that the marked suppression of dry forage intake during the first hour was caused by a feeding-induced hypovolemia and the loss of NaHCO3 due to excessive salivation during the initial stages of dry forage feeding. On the other hand, it was indicated that the marked decrease in feed intake observed in the second hour of the 2 h feeding period was related to ruminal distension caused by the feed consumed and the copious amount of saliva secreted during dry forage feeding. In addition, results indicate that the marked decreases in dry forage intake after 40 min of feeding are caused by increases in plasma osmolality and subsequent thirst sensations produced by dry forage feeding. After 40 min of the 2 h dry forage feeding period, the feed salt content is absorbed into the rumen and plasma osmolality increases. The combined effects of ruminal distension and increased plasma osmolality accounted for 77.6% of the suppression of dry forage intake 40 min after the start of dry forage feeding. The results indicate that ruminal distension and increased plasma osmolality are the main physiological factors in suppression of dry forage intake in large-type goats. There was very little drinking behavior observed during the first hour of the 2 h feeding period most water consumption occurring in the second hour. The cause of this thirst sensation during the second hour of dry forage feeding period was not hypovolemia brought about by excessive salivation, but rather increases in plasma osmolality due to the ruminal absorption of salt from the consumed feed. This suggests the water intake following dry forage feeding is determined by the level of salt content in the feed. PMID:26732440
Ragusa-Netto, J
2006-02-01
Unlike other toucan species, the Toco toucan (Ramphastos toco)--the largest Ramphastidae--usually inhabits dry semi-open areas. This conspicuous canopy frugivore uses a large home range that includes a variety of vegetation types, among which gallery forests are widely cited as important to this species. However, the factors relating to the occurrence of Toco toucans in such habitats are unclear. I studied the abundance of Toco toucans as well as the availability of fleshy fruit in a gallery forest in the southern Pantanal (sub-region of Miranda, Brazil), in order to assess the relationship between these parameters. Also, I examined toucan foraging activity to analyze its relationship with both toucan abundance and fruit availability. The presence of the Toco toucan was more common in the gallery forest from the middle to the end of the dry season and during the middle of the wet season. Toucans foraged for fleshy fruits, mainly Genipa americana, Ficus luschnatiana, and Cecropia pachystachya fruits, feeding mostly on G. americana (by far the favorite food resource) and F. luschnatiana fruits during the dry season, while C. pachystachya fruits were important in the wet season. Toco toucans foraged particularly heavily (> 80% of foraging activity) on G. americana fruits during the latter part of the dry season, when fleshy fruit availability declined sharply. Toco toucan abundance in the gallery forest was associated with the availability of the most commonly consumed fleshy fruits, and also with its foraging activity. This finding suggests that the Toco toucan moved to the gallery forest periodically in response to the availability of abundant food resources, especially the G. americana fruits widely available and exploited during the severely dry season. Therefore, these fruits potentially contribute to Toco toucan persistence in the South Pantanal during the harshest period of the year.
Garthe, Stefan; Schwemmer, Philipp; Paiva, Vitor H; Corman, Anna-Marie; Fock, Heino O; Voigt, Christian C; Adler, Sven
2016-01-01
Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10-19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5-26.4 h (mean 8.7 h), and ranges varied from 3.0-79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5-333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period.
Schwemmer, Philipp; Paiva, Vitor H.; Corman, Anna-Marie; Fock, Heino O.; Voigt, Christian C.; Adler, Sven
2016-01-01
Lesser black-backed gulls Larus fuscus are considered to be mainly pelagic. We assessed the importance of different landscape elements (open sea, tidal flats and inland) by comparing marine and terrestrial foraging behaviours in lesser black-backed gulls breeding along the coast of the southern North Sea. We attached GPS data loggers to eight incubating birds and collected information on diet and habitat use. The loggers recorded data for 10–19 days to allow flight-path reconstruction. Lesser black-backed gulls foraged in both offshore and inland areas, but rarely on tidal flats. Targets and directions were similar among all eight individuals. Foraging trips (n = 108) lasted 0.5–26.4 h (mean 8.7 h), and ranges varied from 3.0–79.9 km (mean 30.9 km). The total distance travelled per foraging trip ranged from 7.5–333.6 km (mean 97.9 km). Trips out to sea were significantly more variable in all parameters than inland trips. Presence in inland areas was closely associated with daylight, whereas trips to sea occurred at day and night, but mostly at night. The most common items in pellets were grass (48%), insects (38%), fish (28%), litter (26%) and earthworms (20%). There was a significant relationship between the carbon and nitrogen isotope signals in blood and the proportional time each individual spent foraging at sea/land. On land, gulls preferentially foraged on bare ground, with significantly higher use of potato fields and significantly less use of grassland. The flight patterns of lesser black-backed gulls at sea overlapped with fishing-vessel distribution, including small beam trawlers fishing for shrimps in coastal waters close to the colony and large beam-trawlers fishing for flatfish at greater distances. Our data show that individuals made intensive use of the anthropogenic landscape and seascape, indicating that lesser black-backed gulls are not a predominantly marine species during the incubation period. PMID:27525661
Plant Guide: Yellow beeplant (Cleome lutea Hook)
Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw
2012-01-01
Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...
2016-05-01
Communication. B. Hoffman. ERDC/EL CR-16-3 19 locations, including areas where active dredging was occurring. Secchi disc readings ranged from 0.5 to 1.3...low numbers of CLT dives were also recorded during other days of dredge disposal when turbidity readings , via Secchi disc, were similar to readings
Grazing and Burning Impacts on Deer Diets on Lousiana Pine-Bluestem Range
Ronald E. Thill; Alton Martin; Hershel F. Morris; E. Donice McCune
1987-01-01
Diets of 3-5 tame white-tailed deer (Odocoileus virginianus) on adjacent ungrazed and continuously grazed (35% herbage removal by late CM) forested pastures were compared for forage-class use, botanical similarities, foraging selectivity and efficiency, and diet quality. Both pastures were divided into 3 burning subunits and burned in late February on a 3-year...
Range and Frequency of Africanized Honey Bees in California (USA)
Kono, Yoshiaki; Kohn, Joshua R.
2015-01-01
Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047
Multiple-stage decisions in a marine central-place forager
Friedlaender, Ari S.; Johnston, David W.; Tyson, Reny B.; Kaltenberg, Amanda; Goldbogen, Jeremy A.; Stimpert, Alison K.; Curtice, Corrie; Hazen, Elliott L.; Halpin, Patrick N.; Read, Andrew J.; Nowacek, Douglas P.
2016-01-01
Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator–prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies. PMID:27293784
The tremble dance of honey bees can be caused by hive-external foraging experience.
Thom, Corinna
2003-07-01
The tremble dance of honey bee nectar foragers is part of the communication system that regulates a colony's foraging efficiency. A forager that returns to the hive with nectar, but then experiences a long unloading delay because she has difficulty finding a nectar receiver bee, will perform a tremble dance to recruit additional nectar receiver bees. A forager that experiences a short unloading delay will perform a waggle dance to recruit more nectar foragers. A long unloading delay was until now the only known cause of tremble dancing. However, several studies suggested that factors at the food source may also cause tremble dancing. Here I test whether one of these factors, crowding of nectar foragers at the food source, stimulates tremble dancing because it causes long unloading delays. To do so, I increased the density of nectar foragers at a food source by suddenly reducing the size of an artificial feeder, and recorded the unloading delay experienced by each forager, as well as the dance she performed, if any. A forager's unloading delay was measured as the time interval between entering the hive and either (1) the first unloading contact with a nectar receiver bee, or (2) the start of the first dance, if dancing began before the first unloading contact. I also recorded the unloading delays and dances of nectar foragers that returned from natural food sources. The results show that crowding of nectar foragers at the food source increases the probability of tremble dancing, but does not cause long unloading delays, and that tremble dancers that foraged at natural food sources also often have short unloading delays. When the cause of the tremble dance is not a low supply of nectar receiver bees, the tremble dance may have a function in addition to the recruitment of nectar receiver bees.
Killen, Shaun S; Brown, Joseph A; Gamperl, A Kurt
2007-07-01
1. In many species, individuals will alter their foraging strategy in response to changes in prey density. However, previous work has shown that prey density has differing effects on the foraging mode decisions of ectotherms as compared with endotherms. This is likely due to differences in metabolic demand; however, the relationship between metabolism and foraging mode choice in ectotherms has not been thoroughly studied. 2. Juvenile lumpfish Cyclopterus lumpus forage using one of two modes: they can actively search for prey while swimming, or they can 'sit-and-wait' for prey while clinging to the substrate using a ventral adhesive disk. The presence of these easily distinguishable foraging modes makes juvenile lumpfish ideal for the study of foraging mode choice in ectotherms. 3. Behavioural observations conducted during laboratory experiments showed that juvenile lumpfish predominantly use the 'cling' foraging mode when prey is abundant, but resort to the more costly 'swim' mode to seek out food when prey is scarce. The metabolic cost of active foraging was also quantified for juvenile lumpfish using swim-tunnel respirometry, and a model was devised to predict the prey density at which lumpfish should switch between the swim and cling foraging modes to maximize energy intake. 4. The results of this model do not agree with previous observations of lumpfish behaviour, and thus it appears that juvenile lumpfish do not try to maximize their net energetic gain. Instead, our data suggest that juvenile lumpfish forage in a manner that reduces activity and conserves space in their limited aerobic scope. This behavioural flexibility is of great benefit to this species, as it allows young individuals to divert energy towards growth as opposed to activity. In a broader context, our results support previous speculation that ectotherms often forage in a manner that maintains a minimum prey encounter rate, but does not necessarily maximize net energy gain.
Loggerhead Turtles (Caretta caretta) Use Vision to Forage on Gelatinous Prey in Mid-Water
Narazaki, Tomoko; Sato, Katsufumi; Abernathy, Kyler J.; Marshall, Greg J.; Miyazaki, Nobuyuki
2013-01-01
Identifying characteristics of foraging activity is fundamental to understanding an animals’ lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta) in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study). By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67), showed that turtles swam straight toward prey in 171 events (i.e., turning point absent) but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present). Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle’s movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location. PMID:23776603
NASA Astrophysics Data System (ADS)
Wiley, A. E.; Ostrom, P. H.; James, H. F.
2010-12-01
Seabirds play vital roles in their ecosystems, both as predators in their oceanic foraging grounds and conduits of marine nutrients to island nesting sites. Despite growing evidence that food availability limits seabird populations, characterization of the diet and even foraging locations of some seabird species remains elusive. Here, we use stable carbon (δ13C) and nitrogen (δ15N) isotopes to study the foraging ecology of an endangered and poorly known seabird, the Hawaiian petrel (Pterodroma sandwichensis). This species nests solely on the main Hawaiian Islands but forages widely across the NE Pacific, sometimes traveling over 10,000km on single foraging trips. δ13C and δ15N values vary with trophic level and at the base of food webs throughout the marine range of the Hawaiian petrel. Thus, we are able to use isotope signatures in modern and ancient petrel tissues to track spatial and temporal variation in foraging location and diet. We find strong evidence of foraging segregation between populations, with hatch-year birds from the island of Hawaii exhibiting feather δ15N and δ13C values over 3‰ and 1 ‰ higher, respectively, than those found in Maui and Kauai hatch-year birds. There is also significant variation in δ15N values between feathers from Kauai, Hawaii, and Maui adults, indicating additional foraging segregation during the winter molt. To distinguish between the effects of trophic level and foraging location, we relate our data to those from seabirds with known diet and foraging location, as well as to previous characterizations of isoscapes in the NE Pacific and at-sea observations of our study species. Finally, we track Hawaiian petrel foraging ecology back in time through examination of stable isotope values in historical feathers and ancient bone collagen. We find that, despite a species-wide decline in δ15N values (consistent with trophic level decline), populations have maintained divergent isotopic niches through at least the past 1,000 years. These data offer rare insight into the long-term fluxuations of seabird foraging habits as well as important information for the conservation of Hawaiian petrels and ultimately, the ecosystems they inhabit.
Vergara, Pablo M.; Soto, Gerardo E.; Rodewald, Amanda D.; Meneses, Luis O.; Pérez-Hernández, Christian G.
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox’s proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales. PMID:27416115
Vergara, Pablo M; Soto, Gerardo E; Moreira-Arce, Darío; Rodewald, Amanda D; Meneses, Luis O; Pérez-Hernández, Christian G
2016-01-01
Theoretical models predict that animals should make foraging decisions after assessing the quality of available habitat, but most models fail to consider the spatio-temporal scales at which animals perceive habitat availability. We tested three foraging strategies that explain how Magellanic woodpeckers (Campephilus magellanicus) assess the relative quality of trees: 1) Woodpeckers with local knowledge select trees based on the available trees in the immediate vicinity. 2) Woodpeckers lacking local knowledge select trees based on their availability at previously visited locations. 3) Woodpeckers using information from long-term memory select trees based on knowledge about trees available within the entire landscape. We observed foraging woodpeckers and used a Brownian Bridge Movement Model to identify trees available to woodpeckers along foraging routes. Woodpeckers selected trees with a later decay stage than available trees. Selection models indicated that preferences of Magellanic woodpeckers were based on clusters of trees near the most recently visited trees, thus suggesting that woodpeckers use visual cues from neighboring trees. In a second analysis, Cox's proportional hazards models showed that woodpeckers used information consolidated across broader spatial scales to adjust tree residence times. Specifically, woodpeckers spent more time at trees with larger diameters and in a more advanced stage of decay than trees available along their routes. These results suggest that Magellanic woodpeckers make foraging decisions based on the relative quality of trees that they perceive and memorize information at different spatio-temporal scales.
Social learning in birds and its role in shaping a foraging niche
Slagsvold, Tore; Wiebe, Karen L.
2011-01-01
We briefly review the literature on social learning in birds, concluding that strong evidence exists mainly for predator recognition, song, mate choice and foraging. The mechanism of local enhancement may be more important than imitation for birds learning to forage, but the former mechanism may be sufficient for faithful transmission depending on the ecological circumstances. To date, most insights have been gained from birds in captivity. We present a study of social learning of foraging in two passerine birds in the wild, where we cross-fostered eggs between nests of blue tits, Cyanistes caeruleus and great tits, Parus major. Early learning causes a shift in the foraging sites used by the tits in the direction of the foster species. The shift in foraging niches was consistent across seasons, as showed by an analysis of prey items, and the effect lasted for life. The fact that young birds learn from their foster parents, and use this experience later when subsequently feeding their own offspring, suggests that foraging behaviour can be culturally transmitted over generations in the wild. It may therefore have both ecological and evolutionary consequences, some of which are discussed. PMID:21357219
Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.
Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark
2014-03-01
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.
Foraging under conditions of short-term exploitative competition: the case of stock traders
Saavedra, Serguei; Malmgren, R. Dean; Switanek, Nicholas; Uzzi, Brian
2013-01-01
Theory purports that animal foraging choices evolve to maximize returns, such as net energy intake. Empirical research in both human and non-human animals reveals that individuals often attend to the foraging choices of their competitors while making their own foraging choices. Owing to the complications of gathering field data or constructing experiments, however, broad facts relating theoretically optimal and empirically realized foraging choices are only now emerging. Here, we analyse foraging choices of a cohort of professional day traders who must choose between trading the same stock multiple times in a row—patch exploitation—or switching to a different stock—patch exploration—with potentially higher returns. We measure the difference between a trader's resource intake and the competitors' expected intake within a short period of time—a difference we call short-term comparative returns. We find that traders' choices can be explained by foraging heuristics that maximize their daily short-term comparative returns. However, we find no one-best relationship between different trading choices and net income intake. This suggests that traders' choices can be short-term win oriented and, paradoxically, maybe maladaptive for absolute market returns. PMID:23363635
Foraging under conditions of short-term exploitative competition: the case of stock traders.
