Sample records for force avionics laboratory

  1. USAF Development Of Optical Correlation Missile Guidance

    NASA Astrophysics Data System (ADS)

    Kaehr, Ronald; Spector, Marvin

    1980-12-01

    In 1965, the Advanced Development Program (ADP)-679A of the Avionics Laboratory initiated development of guidance systems for stand-off tactical missiles. Employing project engineering support from the Aeronautical Systems Division, WPAFB, the Avionics Laboratory funded multiple terminal guidance concepts and related midcourse navigation technology. Optical correlation techniques which utilize prestored reference information for autonomous target acquisition offered the best near-term opportunity for meeting mission goals. From among the systems studied and flight tested, Aimpoint* optical area guidance provided the best and most consistent performance. Funded development by the Air Force ended in 1974 with a MK-84 guided bomb drop test demonstration at White Sands Missile Range and the subsequent transfer of the tactical missile guidance development charter to the Air Force Armament Laboratory, Eglin AFB. A historical review of optical correlation development within the Avionics Laboratory is presented. Evolution of the Aimpoint system is specifically addressed. Finally, a brief discussion of trends in scene matching technology is presented.

  2. Chemical Vapor Deposition of Multispectral Domes

    DTIC Science & Technology

    1975-04-01

    optical testing, was also cut out as indicated in Figure 10. The image spoiling measureinents were performed at the Air Force Avionics Laboratory on...AD-A014 362 CHEMICAL VAPOR DEPOSITION OF MULTISPECTRAL DOMES B. A. diBenedetto, et al Raytheon Company Prepared for: Air Force Materials Laboratory...Approved for public release; distribution unlimited. ) F) .• •~~EP 7 ’+ i.i AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATrERSON AIR

  3. User Interface Design for Military AR Applications

    DTIC Science & Technology

    2010-12-12

    virtual objects with the real world: seeing ultrasound imagery within the patient. In: Computer graphics (SIGGRAPH ’ 92 proceedings), vol 26, pp 203–210... airborne reconnaissance and weapon delivery. In: Proceedings of symposium for image display and recording, US Air Force Avionics Laboratory, Wright

  4. Space shuttle engineering and operations support. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Broome, P. A.; Neubaur, R. J.; Welsh, R. T.

    1976-01-01

    The shuttle avionics integration laboratory (SAIL) requirements for supporting the Spacelab/orbiter avionics verification process are defined. The principal topics are a Spacelab avionics hardware assessment, test operations center/electronic systems test laboratory (TOC/ESL) data processing requirements definition, SAIL (Building 16) payload accommodations study, and projected funding and test scheduling. Because of the complex nature of the Spacelab/orbiter computer systems, the PCM data link, and the high rate digital data system hardware/software relationships, early avionics interface verification is required. The SAIL is a prime candidate test location to accomplish this early avionics verification.

  5. Analysis of the Flight Motions of a Small Deployable Glider Configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.

    1975-01-01

    An investigation was conducted at the request of the U.S. Air Force Avionics Laboratory to analyze the flight characteristics of a small uncontrolled glider with folding wings. The study consisted of wind-tunnel tests of an actual glider and a theoretical analysis of the performance, stability, and trimmability of the configuration.

  6. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  7. Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) Independent Analysis

    NASA Technical Reports Server (NTRS)

    Davis, Mitchell L.; Aguilar, Michael L.; Mora, Victor D.; Regenie, Victoria A.; Ritz, William F.

    2009-01-01

    Two approaches were compared to the Crew Exploration Vehicle (CEV) Avionics Integration Laboratory (CAIL) approach: the Flat-Sat and Shuttle Avionics Integration Laboratory (SAIL). The Flat-Sat and CAIL/SAIL approaches are two different tools designed to mitigate different risks. Flat-Sat approach is designed to develop a mission concept into a flight avionics system and associated ground controller. The SAIL approach is designed to aid in the flight readiness verification of the flight avionics system. The approaches are complimentary in addressing both the system development risks and mission verification risks. The following NESC team findings were identified: The CAIL assumption is that the flight subsystems will be matured for the system level verification; The Flat-Sat and SAIL approaches are two different tools designed to mitigate different risks. The following NESC team recommendation was provided: Define, document, and manage a detailed interface between the design and development (EDL and other integration labs) to the verification laboratory (CAIL).

  8. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  9. Design of an Ada expert system shell for the VHSIC avionic modular flight processor

    NASA Technical Reports Server (NTRS)

    Fanning, F. Jesse

    1992-01-01

    The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.

  10. Video bandwidth compression system

    NASA Astrophysics Data System (ADS)

    Ludington, D.

    1980-08-01

    The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.

  11. STS-2: SAIL non-avionics subsystems math model requirements

    NASA Technical Reports Server (NTRS)

    Bennett, W. P.; Herold, R. W.

    1980-01-01

    Simulation of the STS-2 Shuttle nonavionics subsystems in the shuttle avionics integration laboratory (SAIL) is necessary for verification of the integrated shuttle avionics system. The math model (simulation) requirements for each of the nonavionics subsystems that interfaces with the Shuttle avionics system is documented and a single source document for controlling approved changes (by the SAIL change control panel) to the math models is provided.

  12. Mars Science Laboratory Workstation Test Set

    NASA Technical Reports Server (NTRS)

    Henriquez, David A.; Canham, Timothy K.; Chang, Johnny T.; Villaume, Nathaniel

    2009-01-01

    The Mars Science Laboratory developed the Workstation TestSet (WSTS) is a computer program that enables flight software development on virtual MSL avionics. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC.

  13. Annotated Bibliography of the Air Force Human Resources Laboratory Technical Reports - 1978

    DTIC Science & Technology

    1980-06-01

    selection of incentives for classroom use. Grade-related and non -grade-related incentives were described in this experiment in a manner designed to...information monitoring- feedback. The current piractice= materials and methods are an outgroiuth of experimental aJpproache-s to the design . dev...operated in a stand- alone mode, the R & M model can be utilized to analyze the impact of various avionics design configurations on system support

  14. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  15. A New Approach to Computing Information in Measurements of Non-Resolved Space Objects by the Falcon Telescope Network

    DTIC Science & Technology

    2014-09-01

    Analysis Simulation for Advanced Tracking (TASAT) satellite modeling tool [8,9]. The method uses the bi-reflectance distribution functions ( BRDF ...directional Reflectance Model Validation and Utilization, Air Force Avionics Laboratory Technical Report, AFAL-TR-73-303, October 1973. [10] Hall, D...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE SEP 2014 2. REPORT

  16. KSC-08pd3868

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, workers do a fit check on the mating of the Stage 1 to Stage 2 motors for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. At right can be seen the avionics shelf. The avionics skirt, a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  17. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067682 (12 July 2011) --- Chief engineer Frank Svrecek pauses in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility is referred to as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  18. Hardware survey for the avionics test bed

    NASA Technical Reports Server (NTRS)

    Cobb, J. M.

    1981-01-01

    A survey of maor hardware items that could possibly be used in the development of an avionics test bed for space shuttle attached or autonomous large space structures was conducted in NASA Johnson Space Center building 16. The results of the survey are organized to show the hardware by laboratory usage. Computer systems in each laboratory are described in some detail.

  19. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067676 (12 July 2011) --- A close-up view of controls and displays on the forward flight deck of OV-095 in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  20. Avionics systems integration technology

    NASA Technical Reports Server (NTRS)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  1. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  2. The Conflicting Forces Driving Future Avionics Acquisition (Les Arguments Contradictoires pour les Futurs Achats d’Equipements d’Avionique)

    DTIC Science & Technology

    1991-09-01

    Homogbnes, commo indiqu6 sur Ia figure 3 E~I- ODVE et moteurs (non 6tudi~e ici) EH-2: Interface Syst~mes Avion ISA EH3 ONI (Communications, Navigation...common, modular avionics in both RF and EO sensors, along with The Integrated Core Processing " meta - the sharing of aperture and receiver electronics

  3. Air Force highly integrated photonics program: development and demonstration of an optically transparent fiber optic network for avionics applications

    NASA Astrophysics Data System (ADS)

    Whaley, Gregory J.; Karnopp, Roger J.

    2010-04-01

    The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.

  4. KSC-08pd3866

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, ssembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. Lined up left to right are the Stage 1 and Stage 2 motors, the boattail, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  5. Workstation-Based Avionics Simulator to Support Mars Science Laboratory Flight Software Development

    NASA Technical Reports Server (NTRS)

    Henriquez, David; Canham, Timothy; Chang, Johnny T.; McMahon, Elihu

    2008-01-01

    The Mars Science Laboratory developed the WorkStation TestSet (WSTS) to support flight software development. The WSTS is the non-real-time flight avionics simulator that is designed to be completely software-based and run on a workstation class Linux PC. This provides flight software developers with their own virtual avionics testbed and allows device-level and functional software testing when hardware testbeds are either not yet available or have limited availability. The WSTS has successfully off-loaded many flight software development activities from the project testbeds. At the writing of this paper, the WSTS has averaged an order of magnitude more usage than the project's hardware testbeds.

  6. KSC-08pd3867

    NASA Image and Video Library

    2008-11-07

    CAPE CANAVERAL, Fla. -- In Building 1555 at Vandenberg Air Force Base in California, assembly is underway for the Taurus XL rocket that will launch NASA's Orbiting Carbon Observatory, or OCO, spacecraft. In the foreground at left is the boattail; behind it is the Stage 0 Castor 120 motor. At right near the wall (from left) are the Stage 1 and Stage 2 motors, the avionics shelf and the Stage 3 motor. The graphite/epoxy boattail structure provides the transition from the smaller diameter of the Stage 2 motor to the larger diameter of the avionics skirt. The avionics skirt, also a graphite/epoxy structure, supports the avionics shelf and carries the primary structural loads from the fairing and payload cone. The aluminum avionics shelf supports the third stage avionics. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is targeted for January. Photo credit: NASA/Randy Beaudoin, VAFB

  7. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067679 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  8. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067680 (12 July 2011) --- This is an overall view of the wiring for the simulated shuttle payload bay in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston on July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility even carries the official orbiter designation as Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  9. Strategically Planning Avionics Laboratory’s Facilities for the Future

    DTIC Science & Technology

    1993-09-01

    Goldsboro Road Bethesda, Maryland 20817-5886 93 12 22 02 DISCLAIMII NOTICE THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHLD TO DTIC CONTAINED A...Avionics Laboratory establish a multiyear strategy for improving its facility utilization nearly 7 years ago. That plan, which is still being implemented...experi- mental data transmission delays caused when on-line equipment is separated by as much as a mile. The plan - now nearly 7 years old - initiated

  10. Miniature High-Let Radiation Spectrometer for Space and Avionics Applications

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    1998-01-01

    This paper reports on the design and characterization of a small, low power, and low weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HILRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HILRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) Platform on a shuttle mission.

  11. KSC-2012-2891

    NASA Image and Video Library

    2011-07-20

    LOUISVILLE, Colo. – During NASA's Commercial Crew Development Round 2 CCDev2) activities for the Commercial Crew Program CCP, Sierra Nevada Corp. SNC built a Simulator and Avionics Laboratory to help engineers evaluate the Dream Chaser's characteristics during the piloted phases of flight. Located at Sierra Nevada’s Space Systems facility in Louisville, Colo., it consists of a physical cockpit and integrated simulation hardware and software. The simulator is linked to the Vehicle Avionics Integration Laboratory, or VAIL, which serves as a platform for Dream Chaser avionics development, engineering testing and integration. VAIL also will also be used for verification and validation of avionics and software. Sierra Nevada is one of seven companies NASA entered into Space Act Agreements SAAs with during CCDev2 to aid in the innovation and development of American-led commercial capabilities for crew transportation and rescue services to and from the International Space Station and other low Earth orbit destinations. For information about CCP, visit www.nasa.gov/commercialcrew. Photo credit: Sierra Nevada Corp.

  12. B-1B Avionics/Automatic Test Equipment: Maintenance Queueing Analysis.

    DTIC Science & Technology

    1983-12-01

    analysis (which is logistics terminology for an avionics/ATE queueing analysis). To allow each vendor the opportunity to perform such an analysis...for system performance measures may be found for the queueing system in Figure 7. This is due to the preemptive blocking caused by ATE failures. The...D-R14l1i75 B-iB AVIONICS/AUTOMPTIC TEST EQUIPMENT: MRINTENRNCE 1/2 QUEUEING RNRLYSIS(U) RIP FORCE INST OF TECH HRIGHT-PRTTERSON RFB OH SCHOOL OF

  13. Avionics Instrument Systems Specialist (AFSC 32551).

    ERIC Educational Resources Information Center

    Miller, Lawrence B.; Crowcroft, Robert A.

    This six-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for avionics instrument systems specialists. Covered in the individual volumes are career field familiarization (career field progression and training, security, occupational safety and health, and career field reference material);…

  14. Integrated Control Design Techniques

    DTIC Science & Technology

    1981-08-01

    Avionics and Electronic Systems, " Presented at NAECON 󈨔, Dayton, Ohio, May 1980. 3 9 E. Louis Wienecke, III, Erasmus E. Feltus , and Daniel V. Ferens...34 Presented at NAECON 󈨔, Dayton, Ohio, May 1980. 39. Wienecke, E. Louis, III; Feltus , Erasmus E.; and Ferens, Daniel V. "The Avionics Laboratory

  15. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  16. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  17. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  18. STS_135_SAIL

    NASA Image and Video Library

    2011-07-12

    JSC2011-E-067674 (12 July 2011) --- Chris St. Julian, left, a Prairie View A&M electrical engineering major who is interning at NASA for the summer, pilots the shuttle for a simulated landing in the Shuttle Avionics Integration Laboratory (SAIL) at the Johnson Space Center in Houston, July 12, 2011. The laboratory is a skeletal avionics version of the shuttle that uses actual orbiter hardware and flight software. The facility bears the orbiter designation of Orbiter Vehicle 095. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  19. Towards a distributed information architecture for avionics data

    NASA Technical Reports Server (NTRS)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  20. Application of software technology to a future spacecraft computer design

    NASA Technical Reports Server (NTRS)

    Labaugh, R. J.

    1980-01-01

    A study was conducted to determine how major improvements in spacecraft computer systems can be obtained from recent advances in hardware and software technology. Investigations into integrated circuit technology indicated that the CMOS/SOS chip set being developed for the Air Force Avionics Laboratory at Wright Patterson had the best potential for improving the performance of spaceborne computer systems. An integral part of the chip set is the bit slice arithmetic and logic unit. The flexibility allowed by microprogramming, combined with the software investigations, led to the specification of a baseline architecture and instruction set.

  1. Ultra-Reliable Digital Avionics (URDA) processor

    NASA Astrophysics Data System (ADS)

    Branstetter, Reagan; Ruszczyk, William; Miville, Frank

    1994-10-01

    Texas Instruments Incorporated (TI) developed the URDA processor design under contract with the U.S. Air Force Wright Laboratory and the U.S. Army Night Vision and Electro-Sensors Directorate. TI's approach couples advanced packaging solutions with advanced integrated circuit (IC) technology to provide a high-performance (200 MIPS/800 MFLOPS) modular avionics processor module for a wide range of avionics applications. TI's processor design integrates two Ada-programmable, URDA basic processor modules (BPM's) with a JIAWG-compatible PiBus and TMBus on a single F-22 common integrated processor-compatible form-factor SEM-E avionics card. A separate, high-speed (25-MWord/second 32-bit word) input/output bus is provided for sensor data. Each BPM provides a peak throughput of 100 MIPS scalar concurrent with 400-MFLOPS vector processing in a removable multichip module (MCM) mounted to a liquid-flowthrough (LFT) core and interfacing to a processor interface module printed wiring board (PWB). Commercial RISC technology coupled with TI's advanced bipolar complementary metal oxide semiconductor (BiCMOS) application specific integrated circuit (ASIC) and silicon-on-silicon packaging technologies are used to achieve the high performance in a miniaturized package. A Mips R4000-family reduced instruction set computer (RISC) processor and a TI 100-MHz BiCMOS vector coprocessor (VCP) ASIC provide, respectively, the 100 MIPS of a scalar processor throughput and 400 MFLOPS of vector processing throughput for each BPM. The TI Aladdim ASIC chipset was developed on the TI Aladdin Program under contract with the U.S. Army Communications and Electronics Command and was sponsored by the Advanced Research Projects Agency with technical direction from the U.S. Army Night Vision and Electro-Sensors Directorate.

  2. Digital Avionics Information System (DAIS): Mid-1980's Maintenance Task Analysis. Final Report.

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    The fundamental objective of the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study is to provide the Air Force with an enhanced in-house capability to incorporate LCC considerations during all stages of the system acquisition process. The purpose of this report is to describe the technical approach, results, and conclusions…

  3. Technical Meeting Avionics Section Air Armament Division Held at Nellis Air Force Base, Nevada on December 1, 2 and 3 1982. Declassified Extended Abstracts.

    DTIC Science & Technology

    1982-01-01

    the FAETS Operational Scenario, followed by the FAETS Description and Operation. FAETS Specifications will be given, as well as the difinition of the...aircraft, expanded basing, new or improved avionics and new or improved armament. Furthermore, explicit quantitative ’ inter- dependence between

  4. Miniature high-let radiation spectrometer for space and avionics applications

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Stauffer, Craig A.; Brucker, G. J.

    This paper reports on the design and characterization of a small, low-power, and low-weight instrument, a High-LET Radiation Spectrometer (HiLRS), that measures energy deposited by heavy ions in microelectronic devices. The HiLRS operates on pulse-height analysis principles and is designed for space and avionics applications. The detector component in the instrument is based on large scale arrays of p-n junctions. In this system, the pulse amplitude from a particle hit is directly proportional to the particle LET. A prototype flight unit has been fabricated and calibrated using several heavy ions with varying LETs and protons with several energies. The unit has been delivered to the Ballistic Missile Defense Organization (BMDO) c/o the Air Force Research Laboratory in Albuquerque, NM, for integration into the military Space Technology Research Vehicle (STRV), a US-UK cooperative mission. Another version of HiLRS is being prepared for delivery in April to the Hubble Space Telescope (HST) project, to fly on the HST Orbital Systems Test (HOST) platform on a shuttle mission.

  5. A Survey of Serious Aircraft Accidents Involving Fatigue Fracture. Volume 1. Fixed-Wing Aircraft (Etude sur des Accidents Importants d’Avions du aux Effets des Fractures de Fatigue. Volume 1. Effets sur des Avions).

    DTIC Science & Technology

    1983-04-01

    Bureau of Standards. NTS3 National Transportation Safety Board (USA). NTSB AAR NTSB Aircraft Accident Report. NZ AAR New Zealand Aircraft Accident Report...NZ AI New Zealand Accident Investigation Bureau. 0 -5- RAN Royal Australian Navy RAAI Royal Australian Air Force RAF Royal Air Force, UK S Substantial...Ice land Iraq Ireland Jamaica (1966 -1981) Japan (1973 - Feb. 81) Kenya Lethoso Malaysia Ma law i Mal ta Mexico Netherlands New Zealand Norway

  6. Success in tutoring electronic troubleshooting

    NASA Technical Reports Server (NTRS)

    Parker, Ellen M.

    1990-01-01

    Two years ago Dr. Sherrie Gott of the Air Force Human Resources Laboratory described an avionics troubleshooting tutor being developed under the Basic Job Skills Research Program. The tutor, known as Sherlock, is directed at teaching the diagnostic procedures necessary to investigate complex test equipment used to maintain F-15 fighter aircraft. Since Dr. Gott's presentation in 1987, the tutor has undergone field testing at two Air Force F-15 flying wings. The results of the field test showed that after an average of 20 hours on the tutor, the 16 airmen in the experimental group (who average 28 months of experience) showed significant performance gains when compared to a control group (having a mean experience level of 37 months) who continued participating in the existing on-the-job training program. Troubleshooting performance of the tutored group approached the level of proficiency of highly experienced airmen (averaging approximately 114 months of experience), and these performance gains were confirmed in delayed testing six months following the intervention. The tutor is currently undergoing a hardware and software conversion form a Xerox Lisp environment to a PC-based environment using an object-oriented programming language. Summarized here are the results of the successful field test. The focus is on: (1) the instructional features that contributed to Sherlock's success; and (2) the implementation of these features in the PC-based version of the avionics troubleshooting tutor.

  7. Contributive research in compound semiconductor material and related devices

    NASA Astrophysics Data System (ADS)

    Twist, James R.

    1988-05-01

    The objective of this program was to provide the Electronic Device Branch (AFWAL/AADR) with the support needed to perform state of the art electronic device research. In the process of managing and performing on the project, UES has provided a wide variety of scientific and engineering talent who worked in-house for the Avionics Laboratory. These personnel worked on many different types of research programs from gas phase microwave driven lasers, CVD and MOCVD of electronic materials to Electronic Device Technology for new devices. The fields of research included MBE and theoretical research in this novel growth technique. Much of the work was slanted towards the rapidly developing technology of GaAs and the general thrust of the research that these tasks started has remained constant. This work was started because the Avionics Laboratory saw a chance to advance the knowledge and level of the current device technology by working in the compounds semiconductor field. UES is pleased to have had the opportunity to perform on this program and is looking forward to future efforts with the Avionics Laboratory.

  8. Rendezvous strategy impacts on CTV avionics design, system reliability requirements, and available collision avoidance maneuvers

    NASA Technical Reports Server (NTRS)

    Donovan, William J.; Davis, John E.

    1991-01-01

    Rockwell International is conducting an ongoing program to develop avionics architectures that provide high intrinsic value while meeting all mission objectives. Studies are being conducted to determine alternative configurations that have low life-cycle cost and minimum development risk, and that minimize launch delays while providing the reliability level to assure a successful mission. This effort is based on four decades of providing ballistic missile avionics to the United States Air Force and has focused on the requirements of the NASA Cargo Transfer Vehicle (CTV) program in 1991. During the development of architectural concepts it became apparent that rendezvous strategy issues have an impact on the architecture of the avionics system. This is in addition to the expected impact on propulsion and electrical power duration, flight profiles, and trajectory during approach.

  9. Next generation space interconnect research and development in space communications

    NASA Astrophysics Data System (ADS)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  10. An assessment of General Aviation utilization of advanced avionics technology

    NASA Technical Reports Server (NTRS)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  11. Single event upset in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taber, A.; Normand, E.

    1993-04-01

    Data from military/experimental flights and laboratory testing indicate that typical non radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant soft upset rate at aircraft altitudes due to energetic neutrons created by cosmic ray interactions in the atmosphere. It is suggested that error detection and correction (EDAC) circuitry be considered for all avionics designs containing large amounts of semi-conductor memory.

  12. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Astrophysics Data System (ADS)

    Wray, Richard B.

    1991-12-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  13. Requirements analysis notebook for the flight data systems definition in the Real-Time Systems Engineering Laboratory (RSEL)

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1991-01-01

    A hybrid requirements analysis methodology was developed, based on the practices actually used in developing a Space Generic Open Avionics Architecture. During the development of this avionics architecture, a method of analysis able to effectively define the requirements for this space avionics architecture was developed. In this methodology, external interfaces and relationships are defined, a static analysis resulting in a static avionics model was developed, operating concepts for simulating the requirements were put together, and a dynamic analysis of the execution needs for the dynamic model operation was planned. The systems engineering approach was used to perform a top down modified structured analysis of a generic space avionics system and to convert actual program results into generic requirements. CASE tools were used to model the analyzed system and automatically generate specifications describing the model's requirements. Lessons learned in the use of CASE tools, the architecture, and the design of the Space Generic Avionics model were established, and a methodology notebook was prepared for NASA. The weaknesses of standard real-time methodologies for practicing systems engineering, such as Structured Analysis and Object Oriented Analysis, were identified.

  14. Airborne Proximity Warning Instrument Laboratory Tests

    DOT National Transportation Integrated Search

    1977-01-01

    An Airborne Proximity Warning Instrument (APWI) designed and manufactured by Rock Avionics, New York, was subjected to a short laboratory test at the Transportation Systems Center to determine the suitability of this product for further evaluation as...

  15. Avionics-compatible video facial cognizer for detection of pilot incapacitation.

    PubMed

    Steffin, Morris

    2006-01-01

    High-acceleration loss of consciousness is a serious problem for military pilots. In this laboratory, a video cognizer has been developed that in real time detects facial changes closely coupled to the onset of loss of consciousness. Efficient algorithms are compatible with video digital signal processing hardware and are thus configurable on an autonomous single board that generates alarm triggers to activate autopilot, and is avionics-compatible.

  16. Methodes de calcul des forces aerodynamiques pour les etudes des interactions aeroservoelastiques

    NASA Astrophysics Data System (ADS)

    Biskri, Djallel Eddine

    L'aeroservoelasticite est un domaine ou interagissent la structure flexible d'un avion, l'aerodynamique et la commande de vol. De son cote, la commande du vol considere l'avion comme une structure rigide et etudie l'influence du systeme de commande sur la dynamique de vol. Dans cette these, nous avons code trois nouvelles methodes d'approximation de forces aerodynamiques: Moindres carres corriges, Etat minimal corrige et Etats combines. Dans les deux premieres methodes, les erreurs d'approximation entre les forces aerodynamiques approximees par les methodes classiques et celles obtenues par les nouvelles methodes ont les memes formes analytiques que celles des forces aerodynamiques calculees par LS ou MS. Quant a la troisieme methode, celle-ci combine les formulations des forces approximees avec les methodes standards LS et MS. Les vitesses et frequences de battement et les temps d'executions calcules par les nouvelles methodes versus ceux calcules par les methodes classiques ont ete analyses.

  17. Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization

    NASA Technical Reports Server (NTRS)

    Baker, Robert L.

    1993-01-01

    The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.

  18. An Evaluation of an Ada Implementation of the Rete Algorithm for Embedded Flight Processors

    DTIC Science & Technology

    1990-12-01

    computers was desired. The VAX VMS operating system has many built-in methods for determining program performance (including VAX PCA), but these methods... overviev , of the target environment-- the MIL-STD-1750A VHSIC Avionic Modular Processor ( VA.IP, running under the Ada Avionics Real-Time Software (AARTS... computers . Mil-STD-1750A, the Air Force’s standard flight computer architecture, however, places severe constraints on applications software processing

  19. Fault tolerant testbed evaluation, phase 1

    NASA Technical Reports Server (NTRS)

    Caluori, V., Jr.; Newberry, T.