Saavedra, Serguei; Malmgren, R Dean; Switanek, Nicholas; Uzzi, Brian
2013-03-22
Theory purports that animal foraging choices evolve to maximize returns, such as net energy intake. Empirical research in both human and non-human animals reveals that individuals often attend to the foraging choices of their competitors while making their own foraging choices. Owing to the complications of gathering field data or constructing experiments, however, broad facts relating theoretically optimal and empirically realized foraging choices are only now emerging. Here, we analyse foraging choices of a cohort of professional day traders who must choose between trading the same stock multiple times in a row--patch exploitation--or switching to a different stock--patch exploration--with potentially higher returns. We measure the difference between a trader's resource intake and the competitors' expected intake within a short period of time--a difference we call short-term comparative returns. We find that traders' choices can be explained by foraging heuristics that maximize their daily short-term comparative returns. However, we find no one-best relationship between different trading choices and net income intake. This suggests that traders' choices can be short-term win oriented and, paradoxically, maybe maladaptive for absolute market returns.
Lead accumulation in woodchucks (Marmota monax) at small arms and skeet ranges.
Johnson, Mark S; Major, Michael A; Casteel, Stan W
2004-10-01
Increasing concern regarding the stewardship of US Army lands requires a proactive program to evaluate sites of potential risk. Small arms and upland skeet ranges are a potentially significant source of lead exposure for burrowing mammals. Woodchucks (Marmota monax) were evaluated for lead exposure in a previously used upland skeet range and a small arms range, respective to animals collected at two nearby reference locations. Soil lead concentrations collected at burrow entrances on the firing ranges were compared with blood, bone, kidney, liver, and fecal concentrations of woodchucks collected from the reference areas. No statistical differences were found in the lead concentrations in tissue between woodchucks in reference and firing ranges; concentrations of lead in liver and kidney were below detection limits. Levels in bone, blood, and feces suggest the bioavailability of lead at these various sites, although other factors (e.g., differences in foraging areas, age structure, habitat preferences, and environmental conditions) were also likely to influence exposure. Blood levels were below that which suggests toxicity. Further analysis of other ranges with higher lead concentrations and of small mammal species with smaller home ranges is recommended to further elucidate trends that could be extrapolated to other sites.
Wood bison population recovery and forage availability in northwestern Canada.
Strong, Wayne L; Gates, C Cormack
2009-01-01
Forage availability was assessed to determine sustainable stocking rates for eight broadly defined vegetation types (Treed Uplands, Treed Lowlands, Mixed Tall Shrub/Sedge, Closed-canopied Willow, and Open-canopied Willow, Meadow, Wetland Grass, Wetland Sedge) for use by wood bison (Bison bison athabascae), a threatened subspecies, in the Canadian boreal forest of northern Alberta. Clip plots (n=108) were used to sample peak availability of herbs and current annual growth of Salix spp. in late summer. Graminoid wetlands dominated by Carex atherodes, Carex aquatilis, Carex utriculata, Scolochloa festucacea, or Calamagrostis stricta produced 1975-4575 kg ha(-1) of fair to good quality forage, whereas treed stands produced < 250 kg ha(-1) of forb-dominated forage (>85% content), which was below a published 25% foraging efficiency threshold of 263 kg ha(-1) for bison. Upland forests that dominate the region produced < or = 1 animal unit day (AUD) of forage per hectare in summer. Most forest understory plants were of poor forage value, suggesting the potential sustainable stocking rate of such areas was actually < or = 0.3 AUD ha(-1), with even lower rates during winter due to snow cover. Herbaceous wetlands contained approximately 78 AUD ha(-1) of forage, but were considered largely unavailable in summer because of flooding and soft organic soils that make access difficult. Conversion of prime foraging habitat to agricultural land, forest expansion due to fire control, and a warmer and wetter climatic regime after the mid-1900s likely contributed to a regional reduction in carrying capacity. It is hypothesized that substantial recovery of the wood bison population toward historical levels will be constrained in northern Alberta by the availability of summer forage, and the limited extent of graminoid wetlands that provide winter foraging habitat.
Bias to pollen odors is affected by early exposure and foraging experience.
Arenas, A; Farina, W M
2014-07-01
In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jakobsen, M; Kongsted, A G; Hermansen, J E
2015-12-01
In organic pig production one of the major challenges is to be able to fulfil amino acid requirements based on organic and locally grown protein feed crops. The pig is an opportunistic omnivore with a unique capacity for foraging above and below the soil surface. It is hypothesized that direct foraging in the range area can pose an important contribution in terms of fulfilling nutrient requirements of growing pigs. Foraging activity, lucerne nutrient intake and pig performance were investigated in 36 growing pigs, foraging on lucerne or grass and fed either a standard organic pelleted feed mixture (HP: high protein) or a grain mixture containing 48% less CP (LP: low protein) compared with the high protein feed mixture, from an average live weight of 58 kg to 90 kg in a complete block design in three replicates. The pigs were fed 80% of energy recommendations and had access to 4 m2 of pasture/pig per day during the 40 days experimental period from September to October 2013. Behavioural observations were carried out 12 times over the entire experimental period. For both crops, LP pigs rooted significantly more compared with HP pigs but the effect of CP level was more pronounced in grass (44% v. 19% of all observations) compared with lucerne (28% v. 16% of all observations). Feed protein level turned out not to have any significant effect on grazing behaviour but pigs foraging on lucerne grazed significantly more than pigs foraging on grass (10% v. 4% of all observations). Daily weight gain and feed conversion ratio were significantly affected by feed protein and forage crop interactions. Compared to HP pigs, LP treated pigs had 33% lower daily weight gain (589 v. 878 g) and 31% poorer feed conversion ratio (3.75 v. 2.59 kg feed/kg weight gain) in grass paddocks, whereas in lucerne paddocks LP pigs only had 18% lower daily weight gain (741 v. 900 g) and a 14% poorer feed conversion ratio (2.95 v. 2.54 kg feed/kg weight gain) compared with HP pigs. LP pigs foraging on lucerne used 169 g less concentrate CP/kg weight gain, compared with HP pigs, indicating the nitrogen efficiency of the system. The results indicate that direct foraging of lucerne may be a valuable strategy in terms of accommodating CP and lysine requirements of organic growing pigs.
Adélie penguin foraging location predicted by tidal regime switching.
Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh
2013-01-01
Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.
Adélie Penguin Foraging Location Predicted by Tidal Regime Switching
Oliver, Matthew J.; Irwin, Andrew; Moline, Mark A.; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh
2013-01-01
Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator. PMID:23383091
Chronic and Acute Stress Promote Overexploitation in Serial Decision Making.
Lenow, Jennifer K; Constantino, Sara M; Daw, Nathaniel D; Phelps, Elizabeth A
2017-06-07
Many decisions that humans make resemble foraging problems in which a currently available, known option must be weighed against an unknown alternative option. In such foraging decisions, the quality of the overall environment can be used as a proxy for estimating the value of future unknown options against which current prospects are compared. We hypothesized that such foraging-like decisions would be characteristically sensitive to stress, a physiological response that tracks biologically relevant changes in environmental context. Specifically, we hypothesized that stress would lead to more exploitative foraging behavior. To test this, we investigated how acute and chronic stress, as measured by changes in cortisol in response to an acute stress manipulation and subjective scores on a questionnaire assessing recent chronic stress, relate to performance in a virtual sequential foraging task. We found that both types of stress bias human decision makers toward overexploiting current options relative to an optimal policy. These findings suggest a possible computational role of stress in decision making in which stress biases judgments of environmental quality. SIGNIFICANCE STATEMENT Many of the most biologically relevant decisions that we make are foraging-like decisions about whether to stay with a current option or search the environment for a potentially better one. In the current study, we found that both acute physiological and chronic subjective stress are associated with greater overexploitation or staying at current options for longer than is optimal. These results suggest a domain-general way in which stress might bias foraging decisions through changing one's appraisal of the overall quality of the environment. These novel findings not only have implications for understanding how this important class of foraging decisions might be biologically implemented, but also for understanding the computational role of stress in behavior and cognition more broadly. Copyright © 2017 the authors 0270-6474/17/375681-09$15.00/0.
Robinson, Patrick W.; Costa, Daniel P.; Crocker, Daniel E.; Gallo-Reynoso, Juan Pablo; Champagne, Cory D.; Fowler, Melinda A.; Goetsch, Chandra; Goetz, Kimberly T.; Hassrick, Jason L.; Hückstädt, Luis A.; Kuhn, Carey E.; Maresh, Jennifer L.; Maxwell, Sara M.; McDonald, Birgitte I.; Peterson, Sarah H.; Simmons, Samantha E.; Teutschel, Nicole M.; Villegas-Amtmann, Stella; Yoda, Ken
2012-01-01
The mesopelagic zone of the northeast Pacific Ocean is an important foraging habitat for many predators, yet few studies have addressed the factors driving basin-scale predator distributions or inter-annual variability in foraging and breeding success. Understanding these processes is critical to reveal how conditions at sea cascade to population-level effects. To begin addressing these challenging questions, we collected diving, tracking, foraging success, and natality data for 297 adult female northern elephant seal migrations from 2004 to 2010. During the longer post-molting migration, individual energy gain rates were significant predictors of pregnancy. At sea, seals focused their foraging effort along a narrow band corresponding to the boundary between the sub-arctic and sub-tropical gyres. In contrast to shallow-diving predators, elephant seals target the gyre-gyre boundary throughout the year rather than follow the southward winter migration of surface features, such as the Transition Zone Chlorophyll Front. We also assessed the impact of added transit costs by studying seals at a colony near the southern extent of the species’ range, 1,150 km to the south. A much larger proportion of seals foraged locally, implying plasticity in foraging strategies and possibly prey type. While these findings are derived from a single species, the results may provide insight to the foraging patterns of many other meso-pelagic predators in the northeast Pacific Ocean. PMID:22615801
Ocean climate and seal condition.
Le Boeuf, Burney J; Crocker, Daniel E
2005-03-28
The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.
Comparison of laboratory and field remote sensing methods to measure forage quality.
Guo, Xulin; Wilmshurst, John F; Li, Zhaoqin
2010-09-01
Recent research in range ecology has emphasized the importance of forage quality as a key indicator of rangeland condition. However, we lack tools to evaluate forage quality at scales appropriate for management. Using canopy reflectance data to measure forage quality has been conducted at both laboratory and field levels separately, but little work has been conducted to evaluate these methods simultaneously. The objective of this study is to find a reliable way of assessing grassland quality through measuring forage chemistry with reflectance. We studied a mixed grass ecosystem in Grasslands National Park of Canada and surrounding pastures, located in southern Saskatchewan. Spectral reflectance was collected at both in-situ field level and in the laboratory. Vegetation samples were collected at each site, sorted into the green grass portion, and then sent to a chemical company for measuring forage quality variables, including protein, lignin, ash, moisture at 135 °C, Neutral Detergent Fiber (NDF), Acid Detergent Fiber (ADF), Total Digestible, Digestible Energy, Net Energy for Lactation, Net Energy for Maintenance, and Net Energy for Gain. Reflectance data were processed with the first derivative transformation and continuum removal method. Correlation analysis was conducted on spectral and forage quality variables. A regression model was further built to investigate the possibility of using canopy spectral measurements to predict the grassland quality. Results indicated that field level prediction of protein of mixed grass species was possible (r² = 0.63). However, the relationship between canopy reflectance and the other forage quality variables was not strong.
Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.
Pontzer, Herman
2012-03-07
Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Research update: Yield and nutritive value of photoperiod-sensitive sorghum and sorghum-sudangrass
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the yield of photoperiod-sensitive forage sorghum and sorghum-sudangrass against non-photoperiod-sensitive sorghum, sorghum-sudangrass, or corn silage. Forages were planted on two dates at two locations (Marshfield and Hancock, WI). Results suggested some ...
The mechanism for weed suppression by a forage radish cover crop
USDA-ARS?s Scientific Manuscript database
In the Mid-Atlantic region, forage radish (Raphanus sativus L. var. longipinnatus) winter cover crops planted prior to 1 September suppress winter annual weeds from fall until early April. Little is known about the mechanism of this weed suppression. Published research reports suggest that allelopat...
Sea otter research methods and tools
Bodkin, James L.; Maldini, Daniela; Calkins, Donald; Atkinson, Shannon; Meehan, Rosa
2004-01-01
Sea otters possess physical characteristics and life history attributes that provide both opportunity and constraint to their study. Because of their relatively limited diving ability they occur in nearshore marine habitats that are usually viewable from shore, allowing direct observation of most behaviors. Because sea otters live nearshore and forage on benthic invertebrates, foraging success and diet are easily measured. Because they rely almost exclusively on their pelage for insulation, which requires frequent grooming, successful application of external tags or instruments has been limited to attachments in the interdigital webbing of the hind flippers. Techniques to surgically implant instruments into the intraperitoneal cavity are well developed and routinely applied. Because they have relatively small home ranges and rest in predictable areas, they can be recaptured with some predictability using closed-circuit scuba diving technology. The purpose of this summary is to identify some of the approaches, methods, and tools that are currently engaged for the study of sea otters, and to suggest potential avenues for applying advancing technologies.
Shackleton, Kyle; Balfour, Nicholas J; Al Toufailia, Hasan; Gaioski, Roberto; de Matos Barbosa, Marcela; Silva, Carina A de S; Bento, José M S; Alves, Denise A; Ratnieks, Francis L W
2016-10-01
Foraging animals must often decide among resources which vary in quality and quantity. Nectar is a resource that exists along a continuum of quality in terms of sugar concentration and is the primary energy source for bees. Alternative sugar sources exist, including fruit juice, which generally has lower energetic value than nectar. We observed many honeybees ( Apis mellifera scutellata ) foraging on juice from fallen guava ( Psidium guajava ) fruit near others foraging on nectar. To investigate whether fruit and nectar offered contrasting benefits of quality and quantity, we compared honeybee foraging performance on P. guajava fruit versus two wildflowers growing within 50 m, Richardia brasiliensis and Tridax procumbens . Bees gained weight significantly faster on fruit, 2.72 mg/min, than on either flower (0.17 and 0.12 mg/min, respectively). However, the crop sugar concentration of fruit foragers was significantly lower than for either flower (12.4% vs. 37.0% and 22.7%, respectively). Fruit foragers also spent the most time handling and the least time flying, suggesting that fruit juice was energetically inexpensive to collect. We interpret honeybee foraging decisions in the context of existing foraging models and consider how nest-patch distance may be a key factor for central place foragers choosing between resources of contrasting quality and quantity. We also discuss how dilute solutions, such as fruit juice, can help maintain colony sugar-water balance. These results show the benefits of feeding on resources with contrasting quality and quantity and that even low-quality resources have value.
The Dynamics of Foraging Trails in the Tropical Arboreal Ant Cephalotes goniodontus
Gordon, Deborah M.