    1993-01-01

    In recent years, avionics systems development costs have become the driving factor in the development of space systems, military aircraft, and commercial aircraft. A method of reducing avionics development costs is to utilize state-of-the-art software application generator (autocode) tools and methods. The recent maturity of application generator technology has the potential to dramatically reduce development costs by eliminating software development steps that have historically introduced errors and the need for re-work. Application generator tools have been demonstrated to be an effective method for autocoding non-redundant, relatively low-rate input/output (I/O) applications on the Space Station Freedom (SSF) program; however, they have not been demonstrated for fault tolerant, high-rate I/O, flight critical environments. This contract will evaluate the use of application generators in these harsh environments. Using Boeing's quad-redundant avionics system controller as the target system, Space Shuttle Guidance, Navigation, and Control (GN&C) software will be autocoded, tested, and evaluated in the Johnson (Space Center) Avionics Engineering Laboratory (JAEL). The response of the autocoded system will be shown to match the response of the existing Shuttle General Purpose Computers (GPC's), thereby demonstrating the viability of using autocode techniques in the development of future avionics systems.

  20. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.

    2014-01-01

    A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.

  1. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 1.

    DTIC Science & Technology

    1982-11-01

    Avionic Systems Integration Facilities, Mark van den Broek 1113 and Paul M. Vicen, AFLC/LOE Planning of Operational Software Implementation Tool...classified as software tools, including: * o" Operating System " Language Processors (compilers, assem’blers, link editors) o Source Editors " Debug Systems ...o Data Base Systems o Utilities o Etc . This talk addresses itself to the current set of tools provided JOVIAL iJ73 1750A application programmners by

  2. Critical issues regarding SEU in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; McNulty, P.J.

    1993-01-01

    The energetic neutrons in the atmosphere cause microelectronics in avionic system to malfunction through a mechanism called single-event upsets (SEUs), and single-event latchup is a potential threat. Data from military and experimental flights as well as laboratory testing indicate that typical non-radiation-hardened 64K and 256K static random access memories (SRAMs) can experience a significant SEU rate at aircraft altitudes. Microelectronics in avionics systems have been demonstrated to be susceptible to SEU. Of all device types, RAMs are the most sensitive because they have the largest number of bits on a chip (e.g., an SRAM may have from 64K to 1Mmore » bits, a microprocessor 3K to 10K bits, and a logic device like an analog-to-digital converter, 12 bits). Avionics designers will need to take this susceptibility into account in current and future designs. A number of techniques are available for dealing with SEU: EDAC, redundancy, use of SEU-hard parts, reset and/or watchdog timer capability, etc. Specifications should be developed to guide avionics vendors in the analysis, prevention, and verification of neutron-induced SEU. Areas for additional research include better definition of the atmospheric neutrons and protons, development of better calculational models (e.g., those used for protons[sup 11]), and better characterization of neutron-induced latchup.« less

  3. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  4. KSC-2009-1498

    NASA Image and Video Library

    2009-01-26

    VANDENBERG AIR FORCE BASE, Calif. -- The avionics are mated to stage 2 of the Taurus XL launch vehicle for the Orbiting Carbon Observatory at Vandenberg Air Force Base in California. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is scheduled for Feb. 23. Photo credit: NASA/VAFB

  5. 1400144

    NASA Image and Video Library

    2014-03-06

    THE 2013 ASTRONAUT CANDIDATE CLASS VISITED THE THRUST VECTOR CONTROL TEST LAB AT MARSHALL'S PROPULSION RESEARCH DEVELOPMENT LABORATORY WHERE ENGINEERS ARE DEVELOPING AND TESTING THE SPACE LAUNCH SYSTEM'S GUIDANCE, NAVIGATION AND CONTROL SOFTWARE AND AVIONICS HARDWARE.

  6. Single-event effects in avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.

    1996-04-01

    The occurrence of single-event upset (SEU) in aircraft electronics has evolved from a series of interesting anecdotal incidents to accepted fact. A study completed in 1992 demonstrated that SEU`s are real, that the measured in-flight rates correlate with the atmospheric neutron flux, and that the rates can be calculated using laboratory SEU data. Once avionics DEU was shown to be an actual effect, it had to be dealt with in avionics designs. The major concern is in random access memories (RAM`s), both static (SRAM`s) and dynamic (DRAM`s), because these microelectronic devices contain the largest number of bits, but other parts,more » such as microprocessors, are also potentially susceptible to upset. In addition, other single-event effects (SEE`s), specifically latch-up and burnout, can also be induced by atmospheric neutrons.« less

  7. Strategic bombers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This paper reports on the questions: should Congress provide more funds for the Air Force's current plan---the CORE program---to upgrade the B-1B defense avionics system In GAO's view, more testing of the system is not necessary to determine whether to implement the CORE program. Flight testing has shown that the CORE modifications would provide similar operational capabilities to, and offer some survivability improvements over, the existing defense avionics system. The only reason for additional testing would be to prove that some problems with the maintenance diagnostic system has been resolved. Initial testing revealed that while some improvements were achieved, usermore » requirements were not met for such things as low false alarm rates and cannot duplicate rates. Even if the maintenance diagnostic capabilities were fully demonstrated, however, the CORE system should not be implemented until it is known whether the defense avionics system design can support the B-1B's new role as a conventional bomber.« less

  8. Digital Tone Ranging Modem.

    DOT National Transportation Integrated Search

    1976-05-01

    This report describes a digital ranging modem implementation based on side-tone ranging concepts. The ranging technique implemented and tested in the DOT/TSC avionics laboratory has direct application to the AEROSAT surveillance system. The performan...

  9. An independent review of the Multi-Path Redundant Avionics Suite (MPRAS) architecture assessment and characterization report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.R.

    1991-02-01

    In recent years the NASA Langley Research Center has funded several contractors to conduct conceptual designs defining architectures for fault tolerant computer systems. Such a system is referred to as a Multi-Path Redundant Avionics Suite (MPRAS), and would form the basis for avionics systems that would be used in future families of space vehicles in a variety of missions. The principal contractors were General Dynamics, Boeing, and Draper Laboratories. These contractors participated in a series of review meetings, and submitted final reports defining their candidate architectures. NASA then commissioned the Research Triangle Institute (RTI) to perform an assessment of thesemore » architectures to identify strengths and weaknesses of each. This report is a separate, independent review of the RTI assessment, done primarily to assure that the assessment was comprehensive and objective. The report also includes general recommendations relative to further MPRAS development.« less

  10. Systems Engineering and Integration (SE and I)

    NASA Technical Reports Server (NTRS)

    Chevers, ED; Haley, Sam

    1990-01-01

    The issue of technology advancement and future space transportation vehicles is addressed. The challenge is to develop systems which can be evolved and improved in small incremental steps where each increment reduces present cost, improves, reliability, or does neither but sets the stage for a second incremental upgrade that does. Future requirements are interface standards for commercial off the shelf products to aid in the development of integrated facilities; enhanced automated code generation system slightly coupled to specification and design documentation; modeling tools that support data flow analysis; and shared project data bases consisting of technical characteristics cast information, measurement parameters, and reusable software programs. Topics addressed include: advanced avionics development strategy; risk analysis and management; tool quality management; low cost avionics; cost estimation and benefits; computer aided software engineering; computer systems and software safety; system testability; and advanced avionics laboratories - and rapid prototyping. This presentation is represented by viewgraphs only.

  11. A fault-tolerant avionics suite for an entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, Mark; Stone, Howard

    1988-01-01

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  12. A fault-tolerant avionics suite for an entry research vehicle

    NASA Astrophysics Data System (ADS)

    Dzwonczyk, Mark; Stone, Howard

    A highly-reliable avionics suite has been designed for an Entry Research Vehicle. The autonomous spacecraft would be deployed from the Space Shuttle Orbiter and perform a variety of aerodynamic and propulsive maneuvers which may be required for future space transportation system vehicles. The flight electronics consist of a central fault-tolerant processor, which is resilient to all first failures, reliably cross-strapped to redundant and distributed sets of sensors and effectors. This paper describes the preliminary design and analysis of the architecture which resulted from a fifteen month study by the Charles Stark Draper Laboratory for the NASA Langley Research Center. After a brief introduction to the design task, the architecture of the central flight computer and its interface to the vehicle are discussed. Following this, the method and results of the baseline reliability study for the avionic suite are presented.

  13. Scavenge/remove an AAA (Avionics Air Assembly) filter

    NASA Image and Video Library

    2009-08-25

    ISS020-E-033979 (25 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works with the Crew Health Care System (CHeCS) rack in the Kibo laboratory of the International Space Station.

  14. KSC-2011-7863

    NASA Image and Video Library

    2011-11-10

    VANDENBERG AIR FORCE BASE, Calif. -- At a Pegasus booster processing facility at Vandenberg Air Force Base in California, technicians install the avionic shelf on the Pegasus XL rocket. The avionics contained in this module will issue the guidance and flight control commands for the rocket. The Orbital Sciences Corp. Pegasus rocket will launch the Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences’ L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit science.nasa.gov/missions/nustar/. Photo credit: NASA/Randy Beaudoin, VAFB

  15. Silicon Carbide Mixers Demonstrated to Improve the Interference Immunity of Radio-Based Aircraft Avionics

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1998-01-01

    Concern over the interference of stray radiofrequency (RF) emissions with key aircraft avionics is evident during takeoff and landing of every commercial flight when the flight attendant requests that all portable electronics be switched off. The operation of key radio-based avionics (such as glide-slope and localizer approach instruments) depends on the ability of front-end RF receivers to detect and amplify desired information signals while rejecting interference from undesired RF sources both inside and outside the aircraft. Incidents where key navigation and approach avionics malfunction because of RF interference clearly represent an increasing threat to flight safety as the radio spectrum becomes more crowded. In an initial feasibility experiment, the U.S. Army Research Laboratory and the NASA Lewis Research Center recently demonstrated the strategic use of silicon carbide (SiC) semiconductor components to significantly reduce the susceptibility of an RF receiver circuit to undesired RF interference. A pair of silicon carbide mixer diodes successfully reduced RF interference (intermodulation distortion) in a prototype receiver circuit by a factor of 10 (20 dB) in comparison to a pair of commercial silicon-based mixer diodes.

  16. Cognitive Task Analysis and Intelligent Computer-Based Training Systems: Lessons Learned from Coached Practice Environments in Air Force Avionics.

    ERIC Educational Resources Information Center

    Katz, Sandra N.; Hall, Ellen; Lesgold, Alan

    This paper describes some results of a collaborative effort between the University of Pittsburgh and the Air Force to develop advanced troubleshooting training for F-15 maintenance technicians. The focus is on the cognitive task methodology used in the development of three intelligent tutoring systems to inform their instructional content and…

  17. Microbiological analysis of debris from Space Transportation System (STS)-55 Spacelab D-2

    NASA Technical Reports Server (NTRS)

    Huff, T. L.

    1994-01-01

    Filter debris from the Spacelab module D-2 of STS-55 was analyzed for microbial contamination. Debris from cabin and avionics filters was collected by Kennedy Space Center personnel on May 8, 1993, 2 days postflight. Debris weights were similar to those of previous Spacelab missions. Approximately 5.1E+5 colony forming units per gram of debris were enumerated from the cabin and avionics filter debris, respectively. these numbers were similar in previous missions for which the entire contents were analyzed without sorting of the material. Bacterial diversity was small compared to previous missions, with no gram negative bacteria isolated. Only one bacterial species, Corynebacterium pseudodiphtheriticum, was not isolated previously by the laboratory from Spacelab debris. This organism is a normal inhabitant of the pharynx. A table listing all species of bacteria isolated by the laboratory from previous Spacelab air filters debris collection is provided.

  18. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    NASA Technical Reports Server (NTRS)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  19. BLDG. 16 - PROGRESS PHOTO (CLEAR LAKE)

    NASA Image and Video Library

    1963-09-25

    S63-17423 (25 Sept. 1963) --- This easterly view documents early construction of the Manned Spacecraft Center in September of 1963. The Avionics Systems Laboratory (Building 16) is in the foreground and the Project Management Building is see in the right background. Photo credit: NASA

  20. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028124 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028158 (23 March 2011) --- NASA astronaut Greg H. Johnson, STS-134 pilot, participates in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028128 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  3. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028125 (23 March 2011) --- News media representatives and NASA personnel are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  4. Reliability, Availability and Maintainability Design Practices Guide. Volume 1,

    DTIC Science & Technology

    1981-03-01

    Experience 7-3-3 Air Force RIV - Avionics 7-3-4 RIW-S Army 7-3-5a The Application of Availability to Linear 7-3-6 Indifference Contracting Improvement...acceptance of the maintain- ability of Air Force ground electronic systems and equipments. Although the notebook is directed at ground electronic systems...conformal coating standardization, a lack of written instructions, and no standardization between fleet activities. The Naval Air Development Center

  5. Identification of Air Force Emerging Technologies and Militarily Significant Emerging Technologies.

    DTIC Science & Technology

    1985-08-31

    taking an integrated approach to avionics and EU, the various sensors and receivers on the aircraft can time-share the use of common signal processors...functions mentioned above has required, in addition to a separate sensor or antenna, a totally independent electronics suite. Many of the advanced...Classification A3. IMAGING SENSOR AUTOPROCESSOR The Air Force has contracted with Rockwell International and Honeywell in this work. Rockwell’s work is

  6. Department of Defense Annual Report to Congress on Defense Acquisition Challenge Program for FY 2006

    DTIC Science & Technology

    2007-06-01

    Synthetic Instrument Measurement and Stimulus System – Improves aircraft avionics and electronic attack pod testing to expedite repair of critical...integration into CIWS • Navy requirement Cancelled / Not procured Air Force (4 Projects) • Quiet Eyes • On Aircraft (B-2) Laser Additive...System • Met Requirement/Rolled into FY07 Cost Effective Light Aircraft Missile Protect DAC for Army, Navy and Air Force helicopters • Did Not

  7. IEEE/AIAA/NASA Digital Avionics Systems Conference, 9th, Virginia Beach, VA, Oct. 15-18, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on digital avionics discusses vehicle-management systems, spacecraft avionics, special vehicle avionics, communication/navigation/identification systems, software qualification and quality assurance, launch-vehicle avionics, Ada applications, sensor and signal processing, general aviation avionics, automated software development, design-for-testability techniques, and avionics-software engineering. Also discussed are optical technology and systems, modular avionics, fault-tolerant avionics, commercial avionics, space systems, data buses, crew-station technology, embedded processors and operating systems, AI and expert systems, data links, and pilot/vehicle interfaces.

  8. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    NASA Technical Reports Server (NTRS)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  9. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  10. Sherlock: A Coached Practice Environment for an Electronics Troubleshooting Job.

    ERIC Educational Resources Information Center

    Lesgold, Alan; And Others

    "Sherlock" is a computer-based, supported practice environment for a complex troubleshooting job in Air Force electronics. The program was developed to raise the level of troubleshooting knowledge of avionics technicians. This describes the training problem for which Sherlock was developed, the principles behind its development, and its…

  11. Avionics System Architecture for NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint

    2010-01-01

    This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.

  12. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028153 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  13. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028151 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  14. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028122 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  15. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028160 (23 March 2011) --- NASA astronauts Greg H. Johnson (right), STS-134 pilot; and Greg Chamitoff, mission specialist, are pictured during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  16. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028150 (23 March 2011) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus (foreground), mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  17. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009784 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center.

  18. Fan filter cleaning on the CHeCS AAA in the US Lab

    NASA Image and Video Library

    2009-05-05

    ISS019-E-013710 (5 May 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, cleans a fan filter on the Crew Health Care System Avionics Air Assembly (CHeCS AAA) in the Destiny laboratory of the International Space Station.

  19. Computer Program Development Specification for IDAMST Operational Flight Program Application, Software Type B5. Addendum 1.

    DTIC Science & Technology

    1976-07-30

    Interface Requirements 4 3.1.1.1 Interface Block Diagram 4 3.1.1.2 Detailed Interface Definition 7 3.1.1.2.1 Subsystems 7 3.1.1.2.2 Controls & Displays 11 r...116 3.2.3.2 Navigation Brute Force 121 3.2.3.3 Cargo Brute Force 125 3.2.3.4 Sensor Brute Force 129 3.2.3.5 Controls /Displays Brute Force 135 3.2.3.6...STD-T553 Multiplex Data Bus, with the avionic subsystems, flight * control system, the controls /displays, engine sensors, and airframe sensors. 3.1

  20. Integrated cockpit display and processor: the best solution for Link-16 applications

    NASA Astrophysics Data System (ADS)

    Smeyne, Alan L.; Savaya, John

    2000-08-01

    Link-16 Data Link systems are being added to current avionics systems to provide increased situational awareness and command data. By using a single intelligent display system, the impact to existing aircraft systems to implement Link-16 capabilities is minimized. Litton Guidance & Control Systems (G&CS), a military avionics supplier for more than forty years, provides Open System Architecture (OSA), large screen aircraft display systems. Based on a common set of plug-in modules, these Smart Multi-Function Displays (SMFD) are available in a variety of sizes and processing capabilities, any one of which can meet the Link-16 requirements. Using a single smart SMFD connected to a Link-16 subsystem has many advantages. With digital moving map capability, the SMFD can monitor and display air and ground tracks of both friendly and hostile forces while providing potential threat data to the operator. The SMFD can also monitor vehicle status and mission data to share between friendly air and surface forces. To support the integrated digital battlefield, Link-16 capability is required and the Litton G&CS SMFD provides the processing/display functionality to implement this capability.

  1. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 2

    DTIC Science & Technology

    1982-11-01

    groups. The Air Force is concerned with such issues such as resource allocation to foster and prcomotc standards, transitioning from current to future...perform automatic resource allocation , generate MATE Intermediate code, and provide formatted output listings. d. MATE Test Executive (MTE). The MTE...AFFECTED BY THESE STANDARDS TO KNOW JUST WHAT IS AVAILABLE TO SUPPORT THEM: THE HARDWARE; THE COMPLIANCE TESTING ; THE TOOLS NECESSARY TO FACILITATE DESIGN

  2. Analysis of the Air Force Logistics Enterprise. Evaluation of Global Repair Network Options for Supporting the F-16 and KC-135

    DTIC Science & Technology

    2009-01-01

    Approved for public release; distribution unlimited PROJECT AIR FORCE Ronald G. McGarvey, Manuel Carrillo, Douglas C. Cato, Jr., John G. Drew, Thomas Lang...Planning Framework, Robert S. Tripp, Lionel A. Galway, Paul Killingsworth, Eric Peltz, Timothy Ramey, and John G. Drew (MR-1056-AF). This report describes...Robert S. Tripp, Timothy Ramey, and John G. Drew (MR-1174-AF). This report examines alternatives for meeting F-15 avionics maintenance requirements

  3. KSC-2010-5289

    NASA Image and Video Library

    2010-10-21

    VANDENBERG AIR FORCE BASE, Calif. – In Building 1555 at Vandenberg Air Force Base in California, a technician installs the aft-end blankets on the avionics assembly of a four-stage Taurus XL rocket. The rocket and NASA's Glory satellite are being prepared for a launch to low Earth orbit from Vandenberg's Space Launch Complex 576-E. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  4. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009785 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  5. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028126 (23 March 2011) --- NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, are pictured during an STS-135 media day event in the Avionics Systems Laboratory at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090701 (8 June 2010) --- Several computer monitors are featured in this image photographed during an STS-133 exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  7. STS-131 crew member and JAXA astronaut Naoko Yamazaki training SSRMS PROF

    NASA Image and Video Library

    2010-01-15

    JSC2010-E-009787 (15 Jan. 2010) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, participates in a simulation exercise using the Space Station Remote Manipulator System (SSRMS) simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. Crew instructor Joseph M. Nguyen assisted Yamazaki.

  8. Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Zook, J. David

    1998-07-01

    An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.

  9. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2002-01-01

    The field of digital avionics experienced another year of important advances in civil aviation, military systems, and space applications. As a result of the events of 9/11/2001, NASA has pursued activities to apply its aerospace technologies toward improved aviation security. Both NASA Glenn Research Center and Langley Research Center have performed flight research demonstrations using advanced datalink concepts to transmit live pictures from inside a jetliner, and to downlink the contents of the plane's 'black box' recorder in real time. The U.S. Navy and General Electric demonstrated survivable engine control (SEC) algorithms during engine ground tests at the Weapons Survivability Laboratory at China Lake. The scientists at Boeing Satellite Systems advanced the field of stellar inertial technology with the development of a new method for positioning optical star trackers on satellites.

  10. United States Air Force High School Apprenticeship Program. 1990 Program Management Report. Volume 2

    DTIC Science & Technology

    1991-04-18

    49-3 documentation application. The demonstration was created with Apple Computer’s HyperCard using a flowchart -like format with which the user could...Software, Inc.,1989. F-1_6 A/B Avionic System Manual. Fort Worth, TX: General Dynamics, 1990.I 5HyperCard Beginners Guide: An Introduction to

  11. Acceleration ground test program to verify GAS payload No. 559 structure/support avionics and experiment structural integrity

    NASA Technical Reports Server (NTRS)

    Cassanto, John M.; Cassanto, Valerie A.

    1988-01-01

    Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.

  12. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090702 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  13. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090698 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  14. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090695 (8 June 2010) --- NASA astronauts Nicole Stott and Michael Barratt, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  15. McArthur rotates the CHeCS rack back into position after cleaning the AAA fan

    NASA Image and Video Library

    2005-12-01

    ISS012-E-09931 (1 December 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, rotates the Crew Health Care System (CHeCS) rack back into position after cleaning the Avionics Air Assembly fan in the Destiny laboratory of the International Space Station.

  16. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090700 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  17. STS-133 crew members Mike Barratt and Nicole Stott in cupola

    NASA Image and Video Library

    2010-06-08

    JSC2010-E-090704 (8 June 2010) --- NASA astronauts Michael Barratt and Nicole Stott, both STS-133 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  18. McArthur rotates the CHeCS Rack during Expedition 12

    NASA Image and Video Library

    2005-12-09

    ISS012-E-10806 (9 December 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, rotates the Crew Health Care System (CHeCS) rack in order to access the Avionics Air Assembly (AAA) air ducts during in-flight maintenance (IFM) in the Destiny laboratory of the International Space Station.

  19. EC95-42939-3

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  20. EC95-42939-5

    NASA Image and Video Library

    1995-02-02

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and was primarily used in engine tests and for parts. It was subsequently transfered from Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  1. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requiresmore » the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  2. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiationmore » environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  3. A New GaAs Laser Radar for Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Brown, R. T.; Stoliar, A. P.

    1973-01-01

    A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.

  4. Digital avionics systems - Principles and practices (2nd revised and enlarged edition)

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1993-01-01

    The state of the art in digital avionics systems is surveyed. The general topics addressed include: establishing avionics system requirements; avionics systems essentials in data bases, crew interfaces, and power; fault tolerance, maintainability, and reliability; architectures; packaging and fitting the system into the aircraft; hardware assessment and validation; software design, assessment, and validation; determining the costs of avionics.

  5. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286971 (22 Dec. 2009) --- Astronauts Piers Sellers (left) and Garrett Reisman, both STS-132 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  6. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286964 (22 Dec. 2009) --- Astronauts Ken Ham (foreground), STS-132 commander; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  7. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286961 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  8. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286960 (22 Dec. 2009) --- Astronaut Tony Antonelli, STS-132 pilot, uses a communication system during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  9. Digital map databases in support of avionic display systems

    NASA Astrophysics Data System (ADS)

    Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.

    1991-08-01

    The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.

  10. Using Modern Design Tools for Digital Avionics Development

    NASA Technical Reports Server (NTRS)

    Hyde, David W.; Lakin, David R., II; Asquith, Thomas E.

    2000-01-01

    Using Modem Design Tools for Digital Avionics Development Shrinking development time and increased complexity of new avionics forces the designer to use modem tools and methods during hardware development. Engineers at the Marshall Space Flight Center have successfully upgraded their design flow and used it to develop a Mongoose V based radiation tolerant processor board for the International Space Station's Water Recovery System. The design flow, based on hardware description languages, simulation, synthesis, hardware models, and full functional software model libraries, allowed designers to fully simulate the processor board from reset, through initialization before any boards were built. The fidelity of a digital simulation is limited to the accuracy of the models used and how realistically the designer drives the circuit's inputs during simulation. By using the actual silicon during simulation, device modeling errors are reduced. Numerous design flaws were discovered early in the design phase when they could be easily fixed. The use of hardware models and actual MIPS software loaded into full functional memory models also provided checkout of the software development environment. This paper will describe the design flow used to develop the processor board and give examples of errors that were found using the tools. An overview of the processor board firmware will also be covered.

  11. Modular standards for emerging avionics technologies

    NASA Astrophysics Data System (ADS)

    Radcliffe, B.; Boaz, J.

    The present investigation is concerned with modular standards for the integration of new avionics technologies into production aircraft, taking into account also major retrofit programs. It is pointed out that avionics systems are about to undergo drastic changes in the partitioning of functions and judicious sharing of resources. These changes have the potential to significantly improve reliability and maintainability, and to reduce costs. Attention is given to a definition of the modular avionics concept, the existing module program, the development approach, development progress on the modular avionics standard, and the future of avionics installation standards.

  12. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  13. Reuse and Interoperability of Avionics for Space Systems

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    2007-01-01

    The space environment presents unique challenges for avionics. Launch survivability, thermal management, radiation protection, and other factors are important for successful space designs. Many existing avionics designs use custom hardware and software to meet the requirements of space systems. Although some space vendors have moved more towards a standard product line approach to avionics, the space industry still lacks similar standards and common practices for avionics development. This lack of commonality manifests itself in limited reuse and a lack of interoperability. To address NASA s need for interoperable avionics that facilitate reuse, several hardware and software approaches are discussed. Experiences with existing space boards and the application of terrestrial standards is outlined. Enhancements and extensions to these standards are considered. A modular stack-based approach to space avionics is presented. Software and reconfigurable logic cores are considered for extending interoperability and reuse. Finally, some of the issues associated with the design of reusable interoperable avionics are discussed.

  14. An autonomous rendezvous and docking system using cruise missile technologies

    NASA Technical Reports Server (NTRS)

    Jones, Ruel Edwin

    1991-01-01

    In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.

  15. Digital Avionics Information System (DAIS): Life Cycle Cost Impact Modeling System (LCCIM)--A Managerial Overview. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; Baran, H. Anthony

    This report gives a managerial overview of the Life Cycle Cost Impact Modeling System (LCCIM), which was designed to provide the Air Force with an in-house capability of assessing the life cycle cost impact of weapon system design alternatives. LCCIM consists of computer programs and the analyses which the user must perform to generate input data.…

  16. USAF (United States Air Force) Avionics Master Plan.

    DTIC Science & Technology

    1982-12-01

    is updated annually by MAPG activities to reflect changes in emphasis resulting from new direction, threat developments , and other armament and...many different kinds of functional electronic subsystems, a building block approach to the development of new subsystems can be taken. This approach...technologies targeted for precision all weather weapon delivery. A new program will develop the capability to detect and locate ground moving targets not

  17. A Fundamental Study of the Electromagnetic Properties of Advanced Composite Materials

    DTIC Science & Technology

    1978-07-01

    MKDC), Space and Missile Systems Organization (SAMSO). Aeronautical System Division (ASD), Electronic Systems Division ( ESD ), Air Force Avionics...discussions, the work reported involved only one fiber type--Thornel T300 as used in Narmco 5208 pre-preg tapes . Individual graphite fibers have radii... teflon coated tweezers to separate individual fibers from the bundle. Microscopic observation and a steady hand during this procedure improved the

  18. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  19. DFRC F-16 aircraft fleet and support crew

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The support crew for the F-16A, the F-16XL no. 1, and the F-16 AFTI are, top row, left to right: Randy Weaver; mechanic, Susan Ligon; mechanic, Bob Garcia; Crew Chief, Rich Kelly; mechanic, Dale Edminister; Avionics Technician. Bottom row, left to right, Art Cope; mechanic, John Huffman; Avionics Technician, Jaime Garcia; Avionics Technician, Don Griffith, Avionics Tech. Co-op student. The F-16A (NASA 516), the only civil registered F-16 in existence, was transferred to Dryden from Langley, and is primarily used in engine tests and for parts. Although it is flight-worthy, it is not currently flown at Dryden. The single-seat F-16XL no. 1 (NASA 849) was most recently used in the Cranked-Arrow Wing Aerodynamics Project (CAWAP) to test boundary layer pressures and distribution. Previously it had been used in a program to investigate the characteristics of sonic booms for NASA's High Speed Research Program. Data from the program will be used in the development of a high speed civilian transport. During the series of sonic boom research flights, the F-16XL was used to probe the shock waves being generated by a NASA SR-71 and record their shape and intensity. The Advanced Fighter Technology Integration (AFTI) F-16 was used to develop and demonstrate technologies to improve navigation and a pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. Earlier research in the joint NASA-Air Force AFTI F-16 program demonstrated voice actuated controls, helmet-mounted sighting and integration of forward-mounted canards with the standard flight control system to achieve uncoupled flight.

  20. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  1. The relationship between an advanced avionic system architecture and the elimination of the need for an Avionics Intermediate Shop (AIS)

    NASA Astrophysics Data System (ADS)

    Abraham, S. J.

    While Avionics Intermediate Shops (AISs) have in the past been required for military aircraft, the emerging VLSI/VHSIC technology has given rise to the possibility of novel, well partitioned avionics system architectures that obviate the high spare parts costs that formerly prompted and justified the existence of an AIS. Future avionics may therefore be adequately and economically supported by a two-level maintenance system. Algebraic generalizations are presented for the analysis of the spares costs implications of alternative design partitioning schemes for future avionics.

  2. Color and Luminance Analysis of the Space Shuttle Multifunction Display Units(MDUs)

    NASA Technical Reports Server (NTRS)

    McCandless, Jeffrey W.

    2003-01-01

    The purpose of this evaluation is to measure and analyze the colors that can be shown on the Multifunction Display Units (MDUs) of the Space Shuttle cockpit. The evaluation was conducted in the JSC Avionics Engineering Laboratory (JAEL) in building 16A at NASA Johnson Space Center. The JAEL contains a suite of 11 MDUs, each of which can be configured to show colors based on input values of the MDU red, green and blue (RGB) channels. Each of the channels has a range of 0 to 15. For example, bright green is produced by setting RGB to 0,15,0, and orange is produced by setting RGB to 15,4,0. The Cockpit Avionics Upgrade (CAU) program has specified the RGB settings for 14 different colors in the Display Design document (Rev A, 29 June 2001). The analysis in this report may help the CAU program determine better RGB settings for the colors.

  3. Flexible Rover Architecture for Science Instrument Integration and Testing

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Kobayashi, Linda; Lee, Susan Y.; Park, Eric

    2006-01-01

    At NASA Ames Research Center, the Intelligent Robotics Group (IRG) fields the K9 and K10 class rovers. Both use a mobile robot hardware architecture designed for extensibility and reconfigurability that allows for rapid changes in instrumentation and provides a high degree of modularity. Over the past ssveral years, we have worked with instrument developers at NASA centers, universities, and national laboratories to integrate or partially integrate their instruments onboard the K9 and K10 rovers. Early efforts required considerable interaction to work through integration issues such as power, data protocol and mechanical mounting. These interactions informed the design of our current avionics architecture, and have simplified more recent integration projects. In this paper, we will describe the IRG extensible avionics and software architecture and the effect it has had on our recent instrument integration efforts, including integration of four Mars Instrument Development Program devices.

  4. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  5. An avionics scenario and command model description for Space Generic Open Avionics Architecture (SGOAA)

    NASA Technical Reports Server (NTRS)

    Stovall, John R.; Wray, Richard B.

    1994-01-01

    This paper presents a description of a model for a space vehicle operational scenario and the commands for avionics. This model will be used in developing a dynamic architecture simulation model using the Statemate CASE tool for validation of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA has been proposed as an avionics architecture standard to NASA through its Strategic Avionics Technology Working Group (SATWG) and has been accepted by the Society of Automotive Engineers (SAE) for conversion into an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division (FDSD) of the NASA Johnson Space Center (JSC) by the Lockheed Engineering and Sciences Company (LESC), Houston, Texas. This SGOAA includes a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, and a nine class model of interfaces. The SGOAA is both scalable and recursive and can be applied to any hierarchical level of hardware/software processing systems.

  6. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286973 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (center), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  7. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286968 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  8. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028161 (23 March 2011) --- NASA astronauts Greg Chamitoff (foreground), STS-134 mission specialist; and Greg H. Johnson, pilot, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  9. Fincke unbolts the front panel of the CHeCS Rack for inspection and cleaning during Expedition 9

    NASA Image and Video Library

    2004-09-16

    ISS009-E-23061 (16 September 2004) --- Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, uses a drill to unfasten a panel on the CHeCS Rack in the Destiny laboratory of the International Space Station (ISS). Fincke was about to perform an inspection of the Avionics Air Assembly.

  10. McArthur removes AAA clamps and ducts inside the CHeCS Rack during Expedition 12

    NASA Image and Video Library

    2005-12-09

    ISS012-E-10817 (9 December 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, opens the back panel of the Crew Health Care System (CHeCS) rack and removes the Avionics Air Assembly (AAA) air ducts during in-flight maintenance (IFM) in the Destiny laboratory of the International Space Station.

  11. STS-125 Crew Training in the Bldg. 16 SES Dome

    NASA Image and Video Library

    2008-01-28

    JSC2008-E-007759 (28 Jan. 2008) --- STS-125 crewmembers participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at Johnson Space Center. The facility includes moving scenes of full-sized Hubble Space Telescope components over a simulated Earth. Pictured are astronauts Andrew J. Feustel (foreground), Michael T. Good, both mission specialists; and Scott D. Altman, commander.

  12. Avionics System Architecture Tool

    NASA Technical Reports Server (NTRS)

    Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian

    2005-01-01

    Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.

  13. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  14. Impact of Advanced Avionics Technology on Ground Attack Weapon Systems.

    DTIC Science & Technology

    1982-02-01

    as the relevant feature. 3.0 Problem The task is to perform the automatic cueing of moving objects in a natural environment . Additional problems...views on this subject to the American Defense Preparedness Association (ADPA) on 11 February 1981 in Orlando, Florida. ENVIRONMENTAL CONDITIONS OUR...the operating window or the environmental conditions of combat that our forces may encounter worldwide. The three areas selected were Europe, the

  15. Language Research Sponsored by ONR

    DTIC Science & Technology

    1993-01-01

    skill in diagnosing problems with an avionics test station, an Air Force project. The existing tutor has been evaluated in workplace training and...of the same term. Comments on text coherence could then be derived. In conjunction with a project to develop a system to aid the authors of Navy...on the development of a text critiquing system that might enhance the capabilities of AIM. Kieras reviewed the psycholinguistic research literature

  16. VHSIC Electronics and the Cost of Air Force Avionics in the 1990s

    DTIC Science & Technology

    1990-11-01

    circuit. LRM Line replaceable module. LRU Line replaceable unit. LSI Large-scale integration. LSTTL Tow-power Schottky Transitor -to-Transistor Logic...displays, communications/navigation/identification, electronic combat equipment, dispensers, and computers. These CERs, which statistically relate the...some of the reliability numbers, and adding the F-15 and F-16 to obtain the data sample shown in Table 6. Both suite costs and reliability statistics

  17. Warranty-Guarantee Application Guidelines for Air Force Ground Electronic Equipment.

    DTIC Science & Technology

    1980-02-01

    perform the on-equipment maintenance. The procedure is comparable to existing Mobile Depot Mainte- nance. The extended outage of failed equipment may be...currently computed. However, because the equipment is fixed geographically, in contrast to the mobility of avionics equipment, operating-time logs could...base environment, many other items of ground equip- ment are deployed at a remote location or, particularly in TAC, may be mobile equipment not

  18. Software Engineering and Its Application to Avionics

    DTIC Science & Technology

    1988-01-01

    34Automated Software Development Methodolgy (ASDM): An Architecture of a Knowledge-Based Expert System," Masters Thesis , Florida Atlantic University, Boca...operating system provides the control semnrim and aplication services within the miltiproossur system. Them processes timt aks up the application sofhwae...as a high-value target may no longer be occupied by the time the film is processed and analyzed. With the high mobility of today’s enemy forces

  19. 78 FR 65183 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Airworthiness Directives; ATR--GIE Avions de Transport R[eacute]gional Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for certain ATR--GIE Avions de Transport R[eacute]gional Model ATR72-101, -201... service information identified in this AD, contact ATR--GIE Avions de Transport R[eacute]gional, 1, All...

  20. Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.

  1. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286974 (22 Dec. 2009) --- Astronauts Ken Ham (left background), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  2. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286962 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  3. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286976 (22 Dec. 2009) --- Astronauts Ken Ham (left), STS-132 commander; Tony Antonelli (right background), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  4. STS-132 crew during their PDRS N-TSK MRM training in the building 16 cupola trainer.

    NASA Image and Video Library

    2009-12-22

    JSC2009-E-286972 (22 Dec. 2009) --- Astronauts Ken Ham (right background), STS-132 commander; Tony Antonelli (left), pilot; and Mike Good, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA?s Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth.

  5. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028173 (23 March 2011) --- European Space Agency astronaut Roberto Vittori (right) and NASA astronaut Andrew Feustel, both STS-134 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-134 crew during PDRS PRF ADV (AMS) traiining

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028166 (23 March 2011) --- European Space Agency astronaut Roberto Vittori (right) and NASA astronaut Andrew Feustel, both STS-134 mission specialists, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  7. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028139 (23 March 2011) --- NASA astronauts Chris Ferguson (left), STS-135 commander; Doug Hurley (center), pilot; and Sandy Magnus, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  8. Transforming System Engineering through Model-Centric Engineering

    DTIC Science & Technology

    2015-01-31

    story that is being applied and evolved on Jupiter Europa Orbiter (JEO) project [75], and we summarize some aspects of it here, because it goes beyond...JEO Jupiter Europa Orbiter project at NASA/JPL JSF Joint Strike Fighter JPL Jet Propulsion Laboratory of NASA Linux An operating system created by...Adaptation of Flight-Critical Systems, Digital Avionics Systems Conference, 2009. [75] Rasumussen, R., R. Shishko, Jupiter Europa Orbiter Architecture

  9. NASA Affordable Vehicle Avionics (AVA): Common Modular Avionics System for Nano-Launchers Offering Affordable Access to Space

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2015-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.

  10. KSC-2010-5725

    NASA Image and Video Library

    2010-11-10

    VANDENBERG AIR FORCE BASE, Calif. – In Building 1555 at Vandenberg Air Force Base in California, Orbital Sciences Corp. technicians connect the third stage of the Taurus XL rocket to the avionics of the temporary vehicle interface fixture. The fixture will come off once integrated with the encapsulated Glory spacecraft at the launch site. The Taurus XL rocket, targeted to lift off Feb. 23, 2011, from Vandenberg's Space Launch Complex 576-E, will take NASA's Glory satellite into low Earth. Glory is scheduled to collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  11. A Strategy for Reforming Avionics Acquisition and Support

    DTIC Science & Technology

    1988-07-01

    are observable: " Some problems manifest symptoms in one operating mode but not in another. The pilot directly controls some radar operating modes by...for each flight. Their removals occurred in the flight controls , inertial navigation, head-up display, radar, and instru- ments. Although removals...accrue a comparable amount of service time. 6Automatic stations can test 50 LRU types although the Air Force has chosen to test only 37 of them at the

  12. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  13. Modeling and Simulation of Avionics Systems and Command, Control and Communications Systems

    DTIC Science & Technology

    1980-01-01

    analytical and operational talent into a cohesive study group . This group becomes our critical mass for innovative analysis. For command and control problems...that focusing small integrated groups on specific aspects of a command and control problem sucoseds best. For example, Air Force Studies and Analyses...phase so called " study groups " should define "tactical requirement-papers", These study groups will be supported by operational analyses and by

  14. 5-Year Update Environmental Assessment for CV-22 Beddown

    DTIC Science & Technology

    2007-02-01

    supersonic flight. Activities do not include intentional fuel dumping below 6,000 feet. No new facilities or utilities will be necessary to support IOT&E...the ground, climb a ladder from the ground in to the aircraft, or ride the rescue hoist from the ground in to the aircraft. Once forces are secured...Crew Chief and specialists in the fields of Integrated Avionics, Propulsion, Hydraulics , and Electro- Environmental maintenance. The majority of the

  15. General aviation avionics equipment maintenance

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1978-01-01

    Maintenance of general aviation avionics equipment was investigated with emphasis on single engine and light twin engine general aviation aircraft. Factors considered include the regulatory agencies, avionics manufacturers, avionics repair stations, the statistical character of the general aviation community, and owners and operators. The maintenance, environment, and performance, repair costs, and reliability of avionics were defined. It is concluded that a significant economic stratification is reflected in the maintenance problems encountered, that careful attention to installations and use practices can have a very positive impact on maintenance problems, and that new technologies and a general growth in general aviation will impact maintenance.

  16. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  17. Custom avionics-grade AM LCDs for high performance military and avionics applications

    NASA Astrophysics Data System (ADS)

    Niemczyk, James

    2003-09-01

    American Panel Corporation in Alpharetta Georgia and LG-Philips-LCD in Seoul South Korea have a strategic alliance for the design and manufacture of custom AMLCD products targeted for the military vehicle and avionics sector. As part of this relationship, new innovations in AMLCD technology specifically aimed at the rugged and avionics applications have been developed and are now brought to the marketplace

  18. Avionics System Architecture for the NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of other previous crewed spacecraft avionics systems. Common systems engineering methods will be used to evaluate the value propositions, or the factors that weight most heavily in design consideration, of Orion and other aerospace systems. Then, the current Orion avionics architecture will be presented and evaluated.

  19. General Aviation Avionics Statistics : 1975

    DOT National Transportation Integrated Search

    1978-06-01

    This report presents avionics statistics for the 1975 general aviation (GA) aircraft fleet and updates a previous publication, General Aviation Avionics Statistics: 1974. The statistics are presented in a capability group framework which enables one ...

  20. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  1. Fiber optic interconnect and optoelectronic packaging challenges for future generation avionics

    NASA Astrophysics Data System (ADS)

    Beranek, Mark W.

    2007-02-01

    Forecasting avionics industry fiber optic interconnect and optoelectronic packaging challenges that lie ahead first requires an assumption that military avionics architectures will evolve from today's centralized/unified concept based on gigabit laser, optical-to-electrical-to-optical switching and optical backplane technology, to a future federated/distributed or centralized/unified concept based on gigabit tunable laser, electro-optical switch and add-drop wavelength division multiplexing (WDM) technology. The requirement to incorporate avionics optical built-in test (BIT) in military avionics fiber optic systems is also assumed to be correct. Taking these assumptions further indicates that future avionics systems engineering will use WDM technology combined with photonic circuit integration and advanced packaging to form the technical basis of the next generation military avionics onboard local area network (LAN). Following this theme, fiber optic cable plants will evolve from today's multimode interconnect solution to a single mode interconnect solution that is highly installable, maintainable, reliable and supportable. Ultimately optical BIT for fiber optic fault detection and isolation will be incorporated as an integral part of a total WDM-based avionics LAN solution. Cost-efficient single mode active and passive photonic component integration and packaging integration is needed to enable reliable operation in the harsh military avionics application environment. Rugged multimode fiber-based transmitters and receivers (transceivers) with in-package optical BIT capability are also needed to enable fully BIT capable single-wavelength fiber optic links on both legacy and future aerospace platforms.

  2. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028132 (23 March 2011) --- As news media representatives look on, NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; and Sandy Magnus, mission specialist, participate in an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  3. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  4. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  5. Wireless avionics for space applications of fundamental physics

    NASA Astrophysics Data System (ADS)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  6. Implementing the space shuttle data processing system with the space generic open avionics architecture

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.

  7. General Aviation Avionics Statistics : 1976

    DOT National Transportation Integrated Search

    1979-11-01

    This report presents avionics statistics for the 1976 general aviation (GA) aircraft fleet and is the third in a series titled "General Aviation Avionics Statistics." The statistics are presented in a capability group framework which enables one to r...

  8. General aviation avionics statistics : 1977.

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents avionics statistics for the 1977 general aviation (GA) aircraft fleet and is the fourth in a series. The statistics are presented in a capability group framework which enables one to relate airborne avionics equipment to the capa...

  9. General Aviation Avionics Statistics : 1979 Data

    DOT National Transportation Integrated Search

    1981-04-01

    This report presents avionics statistics for the 1979 general aviation (GA) aircraft fleet and is the sixth in a series titled General Aviation Avionics Statistics. The statistics preseneted in a capability group framework which enables one to relate...

  10. A study of compositional verification based IMA integration method

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Zhang, Guoquan; Xu, Wanmeng

    2018-03-01

    The rapid development of avionics systems is driving the application of integrated modular avionics (IMA) systems. But meanwhile it is improving avionics system integration, complexity of system test. Then we need simplify the method of IMA system test. The IMA system supports a module platform that runs multiple applications, and shares processing resources. Compared with federated avionics system, IMA system is difficult to isolate failure. Therefore, IMA system verification will face the critical problem is how to test shared resources of multiple application. For a simple avionics system, traditional test methods are easily realizing to test a whole system. But for a complex system, it is hard completed to totally test a huge and integrated avionics system. Then this paper provides using compositional-verification theory in IMA system test, so that reducing processes of test and improving efficiency, consequently economizing costs of IMA system integration.

  11. Avionics Architectures for Exploration: Building a Better Approach for (Human) Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.

  12. Transall C-160 Life Extension and Avionics Upgrade Programs

    DTIC Science & Technology

    2000-04-01

    theoretically). In The A/C of the second series differed from the first reality, however, one flight took only an average of series A/C as follows...configuration. The progress of the crack was Usable cargo space 139.9 m3 monitored under operational conditions and with different loads: The German Air Force...progress data. Today, the French C- 160 aircraft are maintaned by AIA/CIT (Atelier Industriel A6ronautique/Cellule Industrielle Transall) in Clermont

  13. Final Environmental Assessment for the Integration and Developmental Testing of High Power Microwave Systems at Edwards Air Force Base

    DTIC Science & Technology

    2006-10-16

    spawning sites, feeding sites, 20 seasonal wetlands or drylands, water quality or quantity, host species or plant pollinators , geological 21...rufus]). 12 These areas also contain relatively large areas of sensitive plants . 13 3.9.2.9 Significant Ecological Areas found within the R-2515 and...for complete aircraft, avionics systems, and integrated 21 airframe weapons support. Thus, HPM testing would continue the evolution of the primary

  14. Avionics Integrity Program (AVIP). Volume 4. Force Management - Economic Life Considerations.

    DTIC Science & Technology

    1984-03-01

    often used to refer to the period of time during which financial considerations justify the continued use of an existing system. The study addresses...rejporLs incl-ude contractor ei forts between September 1983 and Marih 1984. Each report represents a completed study in a specific area and stands alone...during which financial considerations justify the selection or continued use of a system. A variety of definitions currently exist for economic life. One

  15. Outlook at the Future of the Airline Avionics Industry

    DOT National Transportation Integrated Search

    1998-01-01

    The aviation industry is slowly but surely changing its character. As airlines restructure, what they ask of, and how they relate to their suppliers (including avionics manufacturers) will greatly change as well. The avionics industry is currently fa...

  16. Trends in transport aircraft avionics

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1973-01-01

    A survey of avionics onboard present commercial transport aircraft was conducted to identify trends in avionics systems characteristics and to determine the impact of technology advances on equipment weight, cost, reliability, and maintainability. Transport aircraft avionics systems are described under the headings of communication, navigation, flight control, and instrumentation. The equipment included in each section is described functionally. However, since more detailed descriptions of the equipment can be found in other sources, the description is limited and emphasis is put on configuration requirements. Since airborne avionics systems must interface with ground facilities, certain ground facilities are described as they relate to the airborne systems, with special emphasis on air traffic control and all-weather landing capability.

  17. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview

    NASA Technical Reports Server (NTRS)

    Nola, Charles L.; Blue, Lisa

    2008-01-01

    Building on the heritage of the Saturn and Space Shuttle Programs for the Design, Development, Test, and Evaluation (DDT and E) of avionics and software for NASA's Ares I Crew Launch Vehicle (CLV), the Ares I Upper Stage Element is a vital part of the Constellation Program's transportation system. The Upper Stage Element's Avionics Subsystem is actively proceeding toward its objective of delivering a flight-certified Upper Stage Avionics System for the Ares I CLV.

  18. 1977 General Aviation Activity and Avionics Survey

    DOT National Transportation Integrated Search

    1979-04-01

    This report presents the results and a description of the 1977 General Aviation Activity and Avionics Survey. The survey was conducted during early 1978 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  19. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  20. Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Bremner, Paul

    2014-01-01

    This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.

  1. STS-135 crew during Rendezvous Training session in Building 16 dome

    NASA Image and Video Library

    2011-03-23

    JSC2011-E-028144 (23 March 2011) --- NASA astronauts Chris Ferguson (left foreground), STS-135 commander; Doug Hurley (left background), pilot; and Sandy Magnus (left), mission specialist, speak with news media representatives during an exercise in the systems engineering simulator in the Avionics Systems Laboratory at NASA's Johnson Space Center. The facility includes moving scenes of full-sized International Space Station components over a simulated Earth. Photo credit: NASA or National Aeronautics and Space Administration

  2. General Aviation Activity and Avionics Survey (Annual Summary Report - 1986 Data)

    DOT National Transportation Integrated Search

    1987-12-01

    This report presents the results and description of the 1986 General Aviation Activity and Avionics Survey. The survey was conducted during 1987 by the FAA to obtain information on the activity and avionics of the United States registered general avi...

  3. VCSEL optical subassembly for avionics fiber optic modules

    NASA Astrophysics Data System (ADS)

    Hager, Harold E.; Chan, Eric Y.; Beranek, Mark W.; Hong, Chi-Shain

    1996-04-01

    With the growing maturation of vertical cavity surface emitting laser (VCSEL) technology as a source of commercial off-the-shelf components, the question of VCSEL suitability for use in avionics-qualifiable fiber-optic systems naturally follows. This paper addresses avionics suitability from two perspectives. First, measured performance and burn-in reliability results, determined from characterization of Honeywell VCSELs, are compared with application-based military and commercial avionics environmental requirements. Second, design guidelines for developing a cost-effective VCSEL optical subassembly (VCSEL/OSA) are outlined.

  4. Recovery of the Space Shuttle Columbia Avionics

    NASA Technical Reports Server (NTRS)

    Hames, Kevin L.

    2003-01-01

    Lessons Learned: a) Avionics data can playa critical role in the investigation of a "close call" or accident. b) Avionics designers should think about the role their systems might play in an investigation. c) Know your data, down to the bit level. d) Know your spacecraft - follow the data. e) Internal placement of circuit cards can affect their survivability. f) Think about how to reconstruct nonvolatile memory (e.g. serialize IC's, etc.) g) Use of external assets can aid in extracting data from avionics.

  5. Avionic Architecture for Model Predictive Control Application in Mars Sample & Return Rendezvous Scenario

    NASA Astrophysics Data System (ADS)

    Saponara, M.; Tramutola, A.; Creten, P.; Hardy, J.; Philippe, C.

    2013-08-01

    Optimization-based control techniques such as Model Predictive Control (MPC) are considered extremely attractive for space rendezvous, proximity operations and capture applications that require high level of autonomy, optimal path planning and dynamic safety margins. Such control techniques require high-performance computational needs for solving large optimization problems. The development and implementation in a flight representative avionic architecture of a MPC based Guidance, Navigation and Control system has been investigated in the ESA R&T study “On-line Reconfiguration Control System and Avionics Architecture” (ORCSAT) of the Aurora programme. The paper presents the baseline HW and SW avionic architectures, and verification test results obtained with a customised RASTA spacecraft avionics development platform from Aeroflex Gaisler.

  6. The Core Avionics System for the DLR Compact-Satellite Series

    NASA Astrophysics Data System (ADS)

    Montenegro, S.; Dittrich, L.

    2008-08-01

    The Standard Satellite Bus's core avionics system is a further step in the development line of the software and hardware architecture which was first used in the bispectral infrared detector mission (BIRD). The next step improves dependability, flexibility and simplicity of the whole core avionics system. Important aspects of this concept were already implemented, simulated and tested in other ESA and industrial projects. Therefore we can say the basic concept is proven. This paper deals with different aspects of core avionics development and proposes an extension to the existing core avionics system of BIRD to meet current and future requirements regarding flexibility, availability, reliability of small satellite and the continuous increasing demand of mass memory and computational power.

  7. General Aviation Activity and Avionics Survey (Annual Summary Report - 1985 data)

    DOT National Transportation Integrated Search

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  8. General aviation activity and avionics survey : annual summary report 1983 data.

    DOT National Transportation Integrated Search

    1984-10-01

    This report presents the results and a description of the 1983 General Aviation Activity and Avionics Survey. The survey was conducted during 1984 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  9. General Aviation Activity and Avionics Survey (Annual Summary Report - 1978 data)

    DOT National Transportation Integrated Search

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered gen...

  10. General Aviation Activity and Avionics Survey (Annual Summary Report - 1984 data)

    DOT National Transportation Integrated Search

    1985-10-01

    This report presents the results and a description of the 1984 General Aviation Activity and Avionics Survey. The survey was conducted during 1985 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  11. General Aviation Activity and Avionics Survey (Annual Summary Report - 1987 data).