2012-01-01
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest. PMID:23209749
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Kilgo
2005-04-20
The effects of harvest-created canopy gaps in bottomland hardwood forests on arthropod abundance and, hence, the foraging ecology of birds are poorly understood. I predicted that arthropod abundance would be high near edges of group-selection harvest gaps and lower in the surrounding forest, and that male Hooded Warblers (Wilsonia citrina) foraging near gaps would find more prey per unit time than those foraging in the surrounding forest. In fact, arthropod abundance was greater >100 m from a gap edge than at 0-30 m or 30-100 m from an edge, due to their abundance on switchcane (Arundinaria gigantea); arthropods did notmore » differ in abundance among distances from gaps on oaks (Quercus spp.) or red maple (Acer rubrum). Similarly, Hooded Warbler foraging attack rates were not higher near gap edges: when foraging for fledglings, attack rate did not differ among distances from gaps, but when foraging for themselves, attack rates actually were lower 0-30 m from gap edges than 30-100 m or >100 m from a gap edge. Foraging attack rate was positively associated with arthropod abundance. Hooded Warblers apparently encountered fewer prey and presumably foraged less efficiently where arthropods were least abundant, i.e., near gaps. That attack rates among birds foraging for fledglings were not affected by distance from gap (and hence arthropod abundance) suggests that prey availability may not be limiting at any location across the forest, despite the depressing effects of gaps on arthropod abundance.« less
The feeding habits of the snail kite in Florida, USA
Sykes, P.W.
1987-01-01
The feeding habits of the Snail Kite (Rostrhamus sociabilis) were observed intermittently from 1967-1980 in Florida, USA. Approximately 97% of all observed foraging bouts were over marshes having sparse emergent vegetation. The visually-hunting kite was unable to forage over floating mats of exotic water hyacinth (Eichhornia crassipes). Male kites had shorter hunting bouts than females. For still-hunting, the birds' perches ranged from 0.15-4.6 m high and captures occurred an average of 5.8 m from perches. Females were significantly more successful (70%) for course-hunting than males (48%), but I found no difference for still-hunting. Birds tended to forage throughout the day, except for occasional inactive periods by some individuals during midday. On cooler days, foraging commenced slightly later in the morning than on warmer days. Kites probably capture freshwater apple snails (Pomacea paludosa) as deep as 16 cm. Capture rates for adults generally ranged from 1.7-3.4 snails per hour. Kites usually foraged over a common hunting area, and defense of foraging sites was rare. Handling of snails, from the kite's arrival at the feeding perch unit consumption, averaged 2.7 min, with no significant difference between sexes. However, adult females were more efficient at the extraction portion of this process than were adult males. Snails were usually extracted before being brought to the nest, except in the latter part of the nestling period when some snails were extracted at or near the nest and some were brought intact. Adults feed small chicks bill to bill, and both parents generally shared equally in care of the young, except at two nests where the females did 67% or more of the feeding. Mean length of snails taken by kites was 42.8 mm (range 25.2-71.3 n=697) and mean diameter was 45.8 mm (range 27.4-82.4, n=697). The most common size classes tkaen were 30-60 mm in length and diameter. Nutritional and gross energy values were determined for apple snails. Female snails with albumen glands removed (versus males or mixed samples of both sexes of complete tissue or with viscera removed) had the highest caloric value (.hivin.x=4.04 kcal/g, n=10). Kites cast pellets, a behavior documented here for the first time.
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078
Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Sex differences in giraffe foraging behavior at two spatial scales.
Ginnett, T F; Demment, Montague W
1997-04-01
We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales.
Long foraging distances impose high costs on offspring production in solitary bees.
Zurbuchen, Antonia; Cheesman, Stephanie; Klaiber, Jeannine; Müller, Andreas; Hein, Silke; Dorn, Silvia
2010-05-01
1. Solitary bees are central place foragers returning to their nests several times a day with pollen and nectar to provision their brood cells. They are especially susceptible to landscape changes that lead to an increased spatial separation of suitable nesting sites and flower rich host plant stands. While knowledge of bee foraging ranges is currently growing, quantitative data on the costs of foraging flights are very scarce, although such data are crucial to understand bee population dynamics. 2. In this study, the impact of increased foraging distance on the duration of foraging bouts and on the number of brood cells provisioned per time unit was experimentally quantified in the two pollen specialist solitary bee species Hoplitis adunca and Chelostoma rapunculi. Females nesting at different sites foraged under the same environmental conditions on a single large and movable flowering host plant patch in an otherwise host plant free landscape. 3. The number of brood cells provisioned per time unit by H. adunca was found to decrease by 23%, 31% and 26% with an increase in the foraging distance by 150, 200 and 300 m, respectively. The number of brood cells provisioned by C. rapunculi decreased by 46% and 36% with an increase in the foraging distance by 500 and 600 m, respectively. 4. Contrary to expectation, a widely scattered arrangement of host plants did not result in longer mean duration of a foraging bout in H. adunca compared to a highly aggregated arrangement, which might be due to a reduced flight directionality combined with a high rate of revisitation of already depleted flowers in the aggregated plant arrangement or by a stronger competition and disturbance by other flower visitors. 5. The results of this study clearly indicate that a close neighbourhood of suitable nesting and foraging habitats is crucial for population persistence and thus conservation of endangered solitary bee species.
Season and landscape composition affect pollen foraging distances and habitat use of honey bees.
Danner, Nadja; Molitor, Anna Maria; Schiele, Susanne; Härtel, Stephan; Steffan-Dewenter, Ingolf
2016-09-01
Honey bees (Apis mellifera L.) show a large variation in foraging distances and use a broad range of plant species as pollen resources, even in regions with intensive agriculture. However, it is unknown how increasing areas of mass-flowering crops like oilseed rape (Brassica napus; OSR) or a decrease of seminatural habitats (SNH) change the temporal and spatial availability of pollen resources for honey bee colonies, and thus foraging distances and frequency in different habitat types. We studied pollen foraging of honey bee colonies in 16 agricultural landscapes with independent gradients of OSR and SNH area within 2 km and used waggle dances and digital geographic maps with major land cover types to reveal the distance and visited habitat type on a landscape level. Mean pollen foraging distance of 1347 decoded bee dances was 1015 m (± 26 m; SEM). In spring, increasing area of flowering OSR within 2 km reduced mean pollen foraging distances from 1324 m to only 435 m. In summer, increasing cover of SNH areas close to the colonies (within 200 m radius) reduced mean pollen foraging distances from 846 to 469 m. Frequency of pollen foragers per habitat type, measured as the number of dances per hour and hectare, was equally high for SNH, grassland, and OSR fields, but lower for other crops and forests. In landscapes with a small proportion of SNH a significantly higher density of pollen foragers on SNH was observed, indicating that pollen resources in such simple agricultural landscapes are more limited. Overall, we conclude that SNH and mass-flowering crops can reduce foraging distances of honey bee colonies at different scales and seasons with possible benefits for the performance of honey bee colonies. Further, mixed agricultural landscapes with a high proportion of SNH reduce foraging densities of honey bees in SNH and thus possible competition for pollen resources. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Kokubun, N.; Kikuchi, D. M.; Sato, N.; Takahashi, A.; Will, A.; Kitaysky, A. S.; Watanuki, Y.
2015-11-01
Seasonal sea-ice cover has been decreasing in the southeastern Bering Sea shelf, which might affect ecosystem dynamics and availability of food resources to marine top predators breeding in the region. In this study, we investigated the foraging responses of two seabird species, surface-foraging red-legged kittiwakes Rissa brevirostris (hereafter, RLKI) and pursuit-diving foraging thick-billed murres Uria lomvia (TBMU) to the inter-annual change in environmental conditions. Between the study years, winter ice retreated earlier and summer water temperatures were warmer in 2014 compared to those in 2013. At-sea distributions of RLKI and TBMU breeding on St. George Island, the largest seabird colony in the region, were recorded using GPS loggers, and blood samples were taken to examine their physiological condition and isotopic foraging niche in a given year. RLKI foraging occurred mostly over the oceanic basin in both years. TBMU, however, foraged mostly over the shelf, but showed a relatively higher use of the shelf break and oceanic basin in the colder year, 2013. The foraging distances from the colony peaked at 250-300 km in 2013 and, bimodally, at 150-250 and 300-350 km in 2014 for RLKI, and tended to be farther in 2013 compared to those in 2014 for TBMU. Plasma levels of corticosterone did not differ between years in RLKI, but differed in TBMU, showing higher levels of physiological stress incurred by murres during the colder year, 2013. δ13N (a proxy of trophic level of prey) did not differ between the years in either RLKI or TBMU, while δ13C (a proxy of prey origin) were lower in 2014 than in 2013 in both species, suggesting possible differences in influx of oceanic prey items into foraging areas. These results suggest that the response of ecosystem dynamics to climate variability in the southeast Bering Sea may differ between the ocean basin and continental shelf regions, which, in turn, may generate differential responses in seabirds relying on those habitats for foraging.
Yockney, Ivor J; Latham, M Cecilia; Rouco, Carlos; Cross, Martin L; Nugent, Graham
2015-01-01
In New Zealand, the introduced marsupial brushtail possum (Trichosurus vulpecula) is a pest species subject to control measures, primarily to limit its ability to transmit bovine tuberculosis (TB) to livestock and for conservation protection. To better define parameters for targeted possum control and TB surveillance, we here applied a novel approach to analyzing GPS data obtained from 44 possums fitted with radio-tracking collars, producing estimates of the animals' short-term nocturnal foraging patterns based on 1-, 3- or 5-nights' contiguous data. Studies were conducted within two semi-arid montane regions of New Zealand's South Island High Country: these regions support low-density possum populations (<2 possums/ha) in which the animals' home ranges are on average larger than in high-density populations in forested habitat. Possum foraging range width (FRW) estimates increased with increasing monitoring periods, from 150-200 m based on a single night's movement data to 300-400 m based on 5 nights' data. The largest average FRW estimates were recorded in winter and spring, and the smallest in summer. The results suggest that traps or poison-bait stations (for lethal control) or monitoring devices (for TB surveillance), set for > 3 consecutive nights at 150 m interval spacings, would likely place >95% of the possums in this type of habitat at risk of encountering these devices, year-round. Modelling control efficacy against operational expenditure, based on these estimations, identified the relative cost-effectiveness of various strategies that could be applied to a typical aerial poisoning operation, to reduce the ongoing TB vectorial risk that possums pose in the High Country regions. These habitat-specific findings are likely to be more relevant than the conventional pest control and monitoring methodologies developed for possums in their more typical forested habitat.
Foraging recruitment by the Giant Tropical Ant Paraponera clavata (Hymenoptera, Formicidae)
Barrett, Bruce A.; Jorgenson, Clive D.; Looman, Sandra J.
1985-01-01
Increased foraging of an exceptionally abundant, but ephemeral, food source by ants can result from foraging excitement that does not include pheromone trails, tandem running, or from recruitment of other workers along pheromone trails (Carrol and Janzen, 1973). They also provided rationale for two types of short-lived pheromone trails resulting in mass or group recruitment. These both seem to fall into the Type II foraging strategy described by Oster and Wilson (1978). Neither of these discussions conveniently allow for pheromone recruitment by relatively small colonies of a primitive monomorphic species such as Paraponera clavata. Our observations suggest that recruitment to an abundant ephemeral food source does occur naturally and can be induced artificially in colonies of P. clavata.Paraponera clavata is considered primitive (Wilson, 1958), particularly in foraging habits (Young and Hermann, 1980; Young, 1977). Hermann (1973, 1975) reported the P. clavata, unlike more advanced species, forages independently; following shot periods of apparent group activity outside of the colony (Young and Hermann, 1980). It reportedly does not return to a food source when only part has been harvested. After returning to its colony with booty, a single worker resumes foraging independently, with no observable tendency to return to partially harvested booty or without recruiting additional workers to collect the remaining food (Hermann, 1973; Young and Hermann, 1980). Reports of independent foraging, lack of forager recruitment, and apparent lack of food source fidelity resulted in the assumption that P. clavata probably lacks an effective pheromone trail communication system (Young and Hermann, 1980).
To walk or to fly? How birds choose among foraging modes
Bautista, Luis M.; Tinbergen, Joost; Kacelnik, Alejandro
2001-01-01
We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments. PMID:11158599
To walk or to fly? How birds choose among foraging modes.
Bautista, L M; Tinbergen, J; Kacelnik, A
2001-01-30
We test the predictive value of the main energetic currencies used in foraging theory using starlings that choose between two foraging modes (walking versus flying). Walking is low-cost, low-yield, whereas flying is the opposite. We fixed experimentally, at 11 different values, the amount of flight required to get one food reward, and for each flight cost value, we titrated the amount of walking until the birds showed indifference between foraging modes. We then compared the indifference points to those predicted by gross rate of gain over time, net rate of gain over time, and the ratio of gain to expenditure (efficiency). The results for the choice between modes show strong qualitative and quantitative support for net rate of gain over time over the alternatives. However, the birds foraged for only a fraction of the available time, indicating that the choice between foraging and resting could not be explained by any of these currencies. We suggest that this discrepancy could be accounted for functionally because nonenergetic factors such as predation risk may differ between resting and foraging in any mode but may not differ much between foraging modes, hence releasing the choice between foraging modes from the influence of such factors. Alternatively, the discrepancy may be attributable to the use of predictable (rather than stochastic) ratios of effort per prey in our experiment, and it may thus be better understood with mechanistic rather than functional arguments.
Winter active bumblebees (Bombus terrestris) achieve high foraging rates in urban Britain.
Stelzer, Ralph J; Chittka, Lars; Carlton, Marc; Ings, Thomas C
2010-03-05
Foraging bumblebees are normally associated with spring and summer in northern Europe. However, there have been sightings of the bumblebee Bombus terrestris during the warmer winters in recent years in southern England. But what floral resources are they relying upon during winter and how much winter forage can they collect? To test if urban areas in the UK provide a rich foraging niche for bees we set up colonies of B. terrestris in the field during two late winter periods (2005/6 & 2006/7) in London, UK, and measured their foraging performance. Fully automatic radio-frequency identification (RFID) technology was used in 2006/7 to enable us to record the complete foraging activity of individually tagged bees. The number of bumblebees present during winter (October 2007 to March 2008) and the main plants they visited were also recorded during transect walks. Queens and workers were observed throughout the winter, suggesting a second generation of bee colonies active during the winter months. Mass flowering shrubs such as Mahonia spp. were identified as important food resources. The foraging experiments showed that bees active during the winter can attain nectar and pollen foraging rates that match, and even surpass, those recorded during summer. B. terrestris in the UK are now able to utilise a rich winter foraging resource in urban parks and gardens that might at present still be under-exploited, opening up the possibility of further changes in pollinator phenology.
Skill ontogeny among Tsimane forager-horticulturalists.
Schniter, Eric; Gurven, Michael; Kaplan, Hillard S; Wilcox, Nathaniel T; Hooper, Paul L
2015-09-01
We investigate whether age profiles of Tsimane forager-horticulturalists' reported skill development are consistent with predictions derived from life history theory about the timing of productivity and reproduction. Previous studies of forager skill development have often focused on a few abilities (e.g. hunting), and neglected the broad range of skills and services typical of forager economies (e.g. childcare, craft production, music performance, story-telling). By systematically examining age patterns in reported acquisition, proficiency, and expertise across a broad range of activities including food production, childcare, and other services, we provide the most complete skill development study of a traditional subsistence society to date. Our results show that: (1) most essential skills are acquired prior to first reproduction, then developed further so that their productive returns meet the increasing demands of dependent offspring during adulthood; (2) as postreproductive adults age beyond earlier years of peak performance, they report developing additional conceptual and procedural proficiency, and despite greater physical frailty than younger adults, are consensually regarded as the most expert (especially in music and storytelling), consistent with their roles as providers and educators. We find that adults have accurate understandings of their skillsets and skill levels -an important awareness for social exchange, comparison, learning, and pedagogy. These findings extend our understanding of the evolved human life history by illustrating how changes in embodied capital and the needs of dependent offspring predict the development of complementary skills and services in a forager-horticulturalist economy. © 2015 Wiley Periodicals, Inc.
Ólafsdóttir, Guðbjörg Ásta; Magellan, Kit
2016-01-01
Boldness, the tendency to be explorative, risk prone and proactive, often varies consistently between individuals. An individual's position on the boldness-shyness continuum has many implications. Bold individuals may outperform shyer conspecifics during foraging as they cover more ground, accumulate information more rapidly and make more frequent food discoveries. Individual variation in boldness may also affect behavioural plasticity across environmental contexts, as the time to process new information, the ability to locate and memorise resources and the time and ability to apply prior information in a novel context all differ between individuals. The primary aim of the current study was to examine plasticity in, and covariation between, boldness, foraging speed and foraging accuracy across social foraging contexts. We showed that the stickleback that were shyest when foraging alone became relatively boldest when foraging in a social context and also delayed their entry to a known food patch the most in the presence of conspecifics. These results support the assertion that shyer foragers are more reactive to social cues and add to current knowledge of how an individual's position on the boldness-shyness continuum may correlate to foraging task performance and behavioural plasticity. We conclude that the correlation between boldness and behavioural plasticity may have broad relevance as the ability to adjust or retain behaviours in changing social environments could often have consequences for fitness. Animal personality may affect how much individuals change their behaviour to suit different environments. We studied the link between threespine stickleback personality (boldness or shyness), foraging performance and change in foraging performance when either alone or in the presence of other stickleback. We found that shyer threespine stickleback were more reactive to the presence of other fish when foraging. When observed or joined by other fish, shy stickleback started exploring earlier, but entered a known food patch later, than when alone. Bolder stickleback changed their foraging behaviour much less in the presence of other fish. Our results suggest that how bold or shy individuals are may have important consequences on how well they adjust their foraging behaviour to environmental change.
Habitat use by female caribou: Tradeoffs associated with parturition
Barten, Neil L.; Bowyer, R.T.; Jenkins, Kurt J.
2001-01-01
We compared habitat use, forage characteristics, and group size among preparturient, parturient, and nonparturient female caribou (Rangifer tarandus) during and after the birthing season to test hypotheses involving acquisition of forage and risk of predation. We monitored 39 radiocollared females from the Mentasta caribou herd, Alaska, in 1994 and 40 animals in 1995. Group size of females giving birth at higher elevations was smaller (P 0.5). During peak parturition, females with young used sites with fewer predators (P < 0.05), a lower abundance of forage (P < 0.05), but with variable forage quality compared with those sites used by females without young. We hypothesized that parturient females used birth sites that lowered risk of predation, and traded-off forage abundance for increased safety. Nonetheless, few differences existed between parturient and nonparturient females in composition of diet or in indices of diet quality; we could not demonstrate a nutritional cost to maternal females from our analyses. We suggest that increasing population density might intensify intraspecific competition among females for birth sites, and thereby increase nutritional costs of using high-elevation areas with less forage but fewer predators.
Jorgenson, Janet C.; Udevitz, Mark S.; Felix, Nancy A.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.
2002-01-01
The Porcupine caribou herd has traditionally used the coastal plain of the Arctic National Wildlife Refuge, Alaska, for calving. Availability of nutritious forage has been hypothesized as one of the reasons the Porcupine caribou herd migrates hundreds of kilometers to reach the coastal plain for calving (Kuropat and Bryant 1980, Russell et al. 1993).Forage quantity and quality and the chronology of snowmelt (which determines availability and phenological stages of forage) have been suggested as important habitat attributes that lead calving caribou to select one area over another (Lent 1980, White and Trudell 1980, Eastland et al. 1989). A major question when considering the impact of petroleum development is whether potential displacement of the caribou from the 1002 Area to alternate calving habitat will limit access to high quantity and quality forage.Our study had the following objectives: 1) quantify snowmelt patterns by area; 2) quantify relationships among phenology, biomass, and nutrient content of principal forage species by vegetation type; and 3) determine if traditional concentrated calving areas differ from adjacent areas with lower calving densities in terms of vegetation characteristics.
Cotton Rats Alter Foraging in Response to an Invasive Ant.
Darracq, Andrea K; Conner, L Mike; Brown, Joel S; McCleery, Robert A
We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [-]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [-] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [-] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat's fitness and translate into lowered population abundances.
USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 59
1976-12-14
8217• *<* Environmental and Ecological Problems. 29 Epidemiology ~*2 Food Supply y Hydrobiology • *, Industrial Toxicology •’ ^ Microbiology...and evaluations of forage and seed production for varieties of northern hybrids in Moldavia. Agrotechnology is presented for the alfalfa hybrid...of vegetative mass, seed and forage production , and overall production . The vegetation periods ranged be- tween 107 and 138 days, with earliest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, Paco, E-mail: pbustama@univ-lr.fr; Carravieri, Alice; Centre d’Etudes Biologiques de Chizé
Hg can affect physiology of seabirds and ultimately their demography, particularly if they are top consumers. In the present study, body feathers of >200 wandering albatrosses from Possession Island in the Crozet archipelago were used to explore the potential demographic effects of the long-term exposure to Hg on an apex predator. Variations of Hg with sex, age class, foraging habitat (inferred from δ{sup 13}C values), and feeding habits (inferred from δ{sup 15}N values) were examined as well as the influence of Hg on current breeding output, long-term fecundity and survival. Wandering albatrosses displayed among the highest Hg feather concentrations reportedmore » for seabirds, ranging from 5.9 to 95 µg g{sup −1}, as a consequence of their high trophic position (δ{sup 15}N values). These concentrations fall within the same range of those of other wandering albatross populations from subantarctic sites, suggesting that this species has similar exposure to Hg all around the Southern Ocean. In both immature and adult albatrosses, females had higher Hg concentrations than males (28 vs. 20 µg g{sup −1} dw on average, respectively), probably as a consequence of females foraging at lower latitudes than males (δ{sup 13}C values). Hg concentrations were higher in immature than in adult birds, and they remained fairly constant across a wide range of ages in adults. Such high levels in immature individuals question (i) the frequency of moult in young birds, (ii) the efficiency of Hg detoxification processes in immatures compared to adults, and (iii) importantly the potential detrimental effects of Hg in early life. Despite very high Hg concentrations in their feathers, neither effects on adults' breeding probability, hatching failure and fledgling failure, nor on adults' survival rate were detected, suggesting that long-term bioaccumulated Hg was not under a chemical form leading to deleterious effects on reproductive parameters in adult individuals. - Highlights: • Immature albatrosses had higher feather Hg concentrations than adults. • Foraging habitat influenced Hg bioaccumulation as a result of male and female segregation. • No carry-over effects were detected on reproductive parameters.« less
What is driving range expansion in a common bat? Hints from thermoregulation and habitat selection.
Ancillotto, Leonardo; Budinski, Ivana; Nardone, Valentina; Di Salvo, Ivy; Corte, Martina Della; Bosso, Luciano; Conti, Paola; Russo, Danilo
2018-06-02
Human-induced alterations often lead to changes in the geographical range of plants and animals. While modelling exercises may contribute to understanding such dynamics at large spatial scales, they rarely offer insights into the mechanisms that prompt the process at a local scale. Savi's pipistrelle (Hypsugo savii) is a vespertilionid bat widespread throughout the Mediterranean region. The species' recent range expansion towards northeastern Europe is thought to be induced by urbanization, yet no study actually tested this hypothesis, and climate change is a potential alternative driver. In this radio-telemetry study, set in the Vesuvius National Park (Campania region, Southern Italy) we provide insights into the species' thermal physiology and foraging ecology and investigate their relationships with potential large-scale responses to climate, and land use changes. Specifically, we test whether H. savii i) exploits urbanisation through a selection of urban areas for roosting and foraging, and ii) tolerates heatwaves (a proxy for thermophily) through a plastic use of thermoregulation. Tolerance to heatwaves would be consistent with the observation that the species' geographic range is not shifting but expanding northwards. Tracked bats roosted mainly in buildings but avoided urban habitats while foraging, actively selecting non-intensive farmland and natural wooded areas. Hypsugo savii showed tolerance to heat, reaching the highest body temperature ever recorded for a free-ranging bat (46.5 °C), and performing long periods of overheating. We conclude that H. savii is not a strictly synurbic species because it exploits urban areas mainly for roosting, and avoids them for foraging: this questions the role of synurbization as a range expansion driver. On the other hand, the species' extreme heat tolerance and plastic thermoregulatory behaviour represent winning traits to cope with heatwaves typical of climate change-related weather fluctuations. Copyright © 2018 Elsevier B.V. All rights reserved.
Iannetta, Pietro P. M.; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J.; Monti, Michele; Pappa, Valentini A.; Reckling, Moritz; Topp, Cairistiona F. E.; Walker, Robin L.; Rees, Robert M.; Watson, Christine A.; James, Euan K.; Squire, Geoffrey R.; Begg, Graham S.
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume–based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha−1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6–0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output. PMID:27917178
Iannetta, Pietro P M; Young, Mark; Bachinger, Johann; Bergkvist, Göran; Doltra, Jordi; Lopez-Bellido, Rafael J; Monti, Michele; Pappa, Valentini A; Reckling, Moritz; Topp, Cairistiona F E; Walker, Robin L; Rees, Robert M; Watson, Christine A; James, Euan K; Squire, Geoffrey R; Begg, Graham S
2016-01-01
The potential of biological nitrogen fixation (BNF) to provide sufficient N for production has encouraged re-appraisal of cropping systems that deploy legumes. It has been argued that legume-derived N can maintain productivity as an alternative to the application of mineral fertilizer, although few studies have systematically evaluated the effect of optimizing the balance between legumes and non N-fixing crops to optimize production. In addition, the shortage, or even absence in some regions, of measurements of BNF in crops and forages severely limits the ability to design and evaluate new legume-based agroecosystems. To provide an indication of the magnitude of BNF in European agriculture, a soil-surface N-balance approach was applied to historical data from 8 experimental cropping systems that compared legume and non-legume crop types (e.g., grains, forages and intercrops) across pedoclimatic regions of Europe. Mean BNF for different legume types ranged from 32 to 115 kg ha -1 annually. Output in terms of total biomass (grain, forage, etc.) was 30% greater in non-legumes, which used N to produce dry matter more efficiently than legumes, whereas output of N was greater from legumes. When examined over the crop sequence, the contribution of BNF to the N-balance increased to reach a maximum when the legume fraction was around 0.5 (legume crops were present in half the years). BNF was lower when the legume fraction increased to 0.6-0.8, not because of any feature of the legume, but because the cropping systems in this range were dominated by mixtures of legume and non-legume forages to which inorganic N as fertilizer was normally applied. Forage (e.g., grass and clover), as opposed to grain crops in this range maintained high outputs of biomass and N. In conclusion, BNF through grain and forage legumes has the potential to generate major benefit in terms of reducing or dispensing with the need for mineral N without loss of total output.
Red-cockaded woodpecker male/female foraging differences in young forest stands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzreb, Kathleen, E.
2010-07-01
ABSTRACT The Red-cockaded Woodpecker (Picoides borealis) is an endangered species endemic to pine (Pinus spp.) forests of the southeastern United States. I examined Red-cockaded Woodpecker foraging behavior to learn if there were male/female differences at the Savannah River Site, South Carolina. The study was conducted in largely young forest stands (,50 years of age) in contrast to earlier foraging behavior studies that focused on more mature forest. The Redcockaded Woodpecker at the Savannah River site is intensively managed including monitoring, translocation, and installation of artificial cavity inserts for roosting and nesting. Over a 3-year period, 6,407 foraging observations covering sevenmore » woodpecker family groups were recorded during all seasons of the year and all times of day. The most striking differences occurred in foraging method (males usually scaled [45% of observations] and females mostly probed [47%]),substrate used (females had a stronger preference [93%] for the trunk than males [79%]), and foraging height from the ground (mean 6 SE foraging height was higher for males [11.1 6 0.5 m] than females [9.8 6 0.5 m]). Niche overlap between males and females was lowest for substrate (85.6%) and foraging height (87.8%), and highest for tree species (99.0%), tree condition (98.3%), and tree height (96.4%). Both males and females preferred to forage in older, large pine trees. The habitat available at the Savannah River Site was considerably younger than at most other locations, but the pattern of male/female habitat partitioning observed was similar to that documented elsewhere within the range attesting to the species’ ability to adjust behaviorally.« less
Freas, Cody A.; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees. PMID:29422880
Freas, Cody A; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas , whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2012 CFR
2012-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2013 CFR
2013-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2010 CFR
2010-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2014 CFR
2014-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
25 CFR 161.202 - How are range units established?
Code of Federal Regulations, 2011 CFR
2011-04-01
... unified areas for which range management plans can be developed to improve and maintain soil and forage resources. Physical land features, watersheds, drainage patterns, vegetation, soil, resident concentration...
Rosen, Arlene M; Rivera-Collazo, Isabel
2012-03-06
Climatic forcing during the Younger Dryas (∼12.9-11.5 ky B.P.) event has become the theoretical basis to explain the origins of agricultural lifestyles in the Levant by suggesting a failure of foraging societies to adjust. This explanation however, does not fit the scarcity of data for predomestication cultivation in the Natufian Period. The resilience of Younger Dryas foragers is better illustrated by a concept of adaptive cycles within a theory of adaptive change (resilience theory). Such cycles consist of four phases: release/collapse (Ω); reorganization (α), when the system restructures itself after a catastrophic stimulus through innovation and social memory--a period of greater resilience and less vulnerability; exploitation (r); and conservation (K), representing an increasingly rigid system that loses flexibility to change. The Kebarans and Late Natufians had similar responses to cold and dry conditions vs. Early Natufians and the Pre-Pottery Neolithic A responses to warm and wet climates. Kebarans and Late Natufians (α-phase) shifted to a broader-based diet and increased their mobility. Early Natufian and Pre-Pottery Neolithic A populations (r- and K-phases) had a growing investment in more narrowly focused, high-yield plant resources, but they maintained the broad range of hunted animals because of increased sedentism. These human adaptive cycles interlocked with plant and animal cycles. Forest and grassland vegetation responded to late Pleistocene and early Holocene climatic fluctuations, but prey animal cycles reflected the impact of human hunting pressure. The combination of these three adaptive cycles results in a model of human adaptation, showing potential for great sustainability of Levantine foraging systems even under adverse climatic conditions.