    DOT National Transportation Integrated Search

    1988-11-01

    This report presents the results and a description of the 1987 General Aviation Activity and Avionics Survey. The survey was conducted during 1988 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  12. General Aviation Activity and Avionics Survey (Annual Summary Report - 1982 data).

    DOT National Transportation Integrated Search

    1983-12-01

    This report presents the results and a description of the 1982 General Aviation Activity and Avionics Survey. The survey was conducted during 1983 by the FAA to obtain information on the activity and avionics of the United States registered general a...

  13. Avionic architecture requirements for Space Exploration Initiative systems

    NASA Technical Reports Server (NTRS)

    Herbella, C. G.; Brown, D. C.

    1991-01-01

    The authors discuss NASA's Strategic Avionics Technology Working Group (SATWG) and the results of the first study commissioned by the SATWG, the Space Avionics Requirements Study (SARS). The goal of the SARS task was to show that an open avionics architecture, using modular, standardized components, could be applied across the wide range of systems that comprise the Space Exploration Initiative. The study addressed systems ranging from expendable launch vehicles and the space station to surface systems such as Mars or lunar rovers and habitats. Top-level avionics requirements were derived from characterizations of each of the systems considered. Then a set of avionics subsystems were identified, along with estimates of the numbers and types of modules needed to meet the requirements. Applicability of these results across the infrastructure was then illustrated. In addition to these tasks, critical technologies were identified, characterized, and assessed in terms of their criticality and impact on the program. Design, development, test, and evaluation methods were addressed to identify potential areas of improvement.

  14. Army Manpower Cost System (AMCOS): Active Enlisted Force Prototype

    DTIC Science & Technology

    1986-03-01

    cost element in both economic and budget models includes both a soldier’s Base Pay and the Service’s FICA contribu- tion at the current tax rate . a...mean base pay for the position calculated from BP T I FCAP - curret maxilum ICA payable FRATE - current FICA tax rate Tlij - total base pay distributed...Group, Santa Monica, 1982. Butler, R. and T. Neches, " HARDMAN Program Manager’s LCC Handbook: Avionics Equip- ments," D-201, The Assessment Group

  15. MAS Bulletin. Papers Presented at Advisory Group for Aerospace Research and Development (AGARD) Symposium on Machine Intelligence for Aerospace Electronic Systems.

    DTIC Science & Technology

    1991-08-01

    neural networks, and machine learning . This list ie not all 9. Future ESM Systems and the Potential for Neural Processing inclusive. This research could...U.S. CAPT James M. Skinner , USAF, Air Force Space Technology 17. Development of Tactical Doecisiont Akid. Center, and Prof. Georg* F. Luger...ntegrat11111ng Macine I~1e900enc Into the Co~pi to Aid t" Pilot 26. Integrated Communications, Navigatlion. Ideintiflocation Avionics Dr. Edward J

  16. KSC-2012-5601

    NASA Image and Video Library

    2012-09-25

    Vandenberg Air Force Base, Calif. – At Vandenberg Air Force Base in California, technicians install the avionics shelf on the third stage of the Orbital Sciences Corp. Pegasus XL rocket which will launch the Interface Region Imaging Spectrograph, or IRIS, spacecraft. Scheduled for launch from Vandenberg Air Force Base no earlier than Feb. 27, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. For more information, visit http://iris.gsfc.nasa.gov Photo credit: NASA/Randy Beaudoin

  17. KSC-2012-5602

    NASA Image and Video Library

    2012-09-25

    Vandenberg Air Force Base, Calif. – At Vandenberg Air Force Base in California, technicians install the avionics shelf on the third stage of the Orbital Sciences Corp. Pegasus XL rocket which will launch the Interface Region Imaging Spectrograph, or IRIS, spacecraft. Scheduled for launch from Vandenberg Air Force Base no earlier than Feb. 27, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun’s corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. For more information, visit http://iris.gsfc.nasa.gov Photo credit: NASA/Randy Beaudoin

  18. Vibrational impacts of hush house operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, A.J.

    1988-01-01

    United States Air Force (USAF) facilities are required to test turboprop and turbojet engines before or after maintenance or repair and prior to installation on aircraft to ensure that no problems were introduced or remain uncorrected. This requirement prevents the installation of engines in aircraft which require further maintenance. There are a number of facilities in use by USAF for conducting engine diagnostic tests. The most modern of these facilities is the hush house which is a hangar-like structure designed to isolate the noise associated with extended engine operations from the surrounding environment. One type of hush house, the T-10,more » is of particular concern because of vibrational impacts to surrounding structures induced by subaudible sound (infrasound) emitted during operation. While these facilities fulfill the design requirement of reducing audible noise, serious siting problems have been reported at several installations because of infrasound-induced vibrations. The worst of these include the abandonment of an avionics laboratory because induced vibrations interfered with this facilities function and structural damage to a concrete block maintenance facility. This paper describes a predictive method for assessing vibration-driven structural impacts. 9 refs., 2 figs.« less

  19. Military display market segment: avionics (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2005-05-01

    The military display market is analyzed in terms of one of its segments: avionics. Requirements are summarized for 13 technology-driving parameters for direct-view and virtual-view displays in cockpits and cabins. Technical specifications are discussed for selected programs. Avionics stresses available technology and usually requires custom display designs.

  20. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    DTIC Science & Technology

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  1. Space Generic Open Avionics Architecture (SGOAA): Overview

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1992-01-01

    A space generic open avionics architecture created for NASA is described. It will serve as the basis for entities in spacecraft core avionics, capable of being tailored by NASA for future space program avionics ranging from small vehicles such as Moon ascent/descent vehicles to large ones such as Mars transfer vehicles or orbiting stations. The standard consists of: (1) a system architecture; (2) a generic processing hardware architecture; (3) a six class architecture interface model; (4) a system services functional subsystem architectural model; and (5) an operations control functional subsystem architectural model.

  2. Demonstration Advanced Avionics System (DAAS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of developing an integrated avionics system suitable for general aviation was determined. A design of reliable integrated avionics which provides expanded functional capability that significantly enhances the utility and safety of general aviation at a cost commensurate with the general aviation market was developed. The use of a data bus, microprocessors, electronic displays and data entry devices, and improved function capabilities were emphasized. An avionics system capable of evaluating the most critical and promising elements of an integrated system was designed, built and flight tested in a twin engine general aviation aircraft.

  3. Strategic avionics technology planning

    NASA Technical Reports Server (NTRS)

    Cox, Kenneth J.; Brown, Don C.

    1991-01-01

    NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.

  4. Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling

    NASA Technical Reports Server (NTRS)

    Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam

    2013-01-01

    Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.

  5. NASA Affordable Vehicle Avionics (AVA). Common Modular Avionics System for Nanolaunchers Offering Affordable Access to Space; [Space Technology: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Aquilina, Rudy

    2017-01-01

    Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just that-the ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA (Affordable Vehicle Avionics) solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single-use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costs-but can low-cost commercial inertial sensors work just as well? NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box (100 millimeters by 120 millimeters by 69 millimeters; 4 inches by 4.7 inches by 2.7 inches), with a mass of less than 0.84 kilogram (2 pounds. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with real-time GPS (Global Positioning Satellite) data. The goal of the AVA project is to produce and light-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nanolaunch vehicles at 1 percent of the cost of current state-of-the-art avionics.

  6. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  7. System Engineering Issues for Avionics Survival in the Space Environment

    NASA Technical Reports Server (NTRS)

    Pavelitz, Steven

    1999-01-01

    This paper examines how the system engineering process influences the design of a spacecraft's avionics by considering the space environment. Avionics are susceptible to the thermal, radiation, plasma, and meteoroids/orbital debris environments. The environment definitions for various spacecraft mission orbits (LEO/low inclination, LEO/Polar, MEO, HEO, GTO, GEO and High ApogeeElliptical) are discussed. NASA models and commercial software used for environment analysis are reviewed. Applicability of technical references, such as NASA TM-4527 "Natural Orbital Environment Guidelines for Use in Aerospace Vehicle Development" is discussed. System engineering references, such as the MSFC System Engineering Handbook, are reviewed to determine how the environments are accounted for in the system engineering process. Tools and databases to assist the system engineer and avionics designer in addressing space environment effects on avionics are described and usefulness assessed.

  8. Comparison of custom versus COTS AMLCDs for military and avionic applications

    NASA Astrophysics Data System (ADS)

    Angelo, Van

    1997-07-01

    AMLCD's are currently the flat panel technology of choice for military systems and civil transport avionic applications, both new and retrofit. Historically, military and avionic displays have ben custom designed and have generally been specific to each application. Two recent developments have given display system designers a choice between a custom military/avionic solution or a ruggedized commercial off-the-shelf (COTS) implementation. The first development is the widespread availability of various consumer and automotive AMLCD panels at low prices. The second is the change in the policy of defense departments, notably the US Department of Defense, to procure COTS components instead of developing custom solutions. This paper assesses and analyzes the key differences in characteristics, performance and logistical supportability of military and avionic AMLCD's and presents the tradeoffs involved in making the optimum choice between custom and COTS.

  9. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1994-01-01

    This standard establishes the Space Generic Open Avionics Architecture (SGOAA). The SGOAA includes a generic functional model, processing structural model, and an architecture interface model. This standard defines the requirements for applying these models to the development of spacecraft core avionics systems. The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture models to the design of a specific avionics hardware/software processing system. This standard defines a generic set of system interface points to facilitate identification of critical services and interfaces. It establishes the requirement for applying appropriate low level detailed implementation standards to those interfaces points. The generic core avionics functions and processing structural models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  10. Space Shuttle avionics upgrade - Issues and opportunities

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    An overview is conducted of existing Space Shuttle avionics and the possibilities for upgrading the cockpit to reduce costs and increase functionability. The current avionics include five general-purpose computers fitted with multifunction displays, dedicated switches and indicators, and dedicated flight instruments. The operational needs of the Shuttle are reviewed in the light of the avionics and potential upgrades in the form of microprocessors and display systems. The use of better processors can provide hardware support for multitasking and memory management and can reduce the life-cycle cost for software. Some limitations of the current technology are acknowledged including the Shuttle's power budget and structural configuration. A phased infusion of upgraded avionics is proposed that provides a functionally transparent replacement of crew-interface equipment as well as the addition of interface enhancements and the migration of selected functions.

  11. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  12. Basic avionics module design for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Smyth, D. E.

    1978-01-01

    The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.

  13. Alternate avionics system study and phase B extension

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Results of alternate avionics system studies for the space shuttle are presented that reduce the cost of vehicle avionics without incurring major off-setting costs on the ground. A comprehensive summary is provided of all configurations defined since the completion of the basic Phase B contract and a complete description of the optimized avionics baseline is given. In the new baseline, inflight redundancy management is performed onboard without ground support; utilization of off-the-shelf hardware reduces the cost figure substantially less than for the Phase B baseline. The only functional capability sacrificed in the new approach is automatic landing.

  14. Digital Avionics Information System (DAIS): Impact of DAIS Concept on Life Cycle Cost. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    Designed to identify and quantify the potential impacts of the Digital Avionics Information System (DAIS) on weapon system personnel requirements and life cycle cost (LCC), this study postulated a typical close-air-support (CAS) mission avionics suite to serve as a basis for comparing present day and DAIS configuration specifications. The purpose…

  15. Perspective on intelligent avionics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  16. Definition of avionics concepts for a heavy lift cargo vehicle, appendix A

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The major objective of the study task was to define a cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles. This volume provides the results of the main simulation processor selection study and describes some proof-of-concept demonstrations for the avionics test bed facility.

  17. Nonoperating Failure Rates for Avionics Study.

    DTIC Science & Technology

    1980-04-01

    Missile, 1 August 1973. Temperature Readings at Three Indicated Locations ............................ 3-10 3-7 Operating vs . Nonoperating Failure...Failures vs . Mission Duration for Jet Aircraft Equipment ... ...................... ... 4-39 4-17 Cumulative Total Failures vs . Mission Duration for Jet...AVIONIC EQUIPMENT FIELD CHARACTERISTICS To better understand the type of service exposure avionic equipment must withstand , several aspects of the

  18. 78 FR 42898 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... identified in this proposed AD, contact ATR-GIE Avions de Transport R[eacute]gional, 1, All[eacute]e Pierre... Transport R[eacute]gional Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...-GIE Avions de Transport R[eacute]gional Model ATR72-101, - 201, -102, -202, -211, -212, and -212A...

  19. An overview of autonomous rendezvous and docking system technology development

    NASA Astrophysics Data System (ADS)

    Nelson, Kurt D.

    The Centaur upper stage was selected for an airborne avionics modernization program. The parts used in the existing avionics units were obsolete. Continued use of existing hardware would require substantial redesign, yet would result in the use of outdated hardware. Out of date processes, with very expensive and labor intensive technologies, were being used for manufacturing. The Atlas/Centaur avionics were to be procured at a fairly high rate that demanded the use of modern components. The new avionics also reduce size, weight, power, and parts count with a dramatic improvement in reliability. Finally, the cost leverage derived from upgrading the avionics as opposed to any other subsystem for the existing Atlas/Centaur was a very large consideration in the upgrade decision. The upgrade program is a multiyear effort that began in 1989. It includes telemetry, guidance and navigation, control electronics, thrust vector control, and redundancy levels.

  20. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  1. Neutron Particle Effects on a Quad-Redundant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth; Belcastro, Celeste M.; Gray, W Steven; Gonzalex, Oscar

    2003-01-01

    This paper describes a single-event upset experiment performed at the Los Alamos National Laboratory. A closed-loop control system consisting of a Quad-Redundant Flight Control Computer (FCC) and a B737 simulator was operated while the FCC was exposed to a neutron beam. The purpose of this test was to analyze the effects of neutron bombardment on avionics control systems operating at altitudes where neutron strikes are probable. The neutron energy spectrum produced at the Los Alamos National Laboratory is similar in shape to the spectrum of atmospheric neutrons but much more intense. The higher intensity results in accelerated life tests that are representative of the actual neutron radiation that a FCC may receive over a period of years.

  2. Workshop on Avionics Corrosion Control: Meeting of the Structures and Materials Panel of AGARD (62nd) Held in Hovik (Norway) on 16-17 April 1986.

    DTIC Science & Technology

    1987-09-01

    CORROSOIN IN AVIONICS AND ASSOCIATED EQUIPMENT; CAUSE. EFFECT AND PREVENTION by R.GIkmte ,m E.GEdpr 4 ROYAL NAVY EXPERIENCE OF CORROSION IN AVIONICS...and the preventative maintenance was the application of copious quantities of petroleum jelly , also known as vaseline. Incidentally, the same mthods

  3. SAR Aircrew--HH-3F Avionics and HH-3F Flight Preparation. ACH3AV-0442. Second Edition, Revised.

    ERIC Educational Resources Information Center

    Coast Guard Inst., Oklahoma City, OK.

    This document contains two U.S. Coast Guard self-study pamphlets that provide training in helicopter flight preparation and avionics duties. Each pamphlet consists of a number of lessons that include objectives, information illustrated with line drawings and/or photographs, and self-quizzes with answers. The avionics course covers the following…

  4. 75 FR 8476 - Airworthiness Directives; ATR-GIE Avions de Transport Régional Model ATR42 and ATR72 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Airworthiness Directives; ATR-GIE Avions de Transport R[eacute]gional Model ATR42 and ATR72 Airplanes AGENCY... FURTHER INFORMATION CONTACT: Tom Rodriguez, Aerospace Engineer, International Branch, ANM-116, Transport... including but not limited to those listed in Table 1 of that AD. Although ATR-GIE Avions de Transport R...

  5. Digital Avionics Information System (DAIS): Development and Demonstration.

    DTIC Science & Technology

    1981-09-01

    advances in technology. The DAIS architecture results in improved reliability and availability of avionics systems while at the same time reducing life ...DAIS) represents a significant advance in the technology of avionics system architecture. DAIS is a total systems concept, exploiting standardization...configurations and fully capable of accommodating new advances in technology. These fundamental system charac- teristics are described in this report; the

  6. Role of neural networks for avionics

    NASA Astrophysics Data System (ADS)

    Bowman, Christopher L.; DeYong, Mark R.; Eskridge, Thomas C.

    1995-08-01

    Neural network (NN) architectures provide a thousand-fold speed-up in computational power per watt along with the flexibility to learn/adapt so as to reduce software life-cycle costs. Thus NNs are posed to provide a key supporting role to meet the avionics upgrade challenge for affordable improved mission capability especially near hardware where flexible and powerful smart processing is needed. This paper summarizes the trends for air combat and the resulting avionics needs. A paradigm for information fusion and response management is then described from which viewpoint the role for NNs as a complimentary technology in meeting these avionics challenges is explained along with the key obstacles for NNs.

  7. Automatic design of IMA systems

    NASA Astrophysics Data System (ADS)

    Salomon, U.; Reichel, R.

    During the last years, the integrated modular avionics (IMA) design philosophy became widely established at aircraft manufacturers, giving rise to a series of new design challenges, most notably the allocation of avionics functions to the various IMA components and the placement of this equipment in the aircraft. This paper presents a modelling approach for avionics that allows automation of some steps of the design process by applying an optimisation algorithm which searches for system configurations that fulfil the safety requirements and have low costs. The algorithm was implemented as a quite sophisticated software prototype, therefore we will also present detailed results of its application to actual avionics systems.

  8. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  9. Remarks on Sentinel-1 Avionic SW Qualification

    NASA Astrophysics Data System (ADS)

    Candia, Sante; Pascucci, Dario

    2013-08-01

    The GMES Sentinel-1 Earth Radar Observatory, a projects co-funded by the European Union and the European Space Agency (ESA), is a constellation of C-band radar satellites. The satellites have been conceived to be a continuous and reliable source of C-band SAR imagery for operational application such as mapping of global landmasses, coastal zones and monitoring of shipping routes. ESA is responsible for the development of the Sentinel-1 satellites that are built by an industrial consortium headed by Thales Alenia Space Italy (TASI) as Prime Contractor. TAS-I is also directly responsible for the production of the Spacecraft Bus and the Avionic S/S including the Avionic SW (ASW), which is characterized by: · The high performances of its attitude and orbit determination and control function; · Scheduling of the imaging activity on position basis with high geo-location performances; · High on board autonomy both in routine and contingency situations. This paper is focused on the Sentinel-1 Avionic SW, which has currently been qualified by TAS-I for Flight. It covers both the SW architecture and development process areas: · Avionic SW context; · Avionic SW architecture; · Flexibility of PUS-based on-board autonomy and FDIR; · Validation and Qualification activities;

  10. The single event upset environment for avionics at high latitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.

    1994-12-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end,more » it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight.« less

  11. An Analysis of the RCA Price-S Cost Estimation Model as it Relates to Current Air Force Computer Software Acquisition and Management.

    DTIC Science & Technology

    1979-12-01

    because of the use of complex computational algorithms (Ref 25). Another important factor effecting the cost of soft- ware is the size of the development...involved the alignment and navigational algorithm portions of the software. The second avionics system application was the development of an inertial...001 1 COAT CONL CREA CINT CMAT CSTR COPR CAPP New Code .001 .001 .001 .001 1001 ,OO .00 Device TDAT T03NL TREA TINT Types o * Quantity OGAT OONL OREA

  12. Methode d’Identification des Forces Aerodynamiques Instationnaires sur les Essais en Vol, Validation Experimentale (Method of Mathematical Identification of Unsteady Airloads From Flight Measurements, Experimental Validation)

    DTIC Science & Technology

    2000-05-01

    gage en vol de rdponses de jauges de contraintes en responses in maneuver, illustrated by an example manoeuvre, illustrd par un exemple issu de la coming...sous ddrapage, ... , braquages gouvernes,..) la forme: -Les mesures sont directement les rkponses de - minimiser Z = Q(k - Xj tb) 2 jauges de...3, la rdponse - les facteurs de ponddration des mesures, fli ou incidence de l’avion, la rdponse de la jauge plus ou momns subjectifs, sont remplacds

  13. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  14. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November-2 December 1982. Volume 3. Embedded Computer Resources Governing Documents.

    DTIC Science & Technology

    1982-11-01

    ment, S,(1rct se’lection, design reviews, au- forwarded to HQ USAF/RDM. dits. valiatin.verification (of computer prgrams s), testinr, ani acceptance...Development phases of the system acquisition in order to prevent duplication. (7) Test planning during the production and post deployment phase will be designed...response to AIRTASKS will be idcntificd in the SLCL to prevent duplication and permit disseninacion of the total information available, concerning the

  15. An Overview on Aerospatiale Magnetic Bearing Products for Spacecraft Attitude Control and for Industry

    NASA Technical Reports Server (NTRS)

    Samuel, Alain; Lechable, Bernard

    1996-01-01

    Aerospatiale magnetic bearings are based on the use of permanent magnets and on the control of the rotor around a zero force equilibrium point. The present developments of magnetic bearing wheels for space applications focus on the versatility of a basic design which leads to a family of reaction and momentum wheels with tailored torque and kinetic momentum, leading to competitive mass and cost. The present industrial applications concern kinetic energy accumulators, medical x-ray rotating devices, avionics equipment, cryotechnic compressors and vacuum pumps.

  16. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    NASA Astrophysics Data System (ADS)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  17. Developpements numeriques recents realises en aeroelasticite chez Dassault Aviation pour la conception des avions de combat modernes et des avions d’affaires

    DTIC Science & Technology

    2003-03-01

    combat modernes et des avions d’affaires E. Garrigues, Th. Percheron DASSAULT AVIATION DGT/DTA/IAP F-922 14, Saint-Cloud Cedex France 1. Introduction ...de vol, des acedidrations rigides et des rdponses de la structure ( jauges et acedidrations). Struturl Premdicton Grdjustments n~~~ligh Testsn~n Fig4ure

  18. OPALS: A COTS-based Tech Demo of Optical Communications

    NASA Technical Reports Server (NTRS)

    Oaida, Bogdan

    2012-01-01

    I. Objective: Deliver video from ISS to optical ground terminal via an optical communications link. a) JPL Phaeton/Early Career Hire (ECH) training project. b) Implemented as Class-D payload. c) Downlink at approx.30Mb/s. II. Flight System a) Optical Head Beacon Acquisition Camera. Downlink Transmitter. 2-axis Gimbal. b) Sealed Container Laser Avionics Power distribution Digital I/O board III. Implementation: a) Ground Station - Optical Communications Telescope Laboratory at Table Mountain Facility b) Flight System mounted to ISS FRAM as standard I/F. Attached externally on Express Logistics Carrier.

  19. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  20. Applying Ada to Beech Starship avionics

    NASA Technical Reports Server (NTRS)

    Funk, David W.

    1986-01-01

    As Ada solidified in its development, it became evident that it offered advantages for avionics systems because of it support for modern software engineering principles and real time applications. An Ada programming support environment was developed for two major avionics subsystems in the Beech Starship. The two subsystems include electronic flight instrument displays and the flight management computer system. Both of these systems use multiple Intel 80186 microprocessors. The flight management computer provides flight planning, navigation displays, primary flight display of checklists and other pilot advisory information. Together these systems represent nearly 80,000 lines of Ada source code and to date approximately 30 man years of effort. The Beech Starship avionics systems are in flight testing.

  1. Application of industry-standard guidelines for the validation of avionics software

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  2. Assessment of avionics technology in European aerospace organizations

    NASA Technical Reports Server (NTRS)

    Martinec, D. A.; Baumbick, Robert; Hitt, Ellis; Leondes, Cornelius; Mayton, Monica; Schwind, Joseph; Traybar, Joseph

    1992-01-01

    This report provides a summary of the observations and recommendations made by a technical panel formed by the National Aeronautics and Space Administration (NASA). The panel, comprising prominent experts in the avionics field, was tasked to visit various organizations in Europe to assess the level of technology planned for use in manufactured civil avionics in the future. The primary purpose of the study was to assess avionics systems planned for implementation or already employed on civil aircraft and to evaluate future research, development, and engineering (RD&E) programs, address avionic systems and aircraft programs. The ultimate goal is to ensure that the technology addressed by NASa programs is commensurate with the needs of the aerospace industry at an international level. The panel focused on specific technologies, including guidance and control systems, advanced cockpit displays, sensors and data networks, and fly-by-wire/fly-by-light systems. However, discussions the panel had with the European organizations were not limited to these topics.

  3. An Analysis of the Modes and States for Generic Avionics

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.

    1993-01-01

    The objective of this study was to develop a topology for describing the behavior of mission, vehicle and system/substem entities in new flight vehicle designs based on the use of open standards. It also had to define and describe the modes and states which may be used in generic avionics behavioral descriptions, describe their interrelationships, and establish a method for applying generic avionics to actual flight vehicle designs.

  4. Highly Efficient Transmitter for High Peak to Average Power Ratio (PAPR) Waveforms

    DTIC Science & Technology

    2011-01-19

    on the modulated signal topology. N00039-10-C-0071 Page 1 ACRONYM DESCRIPTION FREQUENCY Lower Upper MHz MHz ACAS Avionics Identification ...450 GSM Global Mobile Communications 380 921 HAVE QUICK Military Aircraft Radio 225 400 IFF Avionics Identification . Collision Avoidance and...Channel Ground Air Radio System 30 88 TCAS Avionics Identification , Collision Avoidance and Traffic Alert 1030 1090 VIII Air Traffic Control (Civilian

  5. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  6. AVION: A detailed report on the preliminary design of a 79-passenger, high-efficiency, commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Mayfield, William; Perkins, Brett; Rogan, William; Schuessler, Randall; Stockert, Joe

    1990-01-01

    The Avion is the result of an investigation into the preliminary design for a high-efficiency commercial transport aircraft. The Avion is designed to carry 79 passengers and a crew of five through a range of 1,500 nm at 455 kts (M=0.78 at 32,000 ft). It has a gross take-off weight of 77,000 lb and an empty weight of 42,400 lb. Currently there are no American-built aircraft designed to fit the 60 to 90 passenger, short/medium range marketplace. The Avion gathers the premier engineering achievements of flight technology and integrates them into an aircraft which will challenge the current standards of flight efficiency, reliability, and performance. The Avion will increase flight efficiency through reduction of structural weight and the improvement of aerodynamic characteristics and propulsion systems. Its design departs from conventional aircraft design tradition with the incorporation of a three-lifting-surface (or tri-wing) configuration. Further aerodynamic improvements are obtained through modest main wing forward sweeping, variable incidence canards, aerodynamic coupling between the canard and main wing, leading edge extensions, winglets, an aerodynamic tailcone, and a T-tail empennage. The Avion is propelled by propfans, which are one of the most promising developments for raising propulsive efficiencies at high subsonic Mach numbers. Special attention is placed on overall configuration, fuselage layout, performance estimations, component weight estimations, and planform design. Leading U.S. technology promises highly efficient flight for the 21st century; the Avion will fulfill this promise to passenger transport aviation.