Complex scaling behavior in animal foraging patterns
NASA Astrophysics Data System (ADS)
Premachandra, Prabhavi Kaushalya
This dissertation attempts to answer questions from two different areas of biology, ecology and neuroscience, using physics-based techniques. In Section 2, suitability of three competing random walk models is tested to describe the emergent movement patterns of two species of primates. The truncated power law (power law with exponential cut off) is the most suitable random walk model that characterizes the emergent movement patterns of these primates. In Section 3, an agent-based model is used to simulate search behavior in different environments (landscapes) to investigate the impact of the resource landscape on the optimal foraging movement patterns of deterministic foragers. It should be noted that this model goes beyond previous work in that it includes parameters such as spatial memory and satiation, which have received little consideration to date in the field of movement ecology. When the food availability is scarce in a tropical forest-like environment with feeding trees distributed in a clumped fashion and the size of those trees are distributed according to a lognormal distribution, the optimal foraging pattern of a generalist who can consume various and abundant food types indeed reaches the Levy range, and hence, show evidence for Levy-flight-like (power law distribution with exponent between 1 and 3) behavior. Section 4 of the dissertation presents an investigation of phase transition behavior in a network of locally coupled self-sustained oscillators as the system passes through various bursting states. The results suggest that a phase transition does not occur for this locally coupled neuronal network. The data analysis in the dissertation adopts a model selection approach and relies on methods based on information theory and maximum likelihood.
Arranz, P; DeRuiter, S L; Stimpert, A K; Neves, S; Friedlaender, A S; Goldbogen, J A; Visser, F; Calambokidis, J; Southall, B L; Tyack, P L
2016-09-15
Early studies that categorized odontocete pulsed sounds had few means of discriminating signals used for biosonar-based foraging from those used for communication. This capability to identify the function of sounds is important for understanding and interpreting behavior; it is also essential for monitoring and mitigating potential disturbance from human activities. Archival tags were placed on free-ranging Grampus griseus to quantify and discriminate between pulsed sounds used for echolocation-based foraging and those used for communication. Two types of rapid click-series pulsed sounds, buzzes and burst pulses, were identified as produced by the tagged dolphins and classified using a Gaussian mixture model based on their duration, association with jerk (i.e. rapid change of acceleration) and temporal association with click trains. Buzzes followed regular echolocation clicks and coincided with a strong jerk signal from accelerometers on the tag. They consisted of series averaging 359±210 clicks (mean±s.d.) with an increasing repetition rate and relatively low amplitude. Burst pulses consisted of relatively short click series averaging 45±54 clicks with decreasing repetition rate and longer inter-click interval that were less likely to be associated with regular echolocation and the jerk signal. These results suggest that the longer, relatively lower amplitude, jerk-associated buzzes are used in this species to capture prey, mostly during the bottom phase of foraging dives, as seen in other odontocetes. In contrast, the shorter, isolated burst pulses that are generally emitted by the dolphins while at or near the surface are used outside of a direct, known foraging context. © 2016. Published by The Company of Biologists Ltd.
Nifong, James C; Layman, Craig A; Silliman, Brian R
2015-01-01
Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Foraging mode of the grey reef shark, Carcharhinus amblyrhynchos, under two different scenarios
NASA Astrophysics Data System (ADS)
Robbins, W. D.; Renaud, P.
2016-03-01
Knowledge of an animal's predatory interactions provides insight into its ecological role. Until now, investigation of reef shark predation has relied on artificial stimuli to facilitate feeding events, with few sightings of natural predation events. Here we document two different foraging modes of the grey reef shark, Carcharhinus amblyrhynchos (f. Carcharhinidae), recorded without the influence of baits or burley. The first mode saw an aggregation of sharks targeting a morning mass spawning event of marbled grouper (f. Serranidae). We observed 120 separate grouper spawns over a 104-min period. Detailed analysis of 52 spawns showed an average of five groupers and 2.7 sharks involved in each spawn, with sharks usually on site within 1.29 s of spawn initiation. The success rate of investigating sharks was relatively low (8.1 %), and conspecific competition, rather than cooperative behaviour, was repeatedly observed among sharks. The second foraging mode documented was the nocturnal predation of individual fishes in the same reef pass 2 weeks later. Here, 128 separate fish pursuits were observed, with fusiliers (f. Caesionidae) comprising 88 % of targeted individuals. Multiple sharks usually investigated each fish, with over 300 interaction events recorded. Over 100 bite attempts were observed, and again the rate of predation was low, with fish taken in only 5.3 % of investigations (16 % of attempted bites). Our findings show that grey reef sharks naturally prey on species across a range of trophic levels, employing foraging techniques optimised for prey species and circumstance. Although a high-order mesopredator, the low rates of predation success observed suggest that grey reef sharks may have limited direct impact on lower-trophic-order species; however, this remains to be verified.
Martinez, C M; Chung, Y-H; Ishler, V A; Bailey, K W; Varga, G A
2009-07-01
Two experiments (Exp. 1 and 2) were conducted using a 4 x 4 Latin square design with 2 replications (n = 8) to evaluate effects of feeding Holstein dairy cows a total mixed ration containing 50 or 60% of ration dry matter (DM) from forages with or without supplementation of monensin. In Exp. 1, alfalfa silage (AS) was used as the major forage (55% forage DM), and corn silage (CS; 45% forage DM) was used to make up the rest of the forage portion of diets (55AS:45CS). In Exp. 2, CS was used as the major forage (70% forage DM) and alfalfa hay (AH; 30% forage DM) was used to make up the rest of the forage portion of diets (70CS:30AH). Experimental diets were arranged in a 2 x 2 factorial with 50 or 60% ration DM from forages and monensin supplemented at 0 or 300 mg/cow daily. In Exp. 1 (55AS:45CS), feeding 60% forage diets decreased DM intake (DMI; 27.3 vs. 29.6 kg/d) but maintained the same levels of milk (45.8 vs. 47.0 kg/d) compared with 50% forage diets. The efficiency of converting feed to milk or 3.5% fat-corrected milk was greater for cows fed 60% compared with 50% forage diets (1.7 vs. 1.6 kg milk or 3.5% fat-corrected milk/kg of DMI, respectively). Increasing dietary forage level from 50 to 60% of ration DM increased milk fat percentage (3.4 to 3.5%); however, adding monensin to the 60% forage diet inhibited the increase in milk fat percentage. Feeding 60% forage diets decreased feed cost, but this decrease ($0.5/head per day) in feed cost did not affect income over feed cost. Feeding 60% forage diets decreased fecal excretion of DM (10.6 to 9.6 kg/d) and nitrogen (N; 354 to 324 g/d) and improved apparent digestibility of neutral detergent fiber from 43 to 49% and apparent efficiency of feed N utilization from 32.3 to 35.9% compared with 50% forage diets. In Exp. 2 (70CS:30AH), feeding 60% forage diets decreased DMI from 29.6 to 28.2 kg but maintained the same level of milk (41.1 vs. 40.8 kg/d) and therefore increased the efficiency of converting feed to milk (1.46 vs. 1.38 kg milk/kg DMI) compared with 50% forage diets. Daily feed cost for feeding 60% forage diets was $0.3/head lower than for the 50% forage diets. Fecal excretion of DM (10.3 vs. 11.5 kg/d) was lower and fecal excretion of N (299 vs. 328 g/d) tended to be lower for 60% compared with 50% forage diets. Results from these 2 experiments suggest that a 60% forage diet consisting of either AS or CS as the major forage can be fed to high producing Holstein dairy cows without affecting milk production while improving or maintaining the efficiency of converting feed to milk and the apparent efficiency of utilization of feed N. Cows receiving a 60% forage diet had a similar or improved digestibility of nutrients with a similar or reduced fecal excretion of nutrients. Effects of monensin under the conditions of the current experiments were minimal.
Buttstedt, Anja; Moritz, Robin Fa; Erler, Silvio
2013-11-27
In the honeybee Apis mellifera, female larvae destined to become a queen are fed with royal jelly, a secretion of the hypopharyngeal glands of young nurse bees that rear the brood. The protein moiety of royal jelly comprises mostly major royal jelly proteins (MRJPs) of which the coding genes (mrjp1-9) have been identified on chromosome 11 in the honeybee's genome. We determined the expression of mrjp1-9 among the honeybee worker caste (nurses, foragers) and the sexuals (queens (unmated, mated) and drones) in various body parts (head, thorax, abdomen). Specific mrjp expression was not only found in brood rearing nurse bees, but also in foragers and the sexuals. The expression of mrjp1 to 7 is characteristic for the heads of worker bees, with an elevated expression of mrjp1-4 and 7 in nurse bees compared to foragers. Mrjp5 and 6 were higher in foragers compared to nurses suggesting functions in addition to those of brood food proteins. Furthermore, the expression of mrjp9 was high in the heads, thoraces and abdomen of almost all female bees, suggesting a function irrespective of body section. This completely different expression profile suggests mrjp9 to code for the most ancestral major royal jelly protein of the honeybee.
USDA-ARS?s Scientific Manuscript database
Data from a recent survey suggests that the major reasons Nebraska farmer’s plant cover crops are to: improve soil organic matter, reduce erosion, improve soil water holding capacity, produce forage, and increase soil microbial biomass. Many of these benefits appear to be positively correlated with...
Quinn, Lucy R; Meharg, Andrew A; van Franeker, Jan A; Graham, Isla M; Thompson, Paul M
Many wildlife studies use chemical analyses to explore spatio-temporal variation in diet, migratory patterns and contaminant exposure. Intrinsic markers are particularly valuable for studying non-breeding marine predators, when direct methods of investigation are rarely feasible. However, any inferences regarding foraging ecology are dependent upon the time scale over which tissues such as feathers are formed. In this study, we validate the use of body feathers for studying non-breeding foraging patterns in a pelagic seabird, the northern fulmar. Analysis of carcasses of successfully breeding adult fulmars indicated that body feathers moulted between September and March, whereas analyses of carcasses and activity patterns suggested that wing feather and tail feather moult occurred during more restricted periods (September to October and September to January, respectively). By randomly sampling relevant body feathers, average values for individual birds were shown to be consistent. We also integrated chemical analyses of body feather with geolocation tracking data to demonstrate that analyses of δ 13 C and δ 15 N values successfully assigned 88 % of birds to one of two broad wintering regions used by breeding adult fulmars from a Scottish study colony. These data provide strong support for the use of body feathers as a tool for exploring non-breeding foraging patterns and diet in wide-ranging, pelagic seabirds.
NASA Astrophysics Data System (ADS)
Rosengaus, Rebeca B.; Reichheld, Jennifer L.
2016-02-01
Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant inter-specific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the above-ground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular.
Eutrophication and the dietary promotion of sea turtle tumors
Smith, Celia M.; Dailer, Meghan L.; Kawachi, Migiwa
2014-01-01
The tumor-forming disease fibropapillomatosis (FP) has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC) to describe the amino acid profiles of green turtle (Chelonia mydas) tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17–26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles. PMID:25289187
Emerson, Sara E; Brown, Joel S
2013-11-01
To examine habitat preferences of two groups of samango monkeys (Cercopithecus (nictitans) mitis erythrarchus) in the Soutpansberg, South Africa, we used experimental food patches in fragments of tall forest and in bordering secondary growth short forest. Additionally, to test for the impacts of group cohesion and movement on habitat use, we tested for the interaction of space and time in our analyses of foraging intensity in the experimental food patches placed throughout the home ranges of the two groups. We expected the monkeys to harvest the most from patches in tall forest habitats and the least from patches in short forest. Further, because the monkeys move through their habitats in groups, we expected to see group cohesion effects illustrated by daily spatial variation in the monkeys’ use of widespread foraging grids. In the forest height experiments, the two groups differed in their foraging responses, with 8% greater foraging overall for one group. However, forest height did not significantly impact foraging in either group, meaning that, given feeding opportunities, samango monkeys are able to utilise secondary growth forest. For one group, missed opportunity costs of staying with the group appeared through the statistical interaction of day with foraging location (the monkeys did not always spread out to take advantage of all available food patches). In several subsequent experiments in widespread grids, significant daily spatial variation in foraging occurred, pointing to spatial cohesion during group movement as likely being an important predictor of habitat use. For an individual social forager, staying with the group may be more important than habitat type in driving habitat selection.
Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Tucker, Anton D.; Carthy, Raymond R.
2012-01-01
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.
Effects of food availability on serum insulin and lipid concentrations in free-ranging baboons.
Kemnitz, Joseph W; Sapolsky, Robert M; Altmann, Jeanne; Muruthi, Philip; Mott, Glen E; Stefanick, Marcia L
2002-05-01
The relationship between food availability and metabolic physiology was studied in groups of free-ranging baboons (Papio spp.) living in the Amboseli National Park and the Masai Mara National Reserve of Kenya. Three groups subsisted entirely on natural forage, while two other groups lived near tourist facilities and often consumed food wastes from these lodges. The refuse provided a very accessible food source with relatively high caloric density. Consumption of the refuse was associated with reduced locomotion. Sexually mature individuals from all five groups were sedated surreptitiously in the early morning and blood samples were collected. Compared to animals foraging exclusively in the wild, animals that supplemented their diet with the refuse items had two- to threefold elevations in serum insulin concentrations, as well as increased total cholesterol (C), HDL-C, and VLDL+LDL-C levels. No sex differences in physiological measures were observed except in body mass. Elevated serum insulin, and cholesterol and lipoprotein concentrations influence the development of cardiovascular disease and have been shown to be subject to dietary manipulation and exercise under controlled conditions. The present results suggest potentially deleterious effects of a highly accessible, calorically dense food source, and associated reduction of physical activity for baboons living in an otherwise natural environment. Copyright 2002 Wiley-Liss, Inc.
Fidelity and over-wintering of sea turtles.
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-06-22
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2-5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles.
Optimal foraging, not biogenetic law, predicts spider orb web allometry.
Gregorič, Matjaž; Kiesbüy, Heine C; Lebrón, Shakira G Quiñones; Rozman, Alenka; Agnarsson, Ingi; Kuntner, Matjaž
2013-03-01
The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.
A simple method for the analysis of particle sizes of forage and total mixed rations.
Lammers, B P; Buckmaster, D R; Heinrichs, A J
1996-05-01
A simple separator was developed to determine the particle sizes of forage and TMR that allows for easy separation of wet forage into three fractions and also allows plotting of the particle size distribution. The device was designed to mimic the laboratory-scale separator for forage particle sizes that was specified by Standard S424 of the American Society of Agricultural Engineers. A comparison of results using the standard device and the newly developed separator indicated no difference in ability to predict fractions of particles with maximum length of less than 8 and 19 mm. The separator requires a small quantity of sample (1.4 L) and is manually operated. The materials on the screens and bottom pan were weighed to obtain the cumulative percentage of sample that was undersize for the two fractions. The results were then plotted using the Weibull distribution, which proved to be the best fit for the data. Convenience samples of haycrop silage, corn silage, and TMR from farms in the northeastern US were analyzed using the forage and TMR separator, and the range of observed values are given.
Bigger is better: honeybee colonies as distributed information-gathering systems.
Donaldson-Matasci, Matina C; DeGrandi-Hoffman, Gloria; Dornhaus, Anna
2013-03-01
In collectively foraging groups, communication about food resources can play an important role in the organization of the group's activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective informationgathering due to massive parallel search rather than increased competitive ability due to heavy recruitment.
Bigger is better: honeybee colonies as distributed information-gathering systems
Donaldson-Matasci, Matina C.; DeGrandi-Hoffman, Gloria; Dornhaus, Anna
2015-01-01
In collectively foraging groups, communication about food resources can play an important role in the organization of the group’s activity. For example, the honeybee dance communication system allows colonies to selectively allocate foragers among different floral resources according to their quality. Because larger groups can potentially collect more information than smaller groups, they might benefit more from communication because it allows them to integrate and use that information to coordinate forager activity. Larger groups might also benefit more from communication because it allows them to dominate high-value resources by recruiting large numbers of foragers. By manipulating both colony size and the ability to communicate location information in the dance, we show that larger colonies of honeybees benefit more from communication than do smaller colonies. In fact, colony size and dance communication worked together to improve foraging performance; the estimated net gain per foraging trip was highest in larger colonies with unimpaired communication. These colonies also had the earliest peaks in foraging activity, but not the highest ones. This suggests they may find and recruit to resources more quickly, but not more heavily. The benefits of communication we observed in larger colonies are thus likely a result of more effective informationgathering due to massive parallel search rather than increased competitive ability due to heavy recruitment. PMID:26213412
Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco
2015-01-01
Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.