  7. KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

    NASA Image and Video Library

    2003-05-06

    KENNEDY SPACE CENTER, FLA. - A closeup of the cruise stage to be mated to the Mars Exploration Rover 2 (MER-2) entry vehicle. The cruise stage includes fuel tanks, thruster clusters and avionics for steering and propulsion. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-2 is scheduled to launch June 5 as MER-A aboard a Delta rocket from Cape Canaveral Air Force Station.

  8. Lean spacecraft avionics trade study

    NASA Technical Reports Server (NTRS)

    Main, John A.

    1994-01-01

    Spacecraft design is generally an exercise in design trade-offs: fuel vs. weight, power vs. solar cell area, radiation exposure vs. shield weight, etc. Proper analysis of these trades is critical in the development of lightweight, efficient, 'lean' satellites. The modification of the launch plans for the Magnetosphere Imager (MI) to a Taurus launcher from the much more powerful Delta has forced a reduction in spacecraft weight availability into the mission orbit from 1300 kg to less than 500 kg. With weight now a driving factor it is imperative that the satellite design be extremely efficient and lean. The accuracy of engineering trades now takes on an added importance. An understanding of spacecraft subsystem interactions is critical in the development of a good spacecraft design, yet it is a challenge to define these interactions while the design is immature. This is currently an issue in the development of the preliminary design of the MI. The interaction and interfaces between this spacecraft and the instruments it carries are currently unclear since the mission instruments are still under development. It is imperative, however, to define these interfaces so that avionics requirements ideally suited to the mission's needs can be determined.

  9. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  10. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  11. The implementation of fail-operative functions in integrated digital avionics systems

    NASA Technical Reports Server (NTRS)

    Osoer, S. S.

    1976-01-01

    System architectures which incorporate fail operative flight guidance functions within a total integrated avionics complex are described. It is shown that the mixture of flight critical and nonflight critical functions within a common computer complex is an efficient solution to the integration of navigation, guidance, flight control, display, and flight management. Interfacing subsystems retain autonomous capability to avoid vulnerability to total avionics system shutdown as a result of only a few failures.

  12. Portable Automated Test Station: Using Engineering-Design Partnerships to Replace Obsolete Test Systems

    DTIC Science & Technology

    2015-04-01

    troubleshooting avionics system faults while the aircraft is on the ground. The core component of the PATS-30, the ruggedized laptop, is no longer sustainable...as well as trouble shooting avionics system faults while the aircraft is on the ground. The PATS-70 utilizes up-to-date, sustainable technology for...Operational Flight Program (OFP) software loading and diagnostic avionics system testing and includes additional TPSs to enhance its capability

  13. Avionics Simulation, Development and Software Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  14. Software fault tolerance for real-time avionics systems

    NASA Technical Reports Server (NTRS)

    Anderson, T.; Knight, J. C.

    1983-01-01

    Avionics systems have very high reliability requirements and are therefore prime candidates for the inclusion of fault tolerance techniques. In order to provide tolerance to software faults, some form of state restoration is usually advocated as a means of recovery. State restoration can be very expensive for systems which utilize concurrent processes. The concurrency present in most avionics systems and the further difficulties introduced by timing constraints imply that providing tolerance for software faults may be inordinately expensive or complex. A straightforward pragmatic approach to software fault tolerance which is believed to be applicable to many real-time avionics systems is proposed. A classification system for software errors is presented together with approaches to recovery and continued service for each error type.

  15. HH-65A Dolphin digital integrated avionics

    NASA Technical Reports Server (NTRS)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  16. AFTI/F-16

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The AFTI F-16 in its final configuration, flying in the vicinity of Edwards Air Force Base, California. During this phase, the two forward infrared turrets were added ahead of the cockpit, the chin canards were removed, and the aircraft was repainted in a standard Air Force scheme. A fuel drop tank is visible below the wing. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.

  17. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  18. Data annotation, recording and mapping system for the US open skies aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.W.; Goede, W.F.; Farmer, R.G.

    1996-11-01

    This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less

  19. New capabilities for older aircraft: A study of pilot integration of retro-fit digital avionics to analog-instrumented flight decks

    NASA Astrophysics Data System (ADS)

    Breuer, Glynn E.

    The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.

  20. AFTI/F16 Automated Maneuvering Attack System Test Reports/Special Technologies and Outlook.

    DTIC Science & Technology

    1986-07-11

    Multiplex Data Bus A-A Air-To-Air A-S Air-to-Surface AFTI Advanced Fighter Technology Integration SYSTEM DESIGN AGL Above-Ground-Level AMAS Automated...Maneuvering Attack System Design requirements for the AFTI/F-16 are driven AMUX Avionics Multiplex Data Bus by realistic air combat scenarios and are...the avionics subsystem IFIM and avionics systems are single-thread, much of the sensed various flight control sensors. Additionally, along with data

  1. Development of Avionics Installation Interface Standards. Revision.

    DTIC Science & Technology

    1981-08-01

    requirements for new avionics in the Navy during the period 1985 to 1990, however, will be the F-18 programa , which is design-committed (and which will probably...programs that will continue late into the 1980s. Avionics programs currently in development will establish a de facto func- tional baseline as well...the equip- ment, appropriate sensors must be included at the cooling-air inlet to de - tect air-flow conditions directly, or to detect excessive heat

  2. A method of distributed avionics data processing based on SVM classifier

    NASA Astrophysics Data System (ADS)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  3. Study objectives: Will commercial avionics do the job? Improvements needed?

    NASA Technical Reports Server (NTRS)

    Nasr, Hatem

    1992-01-01

    Improvements in commercial avionics are covered in a viewgraph format. Topics include the following: computer architecture, user requirements, Boeing 777 aircraft, cost effectiveness, and implemention.

  4. Guidelines for application of fluorescent lamps in high-performance avionic backlight systems

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.

    1997-07-01

    Fluorescent lamps have proven to be well suited for use in high performance avionic backlight systems as demonstrated by numerous production applications for both commercial and military cockpit displays. Cockpit display applications include: Boeing 777, new 737s, F-15, F-16, F-18, F-22, C- 130, Navy P3, NASA Space Shuttle and many others. Fluorescent lamp based backlights provide high luminance, high lumen efficiency, precision chromaticity and long life for avionic active matrix liquid crystal display applications. Lamps have been produced in many sizes and shapes. Lamp diameters range from 2.6 mm to over 20 mm and lengths for the larger diameter lamps range to over one meter. Highly convoluted serpentine lamp configurations are common as are both hot and cold cathode electrode designs. This paper will review fluorescent lamp operating principles, discuss typical requirements for avionic grade lamps, compare avionic and laptop backlight designs and provide guidelines for the proper application of lamps and performance choices that must be made to attain optimum system performance considering high luminance output, system efficiency, dimming range and cost.

  5. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  6. Advanced software integration: The case for ITV facilities

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.

  7. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  8. A Study of Wavelength Division Multiplexing for Avionics Applications.

    DTIC Science & Technology

    1982-08-01

    Force system II, an eight-wavelength, codirectional, 300-Mb/s, point-to-point system, was designed using laser diode sources with channel wavelengths...Injection Locking 72 4.2.6 Laser Packaging 77 4.3 System Simulation Results 77 4.3.1 LED Systems 78 4.3.1.1 System I 79 4.3.1.2 System III 82 4.3.2 Laser ...FIGURE TITLE PAGE 1.0-1 WDM Study Organization 4 2.3.1-1 Spectral Emission of an InGaAsP Laser Diode 14 2.3.1-2 Spectral Emission of an LED 16 2.3.1-3

  9. Pegasus XL CYGNSS Second Launch Attempt

    NASA Image and Video Library

    2016-12-15

    In the Mission Director's Center at Cape Canaveral Air Force Station, Andy Bundy, Avionics lead, left, and Pat Simpkins, director of Kennedy Space Center Engineering, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.

  10. Proceedings Papers of the AFSC (Air Force Systems Command) Avionics Standardization Conference (2nd) Held at Dayton, Ohio on 30 November - 2 December 1982. Volume 10. Addendum.

    DTIC Science & Technology

    1982-11-01

    IT A REQUIREMENT, AND WILL THE PROCURING ACTIVI v MAKE IT A CRITERION IN SOURCE SELECTION? STANDARDS DE \\ : LOME’ IS A TECHNICAL ISSUE, BUT...involving an incrf Asr ,r b r-oad(-: ast (omponent. Thus our very c.unrept of syst er* r enough to "domesticate" on terra firma , now externds i nto heretofore...identify schedule critical full scale development efforts that are being done in a mature language (such as J73 or FORTRAN) and fund parallel de

  11. An engineering approach to the use of expert systems technology in avionics applications

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Brazee, M.; Brumbaugh, R. W.

    1986-01-01

    The concept of using a knowledge compiler to transform the knowledge base and inference mechanism of an expert system into a conventional program is presented. The need to accommodate real-time systems requirements in applications such as embedded avionics is outlined. Expert systems and a brief comparison of expert systems and conventional programs are reviewed. Avionics applications of expert systems are discussed before the discussions of applying the proposed concept to example systems using forward and backward chaining.

  12. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  13. Avionics Reliability, Its Techniques and Related Disciplines.

    DTIC Science & Technology

    1979-10-01

    USAF F-16s. C.J.P.Haynes, UK You said that if one of the 5 nations consumes more than its fair share of the combined spares pool then the item manager ... MANAGEMENT OF THE AVIONIC SYSTEM OF A MILITARY STRIKE AIRCRAFT by A.P.White and J.D.Pavier 29 SESSION IV - SOFTWARE RELIABILITY’ INTRODUCTION TO...ASPECT by D.J.Harris 37 SESSION V - AVIONICS LOGISTICS SUPPORT ASPECTS INTEGRATED LOGISTICS SUPPORT ADDS ANOTHER DIMENSION TO MATRIX MANAGEMENT by

  14. The Design, Development and Testing of Complex Avionics Systems: Conference Proceedings Held at the Avionics Panel Symposium in Las Vegas, Nevada on 27 April-1 May 1987

    DTIC Science & Technology

    1987-12-01

    Normally, the system is decomposed into manageable parts with accurately defined interfaces. By rigidly controlling this process, aerospace companies have...Reference A CHANGE IN SYSTEM DESIGN EMPHASIS: FROM MACHINE TO MAN by M.L.Metersky and J.L.Ryder 16 SESSION I1 - MANAGING THE FUl URE SYSTEM DESIGN...PROCESS MANAGING ADVANCED AVIONIC SYSTEM DESIGN by P.Simons 17 ERGONOMIE PSYCHOSENSORIELLE DES COCKPITS, INTERET DES SYSTEMES INFORMATIQUES INTELLIGENTS

  15. Organization and use of a Software/Hardware Avionics Research Program (SHARP)

    NASA Technical Reports Server (NTRS)

    Karmarkar, J. S.; Kareemi, M. N.

    1975-01-01

    The organization and use is described of the software/hardware avionics research program (SHARP) developed to duplicate the automatic portion of the STOLAND simulator system, on a general-purpose computer system (i.e., IBM 360). The program's uses are: (1) to conduct comparative evaluation studies of current and proposed airborne and ground system concepts via single run or Monte Carlo simulation techniques, and (2) to provide a software tool for efficient algorithm evaluation and development for the STOLAND avionics computer.

  16. Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Barton, Richard J.; Wagner, Raymond S.; Lansdowne, Chatwin

    2014-01-01

    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight.

  17. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    NASA Technical Reports Server (NTRS)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  18. Cockpit avionics integration and automation

    NASA Technical Reports Server (NTRS)

    Pischke, Keith M.

    1990-01-01

    Information on cockpit avionics integration and automation is given in viewgraph form, with a number of photographs. The benefits of cockpit integration are listed. The MD-11 flight guidance/flight deck system is illustrated.

  19. Fault-tolerant software - Experiment with the sift operating system. [Software Implemented Fault Tolerance computer

    NASA Technical Reports Server (NTRS)

    Brunelle, J. E.; Eckhardt, D. E., Jr.

    1985-01-01

    Results are presented of an experiment conducted in the NASA Avionics Integrated Research Laboratory (AIRLAB) to investigate the implementation of fault-tolerant software techniques on fault-tolerant computer architectures, in particular the Software Implemented Fault Tolerance (SIFT) computer. The N-version programming and recovery block techniques were implemented on a portion of the SIFT operating system. The results indicate that, to effectively implement fault-tolerant software design techniques, system requirements will be impacted and suggest that retrofitting fault-tolerant software on existing designs will be inefficient and may require system modification.

  20. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  1. Artist Rendition of InSight

    NASA Image and Video Library

    2012-08-20

    Artist rendition of the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter and Gravity Recovery and Interior Laboratory missions. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA16079

  2. Combat Aircraft Noise held in Bonn, Germany on 23-25 October 1991 (Le Bruit Genere par les Avions de Combat)

    DTIC Science & Technology

    1992-04-01

    study suggeet that the penalty in needed Important factors see"m to be the onset but it may be neceesary to extend the rate of the flyovers. In aerieas...the average will underestimate the impcat at laboratOry studies the onset and decay those operations. These two factors . rates have the eams level at...events st a SEL of 115 studies and found that fundamentally all dO gives an Leq(8h) of 88 d8 while Oil tended to support a 10 LagioN event factor events

  3. Space Shuttle Avionics: a Redundant IMU On-Board Checkout and Redundancy Management System

    NASA Technical Reports Server (NTRS)

    Mckern, R. A.; Brown, D. G.; Dove, D. W.; Gilmore, J. P.; Landey, M. E.; Musoff, H.; Amand, J. S.; Vincent, K. T., Jr.

    1972-01-01

    A failure detection and isolation philosophy applicable to multiple off-the-shelf gimbaled IMUs are discussed. The equations developed are implemented and evaluated with actual shuttle trajectory simulations. The results of these simulations are presented for both powered and unpowered flight phases and at operational levels of four, three, and two IMUs. A multiple system checkout philosophy is developed and simulation results presented. The final task develops a laboratory test plan and defines the hardware and software requirements to implement an actual multiple system and evaluate the interim study results for space shuttle application.

  4. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Astrophysics Data System (ADS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-09-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  5. Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    NASA Technical Reports Server (NTRS)

    Ingels, Frank M.; Owens, John K.; Daniel, Steven P.; Ahmad, F.; Couvillion, W.

    1988-01-01

    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined.

  6. Space shuttle low cost/risk avionics study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.

  7. Projection display technology for avionics applications

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  8. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  9. Vertical Guidance Performance Analysis of the L1–L5 Dual-Frequency GPS/WAAS User Avionics Sensor

    PubMed Central

    Jan, Shau-Shiun

    2010-01-01

    This paper investigates the potential vertical guidance performance of global positioning system (GPS)/wide area augmentation system (WAAS) user avionics sensor when the modernized GPS and Galileo are available. This paper will first investigate the airborne receiver code noise and multipath (CNMP) confidence (σair). The σair will be the dominant factor in the availability analysis of an L1–L5 dual-frequency GPS/WAAS user avionics sensor. This paper uses the MATLAB Algorithm Availability Simulation Tool (MAAST) to determine the required values for the σair, so that an L1–L5 dual-frequency GPS/WAAS user avionics sensor can meet the vertical guidance requirements of APproach with Vertical guidance (APV) II and CATegory (CAT) I over conterminous United States (CONUS). A modified MAAST that includes the Galileo satellite constellation is used to determine under what user configurations WAAS could be an APV II system or a CAT I system over CONUS. Furthermore, this paper examines the combinations of possible improvements in signal models and the addition of Galileo to determine if GPS/WAAS user avionics sensor could achieve 10 m Vertical Alert Limit (VAL) within the service volume. Finally, this paper presents the future vertical guidance performance of GPS user avionics sensor for the United States’ WAAS, Japanese MTSAT-based satellite augmentation system (MSAS) and European geostationary navigation overlay service (EGNOS). PMID:22319263

  10. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    NASA Technical Reports Server (NTRS)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  11. Modular Open Network ARCHitecture (MONARCH): Transitioning plug-and-play to aerospace

    NASA Astrophysics Data System (ADS)

    Martin, M.; Lyke, J.

    The Air Force Research Laboratory (AFRL) developed an initial plug-and-play (PnP) capability for spacecraft, similar to USB on personal computers, which better defines hardware and software interfaces and incorporates self-discovery and auto-configuration in order to simplify spacecraft development and reduce cost and schedule. PnP technology was matured through a suborbital PnP flight experiment in September 2007 and a secondary Spacecraft Avionics Experiment (SAE) payload on the TacSat-3 satellite, which launched in May 2009. AFRL developed and submitted a complete set of PnP standards through the American Institute of Aeronautics and Astronautics (AIAA) in 2011. Space electronics to adapt existing satellite components and implement full PnP on satellites in accordance with these AFRL standards was independently developed in alternate hardware implementations by Goodrich Corp under AFRL and by Northrop Grumman under Operationally Responsive Space (ORS). In 2011, AFRL conducted a cost-benefit analysis of PnP and assembled a collaborative review board (CRB) in Sept 2011 to evaluate PnP. This CRB was comprised of representatives from Space and Missiles Center (SMC), National Reconnaissance Organization (NRO), Naval Research Laboratory (NRL), John Hopkins University (JHU) Applied Physics Laboratory (APL), The Aerospace Corporation, and several large commercial and DOD satellite developers. This CRB laid out a transition path to develop and implement PnP standards for implementation in large (> 1000 kg) DOD and commercial satellites. Transition of PnP technology into operational systems continues in PnP architecture studies for SMC, PnP products from multiple space industry vendors, commercial implementations of PnP, and the Northrop Grumman ORS-2 spacecraft currently project to fly in 2014-2015. This paper provides details related to development of PnP technology, AFRL's cost-benefit analysis of PnP, recommendations of the PnP CRB, and on-going efforts to mature - nd fly PnP technology.

  12. Avionics Maintenance Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This publication contains statewide standards for the avionics maintenance technology program in Georgia. The standards are divided into the following categories: foundations, diploma/degree (philosophy, purpose, goals, program objectives, availability, evaluation); admissions, diploma/degree (admission requirements, provisional admission…

  13. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    NASA Technical Reports Server (NTRS)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  14. Payload accommodations. Avionics payload support architecture

    NASA Technical Reports Server (NTRS)

    Creasy, Susan L.; Levy, C. D.

    1990-01-01

    Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.

  15. Space Generic Open Avionics Architecture (SGOAA) standard specification

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    The purpose of this standard is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of a specific avionics hardware/software system. This standard defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  16. Space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Hanaway, John F.; Moorehead, Robert W.

    1989-01-01

    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included.

  17. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  18. SMART: The Future of Spaceflight Avionics

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    2010-01-01

    A novel avionics approach is necessary to meet the future needs of low cost space and lunar missions that require low mass and low power electronics. The current state of the art for avionics systems are centralized electronic units that perform the required spacecraft functions. These electronic units are usually custom-designed for each application and the approach compels avionics designers to have in-depth system knowledge before design can commence. The overall design, development, test and evaluation (DDT&E) cycle for this conventional approach requires long delivery times for space flight electronics and is very expensive. The Small Multi-purpose Advanced Reconfigurable Technology (SMART) concept is currently being developed to overcome the limitations of traditional avionics design. The SMART concept is based upon two multi-functional modules that can be reconfigured to drive and sense a variety of mechanical and electrical components. The SMART units are key to a distributed avionics architecture whereby the modules are located close to or right at the desired application point. The drive module, SMART-D, receives commands from the main computer and controls the spacecraft mechanisms and devices with localized feedback. The sensor module, SMART-S, is used to sense the environmental sensors and offload local limit checking from the main computer. There are numerous benefits that are realized by implementing the SMART system. Localized sensor signal conditioning electronics reduces signal loss and overall wiring mass. Localized drive electronics increase control bandwidth and minimize time lags for critical functions. These benefits in-turn reduce the main processor overhead functions. Since SMART units are standard flight qualified units, DDT&E is reduced and system design can commence much earlier in the design cycle. Increased production scale lowers individual piece part cost and using standard modules also reduces non-recurring costs. The benefit list continues, but the overall message is already evident: the SMART concept is an evolution in spacecraft avionics. SMART devices have the potential to change the design paradigm for future satellites, spacecraft and even commercial applications.

  19. Flight Avionics Hardware Roadmap

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; hide

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies

  20. Overview of Avionics and Electrical Ground Support Equipment

    NASA Technical Reports Server (NTRS)

    Clarke, Sean C.

    2011-01-01

    Presents an overview of the Crew Module Avionics and the associated Electrical Ground Support Equipment for the Pad Abort 1 flight test of the Orion Program. A limited selection of the technical challenges and solutions are highlighted.

  1. General Aviation Avionics Statistics : 1974

    DOT National Transportation Integrated Search

    1977-08-01

    The primary objectives of this study were to (1) provide a framework for viewing the general aviation (GA) aircraft fleet, which would relate airborne avionics equipment to the capability for an aircraft to perform in the National Airspace System, an...

  2. General Aviation Avionics Statistics : 1978 Data

    DOT National Transportation Integrated Search

    1980-12-01

    The report presents avionics statistics for the 1978 general aviation (GA) aircraft fleet and is the fifth in a series titled "General Aviation Statistics." The statistics are presented in a capability group framework which enables one to relate airb...

  3. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  4. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  5. HLLV avionics requirements study and electronic filing system database development

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report provides a summary of achievements and activities performed under Contract NAS8-39215. The contract's objective was to explore a new way of delivering, storing, accessing, and archiving study products and information and to define top level system requirements for Heavy Lift Launch Vehicle (HLLV) avionics that incorporate Vehicle Health Management (VHM). This report includes technical objectives, methods, assumptions, recommendations, sample data, and issues as specified by DPD No. 772, DR-3. The report is organized into two major subsections, one specific to each of the two tasks defined in the Statement of Work: the Index Database Task and the HLLV Avionics Requirements Task. The Index Database Task resulted in the selection and modification of a commercial database software tool to contain the data developed during the HLLV Avionics Requirements Task. All summary information is addressed within each task's section.

  6. Human Exploration and Avionic Technology Challenges

    NASA Technical Reports Server (NTRS)

    Benjamin, Andrew L.

    2005-01-01

    For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.

  7. Analysis of Autopilot Behavior

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."

  8. Spacecraft Avionics Software Development Then and Now: Different but the Same

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  9. Transcription of the Workshop on General Aviation Advanced Avionics Systems

    NASA Technical Reports Server (NTRS)

    Tashker, M. (Editor)

    1975-01-01

    Papers are presented dealing with the design of reliable, low cost, advanced avionics systems applicable to general aviation in the 1980's and beyond. Sensors, displays, integrated circuits, microprocessors, and minicomputers are among the topics discussed.

  10. Evaluation of optical connectors for consideration in military avionics

    NASA Astrophysics Data System (ADS)

    Uhlhorn, Brian L.; Drexler, Gregory M.; Nelson, Ryan L.; Stevens, Rick C.

    2006-08-01

    This paper describes the method used to evaluate single-mode optical connectors under consideration for military avionics platforms. This testing is described in terms of the appropriate fiber optics test procedures (FOTPs) from the TIA/EIA-455 series.

  11. Surface operations usability study utilizing Capstone phase I avionics : quick look report

    DOT National Transportation Integrated Search

    2000-10-07

    Evaluate usability, suitability and acceptability of of the surface moving map implemented within Capstone Phase 1 Avionics for surface operations : Task 1: Airport Surface Situational Awareness (ASSA) : Task 2: Surface-Final Approach Runway Occupanc...

  12. Analysis of technology requirements and potential demand for general aviation avionics systems for operation in the 1980's

    NASA Technical Reports Server (NTRS)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.

  13. Methode de conception dirigee par les modeles pour les systemes avioniques modulaires integres basee sur une approche de cosimulation

    NASA Astrophysics Data System (ADS)

    Bao, Lin

    In the aerospace industry, with the development of avionic systems becomes more and more complex, the integrated modular avionics (IMA) architecture was proposed to replace its predecessor - the federated architecture, in order to reduce the weight, power consumption and the dimension of the avionics equipment. The research work presented in this thesis, which is considered as a part of the research project AVIO509, aims to propose to the aviation industry a set of time-effective and cost-effective solutions for the development and the functional validation of IMA systems. The proposed methodologies mainly focus on two design flows that are based on: 1) the concept of model-driven engineering design and 2) a cosimulation platform. In the first design flow, the modeling language AADL is used to describe the IMA architecture. The environment OCARINA, a code generator initially designed for POK, was modified so that it can generate avionic applications from an AADL model for the simulator SIMA (an IMA simulator compliant to the ARINC653 standards). In the second design flow, Simulink is used to simulate the external world of IMA module thanks to the availability of avionic library that can offer lots of avionics sensors and actuators, and as well as its effectiveness in creating the Simulink models. The cosimulation platform is composed of two simulators: Simulink for the simulation of peripherals and SIMA for the simulation of IMA module, the latter is considered as an ideal alternative for the super expensive commercial development environment. In order to have a good portability, a SIMA partition is reserved as the role of " adapter " to synchronize the communication between these two simulators via the TCP/IP protocol. When the avionics applications are ported to the implementation platform (such as PikeOS) after the simulation, there is only the " adapter " to be modified because the internal communication and the system configuration are the same. An avionics application was developed as a case study, in order to demonstrate the validation of the proposed design flows. The research presented in this paper is a continuation of project of the AVIO509 research team, and parallelly may be extended in the future work.

  14. Effects on motor unit potentiation and ground reaction force from treadmill exercise

    NASA Technical Reports Server (NTRS)

    Elam, Reid P.

    1989-01-01

    This study was conducted to analyze the characteristics of motor unit potentiation (MUP) and ground reaction force (GRF) in treadmill exercise at the inclines of 0, 5.5 and 11 percent with conjuctive speeds of 7.5, 6, and 5 mph respectively. These speeds and corresponding inclines were set to provide equivalent physiological workloads at 12.5 METS. EMG recordings were taken from the rectus femoris and gastrocnemius of the right leg from 5 subjects. Simultaneous GRF recordings were obtained from a Delmar Avionic treadmill rigged with load cells. Measures for MUP and GRF were taken over a period containing 10 strides at steady pace. It was concluded that the gastrocnemius was more evident in EMG activity in all speed/incline settings over the rectus femoris, and that inclines from 5.5 to 11 percent produced greater GRF's over 0 percent. Recommendations for future studies was made.

  15. Supportability evaluation of thermoplastic and thermoset composites

    NASA Technical Reports Server (NTRS)

    Chanani, G. R.; Boldi, D.; Cramer, S. G.; Heimerdinger, M. W.

    1990-01-01

    Nearly 300 advanced composite components manufactured by Northrop Corporation are flying on U.S. Air Force and U.S. Navy supersonic aircraft as part of a three-year Air Force/Navy/Northrop supportability evaluation. Both thermoplastic and high-temperature thermoset composites were evaluated for their in-service performance on 48 USAF and Navy F-5E fighter and USAFT-38 trainer aircraft in the first large-scale, long-term maintenance evaluation of these advanced materials. Northrop manufactured four types of doors for the project-avionics bay access, oil fill, inlet duct inspection, and a main landing gear door. The doors are made of PEEK (polyetheretherketone) thermoplastic, which is tougher and potentially less expensive to manufacture than conventional composites; and 5250-3 BMI (bismaleimide) thermoset, which is manufactured like a conventional epoxy composite but can withstand higher service temperatures. Results obtained so far indicate that both the BMI and PEEK are durable with PEEK being somewhat better than BMI.

  16. Shuttle Hitchhiker Experiment Launcher System (SHELS)

    NASA Technical Reports Server (NTRS)

    Daelemans, Gerry

    1999-01-01

    NASA's Goddard Space Flight Center Shuttle Small Payloads Project (SSPP), in partnership with the United States Air Force and NASA's Explorer Program, is developing a Shuttle based launch system called SHELS (Shuttle Hitchhiker Experiment Launcher System), which shall be capable of launching up to a 400 pound spacecraft from the Shuttle cargo bay. SHELS consists of a Marman band clamp push-plate ejection system mounted to a launch structure; the launch structure is mounted to one Orbiter sidewall adapter beam. Avionics mounted to the adapter beam will interface with Orbiter electrical services and provide optional umbilical services and ejection circuitry. SHELS provides an array of manifesting possibilities to a wide range of satellites.

  17. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  18. 75 FR 53863 - Amendment of Restricted Area R-5113; Socorro, NM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... using agency of Restricted Area R- 5113, Socorro, NM, to ``U.S. Air Force, Air Force Research Laboratory....S. Air Force, Air Force Research Laboratory.'' This change is required to reflect the change in the... words ``Using Agency. U.S. Air Force, Air Force Research Laboratory.'' Issued in Washington, DC, on...

  19. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    1998-10-05

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  20. United States Air Force Summer Research Program -- 1993. Volume 3. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE, NEW MEXICO SPONSORED BY: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ROLLING AIR FORCE BASE, WASHINGTON ,D.C...Report for. Summer Faculty Research Program at Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Offlce of Scientific Research ...Prcgram Phillips Laboratory Kirtland

  1. Avionics Maintenance Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide presents the avionics maintenance technology curriculum for technical institutes in Georgia. The general information section contains the following for both the diploma program and the associate degree program: purpose and objectives; program description, including admissions, typical job titles, and accreditation and…

  2. Survey of symbology for aeronautical charts and electronic displays : navigation aids, airports, lines, and linear patterns

    DOT National Transportation Integrated Search

    2008-09-01

    This industry survey documents the symbols for navigation aids, airports, lines, and linear patterns currently in use by avionics manufactureres and chart providers for depicting aeronautical charting information. Nine avionics display manufacturers ...

  3. Description of a dual fail-operational redundant strapdown inertial measurement unit for integrated avionics systems research

    NASA Technical Reports Server (NTRS)

    Bryant, W. H.; Morrell, F. R.

    1981-01-01

    Attention is given to a redundant strapdown inertial measurement unit for integrated avionics. The system consists of four two-degree-of-freedom turned rotor gyros and four two-degree-of-freedom accelerometers in a skewed and separable semi-octahedral array. The unit is coupled through instrument electronics to two flight computers which compensate sensor errors. The flight computers are interfaced to the microprocessors and process failure detection, isolation, redundancy management and flight control/navigation algorithms. The unit provides dual fail-operational performance and has data processing frequencies consistent with integrated avionics concepts presently planned.

  4. VCSEL-based fiber optic link for avionics: implementation and performance analyses

    NASA Astrophysics Data System (ADS)

    Shi, Jieqin; Zhang, Chunxi; Duan, Jingyuan; Wen, Huaitao

    2006-11-01

    A Gb/s fiber optic link with built-in test capability (BIT) basing on vertical-cavity surface-emitting laser (VCSEL) sources for military avionics bus for next generation has been presented in this paper. To accurately predict link performance, statistical methods and Bit Error Rate (BER) measurements have been examined. The results show that the 1Gb/s fiber optic link meets the BER requirement and values for link margin can reach up to 13dB. Analysis shows that the suggested photonic network may provide high performance and low cost interconnections alternative for future military avionics.

  5. Advanced Avionics and Processor Systems for Space and Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Ray, Robert E.; Johnson, Michael A.; Cressler, John D.

    2009-01-01

    NASA's newly named Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to mature and develop the avionic and processor technologies required to fulfill NASA's goals for future space and lunar exploration. Over the past year, multiple advancements have been made within each of the individual AAPS technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of the project's recent technology advancements, discusses their application to Constellation projects, and addresses the project's plans for the coming year.

  6. Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications

    NASA Astrophysics Data System (ADS)

    Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves

    2015-09-01

    The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.

  7. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    NASA Technical Reports Server (NTRS)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  8. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  9. General aviation activity and avionics survey. Annual report for CY81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.; Carter, P.W.

    1982-12-01

    This report presents the results and a description of the 1981 General Aviation Activity and Avionics Survey. The survey was conducted during 1982 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 8.9 percent of the general aviation fleet and obtained a response rate of 61 percent. Survey results are based upon response but are expanded upward to represent the total population. Survey results revealed that during 1981 anmore » estimated 40.7 million hours of flying time were logged by the 213,226 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 188.1 hours. The active aircraft represented about 83 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates. In addition, tables are included for detailed analysis of the avionics capabilities of GA fleet.« less

  10. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  11. Methodologie de modelisation aerostructurelle d'une aile utilisant un logiciel de calcul aerodynamique et un logiciel de calcul par elements finis =

    NASA Astrophysics Data System (ADS)

    Communier, David

    Lors de l'etude structurelle d'une aile d'avion, il est difficile de modeliser fidelement les forces aerodynamiques subies par l'aile de l'avion. Pour faciliter l'analyse, on repartit la portance maximale theorique de l'aile sur son longeron principal ou sur ses nervures. La repartition utilisee implique que l'aile entiere sera plus resistante que necessaire et donc que la structure ne sera pas totalement optimisee. Pour pallier ce probleme, il faudrait s'assurer d'appliquer une repartition aerodynamique de la portance sur la surface complete de l'aile. On serait donc en mesure d'obtenir une repartition des charges sur l'aile beaucoup plus fiable. Pour le realiser, nous aurons besoin de coupler les resultats d'un logiciel calculant les charges aerodynamiques de l'aile avec les resultats d'un logiciel permettant sa conception et son analyse structurelle. Dans ce projet, le logiciel utilise pour calculer les coefficients de pression sur l'aile est XFLR5 et le logiciel permettant la conception et l'analyse structurelle sera CATIA V5. Le logiciel XFLR5 permet une analyse rapide d'une aile en se basant sur l'analyse de ses profils. Ce logiciel calcule les performances des profils de la meme maniere que XFOIL et permet de choisir parmi trois methodes de calcul pour obtenir les performances de l'aile : Lifting Line Theory (LLT), Vortex Lattice Method (VLM) et 3D Panels. Dans notre methodologie, nous utilisons la methode de calcul 3D Panels dont la validite a ete testee en soufflerie pour confirmer les calculs sur XFLR5. En ce qui concerne la conception et l'analyse par des elements finis de la structure, le logiciel CATIA V5 est couramment utilise dans le domaine aerospatial. CATIA V5 permet une automatisation des etapes de conception de l'aile. Ainsi, dans ce memoire, nous allons decrire la methodologie permettant l'etude aerostructurelle d'une aile d'avion.

  12. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    AFRL . . . . . . . . . . . 187 11 Air Force Research Laboratory : Before and After...United States Air Force during my tenure as chief of staff—the crea - tion of the Air Force Research Laboratory ( AFRL ). As the “high technology” service...consolidate four existing laboratories into one Air Force Research Laboratory ( AFRL ) designed to lead to a more efficient and streamlined

  13. Air Force Weapons Laboratory Computational Requirements for 1976 Through 1980

    DTIC Science & Technology

    1976-01-01

    Air Force Weapons Laboratory , Attn: DYS, Kirtland AFB, NM 87117...final report was prepared by the Air Force Weapons Laboratory , Kirtland Air Force Base, New Mexico under Job Order 06CB. Dr. Clifford E. Rhoades, Jr... Force Base, New Mexico 87117 62601F, 06CB II. CONTROLLING OFFICE NAME AND ADDRESS Ai"- Force Weapons Laboratory / Jan 1076 Kirtland Air Force Base,

  14. Environmental Assessment, Balloon Launch and Landing Operations, Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2012-06-01

    Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) located at Kirtland Air Force Base is preparing an Environmental Assessment (EA) for...United States Air Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) located at Kirtland Air Force Base is preparing an Environmental...United States Air Force Research Laboratory , Space Vehicles Directorate ( AFRL

  15. Risetime distortion of Shuttle Ku-band payload 50 MBPS data due to coaxial cable skin effects

    NASA Technical Reports Server (NTRS)

    Schadelbauer, S.; Vang, H. A.

    1980-01-01

    This paper discusses distortion of digital signals generated in the Space Shuttle Ku-band communications systems. Specifically, the degradation considered is due to coaxial cables which interface data and clock from a source located in the payload bay to the KuSPA (Ku-Band Signal Processor Assembly) located in the avionics bay of the Shuttle. Due to the length (nearly 100 feet) and relatively narrow bandwidth of the cable, the clock and data waveforms are significantly affected by this transmission medium. This paper presents a closed form model that closely approximates the distortion of the waveforms measured in laboratory tests.

  16. An expert system environment for the Generic VHSIC Spaceborne Computer (GVSC)

    NASA Astrophysics Data System (ADS)

    Cockerham, Ann; Labhart, Jay; Rowe, Michael; Skinner, James

    The authors describe a Phase II Phillips Laboratory Small Business Innovative Research (SBIR) program being performed to implement a flexible and general-purpose inference environment for embedded space and avionics applications. This inference environment is being developed in Ada and takes special advantage of the target architecture, the GVSC. The GVSC implements the MIL-STD-1750A ISA and contains enhancements to allow access of up to 8 MBytes of memory. The inference environment makes use of the Merit Enhanced Traversal Engine (METE) algorithm, which employs the latest inference and knowledge representation strategies to optimize both run-time speed and memory utilization.

  17. Operational benefits from the terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.; Schmitz, R. A.; Clark, L. V.

    1979-01-01

    The NASA Terminal Configured Vehicle is a flying laboratory used to conduct research and development on improved airborne systems (including avionics) and operational flight procedures, with particular emphasis on utilization in the terminal area environment. The objectives of this technology development activity, focused on conventional transport aircraft, are to develop and demonstrate improvements which can lead to increased airport and runway capacity, increased air traffic controller productivity, energy efficient terminal area operations, reduced weather minima with safety, and reduced community noise by use of appropriate procedures. This paper discusses some early results of this activity in addition to defining present efforts and future research plans.

  18. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  19. High-performance large-area AMLCD avionic display module

    NASA Astrophysics Data System (ADS)

    Syroid, Daniel D.; Hansen, Glenn A.

    1995-06-01

    There is a need for a reliable source of high performance large area sunlight readable active matrix liquid crystal displays (AMLCDs) for avionic and military land vehicle applications. Image Quest has developed an avionic display module (ADM) to demonstrate the capability to produce high performance avionic displays to satisfy this need. The ADM is a large area (6.24 X 8.32 inch) display with VGA compatible interface, 640 X 480 color pixels and 64 gray shades per primary color. The display features excellent color discrimination in full sunlight due to a saturated color gamut, very low specular reflectance (< 1%) and high output white luminance (200 fL). The ADM is designed from the glass up to fully meet the avionic and military application and environment. Control over all the display performance parameters including contrast, transmission, chroma, resolution, active size and packaging configuration is ensured because Image Quest produces all of the critical elements of the display. These elements include the a-Si TFT AMLCD glass, RGB color filter matrix, bonding of folded back driver TABs, anti-reflective cover glass, LC heater and integration of high luminance hot cathode backlight with thermal controls. The display features rugged compact packaging, 2000:1 luminance dimming range and wide operating temperature range (-40 to +71 $DRGC). In the immediate future Image Quest plans to expand the development efforts to other similar custom high resolution and high performance avionic display module configurations including 4 X 4 inch delta triad, 6.7 X 6.7 inch delta triad and 16.5 inch diagonal with 1280 X 1024 pixels. Image Quest can deliver up to 10,000 displays per year on a timely basis at a reasonable cost.

  20. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  1. Advanced Thermal Batteries.

    DTIC Science & Technology

    1981-06-01

    ADVANCED THERMAL BATTERIES NATIONAL UNION ELECTRIC CORPORATION ADVANCE SCIENCE DIVISION 1201 E. BELL STREET BLXXMINGTON, ILLINOIS 61701 JUNE 1981...December 1978 in: " Advanced Thermal Batteries " AFAPL-TR-78-114 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force...March 1980 in: " Advanced Thermal Batteries " AFAPL-TR-80-2017 Air Force Aero Propulsion Laboratory Air Force Wright Aeronautical Laboratories Air Force

  2. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  3. A COTS-Based Replacement Strategy for Aging Avionics Computers

    DTIC Science & Technology

    2001-12-01

    Communication Control Unit. A COTS-Based Replacement Strategy for Aging Avionics Computers COTS Microprocessor Real Time Operating System New Native Code...Native Code Objec ts Native Code Thread Real - Time Operating System Legacy Function x Virtual Component Environment Context Switch Thunk Add-in Replace

  4. NextGen Avionics Roadmap Version 1.0

    DTIC Science & Technology

    2008-10-24

    monetized benefit streams when available. Since the source analyses had been conducted at different times using a range of operational and economic...Mrkoci BAE Systems Dave Nakamura Boeing Rob Pappas FAA Dharmesh Patel Honeywell Art Politano FAA Jean- Claude Richard Thales Avionics Brian E. Smith

  5. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  6. FSC LCD technology for military and avionics applications

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Schmidt, John; Roush, Jerry

    2009-05-01

    Field sequential color (FSC) liquid crystal displays (LCD) using a high speed LCD mode and an R, G, B LED backlight, offers a significant potential for lower power consumption, higher resolution, higher brightness and lower cost compared to the conventional R, G, B color filter based LCD, and thus is of interest to various military and avionic display applications. While the DLP projection TVs, and Camcorder LCD view finder type displays using the FSC technology have been introduced in the consumer market, large area direct view LCD displays based on the FSC technology have not reached the commercial market yet. Further, large area FSC LCDs can present unique operational issues in avionic and military environments particularly for operation in a broad temperature range and with respect to its susceptibility for the color breakup image artifact. In this paper we will review the current status of the FSC LCD technology and then discuss the results of our efforts on the FSC LCD technology evaluation for the avionic applications.

  7. Evaluating Flight Crew Operator Manual Documentation

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.

  8. Avionics system design for high energy fields: A guide for the designer and airworthiness specialist

    NASA Technical Reports Server (NTRS)

    Mcconnell, Roger A.

    1987-01-01

    Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included.

  9. Panoramic projection avionics displays

    NASA Astrophysics Data System (ADS)

    Kalmanash, Michael H.

    2003-09-01

    Avionics projection displays are entering production in advanced tactical aircraft. Early adopters of this technology in the avionics community used projection displays to replace or upgrade earlier units incorporating direct-view CRT or AMLCD devices. Typical motivation for these upgrades were the alleviation of performance, cost and display device availability concerns. In these systems, the upgraded (projection) displays were one-for-one form / fit replacements for the earlier units. As projection technology has matured, this situation has begun to evolve. The Lockheed-Martin F-35 is the first program in which the cockpit has been specifically designed to take advantage of one of the more unique capabilities of rear projection display technology, namely the ability to replace multiple small screens with a single large conformal viewing surface in the form of a panoramic display. Other programs are expected to follow, since the panoramic formats enable increased mission effectiveness, reduced cost and greater information transfer to the pilot. Some of the advantages and technical challenges associated with panoramic projection displays for avionics applications are described below.

  10. Digital avionics susceptibility to high energy radio frequency fields

    NASA Astrophysics Data System (ADS)

    Larsen, William E.

    Generally, noncritical avionic systems for transport category aircraft have been designed to meet radio frequency (RF) susceptibility requirements set forth in RTCA DO 160B, environmental conditions and test procedures for airborne equipment. Section 20 of this document controls the electromagnetic interference (EMI) hardening for avionics equipment to levels of 1 and 2 V/m. Currently, US equipment manufacturers are designing flight-critical fly-by-wire avionics to a much higher level. The US Federal Aviation Administration (FAA) has requested that the RTCA SC-135 high-energy radio frequency (HERF) working group develop appropriate testing procedures for section 20 of RTCA DO 160B for radiated and conducted susceptibility at the box and systems level. The FAA has also requested the SAE AE4R committee to address installed systems testing, airframe shielding effects and RF environment monitoring. Emitters of interest include radar (ground, ship, and aircraft) commercial broadcast and TV station, mobile communication, and other transmitters that could possibly affect commercial aircraft.

  11. Identification des parametres du moteur de l'avion Cessna Citation X pour la phase de croisiere a partir des tests en vol et a base des reseaux de neurones =

    NASA Astrophysics Data System (ADS)

    Zaag, Mahdi

    La disponibilite des modeles precis des avions est parmi les elements cles permettant d'assurer leurs ameliorations. Ces modeles servent a ameliorer les commandes de vol et de concevoir de nouveaux systemes aerodynamiques pour la conception des ailes deformables des avions. Ce projet consiste a concevoir un systeme d'identification de certains parametres du modele du moteur de l'avion d'affaires americain Cessna Citation X pour la phase de croisiere a partir des essais en vol. Ces essais ont ete effectues sur le simulateur de vol concu et fabrique par CAE Inc. qui possede le niveau D de la dynamique de vol. En effet, le niveau D est le plus haut niveau de precision donne par l'autorite federale de reglementation FAA de l'aviation civile aux Etats-Unis. Une methodologie basee sur les reseaux de neurones optimises a l'aide d'un algorithme intitule le "grand deluge etendu" est utilisee dans la conception de ce systeme d'identification. Plusieurs tests de vol pour differentes altitudes et differents nombres de Mach ont ete realises afin de s'en servir comme bases de donnees pour l'apprentissage des reseaux de neurones. La validation de ce modele a ete realisee a l'aide des donnees du simulateur. Malgre la nonlinearite et la complexite du systeme, les parametres du moteur ont ete tres bien predits pour une enveloppe de vol determinee. Ce modele estime pourrait etre utilise pour des analyses de fonctionnement du moteur et pourrait assurer le controle de l'avion pendant cette phase de croisiere. L'identification des parametres du moteur pourrait etre realisee aussi pour les autres phases de montee et de descente afin d'obtenir son modele complet pour toute l'enveloppe du vol de l'avion Cessna Citation X (montee, croisiere, descente). Cette methode employee dans ce travail pourrait aussi etre efficace pour realiser un modele pour l'identification des coefficients aerodynamiques du meme avion a partir toujours des essais en vol. None None None

  12. Crew Launch Vehicle (CLV) Avionics and Software Integration Overview

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Flynn, Kevin C.; Maroney, Johnny

    2006-01-01

    On January 14, 2004, the President of the United States announced a new plan to explore space and extend a human presence across our solar system. The National Aeronautics and Space Administration (NASA) established the Exploration Systems Mission Directorate (ESMD) to develop and field a Constellation Architecture that will bring the Space Exploration vision to fruition. The Constellation Architecture includes a human-rated Crew Launch Vehicle (CLV) segment, managed by the Marshall Space Flight Center (MSFC), comprised of the First Stage (FS), Upper Stage (US), and Upper Stage Engine (USE) elements. The CLV s purpose is to provide safe and reliable crew and cargo transportation into Low Earth Orbit (LEO), as well as insertion into trans-lunar trajectories. The architecture's Spacecraft segment includes, among other elements, the Crew Exploration Vehicle (CEV), managed by the Johnson Space Flight Center (JSC), which is launched atop the CLV. MSFC is also responsible for CLV and CEV stack integration. This paper provides an overview of the Avionics and Software integration approach (which includes the Integrated System Health Management (ISHM) functions), both within the CLV, and across the CEV interface; it addresses the requirements to be met, logistics of meeting those requirements, and the roles of the various groups. The Avionics Integration and Vehicle Systems Test (ANST) Office was established at the MSFC with system engineering responsibilities for defining and developing the integrated CLV Avionics and Software system. The AIVST Office has defined two Groups, the Avionics and Software Integration Group (AVSIG), and the Integrated System Simulation and Test Integration Group (ISSTIG), and four Panels which will direct trade studies and analyses to ensure the CLV avionics and software meet CLV system and CEV interface requirements. The four panels are: 1) Avionics Integration Panel (AIP), 2) Software Integration Panel, 3) EEE Panel, and 4) Systems Simulation and Test Panel. Membership on the groups and panels includes the MSFC representatives from the requisite engineering disciplines, the First Stage, the Upper Stage, the Upper Stage Engine projects, and key personnel from other NASA centers. The four panels will take the results of trade studies and analyses and develop documentation in support of Design Analysis Cycle Reviews and ultimately the System Requirements Review.

  13. Infrared Avionics Signal Distribution Using WDM

    NASA Technical Reports Server (NTRS)

    Atiquzzaman, Mohammed; Sluss, James J., Jr.

    2004-01-01

    Supporting analog RF signal transmission over optical fibers, this project demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment. We characterize the simultaneous transmission of four RF signals (channels) over a single optical fiber. At different points along a fiber optic backbone, these four analog channels are sequentially multiplexed and demultiplexed to more closely emulate the conditions in existing onboard aircraft. We present data from measurements of optical power, transmission response (loss and gain), reflection response, group delay that defines phase distortion, signal-to-noise ratio (SNR), and dynamic range that defines nonlinear distortion. The data indicate that WDM is very suitable for avionics applications.

  14. Design and Development of a Rapid Research, Design, and Development Platform for In-Situ Testing of Tools and Concepts for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.

    2017-01-01

    To provide justification for equipping a fleet of aircraft with avionics capable of supporting trajectory-based operations, significant flight testing must be accomplished. However, equipping aircraft with these avionics and enabling technologies to communicate the clearances required for trajectory-based operations is cost-challenging using conventional avionics approaches. This paper describes an approach to minimize the costs and risks of flight testing these technologies in-situ, discusses the test-bed platform developed, and highlights results from a proof-of-concept flight test campaign that demonstrates the feasibility and efficiency of this approach.

  15. Digital Avionics

    NASA Technical Reports Server (NTRS)

    Koelbl, Terry G.; Ponchak, Denise; Lamarche, Teresa

    2003-01-01

    Digital Avionics activities played an important role in the advancements made in civil aviation, military systems, and space applications. This document profiles advances made in each of these areas by the aerospace industry, NASA centers, and the U.S. military. Emerging communication technologies covered in this document include Internet connectivity onboard aircraft, wireless broadband communication for aircraft, and a mobile router for aircraft to communicate in multiple communication networks over the course of a flight. Military technologies covered in this document include avionics for unmanned combat air vehicles and microsatellites, and head-up displays. Other technologies covered in this document include an electronic flight bag for the Boeing 777, and surveillance systems for managing airport operations.

  16. The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics

    NASA Technical Reports Server (NTRS)

    Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.

    2004-01-01

    This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.

  17. Space Tug avionics definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.

  18. A Definition of STS Accommodations for Attached Payloads

    NASA Technical Reports Server (NTRS)

    Echols, F. L.; Broome, P. A.

    1983-01-01

    An input to a study conducted to define a set of carrier avionics for supporting large structures experiments attached to the Space Shuttle Orbiter is reported. The "baseline" Orbier interface used in developing the avionics concept for the Space Technology Experiments Platform, STEP, which Langley Research Center has proposed for supporting experiments of this sort is defined. Primarily, flight operations capabilities and considerations and the avionics systems capabilities that are available to a payload as a "mixed cargo" user of the Space Transportation System are addressed. Ground operations for payload integration at Kennedy Space Center, and ground operations for payload support during the mission are also discussed.

  19. Current state of OLED technology relative to military avionics requirements

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.; Hufnagel, Bruce D.; Bahadur, Birendra

    2014-06-01

    The paper will review optical and environmental performance thresholds required for OLED technology to be used on various military platforms. Life study results will be summarized to highlight trends while identifying remaining performance gaps to make this technology viable for future military avionics platforms.

  20. Preliminary Candidate Advanced Avionics System (PCAAS). [reduction in single pilot workload during instrument flight rules flight

    NASA Technical Reports Server (NTRS)

    Teper, G. L.; Hon, R. H.; Smyth, R. K.

    1977-01-01

    Specifications which define the system functional requirements, the subsystem and interface needs, and other requirements such as maintainability, modularity, and reliability are summarized. A design definition of all required avionics functions and a system risk analysis are presented.

  1. Summer Research Program (1992). Summer Faculty Research Program (SFRP) Reports. Volume 3. Phillips Laboratory.

    DTIC Science & Technology

    1992-12-28

    Phillips Laboratory Kirtland Air Force Base NM 87117-6008 Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base...Zindel, D.: 1963, Z. Astrophys. 57, 82. 29-13 FINAL REPORT SUMMER FACULTY RESEARCH PROGRAM AT PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific

  2. Evolution of the Space Shuttle Primary Avionics Software and Avionics for Shuttle Derived Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.