Tolfsen, Christina C; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V
2011-04-15
Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism.
Wintering birds avoid warm sunshine: predation and the costs of foraging in sunlight.
Carr, Jennie M; Lima, Steven L
2014-03-01
Wintering birds can gain significant thermal benefits by foraging in direct sunlight. However, exposure to bright sunlight might make birds easier to detect by predators and may also cause visual glare that can reduce a bird's ability to monitor the environment. Thus, birds likely experience a trade-off between the thermal benefits and predation-related costs of foraging in direct sunlight. To examine this possible thermoregulation-predation trade-off, we monitored the behavior of mixed-species flocks of wintering emberizid sparrows foraging in alternating strips of sunlight and shade. On average, these sparrows routinely preferred to forage in the shade, despite midday air temperatures as much as 30 °C below their thermoneutral zone. This preference for shade was strongest at relatively high temperatures when the thermal benefits of foraging in sunlight were reduced, suggesting a thermoregulation-predation trade-off. Glare could be reduced if birds faced away from the sun while feeding in direct sunlight, but we found that foraging birds tended to face southward (the direction of the sun). We speculate that other factors, such as the likely direction of predator approach, may explain this southerly orientation, particularly if predators use solar glare to their advantage during an attack. This interpretation is supported by the fact that birds had the weakest southerly orientation on cloudy days. Wintering birds may generally avoid foraging in direct sunlight to minimize their risk of predation. However, given the thermal benefits of sunshine, such birds may benefit from foraging in habitats that provide a mosaic of sunlit and shaded microhabitats.
Tolfsen, Christina C.; Baker, Nicholas; Kreibich, Claus; Amdam, Gro V.
2011-01-01
SUMMARY Honeybees (Apis mellifera) senesce within 2 weeks after they discontinue nest tasks in favour of foraging. Foraging involves metabolically demanding flight, which in houseflies (Musca domestica) and fruit flies (Drosophila melanogaster) is associated with markers of ageing such as increased mortality and accumulation of oxidative damage. The role of flight in honeybee ageing is incompletely understood. We assessed relationships between honeybee flight activity and ageing by simulating rain that confined foragers to their colonies most of the day. After 15 days on average, flight-restricted foragers were compared with bees with normal (free) flight: one group that foraged for ∼15 days and two additional control groups, for flight duration and chronological age, that foraged for ∼5 days. Free flight over 15 days on average resulted in impaired associative learning ability. In contrast, flight-restricted foragers did as well in learning as bees that foraged for 5 days on average. This negative effect of flight activity was not influenced by chronological age or gustatory responsiveness, a measure of the bees' motivation to learn. Contrasting their intact learning ability, flight-restricted bees accrued the most oxidative brain damage as indicated by malondialdehyde protein adduct levels in crude cytosolic fractions. Concentrations of mono- and poly-ubiquitinated brain proteins were equal between the groups, whereas differences in total protein amounts suggested changes in brain protein metabolism connected to forager age, but not flight. We propose that intense flight is causal to brain deficits in aged bees, and that oxidative protein damage is unlikely to be the underlying mechanism. PMID:21430210
Sr Vadas, R L; Burrows, M T; Hughes, R N
1994-12-01
The effects of diet history, hunger and predation risk on short-term behavioral decisions of dogwhelks were tested in a specially designed test apparatus, termed a linear feeding array (LFA). The LFA consists of a sequential series of prey items mounted in a flume with unidirectional current directed towards a test (predatory) animal, and into which potential olfactory cues regarding predation risk are introduced. For dogwhelks the array was constructed vertically to accomodate intertidal foraging movements and is termed a vertical linear array (VLA). The behaviors exhibited by the dogwhelks were interpreted from distribution patterns in the VLA. Recent experimental studies and advances in optimal foraging theory provided the basis for the hypotheses tested in the VLA, which included: foraging and other behaviors are affected by predation, animals will avoid risk in the presence of predation threat, responses to predation threat will be proportional to the number and kinds of predator cues present, and starved animals will take greater risks than fed animals. We also test the proposition that foraging decisions are further modified by age. Three groups of juvenile and adult animals were maintained on diets of barnacles, mussels or no food (starved). The scent of crabs and damaged conspecifics served as olfactory cues to predation risk. Dogwhelks exhibited a range of behaviors in the VLA including: sheltering, searching, feeding, and aerial climbing. Distribution of animals in the tank assumed a relatively stable pattern after 2-3 h. These patterns were interpreted as the consequence of heirarchial decision making including: (i) a decision to become active, leaving the resting place or water refuge adopted during initial placement, followed by (ii) a decision to move vertically upwards or downwards, and (iii) a decision to attack prey when encountered. Analysis of movement patterns revealed that the initial decision, analogous to leaving a crevice as the tide comes in, was influenced in adults by predator cues and in juveniles by both predator cues and diet history. Perceived risk, as crab and damaged-conspecific odors, made individuals more likely to remain inactive, a risk-avoiding strategy for animals already in a refuge. Starved animals were more likely to descend into the tank and attack prey than fed animals. Our results support the hypotheses that higher-order predators affect the foraging decisions of dogwhelks and that juveniles and satiated animals are more sensitive to predation risk than starved ones. Together, these and earlier studies suggest that dogwhelks assess their environment before foraging, and that they are attuned to reducing the risks of mortality.
Alberto R. Puente-Rolón; Fernando J. Bird-Picó
2004-01-01
Observations of foraging behavior of the Puerto Rican boa (Epicrates inornatus) were performed at a cave entrance beginning one hour before sunset until one hour after sunrise. Boas captured bats from 1745 h to 0600 h, but most captures were between 1900 and 2400 h. The most common preyed bats were Erophylla sezekorni,
Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf
NASA Astrophysics Data System (ADS)
Campagna, Claudio; Piola, Alberto R.; Marin, Maria Rosa; Lewis, Mirtha; Zajaczkovski, Uriel; Fernández, Teresita
2007-10-01
Elephant seals are wide-ranging, pelagic, deep-diving (average of 400-600 m) predators that typically travel to open waters and continental shelf edges thousands of kilometers from their land breeding colonies. We report a less common pattern of foraging in the shallow waters of a continental shelf. Southern elephant seals, Mirounga leonina, that breed at Península Valdés (Argentina), face an extended (˜1,000,000 km 2; 400-700 km-wide, depending on track), shallow (<150 m) and seasonally productive plateau, the Patagonian shelf. Adults of both sexes usually cross it in rapid transit to other potential foraging grounds on the shelf edge or in the Argentine Basin, but 2-4 year-old juveniles spread over the plateau and spent months in shallow waters. This behavior was recorded for 9 seals (5 males and 4 females) of 23 satellite-tracked juveniles (springs of 2004 and 2005) and for 2 subadult males studied in previous seasons. Trips included travel trajectories and time spent in areas where swim speed decreased, suggesting foraging. Preferred locations of juvenile females were in the proximity of the shelf break, where stratified waters had relatively high phytoplankton concentrations, but young and subadult males used the relatively cold (7-8 °C), low-salinity (˜33.3) mid-shelf waters, with depths of 105-120 m and a poorly stratified water column. Three of the latter seals, instrumented with time-depth recorders, showed dives compatible with benthic feeding and no diel pattern of depths distribution. Regions of the mid-shelf were used in different seasons and were associated with low chlorophyll- a concentration at the time of the visit, suggesting that surface productivity does not overlap with putative quality habitat for benthic foragers. Benthic diving on the shallow mid-shelf would be a resource partitioning strategy advantageous for young males prior to greater energetic demands of a high growth rate and a large body size. Later in life, the more predictable, bathymetry-forced, shelf-break front may offer the food resources that explain the uninterrupted increase of this population over several decades.
Bonaccorso, Frank J.; Todd, Christopher M.; Miles, Adam C.; Gorresen, P. Marcos
2015-01-01
We documented nightly movements of Hawaiian hoary bats (Lasiurus cinereus semotus) on the island of Hawai’i. Based on data from 28 radiotagged individuals mean foraging range (FR) was 230.7±72.3 ha, core-use area (CUA) was 25.5±6.9 ha (or 11.1% of mean FR), and the mean long axis (LAX) across the FR was 3,390.8±754.3 m. There was almost no overlap in CUAs among 4 adult males having overlapping foraging areas and tracked simultaneously or within a 90-day window of each other. CUAs of subadults partially overlapped with multiple adult males or with one other subadult. High variance in FRs, cores use areas, and LAX across the FR perhaps reflect localized stochastic variables such as weather, habitat, and food resources. Hawaiian hoary bats use moderately large FRs among insectivorous bats studied with comparable methodologies; however, foraging activity indicated by documentation of acoustic feeding buzzes is concentrated within one or a few disjunct areas cumulatively forming the 50% fixed kernel of CUA. The concentration of feeding activity, low values of individual overlap, and agonistic chasing behavior within CUAs all demonstrate a structured use of individual space by Hawaiian hoary bats.
Cow and calf weight trends on mountain summer range.
Jon M. Skovlin
1962-01-01
Mountain range furnishes the bulk of summer forage for commercial cow-calf operations in northeastern Oregon. Herds maintained on valley range and pasture during winter and spring months are annually trailed to mountain ranges and remain there until calves are ready for fall markets (fig. 1).
Flock Foraging Efficiency in Relation to Food Sensing Ability and Distribution: a Simulation Study
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee
2013-08-01
Flocking may be an advantageous strategy for acquiring food resources. The degree of advantage is related to two factors: the ability of flock members to detect food resources and patterns of food distribution in the environment. To understand foraging efficiency as a function of these factors, I constructed a two-dimensional (2D) flocking model incorporating the two factors. At the start of the simulation, food particles were heterogeneously distributed. The heterogeneity, H, was characterized as a value ranging from 0.0 to 1.0. For each flock member, food sensing ability was defined by two variables: sensing distance, R and sensing angle, θ. Foraging efficiency of a flock was defined as the time, τ, required for a flock to consume all the available food resources. Simulation results showed that flock foraging is most efficient when individuals had an intermediate sensing ability (R = 60), but decreased for low (R < 60) and high (R > 60) sensing ability. When R > 60, patterns in foraging efficiency with increasing sensing distance and food resource aggregation were less consistent. This inconsistency was due to instability of the flock and a higher rate of individuals failing to capture target food resources. In addition, I briefly discuss the benefits obtained by foraging in flocks from an evolutionary perspective.
Peterson, Sarah H; Ackerman, Joshua T; Crocker, Daniel E; Costa, Daniel P
2018-02-14
Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals ( Mirounga angustirostris ) before and after lengthy at sea foraging trips ( n = 89) or fasting periods on land ( n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events. © 2018 The Author(s).
Peterson, Sarah; Ackerman, Joshua T.; Crocker, Daniel E.; Costa, Daniel P.
2018-01-01
Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.
Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model.
Lardy, G P; Adams, D C; Klopfenstein, T J; Patterson, H H
2004-01-01
Designing a sound cow-calf nutritional program requires knowledge of nutrient requirements, diet quality, and intake. Effectively using the NRC (1996) beef cattle requirements model (1996NRC) also requires knowledge of dietary degradable intake protein (DIP) and microbial efficiency. Objectives of this paper are to 1) describe a framework in which 1996NRC-applicable data can be generated, 2) describe seasonal changes in nutrients on native range, 3) use the 1996NRC to predict nutrient balance for cattle grazing these forages, and 4) make recommendations for using the 1996NRC for forage-fed cattle. Extrusa samples were collected over 2 yr on native upland range and subirrigated meadow in the Nebraska Sandhills. Samples were analyzed for CP, in vitro OM digestibility (IVOMD), and DIP. Regression equations to predict nutrients were developed from these data. The 1996NRC was used to predict nutrient balances based on the dietary nutrient analyses. Recommendations for model users were also developed. On subirrigated meadow, CP and IVOMD increased rapidly during March and April. On native range, CP and IVOMD increased from April through June but decreased rapidly from August through September. Degradable intake protein (DM basis) followed trends similar to CP for both native range and subirrigated meadow. Predicted nutrient balances for spring- and summer-calving cows agreed with reported values in the literature, provided that IVOMD values were converted to DE before use in the model (1.07 x IVOMD - 8.13). When the IVOMD-to-DE conversion was not used, the model gave unrealistically high NE(m) balances. To effectively use the 1996NRC to estimate protein requirements, users should focus on three key estimates: DIP, microbial efficiency, and TDN intake. Consequently, efforts should be focused on adequately describing seasonal changes in forage nutrient content. In order to increase use of the 1996NRC, research is needed in the following areas: 1) cost-effective and accurate commercial laboratory procedures to estimate DIP, 2) reliable estimates or indicators of microbial efficiency for various forage types and qualities, 3) improved estimates of dietary TDN for forage-based diets, 4) validation work to improve estimates of DIP and MP requirements, and 5) incorporation of nitrogen recycling estimates.
Nutrient compensatory foraging in a free-living social insect
NASA Astrophysics Data System (ADS)
Christensen, Keri L.; Gallacher, Anthony P.; Martin, Lizzie; Tong, Desmond; Elgar, Mark A.
2010-10-01
The geometric framework model predicts that animal foraging decisions are influenced by their dietary history, with animals targeting a combination of essential nutrients through compensatory foraging. We provide experimental confirmation of nutrient-specific compensatory foraging in a natural, free-living population of social insects by supplementing their diet with sources of protein- or carbohydrate-rich food. Colonies of the ant Iridomyrmex suchieri were provided with feeders containing food rich in either carbohydrate or protein for 6 days, and were then provided with a feeder containing the same or different diet. The patterns of recruitment were consistent with the geometric framework: while feeders with a carbohydrate diet typically attracted more workers than did feeders with protein diet, the difference in recruitment between the two nutrients was smaller if the colonies had had prior access to carbohydrate than protein. Further, fewer ants visited feeders if the colony had had prior access to protein than to carbohydrates, suggesting that the larvae play a role in worker foraging behaviour.