    2011-01-01

    As a result of recommendation from the Augustine Panel, the direction for Human Space Flight has been altered from the original plan referred to as Constellation. NASA s Human Exploration Framework Team (HEFT) proposes the use of a Shuttle Derived Heavy Lift Launch Vehicle (SDLV) and an Orion derived spacecraft (salvaged from Constellation) to support a new flexible direction for space exploration. The SDLV must be developed within an environment of a constrained budget and a preferred fast development schedule. Thus, it has been proposed to utilize existing assets from the Shuttle Program to speed development at a lower cost. These existing assets should not only include structures such as external tanks or solid rockets, but also the Flight Software which has traditionally been a "long pole" in new development efforts. The avionics and software for the Space Shuttle was primarily developed in the 70 s and considered state of the art for that time. As one may argue that the existing avionics and flight software may be too outdated to support the new SDLV effort, this is a fallacy if they can be evolved over time into a "modern avionics" platform. The technology may be outdated, but the avionics concepts and flight software algorithms are not. The reuse of existing avionics and software also allows for the reuse of development, verification, and operations facilities. The keyword is evolve in that these assets can support the fast development of such a vehicle, but then be gradually evolved over time towards more modern platforms as budget and schedule permits. The "gold" of the flight software is the "control loop" algorithms of the vehicle. This is the Guidance, Navigation, and Control (GNC) software algorithms. This software is typically the most expensive to develop, test, and verify. Thus, the approach is to preserve the GNC flight software, while first evolving the supporting software (such as Command and Data Handling, Caution and Warning, Telemetry, etc.). This can be accomplished by gradually removing the "support software" from the legacy flight software leaving only the GNC algorithms. The "support software" could be re-developed for modern platforms, while leaving the GNC algorithms to execute on technology compatible with the legacy system. It is also possible to package the GNC algorithms into an emulated version of the original computer (via Field Programmable Gate Arrays or FPGAs), thus becoming a "GNC on a Chip" solution where it could live forever to be embedded in modern avionics platforms.

  3. Design Description of the X-33 Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Reichenfeld, Curtis J.; Jones, Paul G.

    1999-01-01

    In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.

  4. Perspectives from Former Executives of the DOD Corporate Research Laboratories

    DTIC Science & Technology

    2009-03-01

    Research Laboratory (NRL) in Washington, DC; and the Air Force Research Laboratory ( AFRL ) in Dayton, Ohio respectively. These individuals are: John Lyons...13 Vincent Russo and the Air Force Research Laboratory The Air Force Research Laboratory ( AFRL ) was activated in 1997. Prior to the creation of... AFRL , the Air Force conducted its research at four major

  5. An overview of autonomous rendezvous and docking system technology development at General Dynamics

    NASA Technical Reports Server (NTRS)

    Kuenzel, Fred

    1991-01-01

    The Centaur avionics suite is undergoing a dramatic modernization for the commercial, DoD Atlas and Titan programs. The system has been upgraded to the current state-of-the-art in ring laser gyro inertial sensors and Mil-Std-1750A processor technology. The Cruise Missile avionic system has similarly been evolving for many years. Integration of GPS into both systems has been underway for over five years with a follow-on cruise missile system currently in flight test. Rendezvous and Docking related studies have been conducted for over five years in support of OMV, CTV, and Advanced Upper Stages, as well as several other internal IR&D's. The avionics system and AR&D simulator demonstrated to the SATWG in November 1990 has been upgraded considerably under two IR&D programs in 1991. The Centaur modern avionics system is being flown in block upgrades which started in July of 1990. The Inertial Navigation Unit will fly in November of 1991. The Cruise Missile avionics systems have been fully tested and operationally validated in combat. The integrated AR&D system for space vehicle applications has been under development and testing since 1990. A Joint NASA / GD ARD&L System Test Program is currently being planned to validate several aspects of system performance in three different NASA test facilities in 1992.

  6. Phillips Laboratory Geophysics Scholar Program

    DTIC Science & Technology

    1993-09-30

    research at Phillips Laboratory . Research sponsored by Air Force Geophysics Laboratory ...Geophysics Laboratory (now the Phillips Laboratory , Geophysics Directorate), United States Air Force for its sponsorship of this research through the Air ...September 1993 Approved for public release; distribution unlimited PHILLIPS LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND

  7. Theory of Near-Field Scanning with a Probe Array

    DTIC Science & Technology

    2014-01-01

    AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 AIR FORCE MATERIEL COMMAND...AFRL/RYMH) Sensors Directorate, Air Force Research Laboratory Wright-Patterson Air Force Base, OH 45433-7320 Air Force Materiel Command, United...S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Sensors Directorate Wright-Patterson Air Force Base

  8. the APL Balloonborne High Altitude Research Platform (HARP)

    NASA Astrophysics Data System (ADS)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C. Science data is stored on-board and also flows through the C&C computer where it is packetized for real-time downlink. The telecommunications system is capable of LOS downlink up to 3000 kbps and 0TH downlink up to 120 kbps. The pointing control system (PCS) provides three-axis attitude stability to 1 arcsec and can be used to aim at a fixed point for science observations, to perform science scans, and to track an object ephemeris. This paper provides a description of HARP, summarizes its performance on prior flights, describes its use on upcoming missions and outlines the characteristics that can be customized to meet the needs of the high altitude research community to support future missions.

  9. Low-Cost Avionics Simulation for Aircrew Training.

    ERIC Educational Resources Information Center

    Edwards, Bernell J.

    This report documents an experiment to determine the training effectiveness of a microcomputer-based avionics system trainer as a cost-effective alternative to training in the actual aircraft. Participants--26 operationally qualified C-141 pilots with no prior knowledge of the Fuel Saving Advisory System (FSAS), a computerized fuel management…

  10. Astronaut Frederick Gregory vacuums air filters in avionics bay

    NASA Image and Video Library

    1985-05-03

    51B-13-008 (29 April-6 May 1985) --- Astronaut Frederick D. Gregory vacuums air filters in avionics bay. The 51-B pilot is physically located in the overhead area of the middeck on Challenger, but his activity is only a few meters away from the flight deck.

  11. Flight Deck Interval Management Flight Test Final Report

    NASA Technical Reports Server (NTRS)

    Tulder, Paul V.

    2017-01-01

    This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.

  12. Avionics Instrument Systems Specialist Career Ladder: AFSCs 32531, 32551, 31571, and 32591. Occupational Survey Report.

    ERIC Educational Resources Information Center

    Air Force Occupational Measurement Center, Lackland AFB, TX.

    The Avionics Instrument Systems career ladder (AFSC 325X1) provides flight line and shop maintenance training on aircraft instrument systems, electromechancial instruments, components, and test equipment. Duties involve inspecting, removing, installing, repairing, operating, troubleshooting, overhauling, and modifying systems such as flight and…

  13. Advanced software techniques for data management systems. Volume 1: Study of software aspects of the phase B space shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Martin, F. H.

    1972-01-01

    An overview of the executive system design task is presented. The flight software executive system, software verification, phase B baseline avionics system review, higher order languages and compilers, and computer hardware features are also discussed.

  14. 78 FR 70848 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...

  15. 78 FR 70849 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...

  16. STEM Education: Introduction of Quantitative Math and Science Content into Elementary Education, STEM Enrichment Effort in Title One Elementary and Middle Schools in Bay County, Florida

    DTIC Science & Technology

    2013-06-01

    inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT PATTERSON AIR FORCE BASE, OH 45433-7750...Materials and Manufacturing Directorate Materials and Manufacturing Directorate Air Force Research Laboratory Air Force Research Laboratory This... Research Laboratory Materials and Manufacturing Directorate Wright Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command United States

  17. Helical Explosive Flux Compression Generator Research at the Air Force Research Laboratory

    DTIC Science & Technology

    1999-06-01

    Air Force Research Laboratory Kirtland AFB...ORGANIZATION NAME(S) AND ADDRESS(ES) Directed Energy Directorate, Air Force Research Laboratory Kirtland AFB, NM 8. PERFORMING ORGANIZATION REPORT...in support of the Air Force Research Laboratory ( AFRL ) explosive pulsed power program. These include circuit codes such as Microcap and

  18. PSE Aysis of Crossflow Instability on HifIre-5B Flight Test

    DTIC Science & Technology

    2017-06-05

    AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 AIR FORCE MATERIEL COMMAND UNITED...Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United...States Air Force 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems

  19. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  20. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  1. Integrated IR sensors

    NASA Astrophysics Data System (ADS)

    Tom, Michael; Trujillo, Edward

    1994-06-01

    Integrated infrared (IR) sensors which exploit modular avionics concepts can provide features such as operational flexibility, enhanced stealthiness, and ease of maintenance to meet the demands of tactical, airborne sensor systems. On-board, tactical airborne sensor systems perform target acquisition, tracking, identification, threat warning, missile launch detection, and ground mapping in support of situation awareness, self-defense, navigation, target attack, weapon support, and reconnaissance activities. The use of sensor suites for future tactical aircraft such as US Air Force's multirole fighter require a blend of sensor inputs and outputs that may vary over time. It is expected that special-role units of these tactical aircraft will be formed to conduct tasks and missions such as anti-shipping, reconnaissance, or suppression of enemy air defenses.

  2. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  3. Avionics architecture studies for the entry research vehicle

    NASA Technical Reports Server (NTRS)

    Dzwonczyk, M. J.; Mckinney, M. F.; Adams, S. J.; Gauthier, R. J.

    1989-01-01

    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan.

  4. V/STOLAND avionics system flight-test data on a UH-1H helicopter

    NASA Technical Reports Server (NTRS)

    Baker, F. A.; Jaynes, D. N.; Corliss, L. D.; Liden, S.; Merrick, R. B.; Dugan, D. C.

    1980-01-01

    The flight-acceptance test results obtained during the acceptance tests of the V/STOLAND (versatile simplex digital avionics system) digital avionics system on a Bell UH-1H helicopter in 1977 at Ames Research Center are presented. The system provides navigation, guidance, control, and display functions for NASA terminal area VTOL research programs and for the Army handling qualities research programs at Ames Research Center. The acceptance test verified system performance and contractual acceptability. The V/STOLAND hardware navigation, guidance, and control laws resident in the digital computers are described. Typical flight-test data are shown and discussed as documentation of the system performance at acceptance from the contractor.

  5. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  6. Algorithmic support for graphic images rotation in avionics

    NASA Astrophysics Data System (ADS)

    Kniga, E. V.; Gurjanov, A. V.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The avionics device designing has an actual problem of development and research algorithms to rotate the images which are being shown in the on-board display. The image rotation algorithms are a part of program software of avionics devices, which are parts of the on-board computers of the airplanes and helicopters. Images to be rotated have the flight location map fragments. The image rotation in the display system can be done as a part of software or mechanically. The program option is worse than the mechanic one in its rotation speed. The comparison of some test images of rotation several algorithms is shown which are being realized mechanically with the program environment Altera QuartusII.

  7. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  8. Avionics. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in avionics that is intended to prepare students for employment in the field of aerospace electronics. Included among the topics addressed in the course are the following: shop practices, aircraft and the theory of flight, electron physics,…

  9. Avionics Technology Contract Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Squires, Shiela S.

    This document reports on Phase I of a project that examined the occupation of avionics technician, established appropriate committees, and conducted task verification. Results of this phase provide the basic information required to develop the program standards and to guide and set up the committee structure to guide the project. Section 1…

  10. Orbiter Avionics Radiation Handbook

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon D.

    1999-01-01

    This handbook was assembled to document he radiation environment for design of Orbiter avionics. It also maps the environment through vehicle shielding and mission usage into discrete requirements such as total dose. Some details of analytical techniques for calculating radiation effects are provided. It is anticipated that appropriate portions of this document will be added to formal program specifications.

  11. Generalized Training Devices for Avionic Systems Maintenance.

    ERIC Educational Resources Information Center

    Parker, Edward L.

    A research study was conducted to determine the feasibility and desirability of developing generalized training equipment for use in avionic systems maintenance training. The study consisted of a group of survey and analytic tasks to provide useful guidance to serve the needs of the Naval Aviation community in future years. The study had four…

  12. Digital avionics: A cornerstone of aviation

    NASA Technical Reports Server (NTRS)

    Spitzer, Cary R.

    1990-01-01

    Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.

  13. EVA Communications Avionics and Informatics

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2005-01-01

    The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.

  14. Scheduling Independent Partitions in Integrated Modular Avionics Systems

    PubMed Central

    Du, Chenglie; Han, Pengcheng

    2016-01-01

    Recently the integrated modular avionics (IMA) architecture has been widely adopted by the avionics industry due to its strong partition mechanism. Although the IMA architecture can achieve effective cost reduction and reliability enhancement in the development of avionics systems, it results in a complex allocation and scheduling problem. All partitions in an IMA system should be integrated together according to a proper schedule such that their deadlines will be met even under the worst case situations. In order to help provide a proper scheduling table for all partitions in IMA systems, we study the schedulability of independent partitions on a multiprocessor platform in this paper. We firstly present an exact formulation to calculate the maximum scaling factor and determine whether all partitions are schedulable on a limited number of processors. Then with a Game Theory analogy, we design an approximation algorithm to solve the scheduling problem of partitions, by allowing each partition to optimize its own schedule according to the allocations of the others. Finally, simulation experiments are conducted to show the efficiency and reliability of the approach proposed in terms of time consumption and acceptance ratio. PMID:27942013

  15. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  16. ARINC 818 specification revisions enable new avionics architectures

    NASA Astrophysics Data System (ADS)

    Grunwald, Paul

    2014-06-01

    The ARINC 818 Avionics Digital Video Bus is the standard for cockpit video that has gained wide acceptance in both the commercial and military cockpits. The Boeing 787, A350XWB, A400M, KC-46A, and many other aircraft use it. The ARINC 818 specification, which was initially release in 2006, has recently undergone a major update to address new avionics architectures and capabilities. Over the seven years since its release, projects have gone beyond the specification due to the complexity of new architectures and desired capabilities, such as video switching, bi-directional communication, data-only paths, and camera and sensor control provisions. The ARINC 818 specification was revised in 2013, and ARINC 818-2 was approved in November 2013. The revisions to the ARINC 818-2 specification enable switching, stereo and 3-D provisions, color sequential implementations, regions of interest, bi-directional communication, higher link rates, data-only transmission, and synchronization signals. This paper discusses each of the new capabilities and the impact on avionics and display architectures, especially when integrating large area displays, stereoscopic displays, multiple displays, and systems that include a large number of sensors.

  17. Avionics upgrade strategies for the Space Shuttle and derivatives

    NASA Astrophysics Data System (ADS)

    Swaim, Richard A.; Wingert, William B.

    Some approaches aimed at providing a low-cost, low-risk strategy to upgrade the shuttle onboard avionics are described. These approaches allow migration to a shuttle-derived vehicle and provide commonality with Space Station Freedom avionics to the extent practical. Some goals of the Shuttle cockpit upgrade include: offloading of the main computers by distributing avionics display functions, reducing crew workload, reducing maintenance cost, and providing display reconfigurability and context sensitivity. These goals are being met by using a combination of off-the-shelf and newly developed software and hardware. The software will be developed using Ada. Advanced active matrix liquid crystal displays are being used to meet the tight space, weight, and power consumption requirements. Eventually, it is desirable to upgrade the current shuttle data processing system with a system that has more in common with the Space Station data management system. This will involve not only changes in Space Shuttle onboard hardware, but changes in the software. Possible approaches to maximizing the use of the existing software base while taking advantage of new language capabilities are discussed.

  18. Autonomous, agile micro-satellites and supporting technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitfeller, E; Dittman, M D; Gaughan, R J

    1999-07-19

    This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less

  19. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  20. General aviation activity and avionics survey. Annual summary report, CY 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    This report presents the results and a description of the 1985 General Aviation Activity and Avionics Survey. The survey was conducted during 1986 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 10.3 percent of the general aviation fleet. A responses rate of 63.7 percent was obtained. Survey results based upon response but are expanded upward to represent the total population. Survey results revealed that during 1985 an estimatedmore » 34.1 million hours of flying time were logged and 88.7 million operations were performed by the 210,654 active general aviation aircraft in the U.S. fleet. The mean annual flight time per aircraft was 158.2 hours. The active aircraft represented about 77.9 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, engine hours, and miles flown estimates, as well as tables for detailed analysis of the avionics capabilities of the general aviation fleet. New to the report this year are estimates of the number of landings, IFR hours flown, and the cost and grade of fuel consumed by the GA fleet.« less

  1. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  2. ACCESS: integration and pre-flight performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; Aldoroty, Lauren N.; Pelton, Russell; Kurucz, Robert; Peacock, Grant O.; Hansen, Jason; McCandliss, Stephan R.; Rauscher, Bernard J.; Kimble, Randy A.; Kruk, Jeffrey W.; Wright, Edward L.; Orndorff, Joseph D.; Feldman, Paul D.; Moos, H. Warren; Riess, Adam G.; Gardner, Jonathan P.; Bohlin, Ralph; Deustua, Susana E.; Dixon, W. V.; Sahnow, David J.; Perlmutter, Saul

    2017-09-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 - 1.7μm bandpass. This paper describes the sub-system testing, payload integration, avionics operations, and data transfer for the ACCESS instrument.

  3. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  4. The Air Force Research Laboratory’s In-Space Propulsion Program

    DTIC Science & Technology

    2015-02-01

    Air Force Research Laboratory (AFMC) AFRL /RQRS 1 Ara...MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RQR 5 Pollux Drive 11. SPONSOR/MONITOR’S REPORT Edwards AFB CA 93524-7048 NUMBER(S) AFRL ...illustrate the rationale behind AFRL’s technology development strategy. INTRODUCTION The Air Force Research Laboratory ( AFRL ) is the technology

  5. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  6. AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned

    DTIC Science & Technology

    2010-05-19

    AFRL Solid Propellant Laboratory Explosive Siting and Renovation Lessons Learned Daniel F. Schwartz Air Force Research Laboratory ...9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS...provide the United States Air Force with advanced rocket propulsion technologies, the Air Force Research

  7. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  8. Scientific and Technological Achievements, 1946-2011, of the AFRL Electromagnetics Technology Division (AFRL/RYH) and Its Progenitors

    DTIC Science & Technology

    2012-07-01

    AFRL /RYH) Sensors Directorate Air Force Research Laboratory Wright-Patterson Air Force ...Lossless Acoustic Monopoles, Electric Dipoles, and Magnetodielectric Spheres, Air Force Research Laboratory in-house report AFRL -SN-HS-TR-2006-0039... FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320 AIR FORCE MATERIEL COMMAND UNITED

  9. AFWL Standards for Scientific and Technical Reports.

    DTIC Science & Technology

    1980-04-01

    Air Force Weapons Laboratory , Kirtland Air Force Base, New Mexico, under...PROGRAM ELEMEN T PROJECT TASK AREA & WORK UNIT NUMBERS Air Force Weapons Laboratory (SUR) Kirtland Air Force Base, NM 87117 62601F/99930000 I. CONTROLLING...OFFICE NAME AND ADDRESS 12 REPORT DATE Air Force Weapons Laboratory (SUR) April 1980 Kirtland Air Force Base, NM 87117 13. NUMBER OF PAGES 72

  10. USAF/SCEEE Graduate Student Summer Research Program (1984). Program Management Report. Volume 1.

    DTIC Science & Technology

    1984-10-01

    AFRL -TN-87, Air Force . Weapons Laboratory , Kirtland Air Foce...Mexico Research Location: Air Force Weapons Laboratory , NTATT, Kirtland Air Force Base, Albuquerque, NM 87117 .. USAF Research Contact: Dr. Carl E. Baum...Albuquerque, NM 87131 ... Research Location: Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico 87117 USAF

  11. USAF Summer Research Program - 1994 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Group at the Phillips Laboratory at Kirtland Air Force Base...for Summer Graduate Student Research Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base, DC...2390 S. York Street Denver, CO 80208-0177 Final Report for: Summer Faculty Research Program Phillips Laboratory Sponsored by: Air Force

  12. The MGS Avionics System Architecture: Exploring the Limits of Inheritance

    NASA Technical Reports Server (NTRS)

    Bunker, R.

    1994-01-01

    Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.

  13. Prediction Tables for Avionics Fundamentals Course, Class A.

    ERIC Educational Resources Information Center

    Baldwin, Robert O.; Johnson, Kirk A.

    This study was conducted in 1966 to provide the avionics fundamentals course, class A, with a number of tables for predicting academic performance, either by precourse variables or by grades made early in the course. A means of identifying potential setbacks and potential failures was also desired. In September 1966 a 16 week course replaced the…

  14. Digital Avionics Information System (DAIS): Training Requirements Analysis Model (TRAMOD).

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    The training requirements analysis model (TRAMOD) described in this report represents an important portion of the larger effort called the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study. TRAMOD is the second of three models that comprise an LCC impact modeling system for use in the early stages of system development. As…

  15. Digital Avionics Information System (DAIS): Impact of DAIS Concept on Life Cycle Cost--Supplement. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    This supplement to a technical report providing the results of a preliminary investigation of the potential impact of the Digital Avionics Information System (DAIS) concept on system support personnel requirements and life cycle cost (LCC) includes: (1) additional details of the cost comparison of a hypothetical application of a conceptual…

  16. NASA Dryden aircraft and avionics technicians install the nose cone on an inert Phoenix missile prior to a fit check on the center's F-15B research aircraft.

    NASA Image and Video Library

    2006-11-13

    NASA Dryden aircraft and avionics technicians (from left) Bryan Hookland, Art Cope, Herman Rijfkogel and Jonathan Richards install the nose cone on a Phoenix missile prior to a fit check on the center's F-15B research aircraft.

  17. An Evaluation of Perceptions of Form, Fit, Function (F3) Standardization on the Standard Inertial Navigation Unit (STD INU) Program.

    DTIC Science & Technology

    1987-12-01

    support durring the first few years of operations, which provides an incentive for such innovations and defers the acquisition of AGE until the equipment...along with number of standard avionics programs worked and the ranks of each individual. Table 5. Expierence With Avionics Standardization Years

  18. Spacelab payload accommodation handbook. Appendix A: Avionics interface definition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Spacelab side of the electrical interface between Spacelab subsystem equipment and experiments is presented. The electrical hardware which interfaces with the experiments is defined and the signal/load characteristics are stated. Major subsystems considered include: electrical power and distribution; command and data management subsystem; orbiter avionics via dedicated connectors of Spacelab; and electrical ground support equipment.

  19. MECHANIZATION STUDY OF THE TECHNICAL LIBRARY U.S. NAVAL AVIONICS FACILITY, INDIANAPOLIS, INDIANA.

    ERIC Educational Resources Information Center

    KERSHAW, G.A.; AND OTHERS

    THE NAVAL AVIONICS FACILITY, INDIANAPOLIS (NAFI) TECHNICAL LIBRARY IS PLANNING A MECHANIZED SYSTEM TO PRODUCE A PERMUTED INDEX OF PERTINENT PERIODICAL REFERENCES AND PROCEEDINGS, WITH BOOKS AND DOCUMENTS TO BE ADDED LATER. INPUT TO THE SYSTEM IS PUNCHED PAPER TAPE PREPARED FROM THE SOURCE MATERIAL, AND THE PRIMARY PROGRAM IS A "CANNED"…

  20. Preliminary design document: Ground based testbed for avionics systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design and interface requirements for an avionics Ground Based Test bed (GBT) to support Heavy Lift Cargo Vehicles (HLCV) is presented. It also contains data on the vehicle subsystem configurations that are to be supported during their early, pre-PDR developmental phases. Several emerging technologies are also identified for support. A Preliminary Specification Tree is also presented.

  1. Demonstration Advanced Avionics System (DAAS). Phase 1 report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An integrated avionics system which provides expanded functional capabilities that significantly enhance the utility and safety of general aviation at a cost commensurate with the general aviation market is discussed. Displays and control were designed so that the pilot can use the system after minimum training. Functional and hardware descriptions, operational evaluation and failure modes effects analysis are included.

  2. Reliability and the design process at Honeywell Avionics Division

    NASA Technical Reports Server (NTRS)

    Bezat, A.

    1981-01-01

    The division's philosophy for designed-in reliability and a comparison of reliability programs for space, manned military aircraft, and commercial aircraft, are presented. Topics include: the reliability interface with design and production; the concept phase through final proposal; the design, development, test and evaluation phase; the production phase; and the commonality among space, military, and commercial avionics.

  3. Analyzing and Specifying Reusable Security Requirements

    DTIC Science & Technology

    2003-09-01

    avionics applications and ecommerce applications need to specify levels of identification, authentication, authorization, integrity, privacy , etc. At...sections specifying functional requirements. Thus, the functional requirements for an embedded avionics application and an ecommerce website may have... Privacy (a.k.a., confidentiality), which is the degree to which sensitive data and communications are kept private from unauthorized individuals and

  4. PCB tester selection for future systems. Volume 2. Final report, August 1989-June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, W.

    1992-06-01

    This report describes a computer program (to run on an IBM compatible PC) designed to aid in the selection of a PCB tester, given the characteristics of the PC board to be tested. The program contains a limited data base of PCB testers, and others may be added easily. This report also provides a specification for a limited family of PCB testers to fill the gap between what the U.S. Air Force is expected to need and what is expected to be available within the next four to six years. The parameters used in the computer program and the specificationmore » are based on a survey of military and commercial PCBs - both those now available and those expected to come on line within the next four to six years. The results of the survey are covered in volume 2 - available from DTIC. Automatic Test Equipment, Technology Forecast, Air Force Avionics.« less

  5. PCB tester selection for future systems. Volume 1. Final report, August 1989-June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, W.

    1992-06-01

    This report describes a computer program (to run on an IBM compatible PC) designed to aid in the selection of a PCB tester, given the characteristics of the PC board to be tested. The program contains a limited data base of PCB testers, and others may be added easily. This report also provides a specification for a limited family of PCB testers to fill the gap between what the U.S. Air Force is expected to need and what is expected to be available within the next four to six years. The parameters used in the computer program and the specificationmore » are based on a survey of military and commercial PCBs - both those now available and those expected to come on line within the next four to six years. The results of the survey are covered in volume 2 - available from DTIC. Automatic Test Equipment, Technology Forecast, Air Force Avionics.« less

  6. KSC-04pd1336

    NASA Image and Video Library

    2004-06-24

    KENNEDY SPACE CENTER, FLA. - Reporters (left) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members at right discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. From left are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.

  7. KSC-04pd1335

    NASA Image and Video Library

    2004-06-24

    KENNEDY SPACE CENTER, FLA. - Reporters (bottom) take notes during an informal briefing concerning NASA’s Cassini spacecraft, launched aboard an Air Force Titan IV rocket from Cape Canaveral Air Force Station Oct. 15, 1997. Cassini launch team members seen here discussed the challenge and experience of preparing Cassini for launch, integrating it with the Titan IV rocket and the countdown events of launch day. Facing the camera (from left) are Ron Gillett, NASA Safety and Lead Federal Agency official; Omar Baez, mechanical and propulsion systems engineer; Ray Lugo, NASA launch manager; Chuck Dovale, chief, Avionics Branch; George Haddad, Integration and Ground Systems mechanical engineer; and Ken Carr, Cassini assistant launch site support manager. Approximately 10:36 p.m. EDT, June 30, the Cassini-Huygens spacecraft will arrive at Saturn. After nearly a seven-year journey, it will be the first mission to orbit Saturn. The international cooperative mission plans a four-year tour of Saturn, its rings, icy moons, magnetosphere, and Titan, the planet’s largest moon.