Scrounging by foragers can resolve the paradox of enrichment
2017-01-01
Theoretical models of predator–prey systems predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). Although real ecological communities contain many gregarious species, whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might resolve this paradox. I considered a predator population in which individuals play the producer–scrounger foraging game in one-prey-one-predator and two-prey-one-predator systems. I analysed the stability of a coexisting equilibrium point in the one-prey system and that of non-equilibrium dynamics in the two-prey system. The results revealed that social foraging could stabilize both systems, and thereby resolve the paradox of enrichment when scrounging behaviour (i.e. kleptoparasitism) is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on the sustainability of ecological communities. PMID:28405371
Nishikawa, Mari; Suzuki, Mariko; Sprague, David S
2014-07-01
Understanding cohesion among individuals within a group is necessary to reveal the social system of group-living primates. Japanese macaques (Macaca fuscata) are female-philopatric primates that reside in social groups. We investigated whether individual activity and social factors can affect spatio-temporal cohesion in wild female Japanese macaques. We conducted behavioral observation on a group, which contained 38 individuals and ranged over ca. 60 ha during the study period. Two observers carried out simultaneous focal-animal sampling of adult female pairs during full-day follows using global positioning system which enabled us to quantify interindividual distances (IIDs), group members within visual range (i.e., visual unit), and separation duration beyond visual range as indicators of cohesion among individuals. We found considerable variation in spatio-temporal group cohesion. The overall mean IID was 99.9 m (range = 0-618.2 m). The percentage of IIDs within visual range was 23.1%, within auditory range was 59.8%, and beyond auditory range was 17.1%. IIDs varied with activity; they were shorter during grooming and resting, and longer during foraging and traveling. Low-ranking females showed less cohesion than high-ranking ones. Kin females stayed nearly always within audible range. The macaques were weakly cohesive with small mean visual unit size (3.15 counting only adults, 5.99 counting all individuals). Both-sex units were the most frequently observed visual unit type when they were grooming/resting. Conversely, female units were the most frequently observed visual unit type when they were foraging. The overall mean visual separation duration was 25.7 min (range = 3-513 min). Separation duration was associated with dominance rank. These results suggest that Japanese macaques regulate cohesion among individuals depending on their activity and on social relationships; they were separated to adapt food distribution and aggregated to maintain social interactions. © 2014 Wiley Periodicals, Inc.
Sun, Xuezhao; Henderson, Gemma; Cox, Faith; Molano, German; Harrison, Scott J.; Luo, Dongwen; Janssen, Peter H.; Pacheco, David
2015-01-01
The objectives of this study were to examine long-term effects of feeding forage rape (Brassica napus L.) on methane yields (g methane per kg of feed dry matter intake), and to propose mechanisms that may be responsible for lower emissions from lambs fed forage rape compared to perennial ryegrass (Lolium perenne L.). The lambs were fed fresh winter forage rape or ryegrass as their sole diet for 15 weeks. Methane yields were measured using open circuit respiration chambers, and were 22-30% smaller from forage rape than from ryegrass (averages of 13.6 g versus 19.5 g after 7 weeks, and 17.8 g versus 22.9 g after 15 weeks). The difference therefore persisted consistently for at least 3 months. The smaller methane yields from forage rape were not related to nitrate or sulfate in the feed, which might act as alternative electron acceptors, or to the levels of the potential inhibitors glucosinolates and S-methyl L-cysteine sulfoxide. Ruminal microbial communities in forage rape-fed lambs were different from those in ryegrass-fed lambs, with greater proportions of potentially propionate-forming bacteria, and were consistent with less hydrogen and hence less methane being produced during fermentation. The molar proportions of ruminal acetate were smaller and those of propionate were greater in forage rape-fed lambs, consistent with the larger propionate-forming populations and less hydrogen production. Forage rape contained more readily fermentable carbohydrates and less structural carbohydrates than ryegrass, and was more rapidly degraded in the rumen, which might favour this fermentation profile. The ruminal pH was lower in forage rape-fed lambs, which might inhibit methanogenic activity, shifting the rumen fermentation to more propionate and less hydrogen and methane. The significance of these two mechanisms remains to be investigated. The results suggest that forage rape is a potential methane mitigation tool in pastoral-based sheep production systems. PMID:25803688
Forage resource evaluation system for habitat—deer: an interactive deer habitat model
Thomas A. Hanley; Donald E. Spalinger; Kenrick J. Mock; Oran L. Weaver; Grant M. Harris
2012-01-01
We describe a food-based system for quantitatively evaluating habitat quality for deer called the Forage Resource Evaluation System for Habitat and provide its rationale and suggestions for use. The system was developed as a tool for wildlife biologists and other natural resource managers and planners interested in evaluating habitat quality and, especially, comparing...
Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator)
Chiou, Kenneth L.; Walco, Emily R.; Bergstrom, Mackenzie L.; Kawamura, Shoji; Fedigan, Linda M.
2017-01-01
Intraspecific color vision variation is prevalent among nearly all diurnal monkeys in the neotropics and is seemingly a textbook case of balancing selection acting to maintain genetic polymorphism. Clear foraging advantages to monkeys with trichromatic vision over those with dichromatic “red-green colorblind” vision have been observed in captive studies; however, evidence of trichromatic advantage during close-range foraging has been surprisingly scarce in field studies, perhaps as a result of small sample sizes and strong impacts of environmental or individual variation on foraging performance. To robustly test the effects of color vision type on foraging efficiency in the wild, we conducted an extensive study of dichromatic and trichromatic white-faced capuchin monkeys (Cebus capucinus imitator), controlling for plant-level and monkey-level variables that may affect fruit intake rates. Over the course of 14 months, we collected behavioral data from 72 monkeys in Sector Santa Rosa, Costa Rica. We analyzed 19,043 fruit feeding events within 1,602 foraging bouts across 27 plant species. We find that plant species, color conspicuity category, and monkey age class significantly impact intake rates, while sex does not. When plant species and age are controlled for, we observe that trichromats have higher intake rates than dichromats for plant species with conspicuously colored fruits. This study provides clear evidence of trichromatic advantage in close-range fruit feeding in wild monkeys. Taken together with previous reports of dichromatic advantage for finding cryptic foods, our results illuminate an important aspect of balancing selection maintaining primate opsin polymorphism. PMID:28894009
Persistent producer-scrounger relationships in bats.
Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi
2018-02-01
Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time.
Persistent producer-scrounger relationships in bats
Harten, Lee; Matalon, Yasmin; Galli, Naama; Navon, Hagit; Dor, Roi; Yovel, Yossi
2018-01-01
Social foraging theory suggests that group-living animals gain from persistent social bonds, which lead to increased tolerance in competitive foraging and information sharing. Bats are among the most social mammals, often living in colonies of tens to thousands of individuals for dozens of years, yet little is known about their social foraging dynamics. We observed three captive bat colonies for over a year, quantifying >13,000 social foraging interactions. We found that individuals consistently used one of two foraging strategies, either producing (collecting) food themselves or scrounging it directly from the mouth of other individuals. Individual foraging types were consistent over at least 16 months except during the lactation period when females shifted toward producing. Scroungers intentionally selected whom to interact with when socially foraging, thus generating persistent nonrandom social relationships with two to three specific producers. These persistent producer-scrounger relationships seem to reduce aggression over time. Finally, scrounging was highly correlated with vigilance, and we hypothesize that vigilant-prone individuals turn to scrounging in the wild to mitigate the risk of landing on a potentially unsafe fruit tree. We find the bat colony to be a rich and dynamic social system, which can serve as a model to study the role that social foraging plays in the evolution of mammalian sociality. Our results highlight the importance of considering individual tendencies when exploring social behavior patterns of group-living animals. These tendencies further emphasize the necessity of studying social networks over time. PMID:29441356
NASA Astrophysics Data System (ADS)
Arthur, Benjamin; Hindell, Mark; Bester, Marthan; De Bruyn, P. J. Nico; Trathan, Phil; Goebel, Michael; Lea, Mary-Anne
2017-06-01
Quantification of the physical and biological environmental factors that influence the spatial distribution of higher trophic species is central to inform management and develop ecosystem models, particularly in light of ocean changes. We used tracking data from 184 female Antarctic fur seals (Arctocephalus gazella) to develop habitat models for three breeding colonies for the poorly studied Southern Ocean winter period. Models were used to identify and predict the broadly important winter foraging habitat and to elucidate the environmental factors influencing these areas. Model predictions closely matched observations and several core areas of foraging habitat were identified for each colony, with notable areas of inter-colony overlap suggesting shared productive foraging grounds. Seals displayed clear choice of foraging habitat, travelling through areas of presumably poorer quality to access habitats that likely offer an energetic advantage in terms of prey intake. The relationships between environmental predictors and foraging habitat varied between colonies, with the principal predictors being wind speed, sea surface temperature, chlorophyll a concentration, bathymetry and distance to the colony. The availability of core foraging areas was not consistent throughout the winter period. The habitat models developed in this study not only reveal the core foraging habitats of Antarctic fur seals from multiple colonies, but can facilitate the hindcasting of historical foraging habitats as well as novel predictions of important habitat for other major colonies currently lacking information of the at-sea distribution of this major Southern Ocean consumer.
Personality, Foraging and Fitness Consequences in a Long Lived Seabird
Patrick, Samantha C.; Weimerskirch, Henri
2014-01-01
While personality differences in animals are defined as consistent behavioural variation between individuals, the widely studied field of foraging specialisation in marine vertebrates has rarely been addressed within this framework. However there is much overlap between the two fields, both aiming to measure the causes and consequences of consistent individual behaviour. Here for the first time we use both a classic measure of personality, the response to a novel object, and an estimate of foraging strategy, derived from GPS data, to examine individual personality differences in black browed albatross and their consequences for fitness. First, we examine the repeatability of personality scores and link these to variation in foraging habitat. Bolder individuals forage nearer the colony, in shallower regions, whereas shyer birds travel further from the colony, and fed in deeper oceanic waters. Interestingly, neither personality score predicted a bird’s overlap with fisheries. Second, we show that both personality scores are correlated with fitness consequences, dependent on sex and year quality. Our data suggest that shyer males and bolder females have higher fitness, but the strength of this relationship depends on year quality. Females who forage further from the colony have higher breeding success in poor quality years, whereas males foraging close to the colony always have higher fitness. Together these results highlight the potential importance of personality variation in seabirds and that the fitness consequences of boldness and foraging strategy may be highly sex dependent. PMID:24504180
Comparison of three techniques for estimating the forage intake of lactating dairy cows on pasture.
Macoon, B; Sollenberger, L E; Moore, J E; Staples, C R; Fike, J H; Portier, K M
2003-09-01
Quantifying DMI is necessary for estimation of nutrient consumption by ruminants, but it is inherently difficult on grazed pastures and even more so when supplements are fed. Our objectives were to compare three methods of estimating forage DMI (inference from animal performance, evaluation from fecal output using a pulse-dose marker, and estimation from herbage disappearance methods) and to identify the most useful approach or combination of approaches for estimating pasture intake by lactating dairy cows. During three continuous 28-d periods in the winter season, Holstein cows (Bos taurus; n = 32) grazed a cool-season grass or a cool-season grass-clover mixture at two stocking rates (SR; 5 vs. 2.5 cows/ha) and were fed two rates of concentrate supplementation (CS; 1 kg of concentrate [as-fed] per 2.5 or 3.5 kg of milk produced). Animal response data used in computations for the animal performance method were obtained from the latter 14 d of each period. For the pulse-dose marker method, chromium-mordanted fiber was used. Pasture sampling to determine herbage disappearance was done weekly throughout the study. Forage DMI estimated by the animal performance method was different among periods (P < 0.001; 6.5, 6.4, and 9.6 kg/d for Periods 1, 2, and 3, respectively), between SR (P < 0.001; 8.7 [low SR] vs. 6.3 kg/d [high SR]) and between CS (P < 0.01; 8.4 [low CS] vs. 6.6 kg/d [high CS]). The period and SR effect seemed to be related to forage mass. The pulse-dose marker method generally provided greater estimates of forage DMI (as much as 11.0 kg/d more than the animal performance method) and was not correlated with the other methods. Estimates of forage DMI by the herbage disappearance method were correlated with the animal performance method. The difference between estimates from these two methods, ranging from -4.7 to 5.4 kg/d, were much lower than their difference from pulse-dose marker estimates. The results of this study suggest that, when appropriate for the research objectives, the animal performance or herbage disappearance methods may be useful and less costly alternatives to using the pulse-dose method.
Cotton Rats Alter Foraging in Response to an Invasive Ant
Darracq, Andrea K.; Conner, L. Mike; Brown, Joel S.; McCleery, Robert A.
2016-01-01
We assessed the effects of red imported fire ants (Solenopsis invicta; hereafter fire ant) on the foraging of hispid cotton rats (Sigmodon hispidus). We used a manipulative experiment, placing resource patches with a known amount of millet seed within areas with reduced (RIFA [–]) or ambient (RIFA [+]) numbers of fire ants. We measured giving up densities (the amount of food left within each patch) within the resource patches for 4 days to quantify the effects of fire ants on cotton rat foraging. We assessed the effects of fire ant treatment (RIFA), Day, and their interaction on cotton rat giving up densities. Giving up densities on RIFA [+] grids were nearly 2.2 times greater across all foraging days and ranged from 1.6 to 2.3 times greater from day 1 to day 4 than the RIFA [–] grids. From day 1 to day 4, mean giving up densities decreased significantly faster for the RIFA [–] than RIFA [+] treatments, 58% and 13%, respectively. Our results demonstrate that cotton rats perceive a risk of injury from fire ants, which is likely caused by interference competition, rather than direct predation. Envenomation from ants likely decrease the foraging efficiency of cotton rats resulting in more time spent foraging. Increased time spent foraging is likely stressful in terms of the opportunity for direct injury and encounters with other predators. These indirect effects may reduce an individual cotton rat’s fitness and translate into lowered population abundances. PMID:27655320
Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George
2013-01-01
Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.
An energy-circuit population model for great egrets (Ardea alba) at Lake Okeechobee, Florida, U.S.A
Smith, Jeff P.
1997-01-01
I simulated the annual population cycles of Great Egrets (Ardea alba) at Lake Okeechobee, Florida, to provide a framework for evaluating the local population dynamics of nesting and foraging wading birds. The external forcing functions were solar energy, minimum air temperature, water depth, surface-water drying rate, and season. Solar input controlled the production of prey at moderate to high lake stages, but water area exerted primary control during a two-year drought. Modeling prey production as a linear function of water area resulted in underestimation of prey density during the drought, suggesting that prey organisms maintained high fecundity while concentrated in submerged vegetation at the lakeward fringe of the littoral zone. Simulation confirmed that large influxes of wading birds during the drought were the combined result of a regional refuge response and the availability of concentrated prey. Modeling immigration and emigration as primarily functions of the surface-water drying rate, rather than lake stage, resulted in a closer match of observed and simulated population trends for foraging birds, suggesting that the pattern of surface-water fluctuations was a more important factor than water depth. Simulation indicated an abrupt-threshold response rather than a linear association between foraging efficiency and low temperatures, which reduce activity levels of forage fishes. Great Egret breeder recruitment is primarily a function of prey availability, climate, and hydrologic trends, but simulation confirmed the concurrent involvement of a seasonal or physiological-readiness factor. An attractor function driven by high winter lake stages was necessary to reproduce observed patterns of breeder recruitment, suggesting that Great Egrets initiate nesting based on environmental cues that lead to peak food availability when nestlings are present. Poor correspondence of reproductive effort and nest productivity suggested that the drought compromised the birds' predictive abilities. The need to model breeder recruitment as a function of a maximum rate rather than the size of the local foraging population suggested that birds may nest on the lake even though on-lake foraging conditions are poor. Simulated and observed estimates of egg and hatching production did not match, suggesting that the causes of failure during incubation were complex or more localized than could be accounted for with lakewide hydrologic and climatic data. A forced increase in prey consumption of 12% was necessary to reproduce observed, high levels of nest productivity in 1990, which corresponded to the finding that panhandled fish constituted 10–12% of the biomass fed to Great Egret nestlings that year.