  8. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  9. Using ARINC 818 Avionics Digital Video Bus (ADVB) for military displays

    NASA Astrophysics Data System (ADS)

    Alexander, Jon; Keller, Tim

    2007-04-01

    ARINC 818 Avionics Digital Video Bus (ADVB) is a new digital video interface and protocol standard developed especially for high bandwidth uncompressed digital video. The first draft of this standard, released in January of 2007, has been advanced by ARINC and the aerospace community to meet the acute needs of commercial aviation for higher performance digital video. This paper analyzes ARINC 818 for use in military display systems found in avionics, helicopters, and ground vehicles. The flexibility of ARINC 818 for the diverse resolutions, grayscales, pixel formats, and frame rates of military displays is analyzed as well as the suitability of ARINC 818 to support requirements for military video systems including bandwidth, latency, and reliability. Implementation issues relevant to military displays are presented.

  10. High-resolution AM LCD development for avionic applications

    NASA Astrophysics Data System (ADS)

    Lamberth, Larry S.; Laddu, Ravindra R.; Harris, Doug; Sarma, Kalluri R.; Li, Wang-Yang; Chien, C. C.; Chu, C. Y.; Lee, C. S.; Kuo, Chen-Lung

    2003-09-01

    For the first time, an avionic grade MVA AM LCD with wide viewing angle has been developed for use in either landscape or portrait mode. The development of a high resolution Multi-domain Vertical Alignment (MVA) Active Matrix Liquid Crystal Display (AM LCD) is described. Challenges met in this development include achieving the required performance with high luminance and sunlight readability while meeting stringent optical (image quality) and environmental performance requirements of avionics displays. In this paper the optical and environmental performance of this high resolution 14.1" MVA-AM-LCD are discussed and some performance comparisons to conventional AM-LCDs are documented. This AM LCD has found multiple Business Aviation and Military display applications and cockpit pictures are presented.

  11. Hardware Implementation of COTS Avionics System on Unmanned Aerial Vehicle Platforms

    NASA Technical Reports Server (NTRS)

    Yeh, Yoo-Hsiu; Kumar, Parth; Ishihara, Abraham; Ippolito, Corey

    2010-01-01

    Unmanned Aerial Vehicles (UAVs) can serve as low cost and low risk platforms for flight testing in Aeronautics research. The NASA Exploration Aerial Vehicle (EAV) and Experimental Sensor-Controlled Aerial Vehicle (X-SCAV) UAVs were developed in support of control systems research at NASA Ames Research Center. The avionics hardware for both systems has been redesigned and updated, and the structure of the EAV has been further strengthened. Preliminary tests show the avionics operate properly in the new configuration. A linear model for the EAV also was estimated from flight data, and was verified in simulation. These modifications and results prepare the EAV and X-SCAV to be used in a wide variety of flight research projects.

  12. Demonstration Advanced Avionics System (DAAS) function description

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  13. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 2, Phillips Laboratory

    DTIC Science & Technology

    1994-11-01

    Research Extension Program Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Office of Scientific Research Boiling Air Force Base...Program Phillips Laboratory Sponsored by: Air Force Office of Scientific Research Bolling Air Force Base, Washington, D.C. and Arkansas Tech University...Summer Research Extension Program (SREP) Phillips

  14. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  15. Stress Analysis of Aircraft Tires. Volume I. Analytical Formulation

    DTIC Science & Technology

    1976-02-01

    Dynamics Laboratories, AFFDL/ FEM , WPAFB, Ohio 45433. 3C S AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE...Dynamics Laboratories, AFFDL/ FEM , WPAFB, Ohio 45433. IT niSTRin^TiON STATEMENT (al th» mbilrmtl ••(•••« In Black 20, It altltrmtl Inm Rapart; -D-D-G...Patterson Air Force Base, Dayton, Ohio. Mr. J. R. Hampton (AFFDL/ FEM ) was the technical monitor for the Air Force. This report covers the research

  16. AFRL’s Demonstration and Science Experiments (DSX) Mission

    DTIC Science & Technology

    2009-09-01

    Air Force Research Laboratory , Kirtland AFB, Albuquerque, NM...Technology, Lincoln Laboratory , Boston, MA ABSTRACT The Air Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) has developed the...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate, Kirtland AFB,NM,87117 8.

  17. Avionics Systems Laboratory/Building 16. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are also provided

  18. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2-3 gigabits per second. This switch-based unified network will interconnect sensors, displays, mass memory and controls and displays to computer modules within the processing complex. The characteristics of required building blocks needed for the future are described. These building blocks include the fiber, an optical switch, a laser-based transceiver, blind-mate connectors and an optical backplane.

  19. Search and Rescue Aircrewman/HH3F Avionics, 2-11. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This self-paced, individualized course, adapted from military curriculum materials for use in vocational and technical education, teaches students the skills needed to become a qualified avionics worker and aircrew rescuer on the HH-3F helicopter. The course materials consist of four pamphlets: two student workbooks and two student syllabuses. The…

  20. Profile of an Effective Engineering Manager at the Naval Avionics Center

    DTIC Science & Technology

    1991-06-01

    GROUP Leadership ; Engineering Management Effectiveness; Engineers; Engineering Managers ; Naval Avionics Center 19 ABSTR. T (Continue on reverse if...Personnel. The purpose of the Institute is to support the implementation of the NAC Leadership / Management Principles throughout NAC. The Leadership ... Management Principles are as follows: - Develc 2 and Maintain a Corporate Outlook. - Communicate the Organizational Vision through Positive Leadership

  1. Space shuttle orbiter avionics software: Post review report for the entry FACI (First Article Configuration Inspection). [including orbital flight tests integrated system

    NASA Technical Reports Server (NTRS)

    Markos, H.

    1978-01-01

    Status of the computer programs dealing with space shuttle orbiter avionics is reported. Specific topics covered include: delivery status; SSW software; SM software; DL software; GNC software; level 3/4 testing; level 5 testing; performance analysis, SDL readiness for entry first article configuration inspection; and verification assessment.

  2. Avionic Data Bus Integration Technology

    DTIC Science & Technology

    1991-12-01

    address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that

  3. 2000 Digital Avionics Highlights

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    2000-01-01

    This article summarizes the highlights of recent events and developments in digital avionics in commercial aviation, military systems, and space. This article is about 1,200 words long. Information for the article was collected from other NASA centers, DoD, and industry. All information was previously cleared by the originating organizations. Information for the article was also gathered from Aviation Week and Space Technology and similar sources.

  4. Digital Avionics Information System (DAIS): Reliability and Maintainability Model Users Guide. Final Report, May 1975-July 1977.

    ERIC Educational Resources Information Center

    Czuchry, Andrew J.; And Others

    This report provides a complete guide to the stand alone mode operation of the reliability and maintenance (R&M) model, which was developed to facilitate the performance of design versus cost trade-offs within the digital avionics information system (DAIS) acquisition process. The features and structure of the model, its input data…

  5. 78 FR 68687 - Final Additional Airworthiness Design Standards: Advanced Avionics Under the Special Class (JAR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... under Sec. 21.17(b), to Day-VFR operations. Additionally, the FAA also published design criteria to allow expansion of the Aquila AT01-100 airplane to include Night-VFR as shown in NPRM 75 FR 32576. In conjunction with the expansion to Night-VFR operations integrated avionic displays are to be installed on the...

  6. NextGen Avionics Roadmap Version 2.0

    DTIC Science & Technology

    2011-09-30

    Avoid system (e.g. self -separation system) to be specifically authorized and delegated authority by the air traffic service provider in...provide any traffic flow management services within self -separation airspace. Aircraft must meet equi- page requirements to enter self -separation... traffic management systems and aircraft avionics systems. Aviation stakeholders will also benefit from reading this document because it provides a

  7. Advanced Avionic Systems for Multimission Applications. Volume I.

    DTIC Science & Technology

    1982-10-01

    technical report are theoretical and in no way reflect Air Fortp-nwnpid qnftwRrp png ramc 19. KEY WORDS (Continue on reveree aide It neceeary and Identify...addressed (1) the Development & Evaluation of Advanced Digital Avionics System Architectures and (2) the Development of a Single Processor Synchronous...29 4.3.2 Memory Technologies . . . . . . . . . . . . . . . . . 30 4.3.3 BIU Technology . . . . . . . . . . . . . . . . . . . 33

  8. Application of cellular automatons and ant algorithms in avionics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.

    2018-03-01

    The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.

  9. Time Triggered Protocol (TTP) for Integrated Modular Avionics

    NASA Technical Reports Server (NTRS)

    Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard

    2006-01-01

    Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.

  10. General aviation activity and avionics survey. 1978. Annual summary report cy 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwenk, J.C.

    1980-03-01

    This report presents the results and a description of the 1978 General Aviation Activity and Avionics Survey. The survey was conducted during early 1979 by the FAA to obtain information on the activity and avionics of the United States registered general aviation aircraft fleet, the dominant component of civil aviation in the U.S. The survey was based on a statistically selected sample of about 13.3 percent of the general aviation fleet and obtained a response rate of 74 percent. Survey results are based upon responses but are expanded upward to represent the total population. Survey results revealed that during 1978more » an estimated 39.4 million hours of flying time were logged by the 198,778 active general aviation aircraft in the U.S. fleet, yielding a mean annual flight time per aircraft of 197.7 hours. The active aircraft represented 85 percent of the registered general aviation fleet. The report contains breakdowns of these and other statistics by manufacturer/model group, aircraft type, state and region of based aircraft, and primary use. Also included are fuel consumption, lifetime airframe hours, avionics, and engine hours estimates.« less

  11. Transmission of RF Signals Over Optical Fiber for Avionics Applications

    NASA Technical Reports Server (NTRS)

    Slaveski, Filip; Sluss, James, Jr.; Atiquzzaman, Mohammed; Hung, Nguyen; Ngo, Duc

    2002-01-01

    During flight, aircraft avionics transmit and receive RF signals to/from antennas over coaxial cables. As the density and complexity of onboard avionics increases, the electromagnetic interference (EM) environment degrades proportionately, leading to decreasing signal-to-noise ratios (SNRs) and potential safety concerns. The coaxial cables are inherently lossy, limiting the RF signal bandwidth while adding considerable weight. To overcome these limitations, we have investigated a fiber optic communications link for aircraft that utilizes wavelength division multiplexing (WDM) to support the simultaneous transmission of multiple signals (including RF) over a single optical fiber. Optical fiber has many advantages over coaxial cable, particularly lower loss, greater bandwidth, and immunity to EM. In this paper, we demonstrate that WDM can be successfully used to transmit multiple RF signals over a single optical fiber with no appreciable signal degradation. We investigate the transmission of FM and AM analog modulated signals, as well as FSK digital modulated signals, over a fiber optic link (FOL) employing WDM. We present measurements of power loss, delay, SNR, carrier-to-noise ratio (CNR), total harmonic distortion (THD), and bit error rate (BER). Our experimental results indicate that WDM is a fiber optic technology suitable for avionics applications.

  12. Comparison of Communication Architectures for Spacecraft Modular Avionics Systems

    NASA Technical Reports Server (NTRS)

    Gwaltney, D. A.; Briscoe, J. M.

    2006-01-01

    This document is a survey of publicly available information concerning serial communication architectures used, or proposed to be used, in aeronautic and aerospace applications. It focuses on serial communication architectures that are suitable for low-latency or real-time communication between physically distributed nodes in a system. Candidates for the study have either extensive deployment in the field, or appear to be viable for near-term deployment. Eleven different serial communication architectures are considered, and a brief description of each is given with the salient features summarized in a table in appendix A. This survey is a product of the Propulsion High Impact Avionics Technology (PHIAT) Project at NASA Marshall Space Flight Center (MSFC). PHIAT was originally funded under the Next Generation Launch Technology (NGLT) Program to develop avionics technologies for control of next generation reusable rocket engines. After the announcement of the Space Exploration Initiative, the scope of the project was expanded to include vehicle systems control for human and robotics missions. As such, a section is included presenting the rationale used for selection of a time-triggered architecture for implementation of the avionics demonstration hardware developed by the project team

  13. NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions

    NASA Technical Reports Server (NTRS)

    He, Yutao; Shalom, Eddy; Chau, Savio N.; Some, Raphael R.; Bolotin, Gary S.

    2011-01-01

    A paper discusses NEXUS, a common, next-generation avionics interconnect that is transparently compatible with wired, fiber-optic, and RF physical layers; provides a flexible, scalable, packet switched topology; is fault-tolerant with sub-microsecond detection/recovery latency; has scalable bandwidth from 1 Kbps to 10 Gbps; has guaranteed real-time determinism with sub-microsecond latency/jitter; has built-in testability; features low power consumption (< 100 mW per Gbps); is lightweight with about a 5,000-logic-gate footprint; and is implemented in a small Bus Interface Unit (BIU) with reconfigurable back-end providing interface to legacy subsystems. NEXUS enhances a commercial interconnect standard, Serial RapidIO, to meet avionics interconnect requirements without breaking the standard. This unified interconnect technology can be used to meet performance, power, size, and reliability requirements of all ranges of equipment, sensors, and actuators at chip-to-chip, board-to-board, or box-to-box boundary. Early results from in-house modeling activity of Serial RapidIO using VisualSim indicate that the use of a switched, high-performance avionics network will provide a quantum leap in spacecraft onboard science and autonomy capability for science and exploration missions.

  14. Some thoughts concerning large load-carrying vehicles

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    Some implications relative to combat operations and force sustainability into the twenty-first century are discussed. The basic conjecture is that, sometime in the future, secure overseas basing may be denied to the United States by the Soviet Union or by unfriendly, unstable governments. In that event, the support of future battle itself, may be conducted from the continental U.S. and would introduce requirements for large, long-range, efficient, and sometimes, fast air vehicles. Some unusual design concepts and the technology requirements for such vehicles are suggested. It is concluded that, while much of the required technology is already being pursued, further advanced should be expected and sought in improved aerodynamics, propulsion, structures, and avionics with a view toward increased efficiency, utility, and affordability.

  15. Cross channel dependency requirements of the multi-path redundant avionics suite

    NASA Astrophysics Data System (ADS)

    Martin, Fred; Adams, Darryl

    Requirements for cross channel dependencies in the multipath redundant avionics suite (MPRAS) architecture are described. MPRAS is a data synchronous avionics architecture for space launch vehicle applications. The MPRAS cross channel data link (CCDL) provides the mechanism, required by data synchronous architectures, to exchange data and maintain synchronization among redundant channels. MPRAS architectural requirements impose a variety of characteristics for cross channel dependencies which make traditional CCDL solutions unacceptable for MPRAS target applications. The MPRAS CCDL requirements have led to a CCDL design which maintains resilience to faults, does not introduce large cross channel bandwidth reductions, and meets the other established MPRAS CCDL requirements. A review of fault-tolerant system principles applicable to CCDL issues is presented as well as a top-level functional description of the MPRAS CCDL design.

  16. Prognostics for Electronics Components of Avionics Systems

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.

    2009-01-01

    Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.

  17. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  18. High speed bus technology development

    NASA Astrophysics Data System (ADS)

    Modrow, Marlan B.; Hatfield, Donald W.

    1989-09-01

    The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.

  19. Integrated Avionics System (IAS)

    NASA Technical Reports Server (NTRS)

    Hunter, D. J.

    2001-01-01

    As spacecraft designs converge toward miniaturization and with the volumetric and mass constraints placed on avionics, programs will continue to advance the 'state of the art' in spacecraft systems development with new challenges to reduce power, mass, and volume. Although new technologies have improved packaging densities, a total system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and scalability to accommodate multiple missions. With these challenges in mind, a novel packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. This paper will describe the fundamental elements of the Integrated Avionics System (IAS), Horizontally Mounted Cube (HMC) hardware design, system and environmental test results. Additional information is contained in the original extended abstract.

  20. The X-38 Spacecraft Fault-Tolerant Avionics System

    NASA Technical Reports Server (NTRS)

    Kouba,Coy; Buscher, Deborah; Busa, Joseph

    2003-01-01

    In 1995 NASA began an experimental program to develop a reusable crew return vehicle (CRV) for the International Space Station. The purpose of the CRV was threefold: (i) to bring home an injured or ill crewmember; (ii) to bring home the entire crew if the Shuttle fleet was grounded; and (iii) to evacuate the crew in the case of an imminent Station threat (i.e., fire, decompression, etc). Built at the Johnson Space Center, were two approach and landing prototypes and one spacecraft demonstrator (called V201). A series of increasingly complex ground subsystem tests were completed, and eight successful high-altitude drop tests were achieved to prove the design concept. In this program, an unprecedented amount of commercial-off-the-shelf technology was utilized in this first crewed spacecraft NASA has built since the Shuttle program. Unfortunately, in 2002 the program was canceled due to changing Agency priorities. The vehicle was 80% complete and the program was shut down in such a manner as to preserve design, development, test and engineering data. This paper describes the X-38 V201 fault-tolerant avionics system. Based on Draper Laboratory's Byzantine-resilient fault-tolerant parallel processing system and their "network element" hardware, each flight computer exchanges information on a strict timescale to process input data, compare results, and issue voted vehicle output commands. Major accomplishments achieved in this development include: (i) a space qualified two-fault tolerant design using mostly COTS (hardware and operating system); (ii) a single event upset tolerant network element board, (iii) on-the-fly recovery of a failed processor; (iv) use of synched cache; (v) realignment of memory to bring back a failed channel; (vi) flight code automatically generated from the master measurement list; and (vii) built in-house by a team of civil servants and support contractors. This paper will present an overview of the avionics system and the hardware implementation, as well as the system software and vehicle command & telemetry functions. Potential improvements and lessons learned on this program are also discussed.

  1. Multiplexer/Demultiplexer Loading Tool (MDMLT)

    NASA Technical Reports Server (NTRS)

    Brewer, Lenox Allen; Hale, Elizabeth; Martella, Robert; Gyorfi, Ryan

    2012-01-01

    The purpose of the MDMLT is to improve the reliability and speed of loading multiplexers/demultiplexers (MDMs) in the Software Development and Integration Laboratory (SDIL) by automating the configuration management (CM) of the loads in the MDMs, automating the loading procedure, and providing the capability to load multiple or all MDMs concurrently. This loading may be accomplished in parallel, or single MDMs (remote). The MDMLT is a Web-based tool that is capable of loading the entire International Space Station (ISS) MDM configuration in parallel. It is able to load Flight Equivalent Units (FEUs), enhanced, standard, and prototype MDMs as well as both EEPROM (Electrically Erasable Programmable Read-Only Memory) and SSMMU (Solid State Mass Memory Unit) (MASS Memory). This software has extensive configuration management to track loading history, and the performance improvement means of loading the entire ISS MDM configuration of 49 MDMs in approximately 30 minutes, as opposed to 36 hours, which is what it took previously utilizing the flight method of S-Band uplink. The laptop version recently added to the MDMLT suite allows remote lab loading with the CM of information entered into a common database when it is reconnected to the network. This allows the program to reconfigure the test rigs quickly between shifts, allowing the lab to support a variety of onboard configurations during a single day, based on upcoming or current missions. The MDMLT Computer Software Configuration Item (CSCI) supports a Web-based command and control interface to the user. An interface to the SDIL File Transfer Protocol (FTP) server is supported to import Integrated Flight Loads (IFLs) and Internal Product Release Notes (IPRNs) into the database. An interface to the Monitor and Control System (MCS) is supported to control the power state, and to enable or disable the debug port of the MDMs to be loaded. Two direct interfaces to the MDM are supported: a serial interface (debug port) to receive MDM memory dump data and the calculated checksum, and the Small Computer System Interface (SCSI) to transfer load files to MDMs with hard disks. File transfer from the MDM Loading Tool to EEPROM within the MDM is performed via the MILSTD- 1553 bus, making use of the Real- Time Input/Output Processors (RTIOP) when using the rig-based MDMLT, and via a bus box when using the laptop MDMLT. The bus box is a cost-effective alternative to PC-1553 cards for the laptop. It is noted that this system can be modified and adapted to any avionic laboratory for spacecraft computer loading, ship avionics, or aircraft avionics where multiple configurations and strong configuration management of software/firmware loads are required.

  2. FRC Compression Heating Experiment (FRCHX) at AFRL

    DTIC Science & Technology

    2007-06-01

    Air Force Research Laboratory ( AFRL ) and Los Alamos National Laboratory (LANL) have been... Air Force Research Laboratory , Directed Energy Directorate, 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 USA 8. PERFORMING ORGANIZATION REPORT...Matt Domonkos, Don Gale, Bernard Martinez, Jerry Parker, Dale Ralph, Ed Ruden, and Wayne Sommars Air Force Research Laboratory , Directed

  3. Military Curriculum Materials for Vocational and Technical Education. Avionics Instrument Systems Specialist. POI C3ABR32531 000. Classroom Course 2-7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This high school-postsecondary-level course for avionics instrument systems specialist is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. A plan of instruction outlines five blocks of instruction (281 hours of instruction). Block 1,…

  4. An overview of the F-117A avionics flight test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silz, R.

    1992-02-01

    This paper is an overview of the history of the F-117A avionics flight test program. System design concepts and equipment selections are explored followed by a review of full scale development and full capability development testing. Flight testing the Weapon System Computational Subsystem upgrade and the Offensive Combat Improvement Program are reviewed. Current flight test programs and future system updates are highlighted.

  5. Relationships Between Design Characteristics of Avionics Subsystems and Training Cost, Training Difficulty, and Job Performance. Final Report, Covering Activity from 1 July 1971 Through 1 September 1972.

    ERIC Educational Resources Information Center

    Lintz, Larry M.; And Others

    A study investigated the relationship between avionics subsystem design characteristics and training time, training cost, and job performance. A list of design variables believed to affect training and job performance was established and supplemented with personnel variables, including aptitude test scores and the amount of training and…

  6. 75 FR 19207 - Airworthiness Directives; Airbus Model 340-500 and -600 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... part of the avionic bay from frame 17 to frame 20. This leak resulted in the loss of the Yellow.... ADDRESSES: You may send comments by any of the following methods: Federal eRulemaking Portal: Go to http... the lower part of the avionic bay from frame 17 to frame 20. This leak resulted in the loss of the...

  7. Preliminary candidate advanced avionics system for general aviation

    NASA Technical Reports Server (NTRS)

    Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.

    1977-01-01

    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.

  8. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  9. Software-Defined Avionics and Mission Systems in Future Vertical Lift Aircraft

    DTIC Science & Technology

    2015-03-01

    military rotorcraft in the service of the United States Joint services have yet to benefit significantly from this technology. At long last, that may...Despite the demonstrated success of IMA systems in commercial airliners such as the Airbus A380 and the Boeing 787, military rotorcraft in the...8 4. Integrated Modular Avionics (IMA) – Generation One ..................9 5. Military IMA

  10. Development of Avionics Installation Interface Standards.

    DTIC Science & Technology

    1981-12-01

    design and manufacturing process routinely used to minimize the susceptibility of the equipment to corrosion . 4.2.7 Form/Fit Working Group The Form...since it would include both the LRU repack- aging and the required aircraft reconfiguration. The smallest impact is achieved when an avionics or...Smith ARINC Research Corporation X D. Snell Boeing Aerospace Corporation .. Steele Masterite Industries E. Straub ARINC Research Corporation X 1

  11. Transition from lab to flight demo for model-based FLIR ATR and SAR-FLIR fusion

    NASA Astrophysics Data System (ADS)

    Childs, Martin B.; Carlson, Karen M.; Pujara, Neeraj

    2000-08-01

    Model-based automatic target recognition (ATR) using forward- looking infrared (FLIR) imagery, and using FLIR imagery combined with cues from a synthetic aperture radar (SAR) system, has been successfully demonstrated in the laboratory. For the laboratory demonstration, FLIR images, platform location, sensor data, and SAR cues were read in from files stored on computer disk. This ATR system, however, was intended to ultimately be flown in a fighter aircraft. We discuss the transition from laboratory demonstration to flight demonstration for this system. The obvious changes required were in the interfaces: the flight system must get live FLIR imagery from a sensor; it must get platform location, sensor data, and controls from the avionics computer in the aircraft via 1553 bus; and it must get SAR cues from the on-board SAR system, also via 1553 bus. Other changes included the transition to rugged hardware that would withstand the fighter aircraft environment, and the need for the system to be compact and self-contained. Unexpected as well as expected challenges were encountered. We discuss some of these challenges, how they were met, and the performance of the flight-demonstration system.

  12. Avionics Architectures for Exploration: Ongoing Efforts in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Goforth, Montgomery B.; Ratliff, James E.; Hames, Kevin L.; Vitalpur, Sharada V.; Woodman, Keith L.

    2014-01-01

    The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES Program, we are encouraged to set aggressive goals and fall short if necessary, rather than to set our sights too low. We are also asked to emphasize providing our personnel with hands-on experience in development, integration, and testing. That we have embraced both of these philosophies will be evident in the descriptions below.

  13. Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.

  14. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  15. United States Air Force Graduate Student Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air

  16. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  17. USAF Summer Research Program - 1993 Graduate Student Research Program Final Reports, Volume 8, Phillips Laboratory

    DTIC Science & Technology

    1994-12-01

    Research Program Phillips Laboratory Kirtland Air Force Base Albuquerque, New Mexico Sponsored by: Air ...Summer Research Program Phillips Laboratory Sponsored by. Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, New Mexico...UNITED STATES AIR FORCE SUMMER RESEARCH PROGRAM -- 1993 SUMMER RESEARCH PROGRAM FINAL REPORTS VOLUME 8

  18. Phillips Lab Project Manager’s Handbook

    DTIC Science & Technology

    1994-04-15

    Phillips Lab continues to be the Air Force Phillips Laboratory (PL) center of excellence for space research and Kirtland AFB, New...POINTS OF CONTACT pages of world history. In 1949, the Cambridge Field Station was renamed the Kirtland AFB: Air Force Cambridge Research Laboratories ...by the Air Force’s facilities are geographically located. Phillips Laboratory at Kirtland Air Force

  19. Redox Liquid Phase Exfoliation of Layered Transition Metal Dichalcogenides (Postprint)

    DTIC Science & Technology

    2016-12-29

    RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR FORCE MATERIEL COMMAND UNITED...ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing Directorate Wright...Bultman, Adam Waite, Ming-Siao Hsiao, Richard A. Vaia* Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio

  20. 75 FR 53075 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... Demonstration Project, Department of the Air Force, Air Force Research Laboratory (AFRL); Notice #0;#0;Federal... Project, Department of the Air Force, Air Force Research Laboratory (AFRL) AGENCY: Office of the Deputy... amendment changed the amount of time required to be assessed under CCS from 180 to 90 calendar days and was...

Top