Friedman, Nicholas R; Harmáčková, Lenka; Economo, Evan P; Remeš, Vladimír
2017-08-01
Birds' beaks play a key role in foraging, and most research on their size and shape has focused on this function. Recent findings suggest that beaks may also be important for thermoregulation, and this may drive morphological evolution as predicted by Allen's rule. However, the role of thermoregulation in the evolution of beak size across species remains largely unexplored. In particular, it remains unclear whether the need for retaining heat in the winter or dissipating heat in the summer plays the greater role in selection for beak size. Comparative studies are needed to evaluate the relative importance of these functions in beak size evolution. We addressed this question in a clade of birds exhibiting wide variation in their climatic niche: the Australasian honeyeaters and allies (Meliphagoidea). Across 158 species, we compared species' climatic conditions extracted from their ranges to beak size measurements in a combined spatial-phylogenetic framework. We found that winter minimum temperature was positively correlated with beak size, while summer maximum temperature was not. This suggests that while diet and foraging behavior may drive evolutionary changes in beak shape, changes in beak size can also be explained by the beak's role in thermoregulation, and winter heat retention in particular. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Gregg, Jacob L.; Grady, Courtney A.; Thompson, Rachel L.; Purcell, Maureen K.; Friedman, Carolyn S.; Hershberger, Paul K.
2014-01-01
A combination of field surveys, molecular typing, and laboratory experiments were used to improve our understanding of the distribution and transmission mechanisms of fish parasites in the genus Ichthyophonus. Ichthyophonus spp. infections were detected from the Bering Sea to the coast of Oregon in 10 of 13 host species surveyed. Sequences of rDNA extracted from these isolates indicate that a ubiquitous Ichthyophonus type occurs in the NE Pacific Ocean and Bering Sea and accounts for nearly all the infections encountered. Among NE Pacific isolates, only parasites from yellowtail rockfish and Puget Sound rockfish varied at the DNA locus examined. These data suggest that a single source population of these parasites is available to fishes in diverse niches across a wide geographic range. A direct life cycle within a common forage species could account for the relatively low parasite diversity we encountered. In the laboratory we tested the hypothesis that waterborne transmission occurs among Pacific herring, a common NE Pacific forage species. No horizontal transmission occurred during a four-month cohabitation experiment involving infected herring and conspecific sentinels. The complete life cycle of Ichthyophonus spp. is not known, but these results suggest that system-wide processes maintain a relatively homogenous parasite population.
Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds
2014-01-01
Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet (Psittacula krameri), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker (Dendrocopos major). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources. PMID:24822022
Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds.
Peck, Hannah L; Pringle, Henrietta E; Marshall, Harry H; Owens, Ian P F; Lord, Alexa M
2014-05-01
Resource competition is one potential behavioral mechanism by which invasive species can impact native species, but detecting this competition can be difficult due to the interactions that variable environmental conditions can have on species behavior. This is particularly the case in urban habitats where the disturbed environment can alter natural behavior from that in undisturbed habitats. The rose-ringed parakeet ( Psittacula krameri ), is an increasingly common invasive species, predominantly associated with large urban centers. Using an experimental approach, we tested the behavioral responses of native garden birds in response to the presence of a rose-ringed parakeet versus the presence of a similarly sized and dominant native bird, the great spotted woodpecker ( Dendrocopos major ). Parakeet presence significantly reduced feeding rates and increased vigilance among native birds compared with our control treatments. Of visits made by native birds in the presence of a parakeet, feeding was more likely to occur in sites within the parakeet range compared with sites outside, suggesting some habituation of native birds has occurred following prior exposure to parakeets but overall foraging behavior is still disrupted. The results of our study suggest that nonnative species can have complex and subtle impacts on native fauna and show that a nonnative competitor can impact native species simply through their presence near resources.
Beaked whales respond to simulated and actual navy sonar.
Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L
2011-03-14
Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.
Beaked Whales Respond to Simulated and Actual Navy Sonar
Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.
2011-01-01
Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance. PMID:21423729
Ungulate exclusion, conifer thinning and mule deer forage in northeastern New Mexico
Kramer, David W.; Sorensen, Grant E.; Taylor, Chase A.; Cox, Robert D.; Gipson, Philip S.; Cain, James W.
2015-01-01
The southwestern United States has experienced expansion of conifer species (Juniperus spp. and Pinus ponderosa) into areas of semi-arid grassland over the past century. The expansion of conifers can limit palatable forage and reduce grass and forb communities. Conifer species are sometimes thinned through hydraulic mulching or selective cutting. We assessed the effects of these treatments on mule deer (Odocoileus hemionus) habitat in northeastern New Mexico to determine if conifer thinning improved cover of preferred forage species for mule deer in areas with and without ungulates. We measured plant cover and occurrence of preferred forage species in the summers of 2011 and 2012. An ongoing regional drought probably reduced vegetation response, with preferred forage species and herbaceous cover responding to conifer thinning or ungulate exclusion immediately following treatment, but not the following year. In 2011, areas that received thinning treatments had a higher abundance of preferred forage when compared to sites with no treatment. Grass coverage exhibited an immediate response in 2011, with ungulate exclosures containing 8% more coverage than areas without exclosures. The results suggest that conifer thinning and ungulate exclusion may elicit a positive response, however in the presence of drought; the positive effects are only short-term.
Mahendiran, Mylswamy
2016-01-01
Resource partitioning is well known along food and habitat for reducing competition among sympatric species, yet a study on temporal partitioning as a viable basis for reducing resource competition is not empirically investigated. Here, I attempt to identify the mechanism of temporal partitioning by intra- and interspecific diving analyses of three sympatric cormorant species at different freshwater wetlands around the Delhi region. Diving results indicated that cormorants opted for a shallow diving; consequently, they did not face any physiological stress. Moreover, diving durations were linked with seasons, foraging time and foraging habitats. Intraspecific comparison suggested that cormorants spent a longer time underwater in early hours of the day. Therefore, time spent for dive was higher in the forenoon than late afternoon, and the interspecific analysis also yielded a similar result. When Phalacrocorax niger and Phalacrocorax fuscicollis shared the same foraging habitat, they tended to differ in their foraging time (forenoon/afternoon). However, when P. niger and Phalacrocorax carbo shared the same foraging time, they tended to use different foraging habitats (lentic/lotic) leading to a mechanism of resource partitioning. Thus, sympatric cormorants effectively use time as a resource to exploit the food resources and successful coexistence. PMID:27293799
Contact rate modulates foraging efficiency in leaf cutting ants.
Bouchebti, S; Ferrere, S; Vittori, K; Latil, G; Dussutour, A; Fourcassié, V
2015-12-21
Lane segregation is rarely observed in animals that move in bidirectional flows. Consequently, these animals generally experience a high rate of head-on collisions during their journeys. Although these collisions have a cost (each collision induces a delay resulting in a decrease of individual speed), they could also have a benefit by promoting information transfer between individuals. Here we explore the impact of head-on collisions in leaf-cutting ants moving on foraging trails by artificially decreasing the rate of head-on collisions between individuals. We show that head-on collisions do not influence the rate of recruitment in these ants but do influence foraging efficiency, i.e. the proportion of ants returning to the nest with a leaf fragment. Surprisingly, both unladen and laden ants returning to the nest participate in the modulation of foraging efficiency: foraging efficiency decreases when the rate of contacts with both nestbound laden or unladen ants decreases. These results suggest that outgoing ants are able to collect information from inbound ants even when these latter do not carry any leaf fragment and that this information can influence their foraging decisions when reaching the end of the trail.
Hill, Simeon L.; Phillips, Tony; Atkinson, Angus
2013-01-01
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat’s ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services. PMID:23991072
Hill, Simeon L; Phillips, Tony; Atkinson, Angus
2013-01-01
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.
Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.
López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente
2013-01-01
Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.
Emerson, Sara E; Brown, Joel S
2013-10-26
To examine habitat preferences of two groups of samango monkeys (Cercopithecus (nictitans) mitis erythrarchus) in the Soutpansberg, South Africa, we used experimental food patches in fragments of tall forest and in bordering secondary growth short forest. Additionally, to test for the impacts of group cohesion and movement on habitat use, we tested for the interaction of space and time in our analyses of foraging intensity in the experimental food patches placed throughout the home ranges of the two groups. We expected the monkeys to harvest the most from patches in tall forest habitats and the least from patches in short forest. Further, because the monkeys move through their habitats in groups, we expected to see group cohesion effects illustrated by daily spatial variation in the monkeys' use of widespread foraging grids. In the forest height experiments, the two groups differed in their foraging responses, with 8% greater foraging overall for one group. However, forest height did not significantly impact foraging in either group, meaning that, given feeding opportunities, samango monkeys are able to utilize secondary growth forest. For one group, missed opportunity costs of staying with the group appeared through the statistical interaction of day with foraging location (the monkeys did not always spread out to take advantage of all available food patches). In several subsequent experiments in widespread grids, significant daily spatial variation in foraging occurred, pointing to spatial cohesion during group movement as likely being an important predictor of habitat use. For an individual social forager, staying with the group may be more important than habitat type in driving habitat selection. Copyright © 2013 Elsevier B.V. All rights reserved.
Naah, John-Baptist S N; Guuroh, Reginald T
2017-03-01
Recording local ecological knowledge (LEK) is a useful approach to understanding interactions of the complex social-ecological systems. In spite of the recent growing interest in LEK studies on the effects of climate and land use changes, livestock mobility decisions and other aspects of agro-pastoral systems, LEK on forage plants has still been vastly under-documented in the West African savannas. Using a study area ranging from northern Ghana to central Burkina Faso, we thus aimed at exploring how aridity and socio-demographic factors drive the distributional patterns of forage-related LEK among its holders. With stratified random sampling, we elicited LEK among 450 informants in 15 villages (seven in Ghana and eight in Burkina Faso) via free list tasks coupled with ethnobotanical walks and direct field observations. We performed generalized linear mixed-effects models (aridity- and ethnicity-based models) and robust model selection procedures. Our findings revealed that LEK for woody and herbaceous forage plants was strongly influenced by the ethnicity-based model, while aridity-based model performed better for LEK on overall forage resources and crop-related forage plants. We also found that climatic aridity had negative effect on the forage-related LEK across gender and age groups, while agro- and floristic diversity had positive effect on the body of LEK. About 135 species belonging to 95 genera and 52 families were cited. Our findings shed more light on how ethnicity and environmental harshness can markedly shape the body of LEK in the face of global climate change. Better understanding of such a place-based knowledge system is relevant for sustainable forage plants utilization and livestock production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Field Margins, Foraging Distances and Their Impacts on Nesting Pollinator Success
Rands, Sean A.; Whitney, Heather M.
2011-01-01
The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower). Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m), a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees. PMID:21991390
Kernaléguen, Laëtitia; Cazelles, Bernard; Arnould, John P. Y.; Richard, Pierre; Guinet, Christophe; Cherel, Yves
2012-01-01
Background Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals. Methodology/Principal Findings The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous δ13C and δ15N oscillations that correspond to the seal annual movements over the long term (up to 8 years). δ13C and δ15N values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years. Conclusions/Significance Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability. PMID:22431988
Courant, Sabrina; Fortin, Daniel
2010-06-01
Herbivores commonly base their foraging decisions not only on the intrinsic characteristics of plants, but also on the attributes of neighboring species. Although herbivores commonly orient their food choices toward the maximization of energy intake, the impact of such choices on neighboring plants remains largely unexplored. We evaluated whether foraging decisions by herbivores aiming at a rapid intake of digestible energy could explain multiple neighboring effects in complex swards. Specifically, we assessed how spatial patterns of occurrence of Carex atherodes, a highly profitable sedge species, could control the risk of bison (Bison bison) herbivory for seven other plant species. The foraging behavior of 70 free-ranging bison was evaluated in their natural environment during summer, and then related to plant characteristics. We used this information to estimate the instantaneous intake rate of digestible energy at individual feeding stations. We found that neighbor contrast defense and associational susceptibility can both be explained by simple foraging rules of energy maximization. Energy gains were higher when C. atherodes was consumed while avoiding the species for which we detected neighbor contrast defense. The lower intake rate associated with their consumption was due to an increase in handling time caused by their small size relative to C. atherodes. Bison also had higher energy gains by consuming instead of avoiding the plant species that experienced associational susceptibility. Because most of these plants were at least as tall as C. atherodes, their presence increased the heterogeneity of the grazed stratum. Avoiding their consumption increased handling time thereby reducing the instantaneous rate of energy intake. Overall, we found that bison adjust their fine-scale foraging decisions to vertical and horizontal sward structures in a way that maximizes their energy intake rate. Energy maximization principles thus provide a valuable framework to evaluate a broad-range of neighboring effects for prey faced with generalist consumers.
Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J
2015-01-01
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.
Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.
2015-01-01
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale. PMID:25646803
Social learning of floral odours inside the honeybee hive.
Farina, Walter M; Grüter, Christoph; Díaz, Paula C
2005-09-22
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.
Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence.
Melin, Amanda D; Young, Hilary C; Mosdossy, Krisztina N; Fedigan, Linda M
2014-06-01
The parallel evolution of increased sensorimotor intelligence in humans and capuchins has been linked to the cognitive and manual demands of seasonal extractive faunivory. This hypothesis is attractive on theoretical grounds, but it has eluded widespread acceptance due to lack of empirical data. For instance, the effects of seasonality on the extractive foraging behaviors of capuchins are largely unknown. Here we report foraging observations on four groups of wild capuchins (Cebus capucinus) inhabiting a seasonally dry tropical forest. We also measured intra-annual variation in temperature, rainfall, and food abundance. We found that the exploitation of embedded or mechanically protected invertebrates was concentrated during periods of fruit scarcity. Such a pattern suggests that embedded insects are best characterized as a fallback food for capuchins. We discuss the implications of seasonal extractive faunivory for the evolution of sensorimotor intelligence (SMI) in capuchins and hominins and suggest that the suite of features associated with SMI, including increased manual dexterity, tool use, and innovative problem solving are cognitive adaptations among frugivores that fall back seasonally on extractable foods. The selective pressures acting on SMI are predicted to be strongest among primates living in the most seasonal environments. This model is proffered to explain the differences in tool use between capuchin lineages, and SMI as an adaptation to extractive foraging is suggested to play an important role in hominin evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shaver, R D; Nytes, A J; Satter, L D; Jorgensen, N A
1988-06-01
Two trials were conducted to determine particle size of masticates, ruminal digesta, and feces of dairy cows. In Trial 1, three Holstein cows with ruminal cannulae were fed prebloom alfalfa hay in long, chopped, or pelleted form in a Latin square design (21-d periods) conducted in early lactation (wk 3 to 11) and again during the dry period to attain high (3.75) and low (1.95% of BW) feed consumption. In trial 2, prebloom, midbloom, and full bloom alfalfa hay, mature bromegrass hay, and corn silage were fed to early lactation (wk 5 to 15) Holsteins in a 5 X 5 Latin square design (15-d periods). All diets (Trials 1 and 2) were formulated to 17% CP and contained forage:grain in a 60:40 ratio (DM basis). Similar particle distributions of digesta from long and chopped hay diets suggest little influence of chopping forage on particle size reduction when high quality forage is fed. The large proportion of DM in the small particle (less than .6 mm) pool in the rumen in both trials suggests that rate of escape of small particles from the rumen is an important factor influencing ruminal retention time. Increased proportion of coarse (greater than or equal to 2.36-mm screen) fecal particles at high intake and with fine grinding appears related to a reduction in chewing per unit feed consumed. Soluble DM and particulate matter passing a .063-mm screen made up a significant portion (30 to 50%) of the total DM sieved from all sampling sites in both trials.